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Model-checking in Alloy of a Fragment of the
UBIFS File System for Flash Memory

Abstract

Following the Verifiable File System (VFS) challenge proposed by Rajeev Joshi and Gerard

Holzmann, the main ideia of the present thesis is to compare two abstract models of the UBIFS 1

flash file system recently included in the Linux Kernel. The thesis was developed following two

approaches: on the one hand, in order to obtain comparative data and following the work of Andreas

Schierl et al, the abstract specification developed in KIV is translated to Alloy. With such translation,

we aim at evaluation

1. the differences between a more declarative language (Alloy) and a more imperative language

(KIV);

2. the different verification techniques each language provides.

On the other hand, following up one of the case studies of mentioned by José Nuno Oliveira

and the work developed by Miguel Ferreira, the main idea is to create an abstract model of UBIFS.

The developed work based on the work of Miguel Ferreira focuses on building a relational model

composed by four main components: the inode-based file store, the flash index, its cached copy

in the RAM and the journal. The first step involves using Alloy to create the relational model and

quickly verifying it due to through its capability of searching exhaustively for counter-examples to

properties. The second step involves submitting the model in Alloy to the ESC-PF calculus. The

main idea is building a point-free version of the file system based on the model in Alloy and verifying

it using a different technique.

Finally, the contribution to the Grand Challenge (GC) is done by emphasizing the main differ-

ences/similarities between both models. Since most of the developed work under de GC is hard

to compare (such as the verification of different file systems), the present thesis also intends to

contribute with the main conclusions about the model built intentionally from the existing model in

KIV.

1http://www.linux-mtd.infradead.org/doc/ubifs.html

http://www.linux-mtd.infradead.org/doc/ubifs.html




Model-checking in Alloy of a Fragment of the
UBIFS File System for Flash Memory

Resumo

No âmbito do desafio VFS proposto por Rajeev Joshi e Gerard Holzmann, o principal objectivo

da presente tese consiste em desenvolver um trabalho comparativo entre dois modelos abstractos

do sistema de ficheiros UBIFS para memórias flash incluído recentemente no kernel do sistema

operativo Linux. O trabalho foi desenvolvido seguindo duas abordagens: por um lado, no inuito

de obter dados comparativos e seguindo o trabalho de Andreas Schierl et. al, a especificação

abstracta construída usando a ferramenta KIV é agora re-escrita em Alloy. Com a tradução de KIV

para Alloy pretende-se avaliar:

1. as diferenças entre uma linguagem mais declarativa (Alloy) e uma linguagem mais imperativa

(KIV);

2. as diferentes técnicas de verificação associadas a cada linguagem.

Por outro lado, dando seguimento a um dos casos de estudo mencionados por José Nuno

Oliveira e ao trabalho desenvolvido por Miguel Ferreira, a ideia principal reside em criar um modelo

abstracto do sistema de ficheiros UBIFS. O trabalho desenvolvido, com base no trabalho de Miguel

Ferreira, foca-se na construção de um modelo relacional composto principalmente por quatro es-

truturas de armazenamento: flash store, flash index, a sua cópia na memória RAM (RAM index)

e journal. O primeiro passo envolve a criação do modelo relacional com recurso à ferramenta

Alloy, devido à sua capacidade de procura exaustiva de contra-exemplos para uma determinada

propriedade. A capacidade de transformar Lógica relacional em Lógica booleana simplifica a sua

integração com a notação pointfree. Dado que a notação-PF facilita a escrita de relação e pro-

priedades, o mapeamento entre Alloy e a notação-PF torna-se assim mais simples e directo.

Por último, a contribuição para o Grande Desafio é feita através do ênfase dado às principais

diferenças/semelhanças entre os dois modelos. Uma vez que grande parte do trabalho realizado

no contexto do GC é de difícil comparação (como por exemplo a verificação de diferentes sistemas

de ficheiros), a presente tese pretende contruibir também com as principais conclusões acerca do

modelo desenvolvido que intencionalmente decalca o modelo KIV existente.
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Chapter 1

Introduction

On the 7h of November 1996, NASA’s Jet Propulsion Laboratory launches the spacecraft Mars

Global Survivor (MGS) 1 to planet Mars. Having completed its primary mission by Janueary 2001

and engaged in its third extended mission phase, on the 2nd of November 2006, MGS stops to

communicate with Earth and consequently fails to respond to messages and commands. Three

days later, a faint signal is detected indicating that the spacecraft succumbed to battery failure. All

attemps to regan contact with MGS and solve the problem fail and two months later NASA officially

ends the mission. The accident was caused by a complex sequence of events from a software up-

date made five months before, that involved the onboard computer memory (two memory addresses

were incorrect) and ground commands.

Poor quality software often does not cause irreversible damage, a simple software reboot or even

system reboot solves the problem in most cases. In safety-critical systems, however, this leads to

far more serious consequences as seen in MGS. This kind of failures occur due to late discovery

of critical flaws in the construction of software. Sometimes, a fatal inconsistency or omission is

the cause, but more often, a key factor that leads to this kind of situations is that only after the

beginning of the software development programmers discover the inadequacy of their designs. As

the software development grows with additional fixes, its design erodes in detail. The result is a

confusing, incoherent (and possibly unstable) design structure increasingly hard to fix whenever a

fault occurs. It is in this context that the importance of formal methods is emphasized: to contribute

to the reliability and robustness of a system.

One of the application fields of formal methods is formal verification whose main goal is to prove

correctness of software. In order to minimize possible flaws in software construction, Tony Hoare

proposed a grand challenge for computing research: the construction and application of a verifying

compiler ensuring correctness of a program before running it [24]. Since correctness of software

is the fundamental concern of the theory of programming, such verifying compiler could be used in

the verification of structural integrity, security and substantial verification of critical parts of millions

of lines of open source software. This could lead to removal of thousands of errors in widely used

code and even to blockade of viruses entries (these often get into a computer system by exploring

errors such as buffer overflow). The contribution of the verifying compiler to the development and

1http://www.nasa.gov/mission_pages/mgs/mgs-20070413.html

1
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CHAPTER 1. INTRODUCTION

maintenance of new code is given by supporting its specification, design and test.

In order to collaborate with Hoare in the grand challenge, R. Joshi and G. Holzmann proposed

a “mini challenge”: a nontrivial verification project that can nonetheless be completed in a short

time [29]. Joshi and Holzmann believe that the ideal candidate for a mini challenge would have the

following characteristics:

• to be sufficiently complex as to render traditional methods inadequate to prove its correctness,

• to be simple enough that specification, design and verification could be completed in a rela-

tively short time,

• to be relevant enough so that successful competion would have impact beyond the verification

community.

The fact that most modern file systems have a well defined interface and the data structures

used in their design are very well understood makes a file system a good candidate for such a

mini challenge. By contrast, ensuring file-system reliability in concurrent operation modes and

unexpected power failure is an arduous task. Verification tools call for a number of requirements in

this respect, namely:

• a formal behavioral specification of the file system,

• a formal elaboration of the assumptions made of the underlying hardware,

• a set of invariants, assertions and properties that must be valid about data structures and

algorithms in the implementation

The first step of writing a behavioral specification of the file system is to understand its struc-

ture and management. Modern file systems are written according to the POSIX standard [2]: a set

of operations (read, write, create, open, etc) is available together with the corresponding descrip-

ton. Another element to consider is the underlying hardware. The behavioral properties of a file

system are different depending on the underlying hardware. Therefore the assertions that ensure

correctness and reliability may be different (a file system for a spinning disk drive has different char-

acteristics from a file system for flash memory drives, or from a file system that is distributed over a

network). Peculiarities of flash memory drives are discussed in Section 1.1 together with a detailed

description of the UBIFS.

As mentioned before, writing a verifiable file system requires a full knoweledge about design

properties such as structure invariants, pre- and post-conditions of functions and how data is phys-

ically stored. Depending on the type of file system in question (regardless of the hardware), it is

essential to understand its structure. For instance, there are a few differences between a versioning

file system and a journaling file system. A versioning file system allows for simultaneous existence

of several version of a file. Versioning can be implemented using two techniques: keeping a number

of old copies of the modified file or taking periodic snapshots of data. However, due to storage

limitations the number of versions of modified files is also limited [38]. A journaling file system is
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a powerloss resilient file system where data integrity is ensured by the fact that data updates are

constantly written to a serial log before being stored on disk. This log (called journal) is a especially

allocated area of the file system that minimizes the possibilities of losing changes made to files. A

detailed definition of journaling can be found in Section 1.1.

1.1 Contextualization

Nowadays, an increasing demand on flash memories is observed due to their advantages like shock

resistance and absence of mechanical parts. However, a reliable data storage on top of flash

devices requires thorough knowledge of their shortcomings: they cannot be overwritten, but only

erased in blocks and this should be performed using the wear levelling technique1.

Block erasure presents some inconveniences: its execution is very slow and the number of

erase operations for a memory cell is limited [31]. This may lead to resorting of overwriting data.

However, the flash memory content cannot be overwritten, i.e., to write new data on a currently

used part of the flash memory that block should be erased first. Given that physically erasing data

from flash memory is what wears out the memory blocks, erasing file system data should simply be

achieved by marking the blocks for future garbage collection. Due to the impossibility of in-place

changes of already written data, updates are written somewhere else on the flash memory. To

handle this limitation and the deterioration of blocks of the flash memory that are often erased, the

concept of garbage collection2 is used to check if an entry in a erase block is valid or obsolete, by

analyzing additional metadata. The combination of metadata and data is called a node.

The UBIFS is a journaled flash file system designed to work on top of raw flash [7]: nodes are

stored in eraseblocks with the possibility of being written to, read from or erased. The main goals of

UBIFS are better performance and scalability (according to flash size) achieved by write-back and

maintaining indexing information on the flash media.

The complexity of UBIFS makes it a good candidate for the mini-challenge proposed by Rajeev

Joshi and Gerard Holzmann [29]: building a verifiably reliable and secure file system.

1.2 Formal Verification

As software designs grows in size and complexity, conventional design methods become inade-

quate. Current methods for specification, design and test are typically empirical or informal and

therefore not enough to spot subtle design flaws. Formal methods improve software (and hardware)

designs by revealing ambiguity, incompleteness and inconsistency in a system. When used in the

initial phases of the development process, they can find design flaws that otherwise would only be

found by testing and debugging. When used in the final phases, they can aid to check correctness

and equivalence of different implementations of a system. However, the high cost of using formal

1Definition of "wear levelling" from Wikipedia: http://en.wikipedia.org/wiki/Wear_levelling
2Definition of garbage collection from Wikipedia: http://en.wikipedia.org/wiki/Garbage_collection

_(computer_science)
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methods and the resistance to them by many developers has confined their application to high-

integrity, safety-critical systems. Formal methods are usually associated to the usage of complex

and difficult methods and techniques. On the other hand, Alessandro Fantechi et al report the suc-

cess of formal methods in a Railway Signaling Manufacturer [4] by reducing total development effort

by more than 50%. Other successful cases of using formal methods can be found in [22] and [37].

Formal methods are classified in several levels of usage, one of these being formal verification.

The main goal of formal verification is ensuring the correctness of an intended design by writing

properties of software or hardware designs using mathematical logic. This task involves formal

specification of the requirement, formal modeling of the implementation and accurate rules of in-

ference to prove the satisfiability of the implementation under the underlying specification. Formal

verification has proved useful in ensuring the correctness of the following systems:

• cryptographic protocols – It is important to ensure security in cryptographic protocols due

to the risky presence of eavesdroppers in the exchange of messages between two hosts. If a

hostile eavesdropper succeeds in capturing messages or feeding false messages to honest

users and the protocol is not designed to avoid both situations, then the intruder’s action may

result in some security failures. Catherine Meadows approaches this theme in [32].

• combinational circuits – successful design of a complex system requires verifying the cor-

rectness of the implementation according to its intended functionality. Traditional design val-

idation resorts to its simulation, burdening the designer with the need to create multiple test

with the aim of representing all possible inputs. Correctness is approached based on the anal-

ysis of the output for each input vector. The high cost of CPU-time leads to the impossibility

of simulating exhaustively a design in order to ensure its correctness. Given the limitations of

simulation based approach, several strategies of formal verification are becoming increasingly

popular. Further information of the techniques for formal verification used in combinational cir-

cuits can be found in [27].

• digital circuits – nowadays, integrated circuits technology allows the development of chips

with several millions of transistors. However, due to increasing the complexity of digital circuit

designs, traditional functional verification (based on simulation) reached its limits. Therefore,

technological alternatives to simulation, such as formal verification, are a growing burden. For-

mal verification provides quality, cost and time improvements for tasks constituting over 60%

of the overall development efforts. Equivalence checking is one of the available approaches

of formal verification. In digital circuits, in order to reduce the complexity of the final netlist, a

set of optimizations are done in the design and developed code, leading to the existence of

several previous netlists. In this context, equivalence checking is be used to check if the final

netlist has the same behavior as previous netlists and even the original specification. Further

information about the use of equivalence checking in digital circuits can be found in [14].

• Source code – one of several existing approaches to formal verification is verifying directly

the source code of a software implementation. Functional properties of the system are defined

by inserting annotations in the source code and a proof obligation generator is used to verify
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Figure 1.1: Model checking approach (quoted from [35])

if the implementation satisfies these properties. June Andronick et al report on a method to

handle the verification of various security properties of imperative source code embedded on

smart cards in [3].

1.2.1 Model-checking

Building a project involves, before starting to write lines of code, facing chronic issues of software

development such as flaw requirements. Since flawed requirements generate bugs and solving

them often has a high cost, it is important to find flaws beforehand. In the last decade, the computer

science research community has made enormous progress in developing tools and techniques

for verifying requirements and design. The most successful approach that has emerged is called

model checking. When strictly used with a formal modeling language, it helps in automating the

verification process fairly well. Model checking [5] is a technique of testing automatically if a model of

a system meets a specification. Typically, when planning systems one thinks in software or hardware

systems, and the specification contains safety requirements such as the absence of deadlocks and

similar critical states that can cause the system to crash. Hence, model checking is used to verify

correctness properties of finite state systems.

Building tools to check requirements written in natural language is clearly extremely hard. It is

necessary to enforce a clear, rigorous, and unambiguous formal language for stating the require-

ments. If the specification language for writing requirements and design has well-defined semantics,

it may be appropriate to develop tools that analyze the statements written in such a language. This

basic idea of using a rigorous language for writing requirements or design is now acknowledged as

a foundation for system verification.

Tipically, a model-checker accepts system requirements or design (models) and some proper-

ties (specification) that the final system must satisfy. The output provided by the tool indicates if the

property is satisfied or generates a counter-example if the property does not hold. By studying the

counter-example, it is possible to identify the source of the error in the model, correct the model,

and try again, as illustrated in Figure 1.1.

Several model-checking techniques can be used to solve real-world problems:

• Kripke structure: the basic idea is to generate a graph containing the reachable states of

the system represented as nodes and the state transistions as edges. Once nodes are la-

belled with atomic propositions holding at each state, this graph is called kripke structure. For
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small systems, checking if a Kripke structure is a model of the specification is very practical.

However, for large systems (for instance, with many concurrent parts), global state transition

graph turns out to be too large to handle. Further information about Kripke structures can be

found in [12].

• Symbolic model checking: instead of explicitly building a Kripke structure as a graph, the

main idea is representing the behavior of the system in a symbolic way. The feature of sym-

bolic model checking consists in representing of sets of states of the system in implicit form,

rather than having each global state explicitly represented (node of Kripke structure). Sym-

bolic model checking can handle much larger models this way. There are several techniques

that can be used with symbolic model checking, such as Ordered Binary Decision Diagrams

(BDD’s). A BDD is a canonical form for boolean expression, to represent the characteristic

functions. Symbolic representation using BDD’s has greatly increased the size of the verifi-

able systems, although many realistic systems are still too large to be handled. For further

information about BDD’s see [12].

• Bounded model checking: is a Propositional Satisfiability (SAT)-based technique where

a system is unfolded n times and encoded as a SAT problem to be efficiently solved by a

CNF(Conjunctive Normal Form)-based SAT solver. A satisfying assignment returned by the

SAT solver corresponds to a counter-example of some length. This technique improves the

scalability of symbolic model checking and it is currently used in many model checkers. Addi-

tional information about bounded model checking is available in [6].

• Partial order reduction: this technique can be used (on explicitly represented graphs) to

reduce the number of independent interleaving (all the events in a single execution that are

arranged in a linear order are known as interleaving events) of concurrent processes that need

to be considered. As a result, the number of states needed for model checking is reduced.

When a specification can not distinguish between different interleaving sequences, only one

needs to be analyzed. Further information can be found in [8].

• Abstraction: the main idea is reducing the complexity of the system by modeling a simpli-

fied systems. Abstraction eliminates irrelevant, leading to simpler finite models expressive

enough. Usually, the simplified system does not satisfy exactly the same properties as the

original system. Hence, a process of refinement may be necessary. Generally, it requires

the abstraction to be checked. However, most often, the abstraction is not complete (not all

true properties of the original system are true in the abstraction). Thus, the simplified system

loses precision regarding the original system. Additional information about abstraction can be

found in [11].

• Counter-example guided abstraction refinement: due the disadvantage of abstraction, this

technique starts by checking with a imprecise abstraction and iteratively refines it. When a

counter-example is found, the tool analyzes it for feasibility (i.e., if the violation is genuine or

the result of an incomplete abstraction). If the violation is feasible, it is reported to the user,

6
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otherwise the proof of unfeasibility is used to refine the abstraction and model-checking starts

again. Information about this technique is available from [10].

1.2.2 Theorem proving

Automated Theorem Proving (AST) (also known as automated deduction) deals with the implemen-

tation of computer programs showing that some statement (the conjecture) is a logical consequence

of a set of statements (the axioms and hypotheses). Given an appropriate formulation of a certain

problem as axioms, hypotheses and a conjecture, an ATP system should be capable to solve the

problem, however difficult it may happen to be. Due to this extreme capability, its application and

operation sometimes requires the guidance of an expert in the domain of application to reduce the

solving time. Hence, ATP systems are often used by domain experts in an interactive way. The in-

teraction may be at a very detailed level (where the user guides the inferences made by the system)

or at a very high level where the user specifies the intermediate lemmas to be proved on the path

of the proof of a conjecture. There are several types of ATP systems, designed for several types of

problems, operating in several ways and producing a range of different outputs. The evaluation of

all types of ATP systems differs depending on the nature of the systems. Fundamental parameters

by which ATP systems can be classified and how they are relevant to the evaluation schemes are

discussed in [39].

1.2.3 Extended Static Checking

Software reliability adds to the risk of the overall system reliability. As systems have grown larger and

more complex, functionality in mission-critical and safety-critical systems is more often exclusively

controlled through software and consequently, the size and complexity of software has also been

increasing. The more complex and larger software is, the harder it is to check for reliability and

correctness. Static analysis (or static checking) is a technique capable of improving the quality

and reliability of embedded systems software. Integrating static-checking tools and techniques into

the development process can yield significant reductions in development testing and field failures.

However, integrating static checking into a development process can be difficult, especially in large

projects, with a reasonable amount of lines of code.

Static checking is a methodology of detecting errors in a program source code (or object code)

without actually executing it. The basic idea is marking the areas where potential errors occur or

may occur. The main advantage of using static code analyzers lies in the possibility of considerable

cost saving in fault detection and elimination. The earlier an error is determined, the lower is the

cost of its correction. There are several ways of applying static checking. Compilers are a common

example where static checking is used. Checking for type errors or non-initialized variables are

some features performed by a compiler that static checking provides. This methodology does not

take many efforts considering the cost of running the tool. However, the degree of error coverage

obtained is reduced.

Extended Static Checking (ESC) [19] is a broad name for a set of techniques for statically
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Figure 1.2: Static checkers comparison regarding error coverage and effort

checking the correctness of several program constraints. It can be thought of as an extended form

of type checking: it provides higher ability of errors detection. The aim of ESC is evaluating the

semantics of programs, providing several features such as:

• static warnings about errors usually detected at runtime by programming languages (null

pointers, boundary errors, division by 0, etc);

• static warnings about synchronization errors in concurrent programs (dead locks, race condi-

tions, etc);

• violation of design conditions: using an annotation language, the programmer specifies design

decisions (pre-conditions, post-conditions, invariants) that will be checked by an extended

static checker.

In fact, finding common errors mentioned above is the main goal of ESC. Hence, this verication

technique does not provide total errors detection. Unlink ESC, the aim of correctness is proving the

functional correctness of a given program. The higher degree of error detenction, the higher effort

is required. Figure 1.2 illustrates a comparison between the three verification techniques on two

important characteristics: the error coverage and effort required by each technique.

Several languages employ extended static checking such as JAVA (using Java Modeling Language

(JML) for annotation and ESC/JAVA as an extended static checker), Haskell (ESC/Haskell) or

Spec#. However, ESC can also be used with Point-free (PF) notation and relational algebra [34].
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1.3 Problem Description

1.3.1 The UBIFS File System

I/O operations can often take a long time. To speed up this kind of operations a buffer allocated in

the main memory is used. Buffers of this kind used by file systems are known as disk caches. They

work by storing the most recently accessed data from the hard disk. Hence, when new data needs

to be accessed, the file system first checks if the data is placed in the cache before reading it from

the hard disk. The reason for this procedure lies in the access speed, i.e, accessing data from the

RAM is faster than accessing from the hard disk. Therefore, disk caching can significantly increase

performance.

Although disk caching improves performance, there is some risk involved. If a system crash

occurs before the buffers have been written to disk, the last changes made to the data will be

lost, and that could cause the system to behave in an inconsistent way after reboot. For instance,

deleting a file on a Unix file system involves:

1. Removing its directory entry;

2. Marking space for the file and its node as free in the free space map.

If a system crash occurs between both steps, there will be an orphaned inode and therefore the

allocated memory for the ”deleted” file will remain unavailable (memory cannot be released). On

the other hand, if only the step 2 is performed first before the system crash, the file will be marked

as free (before it is actually deleted) and it will possibly be overwritten. Detecting and recovering

from an inconsistent state requires a complete scan of all data structures and this operation can

take a long time if the file system is large. A solution is to maintain a log of the changes intended to

make, ahead of time. This technique is called journaling. In a journaled file system, recovery simply

entails reading the journal (log) from the file system and replaying the changes until the file system

reaches a consistent state.

The Unsorted Block Image File System (UBIFS) [25] is a journaled file system developed by

Nokia engineers with help of the University of Szeged, that works on top of UBI [20] devices (which

is a wear-leveling and volume management system for flash devices). The data organization of

UBIFS complies with the Linux virtual file system (VFS) specification: a node is a data structure

that combines stored metadata and file data, and each node has a key associated (the Flash Store

structure). Finding matching nodes for a given key by sequentially scanning the entire flash memory

takes too long, hence UBIFS holds a data structure for mapping keys to addresses in the flash

memory (called the RAM Index) that quickly finds nodes given a key, and also a similar data structure

on flash for rebuilding the indexes (called the Flash Index ). To limit the changes to the flash index,

after updating the RAM Index, UBIFS saves the recent changes in a Journal (log) instead of updating

the Flash Index immediately. The journal contains the addresses to the new data written to the flash

store that have not yet been added to the flash index. Figure 1.3 illustrates the main data structures

of UBIFS.
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Figure 1.3: RAM index, flash index, flash store and journal
[36]

In this way, when a crash occurs, RAM index can be easily restored based on information from

flash index, flash store and journal. When the addresses are replayed (restored to RM index), they

usually are stored as new addresses (for the same keys) such as address 6 in Figure 1.3. The

exception goes to address 9 that contains a deletion entry which means that KEY6 must be deleted

from the index.

1.3.2 The State of the Art and Related Work

Joshi and Holzmann’s mini-challenge had a major impact beyond the scientific community. In re-

sponse to the mini-challenge, several file systems were (and currently are) cases of study. Andy

Galoway et al report in [28] a case of study in modeling and verifying the VFS. The aim of the de-

veloped work is to evaluate the viability of retrospective verification of a VFS implementation using

model-checking technique. In the paper, the authors present how to extract an executable model of

the Linux VFS implementation, validate the consequent model by employing the simulation capabil-

ities of SPIN, and analyse it for adherence to data integrity constraints and deadlock freedom using

the SMART model checker.

Andrew Butterfield et al report in [9] the construction of formal models of NAND flash memory

based on a standard for this kind of devices. The model is intended as a key part of the mini-

challenge, involving the development of a verified file store system based on flash memory. The

construction of the model involves building a highly reliable flash file store to use in space-flight

missions, capturing the internal architecture of NAND flash devices. The article focuses on mecha-

nising the state model and its initialization operation, which presents most of conceptual complexity.

The authors of [18] also contributed to the grand challenge by formally verifying an abstract

model of the Intel® Flash File System Core. In the context of the mini-challenge, the paper focuses

on the integration of different formal methods and tools for modeling and verifying of an abstract file

system. High-level specifications are combined with mechanical verification tools into a tool-chain
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that involves Alloy Analyzer for model-checking, Vienna Development Method (VDM) for specifica-

tion and testing and High Order Logic (HOL) for theorem proving.

Andreas Schierl et al [36] developed a formal abstract specification for the UBIFS flash file

system. Formal specifications were developed for the core components of the file system: the

inode-based file store, the flash index, its cached copy in the RAM (RAM index) and the journal

to save the modified files. Based on these data structures, the authors of the paper also wrote an

abstract specification of the interface operations of UBIFS and proved some of the most important

properties correct using KIV.

1.4 Aims

Due to its dimension and complexity, the UBIFS was found to be a good candidate to this compara-

tive work. The first aspect to analyze is how KIV can be translated to Alloy, i.e., how data structures

and operations are represented in Alloy. The main idea is to translate the model as literally as

possible into Alloy bearing in mind the following questions:

• since in KIV the model is correct, will counter-examples be found?

• what vulnerabilities could the model have in Alloy that were not found in KIV?

• does the model take advantages of the tool?

Finally, it would also be interesting to compare both tools in several aspects such as language,

features and usability (user interface). The main idea is to provide the user experience that might

contribute to future and related work.

1.5 Document Structure

The next Chapter introduces the formal tools involved in this work that is particularly usefull for

readers unfamiliar with KIV and Alloy. Chapter 3 presents the development process. It begins by

describing in natural language the data layout of the file system and the underlying operations.

The description of the file system is followed by the specification in KIV, illustrating some data

types and operations. This Chapter ends with the corresponding specification in Alloy, pointing all

the important aspects of mapping between KIV and Alloy. Chapter 4 presents some concluding

remarks of this project and gives directions for future work. The concluding remarks are divided in

several topics to clarify the conclusions of the comparative work. Future work addresses not only

the goals not achieved but also what could be done in the area.
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Chapter 2

Tool Background

2.1 KIV

The Karlsruhe Interactive Verifier (KIV) 1 (KIV) system is a tactical theorem prover [15] developed

by M. Heisel et al at University of Karlsruhe, Germany, that can be applied in several areas. Some

of these areas are:

• the development of safety critical systems from formal specifications;

• verification of safety requirements and correctness of implementations;

• semantic foundations of programing languages from a specification of the semantics downto

a verified compiler;

KIV is a powerful tool capable of providing strong proof support (automation, heuristics, sim-

plification, etc). KIV can hold large scale formal models by efficient proof techniques, multi-user

support and user-friendly graphical user interfaces. It has been used in several projects available

for download at the KIV Internet site 2. For further details about a few KIV projects see [21] and

[23].

The KIV system provides a functional programming language called Proof Programing Language

(PPL) to implement both the formal and the informal aspects of program development. Proof tac-

tics are represented as PPL programs constructing proofs in the underlying logical formalism. The

main advantage of this representation of proofs (and specifications) is that they can be stored and

checked by the user and the system itself, enabling the re-use of proofs, specifications and verified

components.

KIV is now in version 5.1 and it is only available for Linux platform. For other operating-systems

a virtual machine is available.

1KIV home page: http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/kiv
2http://www.informatik.uni-augsburg.de/swt/projects/
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2.1.1 Specification Language

KIV adopts a combination of higher-order algebraic specifications and dynamic logic. The structure

of a system can be described using algebraic specifications. These are built on top of elementary

specifications. Basic specifications are divided in three parts: a description of the signature, ax-

ioms and principles of induction. A basic specification is the textual content between the keywords

specification and end specification.

A signature of a specification can be described by the declaration of:

• sorts – enumerates all sorts of the specification;

• constants – indicates all constants of the specification; they are used in axioms;

• functions – functions are operations with a certain number of input arguments that return a

result;

• predicates – predicates are operations that specify the validity of a set of properties;

• variables – determines all variables of the specification; they are used in axioms;

This is a partial example of a specification to represent an heap 3:

heap =

enrich Ref, cell, nat with

sorts heap;

constants ∅ : heap;

functions

. [ . ] : heap × Ref × cell → heap ;

. [ . ] : heap × Ref → cell prio 2;

new : heap → Ref ;

predicates . ∈ . : Ref × heap;

variables H, H0, H1, H2: heap;

axioms

heap generated by ∅, ];

...

In-empty : ¬ r ∈ ∅;

In-insert : r ∈ H[r0, ce]↔ r = ro ∨ r ∈ H;

At-same : H[r, ce][r] = ce;

...

3Example available in KIV 3.0 distribution package
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end enrich

The syntax of the KIV language has a few similarities with the higher-order algebraic specifi-

cations. An example of this is the ability of using special characters in the specifications, such as

greek letters or logical symbols. Thus, specifications became more legible to the user. The second

part of a basic specification is the definition of principles of induction. They are specified after the

keyword induction and it consists of a generated by clause. Principles of induction are used to

generate elements of the data types and they are followed by axioms. These are placed after the

keyword axioms. Not all basic specifications contain principles of induction and axioms, they may

merely contain its signature.

Besides the basic specifications, KIV language provides several others, such as:

• Generic specifications – unlike the basic specifications, generic specifications are com-

posed by a parameter. They are commonly used to define sets, lists or arrays of the parameter

data type.

• Data specifications – data type specifications, typically, are used to define data types and

their constructors, i.e., enumeration types, tuples, variant records or natural numbers. These

are useful when a data types can acquire different definitions or when there is, for each

argument of the constructor, a function that selects each field of the data type.

• Union specifications – are used to combine several specifications. Union specifications

begin with the keywords union specification followed by the name of the specifications,

separated by the character "+". Trivially, signatures, axioms and parameters of union specifi-

cations are the union of the signatures, axioms and parameters of the subspecifications.

• Actualizations – generic specifications are instantiated by actualizations. Actualizations star

with the instantiation of a parameter specification indicating that the components (parameter,

sorts, variables, operations, etc) of the generic specification must be updated. The second

step consists of instantiating the actual specification. The specification is updated in the third

step: mapping the parameter specification to the actual specification. This operation is called

morphism. An example of an actualization extracted from [1], an example of such specification

is given below.

keylist =

actualize list-dup with key by morphism

list→ keylist; elem→ key; ...

end actualize

The generic specification list-dup is updated by the specification key where the selected

parameters of list-dup specification (list, elem...) are replaced by keylist and key

respectively.
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• enrichment – enrichments are used to enlarge a small specification by adding new sorts

and operations. The parameter of the enriched specification is the parameter of the small

specification. It cannot be enriched by parameter operations. All the content added to the

enriched specification is delimited by the keywords enrich and end enrich.

• renaming – a renaming specification is used to rename sorts and operations of a specifica-

tion. It starts with the keyword rename and the keywords by morphism are followed by a list

of renamings according to the description in the case of updates. The specification ends with

the keywords end rename.

Dynamic logic is an extension of higher-order Logic used for correctness proofs. It allows the

formalization of programs properties such as correctness specifications, equivalence programs, pro-

grams synthesis from specifications, etc. Correctness specifications in KIV are written as theorems.

Further details about correctness proof can be found at Section 2.1.2.

2.1.2 Proof suport

The KIV system provides an interactive deduction component based on proof tactics in order to

suport specification validation and design as well as program verification. An high degree of au-

tomation is combined with an interactive proof environment. The proof support is based on:

• sequent calculus with proof tatics: simplification, lemma application, induction for first-oder

reasoning;

• intuitive proof strategy based on symbolic execution with induction. Induction is used for the

verification of implementations with imperative programs using dynamic logic.

In order to automate proofs, the KIV system provides a set of heuristics: induction, simplification,

etc. The purpose of the heuristics is the application of tactics and reduction of goals to subgoals.

Heuristics can be chosen and changed any time during the proof. For instance, if all heuristics

fail, the user is allowed to:

• select another tactic or heuristic;

• introduce lemmas;

• do backtracking: if a proof becomes stalled it is possible to backtrack or restart at the point of

the choosed proof and try another;

A complete proof for a given formula ϕ means to reduce ϕ in the formula >. To achieve this

kind of simplification, simplifier rules should be used. KIV simplifier handles thousands of rules very

efficiently by compiling them to executable functional programs. The structure of a formula facili-

tates the understanding of its meaning, therefore the KIV simplifier always maintains this structure.

Rewrite and simplification rules can be chosen directly by the user for several tasks.
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Usually, in software verification, it is harder to analyzes a failed proof than to conduct a proof.

Analyzing failed proof attempts that may indicate errors in specifications, programs or lemmas may

raise some question. In this context, KIV provides several proof engineering techniques in order to

support the iterative process of (failed) proof attempts, error detection, error correction and re-proof.

Another feature of KIV system consists in using a strategy for proof reuse. When a subgoal can

not be proved, counter examples are automatically generated. Through the counter example, the

user can be directed to the earliest point of failure. Thus, the user can easily decide if the decisions

made in the proof are incorrect or if there is a flaw in the specification and later re-proving the goal.

The correctness management in KIV assures consistency in changes or deletions of specifica-

tions, modules and theorems, and that the user can do proofs in any order. It ensures that: only the

minimal number of proofs are invalidated after changes, there are no cycles in the proof hierarchy

and finally all used lemmas and proof obligations are ascertained (in some subspecification).

2.1.3 User interface

This section describes the user interface provided by KIV. Following the description of the authors

of KIV, the information found in this section was partially quoted from the KIV home page4. KIV

provides a powerful graphical user interface including several features. In order to manage large

applications, the user interface was designed to allow easy access to KIV for first time users. Figure

2.1 illustrates the appearance of the user interface of KIV.

The top-level object of a KIV project, the development graph, is displayed using daVinci, a graph

visualization tool which automatically arranges large graphs conveniently. Figure 2.2 shows a graph

visualization of a small example5.

The theorem base, which is attached to each development node, is arranged in tables, and

context sensitive popup menus are provided for manipulation. While proving a theorem, the user

is able to restrict the set of applicable tactics by selecting a context, i.e. a formula or term in the

goal, with the mouse. This is extremely helpful for applying rewrite rules, as the set of hundreds of

rewrite rules is reduced to a small number of applicable rules for the selected context. Proofs are

represented as trees, where the user can click on nodes to inspect single proof steps. Figures 2.3

and 2.4 illustrate respectively a proof menu and a proof tree of a small example6.

In large applications, the plentitude of information may be confusing. Therefore, important in-

formation is summarized, and more details are displayed on request. Different colors are used

to classify the given information. Additionally a special font allows the use of a large number of

mathematical symbols. Figure 2.5 contains the information of a proof provided by KIV.

KIV automatically produces LaTeX documentation for a project on different levels of detail. Spec-

ifications, implementations, theorem bases, proof protocols, and various kinds of statistics are pretty

printed. The user is encouraged to add comments to specifications, which are also used to automat-

ically produce a data dictionary. As several users may work simultaneously on a large project, the

4http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/kiv/
5Example available in KIV 3.0 distribution package
6Example available in KIV 3.0 distribution package
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Figure 2.1: Graphical user interface of KIV

Figure 2.2: Graph visualization of KIV
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Figure 2.3: Proof visualization of KIV

Figure 2.4: Proof tree of KIV
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Figure 2.5: Information of a proof

documentation facilities of KIV are very important. The automatically extracted information can also

be included into reports. All the KIV specifications used in this thesis were automatically generated

by KIV.

2.2 Alloy

Alloy7 is a lightweight modelling language developed at MIT under the guidance of Daniel Jackson

and is used in software design: it allows the creation of a model that specify the constraints and the

behaviour of a software system. Alloy also provides a modeling tool based on first-order logic, the

Alloy Analyzer, used to check Alloy specifications for correctness.

2.2.1 Specification Language

Alloy is a declarative specification language, expressive enough to describe the structure of complex

systems, but simples enough to be processed by fully automated analysis. It allows the user to

specify the behavior of a system without describing its internal steps and to avoid precipitated

implementation decisions.

The specification language consists of a small number of basic constructs: signatures, relations

and operators, predicates, functions, assertions and facts.

7Alloy home page: http://alloy.mit.edu/community
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Signatures

In Alloy ”Everything is a relation” ??, i.e., the Alloy universe consists of atoms and relations. An

atom is called signature and signatures represent data types, e. g.� �
sig Name{}� �
Name is a signature that represents ”something”. A signature can be abstract and/or can be

a super-type of others signatures, similar to the concept of inheritance in the Object Oriented

Paradigm. For instance:� �
abstract sig Key {

ino: Int
}

sig Dentrykey extends Key {
name: Name

}� �
ino : Int is a field of the signature Key and is a way to declare a relation, where ino is the

name of the relation. sig Dentrykey extends Key declares a dentrykey as a sub-type of a key.

Note that Dentrykey also has the field ino from Key. A relation can also be declared as a map, for

instance,� �
sig UBIFS {

fs : Address→lone Node,
···� �

where fs is, besides a field of UBIFS, a relation of arity 3 that its mapped by UBIFS and it

also maps Adresses to one or zero Nodes. Quantification in Alloy is denoted by multiplicity factors

descreibed in the list given below.

• lone: zero or one

• set: zero or more

• some: one or more, represents the quantifier ∃

• one: exactly one

• all: represents the quantifier ∀

• no: zero

By default one is assumed, e. g. name: Name.
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Constraints

Every system has its constraints: non-null values, positive values (for instance, an inode can not

have a negative size), etc. In Alloy, there are several ways to define constraints. Facts are con-

straints that are always holded, for instance, the size of an inode that must be a non-negative

number. In Alloy, it can be written as follows:� �
fact Notnegative {

all n : Node | n·size ≥ 0
}� �

Besides facts, constraints can also be declared in signatures. For instance, dentrykeys only

identify dentry nodes. In Alloy it is defined as follows:� �
sig Dentrynode extends Node {

name : Name,
dino : Int

}{ key in Dentrykey}� �
There are several constraints that only make sense in a certain context. In this case, they are

defined using predicates, i.e., they may be represented by predicates.

Predicates

Besides constraints, predicates may also represent operations over a signature. A predicate may

add constraints or modify the state of a signature, without producing a result. An example of a

predicate is given below:� �
pred valid_ino [ino_ : Int, fs : Address→lone Node,

ri : Key→lone Address]
{

one ink : Inodekey | ino in ink·ino⇒
ink in ri·dom and ri[ink] in fs·dom

ino_ 6= 0
}� �

In the case above, the predicate valid_ino specifies constraints over ri. It ensures the

validity of an inode, which is identified by its key, in the RAM Index: all keys in RAM Index should be

in file store and the identifier must be different from 0.

Functions

Similarly to predicates, functions can also represent an operations over a signature. However, unlike

predicates, functions produce a result and they do not modify the state of signatures. An example

of a function is given below.
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� �
fun dentrykeys [ri : Key→lone Address, ino_ : Int] : set Dentrykey
{

key : ri·dom | key·ino in ino_
}� �

The function dentrykeys returns a set of Dentrykeys from the domain of ri that the field ino

has the same value of ino_.

Assertions

Assertions are constraints which the model must follow and the command check is used by the

analyzer to search for counter-examples within scope:� �
assert datakeys_dir {

all u : UBIFS, ino : Int | valid_dir_ino[ino, u·fs, u·ri] and datanode_cons[u·fs, u·ri]⇒ no datakeys[u·ri,ino]
}

check datakeys_dir for 4� �
The assertion means that for all file systems and integer numbers, if the predicates valid_dir_ino

[ino, u.fs, u.ri], datanode_cons[u.fs, u.ri] are satisfied, there are no keys in the RAM

index of the file system, that are identified by ino. The command check will be described in Sec-

tion 2.2.2.

2.2.2 Alloy Analyzer

Alloy Analyzer is a modeling and verification environment. On the one hand, it provides an Alloy

editor to write all needed specifications, on the other hand Alloy Analyzer is equipped witha SAT-

solver, capable of showing visually the results of the model’s analysis by generating a meta-model,

finding counter-examples or instances of certain predicate. Figure 2.6 illustrates the appearance of

the Alloy user interface.

Considering the screenshot of the Alloy Analyzer in 2.6, a metamodel was generated based on

the defined signatures. In the current example, Alloy Analyzer generated a metamodel of a directory

entry that is illustrated by Figure 2.7.

In order to find counter-examples and/or instances of a predicate, Alloy enables the use of

commands like run and check. As the name suggests, run command is used to run a predicate as

follows:� �
run new_inodekey for 2� �

The integer value defines the scope of the search for instances. In the current example,

new_inodekey is a function that returns a new inodekey. If the the predicate (or function) is valid,
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Figure 2.6: User interface of Alloy Analyzer

Figure 2.7: Metamodel of a directory entry generated by Alloy Analyzer
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Figure 2.8: Instance found of the function new_inodekey

Alloy Analyzer shows the instances found shown in Figure 2.8. If no instance can not be found,

Alloy Analyzer classifies the predicate (or function) as invalid.

The command check is used to check if the model follows a given assertions. It is used by

the analyzer to search for counter-examples within scope, as shown in the example given in Sec-

tion 2.2.1.

If no counter-example is found, Alloy Analyzer produces an output similar to the following:

Executing "Check ri_fs for 3 but 2 UBIFS"

Solver=sat4j Bitwidth=4 MaxSeq=3 SkolemDepth=1 Symmetry=20

8990 vars. 559 primary vars. 23581 clauses. 293ms.

No counterexample found. Assertion may be valid. 22ms.

The lack of counter-examples does not assure total correctness of the model. Alloy Analyzer

can falsify an assertion by finding counter-examples within a certain scope. However, it cannot

prove that a assertion holds in an infinit states space.

25



CHAPTER 2. TOOL BACKGROUND

26



Chapter 3

Mapping between KIV and Alloy

In this chapter, shall be presented not only the abstract specification of UBIFS developed in [1] but

also the transcription of the specification to the KIV specification and the re-writing in Alloy and

the differences between the both tools. There are many differences between both tools. The main

difference between both tools is that KIV is a theorem prover and Alloy is a model-checker. While

a theorem prover is used to produce formal proofs for theorems, a model-checker searches for

counter-examples to a given constraint of the model based on the description of both languages,

the mapping will be divided in several sections: data types, axioms/invariants, operations and cor-

rectness.

Data types in KIV are defined using several kinds of specifications and constructors. In Alloy,

data specifications are replaced by signatures containing, in their body, relations (or fields). Rela-

tions represent the fields of the constructor used to define a certain data type. Sections 3.2.1 and

3.3.1 contain further information about the mapping between specifications and signatures.

The syntax used to define operations in KIV is a variant of Abstract State Machine (ASM) syn-

tax. Therefore, operations are specified using ASM rules. Section 3.2.3 contains more detailed

information about operations in KIV. In Alloy, ASM rules are translated in predicates. Hence, each

operations of the file system is represented by a predicate. Further information about operations in

Alloy is given in the Section 3.3.4.

The main invariants of the UBIFS are represented as predicates. However, they may resort to

the use of functions. In each language, the invariants are defined using two completely different

techniques. KIV provides axioms that are used to define the behavior of functions and predicates.

The difference between both is the associated keyword: functions and predicates. These dis-

play the signature of the functions (respectively predicates) used in a certain specification. Accord-

ing to Section 2.2.1 and Section 2.2.1, in Alloy predicates and functions are directly translated using

the corresponding concepts provided by the tool. Additional information is found in the Sections

3.2.2 and 3.3.3.

In KIV, theorems are statements used to prove termination of operations and correctness asser-

tions. Theorems are also used to that some axioms are, in fact, invariants of the operations. In Alloy,

theorems are replaced by assertions. These are used to check the existence of counter-examples

for the specified invariants. Sections 3.2.4 and 3.3.5 explain the process of correctness and its
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transition to model-checking.

In order to improve the readability of the developed model, Section 3.1 will present a brief

description of the UBIFS.

3.1 Abstract Specification

The data layout used in UBIFS follows the file system representation of Linux VFS. The main data

structure used in UBIFS is index nodes (inodes). They denote objects such as files or directories

and they are identified by an inode number.

Inodes store information about the represented object such as size, link count, modification

date, permissions, etc. However the name of the object is not included. The association between

names and objects is done by directory entries (dentries). They specify which object belongs to

which directory under a concrete name. If an object is a file, its content is stored using file inodes.

Each data inode (file inode) contains fixed-size data blocks named pages. When opening a file or

directory to access its content, a data structure is used to manage the inode number and the current

position within the inode. Therefore, UBIFS holds three variations of nodes:

• inode nodes: to store the information of an inode;

• dentry nodes: to represent a directory entry;

• data nodes: that holds a page with the content of a file

For each kind of node, there is a kind of key associated:

• inode key: that identifies an inode by its number;

• dentry key: that provides the inode number of the containing directory and the name of the

file;

• data key: to specify a page of data of a certain file

Nodes and keys are mapped using two variants of a data structure: the main data structure

(called flash store) that maps addresses to nodes and two similar data structures (flash index and

RAM index) that maps keys to addresses. The journal of the file system is represented by a list

of addresses. Therefore, the entire file system is composed by these four data structures: the

flash store (fs), the RAM index (ri), the flash index (fi) and the journal (log). A directory entry is

represented by the data structure Dentry and it comes in two variants. A Mkentry associates a

file (refered by its inode number) to its directory parent (refered by its name). A Negdentry only

contains the name of the corresponding directory.

Operations are used to apply changes to the contents os the file system. They can be grouped

into inode operations, file operations and space address operations.

As the name suggests, inode operations work over inodes. They allow creating, renaming or

deleting inodes of the file system.
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File operations work with inode contents. These can be files or directory entries. File operations

allow, for instance, to open files or directory entries.

Address space operations include all operations that access file contents. They are included

in [36] to allow using abstract pages when handling file contents.

The following lists present the main implemented operations of the file system. They are rep-

resented using KIV signature for a better explanation of their behavior. The description of all the

operations was partially quoted from [36].

The following list refers to inode operations:

• create (P_INO; DENT, FS, RI, LOG) – creates a new file whose name is specified by DENT, in

the directory identified by P_INO. FS, RI and LOG are updated with the new entries created:

an inode node for the created file, the corresponding directory entry and an inode node to

increase the parent directory size by 1 to reflect the increased number of objects contained in

the directory. DENT is returned as the the newly created dentry.

• unlink (P_INO, DENT) – is the "delete" operation. It removes the file referred to by DENT

from the directory P_INO. If the dentry was the last link to the referred file, the inode and

file contents are also deleted, otherwise only the dentry is removed. DENT is returned as a

negative dentry.

• link(OLD_DENT, NEW_INO, NEW_DENT) – creates a hard link to the file referred to by OLD_

DENT, placed in the directory NEW_INO and named as given by the negative dentry NEW_DENT.

Returns the newly created dentry in NEW_DENT.

• mkdir(P_INO, DENT) – creates a new directory in P_INO, with the name given in the negative

dentry DENT. The newly created dentry is returned in DENT.

• rmdir(P_INO, DENT) – removes the (empty) directory referred to by the dentry DENT located

in the parent directory P_INO. DENT is changed into a negative dentry.

• rename(OLD_INO, OLD_DENT, NEW_INO, NEW_DENT) – moves the object (file or direc-

tory) referred to by OLD_DENT from directory OLD_INO to directory NEW_INO, changing its name

to NEW_DENT.name. If the object referred to by NEW_DENT exists, it has to be of the same type

(file or directory) as OLD_DENT, and it is overwritten (i.e. deleted).

• lookup(P_INO, DENT) – checks for the existence of a object named DENT.name in the direc-

tory P_INO. If it exists, the dentry is returned in DENT, otherwise a negative dentry is returned.

For inode contents, the following file and address space operations are:

• open(INO, FILE) – opens the file or directory given in INO, and returns a new file handle in

FILE.

• readpage(FILE, PAGENO, PAGE) – reads the page with number PAGENO from the file referred

to in FILE, and returns it in PAGE.
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• writepage(FILE, PAGENO, PAGE) – writes the data from PAGE as new page numbered

PAGENO to file FILE.

• truncate(FILE, PAGENO) – sets the file size of the file referred to in FILE to PAGENO, deleting

all pages beyond.

• readdir(FILE, DENT) – Returns the next object of the directory referred to in FILE, or a

negative dentry if no further file or directory exists. The (positive or negative) dentry is returned

in DENT, and the position stored in FILE is increased to return the next object at the next call.

For the replay process and garbage collection, the operations are:

• gc(FS, RI, FI, LOG) – represents the garbage collection operation. It stores additional meta-

data by duplicating the content of FS, RI, FI and LOG, ensuring the consistency of the meta-

data.

• commit(RI; FI, LOG) – stores, in the flash index, the changes made since the last commit.

The content of RI is copied to FI and LOG is cleaned.

• replay(FS, FI, LOG; RI) – implements the replay process. The RAM Index is restored by

copying the content of FI to RI and applying all changes recorded in LOG to RI.

3.2 KIV Specification

This section presents an extract of the KIV specification of the UBIFS from [1]. Section 3.2.1 speci-

fies the main data structures of the file system. Section 3.2.2 specifies the axioms defined that are

used in correctness and Section 3.2.3 illustrates an operation of the file system.

3.2.1 Data Types

In KIV, most of data types are represented as data specifications. In order to specify the several vari-

ations of nodes (respectively keys) a data specification node (respectively key ) is defined containing

all the necesssary contructors, as depicted in Appendix A.1.1 (respectively Appendix A.1.2).

In the example of Appendix A.1.1 , . .ino, . .directory, . .nlink and . .size are infix

function selectors available on the constructor inodenode in order to access its arguments. The

keyword with followed by inode? is used to test if inodenode was generated by the predicate

inode. The variables defined in the data specification are used in axioms, lemmas and theorems

specifications.

Generic specifications are also used in the definition of the data types. It is the case of the

generic definition of stores. store is the generic specification to represent the main data structures

of UBIFS. Therefore, once store is a partial function that maps elements to data, it is used to

represent the flash store. The corresponding specification is found in Appendix A.1.1.
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In order to represent the four main components of the model, two variations of the store speci-

fication are used: one to define the mapping between addresses and nodes and another to define

the mapping between keys and addresses. The corresponding specifications in KIV can be found

in Appendix A.1.5 and Appendix A.1.6 respectively.

The journal is defined as a list of addresses. it refers to an actualization of the specification

list-dup. This is an enriched specification of a specification of lists. The KIV specifications for log

and list-dup can be found, respectivelly, in A.1.9 and A.1.7.

The toplevel specification is called file system and it only defines an invariant. Further details

are approached in Section 3.2.2.

A graphical overview of the full project can be found in A.1.16

3.2.2 Axioms

Specifications are not only used to define data types but also functions, predicates and axioms. This

is the case of the specification filesystem-baseA.1.9. It contains basic operations (functions) and

predicates for the file system. These predicates are understood as invariants (once they can specify

consistency of the file system) or pre-conditions (used in the main operations or other predicates).

As said in Section 2.1.1, functions and predicates only specify the signatures (input and output

arguments), i.e, they do not specify their behavior. It is defined by statements called axioms.

Basically, functions are used as auxiliary operations. Their output is used in the body of pred-

icates and procedures (axioms). An example of a function is getinode. Given an inode number, a

nodestore and a nodeindex, getinode outputs the existing inode in both data structures, identified

by the inode number given as input. The inode returned is a variation of the constructor inodenode.

The constructor used instead of inodenode was mkinode. The only difference between both is that

mkinode associates to the node an inode number and inodenode associates a key. mkinode is de-

fined in the data specification inode. The signature and body of the function getinode can be found

in Appendix A.1.9.

Predicates are used to specify invariants and pre-conditions. Its definition is similar to the def-

inition of functions. fs-cons is an example of a predicate that ensures the consistency of the flash

store and RAM index:

• the flash store contains the RAM index (all keys and addresses of the RAM index belongs to

the flash store);

• the keys of the RAM index match with the corresponding inodes of the flash store;

• the consistency of the three variants of they keys is ensured (by the predicates fs-dentry-cons,

fs-inode-cons and fs-data-cons).

The two first conditions are ensured by the predicate fs-key-cons. The three auxiliary predicates

(fs-dentry-cons, fs-inode-cons and fs-data-cons) ensure the validity of the corresponding inodes.

The definition in KIV of these predicates can be found in the filesystem-base specification.
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valid-dentry and valid-file-ino are two predicates that ensure, respectively the validity of a di-

rectory entry and the validity of a file. They work as pre-conditions of the operation unlink whose

description can be found in Section 3.2.3.

The main invariants of the abstract specification that ensure the consistency of the file system

(directly used in the verification) are:

• fs-cons – as mentioned before, ensures the consistency of the keys.

• datanode-cons – assures the consistency of the datakeys and datanodes, all the datanodes

must represent valid files and the part number of its datakey must be smaller than its size.

• nodekey-cons – guarantees the association of one key to one node, all keys of the RAM

index map the addresses of the corresponding nodes. nodekey-cons can be found in the

filesystem-base specification.

• store-cons – assures the consistency of the addresses of the file system: all addresses

stored in the journal and RAM index must be stored in the flash store.

The predicate log-cons is also an invariant of all operations, however its definition is not in the

filesystem-base specification but it can be found in the toplevel specification A.1.12. The replay

operation is needed to define log-cons, therefore its axiom can be found in the top level specification.

Further information about log-cons can be found in the Section 3.2.4.

The remaining axioms of filesystem-base work as pre or post-conditions of the operations. They

are also used in the body of functions and in the body of other invariants and/or predicates.

3.2.3 Operations

Specification filesystem-asm contains all the operations of the file system. The syntax is similar

to the ASM notation, however, the operations are not executed atomically (as an ASM rule), the

semantics of KIV’s temporal logic only executes parallel assignments atomically. FSOP is the top

level operation that selects suitable input data and calls one fo the operations of the file system.

Operations are defined using procedures. The keyword procedures indicates the signature of all

operations and the keyword declaration specifies its behavior (similar to predicates/functions and

axioms). Appendix A.1.10 illustrates an extract of the top level operation and of the operation unlink.

Note that the condition

choose P_INO, DENT with (valid-dentry(P_INO, DENT, FS, RI) ∧ valid-file-ino
(DENT.ino, FS, RI)) in unlink ifnone skip

means that if valid-dentry (P_INO, DENT, FS, RI) and valid-file-ino (DENT.ino, FS,

RI) are satisfiable, unlink is executed, otherwise the execution terminates. Hence, these two con-

ditions are understood as pre-conditions of the operation.

In order to understand the procedure of the unlink operation, it is necessary to consider the

definition of the involved data types. DentryA.1.3 is the data type that represents the information of
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a (existing or non-existing) file. Note that dentry and datanode are distinct data types. A datanode

stores the content of an existing file in the file system while a dentry comes in two variants: a

mkentry that identifies an existing file by its name and inode number and negdentry (negative

dentry) that specifies a non-existing file by its name.

Retrospecting the definition of nodeA.1.1 and getinodeA.1.9 and the definition of unlink, the pro-

cedure of the operation (which can be found in Appendix A.2.15) starts by declaring three variables:

• P_INODE – represents the inode of the parent directory (identified by P_INO)

• INODE – refers to the inode of the deleting file

• NODE – represents the updated inode node of the deleted file (the link count must be de-

creased by 1)

As said in the Section 1.3, removing a file from the file system means marking it as a deleted

file. Therefore, the main data structures of UBIFS must be updated. The flash store is updated with

three new entries:

• [ADR1, dentrynode(dentrykey(P_INO, DENT .name), DENT .name, 0)]: creates a den-

trynode with destination inode number 0 to mark the file as removed

• [ADR2, inodenode(inodekey(P_INODE .ino), P_INODE .directory, P_INODE .nlink,

P_INODE .size - 1)]: decreases by 1 the size of the parent directory (size is taken by the

number of the contained objects)

• [ADR3, node]: adds NODE to the flash store

The RAM index is also changed. The key of the deleted file is removed and a new entry is added

with the key of the updated inode node of the parent directory. If the number of the link of INODE is

1 (which means that it is the last link), the directory entry and the content of the file are removed,

otherwise only the dentry is removed.

All the changes are stored by adding to the log the three new addresses added to the flash

store. The flash index remains unchanged.

DENT is returned as a negative dentry to specify the deleted file.

The operation writepage should also be considered. According to FSOP#, writepage is executed

only if valid-file (FILE, FS, RI) (this condition has the same meaning has valid-file-

ino (FILE.ino, FS, RI)) is satisfiable.

Given a file, a page number and the page to be written, this operation updates the flash store

according to the following rules:

• let INODE be the inode node corresponding to the input file, if the size of INODE is less or

equal than the page number [ADDRESS, inodenode(inodekey(FILE .ino), INODE .

directory, INODE .nlink, PAGENO + 1)] updates the size of INODE with PAGENO + 1
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• [ADDRESS, datanode(datakey(FILE .ino, PAGENO), PAGE)] adds a data node with the

content of PAGE.

Note that instructions in KIV are executed sequentially. When the procedure of writepage is

analyzed, it is evident that the addresses of both nodes are different.

The RAM Index (respectively journal) is also updated by adding the corresponding keys and

addresses (respectively addresses). Once again, the flash index remains unchanged.

3.2.4 Verification

Verification efforts are grouped in three properties: consistency of the file system, functional cor-

rectness of the operations and correctness of the replay process.

A fundamental requirement of verifying the file system is its consistency. In order to check if the

file system is consistent several predicates were written as, for instance, the predicate fs-cons. As

said in subsection 3.2.2 fs-cons is an invariant of the file system. Therefore, to prove the validity of

this statement proof obligations are used. In this case, the formal proof obligation is

fs-cons (fs, ri)→ wp(op, fs-cons (fs, ri))

where op refers to any operation of the file system. wp(op, fs-cons (fs,ri)) denotes the weakest

pre-condition of op with the respect to a post-condition fs-cons (fs,ri). In other words, fs-cons (fs,

ri) must be satisfiable before and after the execution of op. In KIV, the weakest pre-condition of a

program is written using a different syntax. Using the unlink operation to replace op in a concrete

example, the proof obligation for the specified operation is written as follows:

fs-cons(FS, RI), valid-dentry(P_INO, DENT, FS, RI), valid-file-ino(DENT .ino,

FS, RI) ` 〈|unlink(P_INO; DENT, FS, RI, LOG)|〉fs-cons (FS, RI)

The condition above proves that predicates fs-cons, valid-dentry and valid-file-ino

must be satisfiable before and after the execution if unlink, thus the file system must already be,

and also remain, consistent. Note that valid-dentry and valid-file-ino are included in the

proof obligation since they are pre-conditions of the operation.

[36] proved that all the specified operations terminate and carry out post-conditions about their

results. Going back to unlink, they give and prove total correctness assertions that describe its

behavior. The procedure is similar to the procedure for consistency of the file system. Hence, to

prove functional correctness the following assertion was used:

valid-dentry(P_INO, DENT, FS, RI), valid-file-ino(DENT .ino, FS, RI) `
〈|unlink(P_INO; DENT, FS, RI, LOG)|〉valid-negdentry(P_INO, DENT, FS, RI)

In order to successfully delete a file, some pre-conditions must be fulfilled. The file identified

by DENT must be valid and the directory identified by P_INO must be valid, containing the file DENT.

After the deletion, it must be ensured that DENT represents a deleted file in the directory P_INO,

which is ensured by the predicate valid-negdentry.
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The replay process is represented by the replay operation. This, must be able to restore the

file system at most the data for the opration been executed when powerlost occurs. Therefore, the

predicate log-cons was defined to claim that replaying in the current situation will correctly restore

the RAM index, meaning that the new RAM index is a copy of the current RAM index. The formal

definition that specifies this condition is:

log-cons(fs, ri, fi, log)↔ wp(replay(fs, fi, log; ri2), (fs, ri) ∼= (fs, ri2))

A reliable file system should alway preserve the invariant, even in the middle of an operation.

The invariant is specified through the following predicates:

log-cons(fs, ri, fi, log) ∧ store-cons(fs, ri, log) ∧ datanode-cons(fs, ri) → wp(op, log-cons(fs, ri,

fi, log) ∧ store-cons(fs, ri, log) ∧ datanode-cons(fs, ri))

The definitions of replay, log-cons and the invariant above applied to the unlink operation can

be found in Appendix A.1.11, A.1.12 and A.1.13. The invariant above ensures the robustness of

the file system when a power loss occurs between operations. Proving the invariance of log-cons

requires two auxiliary invariants: store-cons and datanode-cons. store-cons is the predicate that

requires that each address contained in the RAM index or journal (log) has to be allocated in the

flash store.

datanode-cons demands that each datakey of the RAM index belongs to a valid inode and

describes a page as the file length. Note that, by transitivity, the same property is applied to all

datakeys referred to datanodes of the flash store.

These properties are needed to avoid accessing addresses in the flash store that are not yet

allocated, whereas the latter is needed as replaying some operations causes data keys beyond the

file size to be deleted.

3.3 Alloy Specification

In this section, the specification written in Alloy will be described. Currently, the model is grouped

in several modules: data structures (ubifs_ds, node, dentry and file), auxiliary functions and op-

erations (functions), invariants of the file system (invariants), main operations (operations) and as-

sertions (model_checking). Each kind of module (not necessarily all the models defined) will be

discussed in the next.

3.3.1 Data Types

As mention before, data types in Alloy are represented by signatures. Data specifications in KIV are

now replaced by signatures. Hence, in the example present in the Section 3.2.1, a main signature

is used in the node representation. The constructors used in the KIV specification are defined in

Alloy as extensions of existing signatures, as presented in Appendix A.2.1. The same method are

used to represent keys and it can be found in Appendix A.2.2.
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There is a huge difference between KIV and Alloy notation when representing the main data

structures of UBIFS. While in KIV there is a generic definition of store which is updated to map

nodes to addresses and addresses to keys, in Alloy they are represented using relation multiplicity.

Generic specifications and their actualizations are replaced by relations of a certain arity. In the

case of flash store, flash index and RAM index, a relation with "arity" 2 is used as depicted in

Appendix A.2.3.

The journal can also be easily defined. The set of specifications used in KIV to represent a list,

is substituted by sequences. In Alloy, a sequence is a data structure that maps indexes to elements.

Its employment can be found in the log definition (Appendix A.2.3).

To finalize the definition of the main data structure of the file system, and as depicted in Ap-

pendix A.2.3, a main signature called UBIFS containing the relations fs, ri, fi and log. All the

operations are defined over the UBIFS signature.

The metamodel generated by Alloy Analyzer is in A.2.26.

3.3.2 Functions and Auxiliary Operations

The operations of the UBIFS file system can be classified in two types: basic and main operations.

All the functions defined in the filesystem-base specification are considered basic operations, and

they are defined in Alloy as functions. The module functions contains not only the basic operations

but also auxiliary functions and predicates used in the Alloy specification. An example of an auxiliary

functions in inodenode_c. To create an inode node with determined fields in Alloy, the following

condition is used:� �
{ one inn : Inodenode | inn·key in _key_ and inn·directory in _directory_ and inn·nlink in _nlink_ and inn·

size in _size_ }� �
Instead of writing this condition whenever it is necessary to created an inode node, it can be

written once in the body of inodenode_c (as depicted in Appendix A.2.6). This functions receives as

input all the necessary values to return an Inodenode with all fields properly filled. In this way (and

applying the same procedure to the remaining data types), the definition of the main operations

becomes simpler, smaller and more readable.

Recalling the example approached in the Section 3.2.2, here, getinode receives as input an

Integer (representing the inode number), the flash store and the RAM index and outputs the existing

inode in both data structures. However, one must note that the multiplicity factor used in the function

(and also some signatures) is lone instead of one. In the case of getinode, the multiplicity factor one

entails that it always exists an inode according to the specified rules. However, this condition might

not be always true (if the functions receives a non-existing inode number). Hence, this means that

sometimes one can be too restrictive and it might cause some issues in the future. The multiplicity

factor lone also fulfills all requirements, giving some freedom to the model. Another aspect to

consider is the usage of integers instead of natural numbers. Arithmetics is not the strongest feature

in Alloy, and the Natural data type is still very limited. The module Integer provides more arithmetic
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operations (for instance, the cardinality of a set) than the module Natural. The definition of getinode

can be found in Appendix A.2.5.

An example of an auxiliary operation is the predicate new_inodekey :� �
pred new_inodekey [ink : Inodekey, ri : Key→lone Address, fs : Address→lone Node]� �

This predicate is used in the operations create and mkdir and it ensures that ink is an absent

key in the flash store and RAM index. In KIV, this condition is directly written in the body of the

operation. However, in Alloy, special attention must be payed to this condition. Further details will

be presented in Section 3.3.5.

3.3.3 Invariants

In Alloy, axioms are translated using predicates. In KIV, the specification filesystem-base contains

most of pre and post-conditions and most of invariants, in Alloy, they are grouped in the module

invariants. All predicates were interpreted as invariants (note that the same predicate can work as

an invariant or as a pre-condition). Invariants were classified in two categories: referential integrity

and file system consistency. Referential integrity ensures the references between data structures

are valid. An example of a predicate that ensures referential integrity is valid-ino that given a flash

store, a RAM index an an inode number, ensures that the inode number in the range of RI and FS

is valid:

• the inode number must be bigger than zero;

• at least, an inodekey should exist such:

it is identified by the given inode number;

it exists in the RAM index;

its corresponding address exists in the flash store.

In KIV, these conditions are enough to define valid-ino as depicted in Appendix A.1.9, . However,

in Alloy, this definition creates some redundancy. When instantiating the predicate, Alloy Analyzer

produces the output in 3.3.3.

Carefully analyzing the output mentioned before, it is possible to find some inconsistencies:

UBIFS is the file system consisting of 4 relations: log (containing Address2 in the first position), fi

(the flash index), fs (that contains the relations Address0 -> Datanode and Address2 -> Datanode)

and ri (containg the relations Datakey0 -> Address0 and Inodekey -> Address0). Inodekey

is the key identified by the inode number 7 and it is mapped in the RAM index by Address0. So

far, Inodekey conforms to the conditions specified in the predicate. The last condition assures that

Address0 must be stored in the flash store. According to the relation fs, the condition holds once

Address0maps Datanode. Although the predicate holds, two inconsistencies can be found. First of

all, in the RAM index, the same address is mapped by two different keys and obviously this situation

can not occur.
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Figure 3.1: Instance of valid_ino produced by Alloy Analyzer

The second inconsistency involves the atoms Address0, Inodekey and Datanode. According

to the structure of the UBIFS, the RAM index is used to quickly access nodes with a given key. This

presupposes that the keys mapped by a given address belong to the node pointed by the same

address, in the flash store. However, in the instance generated by Alloy Analyzer, RAM index maps

Inodekey to Address0 and Address0 mapps Datanode in the flash store. Obviously, not the of

Datanode is Inodekey neither an inodekey can be associated to a datanode.

A similar situation could also occur (and it was checked during the verification). By default, Alloy

assumes that it exists more than a key with the same inode number, i.e., two different keys share

the same inode number. Considering an inodekey mapped to a certain address, the flash store

maps the same address to a certain inode node (refered by the inodekey stored innthe RAM index).

however, since only inode numbers are compared (instead of keys) to ensure the consistency of the

keys and inodes, it is possible the inodekey in the RAM index being different from the key that refers

the inode node in the flash store.This kind of situations occur because this condition only ensures

that the mapped address in the RAM index is in the range of the flash store (it is not specified any

relation between the keys in the RAM index and the nodes in the flash store).

To avoid this kind of issues, another condition was added to the definition of valid-ino: the

association between the stored in the RAM index and the key of the corresponding node in the flash

store. This way, all the problems are solved, avoiding some counter-examples in the verification.

The full implementation in Alloy of valid-ino is displayed in Appendix A.2.8.

Note that in the definition of the predicate, the implication was used. The main goal is to reduce

the range of input atoms, i.e, only the keys stored in the RAM index are included.

File system consistency includes the main invariants of the file system. Using the example of

Appendix 3.2.2, fs-cons is an invariant that ensures consistency of the file system. In Alloy, it has
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the same signature as in KIV. However, fs-cons is defined using the predicate fs-key-cons and here

dwells the main difference of both definitions. In KIV, an excerpt of the condition that tests the type

of the inputed key is:

key .dentry? → fs-dentry-cons(key, fs, ri)

In Alloy, it is ensured by the condition:� �
{key_ in Dentrykey⇒ fs_dentry_cons[key_, fs, ri]}� �

Again, special attention must be payed to the Alloy condition. The operator = was replaced by

the operator in to avoid the condition been too restrictive. The operator = specifies that the relation

key_ is the same as the relation Dentrykey, hence the predicate fs_dentry_cons would only be

applied to one and only one key, instead of being applied to all dentrykeys. Therefore, replacing

= by in specifies that key_ contains Dentrykey. The full definition of fs-key-cons can be seen in

Appendix A.1.9 for the KIV definition and in Appendix A.2.9 for the Alloy definition.

fs-key-cons is a quite complex invariant. As mentioned before, it has three variants, according

to the existing kinds of keys. As the name suggests, fs-dentry-keys checks the consistency of

dentrykeys, according to the following conditions:

• there is an inode node in the flash store identified by the corresponding inodekey (the inodekey

and the dentrykey have the same inode number) that refers a valid directory;

• the dentrykey and the key of the dentry node transitively mapped by it, have the same name;

• the dentry node transitively mapped by the dentrykey must correspond to a valid inode node

(by its the inode number);

The specification in KIV is written using the following axioms:

• valid-dir-ino(key.ino, fs, ri)

• key.name = fs[ri[key]].name

• valid-ino(fs[ri[key]].ino, fs, ri)

The axiom valid-dir-ino uses the function getinode to select the inode node identified by key.ino.

However, the flash store may store several inode nodes with the same inode number with different

properties and this genereted some counter-examples during the verification. In order to weaken

the invariant, the predicate valid-dir-ino was replaced by the conditions of its body but with a

difference: the multiplicity factor all was replaced by the multiplicity factor some, ensuring that only

some inode nodes hold the predicate. Further details of this issue can be found in Section 3.3.5.

The definition of datanode-cons, nodekey-cons in Alloy is similar to their definition in KIV. Both

definitions can be found in A.2.13 and A.2.14.

The predicate log-cons was defined using point-free notation: stating that
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( ∀ adr. adr ∈ log ∨ adr ∈ ri→ adr ∈ fs);

is the same as� �
(log·rng + ri·rng) in fs·dom� �

Sequences in Alloy are just relations where an index is maped to an element. In this particular

case, a sequence of addresses is a relation that maps indexes to addresses (Int -> Address),

hence the indexes represent the domain of the relation and the set of the addresses stored in the

log belong to the range of the relation.

The operator ∨ was replaced by the operation "union" in Alloy to specify that the union between

range of the log and the range of the RAM index is a subset of the domain of the flash store. This

way, the predicate store-cons became simpler and easier to read.

3.3.4 Operations

The module operations contains all the operations of the file system. Due the fact that operations

modify the state of the file system, they are interpreted as predicates. In both specifications, oper-

ations are defined as predicates, however there is a big difference between both definitions. The

first main difference refers to the existence of a top-level operation, FSOP# that selects one of the

available operations, that establishes the necessary pre-conditions of each operation. In Alloy, pre-

conditions are introduced directly in the corresponding operation. Hence, the definition of a top-level

operation is no longer needed.

Another main difference in both definitions is the signature of the operations. Continuing with the

example of unlink, its signature in Alloy contains, as arguments, all the needed inputs and also the

all the outputs of the operation. Note that predicates do not have a return state. Here, output means

the modified state of the involved variables. In KIV, the main variables involved in the definition of

the file system are declared globally and, for each operation, only the modified variables are called.

In Alloy, all the entire file system is an argument. This property is showed in the definition of unlink

in A.2.15.

Transcribing the signature of the operation, one has:� �
pred UNLINK [p_ino : Int, dent : Dentry, dent’ : Negdentry, u, u’ : UBIFS]� �

where p_ino, dent, u are input arguments. There are not global declarations of variables in

Alloy and, in a certain data type, it must be specified not only the modified fields by the operation

but also all that remain unchanged (friend condition). These are the four reasons to unlink receiving

the entire file system as input.

The body of the operation is divided in pre and post-conditions. There are two definitions

(using two axioms) of the predicate valid-dentry in KIV. Despite the existence of two differ-

ent axioms, only a predicate is defined. Alloy Analyzer does not allow duplicated predicates,
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hence, in the current example, the predicate valid-dentry in KIV was replaced by the predicate

valid_dentry_with_parent (it received the same name as the corresponding axiom).

The post-conditions encompass the procedures of the operation and the updated involved data

types. In this operation, dent’ is the returned negdentry and u’ is the final state of the file system.

In order to assure that adr1, adr2 and adr3 are new addresses in the flash store, the axiom

new was used in KIV. In Alloy, this axiom was replaced by the following conditions:

• one disj adr1, adr2, adr3 : Address – ensuring that the three addresses are disjoint. When

nothing is specified, Alloy Analyzer can assume that, for instance, adr1 and adr3 are equals

and it could generate some inconsistencies (two different nodes are allocated in the same

address).

• (adr1 + adr2 + adr3) not in dom[u.fs] – specifying that this is a new subset of addresses in the

flash store.

As said before, Alloy Analyzer as a limited state space called scope. When running an instance

under a certain scope, Alloy Analyzer generates as many atoms as scope allows, sometimes un-

necessary atoms. In a big model such as UBIFS, Alloy Analyzer might not have enough scope

to create the instance. A solution is to increase the scope, increasing the scope, however, entails

exponential increase in solving time. Another solution is trying to reduce the number of created

atoms that can be done using the instruction let. The let statement acts as a macro replacing the

right-side of the assignment by the left-side of the assignment, i.e. it creates temporary three new

variables to be used to update the file system in the boundary of the let clause.

Another advantage of the let statement is avoiding the issues caused by repeating the use of

the constructors. Focusing on the following excerpt of unlink :� �
···
in1 = inodenode_c[inodekey_c[p_ino], p_inode·directory, p_inode·nlink, inode·size−1],

{
u’·fs = u·fs + (adr2→in1)
···
ri_temp = u·ri − temp + (in1·key→adr2)
···� �

it is easy to conclude that the node in1 is added to the flash store and its key is added to the RAM

index. Repeating the constructor inodekey_c[p_ino] can cause two situations: one key is created

and the key of the inode node is the same as the key stored in the RAM index or two different keys

with the same inode number and the key of the created inode node is different from the key stored

in the RAM index. Apparently it could not raise any issues, however, when checking the consistency

of the keys, Alloy Analyzer will generate a counter-example: having the same inode number does

not presuppose being the same key.

The definition of unlink has another difference from the implementation in KIV. Besides marking

the file as removed in the flash store, deleting a file or directory also involves removing its dentrykey
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from the RAM index. At first sight, this procedure could be literally done and in fact, this is what

happens in KIV. The first implementation in Alloy also contained a statement that was the literal

translation of KIV. That statement was replaced by the function dentrykeys_name that returns the

set of the existing dentrykeys in the RAM index, according to certain parameters. Hence, let dkns

be the set of dentrykeys, as follows:� �
dnks = dentrykeys_name [u·ri, p_ino, dent·name]� �

The RAM index is a data structure that maps keys to addresses. Hence, to remove dkns from

the RAM index it is necessary to create a relation mapping the keys from dkns to their corresponding

addresses which is represented by the following statement:� �
temp = (dnks <:u·ri)
u’·ri = u·ri − temp� �

The operator <: restricts the domain of a relation, hence temp contains the relations mapping

all the keys from dkns to addresses. Now, removing the intended keys from the RAM index is done

using the traditional way.

The let clause was also used to update the log, but for a different purpose. Operations under

sequences in Alloy requires using an auxiliary module. Given a sequence and an element, the

operation add selects the biggest index of the sequence to attribute a new index to the added

element, meaning that only an element can be added at once.

As opposed to the KIV specification, in Alloy, it is essential to specify that the flash index remains

unchanged as can be seen in the full definition of the operation.

The operation writepage also has an interesting detail: the instruction if-then-else. In Alloy, if a

then b else c it represent by the statement a => b else c. Once the update of the flash store and

RAM index depends on the page number and the size of the inode node refered by the input file, the

entire file system is updated in the boundary of the if statement. The full definition of the operation

can be found in Appendix A.2.16.

This operation has yet another curious detail related to the invariant datanode-cons. Further de-

tails can be found in Section 3.3.5.Figure 3.3.4 illustrates the instance generated by Alloy Analyzer

for the current operation.

In order to clarify the changes between u (the atom UBIFS1) and u’ (the atom UBIFS0), the

Alloy evaluator was used. Figure 3.3.4 (respectively Figure 3.3.4) illustrates the flash store and

RAM index of u (respectively u’).

3.3.5 Verification

Another great difference between KIV and Alloy is the way verification is done. KIV, a theorem

prover, as the name suggests, tries to prove that a theorem is correct. When a proof fails, it can

be hard to find what cause the failure: whether the theorem is invalid, or whether the proof strategy

failed.
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Figure 3.2: Instance of the operation writepage

Figure 3.3: Flash store and RAM index
of u Figure 3.4: Flash store and RAM index of u’

A model-checker, such as Alloy Analyzer, tries to find counter-examples to certain assertion. It

works as a "refuter" rather a "prover". If a counter-example is generetad, the assertion is invalid,

however if no counter-example is found, the assertion may be valid or may still be invalid. Increasing

the scope of the solver will reduce the probability of the assertion being invalid.

In Alloy, verification efforts followed the KIV rules and they are also divided into 3 groups: con-

sistency of the file system, functional correctness of the operations and correctness of the replay

process. The theorem base for the filesystem-asm specification1 was the guideline to check the

consistency of the file system and functional correctness of the operations. Most of the axiom

proved in the theorem base were reproduced in Alloy as assertions. Starting by "auxiliary" axioms

(axioms used by other axioms, such as main invariants), dir-two-links is an axiom used by the invari-

ant fs-cons in the operation rename. In Alloy, these axioms were not used in any invariant, however

its corresponding assertion was defined and checked for counter-examples.

Verifying the UBIFS file system in Alloy Analyzer took quite some time (the entire file system

1http://www.informatik.uni-augsburg.de/swt/projects/Flash/UBIFS/specs/filesystem-asm/export/
lemmasummary.xml
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took a few hours), particularly from the SAT solver.By default Alloy Analyzer uses SAT4J as solver

which is enough for small models. UBIFS is a large model and SAT4J was insufficient (for instance,

the assertion fs-cons-same-key (which is a small assertion) took 3 minutes to be solved!). For

large problems, it is recommended to Berkmin solver. However, due the incompatibility between the

solver and the operating system (Berkmin is only available for the Linux and Solaris platform and

the operating system was Mac Os X), Berkmin was replaced by minisat. According to Alloy FAQ2,

minisat is a good choice for small problems. However, minisat had a better performance than SAT4J

and although the solving time of certain assertions continued to be considerably large, it has proved

sufficient for the problem.

As said before, the consistency of the file system includes checking, for each operation, the

preservation of four main invariants: nodekey-cons, store-cons, datanode-cons and fs-cons. Fol-

lowing the theorem base, an assertion was created combining an operation with an invariant (for

a total of 55 assertions). The invariant nodekey-cons did not raise any major problems (probably

due the let statements used in the operations). An example of this invariant applied to the unlink

operation (assertion nodekey_cons_unlink ) can be found in A.2.19.

Sometimes, point-free notation can be too restrictive. Considering a relation as an example,

specifying that only some elements (instead of all) of the relation hold a given condition in PF

notation might not be trivial. In this case, PW notation woul be an advantageous option. However,

although store-cons being defined using point-free notation, no counter-examples were found in any

operation. The verification of store-cons is similar to nodekey-cons: an assertion was defined to

each operation.

The operation writepage raise some difficulties when checking for the invariant datanode-cons.

In KIV, the corresponding theorem (name datanode-cons-writepage) stated that the conditions

datanode-cons and valid-file-ino must hold before the execution of writepage, and after its exe-

cution datanode-cons must continue hold. In Alloy, the weakest pre-condition specified in KIV is

replaced by an implication. The corresponding assertion in Alloy is written as follows:� �
all u, u’ : UBIFS, file : File, pageno : Int, page : Page |

valid_file_ino [file·ino, u·fs, u·ri] and
datanode_cons [u·fs, u·ri] and
WRITEPAGE [file, pageno, page, u, u’]⇒ datanode_cons [u’·fs, u’·ri]� �

As in other operations, the variable u represents the previous state of the file system and the

variable u’ represents the final state of the file system.

Note that using the multiplicity factor all entails that the conditions are held for every instance

generated by Alloy Analyzer. If another multiplicity factor was used, for instance, the multiplicity

factor some, the conditions were held only for some file systems, meaning that it could have at least,

one file system where the conditions were not valid, producing an inconsistent file system. However,

when checking this assertion, Alloy Analyzer found a counter-example, illustrated by Figure 3.3.5.

2http://alloy.mit.edu/faq.php
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Figure 3.5: counter-example of datanode_cons_writepage

Before analyzing the counter-example, the new nodes adds to the flash store (and correspond-

ing keys to the RAM index) must be identified. This task can be easily done using the Evaluator.

Figures 3.3.5 and 3.3.5 illustrate the flash store the RAM index from both states of the file system.

Figure 3.6: Flash store and RAM index
of u Figure 3.7: Flash store and RAM index of u’

Only Datanode (respectively Datakey) was added to the flash store (respectively RAM index),

meaning that, according by the behavior of the operation, the page number is smaller than the size of

the inode node refered to the input file. And the RAM index of the final state has one inconsistency:

the same address maps two different keys, but does it really interfere with the invariant violation?

In the counter-example, Alloy Analyzer identifies the signatures that breakes the invariant, hence

pageno has value 3 which is also the value of the Datakey.part_. 4 is the value of the inode

number that identifies Datakey, Inodekey0 and Inodekey1. Apparently, the invariant would not
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Figure 3.8: Output of getinode under the counter-example of 3.3.5

Figure 3.9: counter-example of datanode_cons_writepage

be broken, since the size of both inode nodes is bigger than the part size of the datakey. So,

what causes the counter-example? In fact, the inconsistency of the RAM index really influenced the

invariant through the function getinode. According to the definition of getinode and the inconsistency

of the RAM index, there is not any inodekey that holds the conditions of the function, causing the

output illustrated by Figure 3.3.5.

The solution involves ensuring the consistency of the data structures by adding the predicate

(and also invariant) store-cons to the assertion. This way, the problem of the result of getinode will

be solved. However, will these conditions be sufficient to ensure the preservation of the invariant?

The answer is no. After the addition of store-cons, Alloy Analyzer found another counter-example,

depicted in Figure 3.3.5.

In this case, Inodenode1 is the existing inode in the flash store both Inodenode0 and Datanode

are the new added nodes that, according to the behavior of the operation, mean that the the page

number is smaller than the size of the inode node refered by the input file. In fact, the inode inode

is updated with the new size (pageno + 1) but the old inode node still remains in the flash store.

When the predicate datanode_cons is ran for the updated file system, the new inserted datakey

will be compared to old inode node instead of the updated inode node. In other words, the part

number of Datakey is compared to the size of Inodenode1 when it should be compared to the size
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of Inodenode0.

The solution is to check the properties of the predicate only for the added nodes and keys. The

existing data is checked and it remains unchanged meaning that it remains consistent. Hence, the

full definition of datanode_cons_writepage can be found in Appendix A.2.20.

However, according to the structure and behavior of UBIFS, it does not make any sense adding

a new data node without adding the corresponding inode node. This suggests that the definition of

the operation writepage is wrong: the flash store and RAM index are only updated when the size

of the chosen inode node is smaller than the inputed page number. Thus, the right definition of

writepage can be found in Appendix A.2.17.

Most of the counter-examples found are related, particularly to operation writepage. The excep-

tion is for the use of store-cons. This predicate was added to all assertions "datanode_cons". In

some operations no counter-example was found but it could generate some inconsistencies, hence,

to avoid possible issues, the predicate is used to ensure the consistency of the file system.

The invariant fs-key-cons also presented many issues in most operations. First of all, fs-key-

cons is a complex invariant. As said before, it has three variants but only one of the three variants

presented some inconsistencies for several reasons. The predicate fs-data-cons is very simple and

it did not bring many issues. Actually, fs-data-cons only ensures that the inode number of the data

key regards a valid file as follows:� �
pred fs_data_cons [key_ : Datakey, fs : Address→lone Node, ri : Key→lone Address]
{

valid_file_ino[key_·ino, fs, ri]
}� �

However, due to the conditions of the predicate valid_file_ino, this predicate is only ensured

for the new added inodes and keys. The issues caused by this predicate are similar to the issues

caused by datanode_cons_writepage.

The predicate fs-dentry-cons (available in Appendix A.2.10) is a little more complex than fs-data-

cons but it did not bring many issues either. Again, similarly to fs-data-cons, it is only ensured for

the new added inodes and keys. However, a curious case emerged. Validating a dentrykey entails

ensuring the following conditions:

• the inode number of the inputed key must refer a valid directory

• the name of the key is consistent with the name of the corresponding dentry node

• let dentrynode be the dentry node identified by the inputed key, such as dentrynode must

refer a valid hard link (the field .dino must contain a valid inode number)

Apparently, there was not any reason for Alloy Analyzer to find a counter-example. The first

condition is ensured by the predicate valid_dir_ino that establishes the following conditions:
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• the inputed inode number is valid inode;

• the corresponding inode node refers to a directory (i.e., the field .directory is True);

• the corresponding inode node refers to more than one hard link (i.e., the field .nlink is bigger

than 1).

In the assertion fscons_create, all this conditions holds except the last one. Apparently, the

pre-condition of the operation create is not sufficient to ensure the validity of a directory. The same

predicate is used to ensure the pre-condition and to ensure the validity of a dentry key. However,

only the third condition of valid_dir_ino is violated. There no reason that explains this occurence,

and the only solution found to solve this problem is adding the same predicate as a post-condition.

The full definition of create can be seen in Appendix A.2.18.

The big problem of fs-cons is the predicate fs-inode-cons. This predicate comes also in two

variants: fs-file-cons for inode nodes representing files and fs-dir-cons for inode nodes represent-

ing directories. For all inodekeys of the file system, the predicate fs_file_cons (available in Ap-

pendix A.2.11) ensures the following conditions:

• let inodenode be the inode node identified by inodekey and links the set of dentrykeys that

identify all dentrynodes working as hard links of the inodenode such as the numbers of links

of inodenode is the cardinality of links;

• the part number of all the existing datakeys in the RAM index related to the inputed inodekey,

must be smaller than the the size of the corresponding inode node.

Similarly to datanode_cons_writepage, duplicated inodes also caused some issues: on the one

hand not all inode nodes of the updated file store have the numbers of links updated (to ensure

the first condition). On the other hand, not all inode nodes have the updated size (to ensure the

second condition). The solution was also to ensure the conditions only for the new added nodes

(respectively keys), as follows:� �
···
let fs = u’·fs − u·fs, ri = u’·ri − u·ri |

{
all n : Node | n in fs·rng and n·key in ri·dom⇒
{

n in Inodenode⇒ fs_inode_cons [n·key, fs, ri]
···

}� �
This solution does not solve the problem. In fact, the first condition of the predicate is also bro-

ken. The new added inode node contains the updated number of links (i.e. updated field .nlink),

however the number of hard links (provided by the function links) of the updated flash store (and
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RAM index) is not the same as the number of hard links in the mapping fs, hence the condi-

tions fs_inode_cons [n.key, fs, ri] and fs_inode_cons [n.key, u’.fs, u’.ri] can not

be used. The solution is even more robust: defining an auxiliary fs_inode_cons_aux that matches,

whenever necessary, the new added nodes with the updated flash store. Thus, the first condition of

the invariant was replaced by the following condition:� �
···
some inn : Inodenode | inn·key in key_ and inn in fs·rng and key_ in ri·dom⇒
{

inn·nlink in #links[key_·ino, fs’, ri’]
all key2 : Datakey | key2 in datakeys[ri, key_·ino]⇒ key2·part_ < inn·size

}� �
Note that fs’ and ri’ are the updated flash store and RAM index and fs and ri are the

relations containing only the inodes and keys recently added.

The same procedure was applied to the invariant fs_dir_cons, due its similarity with fs_file_cons.

The full definition of fs_dir_cons can be found in Appendix A.2.12

The idea of functional correctness in Alloy is similar to KIV: some preconditions must hold before

the operation and, some postconditions must hold after the operation. In KIV, the theorems that

prove functional correctness are identified by prepost-op. In Alloy, the same name was maintained.

Two examples of prepost assertions are prepost_unlink and prepost_writepage.

Checking functional correctness also had some issues. In fact, most of additional conditions in

the operations (see subsection 3.3.4) are added to avoid counter-examples related to the functional

correctness. Nevertheless, there still are some conditions that should be emphasized. Starting by

prepost_unlink and focusing on the following excerpt of unlink operation:� �
dent’ = negdentry_c[dent·name]
···
let dn1 = dentrynode_c[dentrykey_c[p_ino, dent’·name], dent’·name, 0],� �

where dent is the inputed directory entry and dent’ is the returned directory entry, it is obvious

that both dentries have the same name. Theoretically, in the constructor of dn1, it could be used

dent.name instead of dent’.name but, in fact, it could cause some inconsistencies. Actually, Alloy

Analyzer found a counter-example for the assertion. The fact that dent and dent’ sharing the same

attribute does not entail being the same atom. Moreover, they are different atoms (dent is a dentry

and dent’ is a negative dentry). Replacing dent’.name by dent.name presupposes that there is

not any connection between dent’ and the created nodes (and the final state of the file system).

If there is not any connection to the returned file system it is impossible to ensure that dent’ is a

valid negative dentry in the returned file system (the predicate valid_negdentry ).

The assertion prepost_writepage has two interesting details. First of all, there is not any theorem

in KIV with the same name. The corresponding theorem is called prepost-writereadpage. According

to [36], given postconditions for readpage and writepage individually turned out to be rather hard

when trying to remain implementation independent, so the authors decided to use the combined
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postcondition that reading data after writing returns exactly the data written. In Alloy the combined

theorem was replaced by two separated assertions: prepost_readpage and prepost_writepage that

can be found respectively in Appendix A.2.22 and A.2.23.

There are several conflicts between old data and updated data, in most assertions. Sometimes

the invariants (or conditions) are too weak and additional conditions are needed. Sometimes the in-

variants are too strong causing conflicts between old and updated data. An example of this situation

is prepost_writepage. Similar to datanode_cons_writepage, the postcondition was only ensured for

the new added data by similar reasons.

The operation lookup presented additional issues. In the UBIFS there is an inode node refered

by a dentry node, i.e., the inode number of a dentry node (the field .dino) always refers to an

inode node. In KIV, nothing is specified in the operation lookup because it was previously assumed.

However, in Alloy, this condition must be specified in the operation, otherwise it is not possible to

return a valid dentry (i.e., Alloy Analyzer shows a counter-example where there is not any inode

node in the file system refered by the returned dentry.) In order to avoid this situation, the following

conditions were added:� �
{ (dk in u·ri·dom)⇒ some dn : Dentrynode |

{valid_ino [dn·dino, u·fs, u·ri] and dn·key in dk and dent’ = mkdentry_c[dent·name, dn·dino] }
else dent’ = negdentry_c [dent·name]

}� �
This condition is enough to ensure the validity of the returned dentry. The body of the operation

is similar to its definition in KIV, hence, for this reason, the full definition in Alloy is not presented.

The only difference is presented in the excerpt above.

Checking the correctness of the replay process also have some particularities. The problems

arose not in the replay operation itself but on the underlying predicates. Replaying a file system

entails setting it to an isomorphic state.

Given two file systems, the predicate iso ensures that they are isomorphic through the predicate

key-iso. Let ri (respectively fs) and ri2 (respectively fs2) be the RAM and flash store of two file

systems such as they are isomorphic if:

• all keys stored in the RAM index of both file systems are the same (key ∈ ri↔ key ∈ ri2)

• for all keys stored in the RAM index, the mapped addresses must be stored in both flash store

(key ∈ ri2↔ ri[key] ∈ fs ∧ ri2[key] ∈ fs2)

• the nodes of the flash stored are mapped in the same position (fs[ri[key]] = fs2[ri2[key]])

Being isomorphic does not mean being exactly identical. In KIV, the replay operation and the

predicate iso assure the isomorphic definition. In Alloy, the definition of log-cons is identical to KIV,

however the predicate iso, particularly the predicate key_iso raise some inconsistencies. Saying the

second condition above does not presuppose that the same address is mapped and consequently
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the third condition could also failed. After several attempts, the only solution found is to ensure that

both flash stores and both RAM index are identical:� �
pred iso [fs : Address→lone Node, ri : Key→lone Address, fs2 : Address→lone Node, ri2 : Key→lone

Address]
{

fs = fs2
ri = ri2

}� �
This way, the predicate key_iso defined in Alloy is not used. It might be too strong but it was the

solution found to avoid counter-examples in the replay process. The full definition of log_cons (for

instance, to the operation unlink ) can be found in Appendix A.2.24.

As said before, integers and natural numbers are limited data types. Natural numbers were

the first choice to represent the natural numbers in KIV. However, operations under sets (such as

cardinality, that was used in several fs-cons invariants) returns integers, hence the data type Natural

was replaced by the data type Int. In Alloy, integers also contain negative numbers meaning that

the cardinality of a set could be a negative number and negative numbers could cause some issues

in some invariants, such as datanode-cons and fs-cons. Hence, another constraint must be added

to the file system:

• the size and the number of inode nodes must be a non-negative number;

• the number of related nodes of dentry nodes (field .dino) must be a non-negative number;

• the part number of datakeys can not be a negative number.

To perform these constraints, a fact was added in the data structures of nodes and keys (node.als)

named Notnegative and it can be found in Appendix A.2.25. In KIV, inode numbers of the keys are

also natural numbers. However, inode number are mere identifiers hence there is no reason to

specify that they should be positive or negative numbers. Actually, there is no reason to inode num-

bers to be integers (there is not any operation under inode numbers), however, to keep the model

in Alloy close as possible to the abstract specification in KIV, the data type Integer was kept.

Overall, there is a small difference between the invariants on the rename operation. In KIV,

sometimes there are two theorems for the same invariants. Initially, in Alloy, the theorems were kept

but, after further analysis, it was decided to match the two theorems in one assertion.

Because it is declarative, in Alloy it does not make any sense proving the termination of an

operation. Hence, all the theorems concerning the termination of an operation (theorems term-op)

were ignored.
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Chapter 4

Concluding Remarks and Future Work

This chapter is devoted to concluding from the work presented in this dissertation and pointing to

opportunities for future reserach: which lessons have been learnt, what the major difficulties were,

which goals were not achieved and lead to work that can still be done. This chapter is split in two

sections. Section 4.1 will describe the goals achieved and review advantages and disadvantages of

each tool, including difficulties that arose during the development of the project."

Section 4.2 points to future work: the goals not achieved and the opportunities for enhancing

and extending what was achieved.

4.1 Concluding Remarks

4.1.1 Contributions

A model was built specifying the structure and behavior of a journaled file system, particularly

the UBIFS for flash memories. Following the abstract specification available in the KIV projects

website 1 and following the guidelines of [36], the abstract model was build fulfilling its main goal:

submitting the specification proved by a theorem prover to a model-checker and doing a comparative

work n respect of a number of criteria as aspects described in Section 1.4.

The Alloy model of the UBIFS is complete and no counter-example was found, thus authenticat-

ing the robustness of the model. The specification developed in Alloy intentionally contains several

similarities to the specification in KIV, the main idea was making easier the comparison between

both languages.

Data structures

The specification in Alloy keeps several data structures of the file system created in KIV. However,

the full data structure of the model in Alloy became smaller and simpler: the number of signatures

defined is much smaller than the number of specification defined in KIV as seen in the graphical

overview of each model). The map relations used in Alloy are also another advantage: defining the

1http://www.informatik.uni-augsburg.de/swt/projects/flash.html
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flash store, RAM index and flash index using map relations made everything smaller and simpler

than using generic specifications and actualizations. The definition of the journal was also advan-

tageous due to the type of data provided by Alloy. In fact, integers (and natural numbers) were the

only disadvantageous data types due to their limitation (the main goal of Alloy is building an abstract

model and integers are a concrete data type). The main advantage of data types in KIV are the nat-

ural numbers. Once they do not have any limitations, they can be used without any problems, unlike

Alloy.

Invariants and auxiliary operations

Invariants and auxiliary operations in Alloy were directly translated from KIV. Hence their complexity

in Alloy is similar to the complexity in KIV, even with the additional changes due to model-checking,

i.e, the specification in Alloy is similar to the specification in KIV. This turned out to be an advantage:

the translation of KIV for Alloy was easily performed. The only inconvenience was to understand the

meaning of some operations over keys and nodes (particularly in some functions such as dentrykeys

and links): some confusion arose between the inode number of the keys and the number of inodes

of the dentry nodes.

Operations

Overall, the complexity of defining operations in Alloy seems similar to the complexity of defining

operations in KIV. The additional statements added to facilitate model checking increased the size

of the operations. On the one hand, this fact can be taken as a disadvantage since due to the size

of the operations. However it can also be taken as an advantage since the user is aware of possible

issues in the model. Actually, the main disadvantages are not in the operations themselves but in

the operations under data types. Starting by the sequences in Alloy (to represents the journal), the

fact that it is only possible to add one element at a time turns out to be a slight disadvantage. In

each operation only three addresses are added to the journal which did not cause major problems,

using auxiliary variables. In this case, the specification of lists provided KIV take an advantage over

the sequences provided by Alloy.

Operations such as unlink caused some minor problems when removing some contents of RAM

index. The nodeindex specification (that represents the RAM index and the flash store in KIV) pro-

vides more freedom in their operations: the same operator is used to add a new entry, or to select

an entry (or several) identified by a particular key. This can be advantageous but it can also be con-

fusing to understand which operation the operator represents. In Alloy, removing some addresses

from the RAM index requires, again, using auxiliary variables. Fortunately, Alloy provides all the

necessary operations to perform this procedure: domain restrictions and differences between map

relations. Despite being a less elegant solution, it is very clear and it does not create ambiguities.

In KIV, if-then-else statements also raised some inconveniences: sometimes it was not easy to

determine which instructions were in the boundary of else, particularly in the operation writepage.

Not needing a top-level operation is another advantage of Alloy. The preconditions are directly
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written in the corresponding operation making the process easier and simpler.

Verification

With respect to assertions/theorems used in verification, Alloy takes a great advantage. Despite

the translation of theorems to Alloy being literal, the number of assertions needed in the model-

checking of the model is much smaller in Alloy than in KIV. As previously mentioned, in Alloy it is not

necessary to check for the termination of operations, hence there are about 17 theorems that need

not to be defined in Alloy.

There are also other theorems not defined in Alloy because they are not appropriate to the

model in Alloy. This is the case of theory-new1-exists which ensures that a given address does not

exist in the flash store. In Alloy, it is sufficient to ensure this condition as pre-condition.

In KIV, the proofs associated to a certain theorem can be very extensive and complex. For

instance, proving datanode_cons_unlink involves 90 steps, as shown in the proof tree available in

Appendix A.1.15. Despite the proofs being done automatically by KIV, following and interpreting

them can be a little confusing, not because of the tool but of the complexity of the model.

In Alloy, assertions are clear and easily readable. The output produced by Alloy Analyzer can

be easily readable. For instance, in the metamodel generated to UBIFS, it is trivial to identify not

only the map relations and the involved data types but also the relationship between data types.

In the counter-examples, Alloy also identifies the signatures that break the assertion. This

way, it is easy to identify which condition violates the invariant. However, in a complex model

such as UBIFS, the counter-examples can be very complex and confusing. And in spite of Alloy

distinguishing problematic signatures, it can be hard to identify the real issue (even with the help of

the Evaluator), mainly when Alloy creates additional atoms.

In general, both tools are very advantageous in spite of having different goals. However, since

the verification technique used by KIV is more accurate than the technique used in Alloy, KIV shows

advantage over Alloy.

Overview of the model

It is beyond doubt that the abstract specification developed in [36] is very extensive and very de-

tailed. This specification has abstracted from many details of a real flash file system, such as wear

leveling and index structures. In fact, KIV provides several concrete data types to build a specifica-

tion close to the implementation. However, in Alloy most of data types are abstract, i.e., most of data

types are signatures and they represent "something". Actually, this is the main idea of Alloy: building

a model as abstract as possible. One might think of types such as the integer numbers as being a

concrete data type. However, according to Daniel Jackson in [26], adding integer numbers to the

language turns out to be not advantageous. Quite often it is enough to postulate one or two basic

axioms of such numbers, which capture in fact what is relevant of integer numbers for the particular

model in hands. Such concrete types often appear in the problem domain but this does not entail

that they should be modeled as such (such is the case of inode numbers in our Alloy model, which
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rather than full-fledged integers play the role of unique identifiers). Jackson believes that there is

often a more abstract description that is a better representation of the problem. In fact, this is the

reason of the limitation of integer numbers in Alloy. Hence, in the Alloy model of UBIFS, the inode

numbers contained in the keys do not need be modeled as integers since there is no mathematical

operation under them. Therefore, and according to the overall philosophy of Alloy, having such a

detailed model is would be an overspecification. The model is too specific and it does not exploit

the potential of Alloy (such as point-free notation), a more abstract model would be a better option.

Regarding the assertions and invariants, another option could have been taken: grouping all the

invariants into one main invariant could be a better approach, i.e., is it would ensure the consistency

of the file system (according to the specified invariants) and would reduce the number of assertions.

Grouping all the conditions into one main invariant will bring another advantage. According to the

operation unlink, when a file or directory is removed, the keys of the corresponding inode node are

removed from the RAM index. This condition suggests that the RAM index does not contain keys of

deleted nodes. However, there no invariant ensuring this condition, meaning that it is possible that

the RAM index stores "deleted" keys. There is not any counter-example associated to this situation,

however it might be wrong.

Another doubt about inode nodes with size 0 is that, apparently, they should not be used in op-

erations or invariants (for instance, it can be used by the function getinode) but, actually, they can be

used by getinode meaning that they can be compared, for instance, in the invariant datanode-cons

or there could be some inode nodes with size 0 that do not represent deleted files or directories.

Special attention must be paied to inode nodes with size or number of links 0.

4.1.2 Overview of the tools

Many features have been mentioned of both tools and both have their advantages and disadvan-

tages. There is not any doubt about the strengths of KIV: the specification language is powerful and

rich, and it provides enough fredoom to the user to implement several projects of different nature.

As said before, in many situations the implementations (specifications and procedures) are intuitive,

however sometimes some operators and some axioms can be very confusing. The manual of KIV

is of great help. However, it is very long and searching for something turns out to be harder than

expected. Currently, KIV is available for Linux. For other operating systems, a virtual machine is

needed.

As to the strengths of Alloy, the language is simple, easy to read and write and suited for formal

modeling in different domains. Unlike KIV, the documentation is not very organized. In fact, there is

no manual documentation of Alloy. There are several small tutorials and FAQ that could help solving

small issues and documentation of Daniel Jackson in [26] that helps learning the language.

A very significant advantage of Alloy is that of providing a graphical visualization of the both

metamodel and model instances. A graphical view makes the identification of problems (counter-

examples or even other issues) easier. Sometimes counter-examples can be very complex and

very confusing and it is hard to find where the problem is. In such situations, the Evaluator can be

of great use. A detailed model enlarges its graphical visualization. However, this situation occurs
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not only because of the complexity of the model but because Alloy Analyzer sometimes generates,

by default, unnecessary atoms, that turns out to be a disadvantage.

4.1.3 Difficulties

In this section the main difficulties that arose in this project will be presented. It is divided into

three groups: Section 4.1.3 approaches the difficulties that emerged in the tool, the Section 4.1.3

presents all the issues related to the study of the original KIV model and Section 4.1.4 approaches

all the issues that emerged during the verification of the model in Alloy.

The KIV tool

Translating KIV to Alloy involved studying in depth the tool KIV: how the tool works, the syntax and

the specification language, how proofs are performed and how are they interpreted. Indubitably,

KIV is a powerful tool, capable of solving complex problems. However, working with all the features

is not alaways intuive if the user is not familiar with the tool. An example of this situation occurs after

choosing a specification and choosing the option Work on..., the menu Proof raised some doubts.

Options such as Continue a partial proof, Load a proof or Reprove a theorem were also found a bit

dubious. The difficulty lies not in their meaning but in their usage. Knowing how and when should

they be used is still unclear. The menu Simplifier is also still unclear, probably due to the lack of

experience by working with theorem provers. Thus, working with simplifier or elimination rules, or

even working with heuristics and theorems is still unknown. In short, the main difficulties lie, in

general, in the handling of projects (handling proofs and also creating new projects).

The syntax and the model in KIV

Understanding the syntax and the structure of the abstract specification in KIV also had some

issues. Starting with the structure of the abstract specification, the graphic visualization of the

model and the information available on [1] do not fulfill the lack of information about the structure of

the model. Hence, understanding exactly the structure of the whole project turned out to be a rather

arduous task. The first question arose in the definition of nodes and inodes in KIV. Nodes represent

the main data structures of the file system, however, the main purpose of the definition inodes is

still unknown. In Alloy, this data type was taken as an auxiliary data type.

The hierarchy of the specification addresslist may be a little complex, since it is an enrichment

of several specifications. However, it turned out to be easy to understand the operations over this

data type.

Some difficulties also arose in the filesystem-base specification. Operations such as dentrykeys

and datakeys are used in some axioms of the current specification. However, knowing exactly how

are they performed is unclear without knowing its definition. Both functions appear to be performed

respectively under dentry and datakeys. Contrary to expectations, the definition of both functions

was not in the specification key. After carefully analyzing the involved specifications in filesytem-

base, the definition of dentrykeys and datakeys was found in the specification nodeindex.
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Sometimes, before understanding the relevance of indentation, statements if-then-else can be

rather confusing. The operation datanode-cons is an example of this situation. There existing

statement if-then is not clear: the lack of parentheses does not delimitate the instruction inside

the then boundary, causing a wrong definition of the operation in Alloy. Only after considering the

behavior of the file system (when a data node is inserted in the file system, an inode node is also

inserted) and considering the indentation of the definition in KIV, the definition of the operation was

fixed.

As mentioned before, some operators under the store specification caused some issues. Since

that the same operator may represent two different operations. Hence distinguishing the right oper-

ation in the several operations of the file system was not always obvious. Understanding exactly all

the changes of the RAM index, for instance, in the operation unlink required special attention. It was

necessary to identify very clearly what keys should be added to the RAM index and what keys must

be removed. The same situation was found in the operation rename that caused additional issues:

defining such a large operation required special attention, not only due the operators of store but

also due the large number of existing conditions.

Studying the proofs available online of the file system was also a challenge, even without working

directly with tool. Interpreting their meaning was also possible thanks to the invaluable help of

Gerhard Schellhorn. Extensive proofs were not studied due their large size.

4.1.4 The verification in Alloy

The main issues lies in the model checking of the file system, especially due the used data struc-

tures. Updating the flash store (or the RAM index) with a new node does not entail replacing an old

inode by the added inode. Hence, and as mentioned before, the flash store (respectively the RAM

index) is updated with new inodes (respectively new keys) that contain existing data. Hence, the

RAM index stores different keys with the same inode number and the flash store may contain differ-

ent inodes with the same key. Duplicated nodes and duplicated keys caused many issues in several

assertions, particularly in the assertion datanode-cons-writepage as mentioned in Section 3.3.5.

The assertions fs-cons-writepage, fs-cons-create and fs-cons-mkdir were also a challenge. Many

efforts were spent to solve all problems caused by duplicated nodes (according to Section 3.3.5 this

situation occurs after the execution most of operations). The comparison between old and new data

(i.e., the comparison between the old nodes and updated nodes) caused several issues, especially

when the invariants fs-file-cons and fs-dir-cons (and consequently fs-inode-cons) are ensured. In

fact, comparing old nodes to new nodes caused problems in all statements of fs-file-cons (its defini-

tion is available in Appendix A.2.11): comparing the the size or the number of links to a certain set of

keys and comparing the new data nodes inserted to old inode nodes. Hence, writing directly all the

necessary conditions for the new inserted data, and for the three problematic operations required

much effort and time. It was definitely the most arduous task of modeling the UBIFS in Alloy.

The more complex the model is, the more complex the counter-examples are. When a counter-

example has many atoms and relations, identifying the causes of the problem turns out to be hard.

This is the case of the UBIFS: most of times, the cause is the large number of atoms and relations
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generated by Alloy Analyzer. Sometimes, the used scope is not big enough to generate an instance.

That may cause some counter-examples where they do not exist (for instance, integers overflow),

increasing the scope easily solves the problem. Hence, special attention was taken to the generated

counter-examples and to the scope of the Alloy Analyzer.

Finally, the time taken by the solver to check the assertions also turn out to be an issue and

finding the right solver also required some studies about SAT solvers. The best solution found is

not, actually, the best option. However, due the impossibility of using the solver Berkmin, minisat

turn out to be the best solution.

4.2 Future Work

Modeling the abstract specification available in [1] was not trivial, it took many efforts and time

(several months). Due to its complexity some of the goals previously proposed were not achieved.

Beyond the goals not achieved, there are several approaches that can be taken under the UBIFS:

submitting the abstract specification to another tool (and formal method technique), building a sim-

pler and more abstract model of the file system using Alloy or even building a model and using the

ESC-PF technique in the verification of the model. The following subsections describe, in more

detail, each approach mentioned above.

4.2.1 VDM model of UBIFS

Following the work of Miguel Ferreira in [17], it might be interesting to submit the UBIFS file sys-

tem to modeling in VDM . Since VDM++ includes support for testing and proving properties of

models and generating program code from validated VDM models, the idea of comparing the work

developed in KIV and the work that can be done using VDM might have many advantages: on one

hand, comparing KIV tools to VDM tools might be interesting. Besides emphasizing the KIV tool

and the developed abstract specification, a different experience with KIV could produce different

conclusions.

On the other hand, the idea of submitting the abstract specification to a different verification

technique could also have interesting results:

• What problems could arise either in the specification or in the verification?

• Once VDM++ includes testing support, what kinds of tests could be done?

• The advantages/disadvantages of both models and techniques;

• The advantages/disadvantages of the program code generated of VDM++.

Modeling the abstract specification in VDM-SL/VDM++ could also have some advantages re-

lated to the data types provided by VDM. Like KIV, VDM also provides basic data types: booleans,

natural numbers, integer numbers, characters, etc. In this way, the problem of the integers pre-

sented in Alloy might be solved in VDM. Apparently, basic data types could also make the translation

between KIV and VDM easier due to the similarities of the languages.
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VDM++ also provides collection types such as mappings, sets as sequences. These data types

have a similar behavior to the corresponding data types in Alloy: the structure is similar and similar

operators (such as unions, overwriting or the cardinality of a set) are also available. However, VDM

tool does not provide a graphical overview of the model and it also does not provide a graphical

visualization of potential issues that may appear. Thus, doing a comparative work between both

models may answer the following questions:

• What were the main differences/similarities between both specifications?

• Could it be done a different specification of the UBIFS using VDM?

The challenge is launched. It might be a small challenge or it could turning out to be a huge

challenge. Regardless of the size of the challenge, it also is a contribution to the mini challenge

proposed in [29].

4.2.2 A more abstract model of UBIFS using Alloy

According to research done, this is the first model developed in Alloy of the UBIFS, and according

to Section 4.1, the developed model is very detailed and complex. Thus, building a different version

of the UBIFS may be an appealing challenge. The main idea is to use Alloy to do a comparative

work between the current version of the model and a new built model. The main goal is trying to

build a more abstract and simples model of the UBIFS solving the following issues:

• building a simpler version of the UBIFS entail loosing precision, i.e. building a model too

unreal?

• what advantages/disadvantages could arise from an abstract version of the file system?

• could be the new version of UBIFS specified using other tools/techniques? What are the

expected results?

In the current thesis, the main concern is modeling the UBIFS file system for flash memories.

Currently, there are several models in Alloy of several file systems. Particularly, in [30], Daniel

Jackson and Eunsuk Kang designed a flash file system using Alloy. The main idea of their work is

emphasizing key concepts of Alloy, using as an example, the construction and analysis of a design

for a flash file system. Their model includes not only the basic operations, but also crucial features

to NAND flash memory that contribute to increased complexity of the file system (wear leveling

technique and erase-unit reclamation). Their design also addresses the issues of fault-tolerance by

providing a mechanism for recovering from unexpected hardware failures.

Based on the work of Daniel Jackson and Eunsuk Kang, it may be interesting to compare a

new design of the UBIFS to their work. The main goal is exploring the several features of Alloy and

several designing techniques. Finally, the results of the design analysis of both models could also

be discussed: the differences, the similarities and the features of the models.
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This work could also be compared to the abstract specification of KIV. Basically, it would be

interesting to see how a design (in this case, of a file system) can be influenced by the used tool,

i.e.:

• Does writing an abstract specification in KIV entail building a detailed model?

• Can a abstract model in Alloy be reproduced in KIV, keeping the simplicity?

Building a more abstract model also could raise additional advantages, such as having the

benefits of using the point-free notation. Subsection 4.2.3 will present further details about modeling

a file system using PF notation.

4.2.3 Using ESC-PF notation in the UBIFS

As mentioned before, designing a more abstract file system will take advantage of point-free nota-

tion. Due the possibility of using PF notation in Alloy, the main goal is building an abstract model

to reduce tool integration costs. The work in Miguel Ferreira and José N. Oliveira of [16] focus on

the integration of different formal methods and tools in a tool-chain for modeling and verification,

including Alloy and relational algebra. Their work shows why Alloy is a suited candidate for inte-

gration with relational algebra (using PF notation) and how the translation can be done. Since the

developed work also focus in the verification of a journaled file system, it might be interesting to

submit the UBIFS file system to the same verification technique. A comparative work could be done

between the journaled file system of [16] and the UBIFS file system, that involves:

• showing the differences and similarities of both models: data types, operations, etc;

• describing what difficulties might arise using ESC-PF;

• enumerating the advantages/disadvantages of applying the tool-chain to the UBIFS file sys-

tem .

According to Miguel Ferreira and José N. Oliveira, matching model-checking in Alloy with manual

proofs carried out in the PF algebra of binary relations emphasizes the positive impact of the lemma

“everything is a relation” on software verification. Hence, using Alloy model-checking and ESC-PF

to formally verify the UBIFS appears to be an attractive challenge and it also would be a contribution

to the mini challenge proposed in [29].
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Appendix A

Models

A.1 KIV Model

A.1.1 Node specification

node =

data specification

using nat, string-data, page, key

node :=

inodenode (. .key : key ; . .directory : bool ; . .nlink : nat ; . .size : nat ; ) with . .inode?

dentrynode (. .key : key ; . .name : string ; . .ino : nat ;) with . .dentry?

datanode (. .key : key ; . .data : page ;) with . .data?

;

variables nd, nd0, nd1, nd2, nd3, node, node0, node1, node2, node3 : node ;

end data specification

A.1.2 Key specification

key =

data specification

using nat, string-data

key :=

inodekey (. .ino : nat ;) with . .inode?

datakey (. .ino : nat ; . .part : nat ;) with . .data?

dentrykey (. .ino : nat ; . .name : string ;) with . .dentry?

;

variables key: key;

end data specification

67



CHAPTER A. MODELS

A.1.3 Dentry specification

dentry =

data specification

using nat, string-data

dentry :=

mkdentry (. .name : string ; . .ino : nat ;) with . .dentry?

negdentry (. .name : string ;) with . .negdentry?

;

variables dentry: dentry;

end data specification

A.1.4 Store specification

store =

generic specification

parameter elemdata using nat target

sorts store, elemdata;

...

end generic specification

A.1.5 Flash store specification

nodestore =

actualize store with node, address by morphism

store→ nodestore; data→ node; elem→ address; a→ adr; b→ adr0;

c→ adr1; a0→ adr2; d→ nd; d0→ nd0; d1→ nd1; d2→ nd2

end actualize

A.1.6 RAM and flash index specification

nodeindexa =

actualize store with key, address by morphism

store→ nodeindex; elem→ key; data→ address; elemdata→ keyaddressdata;

a→ key; b→ key0; c→ key1; a0→ key2; d→ adr; d0→ adr0; d1→ adr1; d2

→ adr2; st→ ni; st0→ ni0; st1→ ni1; st2→ ni2; elemdatavar→ keyaddressvar

end actualize
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A.1.7 List-dup specification

list-dup =

enrich list with

functions

. ++ . : list × elem → list prio 9 left;

rmdup : list → list ;

predicates

dups : list;

disj : list × list;

A.1.8 Addresslist specification

addresslist =

actualize list-dup with address by morphism

list→ addresslist; elem→ address; a→ adr; b→ adr0; c→ adr1; a0→ adr2;

x→ ax; y→ ay; z→ az; x0→ ax0; y0→ ay0; z0→ az0; x1→ ax1; y1→ ay1;

z1→ az1; x2→ ax2; y2→ ay2; z2→ az2

end actualize

A.1.9 Filesystem-base specification

filesystem-base =

enrich inode, dentry, nodestore, addresslist, file, nodeindex with

functions

getinode : nat × nodestore × nodeindex → inode ;

links : nat × nodestore × nodeindex → keylist ;

subdirs : nat × nodestore × nodeindex → keylist ;

predicates
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log-cons : nodestore × nodeindex × nodeindex × addresslist;

fs-cons : nodestore × nodeindex;

store-cons : nodestore × nodeindex × nodeindex × addresslist;

datanode-cons : nodestore × nodeindex;

nodekey-cons : nodestore × nodeindex;

key-iso : key × nodestore × nodeindex × nodestore × nodeindex;

fs-key-cons : key × nodestore × nodeindex;

fs-dir-cons : key × nodestore × nodeindex;

fs-inode-cons : key × nodestore × nodeindex;

fs-file-cons : key × nodestore × nodeindex;

fs-data-cons : key × nodestore × nodeindex;

fs-link-cons : key × nodestore × nodeindex;

fs-dentry-cons : key × nodestore × nodeindex;

valid-ino : nat × nodestore × nodeindex;

valid-dir-ino : nat × nodestore × nodeindex;

valid-file-ino : nat × nodestore × nodeindex;

valid-dentry : dentry × nodestore × nodeindex;

valid-dentry : nat × dentry × nodestore × nodeindex;

valid-negdentry : nat × dentry × nodestore × nodeindex;

valid-file : file × nodestore × nodeindex;

valid-dir : file × nodestore × nodeindex;

variables

fs, fs1, fs2, st: nodestore;

ri, ri1, ri2, fi, fi1, fi2: nodeindex;

log: addresslist;

adr, ad, ad0, ad1, ad2, ad3: address;

dent: dentry;

key, key2: key;

ks: keylist;

file: file;

ino: nat;

axioms

store-cons : ` store-cons(fs, ri, fi, log)↔ (∀ adr. adr ∈ log ∨ adr ∈ ri→ adr ∈ fs);

datanode-cons : ` datanode-cons(fs, ri) ↔ ∀ key. key.data? ∧ key ∈ ri ∀ key. →
valid-file-ino(key.ino, fs, ri) ∧ key.part < getinode(key.ino, fs, ri).size;

nodekey-cons : ` nodekey-cons(fs, ri)↔ (∀ key. key ∈ ri→ ri[key] ∈ fs ∧ fs[ri[key]].key

= key);

links : ` key ∈ links(ino, fs, ri)↔ key ∈ ri ∧ key.dentry? ∧ fs[ri[key]].ino = ino;

links-nodup : ` ¬ dups(links(ino, fs, ri));
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subdirs-nodup : ` ¬ dups(subdirs(ino, fs, ri));

getinode : ` getinode(ino, fs, ri) = mkinode(ino, fs[ri[inodekey(ino)]].directory, fs[ri[inodekey(ino)]].nlink,

fs[ri[inodekey(ino)]].size);

fs-cons : ` fs-cons(fs, ri)↔ (∀ key. key ∈ ri→ fs-key-cons(key, fs, ri));

fs-key-cons :

` fs-key-cons(key, fs, ri)↔ ri[key] ∈ fs ∧ fs[ri[key]].key = key

∧ (key.dentry? → fs-dentry-cons(key, fs, ri))

∧ (key.data? → fs-data-cons(key, fs, ri))

∧ (key.inode? → fs-inode-cons(key, fs, ri));

valid-ino : ` valid-ino(ino, fs, ri)↔ inodekey(ino) ∈ ri ∧ ri[inodekey(ino)] ∈ fs ∧ ino 6= 0;

valid-file-ino : ` valid-file-ino(ino, fs, ri) ↔ inodekey(ino) ∈ ri ∧ ri[inodekey(ino)] ∈ fs ∧
¬ getinode (ino, fs, ri).directory ∧ getinode (ino, fs, ri).nlink > 0 ∧ ino 6= 0;

inodenode-ino : ` inodenode(key, boolvar, n0, n1).ino = key.ino;

end enrich

A.1.10 Filesystem-asm specification

FSASM# =

asm specification filesystem-asm

using filesystem-base

procedures

FSASM# : nodestore × nodeindex × nodeindex × addresslist;

FSOP# : nodestore × nodeindex × nodeindex × addresslist;

lookup# nat × nodestore × nodeindex : dentry;

create# nat : dentry × nodestore × nodeindex × addresslist;

unlink nat : dentry × nodestore × nodeindex × addresslist;

...

variables

FS, FS2, fs, fs2: nodestore;

RI, FI, RI2, FI2, ri, fi, ri2, fi2: nodeindex;

LOG, LOG2, log, log2: addresslist;

OLD_INO, P_INO, NEW_INO, PAGENO, INO, old_ino, p_ino, new_ino, pageno, ino: nat;

P_INODE, INODE, OLD_INODE, NEW_INODE, p_inode, inode: inode;

DENT, OLD_DENT, P_DENT, NEW_DENT, dent, old_dent, p_dent, new_dent: dentry;

PAGE, page: page;
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FILE, file: file;

ND, nd: node;

ADR, ADR1, ADR2, ADR3, ADR4, ADR5, ADDRESS, adr, adr1, adr2, adr3, adr4,

address: address;

KS, ks: keylist;

is_dir, old_dir, new_dir: bool;

state variables FS, RI, FI, LOG;

initial state FS = ∅ ∧ RI = ∅ ∧ FI = ∅ ∧ LOG = []

final state false

asm rule FSOP#

declaration

FSASM#(FS, RI, FI, LOG) { while ¬ false do FSOP# };

FSOP# (FS, RI, FI, LOG) {

choose P_INO, DENT with valid-dentry(P_INO, DENT, FS, RI) ∧ valid-file-ino(DENT.ino,

FS, RI) in unlink ifnone skip

∨ choose P_INO, DENT with valid-dir-ino(P_INO, FS, RI) ∧ valid-negdentry(P_INO,

DENT, FS, RI) in mkdir# ifnone skip

...

∨ choose FILE, PAGENO, PAGE with valid-file(FILE, FS, RI) in writepage ifnone skip

...

};

unlink(P_INO; DENT, FS, RI, LOG) {

let P_INODE = getinode(P_INO, FS, RI), INODE = getinode(DENT.ino, FS, RI) in

let node = inodenode(inodekey(INODE.ino), INODE.directory, INODE.nlink - 1,

INODE.size)

in choose ADR1, ADR2, ADR3 with new(ADR1, ADR2, ADR3, FS) in {

in FS := FS[ADR1, dentrynode(dentrykey(P_INO, DENT.name), DENT.name, 0)]

[ADR2, inodenode(inodekey(P_INODE.ino), P_INODE.directory,

P_INODE.nlink, P_INODE.size - 1)]

[ADR3, node],

LOG := LOG + ADR1 + ADR2 + ADR3;

RI := RI – dentrykey(P_INO, DENT.name);

RI[inodekey(P_INO)] := ADR2;

if INODE.nlink = 1

then { RI := RI – inodekey(INODE.ino); do_delete#}

else RI[inodekey(INODE.ino)] := ADR3

};

DENT := negdentry(DENT.name)

};
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writepage(FILE, PAGENO, PAGE; FS, RI, LOG) {

if getinode(FILE.ino, FS, RI).size 6 PAGENO then

choose ADDRESS with new(ADDRESS, FS)

in let INODE = getinode(FILE.ino, FS, RI)

in{

FS := FS[inodenode(inodekey(FILE.ino), INODE.directory, INODE.nlink

, PAGENO + 1), ADDRESS]

LOG := LOG + ADDRESS;

RI := RI[inodekey(FILE.ino), ADDRESS]

};

choose ADDRESS with new(ADDRESS, FS)

in {

FS := FS[datanode(datakey(FILE.ino, PAGENO), PAGE), ADDRESS]

LOG := LOG + ADDRESS;

RI := RI[datakey(FILE.ino, PAGENO), ADDRESS]

}

};

end asm specification

A.1.11 Replay process

replay#(FS, FI, LOG; var RI) {

RI := FI;

let LOG2 = LOG in

while LOG2 6= [] do {

let adr = LOG2.first in

replayone#;

LOG2 := LOG2.rest

}

};

A.1.12 File system Specification (log-cons invariant)

filesystem=

enrich filesystem-asm with

axioms

log-cons : log-cons(fs, ri, fi, log)⇔ 〈|replay# |〉iso(fs, ri, fs, ri2);

end enrich
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A.1.13 Log-cons invariant of the unlink operation

logcons-unlink:

log-cons(fs, ri, fi, log),

valid-dentry(P_INO, DENT, fs, ri),

valid-file-ino(DENT.ino, fs, ri),

store-cons(fs, ri, fi, log),

datanode-cons(fs, ri) ` 〈|unlink|〉log-cons(fs, ri, fi, log)

A.1.14 Datanode-cons invariant of the writepage operation

datanode-cons(FS, RI),

valid-file-ino(FILE.ino, FS, RI) ` 〈|writepage|〉datanode-cons(FS, RI)

A.1.15 Proof tree of datanode_cons_unlink

A.1.16 Graphical overview of UBIFS
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filesystem

filesystem-asm

filesystem-base

addresslist nodestorenodeindex inodefiledentry

nodeindexa nodekeylist

address pagekey

list-dup string-datastore

list char

elemdata list-data

data natelem

nat-basic2

nat-basic1
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A.2 Alloy Model

A.2.1 Node signature� �
sig Node{}

sig Inodenode extends Node {
ino : Int,
directory : one Bool,
nlink : Int,
size : Int

}{ key in Inodekey}

sig Dentrynode extends Node {
name : Name,
dino : Int

}{ key in Dentrykey }

sig Datanode extends Node {
data : Page

}{ key in Datakey }� �
A.2.2 Key signature� �
abstract sig Key {

ino: Int
}

sig Inodekey extends Key {}

sig Datakey extends Key {
part_: Int

}

sig Dentrykey extends Key {
name: Name

}� �
A.2.3 UBIFS signature� �
sig UBIFS {

fs : Address→lone Node,
ri : Key→lone Address,
log : seq Address,
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fi : Key→lone Address
}� �
A.2.4 Dentry signature� �
abstract sig Dentry {

name : one Name
}

sig Mkentry extends Dentry {
ino : Int

}

sig Negdentry extends Dentry {
}� �
A.2.5 Function getinode� �
fun getinode [ino_ : Int, fs : Address→lone Node, ri : Key→lone Address] : lone Node
{

fs[Key·({ k : Key | k in ri·dom and k·ino in ino_ } <:ri)]
}� �
A.2.6 Constructors in Alloy� �
fun inodenode_c [ink : Inodekey, dir : Bool, nlink_ : Int, size_ : Int] : one Inodenode
{

{ inn : Inodenode | inn·key in ink and inn·directory in dir and inn·nlink in nlink_ and inn·size in size_ }
}

fun mkinode_c [ino_ : Int, dir : Bool, nlink_ : Int, size_ : Int] : one Inodenode
{

{ inode : Inodenode | inode·key·ino in ino_ and inode·directory in dir and inode·nlink in nlink_ and inode·
size in size_ }

}� �
A.2.7 Predicate new_inodekey� �
pred new_inodekey [ink : Inodekey, ri : Key→lone Address, fs : Address→lone Node]
{

ink·ino > 0 and ink·ino not in ri·dom·ino and
ink·ino not in fs·rng·key·ino and ink·ino not in fs·rng·dino
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}� �
A.2.8 Predicate valid-ino� �
pred valid_ino [ino_ : Int, fs : Address→lone Node, ri : Key→lone Address]
{

some ink : Inodekey | ink·ino in ino_ and ink in ri·dom⇒ ri[ink] in fs·dom and fs[ri[ink]]·key in ink
ino_ not in 0

}� �
A.2.9 Predicate fs_key_cons� �
pred fs_key_cons [key_ : Key, fs : Address→lone Node, ri : Key→lone Address]
{

ri[key_] in fs·dom and fs[ri[key_]]·key in key_
key_ in Dentrykey⇒ fs_dentry_cons[key_, fs, ri]
key_ in Datakey⇒ fs_data_cons[key_, fs, ri]
key_ in Inodekey⇒ fs_inode_cons[key_, fs, ri]

}� �
A.2.10 Predicate fs-dentry-cons� �
pred fs_dentry_cons[key_ : Dentrykey, fs : Address→lone Node, ri : Key→lone Address]
{

some n : Inodenode | n in getinodes[key_·ino, fs, ri] and valid_ino [n·key·ino, fs, ri] and n·directory in
True and n·nlink > 1

key_·name in fs[ri[key_]]·name
valid_ino[fs[ri[key_]]·dino, fs, ri]

}� �
A.2.11 Predicate fs-file-cons� �
pred fs_file_cons [key_ : Inodekey, fs : Address→lone Node, ri : Key→lone Address]
{

some inn : Inodenode | inn·key in key_ and inn in fs·rng and inn·nlink in (#links[key_·ino, fs, ri])
all key2 : Datakey | key2 in datakeys[ri, key_·ino]⇒ key2·part_ < fs[ri[key_]]·size

}� �
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A.2.12 Predicate fs-dir-cons� �
pred fs_dir_cons_aux [key_ : Inodekey, fs : Address→lone Node, ri : Key→lone Address, fs’ : Address→

lone Node, ri’ : Key→lone Address]
{

some inn : Inodenode | inn·key in key_ and inn in fs·rng and key_ in ri·dom⇒
{

inn·nlink in (#subdirs[key_·ino, fs’, ri’] + 2)
inn·size in #dentrykeys [ri’, key_·ino]

}
#links[key_·ino, fs’, ri’] < 2

}� �
A.2.13 Predicate datanode-cons� �
pred datanode_cons [fs : Address→lone Node, ri : Key→lone Address]
{

all k : Datakey | k in ri·dom and k in fs·rng·key⇒ valid_file_ino[k·ino, fs, ri] and
k·part_ < getinode[k·ino, fs, ri]·size

}� �
A.2.14 Predicate nodekey-cons� �
pred nodekey_cons [fs : Address→lone Node, ri : Key→lone Address]
{

all key_ : Key | key_ in ri·dom⇒ ri[key_] in fs·dom and fs[ri[key_]]·key in key_
}� �
A.2.15 Operation unlink� �
pred UNLINK [p_ino : Int, dent : Dentry, dent’ : Negdentry, u, u’ : UBIFS]
{

// pre-conditions
valid_dentry_with_parent [p_ino, dent, u·fs, u·ri]
valid_file_ino [dent·ino, u·fs, u·ri]
// post-conditions
let p_inode = getinode[p_ino, u·fs, u·ri],

inode = getinode[dent·ino, u·fs, u·ri] |
{

one disj adr1, adr2, adr3 : Address |
{

dent’ = negdentry_c[dent·name]
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(adr1 + adr2 + adr3) not in u·fs·dom

let dn1 = dentrynode_c[dentrykey_c[p_ino, dent’·name], dent’·name, 0],
in1 = inodenode_c[inodekey_c[p_ino], p_inode·directory, p_inode·nlink, inode·size−1],
node = inodenode_c [inodekey_c[dent·ino], inode·directory, inode·nlink−1, inode·size],
dnks = dentrykeys_name [u·ri, p_ino, dent·name] |

{
dn1 not in rng[u·fs]
in1 not in rng[u·fs]
node not in rng[u·fs]

u’·fs = u·fs + (adr1→dn1)
+ (adr2→in1)
+ (adr3→node)

u’·fi = u·fi
let temp = (dnks <:u·ri ),

ri_temp = u·ri − temp + (in1·key→adr2) |
node·nlink = 1⇒ {let aux = (node·key <:u·ri) |

u’·ri = ri_temp − aux and DO_DELETE[p_inode, u, u’]}
else {u’·ri = ri_temp + (node·key→adr3)}

let s1 = sq/add[u·log, adr1], s2 = sq/add[s1, adr2] | u’·log = sq/add[s2, adr3]
}

}
}

}� �
A.2.16 Operation writepage (old version)� �
pred WRITEPAGE [file : File, pageno : Int, page : Page, u, u’ : UBIFS]
{

// pre-conditions
valid_file[file, u·fs, u·ri]
// post-conditions
let inode = getinode [file·ino, u·fs, u·ri] |
{

one disj adr1, adr2 : Address |
{
(adr1 + adr2) not in dom[u·fs]

let dk = datakey_c[file·ino, pageno],
node = inodenode_c[inodekey_c[file·ino], inode·directory, inode·nlink, (pageno+ 1)],
dn = datanode_c[dk, page] |

{
node not in rng[u·fs]
dn not in rng[u·fs]
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(inode·size < = pageno)⇒
{
u’·fs = u·fs + (adr1→node) + (adr2→dn)
u’·ri = u·ri + (node·key→adr1) + (dn·key→adr2)
u’·fi = u·fi
let log_temp = sq/add[u·log, adr1] | u’·log = sq/add[log_temp, adr2]
}
else
{
u’·fs = u·fs + (adr2→dn)
u’·ri = u·ri + (dn·key→adr2)
u’·fi = u·fi
u’·log = sq/add[u·log, adr2]
}

}
}

}
}� �
A.2.17 Operation writepage (fixed version)� �
pred WRITEPAGE [file : File, pageno : Int, page : Page, u, u’ : UBIFS]
{

// pre-conditions
valid_file[file, u·fs, u·ri]

// post-conditions
let inode = getinode [file·ino, u·fs, u·ri] |
{

one disj adr1, adr2 : Address |
{
(adr1 + adr2) not in dom[u·fs]

let dk = datakey_c[file·ino, pageno],
node = inodenode_c[inodekey_c[file·ino], inode·directory, inode·nlink, (pageno+ 1)],
dn = datanode_c[dk, page] |
{
node not in rng[u·fs]
dn not in rng[u·fs]
(inode·size < = pageno)

u’·fs = u·fs + (adr1→node) + (adr2→dn)
u’·ri = u·ri + (node·key→adr1) + (dn·key→adr2)
u’·fi = u·fi
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let log_temp = sq/add[u·log, adr1] | u’·log = sq/add[log_temp, adr2]
}

}
}

}� �
A.2.18 Operation create� �
pred CREATE [p_ino : Int, dent : Negdentry, dent’ : Mkentry, u, u’ : UBIFS]
{

// pre-conditions
valid_dir_ino [p_ino, u·fs, u·ri]
valid_negdentry[p_ino, dent, u·fs, u·ri]

// post-conditions
let inode = getinode [p_ino, u·fs, u·ri] |
{

one disj adr1, adr2, adr3 : Address |
{

one ink : Inodekey |
{
(adr1 + adr2 + adr3) not in dom[u·fs]

new_inodekey[ink, u·ri, u·fs]

dent’ = mkdentry_c [dent·name, ink·ino]

let inode1 = inodenode_c[inodekey_c[p_ino], inode·directory, inode·nlink, (inode·size+ 1)],
inode2 = inodenode_c[ink, False, 1, 0],
dn = dentrynode_c[dentrykey_c[p_ino, dent’·name], dent’·name, dent’·ino] |

{
inode1 not in u·fs·rng
inode2 not in u·fs·rng
dn not in u·fs·rng
inode1·nlink > 1

u’·fs = u·fs + (adr1→inode2) + (adr3→inode1) + (adr2→dn)
u’·ri = u·ri + (inode2·key→adr1) + (inode1·key→adr3) + (dn·key→adr2)
u’·fi = u·fi
let s1 = sq/add[u·log, adr1], s2 = sq/add[s1, adr2] | u’·log = sq/add[s2, adr3]

}
}

}
}
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}� �
A.2.19 Assertion nodekey_cons_unlink� �
pred nodekey_cons [fs : Address→lone Node, ri : Key→lone Address]
{

all key_ : Key | key_ in ri·dom⇒ ri[key_] in fs·dom and fs[ri[key_]]·key in key_
}� �
A.2.20 Assertion danode_cons_writepage� �
assert datanode_cons_writepage{

all u, u’ : UBIFS, file : File, pageno : Int, page : Page |
store_cons [u·fs, u·ri, u·log] and
valid_file_ino [file·ino, u·fs, u·ri] and
datanode_cons [u·fs, u·ri] and
WRITEPAGE [file, pageno, page, u, u’]⇒ {lone inn : Inodenode | inn in u’·fs·rng and inn not in u·fs·

rng and {some k : Datakey | k in u’·ri·dom and k in u’·fs·rng·key⇒ valid_file_ino [k·ino, u’·fs, u’·ri] and
k·part_ < inn·size} }

}� �
A.2.21 Assertion prepost_unlink� �
assert prepost_unlink{

all u, u’ : UBIFS, p_ino : Int, dent, dent’ : Dentry |
valid_dentry_with_parent [p_ino, dent, u·fs, u·ri] and
valid_file_ino [dent·ino, u·fs, u·ri] and
UNLINK [p_ino, dent, dent’, u, u’]⇒ valid_negdentry [p_ino, dent’, u’·fs, u’·ri]

}� �
A.2.22 Assertion prepost_readpage� �
assert prepost_readpage {

all u, u’ : UBIFS, pageno : Int, page : Page, file : File |
valid_file [file, u·fs, u·ri] and
READPAGE [file, pageno, page, u, u’]⇒ {(page not in Emptypage)⇒ {some dn : Datanode | dn in rng[u
·fs] and dn·key·part_ in pageno⇒ dn·data in page}}

}� �
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A.2.23 Assertion prepost_writepage� �
assert prepost_writepage {

all u, u’ : UBIFS, pageno : Int, page : Page, file : File |
valid_file [file, u·fs, u·ri] and
WRITEPAGE [file, pageno, page, u, u’]⇒ {some dn : Datanode | dn in rng[u’·fs] and dn·data in page

and dn·key·part_ in pageno}
}� �
A.2.24 Assertion log_cons_unlink� �
assert log_cons_unlink {

all u, u’ : UBIFS, p_ino : Int, dent, dent’ : Dentry |
datanode_cons [u·fs, u·ri] and
store_cons [u·fs, u·ri, u·log] and
valid_dentry_with_parent [p_ino, dent, u·fs, u·ri] and
valid_file_ino [dent·ino, u·fs, u·ri] and
log_cons [u, u’] and
UNLINK [p_ino, dent, dent’, u, u’]⇒ log_cons[u, u’]

}� �
A.2.25 Fact Notnegative� �
fact Notnegative {

all n : Node | n·size ≥ 0 and n·nlink ≥ 0 and n·dino ≥ 0
all i : Int, k : Key | i in k·part_⇒ i ≥ 0

}� �
A.2.26 Metamodel of the UBIFS File System
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