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Abstract

Ray Tracing is a method capable of producing high quality images by simulating
paths of light rays within three dimensional scenes resulting in high quality photo-
realism images. Several algorithms have been improved during these past ten years
in order to achieve interactive frame rates.

In this thesis we focus on three key issues concerning interactive ray tracing per-
formance: an accelerator data structure to reduce the number of ray-triangle inter-
sections, parallelism within a single processor by making use of Streaming SIMD In-
structions and ray coherence and, �nally, parallelism at multi-core level with shared
memory data.

For the �rst issue, we developed a single ray shooting method, which tested each
ray against all triangles in a scene. We then proceeded to study two di�erent acceler-
ator data structures in order to reduce the number of ray-triangle intersections. The
accelerator data structure selected for this thesis was the Bounding Volume Hierar-
chy method (BVH ). The �rst BVH was implemented by A. Gonçalves[6] and the
second one was based on I.Wald's BVH [25] and implemented by us. Tests indicate
our BVH has less performance with larger scenes comparing to [6].

Secondly, we developed a vectorial version of the ray tracer, which packs sets of
rays into vectors and exploits SIMD instructions. Both scalar and vectorial versions
were extensively tested for later comparison. Among several metrics, the time of
execution, the frame rate, number of rays and memory accesses were taken into
consideration. A speed up from 2.8 to 3.7 was registered, which was less pronounced
than the results from previous literature [3].

Finaly, since e�cient and reliable sharing of data structures within a shared
memory system is becoming a very relevant problem with the advent of many core
processors, we decided to develop three multi-threaded solutions: the traditional
lock/unlock implementation of pthreads, the local queue implementation where each
thread maintains a local independent working queue, and the Lock-free approach
which relies, not on locks, but on the Compare-and-Swap atomic synchronisation
primitive and on retries. Tests show that the local approach outperforms the other
two due to very good load balancing conditions, but we were able to demonstrate
that the lock-free approach outperforms the lock-based one for large processor counts.

The general results obtained in this thesis indicate that more work has to be
done in order to ensure maximum scalability in general multi-core systems.
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Resumo

Ray Tracing é um método e�caz de produzir imagens foto-realísticas de elevada
qualidade ao simular os efeitos físicos de raios de luz numa cena tri-dimensional.
Durante a última década este método e os respectivos algoritmos têm sido melhora-
dos e optimizados de forma a atingir a interactividade.

Nesta tese focamo-nos em três pontos-chave respeitantes à performance de Ray
Tracing interactivo: estrutura de aceleração para reduzir o número de intersecções de
raios contra triângulos, paralelismo num só processador fazendo uso das instruções
SIMD e coerência entre raios, e �nalmente, paralelismo entre múltiplos processadores
em sistemas de memória partilhada.

Para o primeiro ponto, desenvolvemos um método escalar onde apenas um raio
é disparado de cada vez e é testado contra todos os triângulos presentes na cena.
De seguida, estudámos duas estruturas de aceleração para reduzirmos o número de
intersecções. Foi decidido investigar e implementar o algoritmo de Hierarquia de
Volumes (Bounding Volume Hierarchy). O primeiro algoritmo que testámos foi o do
A. Gonçalves[6] e o segundo foi baseado no trabalho de I.Wald [25] e implementado
por nós. Testes indicam que a nossa implementação do trabalho de I.Wald tem
menos impacto na performance do ray tracer comparativamente a [6].

Em segundo lugar, foi desenvolvido uma versão vectorial, onde raios são coloca-
dos em grupos (ou pacotes) de vectores, usando instruções SIMD. Ambas as versões
escalar e vectorial foram extensivamente testadas para posterior comparação. Den-
tro de várias métricas, foram registados o tempo de execução, o número de frames
por segundo, o número de raios por segundo e acessos à memória. O ganho obtido
nesta vectorização situa-se entre os 2.8 e 3.7 vezes, que foi um valor menor do que
o encontrado em trabalhos anteriores[3].

Por último, visto que a e�ciente partilha de estruturas de dados num sistema de
memória partilhada se tornou num problema relevante com a promessa da presença
de um elevado número de processadores por computador, foi decidido desenvolver
três soluções multi-threaded : a implementação tradicional de threads POSIX com
locks/unlocks, �las de trabalhos locais para cada thread, e a versão lock-free que,
ao invés de usar locks/unlocks, faz uso de uma função atómica de sincronização de
"comparação e troca". Testes revelam que a segunda versão se comportou melhor
que as restantes devido ao bom balanceamento de trabalho, e provamos que a versão
lock-free é superior à primeira versão para um elevado número de processadores.

Os resultado alcançados nesta tese sugerem que há espaço para melhoramentos
e optimizações de modo a garantir a máxima escalabilidade possível para sistemas
multi-core.
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Chapter 1

Introduction

Ray tracing is a widely used rendering technique that has the ability to produce high

quality images by simulating global illumination and physically based light trans-

port e�ects[7]. Used originally as an o�-line rendering algorithm, the development

veri�ed over the last few years, both at the software and hardware levels, has made

it possible to achieve interactive ray tracing in accessible hardware[26]. The present

condition of CPUs advancements suggests that in the near future these will focus

on parallelism and many-core architectures. And since the ray tracing algorithm is

embarrassingly parallel, high e�ciency is expectable even for high degrees of par-

allelism. This parallelism is explored along three main techniques: the vectorial

properties of modern CPUs, multi-threading in multi-core systems and parallel ex-

ecution in cluster nodes. This work, among other features, focus on the �rst two

techniques: vectorial calculations and parallelism in di�erent multi-core systems.

Nowadays ray tracing is a powerful tool to deliver fast and physically realistic

images. As such, several di�erent approaches have been developed during the last

ten years in order to optimize �nal results. Two of these are about how rays should

be shot in order to obtain a frame: the single ray and the packet of coherent rays

shooting [23], i.e., scalar versus vectorial approaches. Another approach to achieve

interactive frame rates in ray tracing is by exploiting multi-threading on multi-cores

by making use of the parallel properties found in the ray tracing algorithm. Another

key element of ray tracing is the use of an accelerator data structure (such as kd-trees,

grids or bounding volumes hierarchies), which makes possible the improvement of

ray-triangle intersections by decrease the number of triangles a ray has to be tested

against.

With such hardware and software advancements, it is now possible to achieve

interactive frame rates without using supercomputers[28, 1]. Since current personal
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computers have much more CPU power, interactive ray-tracing has the opportunity

to be implemented in all sort of graphics applications. Furthermore, interactive ray-

tracing is able to deliver high quality results, solving much of the problems found

in rasterization (OpenGL, DirectX), which uses 'fake' e�ects to generate interactive

frame rates. Such methods require high quality �ne tuning by artists and programers

to camou�age these short-cuts[23].

In this thesis we �rst focus on the impact a BVH has on ray tracing by studying

two di�erent approaches. We then follow to investigate both scalar and vectorial

approaches and their impact on the overall performance of ray tracing. Lastly we

take a closer look at three methods of work distribution on multi-core systems and

how scalable our interactive Ray Tracer (iRT ) prototype is.

The single scalar algorithm is rather sequential where, after generating a list of

rays (a queue), each individual ray is tested against all scene's triangles. If there is a

hit, several colour values are calculated, often by shooting secondary rays, and later

the pixel is given the �nal colour. If no hit is detected that ray does not contribute

to the �nal result. After all rays are tested, the �nal image is displayed and the

process is repeated.

With the primary objective to speed up ray tracing without deteriorating image

quality, the use of a spatial partitioning algorithm is fundamental to organize trian-

gles present in a given scene. By carefully gathering and storing primitives (triangles

and vertices) in a speci�c way, reducing the number of ray-triangle intersections be-

comes a simple operation [8]. We have chosen the Bounding Volume Hierarchies

(BVH ) with axis aligned bounding boxes (AABB) as our accelerator data structure

for the reason that BVHs are able to e�ciently support dynamic scenes and can be

used to e�ciently ray trace large static models [25]. Usually, BVHs are a speci�c

case of binary trees, where a node gathers information and points to its two children.

In the bottom of a BVH tree we �nd leafs that contain the information relative to

the actual primitives present in a each voxel.

To build an e�cient BVH a number of steps must be done. The approach to

build the BVH is top-down, i.e., for a given initial set of triangles, a root node

is created gathering all triangles in a single bounding box. Using some division

criteria, two children are created, gathering the �rst and the second set of triangles.

This division goes on until a limit is reached. Then leafs are created containing the

bounding box of the set of triangles, and pointers to the respective triangles in the

scene.

After the BVH is built we can traverse it with rays where each ray will be tested
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1. Introduction

against the root node. In case the ray misses the root's bounding box, the ray will

not be tested and will be given a contribution value of 0. Otherwise, the ray is tested

against the two children nodes' bounding boxes pointed by the root node. The ray

will be tested against nodes recursively until it misses a given bounding box or

intersects a leaf's bounding box. After a ray intersects a leaf, it is going to be tested

against all triangles present in this leaf. Using this method signi�cantly reduces the

number of ray-triangle intersections, which contribute to a major improvement of

the overall performance of a ray tracer [8, 25, 6].

In this thesis we compare two di�erent approaches to the BVH algorithm and,

accordingly to their behaviour, we chose the best implementation.

Coherence between rays is found by carefully studying each ray's origin and

direction. Adjacent primary rays have the tendency to follow very similar paths

in space, which, in many cases, hit exactly the same primitive. By making use of

this property we gather adjacent primary rays in order to shoot them at the same

time and speed up ray-triangle intersections. Likewise, shadow rays and other types

of secondary rays tend to share the same coherence. This method allows a better

performance in tracing primary rays as well in tracing secondary rays.

While the scalar algorithm is rather easy to understand, the vectorial algorithm

uses much more recent technology allowing an internal level of parallelism. As

opposed to the single ray shooting, this method allows to test not one, but several

rays at once within the same thread. This is possible due to the vectorial SIMD

instructions. The main idea is to group rays in packets of four rays and process each

packet as a SIMD vector; the size of the packet (four) is determined by the width of

the SIMD registers and might change in the future towards 8 and 16 values. Both

algorithms follow the same line of logic, but in the packet of rays' method, a list

(queue) of packets is generated, instead of the typical list of rays.

The multi-threading/multi-core level of parallelism makes all active processors

read and write from the same shared memory address space. The workload distri-

bution structure is stored in this shared memory allowing independent threads to

retrieve new tasks [2]. In this context a task is a primary ray/packet that may or

may not generate new secondary rays/packets, i.e, new tasks that corresponds to

rays being shot at deeper levels of the ray tree. New tasks are stored back in the

shared memory. Since all threads read and write on this shared memory, there is a

need to control the di�erent simultaneous accesses. For this reason, data access con-

trol mechanisms are required to preserve, at any given moment, the consistency of

such data. These mechanisms may bring additional costs to a system's performance,
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which can compromise the interactive levels of the ray tracer. Consequently, it is

fundamental to have a well designed and e�cient control mechanism to maintain

performance.

Besides the vectorial parallel instructions' study and comparison, in this thesis

we also discuss and evaluate three di�erent methods to control access to shared

memory. The selected data structure is a FIFO-queue structure of sets of packets

of rays to be processed by the active threads. Access to shared memory is typically

controlled by mutual exclusion mechanism such as locks that guarantees that only

one thread accesses a critical section at a time. By carefully re-ordering instructions,

it is possible to drastically reduce contention and context switching costs, creating

a lock-free environment [9]. We compare this lock-free data control access with

the well-known lock-based approach and a conservative local technique where each

thread has its own local work queue which prevents any kind of work sharing and

avoids access control.

The �rst part of this work comes as research by comparing both BVHs imple-

mentations. After choosing the best option we follow to meticulously study both

scalar and vectorial algorithms in several aspects concerning hardware, software and

performance issues. Among many, this work will help on �nding hot spots, i.e., crit-

ical places where most time is spent and help optimising both algorithms. The third

part of this thesis is focused on multi-threading on multi-core systems and how the

data access control mechanisms a�ect the overall performance of ray tracing.

This thesis is structured in nine di�erent sections. It starts by introducing the

context of the subject of study, followed by the state of art, which will point to

the most recent researches made in the context of this thesis. We then explain the

organisation and pipeline of our interactive ray tracer prototype. Later, the three

key points will be addressed separately where a detailed description of the algorithms

and results will be explained. This thesis ends with the conclusions of this research,

what should the future work be and a section for acknowledgement.
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Chapter 2

State of Art and Related Work

Many di�erent interactive ray tracers have been developed throughout the last

decade, each one focusing on achieving a speci�c goal such as accelerating ray-

triangle intersections, adapting acceleration data structures to a speci�c architec-

ture among many other attributes or, on the other hand, integrating several di�erent

up-to-date approaches to build a complete ray tracer in order to reach maximum

performance. In this section we describe contemporary research and work in ray

tracing. Our interactive ray tracer prototype focus on BVHs performance, paral-

lelism present within a processor (vectorisation) and between processor cores in a

multi-core ambient (multi-threading).

2.1 Accelerator Data Structures

Space partitioning and ordering is of fundamental importance to guarantee max-

imum performance by a ray tracer. The choice of one of these accelerator data

structures (ADS ) a�ects the general traversal performance as well as other algo-

rithms to update or rebuild the ADS [28]. Among these, kd-tree, BVH and Grids

are the most successful ADS.

A kd-tree is an axis aligned BSP tree with �xed bounding boxes. This has

revealed to be a major problem for dynamic scenes where multiple scene transfor-

mations can be found. Kd-trees are known for being the fastest ADS for static

scenes. The rebuild of this ADS is very costly and for that reason a number of

algorithms were developed. The surface area heuristics SAH algorithm estimates

the probability of a ray hitting the bounding box [28, 25]. This method was later

adapted to BVHs, granting speed ups for this method [25].

Grids, on the other hand, partitions the space in equal and uniform voxels. With
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a simple method for construction and traverse, it becomes of very low e�ciency if

the majority of triangles are put together in the same voxel, forcing a ray to be

tested against all triangles present in that voxel [27].

As explained in the �rst section, BVHs build voxels accordingly to triangles

space position and not accordingly to space itself. This makes possible an e�cient

way to rebuild BVHs [28]. BVHs are also successfully used in GPUs by making use

of modi�ed versions of the SAH algorithm to achieve maximum e�ciency [11].

2.2 Vectorial Ray tracing

Most of the previous work on ray packets showed that using SIMD instructions

is of great advantage in terms of cache utilization and memory bandwidth. Such

advantage exists for the simple fact that using these vectorial instructions reduces

the number of memory accesses. The SIMD instructions explore the coherence

between spatially adjacent primary and shadow rays [23, 24]. Taking advantage

of ray coherence is fundamental to gather rays with similar properties and reduce

the number of ray-triangles intersection tests, i.e., instead of each ray being tested

against a triangle at a time, a set of rays is tested at the same time, allowing less

memory accesses by requesting data only once per set of rays. First introduced

by Ingo Wald, the results achieved by using this method through a kd-tree rapidly

propagated the use of ray packetizing in the majority of current ray tracers in various

architectures like RTRT, Manta, Razor and POV-ray [28, 1, 22, 17].

Reshetov et al.[20] proposed using larger packets of rays in his Multilevel Ray

Traversal Algorithm. In his work, Reshetov excluded objects by applying a combi-

nation of frustum culling and interval arithmetic to reduce the number of traversal

steps.

Following the above approaches, large ray packet algorithms were fully analysed

for scene transversal and frustrum culling [18]. This resulted on a Whitted 16x16

ray packet tracing system which is robust to degrading coherence; however this

ray tracer did not reached real-time results. Also resulting from this study a new

partition traversal algorithm was developed.

Peter Shirley took a di�erent approach towards ray-object intersections. He

tested the rays against the volumes of the triangles, instead of the typical 2D pro-

jection. Shirley optimized this method for single ray shooting, packets of rays with

the same origin and general packet of rays. The implementation is also based on

SIMD instructions [10].
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2.3. Multi-threading in Ray Tracing

Boulos et al. [4] decided to implement an alternative approach by grouping rays

by its type. Also, by �ltering out rays by their importance, more coherence between

rays was found. The use of this method and ray tree attenuation granted gains

comparing to their single ray implementation.

In [12] SIMD instructions are used to process packets of four rays on a Cell

Processor. A problem related to secondary ray coherence is pointed out, thus only

using packets for primary rays. It was measured that the majority of rendering time,

around 75%, was spent rendering primary rays, while secondary rays rendering took

around 25% of the total rendering time, even if the ray tree depth was set to 3. By

using ray packets, a speed up of 25% was registered over the use of the single ray

shooting method.

James Bigler et al. described Manta interactive ray tracer's architecture. In this

article it is claimed that, among several key points, using SIMD instructions and

maintaining ray coherence is fundamental for present and future ray tracing systems

[1].

Recently, new developments in ray coherence have been made, where, in one

case [13], secondary rays are reordered using di�erent methods. The presented

methods work the same way as ours: after a packet of primary rays is shot, the new

generated secondary rays are stored in a list so new packets of coherent secondary

rays can be created. Results in this article showed no improvement over the basic

masking techniques of partially �ll a new packet with secondary rays. The lack of

improvement at the frame per second level is not enough to justify re-writing the

ray tracer kernel, however this approach may become more interesting in the future

with further research.

2.3 Multi-threading in Ray Tracing

Our interactive ray tracer has several di�erent shared structures. These structures,

on run time, are accessed to be read and written upon. The main issue here is the

possibility of simultaneous accesses at the same memory address. This is a major

problem in multi-threading and should be approached carefully. Considering �gures

3.1 and 3.2, it is noted that from one single sequential process of BVH traversing,

ray-triangle intersection and shading, our system changes to having several scalar

threads of the same type. This parallelisation of rendering pipeline is supposed to

bring major speed up performance to the process, where, instead of a single task

being run, several tasks can be processed at the same time. But by doing this,
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a serious problem arises: shared structures may contribute to major errors by, for

example, a thread accessing the data structure stored in a memory address that is

being used by another thread, thus being in an incoherent state. To resolve this

issue we �rst need to understand which structures are shared and which of them

will su�er from simultaneous accesses from di�erent threads.

The shared structures in our interactive ray tracer (iRT ) are the scene, the work

queue and the frame bu�er used to store values of ray shading calculations. From the

three structures, the scene is the only one that is not written upon during runtime.

Threads only read information from triangles, so having the case of di�erent threads

accessing its information is not a concern. As for the frame bu�er, this structure is

an array, set initially to zero (black colour), where threads update the position of the

respective packet of rays. This update is done by simply summing up the present

value with the new calculated value by the shader, so there is a need to guarantee

that each thread accesses the same bu�er position at each time, because each thread

has to read the present value, calculate a sum, and �nally write the new value in the

same bu�er position. The working queue issue is also of high importance for it is

the most important structure in our system. Access to it has to be robust and must

guarantee a correct access by each thread to its correspondent share of work. The

work queue is a set of tasks, where each task is a list of set of ray. Each task in the

work queue, as stated in the last paragraph, is accessed during run time to add or

retrieve tasks. This means the work queue has to be protected from simultaneous

reads and writes.

Access control to shared data structures is usually performed by resorting to

lock-based (or blocking) mechanisms, which ensure mutual exclusion within critical

sections of the code. Access to shared data structures is serialised, resulting in high

performance penalties when contention is signi�cant. Since contention increases

with the level of concurrency, typically lock-based approaches perform worst as the

number of threads increases. Furthermore, locking often requires expensive context

switches, which might be intolerable within interactive applications.

Alternatively, one can use lock-free synchronisation methods, which rely on

atomic conditional primitives to control access to shared data structures [5, 9] (listing

7.2 presents the functionality of Compare-and-Swap, a well known atomic operation

used throughout this work). These algorithms may either be non-blocking or wait

free. Non blocking algorithms (lock-free and obstruction free) cannot guarantee ter-

mination in �nite time because they are based on retries. Wait-free algorithms are

guaranteed to �nish on a �nite number of steps, thus being immune to the priority

8
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inversion problem and eliminating deadlock and starvation.

Wait-free and lock-free access control mechanisms are seldom used within the

graphics community, in spite of their increasing relevance due to the ever increasing

number of cores on modern processors. In [19] the authors present a wait free

mechanism to share the irradiance cache among multiple cores. They compare the

achieved performance with those achieved with a lock-based approach and a local

approach, where threads do not share locally computed irradiance values. This

minimized synchronization and work replications overheads that contribute to a

weaker performance. A wait-free algorithm has several proprieties that must be

respected: all structures are lock free and must guarantee an upper bound of the

number of instructions. Wait-free algorithms avoid starvation, deadlock and livelock.

This wait-free approach granted a near linear speed up for up to to 24 cores, and

authors concluded that the use of lock-based techniques is prohibited on highly

concurrent shared memory systems.

Later in this work we will discuss and evaluate a lock-free approach to access a

shared queue holding tasks for the rendering threads, and compare its performance

with those achieved with a lock-based and local approaches. A wait-free approach

was not possible to implement on the account that we cannot guarantee that all

insert and remove functions will terminate in a �nite amount of time due to the

multiple access to data from di�erent threads.
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Chapter 3

iRT Description

This chapter is used to explain our interactive Ray Tracer's complete architecture

and work pipeline. We �rst describe our sequential approach (scalar and vectorial

versions), explaining the core of the renderer and later the changes that were made

in order to allow multi-threading in our software (vectorial version with multiple

threads).

3.1 iRT Single Threaded Architecture

iRT's vectorial version works sequentially by, after initiating the application, gener-

ating all primary rays, one ray per pixel. As mentioned in the �rst chapter, rays are

packed in sets of four rays, by making use of SIMD instructions. These packets, on

their turn, are placed in tasks of 256 elements in the WorkQueue as seen in �gure

3.1. Such task size was found after experimenting values ranging from 1 to 1000

elements per task, in which the value of 256 elements per task returned the best

results. In listing 3.1, the core of the work queue is shown and in listing 3.2 the

methods used to access the work queue can be found. These are the methods which

must be protected by making use of access control mechanisms (see section 3.2).

Listing 3.1: iRT - Work queue data structure

1

2 c l a s s PoolNode4 {

3 pub l i c :

4 RayPacket ∗ rps ;
5 i n t count ;

6 PoolNode4 ∗next ;
7 } ;
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Figure 3.1: iRT sequential architecture

Listing 3.2: iRT - Work queue methods to add and retrieve work

1

2 // r e t r i v e s a task from the work queue

3 // r e tu rn s f a l s e i f empty

4 i n t RayPacketPool : : GetRayPacket (RayPacket ∗∗ rp ) {

5 i n t nbr ;

6 PoolNode4 ∗ ac tua l ;
7

8 i f ( head−>next == NULL) return f a l s e ; // pool i s empty

9

10 ac tua l = head ;

11 head = head−>next ;
12 ∗ rp = head−>rps ; // Linked l i s t o f Ray Packets to be passed

13 // as r e f e r e n c e to the render ing s t r u c tu r e

14 nbr = head−>count ;
15 de l e t e ac tua l ; // De l e t e s prev ious task

16

17 r e turn nbr ; // Returns the number o f ray packets

18 // pre sent in the l i nked l i s t

19 }

20

21

22 // i n s e r t s a new task in to the pool

23 // r e tu rn s f a l s e i f pool i s f u l l

24 bool RayPacketPool : : AddRayPacket (RayPacket ∗rp , const i n t count ) {

25
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26 PoolNode4 ∗ node ;

27 node = new PoolNode4 ( rp , count ) ; // Adds a number o f ray

28 // packets to ac tua l task

29

30 t a i l−>next = node ;

31 t a i l = node ;

32

33 r e turn true ;

34 }

After all tasks are placed in the working queue, the core engine of iRT takes over

and the rendering process is started. Here, a task is retrieved from the WorkQueue,

and all packets are processed at a time. Each packet runs through the pipeline

by traversing the BVH in search of valid bounding box hits. Then, packets are

intersected against all triangles returned by traversing the BVH tree. After that,

the shader calculates the contribution values for that pixel by accessing the materials

stored in the scene. While the shading process is running, new secondary packets of

rays may be generated from the intersection points found. For this work, the shader

is capable of generating shadow rays and specular rays (see �gure 4.1). Transforming

the traditional recursive ray tracing algorithm into this iterative one, requires that

each ray carries with it information about which pixel it contributes to (this is

equivalent to the ID of the parent primary ray) and also a weight factor that is

equal to the product of the cosines and BRDFs at all intersection points along the

current path. In the end of the shading function, the frame bu�er is updated with

the new calculated values. When the task is �nally done, a new task is retrieved from

the working queue, and the process repeats it self until no more tasks are present in

the working queue. At this point the core rendering is done, and the application is

then responsible to show the resulting frame and decide if a new frame is calculated

or if the application is done.

iRT has to be linked with an application program that implements the application

logic. Besides supporting all the application functionality, this application program

is responsible for initializing iRT, loading the scene and initial tasks (eventually

corresponding to primary packets of rays) into the WorkQueue.

Using this architecture, rendering is decoupled from the application logic. Al-

though the ray tracing engine was developed essentially for image rendering, it can

easily be used for di�erent goals, such as collision detection. It is the application

who decides which rays are shot and how are the respective results used. The man-

ner how each ray's contribution is evaluated depends on the particular shader being

used (line 8 of listing 3.3); di�erent iRT engines can be built using di�erent shading
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functions. The shader could actually be a dynamically loadable component - dis-

pensing with building di�erent engines for di�erent shaders - but we decided to keep

it statically linked in order not to hurt performance. Also note that the particular

implementation of the WorkQueue is hidden behind the respective class interface. In

the Multi-threading section, we will be using di�erent work queues without changing

the thread RenderLoop code.

3.2 iRT Multi-threaded Architecture

Figure 3.2: iRT multi-threaded architecture

By parallelising our interactive ray tracing engine (iRT) throughout multiple

cores, we are able to run a set of symmetric rendering threads, which, as mentioned in

the previous section, get their tasks from a global, shared work queue (see �gure 3.2).

The threads are symmetric in the sense that they all execute the same algorithm,

which consists on retrieving tasks from the global queue and, for each packet in

the task, traverse the 3D space (using a Bounding Volume Hierarchy), intersect

the packet with candidate triangles and then shade the intersection point. Shading

may result in shooting additional packets, which is achieved by adding new tasks
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to the work queue. Shading, specially in the case of shadow rays, may result in

contributions to the frame bu�er, which are concurrently added by each thread.

When the queue is empty this means that the current frame has been rendered;

each thread will then join a barrier and wait for further work or a terminate tag

that closes the rendering engine (see listing 3.3).

Listing 3.3: iRT - rendering threads main loop

1 thread_RenderLoop (WorkQueue wl ) {

2 whi le ( !END) {

3 ba r r i e r ( ) ; // wait f o r a new frame to s t a r t

4 whi le ( wl . getRays (&task ) != EMPTY) {

5 f o r each ray in task {

6 TraverseBVH () ;

7 I n t e r s e c t ( ) ;

8 Shade ( ) ; // may add new rays to queue

9 FrameBuffer . Update ( ) ;

10 }

11 }

12 ba r r i e r ( ) ; // wait f o r a l l threads to f i n i s h

13 }

14 }

Multi-threaded versions, as the sequential one, have to be linked with an appli-

cation program that implements the application logic. This application program is

also responsible for releasing the iRT rendering threads. This step is achieved by

joining the barrier where the rendering threads are waiting (line 3 of listing 3.3 and

line 7 of listing 3.4). The application program must then wait for the rendering

threads to �nish, which is achieved by joining the second barrier (line 12 and 9 of

listings 3.3 and 3.4, respectively). This main loop is repeated until the application

is terminated, in which case the END �ag is raised, causing the rendering threads

to �nish.

Listing 3.4: iRT - application loop

1 main ( ) {

2 iRT_init ( ) ;

3 app l i c a t i on_ in i t ( ) ;

4 whi le ( ! f i n i s h e d ) {

5 app l i c a t i on_ log i c 1 ( ) ;

6 Generate_PrimRays ( ) ; // wr i t e i n to the work queue

7 ba r r i e r ( ) ; // r e l e a s e render threads

8 app l i c a t i on_ log i c 2 ( ) ;

9 ba r r i e r ( ) ; // wait f o r frame to f i n i s h

10 FrameBuffer . Output ( ) ;

11 }

12 s e t END f l a g to f i n i s h threads

13 ba r r i e r ( ) ; // r e l e a s e threads and f i n i s h

14 }
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The software architecture, described above and in the past section, implies that

two data structures are shared among the application and all rendering threads: the

work queue and the frame bu�er. Accessing the former is discussed in the multi-

threading section. The latter, which is where the rendering results are accumulated

by the renderers and read back by the application thread, is protected by a user

space spinlock [9], thus reducing context switches among threads. Since the results

in the frame bu�er are a linear combination of several rays' contributions, access to

it could be wait-free among the rendering threads by resorting to hardware-supplied

atomic �oating-point add instructions (such instruction does not exist in the x86

architecture if one of the operands and the target are in memory).

iRT is a preliminary prototype and most of the development e�ort focused on the

mechanisms used to share tasks among threads, whose results are reported in the

Multi-thread section later in this thesis. One very important issue (performance-

wise) has been handled in a much straight forward manner, which results in some

performance penalties. This issue is the locality of memory accesses [20, 28] which

contributes to the �nal performance of the ray tracer. The worse the locality of

memory accesses is, the more is the number of accesses to memory, resulting in a

large use of memory bandwidth, which is known to be very slow comparing to direct

cache accesses by CPUs.
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Chapter 4

Experimental Methodology and Test

Scenes

The equipment used to evaluate our software is a dual quad-core Intel Xeon E5420,

2.5GHz with 8GB of RAM.We used Intel's Vtune 9.1 for extensive pro�ling and Intel

Compilers ICC and ICPC version 11.0.083 installed in a Linux x86 64 bits system.

For performance measurements we compiled all of our iRT prototype versions with

the option -O2 for compiler optimisations. Since the core of our software is in the

form of inline functions, testing the cache with Vtune does not return values for

those functions. For this reason we compiled with -O0 to test L1 and L2 Data

Cache Miss Rates. Accordingly to Vtune's manual, a good L1 Data Cache Miss rate

is less than 0.05 and a bad rate is above 0.3. A good value for L2 Data Cache Miss

rate is set under 0.01 and a bad value is above 0.1.

The scenes used for testing our software were the conference room (190951 tri-

angles), the o�ce (20769 triangles) and the Stanford bunny with mirror (69463

triangles). Each scene has 4 point light sources and specular materials in order to

produce shadow and specular rays. Figure 4.1 (a), (b) and (c) show the respective

scenes. All tests are performed using a 300x300 window. In every version the size

of the tasks of rays/packets of rays is set to 256. The size of the window display

contributes linearly to the speed up/down of a ray tracer's performance [24]. Be-

sides that, ray tracing is known to be limited by memory bandwidth rather then

processing power bandwidth [15]. For this reason it is fundamental to test cache

accesses.

In all pro�ling tests presented, values are an average of 200 frames, while the

viewpoint is �xed. We measure the following ray tracing key points:
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(a) The conference room (b) The o�ce scene

(c) The Stanford bunny

Figure 4.1: The scenes used for the experiments

• Time of Execution (T.Exec) � total time to render a frame;

• Rays per Second (RPS) � indicates how many rays can be traced per second,

which is a value that can indicate how close we are from other interactive

ray-tracers;

• Frames per second (FPS) � number of rendered frames per second iRT can

achieve. The higher this value is, the smoother is the �ow of images in the

screen;

• Time distribution per function (%) � allow identi�cation of hot spots, i.e.,

where time is being spent;

• L1 + L2 Data Cache Miss Rate � indicate where our software pays more

penalties for accessing the respective Cache.

Pro�les of the time distribution per function (%) are used because they allow

identi�cation of hot spots in the code, i.e., where time is being spent. For these
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pro�les we decided to separate measured values. First we measure the values of the

higher level of rendering:

• GenPrimRays() � generates primary rays;

• RenderLoop() � initiates the rendering functions;

• Output() � function that prints the image into the display.

Then we measure the values of the functions present in the RenderLoop() function

in order to determine where in the core level are the hotspots present:

• Traverse() � function responsible for traversing the BVH ;

• Intersect() � function that performs all intersections;

• Shade() � includes shading and secondary rays generation.

The illumination model used shoots one shadow ray per light source and one

specular ray per intersection point, i.e., if the material has a specular re�ection

coe�cient larger than 0. Only one primary ray per pixel is generated.
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Chapter 5

Bounding Volumes Hierarchies

In this section we describe both BVHs ' methods and implementations mentioned

in the Introduction section. After explaining each of them, we analyse both con-

struction and traversal performances. Finally we decide which is the best, at the

present time, to integrate into our prototype for later optimisations: vectorisation

and multi-threading.

5.1 A. Gonçalves's BVH Algorithm

Ademar's BVH construction is based on the SAH binning algorithm. As stated

before, the BVH is constructed recursively until a leaf is created. The stoppage

condition in Ademar's construction is the presence of exactly one triangle per leaf.

His BVH tree structure is based on pointers (see listing 5.1).

The SAH binning algorithm used here is based on [21] where a min-max binning

is used. This method allows to keep a record of the exact location of each AABB.

The algorithm use to build the BVH tree consists of two steps: in the �rst place,

the max-min operation is performed over the primitives and, later, the SAH are

calculated by passing over the bounding boxes. Boxes boundaries are candidates to

make plane splits, by making use of the min-max binning algorithm. Then, using

the SAH calculation, the minimum value is chosen, determining where the AABB

should be cut; creating, in this way, both child1 and child2 of the BVH_Node

structure (refer to 5.1).

During run time, rays have to traverse along the BVH : each ray, at a time, is

tested against a node. If the node is a leaf, and, at least one of the rays in the

ray hits the leaf's bounding box, the triangle present inside the leaf is returned for

later intersection. If the ray hits a node and not a leaf, the ray is tested against the
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node's bounding box. In case there is a hit, the ray is tested against both children.

This continues recursively until a leaf is encountered or the ray misses the bounding

box, that, in the last case, a empty set of triangles is returned.

Ademar Gonçalves has registered a speed up that varies between 31 and 122

comparing to not using any ADS [6] with a previous version of iRT, which did not

had tasks. In that version, each ray was obtained directly from the WorkQueue to

be processed through the pipeline.

Listing 5.1: iRT - Ademar's BVH data structure

1

2 bvh_node {

3

4 f l o a t bbox [ 2 4 ] ; // bounding box o f node

5 unsigned i n t t r i_ id ; // index o f t r i a n g l e

6 unsigned i n t t r i_ id_ins t ; // index o f i n s t anc e

7 s t r u c t bvh_node ∗ ch i ld1 , ∗ ch i l d2 ; // Po inte r s to ch i l d r en o f node

8

9 i n t axis0 , ax is1 , ax i s 2 ; // Axis where cut i s found

10 i n t i s_ l e a f ; // Flag i f node i s a l e a f

11 }BVH_Node;

12

13

14 // BVH

15 typede f s t r u c t bvh{

16

17 Vector bmin ; // bounding box o f the t o t a l scene

18 Vector bmax ;

19

20 BVH_Node ∗ root ; // f i r s t element o f the BVH

21 }BVH;

5.2 I. Wald's BVH Algorithm

We used Ingo Wald's 2007 paper "Ray Tracing Deformable Scenes Using Dynamic

Bounding Volume Hierarchies" to implement an alternative BVH. Wald's results

showed that the build time for a scene the size of our conference room was 2.8

seconds and that for the same scene with animation the frame rate was of 1.5.

Both Ademar's and Wald's BVH construction is based on a modi�ed SAH cost

function, for the reason the SAH was �rst derived for kd-trees. In the BVH context,

building a BVH top-down, each recursive construction step consists of partitioning a

set of triangles in two. Each of the new subsets is recursively partitioned until a leaf

can be created. Wald, in his paper, does not try to �nd the best BVH partitioning,

but settles for a "good" one. By evaluating this modi�ed version of the SAH, the
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partition is selected with minimal expected cost.

Listing 5.2: iRT - I. Wald's BVH data structure

1

2 s t r u c t BVHNode{

3 f l o a t box_min [ 3 ] ; // AABB minimum va lues

4 union{

5 i n t f i r s tChi ldNodeID ; // f o r inner nodes

6 i n t f i r s tT r i a n g l e ID ; // f o r l e a f nodes

7 } ;

8 f l o a t box_max [ 3 ] ; // AABB maximum va lues

9 shor t num_triangles ; // f l a g s inner node

10 unsigned char ax i s ; // ordered t r a v e r s a l ax i s

11 unsigned char f i r s t ; // f i r s t node to be t r a v e r s a l a long ax i s

12 } ;

By comparing Wald's data structure (see listing 5.2) to Ademar's one, Wald

was able to keep a 32 bit aligned structure, which grants a better memory access.

Wald uses, instead of pointers, arrays of BVHNodes. Each node has the index to

the location in the array of the respective children. To build the BVH, Wald uses

a function that calculates the area of triangles sets' AABB. Then, using the SAH

algorithm, the best two sets are chosen and these two sets will be the children of

the present node. For sorting each set, we have decided to implement the very well

known Quicksort algorithm.

As for BVH traversal, a very similar approach to the previous BVH was taken.

Wald's BVH was focused on optimising the BVH traversal for large packets of rays

by including Reshtov's frustrum traversal method. In this stage of our work we only

developed a scalar version of Wald's BVH. Wald's traversal optimisations were not

possible to implement in the scalar version, ending up with a very similar traversal

function as the Ademar's one.

5.3 Results and Discussion

Three versions of our software were implemented and tested in order to verify which

approach was the best. These three versions are the scalar one with no ADS (each

ray is tested against all triangles), the scalar one with Ademar Gonçalves's BVH

and, lastly, the scalar one with Ingo Wald's BVH.

For the �rst scalar version only four frames were rendered due to the exceptionally

long rendering times. For the other two versions, measurements are based on an

average of 200 frames.
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In the next sections we will show the results obtained and discuss them inside

the context of Interactive Ray Tracing.

5.4 BVH Build Time

Both Ademar's and Wald's BVHs did well, but by analysing the values returned by

testing both versions, it is shown that Ademar's BVH version is slightly faster than

Wald's. Furthermore, by looking at Table 5.1 we can see an enormous di�erence

between both BVHs build time.

iRT Ademar's BVH Wald's BVH

Conference 1.109 9.28
Bunny 0.397 3.93
O�ce 0.096 1.01

Table 5.1: Time in seconds to construct each BVH.

5.4.1 T.Exec, Frames Per Second, Rays Per Second

iRT Scalar Ademar's BVH Wald's BVH

T.Exec FPS RPS T.Exec FPS RPS T.Exec FPS RPS
Conf. 7,135 0.00158 687.64 1,068 0.18 130k 1,075 0.18 130k
Bunny 2,538 0.0015 611.13 128 1.56 404.3k 446 0.44 166.1k
O�ce 831 0.0048 2,107.79 276 0.72 589.2k 335 0.59 331.3k

Table 5.2: Time of Execution (T.Exec) in seconds, Frames per Second (FPS) and
Rays per Second (RPS) of iRT 's versions: scalar with no ADS, scalar with Ademar's
BVH and scalar with Wald's BVH. The three versions are tested with the three
scenes (�gure 4.1). )

By making use of counters we were able to retrive precise data for the three

versions of iRT : scalar with no BVH, scalar with Ademar's BVH and scalar with our

implementation of Wald's BVH. Table 5.2 shows, for the three versions tested against

the three scenes, the total time of execution, frames per second and rays per second.

This table clearly shows that the scalar version with no ADS has an extremely low

rate of frames per second for all scenes. Both versions with BVHs completely outrun

the �rst version. Ademar's BVH, for instance, renders the conference scene more

than 100 times faster than the original one, and the Stanford bunny 1040 times
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faster. It is obvious that the e�ect an ADS has in rendering is fundamental in

interactive ray tracing.

5.4.2 Time distribution per function

Tables 5.3 and 5.4 indicate respectively the percentage of time spent in the applica-

tion and the percentage of time spent in rendering. The �rst clearly shows rendering

takes more than 99% of the total running time of iRT in the three tested versions.

In order to obtain performance gains, it is easy to see that optimisations should be

done in the rendering core of iRT.

iRT Scalar Ademar's BVH Wald's BVH

RL GPR OU RL GPR OU RL GPR OU
Conf. 99.98% 0.01% 0.01% 99.90% 0.06% 0.04% 99.91% 0.05% 0.04%
Bunny 99.98% 0.01% 0.01% 99.33% 0.38% 0.28% 99.76% 0.14% 0.1%
O�ce 99.98% 0.01% 0.01% 99.62% 0.21% 0.16% 99.74% 0.15% 0.11%

Table 5.3: Percentage of each application function consuming time for scalar, Ade-
mar's BVH andWald's BVH iRT 's versions. GPR - GenPrimRays, RL - RenderLoop
OU - Output.

After performance measurements centred in the core of the application, we were

able to understand what sections of our algorithm took more time to execute. Table

5.4 shows not only the percentage of time spent in each selected function but also

the di�erences encountered at the core level between using an ADS and not using

one. Since the scalar version of iRT has no BVH, it would not make sense to measure

a BVH traversal function, for it does not exist in that context. This is why "N/A"

is found in the table instead of a percentage value.

The scalar version with no ADS shows, as expected, an extremely high consum-

ing time percentage for the intersection function. This is explained by the simple

fact that each ray has to be tested against all rays present in the scene. In this case,

90, 000 rays (1 ray per pixel, 300x300 pixels) had to be tested against scenes with

20k, 69k and 190k triangles. This obligates millions of ray-triangle intersection tests

that most probably do not actually return a valid intersection.

By looking at the other two versions, we can clearly see that most work is spent

in traversing the BVH, while intersecting is reduced to less than 5% in Ademar's

BVH version and less than 6% in Wald's BVH version. In Ademar's version, the

percentage of time the intersection function takes is relatively similar among the

three scenes, something that does not occur in Wald's version. It is also noticeable
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iRT Scalar Ademar's BVH Wald's BVH

Int Tra S Int Tra S Int Tra S
Conf. 99.97% N/A 0.01% 4.61% 92.18% 1.48% 5.60% 82.61% 1.54%
Bunny 99.99% N/A 0.01% 4.17% 85.75% 4.14% 3.20% 64.88% 2.86%
O�ce 99.94% N/A 0.03% 4.87% 86.93% 3.34% 4.91% 82.23% 3.34%

Table 5.4: Percentage of each render function consuming time for scalar, Ademar's
BVH and Wald's BVH iRT 's versions, comparing only to RenderLoop's total time.
Int - Intersect, Tra - Traverse, S - Shade.

that Wald's traverse time distribution is less than Ademar's. Both facts are justi�ed

by memory accessing during run time (see next section), which slows down the

rendering, causing, in the end, to Wald's version return lower FPS rate (see Table

5.2). In neither the versions a sum of 100% is achieve, which is justi�ed by smaller

work present in the rendering core such as adding new rays to the work queue outside

the shade function (responsible for adding the majority of secondary rays).

5.4.3 L1 + L2 Data Cache Miss Rate

iRT

Version Function Scenes

Bunny O�ce Conference

Scalar

Gen 0.005 0.005 0.005
Int 0.005 0.006 0.005
Tra N/A N/A N/A
S 0.033 0.023 0.023

Ademar's BVH

Gen 0.002 0.001 0.003
Int 0.006 0.004 0.007
Tra 0.009 0.012 0.025
S 0.001 0.002 0.008

Wald's BVH

Gen 0.004 0.001 0.006
Int 0.005 0.003 0.008
Tra 0.055 0.038 0.047
S 0.004 0.003 0.012

Table 5.5: L1 Data Cache Miss Rate per function for iRT scalar with no BVH, scalar
with Ademar's BVH and scalar with Wald's BVH versions. Gen - iRT General

ratio, Int - Intersect, Tra - Traverse, S - Shade

Vtune returned very di�erent values for each version of iRT tested in this chapter.

Firstly, L1 Data Cache miss rate measurements (table 5.5)in the original scalar
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version point to low values in the generation of primary rays and in the intersection

functions. On the other hand, the shade function is much higher than the other

two functions. This happens because of the fact that, for each ray, a number of

memory accesses has to be made, in this case, to rays properties and scenes data.

By vectorising the algorithm it is expected to see improvements in these values.

In Ademar's and Wald's version the Traverse function present a much higher L1

data cache miss rates. Actually, the second presents L1 data cache miss rate values

similar or higher than the limit for good rates indicated by Vtune's manual.

L2 data cache miss rate are generally very low and inside Vtune's good limits,

except for the shader function in the original scalar version, where rendering the

Conference scene, showed results more than 3 times higher than the 0.01 limit table

(table 5.6).

High Cache Miss rates is known to contribute to a slow down of performance.

With this in mind, and taking in consideration the results from the previous section,

we can conclude that an ADS is of extreme importance to speed up rendering.

Furthermore, since build time is essential in rendering dynamic scenes [28], we choose

to use Ademar's BVH and advance the development of iRT to the next levels:

vectorisation and multi-threading.

iRT

Version Function Scenes

Bunny O�ce Conference

Scalar

Gen 0.000 0.000 0.004
Int 0.000 0.000 0.004
Tra N/A N/A N/A
S 0.001 0.000 0.037

Ademar's BVH

Gen 0.000 0.000 0.000
Int 0.003 0.000 0.000
Tra 0.003 0.001 0.001
S 0.001 0.001 0.001

Wald's BVH

Gen 0.000 0.000 0.000
Int 0.002 0.000 0.001
Tra 0.001 0.001 0.001
S 0.001 0.001 0.001

Table 5.6: L2 Data Cache Miss Rate per function for iRT scalar with no BVH, scalar
with Ademar's BVH and scalar with Wald's BVH versions. Gen - iRT General

ratio, Int - Intersect, Tra - Traverse, S - Shade
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Chapter 6

Scalar and Vectorial Ray Tracing

In scalar ray tracing, after generating all rays and putting them in a work list, a

frame is rendered. To render it, the work list is traversed to obtain tasks of rays. At

a time, each ray in each task traverses the BVH to generate a small list of triangles.

Each ray is tested against the 3D position of all triangles potentially intersected

by it. After this, the respective pixel is shaded, and the next ray is tested. While

shading, and as stated before, secondary rays may be created and added to the work

list. When the work list is empty, the resulting frame bu�er is processed later by the

application logic. This process may be repeated again to generate the next frame,

case the application logic decides that way.

Vectorial ray tracing method is much more complex than the scalar ray tracing,

even though it works similarly to the scalar one: a work list is generated, traversed

and in the end the frame is displayed, only to start all over again to create the next

frame. The main di�erence resides in the fact that while in the vectorial version a

number of rays are tested at a time, in the scalar one each ray is tested individually.

The use of SIMD instructions allows the computation of several values per in-

struction, instead of the typical single value and therefore we can reduce the render-

ing time. In our case, we decided to use a set of four rays since the SIMD instructions

used apply to a set of four �oating points. Regarding primary rays, each of these

four rays are positioned at the matrix positions (x, y), (x + 1, y), (x, y + 1) and

(x + 1, y + 1), improving the coherence between the four rays. This combination of

four primary rays, a packet of rays, is placed in a task, and later the task is placed

in the work list. This means that instead of shooting one ray at a time, four rays

are shot. This packet tracing method is only e�cient when the contained rays are

very coherent, i.e., all rays must traverse the same space regions. After one or more

of these rays diverge, as it happens when creating packets of secondary rays, some
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of the rays will become inactive which can lead to a very poor e�ciency, down to

the scalar version performance.

Taking in consideration N as the SIMD width and n to be the actual useful work

with active rays (n < N); so when rays are not coherent, N − n remaining slots

of the SIMD instruction perform wasted work [26]. For this reason, the ray packet

version works very well with primary rays because they tend to be very coherent,

while with secondary rays, coherence is of greater complexity.

The vectorisation of the original scalar version is not a direct approach. The

majority of functions have to be vectorised (TraverseBVH, Intersect, Shade). All

vectorisation implementation requires careful analysis, for example, while traversing

the BVH with a single ray is of a straight forward implementation, traversing with

a packet of rays has to be carefully studied. In scalar traversing, when the ray

being tested fails an AABB intersection, the function automatically returns a void

list of triangles; or if hits a leaf, the triangle contained in the AABB is returned.

With a vectorised version of traverse, the packet of rays may or may not intersect

several di�erent AABBs. This makes conditional tests to occur repeatedly, which

contributes to a slow down in performance. Another issue is that if all four rays

intersect di�erent leafs, the whole packet will be tested against the four triangles

returned by the TraversBVH function.

The Intersection function is based on [3], allowing a faster implementation of

this function. Only a few adaptations were needed in order to match our scene's

data types.

Implementing the Shading function was also carefully done. As with the Traverse

function, the shading function vectorisation was far from simple. Actually, there is

almost no SIMD instructions present in the shading function to allow access to

each ray's data separately. As an example, one ray, in the scalar version, may

or may not generate a secondary ray, but in the vectorial version, four rays may

or may not generate secondary rays. To resolve this issue, if at least one ray of

the packet generated a secondary ray, a new packet had to be created with the new

shadow/specular ray, while the other rays of the new packet were set to have a weight

of zero, meaning they did not contribute to the �nal result. As explained before,

this kind of packets (with invalid rays or with lack of coherent rays) contributes to

a speed down of the ray tracer.
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6.1 Results and Discussion

In the next sections we will show and discuss the tests made to the vectorial version

obtained by vectorising the scalar version with Ademar's BVH. Literature [3] points

to a speed up of more than 3 times, while another work points to only a two times

speed up increase [24]. In the �rst section we show the values obtained by testing

FPS, T.Exec., and RPS; and how much was gained by vectorising the scalar version.

Then we look for hotspots, i.e., where the majority of time is spent and in the last

section we compare the number of memory accesses of both versions.

6.1.1 T.Exec, Frames Per Second, Rays Per Second

Vectorisation did not guarantee the desired speed up, which was between 1.2 to 1.8

times faster than the scalar version. Table 6.1 shows that the FPS rate never hits

the 2 times speed up factor. In the Conference scene, the vectorial version does not

reach the 260 thousand rays per second. In the other two scenes iRT goes beyond

the 700 thousand rays per second, but are still far from the 1 Million rays per second.

iRT Scalar Vectorial

T.Exec FPS RPS T.Exec FPS RPS
Conf. 1,068 0.18 130k 571 0.35 259.3k
Bunny 128 1.56 404.3k 106 1.87 731.9k
O�ce 276 0.72 589.2k 166 1.2 726.7k

Table 6.1: Time of Execution (T.Exec), Frames per Second (FPS) and Rays per
Second (RPS) of iRT 's versions: scalar with Ademar's BVH and vectorial with
Ademar's BVH. Both versions are tested with the three scenes (�gure 4.1).

Initial development results showed that, with simpler scenes, the vectorised ver-

sion of iRT without BVH returned speed up values between 3.25 and 4.8 comparing

to the scalar version equally without any BVH implementation. With this in mind,

and looking the returned values by the vectorised version with BVH, an issue con-

cerning the traversal of the BVH is pointed out. In the next section we further

justify why the BVH traversal is the hotspot in our software.

6.1.2 Time Distribution per Function

In Tables 6.2, it is noted a small di�erence between time distribution in the scalar

and the vectorial versions. Since the vectorial version produces more frames, it is
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natural to the Output function be called more often, causing its value to increase.

The same happens with the GenPrimRays function. But the RenderLoop function

continues to take more than 98% of the total time. The bottleneck can only be

present at the core of our software.

iRT Scalar Vectorial

RL GPR OU RL GPR OU
Conf. 99.90% 0.06% 0.04% 99.80% 0.13% 0.07%
Bunny 99.33% 0.38% 0.28% 98.80% 0.77% 0.43%
O�ce 99.62% 0.21% 0.16% 99.25% 0.50% 0.25%

Table 6.2: Percentage of each application function consuming time for scalar and
vectorial iRT 's versions. GPR - GenPrimRays, RL - RenderLoop OU - Output.

iRT Scalar Vectorial

Int Tra S Int Tra S
Conf. 4.61% 92.18% 1.48% 5.34% 91.04% 2.40%
Bunny 4.17% 85.75% 4.14% 5.36% 83.84% 7.14%
O�ce 4.87% 86.93% 3.34% 5.96% 83.65% 7.02%

Table 6.3: Percentage of each render function consuming time for scalar and vectorial
iRT 's versions. Int - Intersect, Tra - Traverse, S - Shade.

By measuring the RenderLoop functions we were able to identify where most of

the time is spent in rendering. Table 6.3 shows that the traversal of the BVH is still

the most time consuming function, taking more than 83% of time while rendering the

Stanford bunny and the o�ce scenes, while in the conference scene takes more than

91% of the time. We can clearly point out that optimising the traverse function, a

decent gain can be acquired. A graphical interpretation of the vectorial FPS values

can be found at image 7.1.

6.1.3 L1 + L2 Data Cache Miss Rate

iRT 's vectorial version L1 Data Cache Miss rate values are presented in table 6.4.

By refering to Vtune's limit values, no function passes such limit. The overall value

of L1 Data Cache Miss rate for each tested scene is low; the highest value measured

belongs to the Conference scene test where a 0.004 rate is found. This value is far

lower than the 0.05 limit present in Vtune's manual. As for the traversal function,

it behaves the same way presented in the previous chapter. This function presents

the highest ratio concerning L1 Data Cache misses.
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iRT Vectorial

Gen Int Tra S
Conference 0.004 0.004 0.020 0.003

Bunny 0.003 0.005 0.014 0.001
O�ce 0.002 0.003 0.009 0.001

Table 6.4: iRT's vectorial version - L1 Data Cache Miss Rate per function. Gen -
iRT's ratio, Int - Intersect, Tra - Traverse, S - Shade

iRT Vectorial

Gen Int Tra S
Conference 0.000 0.000 0.001 0.001

Bunny 0.001 0.003 0.005 0.001
O�ce 0.000 0.000 0.001 0.000

Table 6.5: iRT's vectorial version - L2 Data Cache Miss Rate per function. Gen -
iRT's general ratio, Int - Intersect, Tra - Traverse, S - Shade

L2 Data Cache miss rates shown in table 6.5 indicate that a very low miss ratio

is present in any of the test made. Again, the highest value for L2 Cache miss rate

is found on the BVH traverse function.

L1 and L2 Data Cache miss rates present in tables 6.4 and 6.5 show similar ratios

found in the scalar version with Ademar's BVH (tables 5.5 and 5.6). This clearly

points the BVH traverse function as the biggest issue in iRT.
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Chapter 7

Multi-threading Algorithms

The ray tracing algorithm has been proved to be highly parallelisable. By making

use of, not one, but several cores, it is possible to speed up the rendering process

almost by the factor of number of cores [23]. By parallelising the vectorial algorithm,

the �nal frame rate value should multiply by that factor, meaning the �ow of frames

rendered is higher and the �nal image result is smoother. With this in mind, we use

the mentioned three parallel versions in order to achieve such speed up.

The three di�erent data access control mechanisms are presented in the next

sections. The lock-based algorithm is referred to as LOCK, the local one as LOCAL

and the lock-free as LFREE. As stated in this thesis, it is of most importance to

protect data structures shared by di�erent threads. In our software, there is the need

to protect the work queue which contains all tasks of rays and the frame bu�er, where

the values of ray-triangle intersections are stored. The multi-threaded version of iRT

is built using POSIX threads, and each of the three di�erent mentioned versions uses

di�erent methods to protect such shared data structures. All three versions use a

spinlock to protect the access to the �lm bu�er. To access the work queue each

version has a di�erent approach to it. LOCK version makes use of the Pthreads

mutexes to lock/unlock the queue. The LFREE version, instead of mutexes, uses

a Compare-and-Swap atomic operation that allows the access to the queue without

resorting to mutexes. It is expected that the LFREE version returns better results

than the LOCK one. Finally, the LOCAL version resorts to, not one work queue,

but to private work queues. Each thread is assigned a speci�c work queue; each

thread later deals with the generated secondary packets of rays by its own. This

means the possibility of work imbalance to be created is added to the rendering

process.

Later in this chapter we show the obtained results, by comparing the LOCK,
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LFREE and LOCAL version with each others and with the original vectorial version,

in order to understand how scalable each solution is and what is the performance of

each algorithm.

7.1 Lock-Based Queue

The traditional LOCK implementation uses a single lock to protect all accesses to

the shared queue. This results in serialising all calls to getRays() and addRays(),

that is, reads and writes may interfere among them. However, reads and writes

operate on di�erent ends of the queue, so they must be able to proceed without

interference if the queue is whether full or empty. We used the Unbounded Total

queue algorithm described in [9]: the queue is a linked list of tasks and di�erent locks

are used for reads and writes, thus reducing contention. A sentinel node, whose next

�eld is NULL, is initially inserted. Readers always check whether this is the head

node of the queue; if it is, then the queue is empty (see listing 7.1).

Listing 7.1: Lock-based queue

1 addRays (RayType ∗ ray ) {

2 addlock . l o ck ( ) ;

3 QueueNode ∗node = new QueueNode ( ray ) ;

4 t a i l−>next = node ;

5 t a i l = node ;

6 addlock . unlock ( ) ;

7 }

8

9 getRays ( rayType ∗∗ ray ) {

10 ge t l o ck . l o ck ( ) ;

11 i f ( head−>next==NULL) {

12 ge t l o ck . unlock ( ) ;

13 r e turn EMPTY;

14 }

15 QueueNode ∗ ac tua l = head ;

16 head = head−>next ;
17 ∗ ray = actual−>value ;
18 ge t l o ck . unlock ( ) ;

19 de l e t e ac tua l ;

20 r e turn OK;

21 }

7.2 Local Queue

The reasoning behind the LOCAL approach is that each thread maintains its own

work queue. The application program rather than writing all primary packets of
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rays to a single queue, distributes the tasks among all work queues in a round-robin

fashion to ensure better load balancing. Each rendering thread then processes its

initially assigned packets and adds secondary packets of rays to its own queue. Apart

from the scene data and the frame bu�er, this approach has no data sharing, thus it

requires no data access control mechanism to access the work queue; the work queues

implementation is similar to that shown in listing 7.1, but without the locks. Since

there is no contention or serialisation of accesses this approach has the potential

to outperform the other two if a balanced load distribution is guaranteed. Note

that load distribution is statically done by the application program; the round robin

distribution of work and the �ne granularity of tasks (i.e., the number of packets

associated with each of the queue's node) assure a reasonable load distribution for

many images and for shallow ray trees, such as those typically found in interactive

ray tracing contexts.

The only issue that can be encountered in this approach is that the shader may

cause performance to speed down, due to the possibility of having bad load balance

when creating new secondary packets of rays. This weak load balance may cause an

overload of work in some local work queues, meaning some threads will be working

while others will have to wait until all local queues are done. In case of heavy

imbalance, this wait time will bring down the overall performance and cause the

renderer to be far from optimal.

7.3 Lock-Free Queue

The lock-free algorithm [9, 14] does not rely on locks to guarantee mutual exclusion.

It relies on the Compare-and-Swap atomic synchronisation primitive described in

listing 7.2 and on retries, i.e., it contains a loop (this is the reason why it is not

a wait-free method: it is not guaranteed to �nish in a �nite number of steps).

Additionally, the addRays() method is lazy, meaning that insertion of new nodes

happens in two di�erent steps; in particular, threads may need to help one another

in order to advance tail (see listing 7.3).

The addRays() method creates a new node (line 2), reads tail and �nds the node

that appears to be last (lines 4 and 5). It then checks whether that node is still

last (line 6) and whether the node has a successor (line 7). If the node does have a

successor then it was inserted by other thread; this thread will help the others by

trying to advance tail to the next node, but only if tail is still equal to last (line 13)

- it will then try again to insert the new node. If, however, the node still does not
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Listing 7.2: Compare and swap
1 atomic CAS( addr l o ca t i on , va l cmpVal , va l newVal )
2 {
3 i f (∗ l o c a t i o n == cmpVal )
4 {
5 ∗ l o c a t i o n = newVal ;
6 r e turn true ;
7 }
8 e l s e re turn f a l s e ;
9 }

have a successor (lines 7 � 12), then it performs a trial to append it to the queue

(line 8). If it succeeds, it tries to update tail to the new node (line 9); this CAS

operation may fail, but this does not represent a problem, since it will only fail if

tail has already been advanced by other thread. If, however, appending the node

to the queue failed (line 8), then the thread will try again (this CAS operation may

fail because some other thread might have appended other node).

The getRays() method is very similar to its lock-based homonym. It will check

if the queue is empty by verifying if the successor of head is NULL (line 26); if the

queue is non empty, then it will try to advance head to its successor and return the

previous head node (lines 31 � 35). There is however a subtlety in this lock-free

algorithm: before advancing head the algorithm has to make sure that tail is not

left referring to the sentinel node that is about to be removed from the queue (this

may happen because some thread may have added a node to the queue but was not

able to update tail). Thus if head equals tail (line 25) but the head successor is not

NULL (line 26), then the queue can not be empty; the thread will try to advance

tail to the sentinel's node successor (line 29) and will iterate again.

Listing 7.3: Lock-free queue

1 addRays (RayType ∗ ray ) {

2 QueueNode ∗node = new QueueNode ( ray ) ;

3 whi le ( t rue ) {

4 QueueNode ∗ l a s t = t a i l ;

5 QueueNode ∗next = la s t−>next ;
6 i f ( l a s t==t a i l ) {

7 i f ( next==NULL) {

8 i f (CAS( l a s t−>next , next , node ) ) {

9 CAS ( t a i l , l a s t , node ) ;

10 r e turn ;

11 }

12 } e l s e {

13 CAS ( t a i l , l a s t , next ) ;

14 }

15 }

16 }

17 }
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18

19 getRays ( rayType ∗∗ ray ) {

20 whi le ( t rue ) {

21 QueueNode ∗ f i r s t = head ;

22 QueueNode ∗ l a s t = t a i l ;

23 QueueNode ∗next = f i r s t −>next ;
24 i f ( f i r s t==head ) {

25 i f ( f i r s t==l a s t ) {

26 i f ( next==NULL) {

27 r e turn EMPTY;

28 }

29 CAS ( t a i l , l a s t , next ) ;

30 } e l s e {

31 ∗ ray = next−>value ;
32 i f (CAS ( head , f i r s t , next ) ) {

33 de l e t e f i r s t ;

34 r e turn OK;

35 }

36 }

37 }

38 }

39 }

7.4 Results and Discussion

For the multi-threading pro�ling and performance veri�cation obtained by paral-

lelising our software across several cores, we choose to measure the frame rate (fps),

the amount of time it would take to get or add a new task and how long threads

have to wait in a barrier for all other threads to �nish. Lastly, we compare what is

the speed up obtained by comparing the three parallel versions' frames rate with the

vectorised single threaded version presented in the previous chapter. These values

indicate, respectively, how fast new frames are produced, which contributes to a

smoother image refresh rate (as stated before) and to detect a possible bottleneck

while retrieving or adding new tasks to the work queue. Measuring the speed up

between one parallel version and the vectorial one can indicate how scalable our par-

allel version. Ideally, the present number of active rendering threads/cores should

multiply the speed up by that factor[23]. We also measure the time distribution per

function in order to detect which of the functions of iRT takes more time, and lastly

we test the L1 and L2 Data Cache Miss Rate in order to detect possible bottlenecks

associated to bad memory access, which contribute to a reduction of performance.

The above refered tests were made to the three multi-threaded versions: LOCK,

LFREE and LOCAL running with 2, 4 and 8 threads.
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7.4.1 T.Exec, Frames Per Second, Rays Per Second

In table 7.1, it is shown the time of execution, frame rate and rays per second for the

LOCK, LFREE and LOCAL versions for the 2-threaded, 4-threaded and 8-threaded

tests respectively. A graphical observation of these values is found in �gure 7.1 (a),

(b) and (c). Table 7.2 shows the vectorial single threaded version for easier reference

and comparison to the multi-threaded versions.

In the 2-threaded rows, we can see the LFREE version is the weakest version,

running at lower frames per second than the other two in all scenes. The LOCK

and LOCAL versions show very similar results, as the frame rate is very similar

across the three scenes. Comparing the best results in this table (LOCK version)

to the results obtained in table 6.1, speed ups of 2, 1.7 and 1.975 are found for the

Stanford bunny scene, the conference scene and the o�ce scene, respectively. This

values points to an almost perfect scalability of our implementation for 2 threads.

In the LOCK version we were able to achieve 1.5 million rays per second with the

Stanford bunny. The Conference scene has a very low value for RPS. This is due to

a not optimised traverse function.

iRT T LOCK LFREE LOCAL

T.Exec FPS RPS T.Exec FPS RPS T.Exec FPS RPS

C

2 330 0.6 444.3k 396 0.5 370.3k 328 0.6 444.3k
4 212 0.94 696.2k 197 1.01 747.9k 192 1.04 770.3k
8 124 1.6 1,184.5k 133 1.49 1.103.4k 108 1.83 1,355k

B

2 51 3.9 1,526.4k 55.7 3.59 1,186.9k 55.9 3.57 1,397.3k
4 32.58 6.13 2,399.2k 29.27 6.83 2,673.2k 30.5 6.53 2,555.8k
8 16.85 11.87 4,645.9k 16.62 12.03 4,708.5k 16.16 12.37 4,804.4k

O

2 84 2.37 1,435.2k 97.98 2.04 1,235.5k 85.3 2.34 1,417.2k
4 52.9 3.78 2,289.2k 48.19 4.15 2,513.2k 47.64 4.19 2,537.6k
8 26.65 7.5 4,542.2k 26.39 7.58 4,590.5k 23.45 8.53 5,165.6k

Table 7.1: Time of Execution (T.Exec), Frames per Second (FPS) and Rays per
Second (RPS) of iRT 's versions: LOCK, LFREE and LOCAL for 2, 4 and 8 threads.
In the bottom of the table, vectorial original version's values are shown for easier
reference. All versions are tested with the three scenes (�gure 4.1). C - Conference
scene, B - Stanford Bunny scene, O - O�ce scene, T - number of threads.

Rows for 4 threads, show slightly di�erent results encountered in the last para-

graph. Here, the LFREE version returns very similar results to the LOCAL version,

while the LOCK version has the worst performance of the three versions. With 4

threads we achieved more than 2.5 Million rays per second with the LFREE and the

LOCAL versions with the O�ce and Stanford bunny scenes. As for the Conference,
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iRT Vectorial

T.Exec FPS RPS
C 571 0.35 259.3k
B 106 1.87 731.9k
O 166 1.2 726.7k

Table 7.2: Time of Execution (T.Exec), Frames per Second (FPS) and Rays per
Second (RPS) of iRT 's vectorial version. All versions are tested with the three
scenes (�gure 4.1). C - Conference scene, B - Stanford Bunny scene, O - O�ce
scene.

it is found that RPS is still very low. Comparing to the original vectorised version

measurements, we found average speed ups of 3 for the LOCK version, 3.33 for the

LFREE version and 3.31 for the LOCAL one.

Comparing the T.Exec, FPS and RPS of the LOCK, LFREE and LOCAL ver-

sions of iRT running with 8 threads, we measured on the LOCAL version and o�ce

scene the maximum achieved value concerning RPS with a value of more than 5.165

million rays per second. Also, running with 8 threads we were able to achieve 12.37

frames per second on the LOCAL version with the Stanford Bunny. LOCK and

LFREE versions had very similar behaviours while the LOCAL version returned

the best results for all scenes. Concerning scalability, comparing to the original

vectorial version, the 8-threaded version registered the following speed up values:

5.7 for the LOCK approach, 5.66 for the LFREE approach and 6.3 for the LOCAL

approach.

Results from these three tables lead us to conclude there is still margin for

optimisations. Ideally, 8-threaded iRT should return a speed up of 8, but only an

average value of 6.3 was returned.

7.4.2 Time distribution per function

Table 7.3 shows the percentage of time each function takes to run. In each version

(LOCK, LFREE, LOCAL) the �rst and last functions (GenPrimRays and Output)

correspond to the application logic while the RenderLoop calls the rendering core;

and the three last functions (Intersect, BVHtraversal, Shade) correspond to the

core engine and are called by the RenderLoop function.

Carefully comparing the values measured, it is noted that percentage values cor-

respond exactly with the behaviour analysed in the previous subsection. For exam-

ple, the more the BVHTraversal functions take time, the less the Frame per Second
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(a) Conference (b) Stanford Bunny

(c) O�ce

Figure 7.1: Frames per Second for each scene tested with LOCK, LFREE and
LOCAL versions, running with 2, 4 and 8 threads, compared with the respective
vectorial version. Y-axis - Frames Per second, X-axis - Number of threads.

rate is. The more FPS counted in a test, the higher the values of GenPrimRays

and Output are. This fact has already been described in chapter 6. The traverse

function is where our bottleneck is present, and thus optimising this function will

contribute to better overall results.

In the Conference scene, every single test registered the RenderLoop function as

always taking more than 99% of the executing time and BVHtraversal taking more

than 88%. As for the O�ce and Stanford Bunny, such values are not as high as in

the Conference scene, but take as well the majority of rendering time.

7.4.3 L1 + L2 Data Cache Miss Rate

Taking in consideration the L1 Data Cache Miss Rate limits presented in Chapter

4, table 7.4 shows that the minimum limit of 0.05 was never passed, meaning there
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7.4. Results and Discussion

iRT Function
Scenes

Bunny O�ce Conference

LOCK

GenPrimRays 2.89% 2.14% 0.49%

RenderLoop
Intersect 6.73% 6.80% 6.52%
Traverse 81.30% 84.08% 90.83%
Shade 6.44% 5.04% 1.82%

Output 2.62% 1.94% 0.34%

LFREE

GenPrimRays 2.83% 2.25% 0.39%

RenderLoop
Intersect 5.95% 6.91% 7.99%
Traverse 79.60% 83.80% 88.52%
Shade 7.69% 5.13% 1.91%

Output 2.62% 1.91% 0.34%

LOCAL

GenPrimRays 3.33% 2.89% 0.41%

RenderLoop
Intersect 5.61% 5.69% 5.51%
Traverse 78.65% 78.39% 88.18%
Shade 8.23% 9.15% 4.19%

Output 2.73% 2.32% 0.40%

Table 7.3: Percentage of each function consuming time for iRT LOCK, LFREE and
LOCAL versions running with 8 threads.

is little to no L1 Data Cache Misses. Taking a closer look at each function, some

patterns emerge. It is very clear the traverse function registers, by far, most of the

L1 Data Cache Misses during execution. Also, this can be seen as the complexity of

the scene increases, i.e., the more time spent in traversing the BVH, the higher the

L1 data cache miss value is. Regarding the general L1 data cache miss ratio, it was

measured a small value varying between 0.002 and 0.005, which are good values.

As for the L2 Data Cache Miss Rate in iRT, the general values quanti�ed were

far below the 0.01 value suggesting our renderer has a good L2 memory access.

But taking a closer look at each function performance, there can be seen that the

maximum limit for a good L2 cache miss rate is passed by the traverse function. In

table 7.5, the traverse function registers a value of 0.011 in the LFREE 2-threaded

version while rendering the Stanford Bunny. The L2 data cache miss rate limit is

again passed in the 4-threaded version of LOCK and LFREE, for the same scene.

From a careful analysis of the past three section, we choose the LOCAL 8-

threaded version as the best version of iRT for the reason that it achieved the best

frame rates and rays per second in all three scenes. It also presents low values

for both L1 and L2 data cache miss rates. The LOCAL version outperformed the

LFREE version thanks to a small ray tree depth and good load balancing between

queues. A problem arises in the case of a new shader implementation: an increase
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in the ray tree depth may be introduced, i.e., each ray generates even more sec-

ondary rays originating in a very di�erent number of tasks for each local queue. By

generating imbalanced work queues, the LOCAL version will most probably loose

performance and be outperformed by the LFREE version.

7.5 Scalar Multi-Threaded Experiments

In previous work [16], a similar comparison was done by us in order to evaluate these

three algorithms (LOCK, LFREE and LOCAL) in a scalar rendering algorithm. By

using Ademar's BVH but no vectorisation, obtained results were similar to the ones

presented in this chapter. Actually, comparing the results obtained in that work

and in this thesis we can see that the vectorial threaded version's FPS rate is only

slightly better than the ones presented in [16]. Also, in [16] we tested iRT scalar

threaded version in two other machines: a 8-core (plus Hyper-Threading) Xeon 5500

server and a 24-core Xeon 7400 server. Maximum scalability was not reached, having

its maximum speed up value set at 11, when testing the O�ce scene with 24 cores.

Results are shown throughout �gures 7.2, 7.3 and 7.4.

Taking the LOCAL approach in consideration and by comparing the FPS values

found in this thesis with the values presented in 7.2, we can see that the vectorial

version is only faster by a fraction of a frame (0.1 FPS faster), with 8 threads ren-

dering the Conference scene. In the Stanford Bunny scene, also with 8 threads, the

vectorial version achieve 12.37 FPS while the scalar multi-threaded version achieved

11 FPS. Tests of the O�ce scene returned a 8.53 FPS value in the vectorised version,

slightly faster than the 6.4 FPS found in 7.2 (b).

By comparing these results, and only being able to compare performance data

from one machine (two quad-core Intel Xeon 5400), we can conclude the vectorised

multi-threaded version is not as good as expected has the speed-up found was be-

tween this one and the scalar one is less than two. We suppose that, if able to test

the vectorised version in the other two machines, similar results were to be found.
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7.5. Scalar Multi-Threaded Experiments

iRT

Version Threads Function Scenes

Bunny O�ce Conference

LOCK

2

Gen 0.003 0.005 0.004
Tra 0.015 0.008 0.020
Int 0.006 0.003 0.004
S 0.002 0.002 0.004

4

Gen 0.003 0.004 0.005
Tra 0.017 0.017 0.023
Int 0.005 0.004 0.004
S 0.002 0.002 0.004

8

Gen 0.003 0.003 0.005
Int 0.006 0.002 0.005
Tra 0.019 0.013 0.024
S 0.002 0.002 0.004

L-FREE

2

Gen 0.003 0.002 0.004
Tra 0.002 0.011 0.023
Int 0.002 0.003 0.005
S 0.005 0.002 0.007

4

Gen 0.003 0.003 0.004
Tra 0.018 0.013 0.023
Int 0.006 0.003 0.005
S 0.002 0.002 0.004

8

Gen 0.004 0.002 0.004
Tra 0.019 0.013 0.023
Int 0.005 0.004 0.004
S 0.002 0.002 0.004

LOCAL

2

Gen 0.003 0.005 0.005
Tra 0.015 0.008 0.022
Int 0.005 0.003 0.005
S 0.003 0.002 0.004

4

Gen 0.003 0.002 0.004
Tra 0.016 0.010 0.024
Int 0.005 0.003 0.005
S 0.002 0.002 0.004

8

Gen 0.003 0.002 0.004
Tra 0.019 0.009 0.025
Int 0.006 0.003 0.004
S 0.002 0.001 0.004

Table 7.4: L1 Data Cache Miss Rate per function for iRT LOCK, LFREE and
LOCAL versions running with 2, 4 and 8 threads. Gen - iRT General ratio, Int -
Intersect, Tra - Traverse, S - Shade
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iRT

Version Threads Function Scenes

Bunny O�ce Conference

LOCK

2

Gen 0.002 0.004 0.001
Tra 0.006 0.001 0.001
Int 0.003 0.000 0.000
S 0.002 0.002 0.001

4

Gen 0.001 0.002 0.001
Tra 0.010 0.010 0.004
Int 0.004 0.000 0.000
S 0.002 0.002 0.002

8

Gen 0.001 0.001 0.000
Tra 0.009 0.006 0.004
Int 0.003 0.000 0.000
S 0.002 0.002 0.002

LFREE

2

Gen 0.001 0.001 0.001
Tra 0.009 0.005 0.004
Int 0.003 0.000 0.000
S 0.002 0.001 0.006

4

Gen 0.001 0.001 0.000
Tra 0.010 0.007 0.004
Int 0.004 0.000 0.001
S 0.002 0.002 0.001

8

Gen 0.001 0.001 0.000
Tra 0.011 0.007 0.005
Int 0.003 0.000 0.000
S 0.002 0.002 0.001

LOCAL

2

Gen 0.001 0.004 0.001
Tra 0.006 0.001 0.001
Int 0.003 0.000 0.000
S 0.002 0.001 0.001

4

Gen 0.001 0.000 0.000
Tra 0.006 0.001 0.001
Int 0.004 0.000 0.000
S 0.001 0.001 0.001

8

Gen 0.001 0.000 0.000
Tra 0.009 0.001 0.001
Int 0.004 0.000 0.000
S 0.002 0.001 0.000

Table 7.5: L2 Data Cache Miss Rate per functionfor iRT LOCK, LFREE and
LOCAL versions running with 2, 4 and 8 threads. Gen - iRT General ratio, Int -
Intersect, Tra - Traverse, S - Shade
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7.5. Scalar Multi-Threaded Experiments

(a) Conference (b) O�ce

(c) Bunny

Figure 7.2: Results for the 8-core Xeon 5400 server. Axis: left- fps, right- speed-up,

horizontal- number of threads.

(a) Conference (b) O�ce

(c) Bunny

Figure 7.3: Results for the 8-core (plus HT) Xeon 5500 server. Axis: left- fps, right-

speed-up, horizontal- number of threads.
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(a) Conference (b) O�ce

(c) Bunny

Figure 7.4: Results for the 24-core Xeon 7400 server. Axis: left- fps, right- speed-up,

horizontal- number of threads.
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Chapter 8

Conclusions

Ray tracing has demonstrated to be an accurate and reliable tool to produced high

quality and physicality correct images. The interactive ray tracer prototype (iRT)

was able to perfectly simulate hard shadows and re�ections by making use of only

a small ray tree depth (see �gure 4.1).

In this thesis we presented and implemented our interactive ray tracer, in order

to measure three optimisation techniques which were expressed in results suggesting

a margin for future optimisations. Such results were obtained by resorting to Intel's

Vtune software and counters in our source code.

To begin with, we implemented a basic version of our renderer, where only one

ray per pixel was shot at a time and had to traverse the complete scene (list of

triangles) to test if a valid intersection with a triangle was found. In the end the

ray was shaded and this value added to the �nal display bu�er. This has proven to

be quite ine�cient. Subsquently, we included in our software the �rst optimisation.

This optimisation consisted in experimenting two di�erent Bounding Volumes Hi-

erarchies approaches. One of the versions was a direct implementation of Ademar

Gonçalves's work [6] and the other was our implementation of Ingo Wald's approach

[25]. Although Wald's had previously shown exceptional results we were not able

to achieve them. Pro�ling these three versions showed that with the use of a BVH

would speed up our ray tracer by more than 100 times. In the Stanford Bunny scene

we were able to achieve a 1040 times speed up with Ademar's BVH. Our implemen-

tation of Wald's BVH showed a high BVH construction time and a lower frame per

second rate. For these reasons we decided to incorporate Ademar's BVH into iRT.

It was also detected that the traversal function takes the majority of rendering time,

presenting much higher values of L1 and L2 Data Cache miss rates, comparing to

the other measured functions. An ADS with fast building and traversing times is
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of major importance since dynamic scenes require constant updating on the BVH 's

shape and fast traversal to avoid hurting the renderer's performance.

Secondly, we decided to vectorise our scalar version of iRT. This vectorisation

was only possible due to two simple facts: the ray tracing algorithm is highly par-

allelisable and ray coherence is present among adjacent primary rays. By making

use of SIMD instructions we were able to gather four adjacent rays into a single

packet. By doing this, it became possible to test four rays at once against one

triangle, instead of only one ray at a time, as previously indicated in the scalar

version. We then proceeded to test both versions in the matters of memory access

performance, frames per second, rays per second and time distribution per function.

Tests indicated that the speed up found was below our expectations, staying below

2, when literature points to an almost 4 time fold improvement. By pro�ling the

vectorized version we were able to identify the BVH traverse function as the hotspot

for rendering, for the reasons that this function takes, in average, more than 80%

of rendering time and that initial tests without an ADS showed a speed up value

near 4. A decrease in L1 and L2 Data Cache Miss rates suggests that less memory

accesses are performed and data is more correctly aligned in memory.

Regarding the last optimisation considered in this thesis, we decided to compare

three di�erent data access control mechanisms, used to share access to a FIFO-

queue holding tasks (sets of rays) for a multi-threaded interactive ray tracer. One

approach is based on using locks to provide mutual exclusion to critical regions.

This approach, which uses di�erent locks for reading and writing thus reducing

contention and serialisation, is referred to as LOCK. The lock-free synchronisation

approach (LFREE) avoids all locks by carefully reordering instructions. Finally,

within the local approach each thread maintains a local work queue, preventing work

sharing but also dispensing with access control mechanisms. Our results have shown

that the LOCAL approach outperforms the other two both in raw performance and

scalability. This result can be explained by the fact that this approach incurs no data

access control overheads. Overheads due to load imbalance do not occur due to both

the �ne granularity of the tasks and to the homogeneity and shallowness of the per

pixel ray trees depths. LOCK and LFREE perform similarly for a moderate number

of cores. However, as the core count increases, the time spent waiting to enter critical

sections with locks starts to grow exponentially. With the lock free approach this

overhead increases sub-linearly, having a signi�cant impact on the achieved frame

rates. This result becomes specially relevant due to the ever increasing core count in

modern processors. The performance of future shared memory many-core systems
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8. Conclusions

will be very likely dependent on the ability to e�ciently and robustly share data

structures.

iRT versions Scenes FPS RPS

Scalar (Single Threaded))

Conf 0.00158 687.64
Bunny 0.0015 611.13
O�ce 0.0048 2,107.79

Scalar with BVH (Single Threaded)

Conf 0.18 130,000.32
Bunny 1.56 589,187.04
O�ce 0.72 404,381.52

Vectorial with BVH (Single Threaded)

Conf 0.35 259,250.6
Bunny 1.87 731,910.52
O�ce 1.2 726,748.8

LOCAL

Conf 1.83 1,355,078.4
Bunny 12.37 4,804,458.52
O�ce 8.53 5,165,665.64

Table 8.1: Comparison between the progression found in the several presented ver-
sions of iRT : the basic scalar version, the scalar version with Ademar's BVH, the
vectorised version, and the best 8-threaded vectorial version. FPS - Frame per
seconds, RPS - Rays per second.

These three methods used to optimise our �rst approach to interactive ray trac-

ing, from the sequential version all the way to a complete multi-threaded and vec-

torised version (table 8.1 summarises the best values measured throughout this

work), proved to bring e�ciency and to be of extreme importance to the core of

the software here presented. Unfortunately, we were not able to reach interactive

frame rates; and based on the present literature on the subject [28, 25, 3, 19], our re-

sults in this thesis clearly indicate that there is still margin for further optimisations

and, consequently, increase the general performance.
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Chapter 9

Future work

Ingo Wald's work on BVHs is quite interesting which makes us think this should be

targeted as a major objective of further study. An e�cient and well implemented

BVH as Wald's one should improve immensely the ray-triangle intersection function

time.

Di�erent alternatives to this ray-triangle intersections method will be studied in

order to obtain better results during rendering, being one of them Peter Shirley's

Optimising Ray-Triangle Intersection via Automated Search methods[10]. Prelimi-

nary results showed a decrease in performance, possibly due to data structure/access

management.

The major argument against packetising rays and using explicit SIMD code is

that it only increases performance as far as these rays are coherent, i.e., traverse the

same regions of space and have high probability of intersecting the same triangle.

This is usually true for neighbouring primary and shadow rays, since all do share

the same origin and similar directional paths. Coherence drops as we descend in the

ray tree, since re�ected and transmitted rays usually have very di�erent directions

(e.g., for curved surfaces). Studying performance for secondary rays will thus be a

major step and the results will help deciding whether these rays should be traced

with the sequential or the vector approaches.

The parallel versions of iRT are not close to be linearly scalable in relation to the

number of cores/threads. The presented results may be in�uenced by other parts

of the software not directly related with the multi-threading algorithms. As it was

proved, the BVH traverse function in�uences the FPS rate and optimisation of this

functions should allow better scalability.

Ray-tracing become interactive because there was a need of not only speed up

the production of frames, but to allow dynamic scenes to be showed at high frame
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rates. The next step of our iRT will be to incorporate such animations. For this

to work there is a need to reconstruct or change the BVH structure during execu-

tion time. For example, in [25], it was demonstrated that it is possible to achieve

such interactive frame rates while including a BVH reconstruction between frames

rendering.

Finally, in order to generate better quality images, an improvement of the shaders'

quality and their diversity is going to be studied in the future, as well as raising the

number of rays shot per pixel.
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