
João Miguel Rodrigues Quintas Veiga

Quality Assessment of Java Source Code

Jo
ão

 M
igu

el
Ro

dr
igu

es
 Q

uin
ta

s V
eig

a

Outubro de 2010UM
in

ho
 |

 2
01

0
Q

ua
lit

y
As

se
ss

m
en

t o
f J

av
a

So
ur

ce
 C

od
e

Universidade do Minho
Escola de Engenharia

Outubro de 2010

Tese de Mestrado
Informática

Trabalho efectuado sob a orientação da
Professora Doutora Maria João Gomes Frade

João Miguel Rodrigues Quintas Veiga

Quality Assessment of Java Source Code

Universidade do Minho
Escola de Engenharia

É AUTORIZADA A REPRODUÇÃO PARCIAL DESTA TESE,

APENAS PARA EFEITOS DE INVESTIGAÇÃO, MEDIANTE DECLARAÇÃO

ESCRITA DO INTERESSADO, QUE A TAL SE COMPROMETE.

João Miguel Rodrigues Quintas Veiga

Acknowledgements

First of all I want to thank my supervisor Professor Maria João Frade for the research

guidance and also for all the suggestions that improved this thesis.

I am grateful to Professor Joost Visser for showing me the Sonar platform.

Many thanks to Multicert company for showing interest in this project and for pro-

viding case studies. A special thanks to Renato Portela who was always available to

help.

Finally, I want to thank my family, for all their support along the years.

iii

Quality Assessment of Java Source Code

Abstract

The development of software products is a people-intensive process and several software

development methodologies are used in order to reduce costs and enhance the quality

of the final product. Source code quality assessment is a crucial process in the software

development, focusing in the certification of the quality of the code in its various as-

pects (functionality, reliability, maintainability, portability, etc). It contributes to the

undeniable reduction in product costs and helps to increase the quality of final software.

This master thesis focuses on assessing the quality of Java source code. A research

is made on quality models and existing standards, quality factors and the associated

metrics, and the tools available to analyse Java source code and to calculate these

metrics. We also identify the existing methodologies for determining metrics thresholds

in order to better understand the obtained metrics results.

However, software metrics are not enough to evaluate the quality of a software product.

We describe other ways of analysing source code like unit testing and static analysis.

These complementing analysis and the results of the metrics allow to create a more

complete view of the quality of the source code in its different aspects.

After making a brief survey of existing software metric tools for Java source code we

concentrate on Sonar: an open source tool used to analyse and manage source code qual-

ity in Java projects. Sonar evaluates code quality through seven different approaches:

architecture & design, complexity, duplications, coding rules, potential bugs and tests.

We developed a new plugin for Sonar for design quality assessment of Java programs,

which we call TreeCycle. The TreeCycle plugin represents the dependencies between

packages in a tree graph highlighting it’s dependency cycles. For each package it repre-

sents in a graphical way the results of a suite of metrics for object-oriented design. This

plugin helps to provide an overall picture of the design quality of Java projects.

Finally, using Sonar and the TreeCycle plugin, we analyse two industrial projects of

medium size in order to show the usefulness of this tool in the process for assessing the

quality of software products.

v

Avaliação da Qualidade de Código Fonte Java

Resumo

O desenvolvimento de produtos de software é um processo intensivo em que várias

metodologias de desenvolvimento de software são utilizadas para reduzir custos e mel-

horar a qualidade do produto final. A avaliação da qualidade de código fonte é essencial

para o desenvolvimento de software, focando na certificação da qualidade do código nos

seus vários aspectos (funcionalidade, confiabilidade, manutenção, portabilidade, etc.),

contribuindo assim para a inegável redução dos custos e o aumento da qualidade final

do software.

Esta tese de mestrado foca na determinação da qualidade de código fonte Java. A

investigação é feita sobre modelos de qualidade e padrões existentes, factores de qual-

idade e as métricas associadas, e as ferramentas dispońıveis para analisar código fonte

Java e calcular essas métricas. Identificamos também as metodologias existentes para

determinar valores de referências de modo a compreender melhor os resultados obtidos

pelas métricas.

Contudo, as métricas para software não são suficientes para avaliar a qualidade de um

producto de software. Descrevemos outras formas de analisar código fonte, tais como

testes unitários e análise estática. Estas análises complementares e os resultados das

métricas criam uma imagem mais completa da qualidade do código fonte.

Após um breve levantamento das ferramentas existentes para calcular métricas sobre

código fonte Java, concentramo-nos no Sonar: uma ferramenta open source utilizada

para analisar e gerir a qualidade de código fonte em projectos Java. O Sonar avalia a

qualidade do código a partir de sete abordagens: design, arquitectura, complexidade,

duplicação, regras de codificação, potenciais erros e testes.

Desenvolvemos um novo plugin para o Sonar que permite analisar a qualidade de

design de programas Java, o qual designamos TreeCycle. O plugin TreeCycle representa

as dependências entre pacotes numa árvore onde também são assinalados os ciclos de

dependências. Para cada pacote, este representa de uma forma gráfica os resultados do

conjunto de métricas para design orientado aos objectos. Este plugin permite criar uma

imagem global da qualidade de design de projectos Java.

Por fim, utilizando o Sonar e o plugin TreeCycle, analisamos dois projectos industriais

de médio tamanho para demonstrar a utilidade desta ferramenta no processo de avaliação

da qualidade de um producto de softwre.

vi

“...when you can measure what you are speaking about, and express it in numbers,

you know something about it; but when you cannot measure it, when you cannot express

it in numbers, your knowledge is of a meagre and unsatisfactory kind...”

William Thomson Kelvin (1824 - 1907)

Contents

1 Introduction 17

2 Quality Models 23

2.1 McCall’s Quality Model . 23

2.2 Boehm’s Quality Model . 24

2.3 ISO/IEC 9216 . 25

3 Software Metrics 27

3.1 Some Traditional Metrics . 27

3.2 Software Quality Metric Methodologies 28

3.2.1 IEEE Standard 1061 . 28

3.2.2 Goal Question Metric Approach 29

3.3 Object-Oriented Design Metrics . 30

3.3.1 C&K Metrics Suite . 30

3.3.2 R.C. Martin Metrics Suite . 32

3.3.3 Metrics for Object-Oriented Design Suite 33

3.3.4 Lorenz & Kidd Metric Suite . 34

3.4 Software Metrics Thresholds . 34

3.5 Software Quality Evaluation Process . 35

3.5.1 Process for Developers . 36

3.5.2 Process for Acquires . 37

3.5.3 Process for Evaluators . 38

3.6 Software Metrics Tools . 39

3.6.1 CyVis . 39

3.6.2 JavaNCSS . 40

3.6.3 JDepend . 42

3.6.4 CKjm . 44

3.6.5 Eclipse Plugin . 44

ix

3.6.6 Survey Results . 46

4 Complementing Software Metrics Information 49

4.1 Unit Testing . 49

4.1.1 Different Types of Tests . 50

4.1.2 Java Unit Testing Framework (JUnit) 50

4.1.3 Stubs and Mock Objects . 55

4.1.4 Unit Tests and Code Coverage . 55

4.2 Static Analysis . 58

4.2.1 FindBugs . 59

4.2.2 PMD . 60

4.2.3 CheckStyle . 61

5 Sonar: A Platform For Source Code Quality Management 63

5.1 Sonar Functionalities . 64

5.1.1 Violations Drilldown . 65

5.1.2 Dependency Structure Matrix . 65

5.1.3 Coverage Clouds . 66

5.1.4 Hotspots . 66

5.1.5 Components . 67

5.1.6 Time Machine . 67

5.1.7 Quality Profiles . 67

5.2 Sonar Plugins . 67

5.3 The TreeCycle Plugin . 68

5.3.1 How It Works . 69

5.3.2 Assessing TreeCycle with Sonar 72

5.4 Sonar in the Evaluation Process . 77

6 Case Studies 79

6.1 Maestro Web Service Test Project . 80

6.1.1 Statical Analysis (Rules Compliance) 80

6.1.2 OOD Metrics (Design & Architecture) 86

6.2 SMail J2EE Project . 90

6.2.1 Statical Analysis (Rules Compliance) 91

6.2.2 OOD Metrics (Design & Architecture) 94

x

7 Conclusions and Future Work 99

7.1 Conclusion . 99

7.2 Future Work . 100

xi

List of Figures

2.1 McCall software Quality Model . 24

2.2 Boehm’s Quality Model . 25

2.3 ISO/IEC 9216 internal and external quality model 26

3.1 FreeCS example in CyVis . 40

3.2 FreeCS example in JavaNCSS . 41

3.3 FreeCS example in JDepend . 43

3.4 FreeCS example in CKjm . 45

3.5 FreeCS example in Eclipse Plugin . 47

4.1 Running testToStringPlayer with JUnit in Eclipse 53

4.2 Running testToStringPlayer with EMMA in Eclipse 58

5.1 Example of a dashboard of a project in Sonar 64

5.2 TreeCycle: package dependencies tree graph 70

5.3 TreeCycle: list of dependency cycles . 71

5.4 TreeCycle: C&K metrics . 72

5.5 TreeCycle: general information . 73

5.6 TreeCycle: quality evolution . 73

5.7 TreeCycle: rules compliance info . 74

5.8 TreeCycle: rules compliance drill-down 74

5.9 TreeCycle: design & architecture . 75

5.10 TreeCycle: dependencies tree . 75

5.11 TreeCycle: C&K metrics results . 76

5.12 TreeCycle: unit tests . 77

5.13 TreeCycle: coverage cloud . 77

6.1 Maestro: general information . 81

6.2 Maestro: rules compliance info . 81

xiii

6.3 Maestro rules compliance drill-down . 82

6.4 Maestro: design & architecture . 86

6.5 Maestro: dependencies tree . 87

6.6 Maestro: dependency structure matrix 87

6.7 Maestro: C&K metrics results . 89

6.8 Maestro: lack of cohesion methods . 90

6.9 SMail: general information . 90

6.10 SMail: rules compliance info . 91

6.11 SMail: rules compliance drill-down . 91

6.12 SMail: design & architecture . 94

6.13 SMail: dependency tree . 95

6.14 SMail: dependency structure matrix . 95

6.15 SMail: C&K metrics results . 96

6.16 SMail: lack of cohesion methods . 97

xiv

List of Tables

3.1 Tools results . 47

6.1 C&K metrics thresholds . 80

xv

1 Introduction

Software quality assessment is on the agenda due to several factors among which include

the development of increasingly complex software, the use of libraries developed by

third parties, the use of open source, as well as the integration of pieces of code from

various sources. Software engineering remains a people-intensive process and several

software development methodologies are used in order to reduce costs and enhance the

quality of the final product. Software quality assessment is a crucial process in the

software development, focusing in the certification of the quality of the code in its various

aspects (functionality, reliability, maintainability, portability, etc). It contributes to the

undeniable reduction in product costs and helps to increase the quality of final software.

But what is meant by software quality? The concept of software quality is ambiguous.

Some software engineers relate software quality to the lack of bugs and testing, others

relate it to the customer satisfaction, or the level of conformity with the requirements

established [13, 36]. Therefore it all depends very much on the point of view of each

person.

Quality is a complex and multifaceted concept. In [18] David Garvin presented a study

on different perspectives of quality in various areas (philosophy, economics, marketing,

and operations management) and identified five major perspectives to the definition of

quality. In the transcendent perspective quality is something that can not be defined and

can only be identified through gained experience. In the product-based perspective qual-

ity is something that can be evaluated or measured by the characteristics and attributes

inherent to a product. In the user-based perspective the quality of a product is evaluated

or measured through consumer satisfaction and consumer demand. The manufacturing-

based perspective relates quality with the level of conformance of the product with its

requirements. And in the value-based perspective the quality of a product is evaluated

through its manufacturing cost and final price: no matter how good a product is, its

quality does not matter if it is too expensive and no one buys it.

Our focus will be the product-based perspective of software quality. In this view,

software quality can be described by a hierarchy of quality factors inherent to the software

17

product and all its components (source code, documentation, specifications, etc).

This master thesis focuses on assessing the quality of Java source code. We aim to

identify and understand the existing standards, the quality factors and the associated

metrics, and the tools available to analyse Java source code and to calculate these

metrics. It was also our goal to implement a tool to produce reports on source code

analysis according to the established methodology, and finally to apply this knowledge

and this tool to medium case studies.

Quality Models

Over the years many software quality models have been proposed. These models define,

in general, a set of characteristics (quality factors) that influence the software product

quality. Those characteristics are then divided into attributes (quality sub-factors) that

can be measured using software metrics. These models are important because they allow

for a hierarchical view of the relationship between the characteristics that determine the

quality of a product and the means for measuring them, thus providing an operational

definition of quality.

The quality models proposed by Jim McCall [7, 17] in 1977 and by Barry W. Boehm [7,

5] in 1978 are the predecessors of modern quality models. Both these models use an

hierarchical approach and were the basis for the ISO/IEC 9126 [25, 32], a standard

that aims to define a quality model for software and a set of guidelines for measuring

the quality factors associated with it, and that is probably one of the most widespread

quality standards.

Java

As already stated we will focus on Java code. Java [2] programming language was

developed in the early 90’s by a team of engineers at Sun Microsystems, led by James

Gosling. Its is an object-oriented language since it implements many of the features

related to object-oriented paradigm like the concept of object, class, encapsulation,

inheritance, data abstraction and polymorphism. It is an interpreted language since

Java source code is compiled to byte-code that can later be interpreted by a Java virtual

machine independently of computer architecture. It is also a multi-threaded, distributed,

dynamic language, making it suitable for developing web applications. However it is also

mature, simple, robust and secure, making it the most popular programming language,

with a large community support. It is for these reasons that more software companies

18

are investing in Java technology for developing there software products.

Metrics

Metrics are defined as being “the process by which numbers or symbols are assigned

to attributes of entities in the real world in such way as to describe them according

to clearly defined rules” [16]. We use tens of metrics in our daily lives. In software

engineering metrics can be used to determine the cost and effort of a software project,

staff productivity, and also the quality of a software product [16, 50]. Software metrics

are the most direct way to evaluate each factor that forms the quality model of a software

product.

Because more traditional metrics were proved to be incapable of dealing with concepts

specific to the object-oriented paradigm, object-oriented design (OOD) metrics where

developed and proposed. Examples of object-oriented design metrics suites are the

ones of Chidamber & Kemerer [11, 53], Robert C. Martin [45, 44], Fernando Brito e

Abreu [14, 21], and Lorenz & Kidd [21].

When working with software metrics one has to know how to interpret the obtained

results, in order to make decisions based on them. Reference values are needed to

determine whether the metrics results are too high, too low, or normal, these reference

values are known as software metrics thresholds. Not too much work is been done

about this topic, however there are some methodologies based on empirical studies for

determining software metrics thresholds.

However, software metrics are not enough to evaluate the quality of a software prod-

uct. It is important to use other techniques, like unit testing and static analysis, to

complement the information obtained through software metrics, thus creating a more

complete report.

Sonar

Sonar1 is an open source tool used to analyse and manage source code quality. Sonar

follows the ISO/IEC 9126 to assess the quality of the projects under evaluation and

it provides as core functionality code analysers, defects hunting tools, reporting tools

and a time machine. It enables to manage multiple quality profiles and also has a

plugin mechanism giving the opportunity to extend the functionality to the community.

1http://www.sonarsource.org/

19

Sonar has more than forty plugins available, however only four plugins are devoted to

visualisation and report of results.

We have developed a Sonar plugin (the TreeCycle2) for design quality assessment of

Java programs. The TreeCycle plugin helps in the analysis of design quality by repre-

senting the dependencies between packages in a tree graph highlighting it’s dependency

cycles. Moreover, for each package it represents in a graphical way the results of a suite

of metrics for object-oriented design. The use of this plugin provides an overall picture

of the design quality of a Java project and will enhance reports produced about the

code.

Finally, we analyse two industrial projects of medium size that were developed by

Multicert3, a Portuguese company that develops complete security solutions focused on

digital certification for all types of electronic transactions that require security.

These analysis were made with Sonar (among with TreeCycle and other Sonar plugins)

to show the usefulness of this tool in the process for assessing the quality of software

products. In the analysis of each project, there were presented several examples of

cases that are related to different aspects of the software product’s source code (design,

architecture, coding rules compliance, unit test coverage), that contribute somehow to

the diminution of its quality. The report produced can be used as evidence to propose

improvements to the source code.

Organization of the Thesis

The rest of this thesis is organized as follows:

Chapter 2 presents the quality models commonly used to define the set of character-

istics and attributes on which the software product will be evaluated: McCall’s quality

model, Boehm’s quality model and ISO/IEC 9216.

Chapter 3 is devoted to software metrics with special emphasis on object-oriented

design metrics. We also describe the IEEE Standard 1061 and the Goal Question Metric

Approach, two methodologies for identifying, analysing, and validating software quality

metrics. Moreover, we briefly present three techniques for deriving software metrics

thresholds and analyse ISO/IEC 14598, a standard that defines the process for measuring

and assessing the quality of software products. This chapter finishes with a small survey

of software metric tools capable of measuring all metrics presented in this chapter.

2http://wiki.di.uminho.pt/twiki/bin/view/Research/CROSS/Tools
3https://www.multicert.com/home

20

Chapter 4 identifies and describes various techniques and tools capable of comple-

menting the information obtained through software metrics, these being the following:

static analysis and unit testing.

Chapter 5 presents Sonar: a tool for source code quality management and try to

understand how this tool can be used in an evaluation process. We also present the

TreeCycle plugin, describing how it works and giving examples of its use and analyse it.

Chapter 6 is devoted to the presentation of two case studies of medium size and the

interpretation of the results obtained through Sonar.

Chapter 7 is reserved for conclusions and directions that can be taken in future work.

21

2 Quality Models

Having defined the concept of software quality is now necessary to identify the set of

quality factors and sub-factors, also known as quality models, on which the software

product will be measured and evaluated.

Next an overview of the ISO/IEC 9126 quality model will be done because it is consid-

ered “one of the most widespread quality standards” [8], and also McCall’s and Boehm’s

quality models from who the ISO/IEC 9126 was based. But there are others like the

FURPS quality model proposed by Robert Grady and Hewlett-Packard Co. that has

the peculiarity of dividing the quality factors into two categories (functional and non-

functional), or the quality model proposed by R. Geoff Dromey that tries to adapt to

each different software product, but they seem not to be so well-known and will not be

featured in this chapter.

2.1 McCall’s Quality Model

This model, known as the “first of the modern software product quality models” [5],

was proposed by Jim McCall [7, 17] in 1977 and is used in the United States in various

military, space and public projects.

The McCall model, as shown in Figure 2.1, is formed by eleven quality factors that

represent the external view or the way users perceive the quality of a software product.

These quality factors form a hierarchy relationship with the sub-factors of the software

product also known as quality criteria that represent the internal view or the way the

developer perceives the quality of a software product. The software metrics provide a

way of measuring the quality criteria and therefore evaluating the quality factors. There

are three major perspectives of software product quality in the McCall model.

The product operation where the quality of the software product is measured by its

operational characteristics includes the following quality factors: efficiency (efficient use

of computer resources), usability (cost and effort to learn how to handle the software

product), integrity (program’s level of protection against unauthorized access), correct-

23

ness (specification conformity) and reliability (the probability of failure). The product

revision where the quality of a software product is based on it’s capability to be updated

includes the following quality factors: maintainability (effort necessary to locate and fix

an error), testability (ease of testing a software for specification violations) and flexibility

(cost of modifying the software product). The product transition where the quality is

measured by the capability of the software product to adapt to new environments in-

cludes the following quality factors: re-usability (the cost reusing it in another software

product), portability (effort of transferring the software from a environment to another)

and interoperability (effort of coupling a software product to another).

Figure 2.1: McCall software Quality Model

2.2 Boehm’s Quality Model

Another of the first quality models was proposed by Barry W. Boehm [7, 5] in 1978

and uses the same hierarchical approach as the McCall software quality model. The

notion of quality in Boehm’s model, as shown in Figure 2.2, is represented by three high

level characteristics, maintainability that represents the effort to understand, modify

and test the software product, portability that represents the effort to adapt to a new

environment, and as-is utility that requires the software product to be easy and reliable

to use. These three high level characteristics represent the user’s point of view and

are linked to seven intermediate characteristics similar to the quality factors in the

McCall model (portability, reliability, efficiency, flexibility, testability, understandability

24

and modifiability), which in turn are divided into low-level attributes upon which the

software metrics will be applied.

Figure 2.2: Boehm’s Quality Model

2.3 ISO/IEC 9216

The International Organization for Standardization (ISO) presented in 1991 the first

international standard on software product evaluation: ISO/IEC 9126: Software Product

Evaluation - Quality Characteristics and Guidelines for Their Use [25]. This standard

intended to define a quality model for software and the guidelines for measuring the

characteristics associated with it. The standard was further developed during 2001 to

2004 period and is now published by the ISO in four parts: the quality model [32],

external metrics [33], internal metrics [34] and quality in use metrics [35].

ISO/IEC 9126 is considered one of the most widespread quality standards. The new

release of this standard recognises three views of software quality:

• External quality : covers characteristics of the software that can be observed during

its execution.

• Internal quality : covers the characteristics of the software that can be evaluated

without executing it.

• Quality in use: covers the characteristics of the software from the user’s view,

when it is used in different contexts.

25

The quality model in ISO/IEC 9126 comprises two sub-models: the internal and

external quality model, and the quality in use model.

The internal and external quality model was inspired from McCall’s and Boehm’s

models. Figure 2.3 illustrates this model. The model is divided in six quality fac-

tors: functionality, reliability, usability, efficiency, maintainability, and portability; which

are further subdivided into 27 sub-characteristics (also called attributes or quality sub-

factors). The standard also provides more than an hundred metrics that can be used

to measure these characteristics. However those metrics are not exhaustive, and other

metrics can also be used.

Figure 2.3: ISO/IEC 9216 internal and external quality model

The quality in use is modelled in a different way. It breaks-down in four quality

factors: security, satisfaction, productivity and efficiency. These quality factors are not

subdivided further.

The re-usability factor is defined by McCall et al. [47] as the cost of transferring a

module or program to another application and although ISO/IEC 9126 does not con-

template it, re-usability can be seen as a special case of usability [41].

26

3 Software Metrics

After seeing different software quality models and identifying the quality factors and

sub-factors of software products that can influence its quality it is now important to

understand how the attributes will by measured and evaluated.

Software quality metrics fall in the category of product metrics that are applied to

the software product including source code and documentation produced during devel-

opment stage. However there are also process metrics used to measure the development

process, such as time, cost, and effort. Software metrics can also be categorized as being

direct if they don’t rely on other metrics, or indirect otherwise [37].

3.1 Some Traditional Metrics

Next we briefly present two of the first, best-known and most used software product

metrics.

Lines of code (LOC). This metric[48, 50] is one of most well-known metrics, and it is

used to determine the size of a software product. However even this apparently simple

metric can be difficult to define because the meaning of “line of code” can include

comments, non-executable statements and even blank lines. This metric is considered

one of the best all-around error predictors [48].

Cyclomatic complexity (CC). This metric was developed by Thomas McCabe [46, 48]

in 1976 and measures the number of linearly independent paths through a program using

its control flow graph. This metric measures the level of complexity. The higher the

cyclomatic complexity value, the harder it is to understand the source code and test the

program. Therefore high cyclomatic complexity leads to loss of software quality.

Halstead’s Metrics Set. In 1977 Maurice Halstead [50, 48] proposed a set of metrics

based on the number of operators and operands in a module (function or method).

27

Halstead defines, among others, the length (N) that given the number of operators

in a program (η1) and number of operands (η2) can be calculated using the formula

N = η1 + η2.

Given the number of unique operators (µ1) and the number of number of unique

operands (µ2), the vocabulary of a program (U) can be calculated through the formula

U = µ1 + µ2.

The volume (number of bits) of a program (V) can be seen as an indirect metric that

is calculated through the formula V = N ∗ log2 U .

3.2 Software Quality Metric Methodologies

Next we describe two methodologies for identifying, analysing, and validating software

quality metrics.

3.2.1 IEEE Standard 1061

The Institute of Electrical and Electronics Engineers (IEEE) published in March 1993

the standard 1061 [24] for a software quality metrics methodology. It provides a five

step methodology for identifying, implementing, analysing, and validating process and

product software quality metrics for the established quality requirements throughout a

software life cycle. This standard also provides a software quality metrics framework for

defining simple quality models formed by quality factors, sub-factors and the metrics

that measure them.

The first step in the standard 1061 methodology consists in the creation of a list of

software quality requirements. All parties involved in the project have to participate in

the creation of this list and it is advised the use of organizational experience, required

standards, regulations, or laws. And for each quality factor one or more direct metrics

should be assigned.

The second step begins by applying the software quality metrics framework by assign-

ing quality factors to each quality requirement. Each quality factor is decomposed into

quality sub-factors which in turn are related to metrics. It is also important to define a

target value, a critical value and the range for each metric. After all this it is necessary

to document each metric by giving emphasis to the costs and benefits of applying them.

This step helps defining the set of metrics that will be used throughout the project.

The third step has describes how the software quality metrics will be implemented.

28

First is necessary to define for each metric the data and tools that will be used. It is also

important to describe data storage procedures, who will be making the data collection,

and establishing a traceability matrix between metrics and the data collected. Then

the tools and data collection are tested to help improve metric and data descriptions,

as well as to examine the cost of the measurement process. After successful testing, all

collected data has to be stored in the project metrics database and calculate the metric

values through the use of the collected data.

The fourth step is related to the analysis the software metrics results. After analysing

and recording the metric results it is important to identify values that are outside the

tolerance intervals. These values can represent undesirable attributes like excessive com-

plexity, or inadequate documentation, that leads to the non conformance with the quality

requirements. Depending on the results collected, it can be necessary to re-design the

software component or even to create a new one from scratch.

Finally, the fifth step describes how to validate software quality metrics by applying

a validity criteria defined in the standard 1061.

3.2.2 Goal Question Metric Approach

The Goal Question Metric (GQM) [6, 8] was originally created for evaluating defects for

projects in the NASA Goddard Space Flight Center and used by several organizations

like NASA, Hewlett Packard Motorola, and Coopers & Lybrand. This approach is used

by companies and organizations that want to improve their use of software metrics. The

GQM approach works by first specifying a set of goals for the company and its projects,

then tracing those goals to the data that defines them operationally, and finally providing

a framework for interpreting and quantifying the data turning it into information that

can be analysed as to whether the goals have been achieved or not.

From the GQM approach the result is a three level measurement model through which

one can measure the collected data and interpret the measurement results. The first

level is named conceptual level and is where the goals are chosen for an object taking

into account various aspects like the object’s environment, quality models, and different

points of view. These objects can be different components from the software product

like, for example, specifications, designs, programs or test suits. They can be activities

related to the Software development process like the testing, designing or specifying

process. And they can also be resources used by the development process like hardware,

software or personnel.

In the second level named operational level is where a set of questions are created

29

for each goal, based on a characterizing model of the object like a quality model or a

productivity model. These set of questions are created to better understand how the

goals will be achieved.

Finally in the third level named quantitative level each question will be associated

to one or more metrics that need to be calculated in order to answer the question in a

quantitative way.

3.3 Object-Oriented Design Metrics

The object-oriented paradigm brought a new way of viewing and developing software

systems. This can be seen as a group of objects that interact with each other through

message passing trying to solve a problem. An object-oriented programming language

has to provide support for object-oriented concepts like objects, classes, encapsulation,

inheritance, data abstraction and message passing.

There are metrics especially designed to measure distinct aspects of the object-oriented

approach. Some sets of object-oriented design metrics have been proposed. And there

are authors who have tried to relate these metrics to the quality factors that form the

ISO/IEC 9126 quality model [41]. Next we present four sets of object-oriented design

metrics and their relation with the quality factors described in Chapter 2.

3.3.1 C&K Metrics Suite

In 1994 Shyam R. Chidamber and Chris F. Kemerer proposed a metrics suite for object-

oriented design [11, 53]. This suite consists of six metrics.

Weighted methods per class (WMC) metric is equal to the sum of all methods com-

plexities in a class. A method complexity can be measured by the cyclomatic complexity,

however a definition of complexity was not proposed by Chidamber and Kemerer in order

to allow for general applications of this metric. If methods complexities are considered

to be unity, the WMC metric turns in to the number of methods in a class. The WMC

gives an idea of the effort required to develop and maintain the class. Since the children

of a class inherit all its methods, the number of methods in a class have potential im-

pact on its children. Classes with many methods are probably more application specific.

High WMC values negatively influences maintainability and portability, because com-

plex classes are harder to analyse, test, replace or modify. It also negatively influences

re-usability since it is harder to understand and learn how to integrate complex classes.

30

Depth of inheritance tree (DIT) metric determines the number of ancestors of a

class in the hierarchy of classes. Deep inheritance trees make the design complex. This

metric negatively influences maintainability and portability because classes with high

DIT potentially inherit more methods, and so it is more complex to predict their be-

haviour. However re-usability benefits from classes with high DIT because those classes

potentially have more inherit methods for reuse.

Number of children (NOC) metric is equal to the number of immediate subclasses

subordinated to a class. NOC gives an idea of the potential influence a class has on the

design. If a class has a large NOC, it may justify more tests. If NOC is too high, it can

indicate that the subclass structuring is not well designed. Re-usability benefits from

classes with high NOC since inheritance is a form of reuse. NOC affects portability and

maintainability, because classes with subclasses that depend on it are harder to replace

or change.

Coupling between object classes (CBO) metric represents the total number of other

classes a class is coupled to. A class is coupled to another class if methods of one uses

methods or instance variables from the other. Excessive coupling is bad for modular

design. It makes classes complex and difficult to reuse. It also makes testing a more

difficult task and makes software very sensitive to changes. CBO is so highly connected

to portability, maintainability and re-usability.

Lack of cohesion in methods (LCOM) metric determines the difference between the

number of pairs of methods of a class that do not share instance variables and the number

of pairs of methods that share instance variables. This metric helps to identify flaws in

the design of classes. For instance, high lack of cohesion in methods may indicate that

the class would be better divided into two or more subclasses. Low cohesion increases

complexity. So, classes with high LCOM values are harder to understand and test.

Therefore, LCOM influences maintainability and re-usability.

Response for a class (RFC) metric represents the number methods, including methods

from other classes, that can be executed in response to messages received by objects from

the class. RFC is an indicator of class complexity and of the test effort required. Classes

with high RFC are harder to test and debug, since they are harder to understand. These

reason also make classes with high RFC more difficult to reuse and less adaptable to

changes. Hence RFC negatively influence maintainability, re-usability and portability.

31

3.3.2 R.C. Martin Metrics Suite

Robert C. Martin proposed in 1994 a set of metrics for measuring the quality of an

object-oriented design in terms of the interdependence between packages [45, 44]. This

suite consists of the following metrics.

Afferent couplings (CA) metric measures the total number of classes outside a pack-

age that depend upon classes within that package. This metric is highly related with

portability, because packages with higher CA are harder to be replaced since they have

a lot of other packages that depend upon them.

Efferent couplings (CE) metric measures the total number of classes inside a package

that depend upon classes outside this package. High CE value will negatively influence

package re-usability, since it is harder to understand and isolate all the components

necessary to reuse the package. CE negatively influences package maintainability since

packages with high CE are prone to changes from the packages it depends on. It also

negatively influences portability since packages with high CE are hard to be adapted

because they are hard to understand.

Instability (I) metric measures the ratio between CE metric and the total number

between the CE and CA metric. Basically, packages with many efferent couplings are

more unstable, because they are prone to changes from other packages. So, instability

negatively influences re-usability, maintainability and portability. On the other hand,

packages with many afferent couplings are responsible for many other packages, making

them harder to change and therefore more stable.

Abstractness (A) metric measures the ratio between the number of abstract classes

or interfaces and the total number of classes inside a package. Stable packages have to

be abstract so that they can be extended without being changed. On the other hand,

highly unstable packages must be concrete, because its classes have to implement the

interfaces inherited from stable packages.

Distance from the main sequence (D) metric measures the perpendicular distance of

a package from the main sequence. Because not all packages can be totally abstract and

stable or totally concrete and unstable, these packages have to balance the number of

concrete and abstract classes in proportion to there efferent and afferent couplings. The

32

main sequence is a line segment that joins points (0,1) (representing total abstractness)

and (1,0) (representing total instability). This line represents all the packages whose

abstractness and stability are balanced. So it is desirable that packages are the closest

to the main sequence as possible.

3.3.3 Metrics for Object-Oriented Design Suite

The MOOD metrics set was proposed by Fernando Brito e Abreu [14, 21] and focuses

most on measuring key characteristics of the object-oriented paradigm like inheritance,

encapsulation and coupling.

Polymorphism Factor (PF) metric measures the ratio of the total number of overriding

methods to the total number of possible overridden methods in the software system.

Given M(Ci) the set of methods in a class Ci and DC(Ci) the set of subclasses of a

class Ci, the total number of possible overridden methods can be calculated using the

following formula:

V =
∑n

i=1[|M(Ci)| ∗ |DC(Ci)|]

Coupling Factor (CF) metric measures the ratio between the the actual number of

non-inheritance couplings and the total number of possible non-inheritance couplings

in the software system. The CF metric negatively influences the quality factors main-

tainability, portability and re-usability because of the same reasons listed in the CBO

metric.

Method Hiding Factor (MHF) metric gives the ratio between the total number of

hidden methods and the total number of methods in a software system. This metric was

proposed as a form of measuring the encapsulation level.

Attribute Hiding Factor (AHF) metric gives the ratio between the total number of

hidden attributes (instance variables) and the total number of attributes in a software

system. This metric was also proposed as a form of measuring the encapsulation level.

Method Inheritance Factor (MIF) metric measures the ratio between the total num-

ber of inherited methods and the total number of methods in a software system. This

metric was proposed as a mean of measuring inheritance that, like in the case of the

33

DIT and NOC metrics, benefits re-usability however affects analyzability and testability

(sub-factors of maintainability).

Attribute Inheritance Factor (AIF) metric gives the ratio between the total number of

inherited attributes (instance variables) and the total number of attributes in a software

system. This metric was proposed for the same reasons listed in the MIF metric.

3.3.4 Lorenz & Kidd Metric Suite

The L&K Metrics developed by Mark Lorenz and Jeff Kidd [21] and it is formed by basic

and direct metrics like the number of public methods in a class (NPC), the number of

public, private and protected methods in a class (NM), the number of public instance

variables of a class (NPV), the number of public, private and protected instance variables

of a class (NV), the number of methods inherited by a subclass (NMI). However they

also proposed more complex metrics like:

Number of Methods Overridden by a subclass (NMO) metric gives the total number

of overridden methods of a class. Classes with a high number of overridden methods

probably are wrongly connected to its superclasses, leading to a design problem.

Number of Methods Added by a subclass (NMA) metric gives the total number

of new methods of a subclass. This metric strengthens the idea expressed in the NMO

metric.

Average Method Size (AMS) metric gives the total number of source lines in a class

divided by the number of its methods. This metric gives an idea of a class size.

Number of Friends of a class (NFC) metric is similar to the CBO metric, it gives

the number of other classes coupled to a class.

3.4 Software Metrics Thresholds

Over time many authors proposed software metric thresholds based on their experience.

For example, NASA Independent Verification & Validation (IV&V) Facility metrics

data program1 collects, organizes and stores software metrics data. Its website gives

1http://mdp.ivv.nasa.gov/index.html

34

general users access to a repository with information about various metrics used in

NASA projects like threshold values, scales of measurement, range and usage.

NASA IV&V puts the LOC threshold (including blank lines, comment lines, and

source code lines), used at method level for NASA software projects, around 200. High

cyclomatic complexity leads to the loss of software quality. In the NASA IV&V, a

method with a cyclomatic complexity value of over 10 is considered difficult to test and

maintain.

However, since these thresholds rely on experience, it is difficult to reproduce or

generalize these results[1]. There are some authors who propose methodologies based on

empirical studies for determining software metrics thresholds. Below we describe some

of these methods.

Erni et al. [15] propose a simple methodology based on the use of well-known statistical

methods to determine software metrics thresholds. The lower (Tmin) and the higher

(Tmax) thresholds are calculated using the following formulas Tmin = µ− s and Tmax =

µ + s, being µ the average of a software metric values in a project and s the standard

deviation. The lower and the higher thresholds work as lower and upper limit for the

metric values.

Shatnawi et al. [55] propose a methodology based on the use of Receiver-Operating

Characteristic (ROC) curves to determine software metrics thresholds capable of pre-

dicting the existence different categories of errors. This method was experimented in

three different releases of Eclipse and using the C&K metrics.

Alves et al. [1] propose a novel methodology for deriving software metric threshold

values from measurement data collected from a benchmark of software systems. It is

repeatable, transparent and straightforward method that extracts and aggregates metric

values for each entity (packages, classes or methods) from all software systems in the

benchmark. Metric thresholds are then derived by choosing the percentage of the overall

code one wants to represent.

3.5 Software Quality Evaluation Process

Although the standard ISO/IEC 9126 defines a quality model, quality factors, sub-

factors and measures to determine the quality of a software product, it does not define

the process for evaluating its quality.

This is why the International Organization for Standardization released in 1998 the

standard ISO/IEC 14598 [57]. This standard defines a process for measuring and as-

35

sessing the quality of software products and it is based on three different perspectives:

development, acquisition and independent evaluation. The most recent version of this

standard is divided in six parts: general overview [27], planning and management [29],

process for developers [30], process for acquires [28], process for evaluators [26], and

documentation and evaluation modules [31].

3.5.1 Process for Developers

The process defined in ISO/IEC 14598 for developers is divided in five stages:

Organization. In this first stage of the process aspects related with development and

support have to be defined. Aspects like definition of organizational and improvement

objectives, identification of technologies, assignment of responsibilities, identification

and implementation of evaluation techniques for developed and third-party software

products, technology transfer and training, data collection and tools to be used. This

will contribute to the quality system and to establish a measurement plan.

Project planning and quality requirements. In this stage, the development life cycle

of the software product is established and documented. It is necessary to check the

quality model defined in ISO/IEC 9126 for any conflicts that may exist and whether the

quality factors and metrics are complementary and verifiable. It is also important to

verify if they are feasible, reasonable and achievable by taking into account, for example,

the given budget and time schedules.

Specifications. In this stage, the internal and external quality factors are mapped to

the requirements specification which contains the complete description of the behaviour

of the software product that will be developed. It is also in this stage that the metric

scales and thresholds are defined.

Design and planning. When doing the design planning it is important to define sched-

ules, delineate responsibilities, and determine tools, databases and any specialist train-

ing. In this stage, it is important to specify measurement precision and statistical

modelling techniques. It is also important to try to understand how the metrics results

will influence development. Therefore, the need for contingency actions, additional re-

view and testing, and improvement opportunities should all be considered in the design

planning.

36

Build and test. In this last stage, it is where the metrics results are collected, and

decisions are made based on the the analysis of the results. In the coding phase, internal

metrics are applied, in the testing phase, external metrics are used. Therefore the

conclusions drawn from analysis of the metrics results must also appear in the design

reviews and testing plans. This allows to have an overall image of the quality of the

software product at all stages of development.

At the end of the project, a review of the whole process of measurement collection

should be made in order to understand what went well and what can be improved in

future projects.

3.5.2 Process for Acquires

Acquires can be seen as companies who purchase complete software packages, companies

who have part of their development activity done by a third party, or companies who

want to use specific tools. The process defined in ISO/IEC 14598 for acquires is also

divided in four stages:

Establishment of requirements. In this first stage, it is necessary to define what is

the scope of the evaluation. The quality model defined in ISO/IEC 9126 can be used

to determine the quality factors that affect the quality of the software product, but can

also be defined other factors like cost or regulatory compliance.

Evaluation specification. At this stage, an specification of the evaluation is drawn

by analysing the software product so its key components can be identified. To each

component, quality-in-use and external metrics are specified in order to evaluate the

quality factors established in the previous stage. For each metric it is defined the level

of priority and thresholds. The methods for measurement collection and analysis are

also documented.

Evaluation design. Establishing an evaluation plan can be difficult, because it depends

on the type of software product under evaluation. For example, it is possible to evaluate

a project still under development at various stages of its life-cycle and have access various

types of data, whereas an off-the-shelf software product is more difficult to evaluate. Non

the less, it is necessary to establish an evaluation plan, and for this it must be taken

into account the need to access the software product’s documentation, development

tools and personnel, evaluation schedules, contingency arrangements, key milestones,

37

criteria for evaluation decisions, reporting methods and tools, procedures for validation

and standardization over future projects, in order to make the most complete evaluation

possible. The ISO/IEC 14598 provides the necessary information and support material

to make create this evaluation plan.

Evaluation execution. At the end, the evaluation needs to be recorded. This could

be anything from a simple logbook, to a full report that contains the results, the analy-

sis, decision records, problems encountered, measurement limitations, any compromises

made in relation the original objectives, and conclusions about the evaluation results

obtained and the methods used.

3.5.3 Process for Evaluators

The main objective of an evaluator is to assess software products in an impartial and

objective way, so that results of an evaluation can be always reproduce by using the

same measurement criteria. The process defined in ISO/IEC 14598 for evaluators is also

divided in four stages:

Evaluation requirements. In the first stage, like in the process for acquires, it is neces-

sary to define what is the scope of the evaluation. The quality model defined in ISO/IEC

9126 can be used to determine the quality factors that affect the quality of the software

product, but it can also be defined other factors like cost or regulatory compliance.

Evaluation specification. In this stage, an specification of the evaluation has to be

drawn. This is done by analysing the software product and identifying its key compo-

nents. To each component the metrics used to evaluate the quality factors established

in the previous stage are specified. The specification is basically formed by the formal

specification of each metric and the instructions on how to report the results, and a

formal description of each component and the quality factors used to evaluate them.

Evaluation plan and evaluation modules. At this point an evaluation plan must be

created. It is necessary to document the evaluation methods used to implement the

metrics defined in the previous stage. Then the plan must be optimized by relating

the evaluation methods to the elements (metrics and components) in the evaluation

specification. This elements are already related to the quality factors chosen in the first

stage. It is also necessary to define evaluation activities by taking into account available

38

human resources and components to evaluate. The ISO/IEC 14598 provides evaluation

modules in order to create reports in a consistent and repeatable format.

Evaluation results. In this last stage, all the evaluation activities defined in the eval-

uation plan are executed. After the evaluation, reports are elaborated and results are

documented.

3.6 Software Metrics Tools

Nowadays, we can easily find tools capable of measuring all the software metrics men-

tioned previously. These tools range from the simple command line tool that only

outputs numerical results, to the more complete tool with graphical user interface that

displays the results using graphs, in order to optimize the information that is passed to

the user. Within this type of tools, there are also those that are only capable of calcu-

lating one or two simple metrics and tools capable of measuring more than 20 software

metrics.

The remainder of this chapter will be devoted to a survey on software metric tools,

where it is used Freecss2, an open source chat server written in Java, as an example.

3.6.1 CyVis

CyVis3 measures the complexity of Java programs by using simple source code metrics.

It can graphically display the results obtained and also generate reports, in Html or Text

format. The set of metrics used by CyVis is measured by gathering data from the project

class files (bytecode). These metrics are divided in three levels, project, package and

class level: Number of Packages (NOP); Number of Classes (NC); Number of Methods

(NOM); Class Size (CS) (instruction count); Method Size (MS) (instruction count); and

McCabe Cyclomatic Complexity (VG).

Demonstration

The results from the example FreeCs, obtained using CyVis, can be seen in Figure 3.2.

More specifically, the results of its TrafficMonitor class.

2http://freecs.sourceforge.net/
3http://cyvis.sourceforge.net/

39

All the seven methods from class TrafficMonitor are represented in the bar chart.

The size of each bar changes depending on the size of the method it represents. And

its position varies depending on the complexity of the method. The ones on top have

higher complexity.

The greater the complexity of a method, the harder it is to understand and test it,

therefore, each bar is coloured with three possible colours, green, yellow or red, as a way

of warning.

As can be seen in the results table from Figure 1, method run is the largest with

a instruction count value of one hundred twenty one and the most complex with a

complexity value of twelve.

Figure 3.1: FreeCS example in CyVis

3.6.2 JavaNCSS

JavaNCSS4 is a simple command line tool for analysing Java programs. It does this by

measuring two of the most known and used source code metrics, non commented source

statements (NCSS) and cyclomatic complexity (CC).

4http://www.kclee.de/clemens/java/javancss/

40

The definition of statement in JavaNCSS is broader than in the Java language specifi-

cation. Besides the normal statements, like if, while, break, return, synchronized, it also

considers as statements the package, import, class, interface, field, method, constructor

declarations and the constructor invocation.

JavaNCSS also counts the number of packages, classes, methods, and Javadoc com-

ments (JVDC) per classes and methods.

All the results can also be displayed in a simple graphical user interface, or in a

generated XML file.

Demonstration

As can be seen in Figure 3.3, JavaNCSS presents the results from the example FreeCs by

using a simple graphic interface with no type of charts and just using numerical values.

For example, in the case of the TrafficMonitor class, it returns a list of all the methods

in the class with information regarding the NCSS, the CC and the number of JVDCs.

It can be seen that method run is the biggest and most complex method, in class

TrafficMonitor, with a NCSS value of twenty seven, a CC value of twelve and one

JVDC. In the end, JavaNCSS also gives an average value of the NCSS, the CC and the

number of JVDC per method.

Figure 3.2: FreeCS example in JavaNCSS

41

3.6.3 JDepend

JDepend5 is a tool that generates design quality metrics for each Java package in a

Project. The design quality is evaluated based in its extensibility, re-usability, and

maintainability. This is done by using the following design quality metrics: Number of

Classes and Interfaces (CC); Number of Abstract Classes (and Interfaces) (AC); Afferent

Couplings (CA); Efferent Couplings (CE); Abstractness (A); Instability (I); Distance

from the Main Sequence (D); and Package Dependency Cycles (Cyclic).

JDepend can be used to analyse package abstractness, stability and dependencies,

with the objective of identifying and inverting dependencies between high-abstraction

stable packages and low-abstraction instable packages. This makes packages with high-

abstraction level reusable, easy to maintain and extensible to new implementations. It

can also be used to identify package dependency cycles that negatively influence the

re-usability of packages involved in these cycles.

One nice feature of JDepend, is that it can be used with JUnit6, a framework for

writing and running repeatable tests for Java. Tests can be written to automatically

check that metrics are in conformance with desired result, or, written to fail if a pack-

age dependency, other than the ones declared in a dependency constraint, is detected.

Package dependency cycles can also be checked using JUnit tests.

All the results can be displayed in a simple graphical user interface, or by generating

a text file or a XML file.

Demonstration

In Figure 3.4, it can be seen a example of JDepend graphical user interface. It is divided

in two parts that represent the afferent and efferent couplings of each package, in the

FreeCs example.

For each package, it is displayed all the metric results, obtained. By clicking , for

example, on the freecs.util package, it opens a list containing the packages it depends

upon (in the efferent coupling section), or the list of packages that use it (in the afferent

coupling section).

Focusing on the freecs.util example, this package is formed by thirteen classes, it is

totally concrete (A = 0) and it is either stable, or instable (I = 0.55), witch makes

this package very difficult to manage. Since concrete packages are more affected by

changes made to their afferent couplings, they should be instable. Therefore, one can

5http://clarkware.com/software/JDepend.html
6http://www.junit.org/

42

conclude that it is undesirable to add dependencies to the freecs.util package. However,

freecs, freecs.auth, freecs.sqlConnectionPool, freecs.commands, freecs.content, freecs.core,

freecs.external, freecs.layout and freecs.util.logger all depend upon freecs.util (CA = 9).

The freecs.util package also has, at least, one dependency cycle, flagged by the word

Cyclic in the list of metric results. These cycles can be viewed by clicking on the

packages that depened on freecs.util and drilling down its tree of efferent couplings. Yet,

it is easier to viewed them by generating a text file with the results.

Figure 3.3: FreeCS example in JDepend

43

3.6.4 CKjm

CKjm is a simple command line tool that calculates Chidamber and Kemerer object-

oriented metrics: Weighted methods per class (WMC); Depth of Inheritance Tree (DIT);

Number of Children (NOC); Coupling between object classes (CBO); Response for a

Class (RFC); Lack of cohesion in methods (LCOM); Afferent coupling (CA); Number

of Public methods for a class (NPM)

This tool neither has a graphical user interface, or generates output files with the

results, it only calculates two metrics besides the Chidamber and Kemerer metrics, the

NPM and CA metrics. However, it does this in a efficient and quick way.

To run this tool, one just has to specify the class files on its command line.

Demonstration

The measures obtained for the example FreeCs, more specifically the freecs.util package,

can be seen in Figure 3.5.

For each class that forms freecs.util, CKjm presentes all the results from the eight

metrics calculated in the following order: WMC, DIT, NOC, CBO, RFC, LCOM, CA,

and NPM.

For example, the TrafficMonitor class obtained a seven WMC value witch means that

it has seven methods (because CKjm assigns one complexity value to each method) in

which, by the NPM result, five of them are public. By the DIT and NOC values, one

learns that TrafficMonitor has two superclasses and zero subclasses. By the CBO and

CA values, one learns that this class has two classes that use it and one class that it

depends upon. From the RFC value, one understands that twenty nine different methods

can be executed, when a object from TrafficMonitor receives a message (note that CKjm

only calculates a rough estimation) and, from the LCOM value, one realizes that there

are seven pairs of the class’s methods that do not share a instance variable access.

3.6.5 Eclipse Plugin

This last tool is the most complete of them all, it is a open-source Eclipse plug-in7 and

calculates twenty three metrics at package, class and method level: Lines of Code (LOC);

7http://metrics.sourceforge.net/

44

Figure 3.4: FreeCS example in CKjm

Number of Static Methods (NSM); Afferent Coupling (CA); Efferent Coupling (CE); In-

stability (I); Abstractness (A); Normalized Distance (D); Number of Attributes (NOF);

Number of Packages (NOP); Number of Classes (NOC); Number of Methods (NOM);

Method Lines of Code (MLOC); Number of Overridden Methods (NORM); Number of

Static Attributes (NSF); Nested Block Depth (NBD); Number of Parameters (PAR);

Number of Interfaces (NOI); Number of Children (NSC); Depth of Inheritance Tree

(DIT); Lack of Cohesion of Methods (LCOM); Weighted Methods per Class (WMC);

McCabe Cyclomatic Complexity (VG); Nested Block Depth (NBD)

Naturaly it has a graphical user interface where the metrics results are displayed.

These can also be exported to a XML file. It has the capability to trigger a warning

(indicating the package, class or method) whenever a metric threshold is violated. And

these thresholds can be changed in the plugin preferences.

One of the nicest features of this eclipse plugin is the option of viewing the packages

dependency Graph. This option can be used to identify dependency cycles between

packages, since these are coloured red. In greater detail, one can also view the classes

from those packages that are creating the dependencies.

Besides helping to identify package dependency cycles, it also has the option of find-

ing the shortest path between two nodes that can be used to better understand the

connection between all the packages in large dependency graphs.

45

Demonstration

Figure 3.6 shows the results from the FreeCs example. All the twenty three metrics

are displayed along with its total results, mean values, standard deviations, maximum

values and the resources that achieved the maximum values.

If one selects a metric it will display the results obtained for each package. If we

continue selecting a package and continuing drilling down, it will display the results at

the class level and method level.

For example, the package freecs.util has a method with a maximum complexity value

of 171 and it belongs to the class HtmlEncoder, which is very high for a method. In

the case of the class TrafficMonitor, it has a WMC value of twenty nine, with a method

achieving the maximum complexity value of twenty eight, witch is still a very high value.

Note that the WMC value obtained by TrafficMonitor differs from the result obtained

with JDepend, because the complexity of a method is calculated using the McCabe

cyclomatic complexity metric.

It is also possible to see that the thresholds from the metrics, nested block depth,

McCabe cyclomatic complexity and number of parameters where violated, because they

are coloured red. However, by drilling down the levels (package, class, method), one can

pin point the origin of the warnings.

3.6.6 Survey Results

Almost all of the tools in the survey have some kind of GUI to better present the results

obtained and also have the option of generating an output file to facilitate integration

with other tools. However the most important thing is that they are all capable of mea-

suring different software metrics, more specifically OOD metrics, and thus complement

themselves.

Obviously, as can be seen in Table 3.1, the tool that stood out the most was the

Eclipse Plugin, because of its ability to measure all the metrics that were referenced

in this chapter. And, because it is a plugin for a integrated development environment

(IDE), it allows the user to get immediate feedback whenever there is any alteration in

the source code. Having a GUI with the option for generating and viewing packages and

classes dependency graphs is also a nice feature.

46

Figure 3.5: FreeCS example in Eclipse Plugin

Table 3.1: Tools results

No of Metrics OOD Metrics GUI XML/Txt Output
Eclipse Plugin 23 20 YES YES

JDepend 8 8 YES YES
CKjm 8 8 NO NO
CyVis 6 3 YES YES

JavaNCSS 6 3 YES YES

47

4 Complementing Software Metrics

Information

Although software quality metrics are the most direct way to analyse the various factors

that constitute the quality model of a software product., decisions should not be solely

based on the information obtained by metrics, because software metrics are not enough to

evaluate all aspects of a software product’s source code (design, architecture, complexity,

coding rules, tests).

Next we present two of the most widely used techniques to analyse and improve the

quality of a software product and also complement the results obtained through software

quality metrics: unit testing and static analysis.

There are other techniques, like model checking, that are used by tools like Java

Pathfinder1. This tool is an extensible virtual machine framework that verifies Java pro-

grams bytecode for violations of properties like deadlocks and race conditions. However

we think this technique does not enter the scope of this thesis, so we will not going to

include it in this chapter.

4.1 Unit Testing

Testing plays a major role in software development, it is used to verify software’s be-

haviour and find possible bugs. Testing can be used to measure and improve the quality

factors of a software product (like reliability and maintainability) since de earlier stages

of development, so it has a big impact on the quality of the final product [43, 22].

In The Art of Unit Testing, by Roy Osherove [52], unit testing is defined as being an

“automated piece of code that invokes the method or class being tested and then checks

some assumptions about the logical behaviour of that method or class. A unit test is

almost always written using a unit testing framework. It can be written easily and runs

quickly. It is fully automated, trustworthy, readable, and maintainable”. This concept

1http://babelfish.arc.nasa.gov/trac/jpf/wiki

49

first appeared for the programming language Smalltalk by the hand of Kent Beck, and

later spread to almost every known programming language, making unit testing one of

the best techniques to improve code quality while learning about the functionality of the

class and its methods. Unit testing is now used in several popular software development

methodologies like extreme programming, test driven development, continuous testing,

and efficient test prioritization and selection techniques.

4.1.1 Different Types of Tests

Unit testing is used to test software modules that later will be combined and tested

as a group, in the integration testing phase. This occurs because each module may

work correctly during unit testing phase, but it may fail when interacting with other

modules. After the integration testing phase, it comes the system tests that group all

the modules together and test the software’s functionality from the user’s point of view

and determines the readiness of a software product for release. The process of testing

finishes with the acceptance tests as a way of validating the costumer acceptance [56].

However using integration occupy much of the effort of testing a software product. It

is normal for a software project to have 50% to 70% of the development effort spent on

testing, and 50% to 70% of the testing effort on integration testing [58]. This is why unit

testing is so important, especially in the earlier phases of the development process, when

bugs are smaller and easier to find, thus reducing the effort in the integration stage.

4.1.2 Java Unit Testing Framework (JUnit)

Normally a unit testing framework is known as a XUnit framework, being X the name

of the language for which the framework was developed. Today there are several uni-

testing frameworks like JUnit for Java, CppUnit for C++, NUnit for .NET, PyUnit for

Python, SUnit for Smalltalk, and HUnit for Haskell [20].

Unit testing frameworks are libraries and modules that help developers create unit

test, they provide a test runner (in the form of a console or a GUI) that lists the created

unit tests, runs the tests automatically and indicates the tests status while running. Test

runners will usually provide information such as how many tests ran, which tests and

reason they failed, the code location that failed. It is also possible to create test suites

that are basically collections of test cases.

JUnit2 is an open source unit testing framework for Java that was developed by Kent

2http://www.junit.org/

50

Beck and Erich Gamma. This framework is based one a similar framework for Smalltalk,

named SUnit. The JUnit framework has become the reference tool for Java unit testing,

this is proven by the large number of introductory and advanced articles, and the large

number of Open-Source projects that use it.

Creating a unit test with JUnit

The example used is a very simple project with three classes; class Game which consists

of a list of players and teams where players will be assigned randomly, through the

method generate(); class Team is formed by an Integer n that identifies the team and

the list of players that will play for team n; and class players which consists of a String

that represents the name of the player and an Integer that represents its number. Below,

class Player is shown:

public class Player {

private St r ing name ;

private int number ;

public Player (S t r ing name , int number){
this . setName (name) ;

this . setNumber (number) ;

}

public void setName (St r ing name) {
this . name = name ;

}

public St r ing getName () {
return name ;

}

public void setNumber (int number) {
this . number = number ;

}

public int getNumber () {
return number ;

}

@Override

public St r ing toS t r i ng () {
return ”Player ” + name + ” no ” + number ;

}
}

51

As can be seen, class Player is formed by the method constructor, the getters and the

setters. This class also has implemented the method toString() that returns the String

”Player ” + name + ” no ” + number containing the name and number of the player.

It is for this method that we will create our first test:

public class PlayerTests {

@Test

public void t e s tToSt r ingP laye r (){

Player p laye r = new Player (”John” , 1) ;

// assertTrue (

// p layer . t oS t r i n g () . e qua l s (” Player John no 1”)

//) ;

a s s e r tEqua l s (

”Player John no 1” ,

p laye r . t oS t r i ng ()

) ;

}

}

Normally when creating unit tests, a separate test class is created for each class that

is tested and for each method of this class at least one test method is created. The

unit test structure usually is divided in three parts, the creation of objects to perform

the test, executing the method one wants to test and verify (assert) that everything

occurred as expected. As can be seen in the example, in order to create the test class

PlayerTests each test method has to be signalled with the annotation Test, like in the

case of the method testToStringPlayer(). However the most important part of a test is

the assertTrue() method. These assertions (assertTrue(), assertEquals(), assertNull(),

assertFalse(), etc) are static methods belonging to JUnit’s class Assert that receive one

or two parameters and verifies a boolean expression, if it is false the test is considered

a failure and a message is returned, otherwise the test case continues normally. In

the TestToStringPlayer example there are two ways of using assertions to verify that

toString() returns String “Player John no 1”, as expected. The difference between the

two is that the failure message returned by assertEquals() is more specific than the one

returned by assertTrue().

To run the unit test just use a IDE like Eclipse and run PlayerTests as a JUnit Test.

Instead of the Package Explorer, the JUnit window should open and display all the

information related to the execution of the test, as seen in Figure 4.1.

52

Figure 4.1: Running testToStringPlayer with JUnit in Eclipse

Setup and teardown methods

As more and more unit tests are being created for the same test case, one begins to

see that the same (or similar) state is always created in the beginning of each test,

this is known as a test fixture. With JUnit, it is possible to create for each test case

the special methods setUp() that is executed before each test method, and teardown()

that is executed after each test. These methods can be used to create an instance of

the fixture, for each test and in the end of the test, destroy the instance. This ensures

that the changes made to the fixture by previous tests does not influence the ones that

have not yet been executed, thus creating more independent tests. This also allows to

decrease the percentage of duplicated code. Consider the follw example:

private Player p laye r ;

public class PlayerTests {

@Before

public void setUp () throws Exception {
Player p laye r = new Player (”John” , 1) ;

}

@Test

public void t e s tToSt r ingP laye r (){

53

// assertTrue (

// ” S t r ing s equa l ” ,

// p layer . t oS t r i n g () . e qua l s (” Player John no 1”)

//) ;

a s s e r tEqua l s (

” S t r i ng s equal ” ,

”Player John no 1” ,

p laye r . t oS t r i ng ()

) ;

}

@After

public void tearDown () throws Exception {
Player p laye r = null ;

}

}

In this case it can be seen the use of methods setUp() and teardown() for the example

tesToStringPlayer. It is also worth noting that for every assertion it was defined a failure

message Strings equal, in order to describe the failure in a more user friendly way.

Testing exceptions

Not all tests are used to verify if every thing is running according to plan, it is necessary

to also test worst case scenarios. With JUnit, it is possible to test for exceptions thrown

by the tested methods. Consider the follow example:

private Player p laye r ;

public class PlayerTests {

@Before

public void setUp () throws Exception {
Player p laye r = null ;

}

@Test (expected=Nul lPo interExcept ion . class)

public void t e s tToSt r ingP laye r (){

boolean t e s t = p laye r . t oS t r i ng () . equa l s (”Player John no 1”) ;

}

@After

public void tearDown () throws Exception {
Player p laye r = null ;

54

}

}

As can be seen in this example, testToStringPlayer() throws a NullPointerException

because it is trying to compare 2 Strings and variable player is initialized to null. How-

ever this test will pass because test testToStringPlayer() is expecting an exception as

can be seen by the annotation @Test(expected=Null...).

4.1.3 Stubs and Mock Objects

An external dependency is an object in the software that the method under test interacts

with, but does not have control over it, like for example file systems, threads, memory,

time, and etc. It is important to be able to control external dependencies when creating

unit tests and this controlling can be done by using techniques like stubs and mock

objects.

A stub is a replacement for the existing external dependency in the software that can

be controlled. By using a stub, unit tests can be done in isolation and the method under

test still receives all the inputs it needs so that it can be executed in the test. Common

techniques for using stubs involve the creation of an interface to allow replacing the

external dependency for the stub. The interface is in a constructor, in a get (or a set)

or just before the method is called, so it can be used in the tests.

Mock objects is a technique proposed by Mackinnon et al. [42]. The difference between

mock objects and stubs although very small. Unlike stubs, mock objects can cause

failures in tests. The method under test interacts with the mock object and later the

assertion is made against the mock object (instead of the method under test) to see if

the method interacted with the mock object as expected. The advantage of using mock

objects is that it is possible to test at a finer level of granularity than with stubs.

4.1.4 Unit Tests and Code Coverage

Code coverage was defined by Miller and Maloney [49] in the 60’s and can be described

as the the percentage of source code that has been tested. As the main objective of

testing is to find the greatest number of bugs, code coverage is the best way to know if

more unit tests are necessary. It is possible to improve the quality of a software product

by achieving the highest code coverage possible.

White-box testing [56] (also known as implementation-based or structural tests) is a

55

method of testing that uses the internal structure of a program to determine the test

cases. Normally, the control flow or data flow analysis of a program is made in order to

derive white-box tests. Opposed to black-box testing (also known as specification-based

or functional tests) that is a method of deriving tests based on the functionality of a

program.

Tests used to obtain code coverage fall in the category of white-box testing. Many

code coverage metrics have been proposed [9] and the must commonly used are based

on control flow analysis, as seen above:

Statement coverage

This measure is generated by determining the statements of the source code that were

executed by a test suite. It is the weakest form of a code coverage metric and it is the

one used by many commercial and open-source tools.

Decision (or branch) coverage

This measure gives the number of executed branches represented in the control flow

graph of a program, during test. This is done by determining if the boolean expressions

in control structures are evaluated to both true and false.

Condition coverage

This measures is similar to decision coverage, but instead of counting the results of

every boolean expressions in the control structures of a program, it counts the outcome

of each condition in the boolean expressions, during the execution of the test suite. A

condition is an operand of a logical connective that does not contain logical connectives.

For example:

de c i s i o n : i f (min < X && X <= max)

. . .

else

. . .

c ond i t i on s : (min < X) and (X <= max)

Modified condition/decision coverage

This metric was developed for safety critical aviation software at Boeing by the RCTA/DO-

178B. With this metric the number of necessary tests for full coverage is determined so

56

that every boolean expressions in the control structures of a program has taken all

possible outcomes at least once, the same must happen for the conditions, and every

condition in a boolean expression has to independently affect that decision’s outcome at

least once, during test. A condition independently affects a decision outcome by varying

that condition while the other conditions in the expression are been holding fixed [12].

Multiple condition coverage

The number of unit test necessary with multiple condition coverage is determined by

every possible combinations between the conditions of each boolean expressions in the

control structures of a program. In other words the test cases required for full multi-

ple condition coverage are given by the truth table of every boolean expression in the

program.

Path coverage

In the case of path coverage, the number of tests are determined by the number of

paths (every possible sequence of statements) in a program. This type of coverage is

the strongest one based on control flow analysis, but normally is impossible to use this

method because of infinite number of paths introduced by loop statements [51].

Tools for calculating code coverage

Today, there are many tools capable of measuring and reporting code coverage. Open-

source tools like EMMA3 and Cobertura4, or commercial tools like Clover5 determine the

percentage of code accessed by unit tests through the use of code coverage metrics such

as statement and branch coverage. In Figure 4.2 it can be seen that the percentage of

code covered by testToStringPlayer() Only class Player was covered by the test (83.8%)

resulting in only 25% of the code in the project. It can also be seen in class Player the

statements that were executed by the test, the lines represented in red show that only

the methods getName() and getNumber() were not executed during .

3http://emma.sourceforge.net/index.html
4http://cobertura.sourceforge.net/download.html
5http://www.atlassian.com/software/clover/

57

Figure 4.2: Running testToStringPlayer with EMMA in Eclipse

4.2 Static Analysis

Static code analysis consists in the verification of source code or object-code of a software

product against bugs, without the hassle of having to executing it, as opposed to dynamic

analysis.

The first of static code analysers represented by Lint appeared in the 70’s and were

difficult use and the number of bugs that could identify was very limited. Besides that

the noise rate or the amount of irrelevant results (although correct) of these tools were

extremely high. Nowadays, there are many fully automated static code analysers avail-

able that are capable of identifying various categories of bugs, these categories range from

safety and security to bad programming practices and coding conventions and produce

highly accurate results with few incorrect bug alerts also known as false positives and

low noise rate [4]. To achieve this, static code analysers rely on techniques like semantic

checking, strong type checking, memory allocation checking, logical statement checking,

interface and include problem checking, security checking and metrics analysis [38].

Studies show that the number of bugs in software products can be reduced to up to

58

60% through the use of static analysis [38], and thus leading to the improvement of

functionality (security) and reliability these software products [10, 54]. However, with

the wide range of rules static analysers are capable of verifying, like for example bad

programming practices or coding conventions, these tools can also be used to improve

other quality factors like maintainability and re-usability.

Next three well known open source static analysis tools, Findbugs, PMD and Check-

style, are presented. The example used to demonstrate these tools is the same used in

the unit testing section. It is a very simple project with three classes; class Game which

consists of a list of players and teams where players will be assigned randomly, through

the method generate(); class Team is formed by an Integer n that identifies the team

and the list of players that will play for team n; class players consists of a String that

represents the name of the player and a Integer that represents its number. Some bugs

were added to the example in order to demonstrate the usage of these tools.

4.2.1 FindBugs

Findbugs6 [3] is an open-source static analyser that verifies Java source code against

potential bugs.

It has an architecture based on plugins also known as bug detectors that are written

in Java and are capable of verifying several different types of bugs. Currently, Findbugs

is capable of finding nearly 300 bug patterns. These patterns are divided into various

categories like correctness, bad practice, performance, security, internationalization and

malicious code vulnerability. Each bug pattern is also determined a different priority,

high, medium or low.

Findbugs can be executed as a plugin in an IDE like Eclipse or NetBeans, it can be

used through the command line or it can be integrated into project management tools

like Ant or Maven. The analysis results can also be saved in an XML file.

Using Findbugs

After running this tool over the example, 2 bugs were reported. The first one was found

in class Game, in method generate() and it is related to the bug pattern Method invokes

inefficient new String() constructor :

Random randomGenerator = new Random () ;

6http://findbugs.sourceforge.net/

59

St r ing p l aye r s = new St r ing () ;

ArrayList<Player> aux = new ArrayList<Player >() ;

As can be seen, the string variable players is initialized by using the inefficient string

no-argument constructor. This leads to the waste of memory because the new object

is not recognise as being the constant ”” and, in Java, identical string constants are

represented by the same object. This leads to a loss of performance.

The second bug was also found in class Game, in method generate() and it is related

to the bug pattern Method concatenates strings using + in a loop:

for (int i = 1 ; this . l i neup1 . s i z e () < t e s t /2 ; i++){

int randomInt = randomGenerator . next Int (t e s t−i) ;

this . l i neup1 . add (aux . get (randomInt)) ;

i f (aux . get (randomInt) . getName () . equa l s (”Mike”) == true)

p l ay e r s += aux . get (randomInt) . getName () ;

aux . remove (randomInt) ;

}

In this case the string players is being constructed by using concatenation (+) inside

the for loop. The problem is that strings in Java are immutable, so in each iteration a

new string is in fact being created and this leads to a loss of performance. To circumvent

this problem it is recommended the use of StringBuffers.

4.2.2 PMD

PMD7 is another open source static analysis tool that scans java source code for potential

bugs.

In these tool, bug patterns are described using Java or XPath expressions. Almost

all of the patterns in PMD are related to bad programming practices like dead code,

suboptimal code, overcomplicated expressions or duplicate code.

PMD can be executed as a plugin in an IDE like Emacs, BlueJ, Eclipse or NetBeans, it

can be used through the command line or it can be integrated into project management

tools like Ant or Maven. The analysis results can also be saved in an XML file.

7http://pmd.sourceforge.net/

60

Running PMD

After running this tool over the example, 27 bugs were reported. One them was related

to the bug pattern Simplify Boolean Expressions and was found in class Game, in method

generate():

i f (! aux . get (randomInt) . getName () . equa l s (”Mike”) == true)

p l ay e r s += aux . get (randomInt) . getName () ;

In this case, string players is concatenating the name of all players except the ones

named “Mike”. The problem is that the if statement contains an boolean expression

where the result of the method equals() is compared with the boolean true, this is

unnecessary because equals() already returns an boolean result, so the boolean expression

can be simplified. Complicated boolean expressions increases complexity and affects

maintainability.

Another bug verified by PMD was found in all classes, Player, Team, Game, and it is

related to the bug pattern Loose Coupling. For example, in class Team:

public class Team {

private int team ;

private ArrayList<Player> p l aye r s ;

}

As can be seen all the players on the team are stored in an ArrayList, however in

these cases it is proposed the use of interfaces (in this case, the interface List) instead of

implementation types like ArrayList. This promotes loose coupling which allows changes

to be made to the structure of a class without affecting other classes that depend on it.

This also affects the maintainability of a software product.

4.2.3 CheckStyle

Checkstyle8 is an open source static code analyser that checks Java source code against

rules related to coding conventions. This tool also has an architecture based on plugins

or modules and is capable of checking more than 100 rules. And almost all of these rules

are related to the use of Javadoc, naming conventions and programming styles.

Checkstyle can be executed as a plugin in an IDE like Vim, IntelliJ, Eclipse or Net-

Beans, it can be used through the command line or it can be integrated into project

8http://checkstyle.sourceforge.net/index.html

61

management tools like Ant or Maven. The analysis results can also be saved in an XML

file.

Running Checkstyle

After running Checkstyle over the example, the Design For Extension rule turns out

to be one of the most violated and was found in all classes. With this rule Checkstyle

checks if public, protected, nonstatic methods of classes that can be extended are final,

abstract or have an empty implementation. This style of programming avoids super-

class’s functionality from being affected by their subclasses. This rule relates to the

reliabilty of a software product.

Another rule that was often flagged by Checkstyle was Member Name, as can be seen

in class Game:

public class Game {

private ArrayList<Player> team ;

private ArrayList<Player> l i n eup \$1 ;

private ArrayList<Player> l i n eup \$2 ;

private Date date of game ;

}

In this case, variables lineup$1, lineup$2 and date of game do not comply with the

format $ˆ[a−z][a−zA−Z0−9]∗$ as defined in the Java language specification and the

Sun coding conventions. This rule can be related to the usability of a software product.

62

5 Sonar: A Platform For Source Code

Quality Management

Sonar [19] is an open source tool used to analyse and manage source code quality in Java

projects. It evaluates code quality through seven different approaches: architecture &

design, complexity, duplications, coding rules, potential bugs, unit tests and comments.

Sonar groups a set of well-known code analysers such as EMMA, Cobertura, Clover,

PMD, FindBugs, CheckStyle and JavaNCSS, which allows it to present features like:

• listing of all evaluated projects and its results;

• drill down to see the results at package, class and source code level;

• coding rules violation report (Sonar provides over 600 coding rules);

• classical and object-oriented design metrics measurement;

• unit tests results and code coverage;

• a time machine that shows the evolution of different quality metrics through out

time;

• a dependency structure matrix (DSM) that represents dependencies between com-

ponents (Maven modules, packages or files) in a compact way;

• a plugin mechanism that enables users to extend the functionalities of Sonar.

Sonar runs as a server and uses a database to persist the results from projects analysis

and global configuration. It comes with an internal database (Apache Derby), however

it can be configured to use other databases, such as MySQL, Oracle, PostgreSQL, or Mi-

crosoft SQL. Sonar uses Maven a software tool for building and managing Java projects.

Analysis is done through a Sonar Maven plugin that executes a set of code analysers

and stores the results in the database. Although Sonar uses Maven it also can analyse

63

http://maven.apache.org/

non-Maven projects. This Maven plugin uses PMD and Checkstyle to find violations of

coding rules like coding conventions, design problems, duplicate code and dead code. It

uses FindBugs to detect potential bugs. Measurement of code coverage by unit tests is

done with Cobertura and Clover. Sonar uses JavaNCSS to measure the source code met-

rics, LOC and CC, but it also has its own costume made code analyser named Squid that,

among other things, generates the C&K and some of the R.C. Martin object-oriented

design metrics and signals dependency cycles between packages.

5.1 Sonar Functionalities

Sonar is a web-based application. When accessing its web site, it is possible to see the

complete list of projects that are in the data base of Sonar. Once a project is chosen, the

dashboard of its page is displayed, as seen in Figure 5.1. This dashboard is the starting

point to analyse the project, because it allows the user to have an idea of the overall

quality.

Figure 5.1: Example of a dashboard of a project in Sonar

The information displayed in the dashboard is divided by several widgets. The first

three widgets display results from standard metrics like the number of LOC, packages,

classes, methods, the percentage of comments in the code, the percentage of duplicated

64

code, and the average complexity per method and class that is complemented with

a bar chart where each bar represents the number of methods/classes with a certain

complexity.

Beside each metric, are arrows of various sizes and colours, these are called tendencies.

These are calculated through the use of an algorithm that basically takes all the measures

taken in the last days and determines whether the metric results have been increasing or

decreasing. Gray arrows are used in quantitative metrics, while the coloured arrows are

used in qualitative metrics to represent how they are affecting the quality of the project.

5.1.1 Violations Drilldown

One widget in particular displays measures related to coding rules compliance. It

presents the number of coding rules violations in the project, as well as the number

of level blocker, critical, major, minor and info violations. These priority levels rep-

resent all the priority levels from the three coding rules engines used by Sonar. All

FindBugs rules with priority level 1 are consider blocker, level 2 are consider major and

level 3 are consider info. In the case of Checkstyle, all error level rules are consider

blocker, all warning rules are consider major, and all info rules are consider info. For

PMD, all its 5 levels of priority are mapped to Sonar’s five priority levels. Sonar also

uses the ISO/IEC 9126 quality model to divide the rules 5 categories: maintainability,

usability, efficiency, portability and reliability.

This widget also displays the rules compliance index (RCI) metric that gives the

percentage of lines of code that are in compliance rules checked by Sonar, and a graph

that represents the RCI for each category.

It is possible to access the Violations Drilldown feature through the menu to the left

of the project’s dashboard. This feature displays a list of all rules violations that can be

sorted by priority level or category. It is also possible to list only the rules violations of

a specific category or level of priority. By choosing a specific violation, this feature also

displays all the classes where such violation occurs. It is also possible click on a class,

to open a new page containing the source code of the class where all the violations are

flagged.

5.1.2 Dependency Structure Matrix

The dashboard also contains two widgets related to the design and architecture of the

project. The first widget displays the package tangle index which gives the level of

65

tangle of the packages, as well as the number of packages cycles and information in how

to eliminate these cycles. The second widget displays the average value of object-oriented

design metrics from the C&K metrics suite, LCOM and RFC and two bar charts where

each bar represents the number classes with the specific metric result.

It is also possible to access the dependency structure matrix feature through the menu

to the left of the project’s dashboard. This feature represents all dependencies between

components, Maven modules, packages, or files, depending on the navigation level. The

dependency information is displayed in a matrix where each column and row header

represents a different component. By clicking in a component’s row, all the components

that depend on it are highlighted. The component’s row is also highlighted displaying

all components it depends on. The cells in the matrix have numeric values that rep-

resent the number of dependencies between the component represented in the row and

the component represented in the column. The cells that are coloured red represent

dependencies to be eliminated in order to remove the cycles in the project. By clicking

on a cell a list containing all dependencies between the two components are displayed.

Ahead, it will be presented examples with this feature.

5.1.3 Coverage Clouds

The last widget in the dashboard is related with unit testing. It displays the percentage

of code covered by unit tests, this metric is generated by mix the line coverage and

branch coverage metrics, that are displayed in this widget. It also gives the percentage

of tests success, as well as the number of failures and errors.

Once again it is possible to access the coverage clouds feature through the menu to the

left of the project’s dashboard. This feature has two tab, the Quick Wins tab displays

all classes (represented by their name) of the project in different sizes and colours. The

size represents the number of LOC in the class, the color represents the code coverage

or the Rules Compliance Index, it is possible to choose either one. In the Project Risks

tab the only difference is that the size represents a class complexity.

5.1.4 Hotspots

But Sonar also has other features in its menu, the hotspots feature is composed by

widgets that present several top fives like most violated rules, longest unit test files,

most complex files, most duplicated files, most violated files, highest average method

complexity files, most undocumented file APIs.

66

5.1.5 Components

The feature components in the left menu displays the list of components that form the

project or a chosen package of the project. For each component it can be seen some

metrics like RCI, code coverage and also the build time.

In this feature it is also presented a tree map graph where each components is repre-

sented by a rectangle. The size and color of each rectangle represent different metrics.

5.1.6 Time Machine

The time machine feature is used to analyse the evolution of the metrics results obtained

by a project, through the analysis made of their different builds. This feature contains a

chart that displays the results of a set of metrics which were obtained from the analysis

of the first down to the final build of the project.

This feature also has a table where are listed all the metrics calculated. Each column

of the table represents a measure for the metric, obtained on a given build. The last

column also displays a sparkline that shows the measurements evolution along the various

builds. Ahead, it will be presented examples with this feature.

5.1.7 Quality Profiles

Sonar also allows to create quality profiles. In this profiles it is possible to define the

name of the profile, activate/deactivate weight coding rules, define metrics thresholds

(but only at Project level) and define the projects associated to the profile. With these

profiles Sonar can be adapted to the requirement and quality level of each type of project.

5.2 Sonar Plugins

It is possible to add new features to Sonar. A Sonar plugin can define new extensions

like new metrics to be calculated and collected and new widgets with Ruby on Rails1,

an open-source framework for developing database-driven web sites, to display the new

metrics results in the dashboard. It is possible to create sensors and decorators to gather

and process all the new defined metrics. A sensor collects and analyses data however has

no access to other plugins collected data. A decorator in addition to collect and analyse

data, also makes cross reference with data collected from other plugins. It is also possible

1http://rubyonrails.org

67

to add new features to Sonar with Google Web Toolkit2 (GWT), a framework used to

create complex browser-based applications.

Sonar plugins forge is currently hosting more than 40 plugins. There are plugins that

add additional metrics to Sonar, plugins that extend Sonar to new languages (Cobol,

Flex, Groovy, PHP, .NET), plugins that allow to use Sonar with integration tools like

Hudson, Bamboo, AnthillPro, and Piwik, and also plugins who extend the visualization

and reporting capability of Sonar. Some of these plugins are described below:

Security Rules. This plugin adds to the dashboard of projects a new widget that

monitors and reports a set of coding related to security. Its shows the number of security

violations, the percentage of the project in compliance the rules, and a pie chart that

represents the amount of critical and major violations. The plugin is configurable, so it

is possible to add new rules the existent set.

PDF Report. This plugin generates reports of projects in PDF format. These reports

contain the information shown in the projec’s dashboard, the coding violations by cat-

egory, most violated rules, most violated files, most complex classes, most duplicated

files. These reports can later be used as a part of the project’s documentation.

Total Quality. This plugin also adds a new widget to the dashboard. It displays the

percentage of total quality of the project based on its architecture (package tangle index),

design (C&K metrics), code (rules compliance index) and tests (code coverage and test

success).

5.3 The TreeCycle Plugin

We all have heard the phrase “A picture is worth a thousand words”. This maxim can be

also applied to software engineering especially in the domains of software maintenance,

reverse engineering, and re-engineering where it is necessary to understand large amounts

of complex data. Software visualisation can be seen as “the mapping from software

artefacts, including programs, to graphical representations” [39]. Studies [39] show that

maintenance programmers spend 50% of their time just figuring out the software to be

changed. However, many researchers believe software visualisation may be one of the

solutions to minimize this problem.

2http://code.google.com/webtoolkit

68

http://en.wikipedia.org/wiki/A_picture_is_worth_a_thousand_words

There are several projects that attempt to combine software visualisation and software

metrics. For example, Holten et al. [23] propose a visualisation approach that uses tree-

maps to represent hierarchically organized components of a software system. Software

metrics are visualised by using different computer graphics techniques like cushions,

colours, textures and bump mapping.

Lanza et al. [40] propose a software visualisation technique complemented with soft-

ware metrics information named polymetric views. This technique uses different layouts

(trees, scatterplots, checkers and stapleds) to represent the relation between entities of

a software system. The most interesting aspect of this technique is the representation

of up to 5 different metrics on each node. The size of each node (width and height)

represent 2 different metrics, the position of the node (axis X and Y) also represent 2

different metrics, while the color of the node represent a fifth metric.

Wettel et al. [59] propose a 3D visualisation approach which represents object-oriented

software systems as cities. Classes are represented as buildings located in city districts

which in turn represent packages. This approach represents metrics by the size (width

and height) and color of both buildings and districts.

Sonar gathers much information in its database from various well-known code anal-

ysers. And with version 2.0 of Sonar, source code quality started to be also evaluated

trough its design and architecture with the introduction of object-oriented design met-

rics and report of dependency cycles. Sonar plugins forge is currently hosting more than

40 plugins. However, only 4 are devoted to visualisation and reporting.

TreeCycle is a plugin for visualisation of information that concerns to the design

quality of Java projects and is one of results of the work done in the elaboration of

this thesis. It represents dependencies between packages in tree graphs highlighting it’s

dependency cycles (this is why we name it TreeCycle). Moreover, the plugin represents

in a graphical way the results of the C&K metrics for the classes of each package. We

think these features give an overall image of the design quality of a project and make

TreeCycle a good complement to the DSM feature of Sonar.

5.3.1 How It Works

TreeCycle starts by soliciting Sonar web server the data relative to all project’s packages

and its dependencies. This data will be used to create a tree graph where the nodes

represent packages and the edges represent the dependencies between packages.

69

Why a tree graph? TreeCycle displays package dependencies using graph trees because

these type of graphs are useful for the display of hierarchical structures like inheritance

or dependency between entities (packages, classes, methods). Nodes represent entities,

while the edges between the nodes represent hierarchical relationships. The advantage

of this type of graphs is that they are able to render a complex system in a very simple

way. However, tree graphs of big systems tend be very large and sometimes not even

fitting on one single screen.

TreeCycle uses organizational charts provided by Google Chart Tools (a.k.a. Visuali-

sation) 1.1 library, for GWT, to generate dependency tree graphs.

Reading a tree. In Figure 5.2 it can be seen an example of a tree generated by the

TreeCycle plugin. The dependencies in a tree graph are read from top to bottom, i.e., a

node depends (directly and indirectly) on all the nodes standing bellow it. For instance,

node 0 depends on all of the 34 nodes in the tree.

Figure 5.2: TreeCycle: package dependencies tree graph

Choosing the tree root. Initially, all packages are candidates to be the roots of the

tree graphs that will be generated. What TreeCycle does to narrow this list is a test run,

where for each candidate package is calculated the number of nodes that it’s tree will

contain. The list of packages (root candidates) is then ordered from the package with

the highest count to the package with the lowest count. Next the plugin begins to build

the tree graphs for the package with the highest count, till the list of root candidates

is empty. Meanwhile, all packages that were used as nodes to determine the result of

another package X, will be excluded from the list of root candidates, because their trees

70

will appear as a subtree of the dependency tree generated for X. This algorithm makes

it possible to generate the minimum possible number of trees.

Identifying dependency cycles. Package structures with many cycles are in general

more difficult to understand and to maintain [45], because these tend to generate

spaghetti code. An important feature of the TreeCycle plugin is the highlighting of

dependency cycles between packages in the tree graphs. In Figure 5.2 it can be seen

some leafs highlighted with different colours. Each color identifies a different cycle, which

is represented on the tree as a path that ends in the highlighted leaf and begins in the

node that is identified on same leaf. Note that a dependency cycle can be reflected in

a tree several times. To isolate cycles TreeCycle identifies each cycle with a different

color (for instance, the tree in Figure 5.2 captures three different cycles corresponding

to the three colors that appear in its nodes). Alternatively, it is possible to see a list of

all dependency cycles in the design and also the information about witch packages are

involved in each cycle. This can be done by selecting the Cycle List tab, as can be seen

in Figure 5.3.

Figure 5.3: TreeCycle: list of dependency cycles

Isolating components. Besides giving a overall image of the package structure of a

project and detecting dependency cycles, the TreeCycle plugin can be used to identify

components that can be reused. For example, we know that in order to reuse the

package represented by node 2 it is necessary to also include all the nodes standing

bellow it (nodes 6, 7, 8, 15, 16, 17, 18, 19, 28 and 29).

Drilling packages. The TreeCycle plugin not only serves to generate dependency tree

graphs. By clicking in a node it is possible to drill-down into the package (represented by

the node) where the C&K metrics results will be displayed for all the classes that compose

that package. These results are graphically represented in pie charts also provided Google

Chart Tools 1.1 library. For example, in Figure 5.4 it can be seen the metrics results for

all the classes from package represented by node 0.

71

Figure 5.4: TreeCycle: C&K metrics

Using Thresholds. One of the features of TreeCycle is the option to define thresholds

for each C&K metric. Just go to Sonar configurations, then settings, and then select

the TreeCycle tab and enter the thresholds for each metric. Whenever a metric result

exceeds a threshold an alert is issued in the pie chart for the corresponding metric and in

the slice representing the faulty class. These alerts are represented by different colours

(for example blue, yellow or red) depending on the degree of risk.

5.3.2 Assessing TreeCycle with Sonar

After selecting the TreeCycle project and open the dashboard of the project page, it

can be seen some general information. The widgets in Figure 5.5 show that the project

contains 1231 lines (3.8 % being comments), 844 lines of code (blank lines, comments,

72

source code), 10 classes, 3 packages and 74 methods and that almost all these results

have increased from one build to a more recent one. There is no duplicate code. Despite

the architectural and design quality being high (100% and 86,7%, respectively), the

overall quality of this project is 70,8%, because of code quality (influenced by the high

number of coding rules violations) but mainly the low percentage of unit tests.

Figure 5.5: TreeCycle: general information

By choosing the Time Machine in the left menu of Sonar, it is possible to analyse

the evolution of the results obtained by a project, through the analysis made of their

different builds. In Figure 5.6 the chart shows that the complexity, of the project has

grown from the first build to the second, but it dropped with the third build. Code

coverage has been increasing, though very slowly, in every new build. The chart also

shows that the code quality and design quality of the project dropped from the second

build to the third build. On the other hand, architecture has improved.

Figure 5.6: TreeCycle: quality evolution

73

Statical analysis (Rules Compliance)

In Figure 5.7, it can be seen the values associated with the coding rules, 78.4% of the

lines of code are in compliance with the 480 rules checked by Sonar. There are 87 rules

violations (which is not high), 48 are considered major 38 are considered minor.

Figure 5.7: TreeCycle: rules compliance info

By clicking in the number of violations, the Violations Drilldown feature is opened.

As can be seen in Figure 5.8, most of the violations affect the quality factors usability

(33), reliability (31) and maintainability (22). The package with must violations is client

(74) and the most violated class is orgChart (31).

Figure 5.8: TreeCycle: rules compliance drill-down

Most of the major rules violations are related to coding conventions like absence of

braces on if and for statements, or the use of interfaces instead of implementation types

(e.g. the use of List instead of ArrayList), and naming conventions of classes. Most of the

minor rules violations are also related to coding conventions like design for extension,

constant naming conventions, and the use of numeric literals that are not defined as

constants.

74

OOD Metrics (Design & Architecture)

In the dashboard of the project page, it can also be seen some results related to com-

plexity and object-oriented metrics. The widgets in Figure 5.10 show that the average

cyclomatic complexity per method (2.1), class (15.7) which are low, considering that the

threshold normally considered for CC for methods is 10. It can be seen that the average

LCOM value per class is 1.7, which means that there are classes with more than 1 set

of related methods and fields, in fact the graph show that there are two classes with

LCOM value of two, therefore these classes must be reviewed. It can also be seen that

the average RFC value per class is 26. In relation to package dependencies, the package

tangle index is 0% which means that the project’s design is good and does not have

dependency cycles.

Figure 5.9: TreeCycle: design & architecture

The TreeCycle plugin gives an overview of the architecture and design of our project, so

it also allows to identify the dependency cycles that the project contains. In Figure 6.5,it

can be seen that the dependency tree in fact does not have dependency cycles.

Figure 5.10: TreeCycle: dependencies tree

75

By continuing to use TreeCycle, it is possible to drill-down to the package level and

visualize the C&k metrics results for each class of a package.The class that stands out

in almost all pie charts is the orgChart class. This is the class responsible for arranging

all data in a table that will be used for generating the dependency tree graphs. In

Figure 5.11, it can be seen that orgChart class is the one with the higher values for

WMC (54), LCOM (3), RFC (83) and CBO (3) metrics. This values tells us that this

class is potentially hard to analyse, change and test. This class is the main responsible

for the maintainability, re-usability and portability rates of this project, affecting its

overall quality.

Figure 5.11: TreeCycle: C&K metrics results

76

Unit Testing

Finally the last widget in the dashboard displays the information related to unit tests.

In Figure 5.12, it can be seen that unit tests cover 1.0% of the overall source code, which

is low and has to be improved, this represents 1.3% of line coverage, and 0.0% of branch

coverage. This widget also displays the success rate of the tests which is 100%.

Figure 5.12: TreeCycle: unit tests

In fact, by choosing the Coverage Clouds feature in the left menu, it can be seen that

class orgChart is the biiggest class in the project (in relation to LOCs) and the only

class 100% code coverage is class RMeasure, which is also one of the smallest classes in

the project with and 17 LOCs, as can be seen in Figure 5.13.

Figure 5.13: TreeCycle: coverage cloud

5.4 Sonar in the Evaluation Process

As said before, software quality assessment is on the agenda due to several factors, and

has already been seen that Sonar is a tool that can be used to make this assessment.

However it is important to understand how Sonar fits in the various stages of an evalu-

ation process.

77

Sonar can be used in independent and external audits to software products of a com-

pany. The ISO/IEC 14598 divides the evaluation process for evaluators in four stages:

evaluation requirements, evaluation specification, evaluation plan and evaluation. Sonar

can be used in the evaluation plan stage to create a Sonar quality profile for the project

and define the coding rules to be checked by taking into account quality factors that

were chosen in the evaluation requirements stage. It is also possible to enhance the qual-

ity profile with the thresholds of the metrics chosen for each component of the project,

in the evaluation specification stage. In the evaluation results stage, it is obvious that

Sonar can be used in the activities defined in the evaluation plan to evaluate the project,

but it can also be used to elaborate reports and document the results.

However Sonar reaches its full potential when used as a shared central repository for

quality management enabling to improve the quality of a software in a continuous and

supported manner. With Sonar, stakeholders have facilitated access to information that

enables them to manage risks, reduce maintenance costs and improve agility, during

a project’s development life cycle. The ISO/IEC 14598 divides the evaluation process

for developers in four stages: organization, project planning and quality requirements,

specifications, design and planning, and build and test. Sonar can be used in this process

in the same way described for the evaluators, because both processes are very similar.

In the design and planning stage, Sonar can be used to create a Sonar quality profile

for the project and define the coding rules to be checked by taking into account quality

factors that were chosen in the project planning stage. It is also possible to enhance

the quality profile with the metrics thresholds defined in the specification stage. In the

build and tests stage, it is also obvious that Sonar can be used to collect and analyse

the metrics results in order to evaluate the project’s quality, but it can also be used to

elaborate reports and document the results.

78

6 Case Studies

So far, it was seen how Sonar worked, along with TreeCycle, and how it can be used

in the process of developing a software product. Now, it will be shown the application

of this tool in two industrial Java projects of medium size. The source code of these

projects were provided by Multicert1, a company that develops complete security solu-

tions focused on digital certification for all types of electronic transactions that require

security. For each project, two different builds were made available to compare and

evaluate the quality the projects in different stages.

After determining the projects results with Sonar, the next step was to estimate the

thresholds for all the software metrics from the C&K metrics suite. Since Sonar does not

determine thresholds for packages and classes (only project measures), the C&K metrics

thresholds were calculated through the use of a simple methodology proposed by Erni

et al [15] that is based on the use of statistical methods.

Basically, the results of the C&K metrics of each project were grouped together, and

for each metric was calculated its average value and standard deviation. Because the

amount of results was huge, we decided to implement a simple plugin that collects the

results of the Sonar database and uses these to calculate the mean and standard deviation

of each metric. The calculated Thresholds as well as the mean and standard deviation

obtained for each metric can be seen in Table 6.1.

Next, we will start by analysing the general results displayed on each project dashboard

like the number of LOC, packages, methods and classes, the percentage of duplicated

code, and total quality percentage of the project evaluated through 4 categories (archi-

tecture, design, code and test). Then we take a look at the results related with rules

compliance and analyse rules violations by taking into account its importance (blocker,

critical, major, minor and info) and the quality factor that affected. Finally we end with

the analysis of the architecture quality by identifying the dependency cycles, and the

analysis of the design quality by viewing and interpreting the C&K metrics results for

one of the most complex packages in each project.

1https://www.multicert.com/home

79

Table 6.1: C&K metrics thresholds

Design Metric Mean (average) Standard Deviation Threshold
WMC 14 23 37
DIT 1 1 2
CBO 2 3 5
RFC 15 22 37
NOC 0 0 0
LCOM 1 2 3

6.1 Maestro Web Service Test Project

The first project, named Maestro Web Service Test, is a test kit for another Multicert

project, the Portuguese citizen card2. This card, in addition to physically identify a

person, can also be used as a means of identification and computerized services for

authentication of electronic documents.

After selecting the Maestro project and open the dashboard of the project page, we

can see some general information. In Figure 6.1, it can be seen that the project contains

22239 lines (34 % being comments), 10158 lines of code (blank lines, comments, source

code), 189 classes, 33 packages and 924 methods and that all these results have increased

from one build to a more recent one. The percentage of duplications is low (6.1%) wich

is good, because ”copy-and-pasting” code can lead to spread of bugs and therefore

increasing the maintenance effort, but we can see by the red arrow that code duplication

has increased and is affecting the quality of the project. Despite the architectural and

design quality being high (96,7% and 93,6%, respectively), the overall quality of this

project is 66,4% (and decreased from one build to another), because of code quality

(influenced by the high numbre of coding rules violations) and the non-existence of unit

tests.

6.1.1 Statical Analysis (Rules Compliance)

If we look at Figure 6.2, we can see the values associated with the coding rules, 62.7% of

the lines of code are in compliance with all the rules checked by Sonar. There are 2148

(151 of them relevant to security) rules violations, which is high, but the good news is

that only 35 are considered critical and there are no violations considered blocker.

2http://www.cartaodecidadao.pt/index.php?lang=en

80

Figure 6.1: Maestro: general information

Figure 6.2: Maestro: rules compliance info

By clicking in the number of violations, the Violations Drilldown feature is opened.

As can be seen in Figure 6.3, most of the violations affect the quality factors reliability

(1276) and maintainability (503). The package with most violations is Util (354) and

the most violated class is MRZGenerator (107).

Critical rules violations

Of the 35 critical violations, 28 are related to the Security - Array is stored directly rule.

Examples of violations of this rule can be found in class Certificates from package result :

public void setCarootx509 (byte [] carootx509) {
this . carootx509 = carootx509 ;

}

public void setPkcaroot (byte [] pkcaroot) {
this . pkcaroot = pkcaroot ;

}

As can be seen in this examples, the arrays carootx509 and pkcarootare saved directly.

This is a problem because it allows the direct manipulation of the private data structure

81

Figure 6.3: Maestro rules compliance drill-down

of objects from class Certificates. It is recommended instead that copy of the array is

stored through the use of the clone() method.

The other 7 critical violations are related to the Avoid Catching Throwable rule.

Examples of violations of this rule can be found in class RequestPublicKey from package

run:

public void run () {
try {

CCGerarChavePublicaCartao c = new CCGerarChavePublicaCartao () ;

c . setNumeroProcesso (Long . t oS t r i ng (this . procNumber)) ;

c . s e tP r i o r i d ade (TipoPr ior idade .NORMAL) ;

KeyRefServ i ce Int f c l i e n t = (new KeyRefServ iceCl i ent ())

. getKeyRefServiceHttpPort (. . .) ;

c l i e n t . keyRefSuppl i e r (c) ;

}
catch (Throwable t) {

t . pr intStackTrace () ;

}
}

This is problematic because Throwable is to generic, it can catch, not only exceptions,

but also errors like OutOfMemoryError and in these cases it is better to stop the appli-

cation. Both the Security - Array is stored directly and the Avoid Catching Throwable

rules are related to security and its violations affects reliability.

Major rules violations

Of the 768 major violations, 203 are related to the Visibility Modifier rule. Examples of

violations of this rule can be found in class Portuguesa from package messages :

. . .

82

protected St r ing cod igoPa i s ;

protected St r ing c od i g oD i s t r i t o ;

protected St r ing d i s t r i t o ;

protected St r ing codigoConcelho ;

protected St r ing conce lho ;

protected St r ing cod igoFregues i a ;

protected St r ing f r e g u e s i a ;

. . .

Encapsulation is one of the six fundamental concepts in OOP. It prevents object’s

components from being randomly accessed by code defined outside the object’s class.

Encapsulation ensures very important properties such as ease of reuse, error detection

and modularity [2]. In the previous example, we can see that the instance variable that

defines the data structure class Portuguesa are defined as protected, i.e., its structure

data can be accessed directly by all other classes and subclasses belonging to the same

package. This creates a fault in the encapsulation, making it more difficult to correct

mistakes and re-use this class. It is recommended to change the status of the instance

variables to private and that the instance methods are used to access the variables. The

violation of Visibility Modifier rule affects maintainability.

There are 140 rules violations related with the System Println and Avoid Print Stack

Trace. Instead of using printStackTrace and println, it is recommend the use of logging

tools like Log4j to facilitate debugging. The violation of these rules affects usability.

The Simplify Boolean Expression and Simplify Boolean Return rules have 75 violations

(70 and 5, respectively). Examples of violations of this rule can be found in class

Portuguesa from package messages :

i f (name . equa l s (”RSA”) == true) {
return (” 2 . 5 . 8 . 1 . 1 ”) ;

}
else i f (name . equa l s (”DSA”) == true) {

return (” 1 . 3 . 1 4 . 3 . 2 . 1 2 ”) ;

} . . .

Despite the simplification of the boolean expressions (decisions) above not being too

significant, simplification of boolean expressions is important because they are easier

to understand and analyse. In the maintenance stage, when deriving test cases and

using test coverage methodologies based on control flow analysis (condition/decision

coverage, multiple condition coverage, path coverage,etc), the number of tests needed to

achieve a high code coverage are determined by the number of combinations among the

conditions that form the expression, so it also decreases the testing effort. The violation

of the rule Simplify Boolean Expression increases the testing effort and consequently

affects maintainability.

83

http://logging.apache.org/log4j/1.2/index.html

The Unused local variable rule has 43 major violations. Examples of violations of this

rule can be found in class StringUtils from package util :

public stat ic int getMaximumLength (St r ing [] array) {
int r e s = 0 ;

S t r ing f i r s t = array [0] ;

for (int i = 1 ; i < array . l ength ; i++) {
i f (f i r s t . l ength () < array [i] . l ength ()) {

f i r s t = array [i] ;

}
}
return f i r s t . l ength () ;

}

As can be seen in this example, variable res is defined but not used. The first problem

that this creates is the unnecessary allocation of resources, but in more complicated

methods it also makes it harder to understand and change them, making it more difficult

to maintain a class. The violation of Unused local variable rules affects maintainability.

As stated before, CC is a well-known metric that measures the level of complexity

of methods, the higher the CC value, the harder it is to understand the source code

and test a method, specially when trying to achieve a high code coverage by using test

coverage methodologies based on control flow analysis (like path coverage). Sonar uses

a default maximum threshold of 10 for this metric, but this can be altered. Cyclomatic

Complexity rule has 16 major violations. Examples of violations of this rule can be

found in class MRZGenerator from package genxml that contains a method (truncate)

with a CC value of 31 and in class ValidatonUtils from packageutil that has one method

(getDate) with a CC value of 27. The violation of Cyclomatic Complexity rule affects

maintainability.

The Unused private method and Simplify Boolean Return rules have 2 violations.

Method getNextProcId is an example of a violation of this rule and can be found in class

RequestPublicKey from package run:

public class RequestPublicKey implements Runnable {

private stat ic long count = 1 ;

private long procNumber ;

public RequestPublicKey (long procNUmber) {
this . procNumber = procNUmber ;

}

public void run () {

try {
CCGerarChavePublicaCartao c = new CCGerarChavePublicaCartao () ;

84

// S t r ing proc id = getNextProcId () ;

c . setNumeroProcesso (Long . t oS t r i ng (this . procNumber)) ;

c . s e tP r i o r i d ade (TipoPr ior idade .NORMAL) ;

KeyRefServ i ce Int f c l i e n t = (new KeyRefServ iceCl i ent ())

. getKeyRefServiceHttpPort (” . . . ”) ;

c l i e n t . keyRefSuppl i e r (c) ;

}
catch (Throwable t) {

t . pr intStackTrace () ;

}

}

private synchronized St r ing getNextProcId (){
DecimalFormat df = new DecimalFormat (” . . . ”) ;

S t r ing id = df . format (count) ;

count ++;

return ”99” + id ;

}
}

As can be seen in the example, the private method getNextProcId is never executed

and does not have any purpose. Dead code only is contributing to the increasing com-

plexity of a class and the decline in its quality. Eliminating dead code will benefit

maintainability, because it decreases code size, testing effort and makes a class easier to

understand.

The rest of the major rules violations are related to naming conventions (that can be

altered) of variables, methods and classes, the absence of braces in if statements, the

use of duplicated string literals instead of declaring the string as a constant variable,

and unused instance variables.

Minor and info rules violations

The other rules violations are considered of minor level (1308). They consist of violations

of such as Modifier Order that imposes the order of modifiers (public, protected, private,

abstract, static, final, transient, volatile, synchronized, native, strictfp) suggested in the

Java Language specification, Collapsible If Statements that checks for nested if then

else statements that can be combined, and Magic Number that checks the existence

of numeric literals that are not defined as constants. There are also 37 violations that

inform the existence of unused imports and unused modifiers.

85

6.1.2 OOD Metrics (Design & Architecture)

In the dashboard of the project page, we can also see some results related to complexity

and object-oriented metrics. We can see in Figure 6.4 the average cyclomatic complexity

per method (2.1), class (10.2) and file (9.8) which are low, considering that the threshold

normally considered for CC is 10, at method level. It can be seen that the average LCOM

value per class is 1.4, which means that there are classes with more than 1 set of related

methods and fields, therefore these classes must be reviewed. It can also be seen that the

average RFC value per class is 12. With respect to package dependencies, the package

tangle index is low (5.3%) which means that the project’s design is good but can also be

improved by cleaning the 2 existing dependency cycles. These can be resolved by cutting

1 dependency between packages, which is formed by 3 dependencies between files.

Figure 6.4: Maestro: design & architecture

TreeCycle gives an overview of the architecture and design of the project, so it also

allows to identify the dependency cycles that the project contains. In Figure 6.5, we can

see an extract from the dependency tree that contains two cycles and the first thing we

notice is that packages genxml and workfiles are in both cycles. By choosing the Cycle

List option in the TreeCycle plugin, we can immediately verify the sets of packages

involved in each cycle.

Next, we choose the Design feature from Sonar to get a more detailed description of

the dependency between the 2 packages, that needs to be cut in order to eliminate the

two cycles. As can be seen in Figure 6.6, there exists one dependency from workfiles

to genxml and in order to eliminate this package dependency we have to cut the 3 files

dependencies between WorkFilesProcessor and MRZGenerator, WorkFilesProcessor and

MRZUtilConverter and WorkFilesProcessor and ResultCardBuilder.

By continuing to use TreeCycle, we can drill down to the package level and visualize

the C&K metrics results for each class of a package. Ingenxml exist some classes which

86

Figure 6.5: Maestro: dependencies tree

Figure 6.6: Maestro: dependency structure matrix

the results exceed defined thresholds. ResultCardReader is a class with only 6 methods

and obtained CBO (14) and RFC (39) results that exceed the thresholds, these results

show that this class is one of the most complex and fault-prone from this package,

making it more difficult to debug, reuse and less adaptable to changes. Let us take the

example of addEcd2Data method:

public void addEcd2Data (CCResECD2PER25 data){

PublicKeys publ icKeys = new PublicKeys () ;

publ icKeys . setPkAuthent icat ion (data . getCCResponse ()

.getPKASK01AUTHENTICATION()) ;

publ icKeys . se tPkIccaut (data . getCCResponse ()

. getPKICCAUT ()) ;

publ icKeys . se tPkSignature (data . getCCResponse ()

. getPKASK02SIGNATURE()) ;

PrivateKeys pr ivateKeys = new PrivateKeys () ;

87

pr ivateKeys . s e tSkAuthent i cat ion (data . getCCResponse ()

.getSKASK01AUTHENTICATION()) ;

pr ivateKeys . s e tSk I c caut (data . getCCResponse ()

. getSKICCAUT ()) ;

pr ivateKeys . s e tSkS ignature (data . getCCResponse ()

. getSKASK02SIGNATURE ()) ;

HashKeys hashKeys = new HashKeys () ;

hashKeys . setHashAuthent icat ion ((ArrayUt i l s

. convertToHexString (data . getCCResponse ()

.getHASHSKASK01AUTHENTICATION() , false , fa l se))

. toUpperCase ()) ;

hashKeys . se tHashIccaut ((ArrayUt i l s

. convertToHexString (data . getCCResponse ()

. getHASHSKICCAUT() , false , fa l se))

. toUpperCase ()) ;

hashKeys . setHashSignature ((ArrayUt i l s

. convertToHexString (data . getCCResponse ()

.getHASHSKASK02SIGNATURE() , false , fa l se))

. toUpperCase ()) ;

r e su l tCard . setPubl icKeys (publ icKeys) ;

r e su l tCard . se tPr ivateKeys (pr ivateKeys) ;

r e su l tCard . setHashKeys (hashKeys) ;

}

We can see that this example is too complex. Through the use of parametrized

constructors to generate the PublicKeys, PrivateKeys and HashKeys objects, the method

emphaddEcd2Data could easily become less complex, more readable and reduce the

number of methods invoked.

However, the class with the worst results is MRZGenerator. It obtained the higgest

WMC (58), RFC (42) and LCOM (2) results, surpassing even the established thresholds,

as can be seen in Figure 6.7.

This high values show us that most of the maintenance effort of the genxml package

will be spent in this class, because complex classes are harder to analyse, test, replace

or modify, therefore this class should be redesigned in order to reduce its complexity

and improve the overall quality. In the case of the WMC result, this shows us that the

class MRZGenerator is formed by a huge number of methods, by small number of highly

complex methods or both. Indeed this class has 10 methods with a average of 5.8 CC

and its biggest method (truncate) has a CC value of 31 and 123 LOCs, almost 1/3 of the

class’s 370 LOCs. There are two ways of reducing the WMC result and consequently

88

Figure 6.7: Maestro: C&K metrics results

the complexity of this class. The first approach consists in splitting the more complex

methods into simpler ones. The second approach is to divide the the class in two smaller

classes, and in fact the LCOM result shows us that this class has 2 sets of highly cohesive

methods (instead of the ideal 1), as can be seen in Figure 6.8. This second approach

also helps us to reduce the LCOM result and consequently the complexity of the class

MRZGenerator. However it will be also necessary to apply the first approach, since one

of the possible 2 classes would still contain the major method of MRZGenerator

Overall, this project has 33 packages all of them with similar results to the package

genxml and all of them can be improved by using the suggestions made earlier for classes

ResultCardReader and MRZGenerator. With this changes, the project’s total quality

will greatly increase.

89

Figure 6.8: Maestro: lack of cohesion methods

6.2 SMail J2EE Project

The second project, named SMail, is a recent J2EE project developed by Multicert. This

project is divided in 5 modules util, data system, mensagens, schedulers, and ejb.

Once the SMail project is selected, we can see some initial information project’s dash-

board. In Figure 6.9, it can be seen that the project contains 19259 lines (21.4 % being

comments), 11329 lines of code, 133 classes, 11 packages and 1.049 methods, all these

results have diminished from one build to a more recent one. The percentage of duplica-

tions is low 14.0% and we can see by the green arrow that code duplication has decreased

which is a good sign, because ”copy-and-pasting” code can lead to spread of bugs and

therefore increasing the maintenance effort and affecting the quality of the project. De-

spite the architectural and code quality being high (96.7% and 82.6%, respectively), the

overall quality of this project is 65% (and decreased from one build to another), because

of design quality (influenced by the C&K metrics results for the projects classes) and

the non-existence of unit tests.

Figure 6.9: SMail: general information

90

6.2.1 Statical Analysis (Rules Compliance)

In Figure 6.10, we can see some of the values associated with the coding rules, 88.1% of

the lines of code are in compliance with the 480 rules checked by Sonar. There are 1184

rules violations (but only 6 of them are relevant to security), which is a high number,

but 908 of the violations are only considered minor, 148 are considered major and there

are no blocker and critical violations.

Figure 6.10: SMail: rules compliance info

By clicking in the number of violations, the Violations Drilldown feature is opened.

As can be seen in Figure 6.11, most of the violations affect the quality factors reliability

(561) and maintainability (448). The package with must violations is ejb (680) and the

most violated class is EMailDocumentImpl (49), from package impl.

Figure 6.11: SMail: rules compliance drill-down

Critical rules violations

Of the 148 major violations, 33 are related to the Local Variable Name rule. Examples

of violations of this rule can be found in class MsgSenderMDB from package msgmdb:

. . .

91

St r ing f i l ename msg = e r r o r d i r e c t o r y + msgID + ” e r r o r ” ;

S t r ing f i l e n ame r epo r t = r e p o r t d i r e c t o r y + msgID + ” r epo r t ” ;

S t r ing f i l ename msg = e r r o r d i r e c t o r y + msgID + ” e r r o r ” ;

. . .

In this example, local variables filename msg, filename report and filename msg do

not comply with [a− z][a− zA− Z0− 9] ∗ $, the naming convention defined in Sonar.

Although these 3 local variables names are not extreme example of the Local Variable

Name rule violations, the use of a naming convention can be useful to better understand

the source code and to enhance its appearance. And besides, the naming format can

be changed to better adapt to the specificities of the project. The Local Variable Name

rule violations affects usability.

The Simplify Boolean Expression and Simplify Boolean Return rules have 29 violations

(26 and 3, respectively). Examples of violations of this rule can be found in class

BulkCyclePublisherBean from package publishers :

i f (this . d i r s . conta insID (INPUT DIR ID) == fa l se) {
l o gg e r . e r r o r (” . . . ”) ;

throw new CreateException (” . . . ”) ;

}

i f (this . d i r s . conta insID (TMP DIR ID) == fa l se) {
l o gg e r . e r r o r (” . . . ”) ;

throw new CreateException (” . . . ”) ;

}

i f (this . t reatments . conta insID (OKTREATMENT) == fa l se) {
l o gg e r . e r r o r (” . . . ”) ;

throw new CreateException (” . . . ”) ;

}

Despite the simplification of the boolean expressions (decisions) above not being too

significant, simplification of boolean expressions is important because the expressions are

easier to understand and analyse. In the maintenance stage, when deriving test cases

and using test coverage methodologies based on control flow analysis (condition/decision

coverage, multiple condition coverage, path coverage,etc), the number of tests needed to

achieve a high code coverage are determined by the number of combinations among the

conditions that form the expression, so it also decreases the testing effort. The violation

of the rule Simplify Boolean Expression increases the testing effort and consequently

affects maintainability.

As stated before, CC is a well-known metric that measures the level of complexity

of methods, the higher the CC value, the harder it is to understand the source code

92

and test a method, specially when trying to achieve a high code coverage by using test

coverage methodologies based on control flow analysis (like path coverage). Sonar uses

a default maximum threshold of 10 for this metric, but this can be changed. Cyclomatic

Complexity rule has 17 major violations. Examples of violations of this rule can be found

in class BulkCycleReportSchedule from package report that contains a method (perform)

with a CC value of 25 and in class MultiImpl from package msgmdb that has one method

(setConfiguration) with a CC value of 26. The violation of Cyclomatic Complexity rules

affects maintainability.

As in project Maestro web service test, there are also major rules violations related

to naming conventions (that can be adapted) of variables, methods and classes, to the

absence of braces in if then else statements, the use of duplicated string literals instead

of declaring the string as a constant variable, and to unused instance variables.

Minor rules violations

From the 913 minor violations, 462 are related to the Design For Extension. As said

before, this rule forces all public, protected, nonstatic methods of classes that can be

extended to be final, abstract, or have an empty implementation. This style of program-

ming avoids superclass’s functionality from being affected by their subclasses. Violations

of this rule affect reliability.

The Magic Number rule has 99 violations. Examples of violations of this rule can be

found in class SmailReportId from package ejb:

public int hashCode () {

int r e s u l t = 17 ;

r e s u l t = 37

∗ r e s u l t

+ (getSmai lReportId () == null ? 0 : this . getSmai lReportId ()

. hashCode ()) ;

r e s u l t = 37 ∗ r e s u l t

+ (getOr igId () == null ? 0 : this . getOr ig Id () . hashCode ()) ;

r e s u l t = 37

∗ r e s u l t

+ (ge t In t e rna lRepor t Id () == null ? 0 : this

. g e t In t e rna lRepor t Id () . hashCode ()) ;

return r e s u l t ;

}

As can be seen in the earlier example, 37 is a magic number, a numeric literal that

is repeated several times, in method hashCode, instead of being defined as a constant.

93

The violation of Magic Number rule affects reliability.

The rest of the minor violations are related to rules like Modifier Order that im-

poses the order of modifiers (public, protected, private, abstract, static, final, transient,

volatile, synchronized, native, strictfp) suggested in the Java Language specification,

Collapsible If Statements that checks for nested if statements that can be combined,

Constant Name related with the naming conventions of constants and Naming - Avoid

dollar signs that advises against the use of dollar signs in variables, methods or classes

names. There are also 128 violations that inform the existence of unused imports and

unused modifiers.

6.2.2 OOD Metrics (Design & Architecture)

In the dashboard of the project page, we can also see some results related to complexity

and object-oriented metrics. We can see in Figure 6.12 that the average cyclomatic

complexity per method is 2.6, per class is 20.3 and per file is 26.2 which are high,

considering that the threshold normally considered for CC is 10. It can be seen that

the average LCOM value per class is 1.1, which means that there are classes with more

than 1 set of related methods and fields, therefore these classes must be reviewed. It

can also be seen that the average RFC value per class is 21. With respect to package

dependencies, the package tangle index is low (2.5%) which means that the project’s

design is good but can also be improved by cleaning the 1 existing dependency cycle.

These can be resolved by cutting 1 dependency between packages, which is formed by 2

dependencies between files.

Figure 6.12: SMail: design & architecture

TreeCycle gives an overview of the architecture and design of our project, so it also

allows to identify the dependency cycles that the project contains. In Figure 6.13,we

can see the dependency tree that contains the cycle and the first thing we notice is that

94

packages ejb and msgmdb are the ones responsible for the cycle. By choosing the Cycle

List option in TreeCycle, we can immediately verify the sets of packages involved in each

cycle.

Figure 6.13: SMail: dependency tree

Next, we choose the Design feature from Sonar to get a more detailed description

of the dependencies between package ejb and msgmdb that need to be cut in order

to eliminate the cycle. As can be seen in Figure 6.14, there exists one dependency

from msgmdb to ejb and in order to eliminate this package dependency we have to cut

the 2 files dependencies between MsgGeneratorMDB and MessageProcessorBean, and

MsgGeneratorMDB and MessageProcessorBeanRemote.

Figure 6.14: SMail: dependency structure matrix

With TreeCycle, we can also drill down to the package level and visualize the C&K

metrics results for each metric for each class of a package. In ejb exists some classes which

95

the results exceed defined thresholds. The class with the worst results in this package

is MessageProcessorBean. As can be seen in Figure 6.15, it obtained the highest WMC

(75), o RFC (159), LCOM (4) and CBO (14) results, surpassing even the established

thresholds.

Figure 6.15: SMail: C&K metrics results

This high values show us that most of the maintenance effort of the ejb package will

be spent in this class, because complex classes are harder to analyse, test, replace and

modify, therefore this class should be redesigned in order to reduce its complexity and

improve the overall quality. In the case of the WMC result, this shows us that the class

MessageProcessorBean is formed by a huge number of methods, by small number of

highly complex methods or both. Indeed this class has 24 methods with 6.3 average CC

and it has 3 huge methods, onSMailMessage, setConfiguration and setParameters, with

96

number of LOCs between 139 and 246. There are two ways of reducing the WMC result

and consequently the complexity of this class. The first approach consists in splitting

the more complex methods into simpler methods. The second approach is to divide the

class in two smaller classes, in fact the LCOM result shows us that this class has 4 sets

of highly cohesive methods (instead of the ideal 1), as can be seen in Figure 6.16. This

second approach also helps reduce the LCOM result and consequently the complexity

of class MessageProcessorBean.

Figure 6.16: SMail: lack of cohesion methods

Overall, this project has 11 packages all of them with similar results to the package

ejb and all of them can be improved by using the suggestions made for class Message-

ProcessorBean. With this changes, the project’s total quality will greatly increase.

97

7 Conclusions and Future Work

7.1 Conclusion

The concept of software quality is not something simple to define, quite the contrary. It

is a complex concept with different possible definitions depending on the point of view

and interests of each of the actors in the development process. Having identified the

concept of quality from the perspective of the software product, we have described the

standard ISO/IEC 9126 that identifies the set of quality characteristics and attributes

for assessing software product quality and also described the McCall and Boehm quality

models who were the main influences of the ISO/IEC 9126.

We have identified the concept of software quality metrics and presented four sets of

metrics for object-oriented design (CK, R.C. Martin’s, MOOD and L&R metrics) and

its specific characteristics. We were also able to relate the object-oriented metrics from

these sets to the quality characteristics and attributes identified in the ISO/IEC 9126.

Moreover, we have also identified three different approaches to derive metrics thresholds.

With the standard ISO/IEC 14598 we were able to understand where all these con-

cepts (quality models, software quality metrics, thresholds) fall into different types of

procedures to evaluate the quality of a software product.

But software metrics are not enough to evaluate or improve the quality of all aspects

of a software product (design, architecture, complexity, coding rules, tests). We studied

two different techniques, unit testing and static analysis, and were able two understand

how these techniques can be used to improve the quality of a software product.

We have made a survey of the tools available to analyse Java source code and to

calculate metrics.

To put into practice all the theoretical concepts learned throughout this thesis, we

chose a very recent a tool that can be used to analyse and manage source code quality

in Java projects. Sonar evaluates source code quality through the use of several differ-

ent approaches (architecture & design, complexity, duplications, coding rules, potential

bugs, unit tests and comments).

99

We have developed a GWT plugin for Sonar, named TreeCycle. The TreeCycle plugin

provides an overall picture of the design quality of Java projects, through the use of

software visualisation techniques. It represents the dependencies between packages in

a tree graph highlighting it’s dependency cycles. For each package it represents in a

graphical way (using pie charts) the results of a suite of metrics for object-oriented

design (C&K metrics). TreeCycle also features the option to define thresholds for each

metric by TreeCycle.

With the help of Sonar and TreeCycle, we assessed the quality of two different Java

projects given by the industry, and were able to pin point examples of cases that were

contributing to a decline in the quality of both projects. We also proposed simple

solutions to resolve these cases.

The concept of software quality is becoming an increasingly important subject in

software engineering. The software industry is becoming more competitive which forces

software companies to create software with more and higher quality standards. We

believe that in this thesis we were able to present a set of methodologies and tools that

can easily be used by any software company to considerably improve the quality of its

software products.

7.2 Future Work

With this thesis, we think we were able to have an overall idea of the state of the art

on quality assessment of Java source code. The next step would be to in pass to the

development processes of a software product and try to understand how the concepts

and tools learned in this thesis can be applied in these processes and how these would

be affected.

The plugins mechanism of Sonar makes it a good framework to implement new ideas.

For instance, an interesting idea for a different plugin would be to use the methodology

proposed in [1] by using the Sonar database as a benchmark to automatically calculate

metrics thresholds.

In relation to our Sonar plugin, the works done by Holten et al. [23], Lanza et al. [40]

and Wettel et al. [59] can be used or serve as inspiration for new features that can be

implemented in future versions of TreeCycle.

Another interesting feature that could be added to TreeCycle would be the possibility

to calculate to calculate all the missing R.C. Martin metrics (instability, abstractness

and main sequence) for each package and present its results in the dependency graph.

100

Bibliography

[1] Tiago Alves, Christiaan Ypma, and Joost Visser. Deriving metric thresholds from

benchmark data. In proceedings of the 26th IEEE International Conference on

Software Maintenance (ICSM 2010), September 12-18, 2010, Timisoara, Romania.

IEEE Computer Society, 2010. To appear.

[2] Ken Arnold, James Gosling, and David Holmes. Java(TM) Programming Language,

The (4th Edition). Prentice Hall, 2005.

[3] Nathaniel Ayewah, William Pugh, J. Morgenthaler, John Penix, and YuQian Zhou.

Evaluating static analysis defect warnings on production software. PASTE ’07:

Proceedings of the 7th ACM SIGPLAN-SIGSOFT workshop on Program analysis

for software tools and engineering, Jun 2007.

[4] A Chou B Chelf. The next generation of static analysis: Boolean satisfiability and

path simulation - a perfect match. Coverity White Paper, 2001.

[5] Sebastian Barney and Claes Wohlin. Software product quality: Ensuring a common

goal. In ICSP ’09: Proceedings of the International Conference on Software Process,

pages 256–267, Berlin, Heidelberg, 2009. Springer-Verlag.

[6] Victor Basili, Gianluigi Caldiera, and Dieter H. Rombach. The goal question metric

approach. In J. Marciniak, editor, Encyclopedia of Software Engineering. Wiley,

1994.

[7] Patrik Berander, Lars-Ola Damm, Jeanette Eriksson, Tony Gorschek, Kennet Hen-

ningsson, Per Jönsson, Simon K̊agström, Drazen Milicic, Frans Mårtensson, Kari

Rönkkö, and Piotr Tomaszewski. Software quality attributes and trade-offs. Blekinge

Institute of Technology, 2005.

[8] P. Botella, X. Burgués, J.P. Carvallo, X. Franch, G. Grau, J. Marco, and C. Quer.

Iso/iec 9126 in practice: what do we need to know? pages 1–10, 2004.

101

[9] British. Standard for software component testing (draft 3.4), April 2001.

[10] Brian Chess and Gary McGraw. Static analysis for security. IEEE Security and

Privacy, 2(6):76–79, 2004.

[11] S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented design.

IEEE Trans. Softw. Eng., 20(6):476–493, 1994.

[12] J. J. Chilenski and S. P. Miller. Applicability of modified condition/decision cover-

age to software testing. Software Engineering Journal, 9(5):193–200, 1994.

[13] Marc Alexis Côté, Witold Suryn, and Elli Georgiadou. Software quality model

requirements for software quality engineering. pages 1–16, 2006.

[14] Fernando Brito e Abreu, Rogério Carapuça, and O Brito E Abreu (inesc/iseg.

Object-oriented software engineering: Measuring and controlling the development

process, 1994.

[15] Karin Erni and Claus Lewerentz. Applying design-metrics to object-oriented frame-

works. In Proc. of the Third International Software Metrics Symposium, pages

25–26. Society Press, 1996.

[16] Norman E. Fenton and Shari L. Pfleeger. Software Metrics: A Rigorous and Prac-

tical Approach. PWS Publishing Co., Boston, MA, USA, 1998.

[17] Ronan Fitzpatrick. Software quality:definitions and strategic issues. pages 1–34,

1996.

[18] David A. Garvin. What does product quality really mean. pages 1–19, 1984.

[19] Olivier Gaudin and Freddy Mallet. Sonar. Methods & Tools, pages 40–46, Spring

2010.

[20] Paul Hamill. Unit Test Frameworks, Tools for High-Quality Software Development.

O’Reilly Media, 2004.

[21] R. Harrison, S. Counsell, and R. Nithi. An overview of object-oriented design

metrics. In STEP ’97: Proceedings of the 8th International Workshop on Software

Technology and Engineering Practice (STEP ’97) (including CASE ’97), page 230,

Washington, DC, USA, 1997. IEEE Computer Society.

102

[22] Ilja Heitlager, Tobias Kuipers, and Joost Visser. A practical model for measuring

maintainability. Quality of Information and Communications Technology, Interna-

tional Conference on the, 0:30–39, 2007.

[23] Danny Holten, Roel Vliegen, and Jarke J. Van Wijk. Visual realism for the visualiza-

tion of software metrics. In In VISSOFT’05: Proceedings of 3rd IEEE International

Workshop on Visualizing Software for Understanding and Analysis (2005), IEEE

CS, pages 27–32. Press, 2005.

[24] IEEE. Ieee std 1061-1998: Ieee standard for a software quality metrics methodology,

1998.

[25] ISO/IEC. ISO/IEC 9126: Software product evaluation - quality characteristics and

guidelines for their use. International Organization for Standardization, 1991.

[26] ISO/IEC. ISO/IEC 14598: Information technology - software product evaluation

- part 5: Process for evaluators. International Organization for Standardization,

1998.

[27] ISO/IEC. ISO/IEC 14598: Information technology - software product evaluation -

part 1: General overview. International Organization for Standardization, 1999.

[28] ISO/IEC. ISO/IEC 14598: Software engineering - product evaluation - part 4:

Process for acquirers. International Organization for Standardization, 1999.

[29] ISO/IEC. ISO/IEC 14598: Software engineering - product evaluation - part 2:

Planning and management. International Organization for Standardization, 2000.

[30] ISO/IEC. ISO/IEC 14598: Software engineering - product evaluation - part 3:

Process for developers. International Organization for Standardization, 2000.

[31] ISO/IEC. ISO/IEC 14598: Software engineering - product evaluation - part 6: Doc-

umentation of evaluation modules. International Organization for Standardization,

2001.

[32] ISO/IEC. Iso/iec 9126-1: Software engineering - product quality - part 1: Quality

model. Technical report, Institute of Electrical and Electronics Engineers, 2001.

[33] ISO/IEC. Iso/iec tr 9126-2: Software engineering -product quality -part 2: External

metrics. Technical report, Institute of Electrical and Electronics Engineers, 2003.

103

[34] ISO/IEC. Iso/iec tr 9126-3: Software engineering product quality - part 3: Internal

metrics. Technical report, Institute of Electrical and Electronics Engineers, 2003.

[35] ISO/IEC. Iso/iec tr 9126-4: Software engineering product quality - part 4: Quality

in use metrics. Technical report, Institute of Electrical and Electronics Engineers,

2004.

[36] Stephen H. Kan. Metrics and Models in Software Quality Engineering. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1994. Foreword By-

Thomas, Brian.

[37] Cem Kaner, Senior Member, and Walter P. Bond. Software engineering metrics:

What do they measure and how do we know? In In METRICS 2004. IEEE CS.

Press, 2004.

[38] Karthik.S and Jayakumar.H.G. Static analysis: C code error checking for reliable

and secure programming, 2005.

[39] Rainer Koschke. Software visualization in software maintenance, reverse engi-

neering, and re-engineering: a research survey. Journal of Software Maintenance,

15(2):87–109, 2003.

[40] Michele Lanza and Stéphane Ducasse. Polymetric views-a lightweight visual ap-

proach to reverse engineering. IEEE Trans. Softw. Eng., 29(9):782–795, 2003.

[41] Rudiger Lincke and Welf Lowe. Compendium of software quality standards and

metrics. http://www.arisa.se/compendium, 2007.

[42] Tim Mackinnon, Steve Freeman, and Philip Craig. Endo-testing: Unit testing with

mock objects, 2000.

[43] Yashwant K. Malaiya, Michael Naixin Li, James M. Bieman, Senior Member, Senior

Member, and Rick Karcich. Software reliability growth with test coverage. IEEE

Transactions on Reliability, 51:420–426, 2002.

[44] Robert Cecil Martin. Object oriented design quality metrics: An analysis of depen-

dencies. http://www.objectmentor.com/resources/articles/oodmetrc.pdf,

1994.

[45] Robert Cecil Martin. Agile Software Development: Principles, Patterns, and Prac-

tices. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2003.

104

http://www.arisa.se/compendium
http://www.objectmentor.com/resources/articles/oodmetrc.pdf

[46] Inc McCabe Software. Using code quality metrics in management of outsourced

development and maintenance, 2009.

[47] Jim A. McCall, Paul K. Richards, and Gene F. Walters. Factors in software quality.

volume i. Concepts and definitions of software quality. Technical report, General

Electric CO Sunnyvale CA, 1977.

[48] Tim Menzies, Justin S. Di Stefano, Mike Chapman, and Ken McGill. Metrics that

matter. In SEW ’02: Proceedings of the 27th Annual NASA Goddard Software

Engineering Workshop (SEW-27’02), page 51, Washington, DC, USA, 2002. IEEE

Computer Society.

[49] Joan C. Miller and Clifford J. Maloney. Systematic mistake analysis of digital

computer programs. Commun. ACM, 6(2):58–63, 1963.

[50] Everald E. Mills, Everald E. Mills, and Karl H. Shingler. Software metrics - sei

curriculum module sei-cm-12-1.1, 1988.

[51] S. C. Ntafos. A comparison of some structural testing strategies. IEEE Trans.

Softw. Eng., 14(6):868–874, 1988.

[52] Roy Osherove. The Art of Unit Testing. Manning Publications Co., 2009.

[53] Linda H. Rosenberg and Lawrence E. Hyatt. Software quality metrics for object-

oriented environments. 1997.

[54] Jeffrey S. Foster, Michael W. Hicks, and William Pugh. Improving software quality

with static analysis. 7thWorkshop on Program Analysis for Software Tools and

Engineering (PASTE), pages 83–84, 2007.

[55] Raed Shatnawi, Wei Li, James Swain, and Tim Newman. Finding software metrics

threshold values using roc curves. J. Softw. Maint. Evol., 22(1):1–16, 2010.

[56] Petar Tahchiev, Felipe Leme, Vincent Massol, and Gary Gregory. JUnit in Action,

Second Edition. Manning Publications Co., 2010.

[57] TickIT. Getting the measure of tickit. http://www.tickit.org/measures.pdf,

2002.

[58] W. T. Tsai, Xiaoying Bai, Ray Paul, Weiguang Shao, and Vishal Agarwal. End-to-

end integration testing design. In Proc. of IEEE COMPSAC, pages 166–171. IEEE,

2001.

105

http://www.tickit.org/measures.pdf

[59] Richard Wettel and Michele Lanza. Visualizing software systems as cities. In In

Proc. of the 4th IEEE International Workshop on Visualizing Software for Under-

standing and Analysis, pages 92–99. Society Press, 2007.

106

	TeseVersãoImpressão.pdf
	Capa_tese_Miguel_Eng
	Capa_Esc_Engenharia.pdf
	Capa_Tese_Miguel
	Capa_Esc_Ciencias
	test1.pdf

	teseFinal.pdf
	Introduction
	Quality Models
	McCall's Quality Model
	Boehm's Quality Model
	ISO/IEC 9216

	Software Metrics
	Some Traditional Metrics
	Software Quality Metric Methodologies
	IEEE Standard 1061
	Goal Question Metric Approach

	Object-Oriented Design Metrics
	C&K Metrics Suite
	R.C. Martin Metrics Suite
	Metrics for Object-Oriented Design Suite
	Lorenz & Kidd Metric Suite

	Software Metrics Thresholds
	Software Quality Evaluation Process
	Process for Developers
	Process for Acquires
	Process for Evaluators

	Software Metrics Tools
	CyVis
	JavaNCSS
	JDepend
	CKjm
	Eclipse Plugin
	Survey Results

	Complementing Software Metrics Information
	Unit Testing
	Different Types of Tests
	Java Unit-Testing Framework (JUnit)
	Stubs and Mock Objects
	Unit Tests and Code Coverage

	Static Analysis
	FindBugs
	PMD
	CheckStyle

	Sonar: A Platform For Source Code Quality Management
	Sonar Functionalities
	Violations Drilldown
	Dependency Structure Matrix
	Coverage Clouds
	Hotspots
	Components
	Time Machine
	Quality Profiles

	Sonar Plugins
	The TreeCycle Plugin
	How It Works
	Assessing TreeCycle with Sonar

	Sonar in the Evaluation Process

	Case Studies
	Maestro Web Service Test Project
	Statical Analysis (Rules Compliance)
	OOD Metrics (Design & Architecture)

	SMail J2EE Project
	Statical Analysis (Rules Compliance)
	OOD Metrics (Design & Architecture)

	Conclusions and Future Work
	Conclusion
	Future Work

	teseFinal
	Introduction
	Quality Models
	McCall's Quality Model
	Boehm's Quality Model
	ISO/IEC 9216

	Software Metrics
	Some Traditional Metrics
	Software Quality Metric Methodologies
	IEEE Standard 1061
	Goal Question Metric Approach

	Object-Oriented Design Metrics
	C&K Metrics Suite
	R.C. Martin Metrics Suite
	Metrics for Object-Oriented Design Suite
	Lorenz & Kidd Metric Suite

	Software Metrics Thresholds
	Software Quality Evaluation Process
	Process for Developers
	Process for Acquires
	Process for Evaluators

	Software Metrics Tools
	CyVis
	JavaNCSS
	JDepend
	CKjm
	Eclipse Plugin
	Survey Results

	Complementing Software Metrics Information
	Unit Testing
	Different Types of Tests
	Java Unit Testing Framework (JUnit)
	Stubs and Mock Objects
	Unit Tests and Code Coverage

	Static Analysis
	FindBugs
	PMD
	CheckStyle

	Sonar: A Platform For Source Code Quality Management
	Sonar Functionalities
	Violations Drilldown
	Dependency Structure Matrix
	Coverage Clouds
	Hotspots
	Components
	Time Machine
	Quality Profiles

	Sonar Plugins
	The TreeCycle Plugin
	How It Works
	Assessing TreeCycle with Sonar

	Sonar in the Evaluation Process

	Case Studies
	Maestro Web Service Test Project
	Statical Analysis (Rules Compliance)
	OOD Metrics (Design & Architecture)

	SMail J2EE Project
	Statical Analysis (Rules Compliance)
	OOD Metrics (Design & Architecture)

	Conclusions and Future Work
	Conclusion
	Future Work

	teseFinal.pdf
	Introduction
	Quality Models
	McCall's Quality Model
	Boehm's Quality Model
	ISO/IEC 9216

	Software Metrics
	Some Traditional Metrics
	Software Quality Metric Methodologies
	IEEE Standard 1061
	Goal Question Metric Approach

	Object-Oriented Design Metrics
	C&K Metrics Suite
	R.C. Martin Metrics Suite
	Metrics for Object-Oriented Design Suite
	Lorenz & Kidd Metric Suite

	Software Metrics Thresholds
	Software Quality Evaluation Process
	Process for Developers
	Process for Acquires
	Process for Evaluators

	Software Metrics Tools
	CyVis
	JavaNCSS
	JDepend
	CKjm
	Eclipse Plugin
	Survey Results

	Complementing Software Metrics Information
	Unit Testing
	Different Types of Tests
	Java Unit Testing Framework (JUnit)
	Stubs and Mock Objects
	Unit Tests and Code Coverage

	Static Analysis
	FindBugs
	PMD
	CheckStyle

	Sonar: A Platform For Source Code Quality Management
	Sonar Functionalities
	Violations Drilldown
	Dependency Structure Matrix
	Coverage Clouds
	Hotspots
	Components
	Time Machine
	Quality Profiles

	Sonar Plugins
	The TreeCycle Plugin
	How It Works
	Assessing TreeCycle with Sonar

	Sonar in the Evaluation Process

	Case Studies
	Maestro Web Service Test Project
	Statical Analysis (Rules Compliance)
	OOD Metrics (Design & Architecture)

	SMail J2EE Project
	Statical Analysis (Rules Compliance)
	OOD Metrics (Design & Architecture)

	Conclusions and Future Work
	Conclusion
	Future Work

	resumo+abstract.pdf
	Introduction
	Quality Models
	McCall's Quality Model
	Boehm's Quality Model
	ISO/IEC 9216

	Software Metrics
	Some Traditional Metrics
	Software Quality Metric Methodologies
	IEEE Standard 1061
	Goal Question Metric Approach

	Object-Oriented Design Metrics
	C&K Metrics Suite
	R.C. Martin Metrics Suite
	Metrics for Object-Oriented Design Suite
	Lorenz & Kidd Metric Suite

	Software Metrics Thresholds
	Software Quality Evaluation Process
	Process for Developers
	Process for Acquires
	Process for Evaluators

	Software Metrics Tools
	CyVis
	JavaNCSS
	JDepend
	CKjm
	Eclipse Plugin
	Survey Results

	Complementing Software Metrics Information
	Unit Testing
	Different Types of Tests
	Java Unit Testing Framework (JUnit)
	Stubs and Mock Objects
	Unit Tests and Code Coverage

	Static Analysis
	FindBugs
	PMD
	CheckStyle

	Sonar: A Platform For Source Code Quality Management
	Sonar Functionalities
	Violations Drilldown
	Dependency Structure Matrix
	Coverage Clouds
	Hotspots
	Components
	Time Machine
	Quality Profiles

	Sonar Plugins
	The TreeCycle Plugin
	How It Works
	Assessing TreeCycle with Sonar

	Sonar in the Evaluation Process

	Case Studies
	Maestro Web Service Test Project
	Statical Analysis (Rules Compliance)
	OOD Metrics (Design & Architecture)

	SMail J2EE Project
	Statical Analysis (Rules Compliance)
	OOD Metrics (Design & Architecture)

	Conclusions and Future Work
	Conclusion
	Future Work

