
Setembro de 2010

Universidade do Minho
Escola de Engenharia

Henrique Manuel Fernandes de Castro

Formal Verification of Security Proofs

Mestrado em Engenharia Informática

Trabalho efectuado sob a orientação do
Professor Doutor José Bacelar Almeida

Setembro de 2010

Universidade do Minho
Escola de Engenharia

Henrique Manuel Fernandes de Castro

Formal Verification of Security Proofs

iii

Abstract

To conduct a security proof, the meaning of the term security must be precisely

defined. Provable security aims to formalize security notions by defining both the

adversarial model and the adversarial goal. A proof of security is then achieved by

reducing an attack against a cryptographic scheme to the intractability of some

computational problem. These proofs can be organized as sequences of games

thus diminishing their complexity. In this approach adversaries are probabilis-

tic polynomial-time Turing machines and its interaction with the cryptographic

scheme is modeled as a probabilistic game. In this thesis we shall explore a frame-

work that formalizes such approach, more precisely, we will explore David Nowak’s

game-based framework for cryptographic schemes’ security proofs. The great share

of work developed during the course of this thesis was concerned with the exten-

sion of the framework with capabilities to perform proofs in the so called random

oracle model and the use of these capabilities to formalize the semantic security

proof of Hashed ElGamal in this model. Also, we explore Coq’s extension Ssreflect

to show how its libraries can be used to support the development of cryptographic

proofs.

iv

Verificação Formal de Provas de Segurança

Resumo

Para se poder realizar uma prova de segurança, é preciso primeiro definir o que

é que o termo segurança significa. Provable security tenta formalizar noções de

segurança ao definir tanto o modelo do adversário como o objectivo do adver-

sário. Uma prova de segurança é então alcançada por redução de um esquema

criptográfico a uma problema computacional considerado intratável. Provas po-

dem ser organizadas como sequências de jogos diminuindo então a complexidade

destas. Nesta abordagem os adversários são máquinas de Turing que executam

em tempo polinomial e a sua interacção com o esquema criptográfico é modelado

como um jogo probabilístico. Nesta tese será explorada a framework que formal-

iza tal abordagem, mais precisamente, irá ser explorada a framework de David

Nowak para provas de segurança de esquemas criptográficos baseadas em jogos. A

grande parte do trabalho desenvolvido durante a tese teve como objectivo extender

a framework com capacidades para realizar provas no chamado modelo de oráculo

aleatório e esta extensão será usada para formalizar a prova de segurança semântica

do esquema criptográfico Hashed ElGamal neste modelo. Também será explorado

a extensão do Coq denominada Ssreflect para mostrar como as suas bibliotecas

podem ser usadas para suportar o desenvolvimento de provas criptográficas.

Contents

List of Figures vii

1 Introduction 1

1.1 Security Notions and Proofs for Public-Key Schemes 4

1.2 The Coq Proof Assistant . 9

1.3 Outline . 10

2 State of the art 13

2.1 David Nowak’s Framework . 13

2.2 CertiCrypt . 17

2.3 CryptoVerif . 19

2.4 Conclusion . 21

3 David Nowak’s Framework 23

3.1 Probabilities . 23

3.2 Mathematical Results . 27

3.3 Games . 30

3.4 Hashed ElGamal Proof . 32

3.4.1 Correctness Proof . 33

3.4.2 Security Proof . 35

3.5 Conclusion . 38

vi Contents

4 Random Oracle Methodology 39

4.1 Random Oracle Model . 39

4.2 Framework Extensions . 41

4.2.1 State Monad . 41

4.2.2 Basic Probabilities Laws . 43

4.2.3 EqP . 44

4.2.4 Fundamental Lemma of Game-playing 47

4.2.5 SInvM . 49

4.2.6 Forces . 50

4.3 Hashed ElGamal in the Random Oracle Model 52

4.3.1 List CDH assumption . 52

4.3.2 Adversarial loop of queries 54

4.3.3 Semantic Security proof . 56

4.4 Conclusion . 65

5 Ssreflect 67

5.1 Bookkeeping . 69

5.2 Miscellaneous Features . 70

5.3 Ssreflect libraries . 71

5.4 Hashed ElGamal’s proof in Ssreflect 73

5.4.1 Bit Strings . 73

5.4.2 Security of Hashed ElGamal 77

5.5 Conclusion . 78

6 Conclusion and Future Work 81

Bibliography 83

List of Figures

1.1 ElGamal Encryption Scheme . 5

2.1 CertiCrypt’s ElGamal Proof [BGB09] 18

3.1 Hashed ElGamal Encryption Scheme 32

Chapter 1

Introduction

As any proof, a security proof should convince its reader of its validity. Therefore,

these should be constructed in a clear and concise way. However, the term security

can be somewhat ambiguous possessing several meanings depending on the context.

In order to carry out a precise mathematical cryptographic proof, security must

be precisely defined so that the notion it tries to prove cannot raise different

interpretations.

The term provable security was first coined by Goldwasser and Micali [GM82]

and the idea behind it is to formally define security notions for cryptographic

problems [Bel98]. This security notion has at its core the definition of both the

adversarial goal and the adversarial model. The adversarial goal captures what

it means to break the cryptographic scheme while the model describes the capa-

bilities that the adversary possesses in order to succeed [Sma05]. This allows the

mathematical specification of the scheme’s security under the chosen definition.

As a result, a security proof only ensures security against attacks in the chosen

model and not against other types of attacks (for example, side channel attacks).

The security of the scheme is achieved by reducing it to the intractability of

some computational problem, for example, the computation of discrete logarithms

2 Chapter 1. Introduction

in finite fields. If the problem is indeed intractable, then it is proved that the

scheme is secure under the chosen definition.

However, cryptographic proofs have been conducted with several different ap-

proaches and a standardized model to construct these kind of proofs was lacking.

Bellare and Rogaway [BR06] add that many cryptographic proofs had become un-

verifiable mostly due to their complexity while Halevi [Hal05] affirms that there

is a problem with cryptographic proofs, mainly as a result of a greater number of

proofs generated than proofs carefully verified resulting in some erroneous crypto-

graphic proofs [Sho01].

Game-playing is a technique that intends to solve these problems by structuring

proofs and creating a unified development model for cryptographic proofs that

makes them less error-prone and more easily verifiable [BR06]. In this approach

the adversary is a probabilistic process and is modeled as a polynomial-time Turing

machine while its interaction with the cryptographic primitive is modeled as a

probabilistic game. The notion of security is usually modeled as a particular event

S that occurs inside the game and is connected to the breaking of the cryptographic

primitive by the adversary.

Security is then achieved by proving that the probability of an adversary win-

ning the game, that is the probability that the security event S occurs, is negligibly

close to a target probability. A function 𝜇(𝑛) is called a negligible function in the

security parameter 𝑛 if for every polynomial 𝑝(.) and for large enough 𝑛 it holds

that:

|𝜇(𝑛)| < 1

𝑝(𝑛)

Claiming that this probability is negligible close to a target probability does not

imply that the adversary bears no possibility of breaking the cryptographic prim-

itive. Instead, one achieves a game-based proof of security by showing that the

advantage the adversary has in breaking the cryptographic primitive over an un-

3

informed adversary is negligible.

Games can also be seen as code and this approach is called code-based game

playing [KR96]. In this approach, game-playing centers around making disciplined

transformations to code that rely on programming language theory. By taking a

code-centric view of games, code-based game-playing prevents the occurrence of

subtle mistakes in the development of proofs since every transformation must be

formalized as code. These games can also be machine checked, for example in the

proof assistant Coq, adding a significant layer of trust to these proofs as a result

of the proof assistant correct implementation.

[Hal05] emphasized the importance of a tool that could deal with the “mundane”

parts of cryptographic game-based proofs. This tool would help automatize the

proof and the creative part of the proof could be entrusted to the user. The so

called “mundane” parts consist of proof steps that are usually the most difficult to

write and verify and can be of the following type:

• simple transformations like code movement, variable substitution and elimi-

nation of code that do not affect the output of the game, also called as dead

code.

• algebraic manipulations. This kind of transformations can be obtained if

the tool possesses a library where these transformations are formalized and

proved correct.

• transformations by mean of reductions where the reduction itself can also be

formalized as a game sequence.

Additionally, Halevi proposed that this tool should allow impermissible transfor-

mations in proofs. These transformations are not checked by the tool and as a

consequence the user is responsible for supplying a free-text justification of the

transformation.

4 Chapter 1. Introduction

1.1 Security Notions and Proofs for Public-Key

Schemes

Public-Key Encryption Schemes A public-key encryption scheme ℰ consists

of two probabilistic polynomial time (PPT) algorithms for key-generation and en-

cryption, and a deterministic polynomial time algorithm for decryption. The key-

generation algorithm KeyGen(1𝑘) takes as input a security parameter1 𝑘 and gener-

ates the public-key/secret-key pair (𝑝𝑘,𝑠𝑘). The encryption algorithm Enc(𝑝𝑘,𝑚)

takes as input the public key and a message 𝑚 and returns the ciphertext 𝜓.

The decryption algorithm Dec(𝑠𝑘,𝜓) takes the secret key and the ciphertext 𝜓,

returning the decrypted message 𝑚′.

The reason for not letting the decryption algorithm be probabilistic steams

from the following correctness criteria: in any public-key encryption scheme one

expects that decryption undoes encryption. To formally capture this property,

consider the following probabilistic experiment (or game):

Correct(𝑘) .=

(𝑝𝑘,𝑠𝑘)← KeyGen(1𝑘)

𝑚
$← MessSpace

𝜓 ← Enc(𝑝𝑘,𝑚)

𝑚′ ← Dec(𝑠𝑘,𝜓)

return (𝑚 = 𝑚′)

In this thesis, to express variable assignment the symbol “←” will be used while

random assignments to variables shall be conveyed with the symbol “ $←”. The

game starts by the generation of a valid key-pair, then a randomly chosen message

is encrypted, and the correspondent ciphertext is decrypted. The result of the

1For technical reasons regarding its complexity class, it receives the security parameter 𝑘 as
a string of 𝑘 bits.

1.1. Security Notions and Proofs for Public-Key Schemes 5

KeyGen(1𝑘)
.
=

(G, 𝛾, 𝑞)← 𝒢𝒫(1𝑘)
𝑥

$← Z𝑞

𝛼← 𝛾𝑥

𝑠𝑘 ← ((G, 𝛾, 𝑞), 𝑥)
𝑝𝑘 ← ((G,𝛾, 𝑞), 𝛼)
return (𝑝𝑘,𝑠𝑘)

Enc(𝑝𝑘,𝑚)
.
=

((G,𝛾,𝑞),ℎ)← 𝑝𝑘

𝑟
$← Z𝑞

𝑐1 ← 𝛾𝑟

𝑐2 ← 𝑚 · ℎ𝑟
return (𝑐1,𝑐2)

Dec(𝑠𝑘, 𝑐)
.
=

((G,𝛾,𝑞),𝑥)← 𝑠𝑘
(𝑐1, 𝑐2)← 𝑐
𝑚← 𝑐2 · 𝑐−𝑥

1

return 𝑚

Figure 1.1: ElGamal Encryption Scheme

game is the outcome of the boolean test that checks if the decrypted message

is the one that had been previously encrypted. Clearly, in a correct encryption

scheme this game shall always return true. Denoting by Correct(𝑘)⇒ true the

event that running the game its outcome is true, the correctness of the scheme is

characterized by the following assertion:

Pr[Correct(𝑘)⇒ true] = 1.

ElGamal Encryption Scheme ElGamal [Gam85] is a probabilistic public-key

encryption scheme and its definition is given in Figure 1.1. In the key-generation

algorithm, 𝒢𝒫(1𝑘) randomly chooses a cyclic group G with generator 𝛾 and order

𝑞 (𝑘-bit long). In the encryption algorithm, 𝑚 is any element of G. The ElGa-

mal scheme can be proved semantically secure by reducing it to the Decisional

Diffie-Hellman (DDH) assumption. This assumption is based on the problem of

distinguishing triples of the form (𝛾𝑥,𝛾𝑦,𝛾𝑥𝑦) and (𝛾𝑥, 𝛾𝑦, 𝛾𝑧), where 𝑥, 𝑦, 𝑧 are ran-

dom elements of Z𝑞. This problem is conjectured to be difficult, which means that

for any adversary 𝐴 its advantage defined by:

⃒⃒⃒
Pr[𝑥,𝑦

$← Z𝑞 : 𝐴(𝛾
𝑥,𝛾𝑦,𝛾𝑥𝑦) = 1]− Pr[𝑥,𝑦,𝑧

$← Z𝑞 : 𝐴(𝛾
𝑥,𝛾𝑦,𝛾𝑧) = 1]

⃒⃒⃒

6 Chapter 1. Introduction

is negligible.

Semantic Security The term semantic security, also known as ciphertext indis-

tinguishability, was first introduced in [GM82] and it captures the notion that an

efficient adversary, given the ciphertext and the corresponding public encryption

key, cannot obtain any extra information about the message encrypted. The ad-

versary is a passive one and if a scheme is semantically secure then the encrypted

messages are regarded as indistinguishable.

In the game of semantic security the adversary is modeled as two algorithms 𝐴1

and 𝐴2. These algorithms are deterministic and efficient (i.e. polynomial time).

The game is initialized by calling the key-generation algorithm, outputting the

public and secret keys. The public key and a random seed are passed to 𝐴1 which

returns the pair of messages (𝑚1,𝑚2). The encryption algorithm receives one of

the messages chosen randomly and the resulting ciphertext is passed to 𝐴2, that,

with the knowledge of the public key and the random seed, tries to guess which

one was indeed encrypted. Formally, the game can be defined as follows :

IND-CPA(𝑘)
.
=

(𝑝𝑘,𝑠𝑘)← KeyGen(1𝑘)

𝑟
$← R

(𝑚1,𝑚2)← 𝐴1(𝑟,𝑝𝑘)

𝑏
$← {0,1}

𝜓 ← Enc(𝑝𝑘,𝑚𝑏)

�̂�← 𝐴2(𝑟,𝑝𝑘,𝜓)

return (𝑏 = �̂�)

Since there are only two messages, it should be noted that a truly random al-

gorithm would succeed in guessing the encrypted message with probability 1
2
.

Therefore, an encryption scheme is semantically secure if the adversarial prob-

1.1. Security Notions and Proofs for Public-Key Schemes 7

ability in winning the game is not significantly greater than 1
2
. The advantage of

an adversary is defined as:

AdvIND-CPA
𝐴 (𝑘) =

⃒⃒⃒⃒
Pr [IND-CPA(𝑘)⇒ true]− 1

2

⃒⃒⃒⃒
A scheme is said to be semantically secure if the advantage of any adversary is

negligible with respect to the security parameter 𝑘.

Security Proofs Let Pr[𝑆𝑖] denote the probability that the event S occurs in

game 𝐺𝑖 where 𝑖 = 0...𝑛. The initial game 𝐺0 depicts the attack game between

the adversary and the cryptographic primitive. To develop the proof, one needs to

incrementally refine 𝐺0, thus producing a finite chain of games, until it achieves

𝐺𝑛 where Pr[𝑆𝑛] can be bounded and is trivially negligibly close to the target

probability. Since the number of games is constant and every transition from

consecutive games is proved to be negligible, that is the difference between Pr[𝑆𝑖]

and Pr[𝑆𝑖+1] is negligible, Pr[𝑆0] is negligibly close to the target probability. Each

game transformation should be as simple as possible so that each step can be easily

analyzed [Sho04]. This prevents the growth of the proof complexity.

The transitions between games can be of three different kinds [Sho04]:

• Transitions based on indistinguishability are changes made in a game that are

indistinguishable by the adversary. These are normally based on statistical

or computational assumptions and the adversary’s ability to distinguish be-

tween the different games would imply the existence of an efficient algorithm

to differentiate between two distributions that are believed to be indistin-

guishable. For example, the proof of ElGamal semantic security uses the

computational intractability of DDH as a transition based on indistinguisha-

bility.

8 Chapter 1. Introduction

• Transitions based on failure events occur between identical-until-bad games.

These games are identical except when some failure event happens setting

the bad flag to true. After bad has been set to true it cannot be reset to

false. As an example it can be seen that game Game 0 and Game 1 are

identical-until-bad games:

Game0
.
=

𝑦
$← {0,1}𝑛

if 𝑦 ∈ img(𝑥) then bad← true

while 𝑦 ∈ img(𝑥) do 𝑦 $← {0,1}𝑛

return 𝑦

Game1
.
=

𝑦
$← {0,1}𝑛

if 𝑦 ∈ img(𝑥) then bad← true

return 𝑦

The difference in probability between the two games can be bounded using

the Difference Lemma. Let 𝐴 and 𝐵 be a pair of identical-until-bad games

and let F denote a failure event. The Difference Lemma states that:

|𝑃𝑟[𝐴]− 𝑃𝑟[𝐵]| ≤ 𝑃𝑟[𝐹]

This shows that to transition from 𝐴 to 𝐵 it is simply needed to know the

probability of 𝐹 occurring.

As a result, in the previous example the difference in probability between 𝐺0

and 𝐺1 is less or equal than the probability that 𝑦 belongs to the image of

𝑥. In the asymptotic model, to prove that game 𝐺0 is negligibly close to 𝐺1

it suffices to prove that the occurrence of F is negligible.

• Bridging steps have no effect on the probability, that is Pr[𝑆𝑖] = Pr[𝑆𝑖+1].

They simply alter some steps of the game in a way that is equivalent. Despite

the fact that a proof can be conducted without the use of bridging steps, these

are useful in structuring the proof allowing it to be easily followed.

1.2. The Coq Proof Assistant 9

So far, the security model implicitly used has been the asymptotic one. In this

model, reductions between games only need to be proved negligible according to

the security parameter. Besides the asymptotic one, there also exists the exact

security model where the cost of reductions must be precisely determined thus

allowing a more accurate characterization of the adversarial advantage in breaking

the cryptographic primitive.

Random Oracle Model The random oracle model is a computational model

that was introduced by Bellare and Rogaway [BR93]. This model tries to bridge

theory and practice by providing an efficient way of designing protocols. Unlike

the standard way of designing protocols, where one first designs a protocol and

then over the time one tries to find a successful attack and while this does not

happen the protocol is considered secure, in the random oracle model one proves

the security of the protocol. This proof is done in an idealized model but even

so this approach is practically more efficient than waiting for the appearance of

successful attacks. The ROM methodology has been successfully applied in the

design of PSS [BR96] and OAEP [BR94] .

1.2 The Coq Proof Assistant

The Coq system is a computer tool for verifying theorem proofs that is powerful

and expressive both for reasoning and programming [BC04]. Coq uses a typed 𝜆-

calculus, the Calculus of Inductive Constructions (CIC) [CH88] as its formalism.

One important property of the Coq system is that it possesses strong normalization

[Wer94], meaning that computation always terminates.

To check the correctness of proofs, Coq uses a small checking kernel that imple-

ments the typing rules of CIC. Proof terms are built by using tactics that use the

proof context, for example, hypotheses or previously proved lemmas, to achieve

10 Chapter 1. Introduction

the proof of certain lemma. The use of tactics eases the construction of proofs and

Coq allows user to code new tactics by using Ltac. Ltac is the tactic language

for Coq that was developed with intent to enrich the existent tactics combinators

and to provide proof automation [Del00], thus preventing the user from making

fatal mistakes. The specification language used by Coq (called Gallina) allows to

develop mathematical theories and to prove specifications of programs [dt09].

As a result of these properties, Coq is well suited in environments where abso-

lute trust is a necessity such as in cryptographic proofs. The generic model and

random oracle model were formalized in Coq [BCT04] with the security proof of

ElGamal encryption but the game-playing approach was not used. Later, in both

[Now07] and [BGB09] game-based frameworks for cryptographic proofs were de-

veloped on top of Coq. These approaches will be explained in-depth in Chapter 2.

1.3 Outline

Most part of this thesis’ work was devoted to extending David Nowak’s framework

for game-based security proofs with capabilities to perform proofs in the random

oracle model. The motivations for such implementation are:

• Study of the game-based approach to cryptographic security proofs and study

of a framework formalized on top of an interactive theorem prover (Coq)

• Employ such knowledge to the development of proofs in a different security

model (random oracle model).

This involved, at an initial stage, the exploration of the different existing game-

based frameworks. In Chapter 2 these frameworks are analysed and a comparison

of the different approaches to the formalization of the game-based methodology is

1.3. Outline 11

provided. The proof of ElGamal’s semantic security is given in each framework as

a running example.

Nowak’s framework is given an in-depth look in Chapter 3. The framework has

as its core the formalization of probabilities and the formalization of the game-

based methodology. The probabilistic nature of the framework is formalized with

recourse to the definition of a distribution monad, while games are defined as func-

tions returning a distribution. Some automatic tactics to deal with bridging steps

are also defined. The framework is supported by the proof of several mathematical

results and we shall give more emphasis to its formalization of group theory. It

is also demonstrated how the framework can be used in practice by providing the

proof of semantic security of Hashed ElGamal in the standard model.

The implementation of the random oracle methodology is examined in Chap-

ter 4. The state monad defined by David Nowak is used to define the stateful

version of the game-based approach and the fundamental lemma of game-playing

is formalized along with the explanation of our contributions. The chapter is con-

cluded by demonstrating the implemented capabilities with the proof of Hashed

ElGamal’s semantic security in the random oracle model.

Besides the work mentioned before, one of the purposes of this thesis is the

study of Ssreflect. This is an extension to Coq which adds support for the use

of small scale reflection and also provides general purpose features. Ssreflect is

explored in Chapter 5. We use Ssreflect’s libraries, composed with a vast number

of mathematical results, to adapt Hashed ElGamal’s proof of security in Coq into

Ssreflect in order to take advantage of Ssreflect’s features and libraries. This is

illustrative of how Ssreflect’s libraries can be used and of the benefits of their

application. The conclusions and future work are given in Chapter 6.

12 Chapter 1. Introduction

Chapter 2

State of the art

In this chapter the existing game-based security proofs frameworks are analysed.

David Nowak’s framework is explored in Section 2.1, CertiCrypt in Section 2.2

and CryptoVerif in Section 2.3. For each framework we will provide both strong

and weak points along with the comparison between themselves. This comparison

will be illustrated with the running example of the semantic security proof of the

ElGamal cryptosystem.

2.1 David Nowak’s Framework

Nowak [Now07, Now09] formalizes in Coq a framework for game-based security

proofs. In this framework both oracles and games are probabilistic algorithms

and are modeled as functions returning finite probability distributions. To model

probabilistic choices, such as random value assignments to variables, Nowak uses

monads since probabilistic choices can be seen as side effects. The choice of Coq, or

any proof assistant for that matter, as the implementation language is an important

property of the framework. By using a proof assistant, game specification and

game transformations are certified in the sense that in order to trust the proof of

14 Chapter 2. State of the art

cryptographic scheme it suffices to trust the proof assistant correctness. In Coq’s

case, its correctness is supported by a small proof checking kernel. Also, the use of

a proof assistant implies that games must be given a precise mathematical meaning

and every step of a proof, even the smallest and trivial ones, need to be explicited

and subsequently proved.

To formalize this game-based framework, Nowak developed an extension to

some of the Coq standard libraries by proving several properties of cyclic groups

and properties of probabilities over cyclic groups. In order to provide some degree

of automation to the framework, automatic tactics were constructed in Ltac to

deal with game transformations. However, shallow embedding [GW07] is used in

the modeling of games. In shallow embedding games are seen as functions and as

a result the game structure is not accessible. This limits the framework’s support

for automation and, more importantly, the framework does not have direct control

over the computational cost of evaluating these functions. As a consequence, even

though the framework uses the asymptotic security model, the notion of efficient

and negligible were not precisely defined. Also, Nowak did not implement the ran-

dom oracle model in his framework. In Chapter 4 we describe the implementation

of such model developed during this thesis.

ElGamal Proof The semantic security proof of the ElGamal cryptographic

scheme in Nowak’s framework will now be shown.

Game 0. The previously defined semantic security game is used as the starting

point and the generic algorithms are replaced with their definitions in ElGamal

2.1. David Nowak’s Framework 15

thus obtaining the following game :

Game 0
.
=

𝑥
$← Z𝑞 ; 𝛼← 𝛾𝑥 ; 𝑟

$← 𝑅 ;

(𝑚0,𝑚1)← 𝐴1(𝑟,𝛼) ;

𝑏
$← {0,1} ; 𝑦 $← Z𝑞 ;

𝛽 ← 𝛾𝑥 ;

𝛿 ← 𝛼𝑦 ; 𝜁 ← 𝛿.𝑚𝑏 ;

�̂�← 𝐴2(𝑟,𝛼,𝛽,𝜁) ;

Let 𝑆0 be the event where adversary A wins the game, that is, when 𝑏 = �̂�.

Then, semantic security adversarial advantage can be defined as |𝑃𝑟[𝑆0]− 1
2
|. This

advantage must be proved negligible in order to achieve semantic security.

Game 1. This game differs from Game 0 in the computation of 𝛿. Game 0

computed 𝛿 as 𝛼𝑦 while this new game randomly chooses 𝑧 from Z𝑞 to compute 𝛿

as 𝛾𝑧. The resulting game is the following:

Game 1
.
=

𝑥
$← Z𝑞 ; 𝛼← 𝛾𝑥 ; 𝑟

$← 𝑅 ;

(𝑚0,𝑚1)← 𝐴1(𝑟,𝛼) ;

𝑏
$← {0,1} ; 𝑦 $← Z𝑞 ;

𝛽 ← 𝛾𝑥 ;

𝑧 ← Z𝑞 ; 𝛿 ← 𝛾𝑧 ; 𝜁 ← 𝛿 ·𝑚𝑏 ;

�̂�← 𝐴2(𝑟,𝛼,𝛽,𝜁) ;

This is considered a transition based on indistinguishability. Essentially, from

Game 0 to Game 1 what occurred was a transformation of the triple (𝛼,𝛽,𝛿).

In Game 0 this was of the form (𝛾𝑥,𝛾𝑦,𝛾𝑥𝑦) while in Game 1 this triple takes

16 Chapter 2. State of the art

the form (𝛾𝑥,𝛾𝑦,𝛾𝑧). Under the DDH assumption these triples are considered

indistinguishable and as consequence the change of probability between games,

|𝑃𝑟[𝑆0]− 𝑃 [𝑆1]|, is negligible.

Game 2. In this game, the random choice of the variable 𝑧 and the computa-

tion of 𝜁 as 𝛿.𝑚𝑏 are replaced by the computation of 𝜁 as a random element from

the group 𝐺.
Game 2

.
=

𝑥
$← Z𝑞 ; 𝛼← 𝛾𝑥 ; 𝑟

$← 𝑅 ;

(𝑚0,𝑚1)← 𝐴1(𝑟,𝛼) ;

𝑏
$← {0,1} ; 𝑦 $← Z𝑞 ;

𝛽 ← 𝛾𝑥 ; 𝜁 ← 𝐺 ;

�̂�← 𝐴2(𝑟,𝛼,𝛽,𝜁) ;

This transition is considered a bridging step. The change in the computation of

𝜁 is a algebraic property of cyclic groups. When a uniformly distributed element

of the group (𝛿) is multiplied by another element (𝑚𝑏), the result is uniformly

distributed (random element of𝐺). In order to be used, this property had to proved

in the framework. This transformation is indistinguishable by the adversary, thus

𝑃𝑟[𝑆1]− 𝑃 [𝑆2] = 0.

In this final game the encrypted message has no relation to the chosen message

(𝑚𝑏). As a result, the adversary cannot obtain any information about the chosen

message by observing the resulting ciphertext. The adversary can only guess which

message was encrypted and, as a result, the probability of success is 1
2
, 𝑃𝑟[𝑆2] =

1
2
.

The probability of the adversary winning the game can then be bounded by

the probability of the final game. Game transformations used were either tran-

sitions based on indistinguishability, where the changes of probability are negli-

gible, or bridging steps that maintain the probability unchanged. Consequently,

|𝑃𝑟[𝑆0]− 𝑃 [𝑆2]| is negligible and 𝑃𝑟[𝑆0] ≈ 1
2
. This means the adversary possesses

2.2. CertiCrypt 17

no advantage in breaking the semantic security game of ElGamal.

2.2 CertiCrypt

It is now presented the game-based framework CertiCrypt [BGB09]. CertiCrypt

provides certified tools to reason about games whose implementation involves the-

ory of many branches such as probability, algorithm complexity, algebra and se-

mantics of programming languages. Additionally, by taking a code-centric view of

games, where game transformations are program transformations, games become

easier to verify but proofs tend to be complicated. Both these properties make

CertiCrypt an inherently complex framework.

CertiCrypt can be seen as an implementation of the tool that Halevi suggested

to certify game-based proofs. CertiCrypt provides some enhancements to Halevi’s

vision by being a unified framework for developing full proofs, and as such, Halevi’s

impermissible transitions are not allowed. Also, the use of Coq allows proofs to

be independently verified. At its lower layer, CertiCrypt formalizes an imperative

probabilistic programming language (pWhile) with intent to faithfully and rigor-

ously encode games. pWhile programs’ typability is assured by the use of a deep

and dependently-typed embedding of the syntax and its probabilistic semantics is

defined on top of ALEA – a library for reasoning on randomized algorithms in Coq

[APM09]. Additionally, the semantics is capable of capturing the running cost of

programs, thus allowing the formalization of program’s complexity requirements

(such as being PPT).

In comparison with Nowak’s framework, CertiCrypt formalizes the random

oracle model, supports proofs with failure events and captures the notion of well

formed adversaries by controlling adversarial access to variables and to procedure

calls. Additionally, CertiCrypt uses deep embedding for game modeling, instead

18 Chapter 2. State of the art

Figure 2.1: CertiCrypt’s ElGamal Proof [BGB09]

of the shallow embedding used in Nowak’s framework. This provides support for

proof automation by facilitating syntactic transformations.

ElGamal Proof As usual the generic semantic security game will be the starting

point. The proof is illustrated in Figure 2.1. Game ElGamal0 is achieved by using

the tactics in (1). The inline tactic is responsible for procedure call inlining and

unfolds the definition of the key-generation and encryption algorithms. The ep

tactic is used for expression propagation and, in this case, substitutes the pair

(𝛽,𝛼) in 𝐴2 by (𝑔𝑥,𝑔𝑦). Since 𝛽 and 𝛼 are no longer used, their variable assignments

do not influence the game’s output. These assignments can be eliminated with the

deadcode tactic. The swap tactic is used to alter the order of some instructions,

namely the random assignment of the variable 𝑦. To finalize, 𝑒𝑞𝑜𝑏𝑠_𝑖𝑛 decides

observational equivalence and as a result this transformation is a permissible one.

Transitions (2) and (5) can be summarized as the use of the DDH assumption

to change the triple of the form (𝛾𝑥,𝛾𝑦,𝛾𝑥𝑦) to (𝛾𝑥,𝛾𝑦,𝛾𝑧).

2.3. CryptoVerif 19

In the final game, the computation of 𝜁 changes from 𝑔𝑧 ×𝑚𝑏 to 𝑔𝑧. The eqobs

tactic used proves that both games are identical except for the the 𝜁 assignment.

It is then applied the algebraic property of groups (𝑚𝑢𝑙𝑡_𝑝𝑎𝑑) that proves that

the different assignments of 𝜁 induce the same distribution. This last transition

removes the dependency of 𝜁 on 𝑏 and thus the dependency of �̂� on 𝑏. As a result,

the probability of success is 1
2
.

2.3 CryptoVerif

CryptoVerif [BP06, Bla07] is a game-based framework that aspires to blend the

realistic computational model with the so called Dolev-Yao model [DY83]. This

is a formal and abstract model in which cryptographic primitives are modeled as

ideal black boxes and proofs can be done automatically. However, these proofs are

made under strong and unrealistic assumptions.

CryptoVerif employs the best of each model by designing a framework that is

capable of achieving automatic provability under realistic computational assump-

tions. A process calculus based on the pi calculus [MPW92] is formalized to model

games. The calculus was designed to facilitate the automation of cryptographic

protocols proofs and game semantics are purely probabilistic. Also, processes run

in polynomial time. As CertiCrypt, CryptoVerif also implements the random ora-

cle model and uses the exact security model by precisely bounding the probability

of an attack.

To develop the game-based proofs, security assumptions must be stated as

equivalences. These equivalences can be reused thus they must be proved only

once and play an essential role in the construction of the various games in a proof.

However, these proofs have to be performed outside the scope of the framework,

since they cannot be handled by CryptoVerif, and are inherently difficult. More-

20 Chapter 2. State of the art

over, CryptoVerif possesses many lines of uncertified O’Caml code. This means

that, contrarily to Nowak’s framework and CertiCrypt, CryptoVerif is not a fully

certified framework.

ElGamal proof To achieve a proof, CryptoVerif provides sequences of indistin-

guishable games that lead to the final game where adversarial advantage is 0 and to

transition between games it tries to either use the security definitions of the cryp-

tographic primitive or syntactic transformations. Normal proofs in CryptoVerif

originate a great number of games as a result of game transformations being as

simple as possible. As an example, the ElGamal proof of semantic security uses a

sequence of 9 games.

To personalize proofs, users can interact with prover by providing the sequences

of games that they expect the prover to follow. In practice, the user needs to

know how the proof is expected to be developed in order to provide to the prover

the exact equivalences needed even in an automatic proof. As it has been seen

in sections 2.1 and 2.2, the proof of ElGamal needs the DDH assumption. This

property needs to be stated in order to aid CryptoVerif finding the correct sequence

of games:

equiv

! n new x : Z ; new y : Z ; (

() -> exp (gamma , x) ,

() -> exp (gamma , y) ,

() -> exp (gamma , mult (x , y)))

<=(pDDH(time) * n)=>

! n new x : Z ; new y : Z ; new z : Z ; (

() -> exp (gamma , x) ,

() -> exp (gamma , y) ,

2.4. Conclusion 21

() -> exp (gamma , z)) .

This illustrates that under the DDH assumption the DDH triples are indistin-

guishable by the adversary with probability dependent on the security parameter

(n). Since CryptoVerif uses the exact security model, this probability is not con-

sidered negligible but is calculated instead. Some other equivalences also need to

be defined like, for example, the property that states that multiplying a random

element of a group with another element of the group results in a random element

of the group :

equiv

(y :G) n > new x :G; dot (x , y) [all]

<=(0)=>

(y :G) n > new x :G; x .

This is a bridging step and so this transformation has no effect in the probability

(<=(0)=>).

By using these equivalences, game simplification and elimination of the so

called dead code, CryptoVerif tries to generate a sequence of valid games ending

in a game where the adversary has no advantage. Adversarial advantage can then

be bounded from the changes in probability induced by game transformations.

2.4 Conclusion

In this chapter it was shown how the game-playing technique can be used to

achieve security in the provable security sense and how this approach simplifies

cryptographic proofs. Nowak’s framework uses a shallow embedding of games in

Coq placing some limitations on proof steps automation while CryptoVerif provides

automatic provability but requires the specification of the equivalences needed in

22 Chapter 2. State of the art

the proof from the user and it is not a fully certified framework. CertiCrypt is a

more complete framework with, for example, formalization of a relational Hoare

logic and the well formedness of PPT adversaries, making it an inherently complex

framework.

Chapter 3

David Nowak’s Framework

This chapter will provide an in depth look at David Nowak’s framework for cryp-

tographic game based proofs. The framework is built on top of the proof assistant

Coq and the cryptographic proofs that result from the framework are expected to

be formal enough to be machine checked and also comprehensible enough to be

humanly verified [Now07]. The framework has been used in the semantic security

proof of both the ElGamal (hashed and non-hashed versions) and Goldwasser-

Micali asymmetric cryptosystems.

Nowak’s development is structured with the following three building blocks:

• the formalization of probabilities

• mathematical results

• the formalization of game based approach to cryptographic proofs

3.1 Probabilities

Cryptographic game based proofs require the demonstration that the adversarial

advantage is negligible. This approach is heavily dependent on probabilities and

24 Chapter 3. David Nowak’s Framework

its corresponding theory.

In order to model probabilities in this framework, it is only taken into consid-

eration finite probability distributions that are implemented as lists of pairs that

contain a value and its associated weight in the distribution. A weight is a real

number and is modeled using Coq’s reals whose type is R.

Definition T’ (A:Type) : Type :=

list (A*R).

This is a kind of pre-distribution because it does not enforce that the sum of

probabilities adds up to 1. The apostrophe symbol suffixed to the name of a

definition or lemma indicates that we are working with such pre-distributions.

Pre-distributions have been shown to possess a monadic structure [APM09].

The definition of the monadic operations follows the usual formulation of monads,

the so called Kleisli triple [Mog91]:

• The type constructor of a monad receives a type A and constructs the cor-

responding monadic structure. One can easily see that in this framework

the type constructor is T’ and its instantiation with type A will result in a

pre-distribution T’ A.

• The unit function maps a value of type A to a distribution with only one

element. As a result, the probability of occurrence of this value is 1:

Definition ret’ (A:Type) (a:A): T’ A :=

[(a, 1)].

• The binding operation takes a value of type T’ A and a function F of type

(A → T’ B) and gives as a result a value of type T’ B. In the case of

distributions, this is achieved by pondering, for each 𝑎 ∈ 𝐴, the distribution

(F a) by the probability of a in the first distribution:

3.1. Probabilities 25

Fixpoint bind’ (A B:Type)(d:T’ A)(F:A -> T’ B) : T’ B :=

match d with

| nil => nil

| (a,p) :: d’ => ponder p (F a) ++ bind’ d’ F

end.

The reserved word Fixpoint is used to Coq for the definition of recursive

functions. The ponder function maps the multiplication of a real number p

over the distribution:

Fixpoint ponder (A:Type)(p:R)(d:T’ A) {struct d} : T’ A :=

match d with

| nil => nil

| (a,q)::d’ => (a,p*q) :: ponder p d’

end.

The actual definition of the distribution monad is based on the type of pre-

distributions but, additionally, it also ensures that the pre-distribution is well

formed with respect to the distribution sum law:

Definition T (A:Type) : Type :=

{d:T’ A | sum d = 1}.

sum 𝑑 is the sum of probabilities in a distribution while the notation “{𝑥 : 𝐴| 𝑃 𝑥}”

is used to define the subset of elements of type A that satisfy the P predicate. In

other words, an element of the type T contains a pre-distribution and a proof that

the pre-distribution is well formed.

Cryptographic games are defined with regards to an event that represents the

meaning of breaking the cryptographic scheme. As a result, it is crucial to compute

the probability of an event over a distribution. This is achieved by checking for

26 Chapter 3. David Nowak’s Framework

each value of the distribution if the event, modeled as a decidable predicate, is

true or not. This can be defined as a recursive function over the distribution:

Fixpoint probability’ {A:Type}(P:A->bool)(d:T’ A) : R :=

match d with

| nil => 0

| (a,p)::d’ => if P a then Rabs p + probability’ P d’

else probability’ P d’

end.

Rabs p is the absolute value of the real p.

From here on forward, we will use the following notations for the binding

operations used in the framework:

• 𝑥 ⇐ 𝑐1 ; 𝑐2 for the binding of c1 with (fun 𝑥 ⇒ 𝑐2 𝑥).

• 𝑥 ← 𝑎 ; 𝑐 for the binding of a with (fun 𝑥 ⇒ 𝑐) where a is the distribution

with only one element. This is the same as 𝑥 ⇐ 𝑟𝑒𝑡 𝑎 ; 𝑐.

• 𝑥
$← 𝑙 ; 𝑐 for the binding of l with c where l is a nonempty list of elements

and x is randomly sampled from the uniform distribution over the elements

of l.

In order for this to be a correct implementation of a monadic structure it has to

obey the following fundamental monadic laws: left identity, right identity and the

associativity of monadic structures.

These monadic laws are proved correct with regards to the defined distributions

by proving the following lemmas:

• Left-identity :

Theorem unit_left : ∀ (A B : Type) (a : A) (F : A → T B),

x ← a ; F x = F a.

3.2. Mathematical Results 27

• Right-identity :

Theorem unit_right : ∀ (A : Type) (d : T A),

x ⇐ d ; ret x = d.

• Associativity :

Theorem associativity : ∀ (A B C) (d:T A) (F: A → T B) (G: B → T C),

y ⇐ (x ⇐ d; F x) ; G y = x ⇐ d ; y ⇐ F x ; G y.

3.2 Mathematical Results

The definition of cryptographic schemes involves the use of mathematical struc-

tures and the correctness and security of the schemes are dependent on these struc-

tures’ properties. The framework formalizes such structures, like bit strings and

groups, along with its operations and also provides the proof of the corresponding

properties.

Concerning the bit strings, the framework mostly focus on its xor operation

and the properties that this operation possesses. The group definition is comprised

of general properties of groups, such as, associativity or closure, and more specific

results like properties of cyclic groups.

To formalize the definition of a group the Record construction of Coq is used.

This allows the definition of records like in many programming languages but,

additionally, it also provides a way of defining a signature for the module. Any

instantiation of this type must be proved correct with respect to the type signature

defined:

Record Group : Type := {

carrier :> Type ;

eq_dec : forall a b:carrier, {a=b}+{a<>b} ;

28 Chapter 3. David Nowak’s Framework

neutral : carrier ;

mult : carrier -> carrier -> carrier ;

inv : carrier -> carrier ;

neutral_left : forall a, mult neutral a = a;

neutral_right : forall a, mult a neutral = a;

inv_left : forall a, mult (inv a) a = neutral;

inv_right : forall a, mult a (inv a) = neutral;

associative : forall a b c, mult a (mult b c) = mult (mult a b) c

}.

The carrier is the type of elements of the group and the symbol :> represents a

coercion from the type Group to the type of the carrier. That means that the type

system automatically inserts the coercion function when a value of type Group

is used in a context where the type Type is expected. eq_dec is the decidability

property of the group’s equality and neutral is the neutral element of the group

operation. Any instantiation of the Group type must define every field, like the

operation of the group and the inverse of an element. Then it must be proved that

the instantiation indeed forms a group by proving the properties that a group must

possess: associativity and both identity and invertibility of the neutral element.

The closure property of groups is already trivially assured since the signature of the

group operation is defined as receiving two elements of the group and producing

a element of the group.

The framework makes use of one instantiation of the group construction, namely

the definition of group of integers modulo n. In order to formalize it, every single

field of the group record must be defined. The type of elements of the groups are

integers between 0 and n-1 that are relative prime to n:

Definition carrier : Set := { x:Z | 0 <= x < n /\ rel_prime x n }.

3.2. Mathematical Results 29

The eq_dec field is defined as the equality operation between integers, the group

operation is multiplication modulo n and the inverse operation is the modular

multiplicative inverse calculated by using the extended Euclidean algorithm. The

neutral element is the integer 1:

Definition neutral : carrier := exist _ 1 neutral_spec.

where neutral_spec is the proof that 1 is an element of the group, that is, that the

following statement is valid:

Lemma neutral_spec : 0 <= 1 < n /\ rel_prime 1 n.

To complete the instantiation it is then needed to prove that the behavior of this

group specification is indeed the expected one by proving the group’s properties

for this instantiation.

As expected, the formalization of these results required an extensive devel-

opment library to support it. To that effect, the development includes several

extensions to the standard library by providing lemmas, definitions and tactics

that are of general use and can be added to the actual standard library. The

major extension was the one developed over Coq’s lists and Coq’s representation

of binary integers while minor additions were done to Coq’s library about real

numbers, logic, peano arithmetic and mathematical relations.

The framework also makes use in its development of the Pocklington library

available in Coq’s users’ contribution. This library was developed by Olga Caprotti

and Martijn Oostdijk in which the Pocklington-Lehmer [BSS99] primality test is

formalized. Besides this formalization, the Pocklington library also provides a

proof of Fermat’s little theorem:

𝑎𝑝 = 𝑎 (𝑚𝑜𝑑 𝑝)

for all 𝑎 of type integer and 𝑝 prime. The framework incorporates this library

solely for the use of the Fermat’s little theorem proof.

30 Chapter 3. David Nowak’s Framework

3.3 Games

This framework uses the sequence of games approach to the development of security

proofs. In the game based approach, the proof of security, whatever the security

notion in question may be, is achieved by reduction. This can be done by showing

that an adversary capable of breaking the security notion can be used to solve

a hard problem in an efficient way. In order to attain such proof, one usually

starts with an initial game that captures the interaction between an adversary and

the cryptographic scheme that is being analysed. The initial game is successively

altered thus originating a sequence of games that culminates in a game where the

adversarial advantage over a truly random adversary is trivially negligible. Every

transition between games should be as simple as possible in order to prove its

correctness.

In this framework, games can be seen as functions that return a distribution

and in order to manipulate games the Equiv construct was defined:

Definition Equiv (A:Type)(P:A->bool)(epsilon:R)(d1 d2:T A) : Prop :=

Rle (Rabs (probability P d1 - probability P d2)) epsilon.

Rle is the ≤ relation for elements of type R. Equiv receives two distributions

(d1,d2), the event P and the real number 𝜖 and asserts that |𝑃𝑟 (𝑃 𝑑1) −

𝑃𝑟 (𝑃 𝑑2)| ≤ 𝜖.

This is used to formalize both the security assumptions, such as DDH, and

the security notions. For example, the semantic security notion is formalized as

a negligible difference between the probability of breaking the semantic security

game and guessing a random coin toss:

Equiv (eqb true) epsilon

(k <<= keygen ;

r <$ randomness ;

3.3. Games 31

mm <- A1 r (fst k) ;

b <$ [true;false] ;

c <<= encrypt (fst k) (if b then fst mm else snd mm) ;

b’ <- A2 r (fst k) c ;

ret (eqb b’ b)

)

(b <$ [true; false];

ret b

)

The game event simply checks if the returning boolean is true by using the boolean

equality operation eqb. In the top game the return value represents the result of

winning the game while in the bottom the game it is a random value. The top

game can be seen as the initial game and to prove the semantic security of any

scheme, this initial game needs to be incrementally refined in order to achieve the

bottom game. The change in probability made by these refinement steps must be

bounded by 𝜖.

To transition between games the framework provides the tactic transitive. This

receives as input the new game and the difference in probability between the top

game and the new game that we wish to transition to. Then, in order to transition

from one game to the other, its equivalence, with regards to the given difference,

needs to proved.

Because these differences between successive games are generally trivial, some

automatic tactics are already available that prove these transitions:

• flatten uses the associativity lemma to try to prove that two distributions

are equal.

• propagate uses the identity left property of monads to prove simple transi-

32 Chapter 3. David Nowak’s Framework

KeyGen(1𝑘)
.
=

(G, 𝛾, 𝑞)← 𝒢𝒫(1𝑘)
𝑥

$← Z𝑞

𝑘
$← 𝐾

𝛼← 𝛾𝑥

𝑠𝑘 ← ((G, 𝛾, 𝑞), 𝑥, 𝑘)
𝑝𝑘 ← ((G,𝛾, 𝑞), 𝛼, 𝑘)
return (𝑝𝑘,𝑠𝑘)

Enc(𝑝𝑘,𝑚)
.
=

((G,𝛾,𝑞),ℎ,𝑘)← 𝑝𝑘

𝑟
$← Z𝑞

𝑐1 ← 𝛾𝑟

𝑐2 ← 𝑚⊕𝐻𝑘(ℎ
𝑟)

return (𝑐1,𝑐2)

Dec(𝑠𝑘, 𝑐)
.
=

((G,𝛾,𝑞),𝑥,𝑘)← 𝑠𝑘
(𝑐1, 𝑐2)← 𝑐
𝑚← 𝑐2 ⊕𝐻𝑘(𝑐

𝑥
1)

return 𝑚

Figure 3.1: Hashed ElGamal Encryption Scheme

tions such as propagation of definitions.

• flatten_propagate, as the name implies, combines both flatten and propagate

into a single tactic.

• movebind proves the reordering of the execution of two steps if this change

does not interfere with the correct behavior of the game.

The intuition behind these tactics and its usefulness will be better understood in

the following section where some examples of proofs will be given.

3.4 Hashed ElGamal Proof

It is generally preferable to work with bit strings as messages instead of group

elements. Therefore, the ElGamal encryption scheme can be adapted by using an

hash function. This variant is called Hashed ElGamal and its definition is given

in Figure 3.1. 𝐻𝑘 (with 𝑘 ∈ 𝐾) is a family of hash functions where each 𝐻𝑘 is

a function from 𝐺 to {0,1}𝑙. The Hashed ElGamal scheme is semantically secure

under the DDH assumption and under the assumption that the family of hash

function is entropy smoothing (ES).

3.4. Hashed ElGamal Proof 33

The DDH assumption has already been discussed (Section 1.1) and is based

on the problem of distinguishing triples of the form (𝛾𝑥,𝛾𝑦,𝛾𝑥𝑦) and (𝛾𝑥, 𝛾𝑦, 𝛾𝑧),

where 𝑥, 𝑦, 𝑧 are random elements of Z𝑞.

The entropy smoothing assumption states that it is hard to distinguish pairs

of the form (𝑘,𝐻𝑘(𝑚)) from pairs of the form (𝑘,ℎ) where k is randomly sampled

from 𝐾, m from 𝐺 and h from {0,1}𝑙. This can be stated in a formal way by

defining the advantage of breaking the ES assumption as:

AdvES
𝐴 (𝑘) =

⃒⃒⃒
Pr[𝑘

$← 𝐾,𝑚
$← 𝐺 : 𝐴(𝑘,𝐻𝑘(𝑚)) = 1]− Pr[𝑘

$← 𝐾,ℎ
$← {0,1}𝑙 : 𝐴(𝑘,ℎ) = 1]

⃒⃒⃒
𝐻𝑘 is entropy smoothing if every efficient adversary A has negligible advantage.

We will now give a in-depth look to the proof in the standard model of Hashed

ElGamal already done in Nowak’s framework. This will be illustrative of the

capabilities that the framework possesses.

3.4.1 Correctness Proof

We begin with the proof of correctness whose definition in terms of game equiva-

lence is the following:

Lemma correctness : forall m,

Equiv (eqb true) 0

(k <<= keygen;

c <<= encrypt (fst k) m;

m’ <<= decrypt (snd k) c;

ret (equal _ m m’)

)

(ret true

).

34 Chapter 3. David Nowak’s Framework

As a result, a cryptographic scheme is correct if the game of comparing a message

m with the message m’ resulting of encrypting and decrypting has the same prob-

ability as the game that always returns true. Since both games must be equivalent,

every transition has to be a bridging step

We start the proof and unfold the definition of keygen, encrypt and decrypt

and transition to the following game:

transitive 0 (

x <$ seqNE 0 (order G);

k <$ hashkeys;

kp <- ((g^x, k), (x, k));

y <$ seqNE 0 (order G);

c <- (g^y, hash (snd (fst kp)) (fst (fst kp) ^ y) # m);

m’ <- hash (snd (snd kp)) (fst c ^ fst (snd kp)) # snd c;

ret (equal m m’)

).

seqNE 0 (𝑜𝑟𝑑𝑒𝑟 𝐺) is a sequence from 0 to 𝑜𝑟𝑑𝑒𝑟 𝐺 (size of the group 𝐺) with the

assurance that the sequence is not empty and the # symbol is a notation for the

bit string xor operation. This transition consists in inlining the calls to keygen,

encrypt and decrypt. This is a simple bridging step in order to organize the game

that uses the associativity property of monads and thus can be proven by using

the flatten tactic.

In order to show that m and m’ are indeed equal, we would like to simplify

the computation of m’ :

transitive 0 (

x <$ seqNE 0 (order G);

k <$ hashkeys;

3.4. Hashed ElGamal Proof 35

y <$ seqNE 0 (order G);

ret (equal m (hash k ((g^y)^x) # (hash k ((g^x)^y) # m)))

).

This transition merely consists in the propagation of all deterministic assignments

to the return of the game and thus it is also considered a bridging step that can be

solved by the propagate tactic. This is where the mathematical results present in

the framework come into action. The result of encrypting and decrypting m is now

𝐻𝑘(𝑔
𝑦𝑥)⊕𝐻𝑘(𝑔

𝑥𝑦)⊕𝑚. By using the property that the xor of a bit string with itself

produces the neutral element (all zeros bit string), 𝑚 = 𝐻𝑘(𝑔
𝑥𝑦)⊕𝐻𝑘(𝑔

𝑥𝑦)⊕𝑚 can

now be rewritten into m and thus we obtain the equality test between the same

message which is equivalent to the game that always returns true.

3.4.2 Security Proof

We now show the proof of semantic security of the Hashed ElGamal encryption

under the the DDH assumption and the entropy smoothing assumption on the

hash family. Both assumptions are defined as hypotheses in order to be used

during the proof. We start with the initial semantic security game and perform

some bridging steps, such as unfolding of definitions, definitions propagation and

reordering of steps. We then arrive at the following goal:

Equiv (eqb true) (epsilon_DDH + epsilon_ES)

(x <$ seqNE 0 (order G);

y <$ seqNE 0 (order G);

k <$ hashkeys;

r <$ randomness;

b <$ [true;false];

mm <- A1 r (g^x,k);

36 Chapter 3. David Nowak’s Framework

c <- (g^y, hash k ((g^x)^y) # (if b then fst mm else snd mm));

b’ <- A2 r (g^x, k) c;

ret (eqb b’ b)

)

(b <$ [true; false] ;

ret b

)

Notice that, unlike the correctness proof, these games are not strictly equivalent

but instead, their difference in probability is bounded by 𝜖𝐷𝐷𝐻 + 𝜖𝐸𝑆. As a result,

this proof will have two transitions based on indistinguishability: one using the

DDH assumption and the other the ES assumption. We have propagated only the

assignment of the key pair to the return of the game for clarity’s sake. We now

proceed with the first transition based on indistinguishability:

transitive epsilon_DDH (

(x <$ seqNE 0 (order G);

y <$ seqNE 0 (order G);

z <$ seqNE 0 (order G);

k <$ hashkeys;

r <$ randomness;

mm <- A1 r (g ^ x, k);

b <$ [true; false] ;

c <- (g ^ y, hash k g^z # (if b then fst mm else snd mm));

b’ <- A2 r (g ^ x, k) c;

ret (eqb b’ b))

).

This game differs from the previous one by the sampling of the random variable 𝑧

and by replacing 𝑔𝑥𝑦 by 𝑔𝑧. Under the DDH assumption this transition is negligible

3.4. Hashed ElGamal Proof 37

and can be proved by applying DDH hypothesis.

Since z is a random value, it is possible to show that 𝑔𝑧 is also random. This

is a property of cyclic groups formalized in the framework. We now proceed with

the last transition based on indistinguishability:

transitive epsilon_ES (

(x <$ seqNE 0 (order G);

y <$ seqNE 0 (order G);

z <$ seqNE 0 (order G);

k <$ hashkeys;

r <$ randomness;

mm <- A1 r (g^x, k);

b <$ [true;false];

c <- (g^y, s # (if b then fst mm else snd mm));

b’ <- A2 r (g^x, k) c;

ret (eqb b’ b))

).

This can proved by applying the ES assumption because, with the knowledge that

𝑔𝑧 is random and under the ES assumption, ℎ𝑎𝑠ℎ 𝑘 𝑔𝑧 is also random and is

represented by the random sampled variable s.

With the last transition, we are now in position to show that the resulting game

is equivalent to guessing a random toss. Being s a random bit string, the xor of

s with the encryption of the chosen message is also a random bit string. As a

result, the ciphertext no longer depends on the chosen plaintext. Accordingly, the

adversary does not possess any information about the chosen plaintext thus it has

no other choice than to guess. It is then proved that the difference in probability

between the initial and final is negligible, more precisely, this differences is equal

to 𝜖𝐷𝐷𝐻 + 𝜖𝐸𝑆.

38 Chapter 3. David Nowak’s Framework

3.5 Conclusion

In this chapter we have explored the building blocks of the framework developed

by David Nowak. We have seen the formalization of probabilities that have as its

core the definition of a distribution monad, the approach utilized to formalize the

game methodology and the mathematical results present in the framework that

support its proofs with emphasis on the formalization of group theory. An example

of a proof in the framework was provided with the Hashed ElGamal’s proof of both

correctness and semantic security.

Chapter 4

Random Oracle Methodology

In this chapter, the implementation of the random oracle model in Nowak’s frame-

work will be described. The starting point of this implementation is the definition

of stateful distributions (Nowak’s contribution). All the remaining abstractions

needed in the formalization are original, and developed specifically for this the-

sis. The capabilities of the framework’s extensions will be illustrated with the

proof in the random oracle model of the semantic security of the Hashed ElGamal

encryption scheme.

4.1 Random Oracle Model

The random oracle model is a computational model used to prove the security of

a scheme in the reductionist sense that was introduced by Bellare and Rogaway

[BR93] but its idea originates from Fiat and Shamir [FS86]. By reductionist we

mean that in order to prove a security notion we need to show that a computa-

tional assumption of a known hard problem P, such as the problem of the discrete

logarithm, implies the hardness of breaking the scheme. This can be achieved by

showing that an algorithm that could break the scheme can be used to solve P in

40 Chapter 4. Random Oracle Methodology

polynomial time.

What makes this model different from others, such as the standard model,

is that one or more components of the protocol are idealized as random oracles

(for example, hash functions). A random oracle is a black box that maps every

possible query to a random value from its output domain. In the random oracle

model every participant obtains access to the public oracle. To obtain an answer

participants need to directly query the oracle and no one has information about

the mapping of a value x until x has been queried by any of the participants.

In order for the protocol to be used in the real world it needs to be instantiated.

That is, we need to replace the random oracle with an existing implementation of

the idealized component in order to obtain a concrete protocol. Since no instanti-

ation of the random oracle can implement a truly random component, the proof of

security in the random oracle model does not translate into a proof in the standard

model. Also, it has been shown that some protocols that can be proven secure in

ROM, have no secure implementation in the real world [CGH04]. However, these

are artificial counter-examples that do not model real world protocols.

Despite its limitations, a proof of security in the random oracle model provides

a strong indication about its security, namely that, in the idealization of the hash

function, if an adversary does not break any of the security assumptions, then he

must find a flaw in the chosen instantiating hash function in order to break the

security notion that is being proved. For example, since generic attacks do not

take into account specifics about the primitives implementation, since they already

assume the hash function as being random, a secure protocol in the random oracle

model is trivially secure against these type of attacks.

Despite the instantiation process in ROM being of heuristic nature, some prop-

erties of hash functions that maintain the security of protocols instantiated in the

standard model have been studied [CMR98, Can97, GHR99]. As a consequence,

4.2. Framework Extensions 41

the process of designing protocols and providing proofs of their security, assuming

the ideal behavior of hash functions, can be detached from the process of designing

hash functions that possess the needed properties.

4.2 Framework Extensions

The implementation of the random oracle model involves, as expected, a significant

enhancement to the capabilities of the existing framework. This involves not only

the formalization of random oracles and its interaction with both the adversary

and the cryptosystem, but also the development of tools that allow the reasoning

about cryptographic games in the random oracle model.

4.2.1 State Monad

In order to store the mapping between the queried group elements and their cor-

responding hash value, a state monad was defined and combined with the distri-

bution monad. This monad was formalized by David Nowak and it is comprised

of computations that depend on the current state, at the moment of each step’s

execution, with each computation being able to modify the current state. By using

this monad, the state can be ’hidden’ internally. This provides a neat solution to

the problem of implementing the state feature because there is no need for the

explicit data flow of the state from step to step. Like in the definition of the

distribution monad, we provide the definition of Kleisli triple:

• The type constructor receives the type S of the state and the type A of

computations and constructs the type that given the initial state produces

a distribution monad whose values are pairs of type (S * A):

Definition T (State A:Type) := State ->

42 Chapter 4. Random Oracle Methodology

Distribution.T (State * A).

• The unit function simply receives the current state and leaves it unchanged:

Definition ret (State A:Type)(a:A) : T State A :=

fun s => Distribution.ret (s, a).

Distribution.x is used to access the x construct defined in the Distribution

library. In this case, the monad constructor of distributions is used.

• The binding function propagates the resulting state from F :

Definition bind (State A B)(d:T State A)(F:A->T State B) :

T State B := fun s =>

Distribution.bind (d s) (fun s’ => F (snd s’) (fst s’)).

The fundamental monadic laws that were proved correct regarding the definition

of the distribution monad are also proved correct with respect to the definition of

the state monad. In order to explicitly manipulate the state, the fetch and assign

functions are defined. Fetch returns the current state as a value:

Definition fetch : T State State :=

fun s => Distribution.ret (s, s).

Assign replaces the current state with the state given as input to assign:

Definition assign (s:State) : T State unit :=

fun _ => Distribution.ret (s, tt).

Also, it is possible to add a value to a state mapping and to check whether a

certain value is present in the state.

4.2. Framework Extensions 43

4.2.2 Basic Probabilities Laws

In order to compose events and reason about its probability, the framework was

extended with the formalization of basic laws of probability. The following type

of events were included:

• The conjunction of two events.

Definition AND {A} (P Q:A->bool) (x:A) := andb (P x) (Q x).

• The disjunction of two events.

Definition OR {A} (P Q:A->bool) (x:A) := orb (P x) (Q x).

• The negation of an event.

Definition NEG {A} (P:A->bool) (x:A) := negb (P x).

• The certain event that is always true.

Definition Ptop {A:Type} (x:A) : bool := true.

• The impossible event that is always false.

Definition Pbot {A:Type} (x:A) : bool := false.

To deal with probabilities about these type of events, the probability theory was

extended with the formalization of some fundamental laws of probability. Namely,

straightforward properties like the probability of the certain event being 1 and

the probability of the impossible event being 0 were added. The probability of an

event’s negation is calculated by the complement law:

probability (NEG E) d = 1 - (probability E d)

44 Chapter 4. Random Oracle Methodology

E is an event and d is a distribution. From the complement law, one can infer the

law to decompose an event :

probability E d =

probability (AND E E’) d + probability (AND E (NEG E’)) d

The probability of the event that results from the disjunction of some two events

can be determined by applying the union rule:

probability (OR E E’) d =

probability E d + probability E’ d - probability (AND E E’) d

4.2.3 EqP

Distributions are pairs composed by values and their corresponding probability

of occurrence. It is often desirable to restrain our scope to the list of values of

a distribution and disregard their weight in the distribution. We named the list

containing these values as the support of a distribution. Our definition differs from

the generally conveyed meaning of support which discards values that possess zero

probability in the distribution. Our definition does not need to filter these values

because the way the support definition is used throughout the framework already

takes this into account.

Definition support’ {A} (d:T’ A) : list A := List.map (@fst A R) d.

The support of a distribution can be used to define the support of an event over

the distribution. This restricts the support to a subset that satisfies the given

event and this is called supP :

Definition supP’ {A} (P:A->bool) (d:T’ A) : list A :=

List.filter P (support’ d).

4.2. Framework Extensions 45

Both these definitions allows us to define a stronger relation of equality between

two distributions with respect to a certain predicate than the already defined

Equiv :

Definition EqP (P:A->bool) (d d’:T A) :=

forall x, List.In x ((supP P d) ++ (supP P d’)) ->

probability (eq_fun eq_dec x) d = probability (eq_fun eq_dec x) d’.

eq_fun eq_dec x represents a singular event x that checks the presence of x in the

distribution and the EqP equivalence states that for every value x of the support

that satisfies P, the probability of x is the same in both d and d’ distributions.

This is a stricter constrain on the equivalence than the Equiv one because Equiv

only states that according to a predicate P, the probability of the predicate being

satisfied is the same in both distributions. Being a stronger relation of equality, it

is obvious that the EqP equality between two distributions implies the Equiv one.

Also, when met with a proof of an Equiv relation it suffices to prove the EqP for

a weaker event than the one used for Equiv :

Lemma EqP_Equiv_weak : forall A eq_dec (P P’:A->bool) (d1 d2 : T A),

(forall x, P’ x = true -> P x = true) -> EqP eq_dec P d1 d2 ->

Equiv P’ 0 d1 d2.

This is illustrative of the power of EqP because, when met with a proof of an

Equiv relation for an event of the form 𝐴 ∧ 𝐵, we can transition to the EqP

relation and it is enough to prove the EqP relation for just one of either A or B,

whichever produces an easier proof. This is valid because, if we prove the EqP

relation for the event A, then forcefully both subsets of distributions d1 and d2

that satisfy A are exactly the same and so, for the event 𝐴 ∧ 𝐵, it will also be

the same because any element of the distribution that satisfies A is contained in

46 Chapter 4. Random Oracle Methodology

𝐴 ∧ 𝐵. As a result, from the EqP relation of the event A, the EqP relation for

the conjunction of A with any event can be automatically inferred.

The same reasoning cannot be applied to the Equiv relation because the prob-

ability of the event A may be the same in both distributions but the distributions

may differ in the elements’ weight to the probability. This could result in differ-

ent probabilities for the event 𝐴 ∧ 𝐵. This is representative of the difference

of both equality relations with regards to the chosen event. For example, for the

certain event, the Equiv relation is trivial (both probabilities are 1) while the EqP

relation requires the proof that both distributions are extensionally equal and as

result, EqP can be seen as a conditional equality between distributions. Also, the

EqP relation, like Equiv, is also a reflexive, symmetric and transitive relation.

It is possible to move variables from the top of the game, if they occur in both

games, to the context by using the extensionality lemma. This helps simplifying

the respective games:

Lemma EqP_extensionality : forall (A B : Type) eqPdec (P : B -> bool)

(d:T A) (F G : A -> T B),

(forall x, EqP eqPdec P (F x) (G x))%distrib ->

(EqP eqPdec P (x <<= d; F x) (x <<= d; G x))%distrib

The % symbol is used to locally use a delimiting scope than the one currently

opened. When faced with an EqP equivalence whose proof is not trivial it can

be a good approach to decompose the proof of the EqP equivalence into smaller

parts. The equivalence between subsets of both games can then be more easily

verified than trying to prove the whole equivalence. The lemma EqP_bind allows

us to do just that:

Lemma EqP_bind : forall P (P’:A->bool) (d1 d1’:T A) (d2 d2’:A->T B),

forces P d2 P’ -> forces P d2’ P’ ->

4.2. Framework Extensions 47

EqP eq_decA P’ d1 d1’ ->

(forall a, (P’ a)=true -> EqP eq_decB P (d2 a) (d2’ a)) ->

EqP eq_decB P (bind d1 d2) (bind d1’ d2’).

forces P d P’ ensures that if P is valid after the execution of game d then P’ must

also be valid before the game is executed. The forces construct behaviour and its

properties will be described in Section 4.2.6. The EqP_bind lemma allows us to

prove the EqP relation for games d and d’ by proving the following:

• the EqP relation between d1 and d1’ for a new chosen event (P’).

• The new event P’ must force the event P in both d2 and d2’.

• If P’ is valid for any a then the EqP relation for (d2 a) and (d2’ a) must

also be valid.

If any part of the bind is the same in both games then variants of EqP_bind can

be used. Namely the EqP_bind1 and EqP_bind2 lemmas can be used to prove

EqP eq_decB P (bind d1 d2) (bind d1’ d2) and EqP eq_decB P (bind d1 d2) (bind

d1 d2’) respectively.

4.2.4 Fundamental Lemma of Game-playing

In cryptographic game-based proofs, bridging steps and transitions based on indis-

tinguishability are ubiquitous. However, these type of transitions are not always

sufficient. It is also useful to be able to perform transitions based on failure events

and in order to implement these type of transitions we first need to prove the

correctness of the fundamental lemma of game-playing in our development. We

follow [Sho04] approach and show that to prove that both games are equivalent it

is enough to show that both games have the same distribution if the failure event

does not occur:

48 Chapter 4. Random Oracle Methodology

Lemma FUNDAMENTAL : forall {A} eq_dec (E F:A->bool) epsilon

(d1 d2: T State.T A) (s:State.T),

probability F d2 s <= epsilon ->

SEqP eq_dec (NEG F) d1 d2 s ->

Equiv E epsilon d1 s d2 s.

The SEqP construct is similar to the EqP construct except for the fact that it deals

with stateful distributions. From here on forward, any construct with a capital S

prefixed to its name represents the stateful version of the construct.

The second premise is the crux of the lemma. By one side, it faithfully captures

the Bellare and Rogaway [BR06] definition of identical-until-bad games, since it

enforces that both distributions are extensionally equal whenever the negation of

F occurs. On the other side, and due to the SEqP weakening property described

before (EqP_Equiv_weak), it also ensures that the probability of ((𝑁𝐸𝐺 𝐹) ∧ 𝐸)

is also equal in both distributions. It is instructive to compare this formulation with

an alternative formulation already formalized by David Nowak in the framework:

Lemma difference : forall A B (E:A->bool)(F:B->bool) d1 d2 d1’ d2’ s,

Equiv E 0 d1 s (fst d1’) s ->

Equiv E 0 d2 s (fst d2’) s ->

Equiv F 0 (snd d1’) s (snd d2’) s ->

Equiv (AND E (NEG F)) 0 d1’ s d2’ s ->

Equiv P (probability F (snd d1’) s) d1 s d2 s.

In this formalization both games d1 and d2 are extended with the information

needed to deal with the failure event thus originating both d1’ and d2’ whose first

projection is the original game’s return and the second contains the return of the

added information. The two first premises are responsible for showing that these

extensions are well formed, that is, the first projection is the return of the original

4.2. Framework Extensions 49

game. Our lemma of game-playing does not incorporate this extension as they are

performed before the application of the lemma. The main difference between the

lemmas is that Nowak’s one requires the proof that the probability of the failure

event F in both games is the same (third premise) and this involves the reduction

to the hard problem for both games.

We opted to formalize a different game-playing lemma than the one already

formalized so that we could reap the benefits from the definition of EqP. In our

implementation of the game-playing lemma, it is sufficient to prove that the prob-

ability is bounded in only one of the games because by showing that both games

are the same in the EqP sense for the event F then it can be concluded that the

probability of the negation of the event is also the same. As a result, a proof in

one of the games is enough. The possibility of only choosing one of the games

in which to do the proof is quite helpful because generally, and in the Hashed

ElGamal case this is also true, the proof which is often performed by reduction to

the hard problem, is only possible in one of the games.

4.2.5 SInvM

The EqP construct can also be used in order to formalize the notion of a distri-

bution that does not depend on a specific value present in the state for a given

event:

Definition SInvM (m:Dom.T) (P:A->bool) (d:T State.T A) :=

forall s h,

EqP eqP_dec (fun x=>P (snd x))

(d (add m h s))%distrib

(x <<= (d s);

ret (add m h (fst x), snd x))%distrib.

50 Chapter 4. Random Oracle Methodology

The add function receives a state, a value of its domain and the corresponding

value of the co-domain and stores this association in the current state. SInvM

uses the EqP construct to show that adding the m value to the state, before or

after the occurrence of d, produces the same probability distribution for the P

event. The use of Equiv instead of EqP would not be enough to guarantee this

because its use would only ensure that the probability of the P event would stay

the same but the weight of the distribution’s elements that satisfy P could vary.

This notion is needed in proofs in the ROM to assert that the adversary only

has access to oracle values he queries. Concretely, in the ROM proof of the Hashed

ElGamal, when we need to reason about the failure event, which in this proof’s case

is the event where the adversary makes the oracle query about 𝑔𝑥𝑦, it is necessary

to show that, from the adversary’s point of view, if the adversary does not make

the oracle query about 𝑔𝑥𝑦 then computing h from the hash of 𝑔𝑥𝑦 is equivalent to

randomly sampling h.

4.2.6 Forces

In order to propagate the occurrence of certain events from the bottom of a game

to the top, we define the forces construction:

Definition forces (P:B->bool) (d:A->T B) (P’:A->bool) :=

forall a, P’ a=true \/ ((supP P (d a))=List.nil).

For a given game d, a predicate P, that is checked after the game execution, forces a

predicate P’, checked at the start of the execution, if the validity of the P predicate

implies the validity of the P’ predicate.

To better understand the way it works we show some of its properties. We

begin with the obvious ones, namely the ones that show that if P is always true

than any P’ forces P and if P’ is always false then it also forces any P :

4.2. Framework Extensions 51

Lemma forces_1 : forall (P:B->bool) (d:A->T B),

forces P d (fun _=>true).

Lemma forces_0 : forall (P’:A->bool) (d:A->T B),

forces (fun _=>false) d P’.

In our development, many of the lemmas use as a premise proof of validity of

a forces construct. Thus, like for the EqP construct, it is quite helpful that, in

a proof about forces, one can deal with the binding of several game steps. The

forces_bind lemma is always used with that intention in mind:

Lemma forces_bind : forall A B C (P:C->bool) (P’:A->bool)

(P’’:B*A->bool) (d1: A->T B) (d2:B->A->T C),

forces P’’ (fun a=>x <<= d1 a; ret (x,a)) P’ ->

(forall a, forces P (fun x=> d2 x a) (fun x=>P’’ (x,a))) ->

forces P (fun a => x <<= d1 a; d2 x a) P’.

During proofs that involve achieving the truthfulness of a forces construct, it is

also beneficial, aside from the binding of forces, to transform the events present in

forces. This can be done by either weakening the forcing event or strengthening

the event that is being forced. These lemmas are respectively called forces_weak

and forces_impl.

Lemma forces_weak : forall (P1 P2:B->bool) (P’:A->bool) d,

(forall x, P2 x=true -> P1 x=true) -> forces P1 d P’ ->

forces P2 d P’.

Lemma forces_impl : forall (P’ P:A->bool) (PB:B->bool) d,

(forall a, P a=true -> P’ a=true) -> forces PB d P ->

forces PB d P’.

52 Chapter 4. Random Oracle Methodology

The forces construct will be used in the Hashed ElGamal proof to show that if the

adversary has not made the query about the value 𝛾𝑥𝑦 by game’s end then, at any

point inside the game execution, the query has also not been made.

4.3 Hashed ElGamal in the Random Oracle Model

In this section we will provide a in-depth look to the semantic security proof of

the Hashed ElGamal encryption scheme in the random oracle methodology. This

proof requires the use of the framework’s extensions that were developed in the

scope of this work.

4.3.1 List CDH assumption

The ROM proof of Hashed ElGamal uses a weaker assumption of security than

the proof in the standard model. Instead of the assumption of the intractability

of DDH problem, it is only needed to assume the intractability of a variant of

the computational Diffie-Hellman (CDH) called list computational Diffie-Hellman

(list-CDH) [Sho04]. By weaker assumption we mean that an adversary that can

break this weaker assumption can use this solution to efficiently break the stronger

assumption. The reverse statement is not true, otherwise the problems would be

considered equivalent.

The CDH assumption conveys that the problem of computing the value of 𝛾𝑥𝑦

given (𝛾𝑥,𝛾𝑦) is hard. Formally, the advantage an efficient adversary A possesses

in computing 𝛾𝑥𝑦 is negligible:

Pr[𝑥,𝑦
$← Z𝑞 : 𝐴(𝛾

𝑥,𝛾𝑦) = 𝛾𝑥𝑦]

It can easily be seen that an adversary with non-negligible advantage in CDH also

4.3. Hashed ElGamal in the Random Oracle Model 53

has non-negligible advantage in DDH. When given a triple of the form (𝛾𝑥,𝛾𝑦,𝛾𝑟) it

is trivial to decide whether r is equal to either one of (x,y,z) by using the CDH to

compute 𝛾𝑥𝑦 from 𝛾𝑥 and 𝛾𝑦 and compare it to 𝛾𝑟. As such, the CDH assumption

implies the DDH assumption but the contrary does not always holds since there

exists several groups where the CDH assumption holds but the DDH one does

not [JN03]. Thus, the CDH assumption is a considerably weaker assumption than

DDH.

The list CDH assumption is a variant of the CDH assumption in which the

adversary is now able to output a bounded list of group elements, instead of just

one, and its advantage is the following:

Pr[𝑥,𝑦
$← Z𝑞 : 𝛾

𝑥𝑦 ∈ 𝐴(𝛾𝑥,𝛾𝑦)]

For any efficient adversary its advantage is negligible under the list CDH assump-

tion. The CDH and list-CDH are considered as equivalent assumptions. If the

CDH advantage is non negligible then clearly the list-CDH advantage is also non

negligible. On the other hand, if the list-CDH advantage is non negligible then a

probabilistic algorithm can be built by randomly choosing a group element from

the list of group elements [Sho04].

As in previous proof examples this computational assumption will be given as

an hypothesis.

Definition ListCDH (n:nat) (epsilon:R) : Prop :=

forall D : G -> G -> Distribution.T (vec G n),

probability (eqb true)

(x <$ seqNE 0 (order G);

y <$ seqNE 0 (order G);

l <<= D (g^x) (g^y);

54 Chapter 4. Random Oracle Methodology

b <- vec_in (Group.eq_dec G) ((g^x)^y) l;

ret b

) <= epsilon.

D represents the cryptographic scheme adversary and given 𝑔𝑥 and 𝑔𝑦 it outputs

the list that is checked to see if it contains 𝑔𝑥𝑦.

4.3.2 Adversarial loop of queries

Obviously, being a proof in the random oracle methodology, the adversary has

access to random oracles. In the case of the Hashed ElGamal only one oracle is

available. Given a group element the oracle produces a random hash of its value

and stores the mapping between group element and hash value. When the oracle

is given a query of a group element that has already been queried it returns the

stored mapping.

With the random oracle functionality defined, it only remains to define the

access conditions available to the adversary. The adversary can query the oracle

before he chooses the pair of messages and can also make queries after receiving

the encrypted message. The number of queries is not unlimited but, instead, it is

bounded by a constant (which, in turn, is bounded polynomially on the security

parameter).

In order to control the number of queries made by the adversary we have used

dependent types to define the list of queries made by the adversary:

Definition vec (A:Type)(n:nat) : Type :=

{l: list A |(beq_nat (length l) n) = true}.

beq_nat is the boolean equality operator on naturals. By defining vec n as a type

with a list and a proof that its size is equal to n, we can define any adversarial

loop of queries as returning the type vec q, where q is the maximum number of

4.3. Hashed ElGamal in the Random Oracle Model 55

queries allowed in the loop, and we automatically obtain the proof that the list

of queries is well formed and its size is q. This avoids reasoning explicitly on the

number of queries made by the adversary.

The adversarial loop is defined as a recursive function on the number of queries:

Fixpoint ADVloop {A m} (n:nat)(lIN:vec A m)(d: list A -> T State.T A)

: T State.T (vec A (n+m)) :=

match n return T State.T (vec A (n+m)) with

| O => ret lIN

| S n’ => (x <<= d (vec2list lIN);

v <<= ADVloop n’ lIN d;

ret (vec_cons x v))

end.

vec2list returns the list inside the vec type, vec_cons x v inserts v into v of type

vec and d is responsible for executing the adversarial query.

The loop receives as input the list of queries already done and increments it

with each query made by d. In the Hashed ElGamal proof, d will be instantiated

with:

(fun l : list (G * Bitstring.T len) =>

m <- A1 r (fst k) l; h <<= hash m; ret (m, h))

The adversarial view of the oracle’s state generally differs form the actual contents

of the oracle. In the Hashed ElGamal proof the adversarial view only differs in

the storing of the value 𝑔𝑥𝑦 but this distinction becomes more important in other

proofs, where, for example, more than one random oracle may exist.

56 Chapter 4. Random Oracle Methodology

4.3.3 Semantic Security proof

As usual we start with the initial semantic security game instantiated with the

Hashed ElGamal in the random oracle model. Several bridging steps are per-

formed, namely propagation of definitions, reordering of some independent steps

and moving variables to the context, to obtain the following game:

Equiv (eqb true) epsilon_lCDH

(x <$ seqNE 0 (order G);

y <$ seqNE 0 (order G);

b <$ [true;false];

l1 <<=

ADVloop q1 vec_nil

(fun l : list (G * Bitstring.T len) =>

m <- A1 r (g^x) l; h <<= hash m; ret (m, h));

mm <- A2 r (g^x) (vec2list l1);

h <<= hash ((g^x)^y);

c <- (g^y, h # (if b then fst mm else snd mm));

l2 <<= ADVloop q2 l1

(fun l : list (G * Bitstring.T len) =>

m <- A3 r (g^x) l c; h0 <<= hash m; ret (m, h0));

b’ <- A4 r (g^x) (vec2list l2) c;

ret (eqb b’ b)

) (emptyS Codom.T)

(b <$ [true;false];

ret b

) (emptyS Codom.T)

4.3. Hashed ElGamal in the Random Oracle Model 57

This Equiv is stateful and emptyS Codom.T is the initial state for each game, and

as expected, this represents the state with no mapping stored. Notice that the first

adversarial loop receives an empty list (vec_nil) and both loops are bounded by

the parameters q1 and q2. We would like to state that the game where one tries to

guess a random coin toss is equivalent to the top with h being randomly sampled

instead of being the result of querying the oracle. This requires a transitions but

this is a transition from the bottom games instead of the usual top game. This

is also possible because Equiv is a symmetric equivalence and so both games are

interchangeable.

This transition is a bridging step and can be proved correct proved by showing

that since h is now random then the result of its xor with the chosen message

is also random. Since the encrypted message no longer depends on the chosen

message, guessing which message was chosen is the same as guessing a random

coin toss. With this transition proved we obtain the following goal:

Equiv (eqb true) (epsilon_lCDH)

(b <$ [true;false];

l1 <<= ADVloop q1 vec_nil

(fun l : list (G * Bitstring.T len) =>

m <- A1 r (g^x) l; h <<= hash m; ret (m, h));

mm <- A2 r (g^x) (vec2list l1);

h <$ Codom.to_list;

c <- (g^y, h # (if b then fst mm else snd mm));

l2 <<= ADVloop q2 l1

(fun l : list (G * Bitstring.T len) =>

m <- A3 r (g^x) l c; h0 <<= hash m; ret (m, h0));

b’ <- A4 r (g^x) (vec2list l2) c;

ret (eqb b’ b)

58 Chapter 4. Random Oracle Methodology

) (emptyS Codom.T)

(b <$ [true;false];

l1 <<= ADVloop q1 vec_nil

(fun l : list (G * Bitstring.T len) =>

m <- A1 r (g^x) l; h <<= hash m; ret (m, h));

mm <- A2 r (g^x) (vec2list l1);

h <$ hash ((g^x)^y);

c <- (g^y, h # (if b then fst mm else snd mm));

l2 <<= ADVloop q2 l1

(fun l : list (G * Bitstring.T len) =>

m <- A3 r (g^x) l c; h0 <<= hash m; ret (m, h0));

b’ <- A4 r (g^x) (vec2list l2) c;

ret (eqb b’ b)

) (emptyS Codom.T)

Notice the sampling of x, y and b no longer appear in this goal since they were

previously put in the context for both games. This is achieved by using the exten-

sionality lemma and it was used to simplify both games. The proof of this goal is

where all the extensions developed for the framework will come to work. In order

to be able to use the information about the queries that were made during the

game execution by the adversary and the value used in the encryption we need to

somehow propagate these values to the return of the game so that the event can

work with them. This is needed so that we can perform a transition based on a

failure event.

Failure Event

So that one may check whether or not the query has been made by the adversary,

we have defined the NQueryP predicate :

4.3. Hashed ElGamal in the Random Oracle Model 59

Definition NQueryP n (m:Dom.T) (l:vec (Dom.T*Codom.T) n) : bool :=

eqb (vec_in Dom.eq_dec m (vec_map (@fst Dom.T Codom.T) l)) false.

The use of vec_map in the definition shows that we are only interested in the list

of domain values present in the vec, thus discarding the information about the

hash values, and this list is checked for the value m by vec_in. The failure event

is based on NQueryP and simply receives the input from the game with 𝑔𝑥𝑦 and

the list of queries made during both adversarial loop and checks if 𝑔𝑥𝑦 is present

in the list:

Definition NQueryGxy {n} (x:(G*vec (G * Bitstring.T len) n)) :=

match x with (gxy, l2) => NQueryP gxy l2

end.

With the failure event precisely defined, we can now apply the game-playing lemma

in the following way :

apply FUNDAMENTAL with (F:=(fun x=> NQueryGxy (snd x))).

By applying the game-playing lemma, we are then obliged to prove the two fol-

lowing sub goals: the proof of the reduction of one of the games to the list-CDH

problem and the proof that both games have the same supporting distribution if

the adversary has not made the query.

Reduction to the list-CDH problem

In the sub goal where one needs to prove the reduction, we have the following

proof objective:

probability

(NEG (fun x : bool * (G * vec (G * Bitstring.T len) (q1 + q2)) =>

NQueryGxy (snd x)))

60 Chapter 4. Random Oracle Methodology

(b <$ [true;false];

l1 <<= ADVloop q1 vec_nil

(fun l : list (G * Bitstring.T len) =>

m <- A1 r (g^x) l; h <<= hash m; ret (m, h));

mm <- A2 r (g^x) (vec2list l1);

h <$ Codom.to_list ;

c <- (g ^ y, h # (if b then fst mm else snd mm));

l2 <<= ADVloop q2 l1

(fun l : list (G * Bitstring.T len) =>

m <- A3 r (g^x) l c; h0 <<= hash m; ret (m, h0));

b’ <- A4 r (g^x) (vec2list l2) c;

ret (eqb b’ b)

) (emptyS Codom.T) <= epsilon_lCDH

In this goal, we need to prove that the probability of the adversary querying the

value 𝑔𝑥𝑦 is bounded by 𝜖𝑙𝐶𝐷𝐻 . Notice that we chose the game where h is randomly

sampled. This allows to consider the following subset of the game as being the

adversary:

(b <$ [true;false];

l1 <<= ADVloop q1 vec_nil

(fun l : list (G * Bitstring.T len) =>

m <- A1 r (g^x) l; h <<= hash m; ret (m, h));

mm <- A2 r (g^x) (vec2list l1);

h <$ Codom.to_list ;

c <- (g^y, h # (if b then fst mm else snd mm));

l2 <<= ADVloop q2 l1

(fun l : list (G * Bitstring.T len) =>

m <- A3 r (g^x) l c; h0 <<= hash m; ret (m, h0));

4.3. Hashed ElGamal in the Random Oracle Model 61

)

By representing the adversary in such way we are able to form an instance of the

list-CDH and, as a result, we are able to prove the goal by applying the existing

hypothesis about the list-CDH assumption.

SEqP with the failure event

With the reduction to the list-CDH problem proved we now are faced with the

proof of the next remaining sub goal in which the SEqP equivalence between both

games with regards to the event where the adversary does not make the query

about 𝑔𝑥𝑦 needs to be proved.

First we need to swap the order of execution of the first adversarial loop of

queries and the sampling of h in the game where h is obtained by querying the

random oracle. The purpose of this transition will be latter explained and the

resulting goal from the transition is the following:

SEqP (eqP_dec RandomOracle.State.eq_dec (eq_decX (q2 + (q1 + 0))%nat))

(fun x0 : bool * (G * vec (G * Bitstring.T len) (q2 + (q1 + 0))) =>

NQueryGxy (snd x0))

(h <<= hash ((g^x)^y);

l1 <<= ADVloop q1 vec_nil

(fun l : list (G * Bitstring.T len) =>

m <- A1 r (g^x) l; h <<= hash m; ret (m, h));

mm <- A2 r (g^x) (vec2list l1);

c <- (g^y, h # (if b then fst mm else snd mm));

l2 <<= ADVloop q2 l1

(fun l : list (G * Bitstring.T len) =>

m <- A3 r (g^x) l c; h0 <<= hash m; ret (m, h0));

62 Chapter 4. Random Oracle Methodology

b’ <- A4 r (g^x) (vec2list l2) c;

ret (eqb b’ b)

)

(h <$ Codom.to_list;

l1 <<= ADVloop q1 vec_nil

(fun l : list (G * Bitstring.T len) =>

m <- A1 r (g^x) l; h <<= hash m; ret (m, h));

mm <- A2 r (g^x) (vec2list l1);

c <- (g^y, h # (if b then fst mm else snd mm));

l2 <<= ADVloop q2 l1

(fun l : list (G * Bitstring.T len) =>

m <- A3 r (g^x) l c; h0 <<= hash m; ret (m, h0));

b’ <- A4 r (g^x) (vec2list l2) c;

ret (eqb b’ b)

)

(emptyS Codom.T)

The theorem responsible for swapping a game’s order of execution of the hashing

step is called SEqP_hash:

Theorem SEqP_hash : forall {A B} eq_decA eq_decB (P’:A->bool)

(P:B->bool) (d1:T _ A) (d2:A->Codom.T->T _ B) m s,

SInvM eq_decA m P’ d1 ->

(forall h, Sforces P (fun x=> d2 x h) P’) ->

SEqP eq_decB P

(x <<= d1; h <<= hash m; d2 x h)

(h <<= hash m; x <<= d1; d2 x h) s.

So now we apply the SEqP_hash lemma where P’ will be the event that checks

whether the adversary has made the query about 𝑔𝑥𝑦:

4.3. Hashed ElGamal in the Random Oracle Model 63

apply SEqP_hash with (P’:= NQueryP ((g^x)^y)).

As expected, this generates two sub goals : the proof that the first adversarial loop

is SInvM and the proof that if the query about 𝑔𝑥𝑦 has not been made by game’s

end then, forcefully, it has not been made after the resulting swap of steps.

The first sub goal can be proved by applying the lemma that assures the validity

of SInvM for a general loop with NQueryP :

Lemma SInvM_ADVloop : forall eq_dec (m:Dom.T) ls

(d:list (Dom.T*Codom.T)->T State.T (Dom.T*Codom.T))

(n:nat) (l:vec (Dom.T*Codom.T) ls),

(forall ls l, @NQueryP ls m l=true ->

SInvM eq_dec m (fun x => negb

(if Dom.eq_dec m (fst x) then true else false)) (d (vec2list l))) ->

SInvM (veq_dec eq_dec) m (NQueryP m) (ADVloop n l d).

Being a more general lemma that what we need, we are forced to instantiate d

with the body of our loop and show that if the adversary has not made the query

about 𝑔𝑥𝑦 then any query chosen by the adversary does not depend on the hash

value of 𝑔𝑥𝑦 present in the random oracle state.

The other sub goal is the forces of the NQueryP predicate for the adversarial

loop:

Lemma Sforces_ADVloop : forall X m q ls l d,

Sforces (fun x=> NQueryP m x)

(fun a=>@ADVloop _ ls q l (d a))

(fun _ : X => NQueryP m l).

This can be proved by showing that the ADVloop construct is monotonic with

regards to the negated membership predicate and as a result, if a value has not

64 Chapter 4. Random Oracle Methodology

been query at a certain point of execution then, forcefully, it has not been queried

before that point.

The objective of doing this swap was to simplify the proof of the theorem

SEqP_SInvM_hash:

Theorem SEqP_SInvM_hash : forall {A} eq_decA m (P:A->bool) d ,

(forall h, SInvM eq_decA m P (d h)) ->

SEqP (eqP_dec State.eq_dec eq_decA) P

(h <<= hash m; d h)

(h <$ Codom.to_list; d h) (emptyS Codom.T).

This lemma shows that if we start with the empty State then for a given event P,

querying the random oracle is the same as randomly sampling h by assuming that

the remaining game does not depend on the hash value of m stored in the random

oracle state. In this proof’s case, m will be the value 𝑔𝑥𝑦 and the event P will be

event of the adversary not querying 𝑔𝑥𝑦.

By only having to deal with empty state this lemma’s proof is made simpler

because if the state is empty then any initial query will not retrieve any value from

the random oracle state and thus the random oracle will also randomly sample the

value of h. The only difference is the storing in the random oracle state of the asso-

ciation between the h value and its correspondent hash value. If we hadn’t swapped

the loop with the sampling of h then, in order to apply the SEqP_SInvM_hash

lemma, we would have to pass the first adversarial loop. This transition would

alter the initial state, since the adversarial queries would populate the oracle, and

thus the lemma could not be applied because of the non empty state.

We now apply SEqP_SInvM_hash that produces the goal in which we need to

prove that the resulting game without the computing of h is SInvM with regards

to NQueryGxy. This is proved by progressing through the game using SInvM_bind

and by proving that each step of the game is SInvM. The main difficulties are both

4.4. Conclusion 65

adversarial loops and, like before, the SInvM_ADVloop lemma is used in order to

achieve their proofs.

4.4 Conclusion

We have provided an in-depth look at the random oracle methodology and de-

scribed the work done in the course of this thesis to extend the framework with

capabilities to perform game-based cryptographic proofs in the random oracle

model. To this end, a considerable amount of auxiliary definitions are needed,

together with the associated lemmas. Due to space limitations only the state-

ments of the main results were briefly alluded. The reader is deferred to the full

development for further details. The use of this extension is illustrated with the

proof of semantic security of Hashed ElGamal in the random oracle model along

with the explanation of the main steps.

66 Chapter 4. Random Oracle Methodology

Chapter 5

Ssreflect

Ssreflect is an extension to the interactive theorem prover Coq developed by George

Gonthier that was first used in the formalization of the Four Color Theorem. It

allows the use of small scale reflection proofs and it is currently in version 1.2 that

is compatible with Coq’s version 8.2pl1.

As it name indicates, Ssreflect extends Coq with the use of small scale reflection

which is characterized by the use of computation with symbolic representation

[GM08]. Coq’s use of reflection, in tactics like ring or romega, is performed in

big scale where computational reflection is done in a transparent way to the user.

In Ssreflect, the use of symbolic representation becomes visible to the user and

this representation may appear in any lemma or sub-goal. The user is thus given

control over the representation and he is able to perform translation from logical to

symbolic representation. The main advantage of the use of small scale reflection is

that different representations, as simple as they may be, provide useful procedures

[GM08].

Ssreflect uses reflection to work with booleans as propositions thus enhancing

the performance of propositional reasoning. It is then possible to use the compu-

tational behaviour of boolean predicates to perform rewriting in any goal because

68 Chapter 5. Ssreflect

their logical equivalence can be seen as the equality of their value [Gon06]. This

kind of reflection allows the use of classical reasoning, in spite of Coq’s intuition-

istic logic, because boolean predicates are decidable and thus inherently provide

classical reasoning. Therefore, classical principles like the principle of excluded

middle can be used when needed.

Despite the advantages of the boolean representation, logical propositions are

still needed for some tasks, such as applying primitive tactics, and a way to tran-

sition back and forth between both representations is required. To this effect,

Ssreflect defines the predicate reflect where reflect P b, for a proposition P and a

boolean value b, indicates a reflection between P and b = true . For example,

Lemma orP : reflect (b1 \/ b2) (b1 || b2).

illustrates a reflection between the logical “or” and its boolean counterpart.

These kind of lemmas are called view lemmas and represent equivalences be-

tween the boolean and the propositional domain. View lemmas are generally

postfixed by a "P”. The application of view lemmas is characterized by the use of

the "/" switch and it can be combined with most existing tactics. With a goal of

the form:

(b1==b2) || b2

the command "apply/orP” replaces the boolean or with the logical one:

(b1==b2) \/ b2

There is no need to explicitly indicate the intended direction of the reflection be-

cause the view mechanism is capable of automatically inferring the right direction.

It is interesting to notice that, even though (b1==b2) or b2 belong to the

type bool, they appear to the user as being of type Prop. This comes as result of

Ssreflect injecting booleans into propositions by the use of the is_true coercion:

5.1. Bookkeeping 69

Coercion is_true (b : bool) := b = true.

This means that a boolean expression can be used whenever a proposition is ex-

pected. These kind of coercions are transparent to the user.

Ssreflect goes beyond the addition of reflection and provides many general

purpose features. The rewrite tactic was heavily extended. It is possible to rewrite

more than one hypothesis in a single command and the mechanism of occurrence

selection inside a rewrite is more robust. Additionally, the rewrite tactic can be

used to simplify goals, to fold or unfold definitions and to prove resulting trivial

goals:

rewrite /def {2}H1 /= H2 //.

This tactic unfolds the definition of def, rewrites the second occurrence of the

pattern in the hypothesis H1, simplifies the goal, rewrites the hypothesis H2 and

tries to solve trivially the resulting sub-goals.

5.1 Bookkeeping

Ssreflect provides the user with an efficient way of doing bookkeeping during a

proof, in which bookkeeping operations are responsible for moving things between

the goal and the context while changing their shape [TZ08]. These operations

can be seen as changes in data flow that are logically trivial, such as choosing the

names of hypothesis, and thus do not actually prove anything new. Albeit this

fact, these kind of step are ubiquitous in proof scrips and exist in great number.

Good bookkeeping proves to be important to define an organized structure to

proof scripts and Ssreflect tries to achieve this by enforcing the explicit naming of

all hypotheses and the removal of hypothesis that are no longer needed.

The tactic intros, used in Coq to introduce new hypothesis, gives the user the

liberty to decide whether to supply or not a name for each hypothesis. In order to

70 Chapter 5. Ssreflect

ensure good bookkeeping Ssreflect replaces the tactic intros with the tactic move

that enforces a strict naming of hypothesis. This tactic is more powerful than intros

and provides the user with trivial bookkeeping operations such as introducing new

hypothesis and clearing existing ones. In addition to move, in Ssreflect almost

every tactic can perform bookkeeping steps by using the tacticals ’=>’ and ’:’.

This avoids the repetitive use of tactics that uniquely perform bookkeeping steps.

move => a b <- []; apply: H.

This sequence of commands introduces the new variables/hypothesis a and b,

rewrites with the hypothesis that is on top of the proof stack and immediately

discards it and performs case-splitting. Finally it applies H and then clears it from

the context.

5.2 Miscellaneous Features

In a big development it is virtually impossible to keep track of every proven lemma

so the use of a good search mechanism becomes crucial. Ssreflect attempts to make

the task of finding a specific lemma or browsing a list of existing ones easier by

extending Coq’s Search command. Additionally, Ssreflect employs a naming policy

for the lemmas used in their library, for example, the use of the suffix ’A’ to indicate

an associativity lemma. This allows a better organization of the supporting library

enhancing the library’s usability and thus facilitating the search of existing lemmas.

Ssreflect aims to improve proof scripts’ readability by providing indentation

and bullets allowing the user to structure the several proof steps. Also, when a

definition in a proof is changed, the proof should fail as soon as this new definition

is used in the proof so that the effect of the change can be precisely pinpointed.

This desired property is ensured in Ssreflect by the use of terminators. These are

used to end a single sub-goal so that each line in the proof script should correspond

5.3. Ssreflect libraries 71

to the elimination of one sub-goal thus making Ssreflect proofs more compact than

the ones in regular Coq.

Ssreflect employs the use of compositional tactics, allowing the chaining of

many simple tactics. This is encouraged instead of the use of automation tactics

such as auto. Also, some of Coq’s primitive tactics possess a complex behavior

that often do more than what the user needed and whose resulting effect cannot

always be precisely anticipated.

In that respect, the chaining of small tactics enhances proof readability by

giving the user a fine-grained control over the operations that are being executed

since each operation can be specified in detail. These changes employed by Ssreflect

in proof script style may not seem much relevant but they prove useful in large

developments by improving the flexibility and maintainability of proof scripts.

5.3 Ssreflect libraries

Ssreflect possesses a great number of supporting libraries which contain the formal-

ization of several mathematical structures that were used in the proof of the four

colour theorem and later in the Feit-Thompsom theorem. In Ssreflect’s libraries,

algebraic structures are represented as generic interfaces rather than actual mod-

ules. These algebraic structures are implemented with the purpose of providing

common notation for expressions and for proofs so that modules can benefit from

the composition of these structures (e.g. multiple inheritance) [GGMR09]. In or-

der to package these structures, mixins were used to define both the operations

and axioms satisfied by a structure which are then encapsulated with their repre-

sentation type. As an example, the eqType structure that is used throughout the

development to provide types with decidable equality [GMR+07] is defined as:

Record eqType_mixin (T : Type) : Type := EqTypeMixin {

72 Chapter 5. Ssreflect

op : sort -> sort -> bool;

eqP : forall x y , reflect (x = y) (op x y).

}.

Record eqType : Type := EqType {

carrier :> Type;

spec : eqtype_mixin carrier

}.

sort is a coercion of an eqType to its carrier type, op the equality operation on

the type and eqP is the axiom that must be satisfied by any implementation of

the eqType, that is, the reflection from op to the Leibniz equality operator. This

reflection allows the use of op as a rewritable relation.

An example of a type that possesses such structure is the type of booleans in

Ssreflect. In order to equip the bool type with an eqType structure we need to

define the equality operator for booleans (eqb) and the proof of its reflection to the

Leibniz equality (eqP). This allows the implementation of the eqType structure:

Definition bool_eqTypeMixin := @EqTypeMixin bool eqb eqP.

Definition bool_eqType := eqType bool_eqTypeMixin

With bool_eqType defined as possessing the eqType structure, one would expect

the automatic inference of a == b as a well formed equality comparison for all a

and b of type bool where (==) is notation for the equality operation. However,

such automatic inference from the type inferer does not occur because when it

needs to find an eqType structure for the bool type it does not know that the

correct one is bool_eqType. Canonical structures allow the inference of a specific

structure for a specific type and thus allows us to solve this problem by providing

hints to Coq’s unification algorithm about which type to infer when an eqType

structure over bool is needed [GGMR09].

5.4. Hashed ElGamal’s proof in Ssreflect 73

Canonical Structure bool_eqType.

The use of canonical structures also allows the inheritance of proofs and sharing

of notations. Throughout the ssreflect libraries the use of mixins and canonical

structures is systematic and this example is representative of the approach to

building the libraries [GM10]:

• Implementation of modularity by defining generic abstract structures such

as eqType.

• Development of definitions and properties of each structure.

• Instantiation of the generic structures, normally by the use of canonical struc-

tures. The bool_eqType is an example of such instantiation.

• Development of the theory pertaining the specific types that were instanti-

ated. These types inherit all results defined for its generic types due to the

use of canonical structures.

5.4 Hashed ElGamal’s proof in Ssreflect

In this section we will show how Ssreflect and its corresponding libraries can be used

by adapting the Hashed ElGamal proof (standard model) in Nowak’s framework

in order to use all the group theory developed in Ssreflect’s libraries. This also

will require a formalization of bit string theory from scratch which provides a good

example about the use of canonical structures.

5.4.1 Bit Strings

We start by defining the type of bit strings which are constructed by using the

ssreflect’s type tuple (lists of fixed length).

74 Chapter 5. Ssreflect

Definition bitstring := @tuple_of n bool.

n is a variable of type nat and tuple_of is a way to construct a tuple by indicating

its size and the type of its elements. A tuple n is a subset of the seq type (analogous

to Coq’s type list) of n length. As usual, this is defined as a sequence and a proof

that the sequence has size n:

Structure tuple_of : Type := Tuple {tval :> seq T; _ : size tval == n}.

By defining tval as a coercion, the following is considered well formed:

Variable bs : bitstring 5.

Check (size bs).

The type inferer considers this a well formed expression because, even though size

receives as an argument an element of type seq, when needed the type inference

mechanism can automatically use the seq projection of the tuple as the argument.

The reverse unification can also be performed but it requires both the proof that

the sequence has the required size and the use of canonical structures to help the

unification algorithm. This mechanism will be used in the development of bit

strings theory by first defining their operations and properties for the seq type and

later transposing them to the bitstring type. We are only interested in sequences

of booleans and this will be defined as the bitseq type:

Definition bitseq := seq bool.

We start with the definition of the group operation. In the bitstring type, the

operation that possesses the desired properties is the xor operation:

Definition bsxor’ (bs1 bs2 : bitseq) :=

map [fun p => p.1 (+) p.2] (zip bs1 bs2).

5.4. Hashed ElGamal’s proof in Ssreflect 75

(+) is a notation for the boolean xor and zip receives two seq as inputs and

produces a seq with elements of each seq paired with each other. So that bsxor’

can be used as the xor operation for bit strings, the proof that the bsxor’ of two

bitseq of size n also produces a bitseq of size n is required:

Lemma bsxorP : forall (bs1 bs2:bitstring),

size (bsxor’ bs1 bs2) == n.

With this proof, bsxor’ is now also well formed with respect to bit strings. We use

canonical structures to define the xor operation for bit strings from bsxor’ :

Canonical Structure bsxor bs1 bs2 : bitstring :=

Tuple (bsxorP bs1 bs2).

We now would like to show that the following group axioms are valid with respect to

bits strings and its group operation : associativity, existence of the identity element

and existence of the inverse element. In the Ssreflect libraries these properties are

already defined and we need to prove these properties for the bitstring structure.

First we prove that the group operation (bsxor) is associative, that is, ∀ (𝑎 𝑏 𝑐 :

𝑏𝑖𝑡𝑠𝑡𝑟𝑖𝑛𝑔), (𝑎 · 𝑏) · 𝑐 = 𝑎 · (𝑏 · 𝑐):

Lemma bsxorA : associative (@bsxor n).

The identity element for bit strings is the bitstring that is composed of only zeros

and as before we will first define it as a bitseq and then promote it to bitstring :

Definition bszero’ : bitseq := nseq n false.

nseq n t is the sequence of size n where all its elements have the value t. With the

trivial proof that its size is indeed n we can use the canonical structure mechanism

to promote it to the identity element of bit strings:

76 Chapter 5. Ssreflect

Lemma bszeroP : size bszero’ == n.

Canonical Structure bszero : bitstring := Tuple bszeroP.

To prove that bszero is indeed the identity element for the bsxor we need to prove

both the left and right identity properties, that is, ∀ (𝑎 : 𝑏𝑖𝑡𝑠𝑡𝑟𝑖𝑛𝑔), 𝑒·𝑎 = 𝑎·𝑒 = 𝑎

where e is the identity element:

Lemma bsxor0s : left_id (@bszero n) (@bsxor n).

Lemma bsxors0 : right_id (@bszero n) (@bsxor n).

In order to show the existence of the inverse element it is enough to show that the

bsxor of any bitstring with itself produces the identity element (bszero), that is,

∀ (𝑎 : 𝑏𝑖𝑡𝑠𝑡𝑟𝑖𝑛𝑔), 𝑎 · 𝑎 = 𝑒:

Lemma bsxorss : self_inverse (@bszero n) (@bsxor n).

With all the group properties proved, we are now able equip bit strings with a

group structure:

Definition BS : {set (bitstring n)} := setT.

Definition BS_groupMixin :=

FinGroup.Mixin (@bsxorA n) (@bsxor0s n) (@bsxorss n).

Canonical Structure BS_baseFinGroupType :=

Eval hnf in @BaseFinGroupType _ (BS_groupMixin).

Canonical Structure BS_finGroupType := FinGroupType (@bsxorss n).

Canonical Structure BS_group := Eval hnf in [group of BS].

The group formed by bit strings of size n is first defined as a set (BS). In or-

der to equip bit strings with the finite group structure, besides the proved group

properties, we also need to equip bit strings with the FinType structure. This

structure represents properties about finite types and is automatically inferred

5.4. Hashed ElGamal’s proof in Ssreflect 77

on bit strings because they are defined as tuples that are already equipped with

the FinType structure. As a result, we only need to instantiate the group mixin

with the group properties. The group formalization by Ssreflect is divided by the

finGrouptType and the baseFinGroupType and so both must be defined.

In order to prove that bit strings also form an abelian group it suffices to show

that they possess the property of commutativity, that is, ∀ (𝑎 𝑏 : 𝑏𝑖𝑡𝑠𝑡𝑟𝑖𝑛𝑔), 𝑎 ·𝑏 =

𝑏 · 𝑎, because we have now added a group structure to bit strings:

Lemma bsxorC : commutative (@bsxor n).

This enables us to prove that bit strings form an abelian group:

Theorem bitstring_abelian: forall s, abelian (BS_group s).

5.4.2 Security of Hashed ElGamal

To adapt the Hashed ElGamal’s proof, the expected changes needed, besides a

new formalization of bit string theory defined before, are the use of Ssreflect’s

notation and types (i.e. Ssreflect’s group type) and the application of Ssreflect’s

group theory lemmas that correspond to the ones used by the framework. The

changing of syntax is a trivial task and the replacement of the framework’s lemmas

only consists in finding the appropriate lemma in the libraries because all group

results needed in Hashed ElGamal’s proof are already formalized.

The main difficulty of the adaption was changing the use of Coq’s list type to

Ssreflect’s list type. Even though these types are equivalent, this transformation

is not as straight-forward as it may seem because of the following steps present

in the proof: the proof that the exponentiation of a group’s generator with a

randomly sampled group element produces a random value and the proof that the

xor of a bit string bs with a random bit string also produces a random bit string.

The framework defines the tactic permutation to deal with these kind of proofs by

78 Chapter 5. Ssreflect

showing that, taking as an example the bit string step, the set of bit strings (z)

from which the sampling is performed is a permutation of the set that results from

the xor of bs with any bit string of z. This tactic uses Coq’s lists to define the set

of possible sampling values and as a result the permutation is also defined over

lists. This requires the formalization of an isomorphism between the list type and

the seq type and this isomorphism is used in order to use Ssreflect’s mechanisms

and lemmas to prove the permutation. The use of this morphism is illustrated

with the proof’s step of the random sampling of a group element:

permutation (fun x => g ^+x).

𝑔ˆ+𝑥 is the notation for the modular exponentiation of the g by x. This application

of the permutation tactic produces the following proof’s goal:

Permutation (to_list G) (map [eta expgn g] (seqNE 0 #[g])

[𝑒𝑡𝑎 𝑒𝑥𝑝𝑔𝑛 𝑔] receives a natural n and returns 𝑔ˆ+𝑥 and both the Permutation and

map constructs work over Coq’s lists. Since g is an element of the Ssreflect’s group

type, Permutation and map need to be changed into its Ssreflect’s counterparts

by using the morphism. As a result, this permutation can now be proved by using

Ssreflect’s libraries. The proof of the xor’s step has an analogous approach and

the rest of the proof is a spitting image of the original one and provides no further

complications.

5.5 Conclusion

We have explored Coq’s extension Ssreflect and its pervasive use of small scale

reflection. Besides the use of reflection, it were shown several general purpose

features: improved rewrite tactic and search mechanism, ability to perform good

bookkeeping and the use of terminators and indentation that ease the organization

5.5. Conclusion 79

of large developments. A great contribution of Ssreflect are its libraries which

possess varied mathematical results and were used to adapt the Hashed ElGamal’s

security proof of Nowak’s framework to take advantage of Ssreflect capabilities.

80 Chapter 5. Ssreflect

Chapter 6

Conclusion and Future Work

In this thesis we have studied the game-based approach to cryptographic security

proofs and the interactive theorem provers that can be used as support for the

formalization of frameworks according to this approach. In the first part of this

thesis (Chapters 3 and 4) we explored David Nowak’s framework for game-based

security proofs and extended this framework with the ability to perform proofs in

the random oracle model.

The framework does not take into account complexity issues as proofs do not

depend on the security parameter. This is indeed a major flaw in the framework,

because nothing prevents the user of instantiating a non-efficient adversary in

a reduction to an hard-problem. An interesting research direction is to devise

strategies for preventing such ill-formed adversarial instantiations.

The implementation of the random oracle model was mainly driven by the

proof of Hashed ElGamal security. As a result, it would be interesting to use the

framework on new cryptosystems in order to understand how the framework would

fare against different proofs in ROM and how the framework could be improved

in order to become more complete. One example of such proof would the Full

Domain Hash Signature security proof since this involves the use of more than one

82 Chapter 6. Conclusion and Future Work

oracle.

Like in any development, the implementation can always be target of upgrades

either by implementing new features or by building more efficient ones. For ex-

ample, the framework could store in the state monad, besides the oracle state, the

adversarial view of the game. This would avoid the explicit data flow whenever

the adversarial view is needed and the use of the forces construct could be avoided

because the adversarial view of the game would be internally dealt with.

In the second part of this thesis (Chapter 5) we studied Coq’s extension Ssre-

flect. Already being familiarized with Coq, we found Ssreflect’s learning curve not

to be much steep. The general purposes features provided by Ssreflect proved to

be quite useful and user friendly and the use of small scale reflection is an effective

way of dealing with many proofs. The most difficult part in this familiarization

was the understanding of how Ssreflect’s libraries were formalized and how we

could take advantage of the structures formalized in the libraries.

We used Ssreflect’s in Nowak’s framework proof of ElGamal as an example by

adapting part of the framework and this approach could be used for the whole

framework. This would be interesting, not only because of the possibility of using

reflection and Ssreflect’s general purpose features, but mainly for taking advantage

of all the mathematical results present in the libraries which are always prevalent

in security proofs.

Bibliography

[APM09] Philippe Audebaud and Christine Paulin-Mohring. Proofs of random-

ized algorithms in coq. Sci. Comput. Program., 74(8):568–589, 2009.

[BC04] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and

Program Development, Coq’Art: the Calculus of Inductive Construc-

tions. Springer-Verlag, 2004.

[BCT04] Gilles Barthe, Jan Cederquist, and Sabrina Tarento. A machine-

checked formalization of the generic model and the random oracle

model. In David A. Basin and Michaël Rusinowitch, editors, IJCAR,

volume 3097 of Lecture Notes in Computer Science, pages 385–399.

Springer, 2004.

[Bel98] Mihir Bellare. Practice-oriented provable security. In Ivan Damgård,

editor, Lectures on Data Security, volume 1561 of Lecture Notes in

Computer Science, pages 1–15. Springer, 1998.

[BGB09] Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. For-

mal certification of code-based cryptographic proofs. In Zhong Shao

and Benjamin C. Pierce, editors, POPL ’09: Proceedings of the 36th

annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-

gramming Languages, pages 90–101. ACM, 2009.

84 Bibliography

[Bla07] Bruno Blanchet. Computationally sound mechanized proofs of corre-

spondence assertions. In CSF, pages 97–111. IEEE Computer Society,

2007.

[BP06] Bruno Blanchet and David Pointcheval. Automated security proofs

with sequences of games. In Cynthia Dwork, editor, CRYPTO, volume

4117 of Lecture Notes in Computer Science, pages 537–554. Springer,

2006.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A

paradigm for designing efficient protocols. In ACM Conference on

Computer and Communications Security, pages 62–73, 1993.

[BR94] Mihir Bellare and Phillip Rogaway. Optimal asymmetric encryption.

In EUROCRYPT, pages 92–111, 1994.

[BR96] Mihir Bellare and Phillip Rogaway. The exact security of digital sig-

natures - how to sign with rsa and rabin. In EUROCRYPT, pages

399–416, 1996.

[BR06] Mihir Bellare and Phillip Rogaway. The security of triple encryption

and a framework for code-based game-playing proofs. In Serge Vaude-

nay, editor, EUROCRYPT, volume 4004 of Lecture Notes in Computer

Science, pages 409–426. Springer, 2006.

[BSS99] Ian F. Blake, G. Seroussi, and N. P. Smart. Elliptic curves in cryp-

tography. Cambridge University Press, New York, NY, USA, 1999.

[Can97] Ran Canetti. Towards realizing random oracles: Hash functions that

hide all partial information. In Burton S. Kaliski Jr., editor, CRYPTO,

volume 1294 of Lecture Notes in Computer Science, pages 455–469.

Springer, 1997.

Bibliography 85

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle

methodology, revisited. J. ACM, 51(4):557–594, 2004.

[CH88] Thierry Coquand and Gérard P. Huet. The calculus of constructions.

Inf. Comput., 76(2/3):95–120, 1988.

[CMR98] Ran Canetti, Daniele Micciancio, and Omer Reingold. Perfectly one-

way probabilistic hash functions (preliminary version). In STOC,

pages 131–140, 1998.

[Del00] David Delahaye. A tactic language for the system coq. In Michel

Parigot and Andrei Voronkov, editors, LPAR, volume 1955 of Lecture

Notes in Computer Science, pages 85–95. Springer, 2000.

[dt09] The Coq development team. The Coq proof assistant reference manual.

LogiCal Project, 2009. Version 8.2.

[DY83] Danny Dolev and Andrew Chi-Chih Yao. On the security of public key

protocols. IEEE Transactions on Information Theory, 29(2):198–207,

1983.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions

to identification and signature problems. In Andrew M. Odlyzko, ed-

itor, CRYPTO, volume 263 of Lecture Notes in Computer Science,

pages 186–194. Springer, 1986.

[Gam85] Taher El Gamal. A public key cryptosystem and a signature scheme

based on discrete logarithms. IEEE Transactions on Information The-

ory, 31(4):469–472, 1985.

[GGMR09] François Garillot, Georges Gonthier, Assia Mahboubi, and Laurence

Rideau. Packaging mathematical structures. In Stefan Berghofer,

86 Bibliography

Tobias Nipkow, Christian Urban, and Makarius Wenzel, editors,

TPHOLs, volume 5674 of Lecture Notes in Computer Science, pages

327–342. Springer, 2009.

[GHR99] Rosario Gennaro, Shai Halevi, and Tal Rabin. Secure hash-and-sign

signatures without the random oracle. In EUROCRYPT, pages 123–

139, 1999.

[GM82] Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how

to play mental poker keeping secret all partial information. In STOC,

pages 365–377. ACM, 1982.

[GM08] Georges Gonthier and Assia Mahboubi. A Small Scale Reflection Ex-

tension for the Coq system. Research Report RR-6455, INRIA, 2008.

[GM10] Georges Gonthier and Assia Mahboubi. An introduction to small scale

reflection in Coq. Research report, INRIA, 2010.

[GMR+07] Georges Gonthier, Assia Mahboubi, Laurence Rideau, Enrico Tassi,

and Laurent Théry. A modular formalisation of finite group theory.

In Schneider and Brandt [SB07], pages 86–101.

[Gon06] Georges Gonthier. Notations of the four colour theorem proof. Tech-

nical report, Microsoft Research, 2006.

[GW07] François Garillot and Benjamin Werner. Simple types in type theory:

Deep and shallow encodings. In Schneider and Brandt [SB07], pages

368–382.

[Hal05] Shai Halevi. A plausible approach to computer-aided cryptographic

proofs. Cryptology ePrint Archive, Report 2005/181, 2005. http:

//eprint.iacr.org/.

http://eprint.iacr.org/
http://eprint.iacr.org/

Bibliography 87

[JN03] Antoine Joux and Kim Nguyen. Separating decision diffie-hellman

from computational diffie-hellman in cryptographic groups. J. Cryp-

tology, 16(4):239–247, 2003.

[KR96] Joe Kilian and Phillip Rogaway. How to protect des against exhaustive

key search. In Neal Koblitz, editor, CRYPTO, volume 1109 of Lecture

Notes in Computer Science, pages 252–267. Springer, 1996.

[Mog91] Eugenio Moggi. Notions of computation and monads. Inf. Comput.,

93(1):55–92, 1991.

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A calculus of

mobile processes, i. Inf. Comput., 100(1):1–40, 1992.

[Now07] David Nowak. A framework for game-based security proofs. In Sihan

Qing, Hideki Imai, and Guilin Wang, editors, ICICS, volume 4861 of

Lecture Notes in Computer Science, pages 319–333. Springer, 2007.

[Now09] David Nowak. On formal verification of arithmetic-based crypto-

graphic primitives. CoRR, abs/0904.1110, 2009.

[SB07] Klaus Schneider and Jens Brandt, editors. Theorem Proving in Higher

Order Logics, 20th International Conference, TPHOLs 2007, Kaiser-

slautern, Germany, September 10-13, 2007, Proceedings, volume 4732

of Lecture Notes in Computer Science. Springer, 2007.

[Sho01] Victor Shoup. Oaep reconsidered. In Joe Kilian, editor, CRYPTO,

volume 2139 of Lecture Notes in Computer Science, pages 239–259.

Springer, 2001.

[Sho04] Victor Shoup. Sequences of games: a tool for taming complexity in

88 Bibliography

security proofs. Cryptology ePrint Archive, Report 2004/332, 2004.

http://eprint.iacr.org/.

[Sma05] Nigel Smart. Provable security: Designs and open questions, 2005.

[TZ08] Enrico Tassi and Mura Anteo Zamboni. Interactive theorem provers:

issues faced as a user and tackled as a developer. Technical report,

University of Bologna, 2008.

[Wer94] Benjamin Werner. Une Théorie des Constructions Inductives. PhD

thesis, Université Paris VII, Mai. 1994.

http://eprint.iacr.org/

	List of Figures
	Introduction
	Security Notions and Proofs for Public-Key Schemes
	The Coq Proof Assistant
	Outline

	State of the art
	David Nowak's Framework
	CertiCrypt
	CryptoVerif
	Conclusion

	David Nowak's Framework
	Probabilities
	Mathematical Results
	Games
	Hashed ElGamal Proof
	Correctness Proof
	Security Proof

	Conclusion

	Random Oracle Methodology
	Random Oracle Model
	Framework Extensions
	State Monad
	Basic Probabilities Laws
	EqP
	Fundamental Lemma of Game-playing
	SInvM
	Forces

	Hashed ElGamal in the Random Oracle Model
	List CDH assumption
	Adversarial loop of queries
	Semantic Security proof

	Conclusion

	Ssreflect
	Bookkeeping
	Miscellaneous Features
	Ssreflect libraries
	Hashed ElGamal's proof in Ssreflect
	Bit Strings
	Security of Hashed ElGamal

	Conclusion

	Conclusion and Future Work
	Bibliography
	Henrique Manuel Fernandes de Castro.pdf
	Página 1
	Página 2
	Página 3

