
Maio de 2009

Universidade do Minho
Escola de Engenharia

Miguel Ângelo Marques de Matos

Network-Aware Epidemic Broadcast

M
in

ho
 2

00
9

U
M

ig
ue

l Â
ng

el
o

M
ar

qu
es

 d
e

M
at

os
N

e
tw

o
rk

-A
w

a
re

 E
p

id
e

m
ic

 B
ro

a
d

ca
st

Tese de Mestrado
Mestrado em Engenharia Informática

Trabalho efectuado sob a orientação do
Professor Doutor Rui Carlos Oliveira

Maio de 2009

Universidade do Minho
Escola de Engenharia

Miguel Ângelo Marques de Matos

Network-Aware Epidemic Broadcast

É AUTORIZADA A REPRODUÇÃO PARCIAL DESTA TESE, APENAS PARA EFEITOS DE

INVESTIGAÇÃO, MEDIANTE DECLARAÇÃO ESCRITA DO INTERESSADO, QUE A TAL SE

COMPROMETE

Universidade do Minho, ___/___/______

Assinatura: __

Resumo

Os protocolos de disseminação �ável baseados na abordagem epidémica
têm ganho popularidade nos últimos anos dada a sua escalabilidade e
resiliência na entrega de mensagens em sistemas distribuídos de larga
escala. Contudo, esta resiliência e escalabilidade são obtidas através
de elevados níveis de redundância na propagação das mensagens que
conduzem inevitavelmente ao consumo substancial de recursos nos
nodos e respectivos canais de comunicação. Em cenários que apre-
sentam canais com recursos restritos, como o modelo emergente da
Computação em Nuvem em que vários data centers estão interliga-
dos numa federação global, esta característica impede a utilização
efectiva desta classe de protocolos.

O objectivo desta tese é, portanto, aumentar a aplicabilidade dos
protocolos de disseminação epidémicos, através da redução da carga
imposta nos canais com recursos restritos. Isto é alcançado con-
struindo uma rede sobreposta que tem em conta as características
individuais dos canais de comunicação, e através de um protocolo
de disseminação que considera a localidade dos nodos aquando da
propagação das mensagens que os atravessam. Através de experi-
mentação exaustiva, observa-se que os protocolos propostos reduzem
a carga imposta nos canais de comunicação com recursos restritos,
sem contudo afectar a escalabilidade e resiliência que tornam os pro-
tocolos de disseminação epidémica tão atractivos.

Abstract

Epidemic multicast is an emerging resilient and scalable approach to
the reliable dissemination of application data in the context of very
large scale distributed systems. Unfortunately, the resilience and
scalability come at the cost of considerable redundancy which leds
to high resource consumption on both links and nodes. In environ-
ments with resource constrained links, such as in Cloud Computing
infrastructure composed by data centers organized in a federation
around the globe, the high resource consumption precludes the use
of this class of protocols. The goal of this dissertation is therefore
to cope with the constraints of these scenarios, by reducing the net-
work load imposed on the constrained long distance links. This is
achieved by constructing an overlay that re�ects the characteristics
of the links, and by using a dissemination protocol that takes into
account locality when transmitting the message payloads. We con-
ducted an extensive experimental evaluation that presents an im-
provement over an order of magnitude in the number of messages
that travers the costlier links, without endagering the resilince and
scalability properties that make epidemic based protocols so attrac-
tive.

Contents

Contents . iv

List of Figures . v

List of Tables . vii

Listings . ix

1 Introduction 1

1.1 Motivation . 1

1.2 Brief Problem Presentation 4

1.3 Dissertation Outline 6

2 Related Work 7

2.1 Background . 7

2.1.1 Structured Overlay Networks 8

2.1.2 Unstructured Overlay Networks 10

2.2 State of the Art of Unstructured Networks 16

2.2.1 Flat Protocols 17

2.2.2 Hierarchical/Locality-aware Protocols 20

2.2.3 Dissemination Protocols 25

3 Problem Statement 29

4 Network-Aware Reliable Multicast 33

4.1 Approach . 33

4.2 Peer Sampling Service 35

4.2.1 Network-awareness 36

4.2.2 Degree Balancing 38

4.2.3 Bootstrapping mechanism 41

iii

iv CONTENTS

4.3 Dissemination Protocol 46

4.3.1 Locality awareness on the selection of peers . 47

4.3.2 Lazy push optimization 49

5 Experimental Evaluation 53

5.1 Experimental Scenario Description 54

5.2 Peer Sampling Service Evaluation 54

5.2.1 Overlay properties 55

5.2.2 Degree balancing mechanism 58

5.2.3 Bootstrapping mechanism 63

5.3 Dissemination Protocol Evaluation 65

5.3.1 Flooding dissemination protocol 66

5.3.2 Improved Emergent dissemination protocol . . 67

6 Conclusion 73

6.1 Conclusions . 73

6.2 Summary of Contributions 75

6.3 Future Work . 75

References 77

List of Figures

5.1 Overlay Connectivity. 57

5.2 Overlay Clustering. 58

5.3 Overlay Average Path Length. 59

5.4 Initial Overlay Degree Distribution. 60

5.5 Overlay Degree Distribution After 100 runs. 61

5.6 Overlay Connectivity after degree balancing. 62

5.7 Overlay Clustering after degree balancing. 63

5.8 Overlay Average Path Length after degree balancing. 64

5.9 Messages received using a �ooding dissemination pro-
tocol. 67

5.10 Messages/Advertisements Received using the improved
Emergent dissemination protocol. 69

5.11 Bandwidth/Latency trade o� of the di�erent strate-
gies using the improved Emergent dissemination pro-
tocol. 71

v

vi LIST OF FIGURES

List of Tables

5.1 Di�erent bootstrapping con�gurations. 65

vii

viii LIST OF TABLES

Listings

2.1 Scamp protocol . 18

2.2 HyParView Protocol 21

2.3 Basic Gossip Protocol: Peer Selection 27

2.4 Point-to-Point Communication 28

4.1 Clon protocol . 37

4.2 Clon normalization algorithm 40

4.3 Clon contact discovery protocol 43

4.4 Dissemination Protocol: Peer Selection 49

4.5 Dissemination Protocol:P2P Communication 51

4.6 A possible isCloser Oracle 51

5.1 isEager oracle with a TTL con�guration 70

ix

Chapter 1

Introduction

Begin - to begin is half the work, let

half still remain; again begin this, and

thou wilt have �nished.

Decimus Magnus Ausonius

This introductory chapter presents the motivation that led to this
dissertation, its relevance to the problems faced in the actual IT
scenario, the main results obtained and an outline of the chapters of
the dissertation.

1.1 Motivation

With the popularization of the modern desktop computer, and its
ever growing processing and storage capabilities, we have been as-
sisting through the last two decades to a massive decentralization of
computing power. The common user can now do most of its every-
day tasks from spreadsheets to text processing with the computer
in its desk, without needing to login in the old mainframe. On the
other hand, the advent of the World Wide Web and its exponential
growth in the end of the previous century led to the publication of
content and services through well known providers that rely on the
client-server paradigm. The services and contents are hosted in the
provider central servers and the client accesses them by means of its
Internet connection.

The standardization and commoditization of hardware enabled the
construction and assembly of infrastructures composed by thousands
to hundreds individual computers that when internetworked form a

1

2 CHAPTER 1. INTRODUCTION

platform more powerful than the simple sum of all parts, the well-
known data centers. Todays data centers e�ectively support our
Information Society ranging from government agencies that man-
age its citizen information to private companies that provide a wide
variety of services.

The necessity, and possibility, of building those large infrastructures
incited practitioners to develop mechanisms that e�ectively harness
the power they provide leading to the grid computing initiative. The
rationale behind those grid infrastructures is to use a divide and
conquer strategy in order to parallelize applications. With the mas-
sive parallelization, is then possible to solve technical of scienti�cally
problems that would otherwise not be computable in acceptable time
frames. The nodes composing the grid act in a concerted manner
by splitting the task in several segments and working over each one
of them individually. The typical usage of the grid includes the
processing of long running batch tasks controlled by one entity, by
dedicating parts of the grid infrastructure to that particular compu-
tation. Examples of such applications include statistical analysis and
inference over large amounts of data or processing intensive tasks,
such as weather forecasting or protein folding. The individual nodes
in the grid are loosely coupled entities

In the grid, the characteristics of the jobs requires the pre-allocation
of considerable parts of the infrastructure, which inhibits the use
of completely automated resource allocation, such as that done in
a single computer, and prevents tasks from di�erent entities to run
concurrently on the nodes of the infrastructure. In the latter 90's
we assisted to the evolution of this concept with the introduction of
Utility Computing. In Utility Computing the focus is on the business
model that by means of metering and billing allows customers to
access the computational resources of the provider. The term utility
comes from the idea that computational resources should be o�ered
as a public service, like electricity, and therefore billed according
to the consumption rates. This business model allows customers to
access vast quantities of resources for the amount of time desired,
without having to setup up a complex IT infrastructure with the
implicit cost it carries. This is useful to companies with a small
to moderate infrastructure that may need occasional access to more
resources than usual such as �scal end year processing. This model
bene�ts the providers as it allows them to rent the excess capacity
of their infrastructure, which is frequently over provisioned in order
to meet peak demands.

In parallel to this business model, we have been assisting to the

1.1. MOTIVATION 3

emergence of the Software as a Service paradigm. In this business
model, applications are delivered through the Internet as a service to
its customers. The administrative burden of managing the low level
infrastructure, deploying and updating the system's hardware and
software is o�oaded to the service provider, allowing the customers
to focus on the details of their particular businesses. Recently this
Software as a Service model has been expanded to o�er programming
platforms and low level IT infrastructures within the same business
model in what is now known under the Cloud Computing moniker.
While at �rst sight this may look familiar to Utility Computing,
there are some key di�erences that justify a new designation. The
�rst and perhaps more important di�erentiator is the concept of
elasticity. Elasticity allows the automatic up- and down-scaling of
allocated resources in a transparent way, and guarantees that fail-
ures are concealed from the customer by quickly replacing the failed
node with a spare replica, a property known as self-healing. Whereas
in Utility Computing the customer rents a 'grid' for its own use and
discards it when the work is done, Cloud Computing has a broader
scope. The goal is to completely o�oad the infrastructure of a given
customer to the cloud provider, leveraging on its expertise in man-
aging those large infrastructures and relying on well de�ned Service
Level Agreements that guarantee the reliability of the service and
data con�dentiality. The services provided by a cloud environment
could range from the low level infrastructure where the customer only
'sees' bare-metal machines, to the o�ering of a programming plat-
form where the customer is able to deploy its application in the cloud
and do not worry about the low level management details, up to the
already known software as a service model. Examples of providers
o�ering solutions at those di�erent levels include, respectively, Ama-
zon EC2 [4], Google App Engine [18], and Salesforce [38].

The availability of these platforms is inducing a shift from the com-
pletely decentralized philosophy of nowadays to a centralization of
computational capabilities by a couple of service providers. History
repeats itself and it seems that the pendulum is swinging back to
the centralization of application platforms, [13].

To enable the worldwide delivery of those services over the network,
guarantee that they could still be provided despite natural disasters
such as earthquakes, �oods and civil turmoils, and due to the prob-
lems of scale itself, the current infrastructure consists of geographi-
cally dispersed data centers aggregated by means of federation. To
this end the di�erent data centers are connected among them by
means of expensive, possibly inter-continental and hopefully redun-

4 CHAPTER 1. INTRODUCTION

dant links in order to mitigate the problems pointed above. Further-
more the intra-data centers links are expected to be more reliable
than the inter-data center ones, with high bandwidth and low la-
tency, and be pervasively deployed in the data center infrastructure,
in order to support the communication needs of the hundreds to
thousand individual nodes that power the data center.

Despite the di�erent o�erings and the inner details that power each
one of them, those cloud platforms are precisely distributed systems
which happen to be composed of hundreds to thousands of nodes.
This underlying infrastructure could be seen from the customer point
of view as a nearly in�nite pool of computing resources available
on demand. On the other hand, from the service provider's point
of view, it is of paramount importance to e�ectively manage those
nodes in order to enable e�cient resource usage, provide accounting
mechanisms that can be used to bill the customer and increase the
reliability of the system as a whole in order to meet stringent Service
Level Agreements. As in any distributed system, there are two fun-
damental building blocks that leverage the reliability and proper co-
ordination of the system and enable its proper management: reliable
multicast and distributed agreement. Reliable multicast provides
trustworthy communication primitives to the system, guarantying
that messages reach their intended recipients. Distributed agreement
o�ers an abstraction to the voting problem, ensuring that all correct
processes (eventually) decide the same value upon a set of valid pro-
posals. With this strong primitives it is possible to build a reliable
management framework to properly administer the infrastructure.
For instance, the administrator could provide data aggregation ser-
vices to account for the global state of the system, and deploy the
billing mechanisms on top of it. The problems raised by the manage-
ment of such very large scale infrastructures and the need to provide
reliable mechanisms in order to do so are the core of an undergoing
project at our lab, Dependable Cloud Computing Management Ser-
vices [2]. This thesis pretends to give a satisfactory answer to one of
those problems: reliable multicast on the context of the very large
distributed systems that power todays cloud infrastructures.

1.2 Brief Problem Presentation

As outlined in the previous Section, todays cloud infrastructures
consist of geographical dispersed data centers, organized in a fed-
erated fashion and connected by long distance expensive links. In

1.2. BRIEF PROBLEM PRESENTATION 5

order to provide a reliable management service that spawns this fed-
erated organization, a scalable and reliable communication service
is fundamental. Unfortunately, the communication demands intra-
data center and inter-data center are very di�erent, both in terms of
latency and bandwidth required to provide a reliable service, and in
the need of timeliness of information available across the federated
infrastructure. In a smaller scope, this can be also observed in the
architecture of a single data center, as collections of nodes are also
grouped in a federated manner that re�ects the networking technol-
ogy available today. This is evident in the individual clusters that
compose the data center and are deployed in a hierarchic fashion,
inter-connected by more expensive network devices as we move up
in the networking tree that composes the data center. This problem
is alleviated, but not solved, by using a fat tree network layout [3],
where leaf nodes are grouped in a way to mitigate the load imposed
on the individual network devices such as routers and switches that
interconnect them, while at the same time providing transparent
load balancing and failover among those devices. Further details of
the fat tree network deployment model in a data center can be found
in [3].

Summarizing, the current network infrastructure su�ers from a topol-
ogy mismatch, as the load imposed on each link and interconnecting
network devices does not re�ect the running application semantics
and necessities.

The objective of this thesis is therefore to provide a reliable commu-
nication service that improves the matching between the amount of
tra�c handled by each component on the infrastructure and the run-
ning application semantics and needs. However, this is not straight-
forward in a very large environment composed of thousands to hun-
dreds of thousands of nodes, each one with a more or less unpredicted
life cycle. The lice cycle of each node is very important in a infras-
tructure of such scale, as nodes may arbitrarily join and leave the
network, either due to failures of both links and nodes or due to
business needs related, for example, to maintenance and updates of
the individual components. As such, the proposed communication
service provides reliable dissemination mechanisms, to all nodes in
the infrastructure while at the same time seamlessly coping with the
inherent churn rates, the rate at which nodes leave and enter the
system.

This is achieved by leveraging on the resilience of unstructured net-
work overlays, more details will follow in the subsequent chapters,
and carefully biasing the overlay links in order to take into account

6 CHAPTER 1. INTRODUCTION

the underlying network topology.

With this approach, we are able to reduce the load imposed on the
long distance links, for instance those connecting geographically dis-
persed data centers, by an order of magnitude while at the same time
tolerating considerable failures of the whole infrastructure. Further-
more, our reliable multicast service constantly adapts to changes on
the infrastructure that happen, for instance, when a considerable
amount of nodes join or leave the system.

1.3 Dissertation Outline

The rest of this dissertation is organized as follows: in Chapter 2
we will provide background information in order to familiarize the
reader with the key concepts of reliable dissemination in very large
scale distributed systems, and o�er a state of the art review of
the current approaches to address this problem; Chapter 3 concisely
presents the problem we are addressing, its worthiness and why the
current approaches do not provide satisfactory answers; in Chap-
ter 4 we present the rational behind the developed protocol, con-
cisely describing it and why it addresses the problem presented in
the previous Chapter; on Chapter 5 we assess the quality of the pro-
posed service by means of extensive simulations and the discussion
of the obtained results; and �nally we conclude on Chapter 6, pre-
senting the main insights obtained during the elaboration of this dis-
sertation, how successfully it achieves the proposed objectives and
presenting directions for future research on the subject of reliable
dissemination services on very large scale distributed systems.

Chapter 2

Related Work

Great work is done by people who are

not afraid to be great.

Fernando Flores

This chapter is divided in two main sections: in Section 2.1 we will
present the two main approaches to address the problem of building
the supporting infrastructure to reliable multicast, and in Section 2.2
we will present the state of the art in unstructured network protocols.

2.1 Background

In this section, we will present the background concepts necessary to
familiarize the reader with the technical details present in the rest
of the dissertation. A brief review of the core concepts of structured
overlay networks is presented in Subsection 2.1.1, and a thoughtfully
analysis of unstructured overlay networks principles is presented in
Subsection 2.1.2, as the latter will be approach taken in this thesis.

Before dwelling in the details of each approach, it is important to
grasp a pervasive concept used by both proposals: the overlay. The
overlay is a virtual computer network built atop another network,
for instance a physical one. The overlay could be visualised as a
graph, where nodes, or peers, are connected by a virtual or logical
links in order to form a path. Each nodes communicates with the
others by means of those links, which are mapped to the underlying
network as appropriate. For example, Dial-up Internet is an overlay
deployed on top of the underlying physical telephony network that
allows clients to transparently access internet services by relying on

7

8 CHAPTER 2. RELATED WORK

the physical network to route the requests to the servers.

2.1.1 Structured Overlay Networks

The term structured overlay network comes directly from the fact
that in this class of protocols the overlay is judiciously controlled,
and information is placed on speci�c peers according to the rules de-
�ned in the particular algorithm used. Due to this very fact, struc-
tured overlay networks are extremely e�cient in routing requests to
the appropriate node, as the location of those nodes could be calcu-
lated in a deterministic fashion. Therefore, this class of protocols is
extremely popular to store and retrieve arbitrary data and build dis-
tributed hash tables (DHT). The DHT algorithms de�ne a geometry
by assigning identi�ers to each node, and a function that determines
the distance, in number of hops, between any two identi�ers in the
space. Nonetheless, the inherent overlay structure can also be used
to provide reliable multicast primitives to applications [8,19,35,44].

The mechanisms to construct the structured overlay networks are
roughly divided in two main classes [9]: hypercube algorithms and
Cartesian hyperspaces.

In the hypercube mechanism, the space of identi�ers, the keys, is
populated by peers in a circular fashion, in a ring-like formation.
Each peer is assigned a unique identi�er, the nodeId, chosen at ran-
dom. The nodeId is used to assign the node to a deterministic po-
sition on the ring, by means of a uniform hashing function. There-
fore, nodes are distributed nearly evenly on the ring, thus achieving
uniform data partitioning among the nodes in the overlay. With
this structure established, each peer maintains a routing table to
its neighbours in the key space, and is responsible for maintaining
part of the key space between it and its predecessor and successor,
the node(s) immediately before and after it in the ring, respectively.
Upon a request, the peer either responds to the client, if it is the
manager of that key, or forwards the request to a neighbour that is
numerically closer in the key space to the requested key, by consult-
ing its routing table. The number of hops that a request must take
in the ring before being successfully answered depends, therefore on
the number of entries in the routing table. With bigger routing ta-
bles, the request could be answered in less hops but, larger tables are
costlier to maintain as the state of more peers needs to be taken into
account. Upon failure of a node in the ring, its closest neighbours
perform some calculations, dependant on the particular algorithm
used, and the peer numerically close to the failed one takes over its

2.1. BACKGROUND 9

key space. Examples of such protocols include [37,40,43].

On the other hand, in Cartesian hyperspace routing mechanism,
nodes are organized in a d-dimensional cube. Each node in the
system is assigned to a hyper-space region, and is responsible for
managing the keys in that region. When a request from a client
is received at a node, it responds to the client if it is the manager
of the asked region, or forwards the request in a greedy fashion, to
a neighbour whose space region is closer to the request. As there
are multiple paths between any two points in the space, the routing
algorithm is capable of route around 'failed' regions in a straight-
forward fashion. Upon join, a peer contacts a random node in the
hyperspace, the key region is split in two halves, and one of those
parts is assigned to the new peer. The state necessary to maintain
the routing information to the neighbours is of the 2d order, where d
is the number of dimensions. Further join optimizations, including
splitting the key space in a more pondered manner, such as forward-
ing the joining node to a region whose key space is larger than the
one initially chosen. Upon detection of a neighbour failure, nodes
initiate a takeover procedure, to ensure that one of the neighbours
becomes responsible for the region of the failed peer. After that, the
neighbours send soft updates among them in order to update the re-
spective routing tables, and ensure that the failed node is correctly
pruned from the tables. The [34] structured overlay protocol is an
example of Cartesian hyperspace routing.

To deploy reliable multicast on top of those structured overlays two
di�erent approaches exist: �ooding and tree-based dissemination.

As the name implies, in �ooding [35] the application level messages
received are relayed to all neighbours in the Cartesian hyperspace
or in the hypercube. The �ooding protocol leverages on the routing
information already maintained by the overlay, and creates separate
multicast groups on top of it, according to the interest of the peers.
As expected, �ooding is very demanding in bandwidth and as such,
several optimizations to this naive strategy exist that take advantage
of the location of nodes in the space in order to reduce the number of
duplicates received by each node. One of those optimizations passes
by �ooding only in the same 'direction' as the received message, as
nodes on the opposite direction are already expected to have received
the message [35].

In the tree-based approach [8], the dissemination of application
level messages uses a reverse-forwarding mechanism to construct and
maintain the multicast group that encompasses all the nodes inter-

10 CHAPTER 2. RELATED WORK

ested in the dissemination process. For each multicast group, the
dissemination protocol creates a multicast tree with a unique iden-
ti�er, and uses it to relay messages to the relevant peers. To join
the group, a peer uses the underlying overlay to send a message to
the multicast group. As the joining request traverses the underlying
overlay, each node checks whether it is already part of the desired
multicast group, and if it is, it stops forwarding the message and adds
the joining node as a child in the tree, if not the request is forwarded
to the parent until it is adopted by a node or it reaches the root of
the tree. In the latter case, the root will adopt the joining node as
a direct children. The protocol carefully balances the dissemination
tree in order to ensure an evenly load distribution among the partic-
ipating nodes. To further prevent bottlenecks in certain nodes of the
trees, the protocol provides mechanisms to demote a node's child to
a grandchild, thus transferring some of the dissemination e�ort to
them.

Both dissemination protocols may have to su�er certain alterations
based on the underlying overlay construction mechanism used, but
such details are out of the scope of this background section. Further
details of the deployment of this protocols on top of the structured
overlay construction mechanisms available, and a thoughtful com-
parison of the trade-o�s between each one can be found in [9].

2.1.2 Unstructured Overlay Networks

A completely di�erent approach than the one presented previously
relies on the mathematical foundations of epidemic disease spread-
ing [5]. Due to this, this class of algorithms is also known as
epidemic-based reliable multicast and even gossip-based due to the
similarities to rumor spreading. The underlying principle is dismay-
ingly simple: if each member of the population infects a minimum
number of neighbours drawn randomly across the universe, then the
entire population will be infected after a known period of time, or
rounds. The probability that the whole population becomes infected,
or atomic infection, is therefore a�ected by two model parameters:
the number of neighbours that each infected node tries to contami-
nate in each round, also known as the fanout, and the duration of the
infection spreading, or number of rounds, modeled as discrete steps.
Furthermore, two opposite infectious behaviours could be consid-
ered: infect and die, where a infected node contaminates a 'fanout'
number of neighbours and stops permanently, and the infect forever
alternative, where an infected node will always try to infect 'fanout'

2.1. BACKGROUND 11

neighbours during the entire time span of the epidemic.

For a given population, the model parameters can be adjusted to
ensure that all members are infected with high probability. In fact,
slightly below those values the infection will reach almost none of
the population, and above them the infection will reach almost all
members, a property known as bimodal dissemination guarantee that
has been studied in [6]. Due to the probabilistic guarantee that
is possible to o�er, this protocols are also known as probabilistic
dissemination protocols.

Applying those principles to the dissemination of information in a
computer network is however not trivial, and raises several inter-
esting challenges. An essential requirement for epidemic based al-
gorithms to work is the knowledge of the whole population. As
the reader may have noticed, the targets selected for infection are
expected to be drawn randomly across the entire population. Fur-
thermore, in [10] the authors have identi�ed key challenges when
deploying those algorithms: membership, network awareness, bu�er
management and message �ltering. The membership is related to the
necessity of knowing the whole population, as explained previously,
how nodes get to know each other, and how many of them they need
to know to achieve successful dissemination. The second challenge,
network awareness, comes from the fact that in the current network
technology, nodes are organized in a hierarchical fashion and thus not
connected directly to each other. Therefore, the requirement here is
how to re�ect the network topology in the connections established
between nodes. These two challenges will be the core of this disser-
tation and will be addressed with further detail in the next sections.
The bu�er management problem is concerned with the handling of
multiple messages by the same process simultaneously. When dis-
semination of di�erent messages occurs concurrently, processes may
have to temporally store messages in order to do adequate processing
and, possibly, forward it to other nodes for a given number of rounds,
which implies that processes may have to hold messages for consid-
erable amounts of time. Furthermore, processes need to known the
'history' of messages in order to avoid delivering duplicates to the
application. As memory is not an in�nite resource, these require-
ments and constraints demand that bu�er management protocols
ensure the timely pruning of spurious messages, without dropping
unwanted ones, which could impact reliability [21]. Several solu-
tions exist for this problem, such as dropping messages according
to age [12], de�ning an obsolescence relation between messages [31]
or calculating the overall average bu�er capacity in a distributed

12 CHAPTER 2. RELATED WORK

fashion [36]. In reliable dissemination, the goal is to deliver every
message injected into the system to every participant. Message �l-
tering pushes this forward and attempts to reduce the number of
uninteresting messages that a given process receives, by using the
concept of interest groups, and ensuring the reliable dissemination
only among the members of each group [11].

After the overview of the epidemic foundations presented above, we
will now focus on the problems that arise from the construction and
maintenance of the membership, and the properties that a protocol
must abide by, to ensure reliable dissemination of information. As
stated previously, for the epidemic model to work properly, the po-
tential targets for infection should be chosen randomly across the
universe of nodes. To be able to randomly choose across all the
nodes, any given node must have, therefore, global knowledge. In
fact, initial protocols such as [6], clearly rely on having global knowl-
edge of the membership at each node to successfully guarantee the
bimodal dissemination property. While this global knowledge could
be attained for small to medium sized clusters with a relatively sta-
ble membership, it is not suitable, or even feasible, for large scale
systems composed of hundreds to thousands of nodes. This comes
directly from scale itself, as the knowledge necessary to maintain at
each node requires vast amounts of memory [12] and from a natural
phenomenon in distributed systems, churn. Churn is closely related
to the dynamics of the environment, and measures the rate at which
nodes enter and leave the system. If the churn rate is considerable,
the cost of updating the global membership knowledge of all nodes
in a large scale system, becomes unbearable or even unattainable.

To overcome this problem that e�ectively limits the applicability
and scale of epidemic based solutions, researchers have developed
several protocols that rely on epidemic mechanisms to build and
maintain the membership information [12, 15, 16, 24�27, 42]. The
rationale behind those algorithms relies on each process knowing
only a small number of other processes, the view, instead of the
global knowledge required before. The resulting 'who knows who'
relationship could be modeled as a graph where the edges are the
nodes, and the vertices represent the 'knows' relation, which can be
symmetric in case of undirected graphs or asymmetric, if the graph
is directed. In this representation the view corresponds then, to the
set of graph neighbours of a given node. It has been proved [12]
that by constructing the right 'who knows whom' relationship with
partial views of the system is a reliable approach to the construction
of unstructured overlay networks while dropping the requirement to

2.1. BACKGROUND 13

have global knowledge at each node.

When switching from global to partial knowledge, the uniformity of
the random sampling process that chooses potential infection tar-
gets is a�ected, as nodes could not select targets randomly across
the universe but only in the restricted set of its neighbours [10].
The problem of choosing a random peer from the universe when
global knowledge is not available or attainable, could be addressed
by means of random walks [17]. A random walk is a procedure
that consists of successively taking random paths while traversing a
graph, for a given number of times. This has been deeply studied
in [17], in the context of information searching and overlay con-
struction mechanisms, and one of the important outcomes is that a
random walk on a graph with 'enough' length is equivalent to choos-
ing a node randomly across the universe of nodes, which e�ectively
solves the problem of the random selections pointed previously.

Furthermore, as the systems evolves, namely with respect to its size,
it is necessary to tune the dissemination parameters, the fanout and
the number of rounds, as well as the view size, a property which is
known as adaptability. If a given protocol fails to constantly adapt
to changing systems sizes the reliability and/or performance of the
protocol will be seriously compromised. If the system size grows
considerably, the failure to adapt the protocol parameters will in-
evitably led to schism of the reliability guarantees, as the overlay
will partition.

On the other hand, if the system size shrinks below the pre-de�ned
protocol parameters there will be an unnecessary waste of resources
on nodes and links, as the protocol is con�gured to infect more nodes
that the existing ones. The relationship of those parameters with
reliability and the impact they have on each other has been studied
in [6,23]. An important result of the previous works shows that for a
given system size N , bimodal dissemination guarantees are obtained
if each node infects around log(N)+ c nodes, where N is the system
size and c a protocol parameter related to the desired reliability in the
presence of faults. The �nal requirement to build a fully distributed
membership service, is the bootstrapping itself, which consists on
the initial steps that a process must e�ectuate in order to discover
at least a node belonging to the overlay and establish a connection to
it, a process that is known as joining. To the best of our knowledge,
there are currently no solutions to address this problem in a fully
decentralized fashion, as nodes joining the overlay are expected to
know, a priori, a subset of 'well-known nodes' to which they can
connect to.

14 CHAPTER 2. RELATED WORK

The other fundamental aspect of building a fully scalable member-
ship service is related to network awareness, or locality. In fact, if an
epidemic protocol that does not take into account locality is deployed
on a network where the cost of links may vary greatly, for instance
a Wide Area Network, its reliability and usefulness is limited [10].
This comes directly from the fact that links are established with
equal probability despite its cost, and therefore 'close' neighbours
may only be able to communicate among them by means of costlier,
long distance links. If the amount of messages exchanged between
them is considerable, then the costlier links could easily become a
bottleneck, for instance in terms of bandwidth or latency, precluding
a reliable and scalable dissemination. It is important to note that
the 'cost' function is determined out of the model and should only
indicate the preference of a given link over another. The traditional
solution to the network awareness problem relies on hierarchical or-
ganizations: special processes establish links accordingly to the cost
function leading to an hierarchical or tree-like organization that re-
�ects the network topology. Several well-known protocols, [11, 25]
use this principle to o�er dissemination guarantees while mimicking
the organization imposed by the cost function.

Despite the inherent details of each dissemination protocols, a per-
vasive concept across all of them is the overlay that abstracts the
links established between any given pair of nodes. As the overlay
could be seen as a graph, it is therefore of the utmost importance
to understand the graph properties that are important to obtain a
quality overlay upon which message dissemination could take place.
Those properties have been identi�ed in [20] and are the following:
connectivity, degree distribution, average path length and clustering
coe�cient. Connectivity indicates whether there is at least one path
from each node to every other. Failure to maintain connectivity will
result in partitions and therefore failure to infect all nodes. The av-
erage path length measures the number of hops that separate any
two nodes in the graph, and its closely related to the overlay diam-
eter. Low average path lengths are desirable as it represents a lower
bound on the latency necessary to disseminate a given message, and
thus tightens the vulnerability window to node and network faults.
Degree distribution represents the probabilistic distribution of the
neighbours of each node, its degree, and is related to node reacha-
bility and its proneness to disconnection from the rest of the over-
lay. Nodes with low degrees are prone to become disconnected in
the presence of failures, whereas high degrees degrade the quality
of the overlay as the dissemination e�ort becomes too dependent of

2.1. BACKGROUND 15

those nodes. Therefore, a normal distribution with low deviation is
essential to ensure a high quality overlay, and consequently, an e�ec-
tive and reliable dissemination. Clustering coe�cient measures the
closeness of neighbour relations, it is the ratio between the number of
links established among the neighbours of a given node by the total
of possible links among those neighbours. The value of this property
should be as small as possible because high clustering coe�cients
lead to an increased redundancy in message transmission, and the
consequent waste of resources, and it also increases the probability
of partitions as neighbour nodes tend to be highly connected around
the cluster and poorly connected to the rest of the overlay.

So far we have analysed the requirements and theoretical properties
necessary to obtain a fully decentralized and reliable membership
service, known in the literature as the Peer Sampling Service [20].
This service o�ers to abstract primitives to obtain a certain number
of potential gossip targets. Although that service and the actual
dissemination protocols are usually used together to provide a de-
centralized reliable multicast abstraction, we clearly separate them
in this dissertation, as di�erent requirements and assumptions are
made on each one of them and, therefore, di�erent improvements
could be done on each one. We will now address the di�erent dis-
semination strategies available, and the trade-o�s o�ered by each
one of them [22].

Gossiping strategies follow two major approaches: pushing and pulling.
In a push strategy, each peer forwards a message as soon as received
to its neighbours for a given number of rounds. If the payload is
transmitted instantly them we are in the presence of the eager vari-
ant. If the payload is omitted and only an advertisement of the
message is sent, then we are on the lazy variant. In the latter,
a node that received the advertisement of a known message could
then ask the source for the payload and lazily push the payload.
Assuming that the message payload tends to be much larger than
an advertisement with the message identi�er, the lazy variant allows
for a drastic reduction on bandwidth consumption at the cost of in-
creased latency as three communication steps are needed to obtain
the actual message contents. In fact, if a pure lazy push strategy is
used, it is possible to achieve exactly once payload delivery for every
destination, at the cost of a considerable penalty in latency. Fur-
thermore, the impact on reliability must also be taken into account,
as the additional round trips widen the time window to network and
node faults. Oppositely, in the eager variant the latency is minimal,
but comes at the cost of higher bandwidth consumption, as nodes

16 CHAPTER 2. RELATED WORK

tend to receive multiple copies of the same message through di�erent
paths. The eager push strategy is the most common dissemination
strategy in nowadays protocols, such as [12,21,32], to cite a few.

In the pulling strategy nodes periodically ask neighbours for new
messages. When a node receives a request for new messages, it
will send all new known messages to the petitioner, if acting on the
eager variant. Oppositely, in the lazy approach, also known as two-
phase pull, the receiver of the request will send only a digest of the
new known messages, allowing the petitioner to selectively pull the
desired messages. As in the push approach, the lazy variant imposes
less constraints on the bandwidth, while the eager variant decreases
the latency necessary to disseminate the updates. However, as in pull
gossiping updates are only asked periodically, the impact on latency
of the lazy variant may be negligible if that period is considerable
greater than three times the average network latency.

While the choice between an eager versus a lazy variant is clearly
a trade-o� between bandwidth and latency, the di�erence between
a push versus a pull scheme is more subtle. In pull, nodes proac-
tively ask for new messages where in push nodes behave in a reactive
fashion to message exchanges. Therefore, in an environment where
messages are sparingly injected into the system, a push strategy has
no communication overhead, while the pull approach presents a con-
stant noise due to the periodically check for new messages.

2.2 State of the Art of Unstructured Net-

works

In this section we will carefully present a review of the state of the art
of distributed membership construction and management protocols,
dividing them according to their awareness, or not, to locality. The
state of the art review of dissemination protocols may have included
several well known protocols [6, 12], however as their underlying
principles are based on the di�erent dissemination strategies already
presented in the previous section, and focus instead on aspects that
are not central to this dissertation, such as bu�er management and
message �ltering, we will skip them. We will only describe a dissem-
ination protocol that uses di�erent strategies to obtain a wide-range
of latency versus bandwidth trade-o�s. The reason to include just
this dissemination protocol, comes from the fact that it will be latter
improved in this dissertation in order to accomplish our goals.

2.2. STATE OF THE ARTOF UNSTRUCTUREDNETWORKS17

2.2.1 Flat Protocols

In this Subsection we will cover the state of the art in membership
construction protocols that do not take into account locality, and
therefore result in �at overlays.

Scamp

Scamp [15] is a peer-to-peer decentralized membership protocol with
the interesting property that the average degree distribution con-
verges automatically to the desirable value of log(N) + c, where N
is the number of peers in the system, and c is a protocol parameter
related to the amount of faults that can be reliably tolerated. The
protocol is presented in pseudo-code in Listing 2.1.

Upon boot, lines 2 to 5, a node obtains a contact node by an external
mechanism, adds it to its view and sends it a subscription request,
enabling nodes to know about the joining node. Upon reception
of a subscription request, the receiver forwards the request to all
its neighbours and create additional c copies that will be sent to
randomly chosen nodes in its view, as could be seen in lines 7 to 13.

The protocol foundation relies on a probabilistic function that in-
tegrates joining nodes into the view with a given probability that
is inversely proportional to the view size. In short, the smaller the
view size the greater the likelihood of a successful integration and
vice-versa, as can be observed on lines 16 and 17. If the subscription
is not accepted at a given node, then it is forwarded continuously to
one of that node's neighbours, until it becomes eventually accepted,
as is possible to observe in lines 19 and 20. This is important as it
preserves the amount of subscriptions on the system and therefore
ensures that a subscribing node is known by a minimum amount of
nodes. It is also important to note that the views are asymmetric,
which means that a node who knows another does not necessarily
means that the latter knows the former. In a graph, this could be
modeled as undirected edges, whose origin is the node that knows
the other and the end on the latter. By always forwarding subscrip-
tions until they are accepted and emitting, on average, viewSize+ c
subscriptions for each joining node, combined with the probabilistic
integration function, Scamp ensures that the overlay average degree
converges to the 'right' value, providing adaptability to changing sys-
tem sizes in a completely distributed fashion and without requiring
global knowledge.

Scamp is a reactive protocol in the sense that it does not try to

18 CHAPTER 2. RELATED WORK

1

2 upon init
3 contact = getContactNode()
4 view.Add(contact)
5 send(contact,handleSubscription(myId)
6

7 proc handleSubscription(nodeId)
8 for n ∈ view
9 send(n,handleJoin(nodeId))

10

11 for i=0; i < c; i++
12 n = randomNode(view)
13 send(n,handleJoin(nodeId))
14

15 proc handleJoin(nodeId)
16 keep = randomFloat(0,1)
17 keep = Math.Floor((viewSize + 1 ∗ keep)
18

19 if (keep == 0) and nodeId /∈ view
20 view.Add(nodeId)
21 else
22 n = randomNode(view)
23 send(n,handleJoin(nodeId))

Listing 2.1: Scamp protocol

make further optimizations to the underlying overlay. In fact, in a
stable environment the protocol does not induce any overhead on
the network, as no messages need to be exchanged to preserve the
overlay.

Cyclon

Cyclon [42] is a membership management protocols that uses a com-
pletely di�erent approach from that found in Scamp. It relies on
a shu�ing mechanism where links are changed among the peers,
to continuously improve the overlay and quickly detect and remove
links pointing to nodes that leaved the overlay, either due to failures
or to the normal life cycle. The shu�ing operations is performed
periodically by each node on the system and consists of several steps
which we will describe below.

Each node periodically chooses a set of its neighbours of size c, which
is the minimum of the known number of neighbours and C, a protocol
parameter that speci�es the maximum size of the shu�e set. From
this set, a node X is randomly chosen to initiate a shu�e operation.
The initiator sends the shu�e set to X, adding its own identi�er
to the set and removing X from it. Upon reception, X chooses a
random set of its known neighbours with the same size of the received
set and sends it to the initiator. After, both nodes integrate the

2.2. STATE OF THE ARTOF UNSTRUCTUREDNETWORKS19

nodes in the received set into its own view according to the following
rules:

• Already known neighbours are discarded from the received set;

• If the integration of the received nodes into the view exceeds
a given threshold, then already known nodes are discarded
accordingly to the following rules:

� Entries sent to the other node are discarded �rst;

� If this is not enough the remaining neighbours are ran-
domly discarded, until there is enough room to accom-
modate the received entries.

Cyclon improves over the original shu�ing mechanism proposed
in [39], by attributing an age notion to each link, and exchanging
and discarding links accordingly to that metric from the oldest to
the newer ones. With this improvement over the classical shu�ing
mechanism, Cyclon is able to quickly detect and remove links point-
ing to nodes that have leaved the system, promoting the healthy
renewal of links according to its age.

HyParView

HyParView [24] also relies on a shu�ing mechanism to manage the
overlay. Its distinguishable characteristic is the maintenance of two
di�erent views with di�erent goals and requirements: a larger passive
view and a smaller active view. The active view is of size fanout+1
and is used to disseminate application level messages, by �ooding
the graph de�ned by the relationships of that view and is main-
tained using a reactive strategy. When a node detects that a peer in
its active view has left the overlay, due to a failure or a disconnect
operation, it randomly chooses a peer in its passive view and adds it
to the active view, therefore enabling a quick healing of the dissem-
ination graph in presence of high rates of failures. The passive view
is much larger than the active one and is used to �nd valid targets
to heal the active view, as explained previously. The passive view is
maintained by a shu�ing mechanism similar to that of Cyclon, but
instead of exchanging peers directly with its neighbours, the shuf-
�e request is propagated through the overlay by means of a random
walk, parametrized with a given 'time-to-live', a protocol parameter.
By promoting shu�e exchanges with distant neighbours (according
to the overlay neighbourhood relations and not necessarily related

20 CHAPTER 2. RELATED WORK

to any other distance metric, such as network distance), the quality
of the overlay is further improved as it becomes more resilient to
partitioning. This resilience comes directly from the maintenance
of a large passive view and from the random walk that avoids the
passive view to cluster among a set of neighbours.

The join mechanism assumes the existence of a well-known contact
node and is depicted on Listing 2.2. The joining node sends a Join
request to that contact node, lines 1 and 2, and it will be integrated
into that node's active view as can be seen in lines 4 to 9, even
if an existing node in the active view must be dropped. Addition-
ally, the contact node will send a ForwardJoin request to all the
nodes in its active view, in order to ensure that the joining node
is known by 'enough' nodes in the overlay. The ForwardJoin pro-
cedure is a random walk across the overlay parametrized by the
ActiveRandomWalkLenght(ARWL), a protocol parameter, and is
depicted in lines 11 through 18. There is another protocol param-
eter PassiveRandomWalkLenght(PRWL) that indicates at which
point in the random walk the joining node should be integrated into
the passive view. Upon expiration of the random walk, lines 12 and
13, the node is integrated into the active view, even if an existing
nodes has to be dropped, which happens if the active view is full.
The same applies to the integration on the passive view. When a
node is removed from another node active's view, lines 6 and 29, the
formed is informed via a Disconnect message, removes the sender
from its active view and integrates it on the passive view, as it is
possible to observe in lines 38 to 41.

2.2.2 Hierarchical/Locality-aware Protocols

In this subsection we will cover the state of the art in membership
construction protocols that take into account locality, and therefore
result in overlays that mimic the underlying network topology ac-
cording to a cost function. This function is abstracted out of the
models and should provide information to the protocol about the
willingness to establish remote links. gqip

Directional Gossip

Directional Gossip [25] aims at providing a gossip-based reliable
multicast service in a Wide Area Network (WAN) scenario. This
is achieved by using two di�erent gossip levels: one that runs on the
Local Area Networks (LAN), and the other that is deployed in the

2.2. STATE OF THE ARTOF UNSTRUCTUREDNETWORKS21

1 upon init do
2 send(Join,contactNode,myself)
3

4 upon Receive(Join,newNode)
5 if isFull(activeView)
6 trigger dropRandomElementFromActiveView
7 activeView ← activeView ∪ newNode
8 foreach n ∈ activeView and n 6= newNode
9 send(ForwardJoin,n,newNode,ARWL,myself)

10

11 upon Receive(ForwardJoin,newNode,timeToLive,sender)
12 if timeToLive == 0 ‖ #activeView == 0
13 trigger addNodeActiveVew(newNode)
14 else
15 if timeToLive == PRWL
16 trigger addNodePassiveView(newNode)
17 n ← n ∈ activeView and n 6= sender
18 send(ForwardJoin, n, newNode, timeToLive−1, myself)
19

20 upon dropRandomElementFromActiveView()
21 n ← n ∈ activeView
22 send(Disconnect, n, myself)
23 activeView ← activeView \ n
24 passiveView ← passiveView ∪ n
25

26 upon addNodeActiveVew()
27 if node 6= myself and node ∈ activeView
28 if isFull(activeView)
29 trigger dropRandomElementFromActiveView
30 activeView ← activeView ∪ node
31

32 upon addNodePassiveView(node)
33 if node 6= myself and node /∈ activeView and node /∈ passiveView
34 if isFull(passiveView)
35 n ← n ∈ passiveView
36 passiveView ← passiveView \ node
37

38 upon Receive(Disconnect, peer)
39 if peer ∈ passiveView
40 activeView ← activeView \ peer
41 addNodePassiveView(peer)

Listing 2.2: HyParView Protocol

22 CHAPTER 2. RELATED WORK

WAN, and encompasses the composing LANs. At the LAN level, a
standard gossip mechanism is used to disseminate application level
messages within that LAN. For each LAN, one or more nodes are
elected as gossip servers and serve as the gateway for the inter-LAN
communication. Upon reception of a new message from its LAN,
the gossip server disseminates that message to the other LANs via
the WAN links. On reception of a message from a remote location,
the gossip server is responsible to disseminate that message within
its LAN, using the standard gossip protocol deployed there. By
using the notion of gossip servers to handle the tra�c that crosses
the WAN links, the authors are able to e�ectively reduce the load
imposed on those constrained, long-distance links.

Gossip servers get to know each other by means of an external mech-
anism provided by the administrator. As the state maintained by
each gossip server is probably small, it consists of the information
about the other gossip servers, the authors suggest the possibility of
using replication to handle the failures of the gossip servers.

Localizer

The Localizer [27] protocol de�nes a mechanism to re�ne overlays
built by Scamp, based on a cost function. With this re�nement,
it is possible to de�ne an adequate cost function, in order to bias
the overlay to the desired network topology, mitigating the network
mismatch problem. Additionally, the re�nement improves the degree
balancing of the original protocol to achieve better quality overlays.
The protocol periodically proceeds to links exchanges in order to
bias the overlay, in a series of steps we describe below:

• Each node chooses two random nodes from its neighbourhood,
calculates the link cost to each one, according to the de�ned
cost function and sends those values to both;

• The receivers reply with their respective degrees and addition-
ally, one of them sends to the initiator the cost of establishing
a link with the other node;

• The initiator evaluates locally the gain of exchanging one of
its links to the other nodes with a link between them, taking
into account the calculation done in the previous step;

• If the gain is desirable, the initiator instructs the other nodes,
with a given probability, to establish a link between them. The

2.2. STATE OF THE ARTOF UNSTRUCTUREDNETWORKS23

probability of the transition speci�es a trade-o� between the
speed of convergence and the closeness to a optimal con�gura-
tion;

• If the transition is successful, then the initiator drops one of
its links, behaving in a self-sacri�cing manner.

Additionally, to promote the healthy renewal of links, each nodes has
a lease time. Upon expiration of the lease, the nodes connected by it
simply drop the link. Nodes who get disconnected by this procedure
rejoin the overlay.

With this procedure, Localizer is able to e�ectively bias the over-
lay accordingly to the cost function, thus mimicking the network
topology while at the same time improving the resilience to faults.

Low Link Costs and Short Paths Overlay Networks

In [26], the authors build on top of the Localizer protocol that ap-
proximates the overlay to the network topology, and attempt to ob-
tain an overlay with low link costs and short paths. According to
the authors, in this protocol, a link exchange only requires two par-
ticipating nodes, while on Localizer it requires three. Furthermore,
the initiator does not loose one of its links which eliminates the self-
sacri�cing behaviour of Localizer.

To achieve this, a node is selected with a given probability as a
special node. If selected as a special, a node randomly picks one of
its links and manages it as a special link.

After this initial step that determinates whose links are to be con-
sidered special, each non-special nodes periodically performs the fol-
lowing actions:

• The node selects one of its links that is not a special link man-
aged by other nodes, and sends a message to the node con-
nected to that link;

• The receiver sends to the initiator the set of all its neighbours;

• The initiator removes all its neighbours and itself from the
received set. If the resulting set is empty the procedure ends
here, otherwise it continues;

• The initiator communicates with all nodes in the resulting set,
in order to calculate the cost of each link;

24 CHAPTER 2. RELATED WORK

• After, the initiator chooses the link that provides the greatest
gain, if any, and establishes a connection to that link, removing
the one pointing to the selected target.

Special nodes execute the same procedure, with the exception that
a link is replaced by a long distance link only if the chosen link is
the special link managed by that node, as chosen initially.

As pointed by its authors, this protocol has not been evaluated in
the presence of node leaves, either due to failures or disconnection.

HiScamp

HiScamp [16] is a hierarchical overlay construction and management
protocol that leverages on the previous work done in Scamp. It uses
a distance function to cluster 'close' nodes, therefore de�ning a hi-
erarchy of clusters that could span multiple levels. Each level runs
an instance of Scamp in order to provide the reliable dissemination
service. Each cluster is seen at the next level as a single abstract
entity, represented by one or more nodes. With this hierarchy it is
possible to reduce the load imposed on costlier links, as messages are
targeted almost within each cluster. The protocol uses two views:
an inV iew to handle subscriptions, and a hV iew used in the dis-
semination of application level messages. The hV iew has as many
levels as the hierarchy, where the lowest level contains gossip targets
in the same cluster, and the other levels contain targets on the same
hierarchy level. The inV iew has one lesser level than the whole hi-
erarchy that is common to all nodes in the same level, and contains
all nodes belonging to that level.

The joining process involves several steps, and works as follows:

• A joining node sends a subscription request to a pre-determined
well-known close node, where this closeness is given by the cost
function;

• If the distance of the joining node is below a preset value, the
node is included into the cluster as follows:

� As in Scamp, the contact node creates several copies of
the subscription and forwards it to its neighbours in the
level one hV iew;

� The forwarded requests are handled just as in Scamp, and
eventually integrated into the receivers level one hV iew;

2.2. STATE OF THE ARTOF UNSTRUCTUREDNETWORKS25

� Finally, the views of the joining node are initialized as
follows: the level one hV iew contains just the initially
chosen contact node, and the other levels of hV iew are
empty, and the iV iew becomes the same as the contact
node, by having it send a message with this information.

• If the distance exceeds the preset value, the joining node cre-
ates a new cluster and its subscription is thus handled at the
second level of the hV iew as follows:

� The contact node uses its iV iew that contains the identi-
�ers of the other clusters to forward several copies of the
joining request;

� The subscription is handled as in a normal Scamp in-
stance, and eventually integrated in the iV iew and level
two hV iew of the receiver;

� The nodes who integrate the subscription gossip the ad-
dition of the joining node to their iV iew, or order to the
nodes in its cluster updates their respective iV iew.

� Finally, the level one hV iew of the joining node is set to
empty and its level two hV iew and inV iew are initialized
to contain only the contact node.

To overcome the single point of failure that comes from the inter-
cluster links only connecting the nodes the nodes which created each
one of the clusters, HiScamp periodically runs a routine to balance
the hV iew levels higher than one and therefore, ensure that inter-
cluster messages are handled by more than one node.

As inter-cluster messages are only handled by 'few' nodes, HiScamp
e�ectively reduces the stress imposed on long distance links, but
at the cost of decrease reliability. For instance, as pointed by the
authors, with more than 20% node failures the number of reachable
nodes drops below 90%.

2.2.3 Dissemination Protocols

Emergent Structure in Unstructured Epidemic Multicast

The Emergent [7] dissemination protocol foundation stems from the
observation that by combining the eager and lazy push strategies
it is possible to obtain a wide range of latency versus bandwidth

26 CHAPTER 2. RELATED WORK

trade-o�. The challenge therefore is to do so without impairing the
reliability guarantees that characterize gossip-based dissemination
protocols.

This is achieved by lifting the choice of the particular strategy to
use to an oracle. The oracle is abstracted out of the model used to
prove correctness and instructs the protocol about the dissemination
strategy to use for a given node. The authors are then able to
prove the protocol correctness and liveliness despite the strategy
chosen by any particular node. In fact, di�erent nodes could choose
di�erent dissemination strategies, i.e. eager or lazy push, based on
local knowledge only, to provide several trade-o�s suited to a wide
range of scenarios. The out of model tunning and local adaptation,
among with progressive and low latency adaptation are essential
properties to build con�dent and self tunning protocols, as been
argued in [28].

The Emergent protocol is divided in two distinct layers, a basic gos-
sip protocol depicted in Listing 2.3 and the actual point-to-point
communication, shown in Listing 2.4

The layer presented in Listing 2.3 is the one o�ered to the application
via its Multicast primitive and the Deliver upcall. Upon injection
of a new message on the system by the application, by invoking
the Multicast primitive, the protocol creates a unique identi�er,
the message round is initiated to zero and the message payload is
forwarded, as can be seen on lines 4 and 5. In Forward the message
is delivered to the application (line 8), its identi�er is added to the set
of known messages to avoid the delivery of duplicates (line 9) and, if
the current round number is inferior to the maximum round number
t, a protocol parameter, the peer sampling service is consulted to
obtain fanout communication targets, another protocol parameter
(lines 11 and 12). After obtaining the peer identi�ers, the L−Send
primitive of the point-to-point communication layer is invoked for
each one of them (lines 13 and 14). Upon reception of a message, its
identi�er is checked against the known identi�ers and, if the message
is new, it is forwarded, as depicted in lines 16 to 18.

We will now analyse the point-to-point communication protocol, de-
picted in Listing 2.4. In this layer two sets are maintained, one that
holds the message payloads, used when nodes lazily request the pay-
load, and other which holds the identi�ers of known messages. Upon
call of the L− Send primitive by the previous layer, the oracle, ab-
stracted by the isEager primitive, is consulted to infer whether the
message payload shall be sent eagerly or lazily (line 6). In the latter

2.2. STATE OF THE ARTOF UNSTRUCTUREDNETWORKS27

1 initially
2 K = ∅ /∗known messages∗/
3

4 proc Multicast(d)
5 Forward(mkdId(),d,0)
6

7 proc Forward(i,d,r)
8 Deliver(d)
9 K = K ∪ {i}

10 P = ∅
11 if r < t
12 P = PeerSample(fanout)
13 for each p ∈ P
14 L−Send(i,d,r,p)
15

16 upon L−Receive(i,d,r,s)
17 if i /∈ K
18 Forward(i,d,r)

Listing 2.3: Basic Gossip Protocol: Peer Selection

case the message payload is stored to allow for a future retrieval by
lazy pushing nodes. Additionally, the protocol sends an advertise-
ment message to the target, the IWANT message on lines 23 to 25
and the message identi�er is added to the set of known messages.

Upon the reception of a message payload, on line 17, the identi�er
is checked against the known set of messages. If the message is not
known by the protocol, its identi�er is added to the set of known mes-
sages (line 19) and any pending request on the payload are cleared
(line 20). Nonetheless, and at �rst sight counter-intuitive, the pay-
load is delivered to the higher level via the L−Receive upcall, even
if it has already been delivered.

While this may be seen as a detail, it is in fact important as we
will explain below. The basic principle behind this design decision
is the well-known best practice 'premature optimization is the root
of all evil'. In fact, by choosing not to deliver the payload to the
gossip level the applicability of the protocol to new unpredicted sce-
narios will be restricted. For instance, the basic gossip protocol layer
could be replaced by a version where receiving duplicate payloads
is important and as such not be feasible if the point-to-point com-
munication layer does not provide this. In [30] the authors reason
about the impact of premature simplifying assumptions with di�er-
ent studies and argue that this overly simpli�cations may reduce the
applicability scenario of several well-known protocols.

Coming back to the protocol description, the reception of a IHAV E
message on line 13 indicates that the sender has a copy of the message
payload. If the message is not known, its payload is queued for

28 CHAPTER 2. RELATED WORK

1 initially
2 ∀i: C[i] = ⊥ /∗cached data∗/
3 R = ∅ /∗ known messages∗/
4

5 proc L−Send(i,d,r,p)
6 if isEager(i,d,r,p)
7 send(p,MSG(i,d,r))
8 else
9 C[i] = (d,r)

10 send(p,IHAVE(i))
11 R = R ∪ {i}
12

13 upon receive(IHAVE(i),s)
14 if i /∈ R
15 QueueMsg(i,s)
16

17 upon receive(MSG(i,d,r,s)
18 if i /∈ R
19 R = R ∪ {i}
20 Clear(i)
21 L−Receive(i,d,r,s)
22

23 upon receive(IWANT(i),s)
24 (d,r) = C[i]
25 send(s,MSG(i,d,r))
26

27 forever
28 (i,s) = ScheduleNext()
29 send(s,IWANT(i))

Listing 2.4: Point-to-Point Communication

retrieval in a point in the future. The details of the scheduling
policy are abstracted in the protocol by means of the ScheduleNext
primitive on lines 27 to 29. This procedure runs continuously and is
responsible to lazily push advertised message payloads.

Chapter 3

Problem Statement

Fixed formation is bad. Study this

well.

Miyamoto Musashi

In this Chapter we concisely present the problem addressed in this
dissertation, discuss its worthiness in todays IT world, and present
a thoughtfully analysis of why the proposals reviewed in the State
of the Art in Section 2.2 do not satisfactorily solve the presented
problem.

As outlined in the Introduction, 1, the current trend in the IT ecosys-
tem is to move again to centralized platforms that o�er a given ser-
vice to its customers by means of multi tenancy mechanisms.

To support the global and reliable delivery of those services in a
worldwide, previously unseen, very large scale, service providers have
to solve a variety of challenging research questions from the low
level infrastructure management to the higher level billing mech-
anisms, passing by proper isolation among customers in order to
support multi tenancy and adequate delivery of services, which are
bounded by the contract service levels. The supporting infrastruc-
ture for all the stack of services is based around the computational
power present in the worldwide deployed data centers of the ser-
vice providers. Those data centers are composed of thousands to
hundreds of thousands of individual nodes organized in a tree-like
fashion. This organization comes directly from the actual network-
ing technology that aggregates nodes in the order of several dozens
around multiplexer network devices, such as switches and routers.
Those devices are then aggregated behind other higher capacity, and
more expensive devices in a hierarchical fashion, forming a tree-like

29

30 CHAPTER 3. PROBLEM STATEMENT

structure containing several branches and roots to cope with scala-
bility demands and fault tolerance. This organization is also extrap-
olated to inter-data centers connections linked together by expensive
high-bandwidth links. Whereas communication among nodes behind
a common network device is relatively cheap, both in terms of band-
width available and latency due to several optimizations that could
be done in the networking stack, as we move up in the networking
tree, the communication cost increases progressively with respect to
latency and bandwidth, and ultimately in the �nancial burden too
as internetworking devices on the top of the tree are more expen-
sive. This increase in the cost is related to the routing operations
that need to be performed by the networking devices, as they need
to relay messages to di�erent branches of the tree, which correspond
to di�erent logical networks. Furthermore, networking devices close
to the top of the tree tend to experience considerable loads, as all
the network tra�c among di�erent branches of the tree needs to be
handled by them. As such, these scenarios are composed by a wide
range of links and networking devices with di�erent capabilities and
characteristics that need to be considered when deploying a global
communication service.

The reliability of such service is paramount to the global manage-
ment of the infrastructure, as nodes unreachable by the communi-
cation service can be considered non existing nodes, as there is no
mechanism to manage parts of the system which are not accessible.
Administrators could then leverage on a reliable communication ser-
vice in order to deploy on the infrastructure the essential building
blocks for a proper management framework, such as data aggrega-
tion and distributed agreement. Agreement [29] is related to the
necessity of making decisions in a distributed system, such as on
which node to place a given customer, or decide about the outcome
of a distributed transaction. Aggregation is a powerful tool to infras-
tructure management, as it provides mechanisms to query, combine,
data mine and present the information made available by individual
nodes in a scalable fashion [41]. Both building blocks have clear
advantages on relying on a reliable communication service, focusing
instead on the concrete problems they are aimed at solving.

From the points stressed above, it is now clear that a reliable commu-
nication service is key to enable the reliable construction and provi-
sioning of modern very large scale service platforms. However, those
emerging platforms have particular needs and semantic requirements
due to the inherent organization of its underlying infrastructure. In
fact, the hierarchic organization is not neglectful to an equal han-

31

dling of the network links because, as pointed above, they present
di�erent characteristics and typical loads and therefore the reliable
communication service must take this individual characteristics into
account.

Additionally, on systems of this very large scale, the dynamics should
not be left o� the equation, or the reliability of the communication
service will become severely endangered. This comes from the fact
that change is a natural part of those systems, due to the large scale
itself, as nodes will constantly join and leave the system due to fail-
ures or periodic maintenance operations. The larger the system, the
greater the impact of this dynamics as it is highly likely that at any
given time some nodes, somewhere, will be joining or leaving the
system due to an arbitrary, maybe unknown reason. Furthermore,
these unpredictable dynamics may lead to the physical disconnection
of parts of the infrastructure, for instance due to the failure of an
intercontinental link connecting two separate data centers. As such,
the reliable multicast service must be robust enough to tolerate con-
siderable amounts of failures, and resilient to the churn phenomena,
ensuring that it will continue to function as expected in such harsh
conditions.

With the constraints and requirements presented above, we intend
to build a multicast service that:

1. Reliably delivers the application messages to the correct par-
ticipants;

2. Di�erentiates links according to their characteristics;

3. Adapts to ever changing system sizes;

4. Tolerates considerable amounts of failures of both nodes and
links;

5. Mitigates the churn e�ects.

The �rst requirement is the most important in a reliable communi-
cation service, as non-delivered messages could compromise the se-
mantics and correctness of the application. Although a wide range of
applications could tolerate message omissions, our service is aimed at
applications with more stringent requirements and as such it should
deliver all messages to all correct participants. The second require-
ment is related to network awareness and is essential in the con-
text of a cloud scenario. Failure to take into account the network
topology will seriously compromise the performance and reliability

32 CHAPTER 3. PROBLEM STATEMENT

of the service as the links inter-connecting the branches close to the
top of the tree will easily become a bottleneck. With those links
overloaded the performance degrades, as both the e�ective band-
width available decreases and the latency of message transmission
increases, up to a point where the reliability of the network could
become compromised, as there is too much load imposed on it. The
third requirement is important on the long term reliability and per-
formance of the communication service. Despite adding or removing
'some' nodes on systems of this scale may be negligible, on the long
run the system must cope with the addition or removal of consider-
able amounts of nodes, such when adding or removing a data center
to the federation, due to administrative or business reasons and pro-
longed failures that may physical disconnect substantial parts of the
system. The fourth and �fth requirements are also a consequence of
the targeted very large scale scenario. In it, faults are a natural part
of the system, and consequently churn, and therefore the developed
reliable multicast service must be resilient and well performing in
the presence of this phenomena.

To summarize, we intend to design a very large scale communica-
tion service that focus on two of the problems identi�ed in [10]:
network awareness and adaptability while o�ering strong reliability
guarantees and ideally performing well.

Chapter 4

Network-Aware Reliable

Multicast

Management of many is the same as

management of few. It is a matter of

organization.

Sun Tzu

In this Chapter we will carefully describe the developed protocols
and present the intuition and justi�cation of the design chooses
taken. The �rst Section justi�es the approach taken, weighting
the advantages and disadvantages of each proposal available.The
structure of the remaining chapter re�ects the clear di�erentiation
made between the two di�erent but related problems that arise when
building a reliable dissemination protocol on top of an unstructured
overlay network. The �rst problem deals with the construction and
maintenance of the overlay, taking into account all the requirements
outlined in Chapter 3, and is presented in Section 4.2. Section 4.3
describes the design decisions made to build a reliable dissemination
protocol on top of the previously presented overlay.

4.1 Approach

In this preliminary Section we will support the research direction
taken to address the requirements presented in the previous Chapter,
by recurring to the concepts and state of the art review presented in
Chapter 2.

As the reader may remember, there are two main approaches when

33

34 CHAPTER 4. NETWORK-AWARE RELIABLE MULTICAST

building the supporting infrastructure upon which a reliable multi-
cast service can be deployed: structured and unstructured overlay
networks. Thus, this is the natural �rst choice to make when design-
ing such service. Structured overlay networks are very e�ective in
resource usage of both links and nodes due to the explicit knowledge
they impose on the construction of the supporting overlay. The dis-
semination tree is pre-built taking into account this structure, and
application level messages are relayed on top of it. Furthermore
the dissemination tree could be optimized to a given performance
criteria, such as bandwidth or latency, and take advantage of links
and nodes with higher capacity by placing them closer to the root
of the tree. Thus, structured overlay networks are an attractive
approach to handle links and nodes with di�erent characteristics.
Unfortunately, upon failures and network recon�gurations, the en-
tire dissemination tree needs to be rebuilt, which makes this class
of protocols considerably sensitive to churn. On the other hand,
on unstructured overlay network protocols, the dissemination e�ort
is evenly spread among all the nodes in the overlay, which enables
their natural scalability and resilience. As such, we have the e�cient
structured approach versus the resilient unstructured one. Due to
the very large scale and churn of the scenarios our communication
service is aimed at, we will rely on the resilience of the unstructured
approach and improve it to approximate the desirable performance
metrics.

With this preliminary decision set, we still have to decide which of
the two unstructured overlay construction approaches, �at or hier-
archical, are best suited to ful�l our goals. In the �at approach,
nodes and links are treated equally, and as such are not suited to
handle our requirement of taking into account the link character-
istics when building the overlay. On the other hand, hierarchical
approaches clearly di�erentiate desirable and undesirable links en-
abling the construction of a network aware overlay. Unfortunately,
the proposals presented in the state of the art review, either rest
on post optimizations to the overlay, such as [26, 27], a selection of
special nodes to handle the tra�c that traverses costlier links, such
as [25], or having nodes behave in a self-sacri�cing manner by loosing
one of their links [27] in order to approximate the overlay to the de-
sired network topology. Those proposals have serious drawbacks, as
it is not clear how and when to choose those special nodes, or when
to apply the biasing to the overlay. Furthermore, having nodes with
special roles further inhibit the reliability of the overlay, as questions
such as how to select those nodes in a distributed and automated

4.2. PEER SAMPLING SERVICE 35

fashion, how to handle their failures and how to make them known
to each other must be answered in order to provide a truly resilient
solution.

In our approach, we completely part away from these brittle design
decisions, by refusing to rely on nodes with special roles, and focus
on the locality awareness of the overlay at construction time, as lo-
cality is a natural characteristic of the systems where our proposal
is intended to be deployed. The guiding principle is that if all the
nodes could contribute to some extend to the locality awareness, as
they contribute to the dissemination e�ort, a globally network aware
overlay shall emerge naturally without compromising scalability, re-
silience and reliability. With this principles, we are able to reduce
the load imposed on the undesirable links by an order of magnitude
in a natural manner, while leveraging on the scalability and resilience
to churn and faults of unstructured overlay networks. As such, we
designed a novel hybrid proposal, where all nodes are treated equally
as in the �at approach, but the establishment of links among them
takes into account locality, as in the hierarchical approach. Further-
more, our proposal naturally adapts to changing system sizes, by
transparently tunning the number of links that each node maintains
with its neighbours.

Looking at the proposals available to address reliable multicast in
very large scale systems in a top down manner, we successively dis-
carded the proposals with the best performance to give preference
to the reliable ones, as reliability is the most important metric in a
reliable dissemination service. Then, we build up our mechanisms
on the most reliable proposals available, �at unstructured overlay
networks and improve their performance to achieve the remaining
goals.

4.2 Peer Sampling Service

This Section carefully describes the Peer Sampling Service devel-
oped, starting up from a �at unstructured network protocols, as
justi�ed in the previous Section.

With the decision of addressing the reliable multicast problem with
�at unstructured network protocols, the next natural step is to look
at the available solutions and infer whether there is some previous
work on which we could leverage some of our requirements. Looking
at the proposals reviewed in 2.2.1 there is one requirement, adapt-
ability, that is clearly addressed by one of the protocols, Scamp [15].

36 CHAPTER 4. NETWORK-AWARE RELIABLE MULTICAST

The requirement of adapting to ever changing system sizes in order
to transparently scale without user intervention is addressed by the
Scamp protocol, which is able to adjust the view size to the 'cor-
rect' value. Nonetheless, Scamp is completely oblivious to locality
and its hierarchical derivatives rely on specialized nodes, although
chosen randomly, to address the network mismatch problem, which
is con�icting with our previous decision of not relying on any kind
of special nodes with particular roles.

This preliminary thoughts shown that no protocol available neither
their approaches, is capable of addressing all the requirements we
imposed. As such we depart way with the proposals done before by
taking a novel approach that e�ectively address all the requirements
presented in the previous chapter.

Due to its interesting convergence to the 'right' node degree with
respect to system size, our starting point will be the Scamp protocol.
However, instead of building hierarchical strategies on top of it as
done previously, we continue with a �at approach where all nodes
are treated equally with respect to the roles they exhibit in the
overlay, therefore not colliding with the 'no reliance on special nodes'
assertion. Furthermore, the adjustment to the network topology is
done on construction time instead of post-optimizations to the links
established among the nodes. With the initial research path set, and
the reasons that lead to it explained, the rest of this Section focus on
the description of the developed protocol and the intuition behind
it.

4.2.1 Network-awareness

If we focus on the Scamp protocol, we will observe that joining nodes
are integrated into the view of a node with a given probability that is
function of the actual view size of that node. By making the prob-
ability of integration inversely proportional to the view size, and
always forwarding the subscription to other nodes if the integration
is not successful, the nodes converge naturally, and in a completely
decentralized fashion, to the adequate view size, on average. The full
understanding of this behaviour is fundamental to the modi�cations
we do in the original protocol, in order to make it cope with our
locality awareness goals. By modifying the integration probability
of joining nodes in order to take account the locality, we are able to
bias the overlay to mimic the network topology without endanger-
ing the properties of the original protocol. This is done indirectly,
by manipulating the view size of the node receiving the subscrip-

4.2. PEER SAMPLING SERVICE 37

1

2 upon init
3 contact = getContactNode()
4 view.Add(contact)
5 send(contact,handleSubscription(myId))
6

7 proc handleSubscription(nodeId)
8 for n ∈ view
9 send(n,handleJoin(nodeId))

10

11 for i=0; i < c; i++
12 n = randomNode(view)
13 send(n,handleJoin(nodeId))
14

15 proc handleJoin(nodeId)
16 keep = randomFloat(0,1)
17 keep = Math.Floor(localityOracle(viewSize,nodeId) ∗ keep)
18

19 if (keep == 0) and nodeId /∈ view
20 view.Add(nodeId)
21 else
22 n = randomNode(view)
23 send(n,handleJoin(nodeId))
24

25 proc localityOracle(viewSize,nodeId)
26 if isLocal(nodeId)
27 return viewSize ∗ 0.7
28 else
29 return viewSize + viewSize ∗ 0.3

Listing 4.1: Clon protocol

tion. In detail, if the joining node is considered local, with respect
to an abstracted metric, the view size of the node is 'virtually' de-
creased, which e�ectively augments the probability of integration of
the joining node in the local area it belongs to. On the other hand,
if the joining node is considered remote, the view size is 'virtually'
increased, reducing the probability of integration in foreign areas.
This modi�cation, promotes the establishment of links among local
nodes in detriment of remote ones, which adjusts the resulting over-
lay to the underlying network topology. The resulting protocol has
been named Clon , which stands for Overlay Networks for Cloud
environments, as federated clouds are a common scenario where sev-
eral highly intra-connected data centers are spread around the world
and connected by costlier inter-continental links as pointed in the in-
troductory chapter. The pseudo-code for the protocol is presented
in Listing 4.1, and we will carefully describe it next.

The initial bootstrapping and joining mechanism remains the same
of the original protocol. After the choice of the initial contact node,
the joining node sends it a subscription request on lines 2 to 5.
Then in lines 7 to 13, the receiver forwards the subscription to all
its neighbours, creates c additional copies and forwards it to random

38 CHAPTER 4. NETWORK-AWARE RELIABLE MULTICAST

neighbours in its view. c has the same impact as in the original
protocol, and is related to the amount of faults tolerated.

Upon reception of a join request, line 15, the keep variable is initi-
ated with a random value, and then the probability of integration
is calculated taking into account the locality of the joining node.
The adjustment of the view that takes into account locality is dele-
gated to the localityOracle. This oracle is therefore responsible to
access whether the node is local or not, and manipulate the view
size according to that. The particular details of how to detect the
locality of the node are abstracted out of the model, and could be
calculated by several mechanisms, such as observing and comparing
the IP addresses of the joining and receiving nodes, and determine
whether or not they are on the same local area network. If the node
is considered local, the oracle should weight the view size against
some locality factor in a way that increases the probability of inte-
gration against remote nodes, such as decreasing the perceived view
size when the node is local, or proceeding otherwise when the node is
remote. It is important to note that the oracle only returns the per-
ceived view size, and should not manipulate the view, for instance by
dropping nodes, in any other way. As an example we give a possible
localityOracle on lies 25 to 29. This oracle reduces the view size by
30% is the node is considered local, or increases it by 30% if the node
is remote, e�ectively manipulating the probability of integration of
remote and local nodes.

The impact of changing the probability of integration according to
the localization of the joining node, e�ectively biases the overlay
to the underlying network topology, without major impacts on the
reliability of the protocol in face of failures. A detailed experimental
assessment of the properties of the overlay obtained can be found in
Section 5.2. Furthermore the experimental analysis of the impact of
this alterations on the load imposed on the long distance links can
be found in Section 5.3.

4.2.2 Degree Balancing

So far, we have focused on how to properly bias the overlay in order
to mimic the underlying network organization. However, if we focus
on the obtained protocol, we will observe that it still has some im-
portant limitations, as the original Scamp protocol: the distribution
of the nodes' degree, and the bootstrapping process, which requires
a set of well-known nodes to initiate the subscription.

4.2. PEER SAMPLING SERVICE 39

The �rst problem, the distribution of the nodes' degrees, comes di-
rectly from Scamp being a reactive protocol, i.e. it only modi�es the
overlay in the presence of leaves or joins, and is further aggravated by
the bootstrap mechanism. A node wishing to join the overlay must
contact a 'well-know' node, establish a link with it, and send the sub-
scription request. As such, for a given period of time, or forever if the
membership remains stable, the last nodes to join the overlay only
have one outgoing link, i.e. they only known one neighbour, which
is the initial contact node. This clearly impact the reliability of the
proposal, as this nodes are prone to disconnection because the inher-
ent link redundancy of gossip based protocols is not present. On the
other hand, 'older' nodes tend to have much more neighbours than
newer ones, particular the contact nodes and its closest neighbours.
This happens because even though the probability of integration is
probabilistic and based on the view size, those nodes received high
amounts of subscriptions, almost from all the nodes in the overlay,
and as such 'some' of them will be eventually integrated, despite
the low probability. As such, the convergence to the average degree
that Scamp o�ers, is misleading, as certain groups of nodes tend to
be much below or above the ideal degree and therefore impair the
quality of the obtained overlay.

To overcome this de�ciency in the protocol, we devised a degree
balancing mechanism that normalizes the distribution of the nodes'
degree in a distributed fashion. The basic idea behind the mechanism
is to drop 'excessive' links from nodes with high degrees and integrate
them in the nodes with lower degrees. However, we intend to do so
in a decentralized fashion, without direct node interaction and any
kind of agreement, based only on local decisions, and without having
nodes assume special roles in order to proceed with the link exchange.
Furthermore, this exchange also needs to take into account locality,
or the work developed to bias the overlay to the network topology
will be lost after several runs of the degree balancing mechanism.

Based on those principles, we developed the mechanism depicted in
Listing 4.2 and will discuss it next.

Periodically, a node chooses a random neighbour from its view, and
initiates a random walk by sending it a request with the following
information: a given TTL which will specify the length of the ran-
dom walk, and the number of remote and local neighbours it knows,
as can be observed in lines 1 to 3. The random walk then traverses
the overlay by the number of hops speci�ed by the TTL (lines 6 to
8) until it eventually expires. Upon termination, the receiving node
calculates its number of local and remote neighbours and weights

40 CHAPTER 4. NETWORK-AWARE RELIABLE MULTICAST

1 every ∆T
2 target = getRandomNode(view)
3 send(target,NODEINFO(TTL,localNeighboursSize(),remoteNeighboursSize()))
4

5 proc NODEINFO(TTL,localNS,remoteNS):
6 if −−TTL > 0
7 target = getRandomNode(view)
8 send(target,NODEINFO,source,TTL,localNS,remoteNS)
9 else

10 myLocalNS = localNeighboursSize()
11 myRemoteNS = remoteNeighboursSize()
12 if localNodeDi�erence(myLocalNS,localNS)
13 droppedNode = dropLocalNode()
14 n = randomNode()
15 send(n,handleSubscription(droppedNode))
16 if remoteNodeDi�erence(myRemoteNS,remoteNS)
17 droppedNode = dropRemoteNode()
18 n = randomNode()
19 send(n,handleSubscription(droppedNode))
20

21 #sample
22 proc localNodeDi�erence(myDegree,receivedDegree)
23 return (myDegree − receivedDegree) / 2 > receivedDegree
24

25 #sample
26 proc remoteNodeDi�erence(myDegree,receivedDegree)
27 return (myDegree − receivedDegree) / 2 > receivedDegree

Listing 4.2: Clon normalization algorithm

those values against the local and remote number of neighbours re-
ceived via the random walk. If the di�erence between the receiving
node's degree and the one obtained through the random walk is sub-
stantial, then the receiver drops one of its links (lines 14 and 18) as
this implies that it has more links than the average and as such is
reducing the quality of the overlay. The particular calculation to de-
termine whether or not the di�erence between the degrees is relevant
(lines 21 and 24), could be obtained in many di�erent ways in an
application dependant fashion. In our Listing we give an example of
such calculation, by considering that the degrees di�er 'too much' if
half of the di�erence between them is higher than the subtrahend,
but more stringent or relaxed calculations could be taken in face of
the scenario requirements. By adjusting the period T of this proce-
dure and/or the oracles that determine the di�erence between the
degrees the programmer could adjust the speed of convergence to the
ideal node degree distribution, considering the application demands.
Finally, the dropped link, if any, is forwarded as a join request, as if
the node pointed by the link has just joined the overlay (lines 15 and
19). This allows us to take advantage of the integration mechanism
already deployed and, therefore to continue to improve the overlay
with respect to the network topology. This balancing procedure does

4.2. PEER SAMPLING SERVICE 41

not require direct intervention between the intervening nodes (the
node who drops the link and the node whose link has been dropped)
and as such is completely decentralized. It is important to note that
the only decision nodes could take is to drop links. They are for-
bidden to ask for links as this will imply some coordination among
them. Therefore, the nodes with lower degrees will improve their de-
gree indirectly, by integrating the links dropped by the nodes with
higher degrees, as the integration is likely to succeed due to the low
degrees of those nodes. Furthermore, nodes only require local knowl-
edge to decide whether or not to drop links and the re-integration
of the dropped links is done recurring to the normal protocol inte-
gration mechanism, avoiding the use of 'special' nodes to integrate
those links or decide whether or not they should be dropped.

4.2.3 Bootstrapping mechanism

The last problem we partially address, is the initial bootstrapping
mechanism that allows joining nodes to discover one or more peers
already in the overlay. To the best of our knowledge, existing proto-
cols solve this by assuming there is an external entity that provide
the node identi�er(s), in order to allow the joining node to contact
peers already on the overlay. This is, in general, not satisfactory as
it puts out of the model an important aspect of the overlay building
protocol, and tends to be addressed by relying on static centralized
solutions such as having one or more servers to provide the set of
initial identi�ers. With node churn this set is hard to maintain up
to date and provides a brittle solution, even if we made the unre-
alistic assumption that those servers do not fail. In our proposal
we address this problem by fully decentralizing this initial discovery
mechanism making every node in the overlay a potential 'server' in
the true peer to peer spirit. The only requirement we impose is the
availability of a broadcast primitive on the local area where the new
node is physically connected. This requirement is virtually guar-
anteed to be satis�ed in modern network architectures, due to the
pervasiveness of the TCP/IP communication protocol.

In the following we explain the rationale behind the developed boot-
strapping mechanism which is depicted in Listing 4.3

Recalling the integration mechanism by which joining nodes get
added to the views of other nodes, it is possible to observe that the
view size converges, on average, to the 'ideal' value of log(N) + c,
where N is the system size and c a protocol parameter related to fault
tolerance [23]. However, in Scamp and in the previously presented

42 CHAPTER 4. NETWORK-AWARE RELIABLE MULTICAST

version of Clon a node joining the overlay only establishes one
link with the contact node it receives from the external mechanism,
which e�ectively impairs the connectivity of the joiner. Notwith-
standing, if instead of obtaining just one contact node, the joiner
obtained 'some' contacts, its connectivity will be improved since the
join. Ideally, this value should be near the average node degree, be-
cause in this way the new node will be indistinguishable of nodes
that have been on the overlay for more time. Next we will explain
the functioning of the protocol and then how the 'ideal' results could
be achieved.

Upon boot, the node uses the available broadcast primitive to re-
quest contacts from all the nodes in its local area, as can be seen
on lines 3 and 4. If upon reception of the request all nodes replied
to the originator, this may led to problems, in a phenomena known
as acknowledgement bomb. This phenomena stems from the fact
that if every node in a large scale system replies to the originator
of a broadcast, the network will become suddenly overloaded, and
the requester may be overrun by the amount of replies and crash.
To overcome this problem, we rely on an oracle that should instruct
whether the node should reply to the request or not, with a given
probability. Although the oracle may be con�gured in a naive man-
ner, lets say reply only with a probability of 10%, the amount or
replies generated will be e�ectively reduced, alleviating the prob-
lems of the acknowledgement bomb phenomena.

If the oracle instructs the node to reply, i.e. if it returns true (line 7),
there is another decision that needs to be made: whether to provide
a local or remote node as a contact. If this is not taken into account,
and joining nodes are always provided with local contacts only, the
reliability of the overlay will be compromised. This comes from the
fact that if joining nodes only get to known local nodes, over time
the number or remote known nodes will decrease considerably and
the overlay will partition around the local areas, which is certainly
what we want to avoid. In the Listing, we show a simplistic oracle
on lines 42 to 44 which instructs the protocol to reply half the times
with a remote nodes and half of the times with a local one, but
naturally this could be con�gured to the application requirements.
After this initial steps where the oracles decide about replying and
the kind of node chosen, the contact is sent to the requester, as can
be seen in line 14.

Upon reception of a reply, on line 16, the joining node should decide
whether or not to integrate the contact in its view, based on the
same procedure of the original Scamp protocol, where the probabil-

4.2. PEER SAMPLING SERVICE 43

1 myC = c
2

3 upon init()
4 BCAST(CONTACT, myself)
5

6 proc CONTACT(nodeId)
7 if (sendOracle())
8 if(externalContactOracle(nodeId))
9 contact = randomExternalNode()

10 else
11 contact = myself
12 #or
13 # node = randomLocalNode()
14 send(nodeId,(CONTACTREPLY, contact)
15

16 proc CONTACTREPLY(contact)
17 keep = random()
18 keep = Math.Floor((viewSize + 1 ∗ keep)
19

20 if (keep == 0)
21 if view.size() > 0)
22 schedullecCheck()
23 view.Add(contact)
24 send(contact,handleJoin(myId))
25 if (myC > 0)
26 send(contact,handleJoin(myId))
27 myC = myC − 1
28

29 #possible send oracle
30 proc sendOracle()

31 totalNodesEstimate = 10(viewSize−c)

32 localNodesEstimate = totalNodesEstimate / 5
33

34 if localNodesEstimate < 1
35 localNodesEstimate = 10viewSize

36

37 reply = viewSize / localNodesEstimate
38 seed = randomFloat(0,1)
39 return seed < reply
40

41 #possible external oracle
42 proc externalContactOracle(nodeId)
43 rand = randomFloat(0,1)
44 return rand < 0.5
45

46 proc cCheck()
47 while(myC != 0)
48 contact = randomNode()
49 send(contact,handleJoin(myId))
50 myC = myC −1

Listing 4.3: Clon contact discovery protocol

44 CHAPTER 4. NETWORK-AWARE RELIABLE MULTICAST

ity of integration is inversely proportional to the size of the view.
The motivation behind this conditional integration is to ensure that
even if the oracle of the repliers is not well con�gured, the view size
will still be within the normal bounds of the system. Without this
restriction the view size of the joining nodes could integrate 'too
much' nodes which will therefore impact the quality of the obtained
overlay. If the contact node is to be integrated by the joining node,
the latter adds it to its view, i.e. establishes a link with it, and
sends it a handleJoin. With this changes the join mechanism is
e�ectively decentralized and inverted. Instead of being the contact
node to send the subscription requests as in the original protocol,
it is now the responsibility of the joining node to send them. This
change has an immediate impact on the protocol as the c additional
join requests sent randomly must still be transmitted. As such the
joining node becomes the responsible for sending those additional
requests. However, instead of sending those additional join request
to just one contact, lets say the �rst received, we decide to distribute
them among the several contacts obtained. To this end, the joining
node now has an additional variable myC which is initially set to
the c protocol parameter, as seen in line 1. Then, for each received
contact, the joining node sends the normal handleJoin request plus
one additional copy until c copies are sent, lines 25 to 27. To pre-
vent the case where less than c contacts are received, and therefore
not enough additional copies could be sent, upon the reception of
the �rst contact the protocol schedules the execution of the cCheck
procedure on a point in the future. This scheduling may be only ap-
proximate and should start when it is expected that all the contact
replies have been received, which on a local area shall be pretty close
to the �rst one. This procedure only checks if enough copies have
been sent, and if not they are sent to randomly chosen nodes, as in
the original protocol.

After analysing the protocol it is now time to clarify how we could
exploit the local knowledge available, in order to obtain optimal
results in the bootstrapping mechanism. Optimal in this context
means that the joining node establishes as much contacts as the av-
erage view size, therefore becoming indistinguishable from the nodes
already on the overlay. To achieve this exact behaviour, we will need
global knowledge in order to calculate the ideal node degree and re-
ply exactly with that amount of contacts to the joiner. Of course
this solution is not acceptable, as it will impair all the work done
previously on decentralizing the entire protocol. Nonetheless, if we
rely only on local knowledge it is still possible to approximate this

4.2. PEER SAMPLING SERVICE 45

behaviour, in a probabilistic fashion. In fact, all nodes have a pow-
erful estimation tool of the total amount of nodes, the size of their
view. In fact the view size converges to log(N)+ c where as N is the
number of nodes in the system, therefore is straightforward to esti-
mate locally the total number of nodes. If we also known the number
of local areas available, which probably is fairly well-known (for ex-
ample the number of data centers of a cloud provider), it is possible
to estimate the number of potential repliers to the contact request,
i.e. the number of nodes in the local area, and thus reply with the
adequate probability. An example of an oracle con�gured in this way
is shown in lines 29 to 39. The oracle estimates the total number
of nodes (line 31), calculates the number of local nodes based on
this estimation (line 32) and replies with a probability based on this
calculations (lines 37 to 39). Although the con�guration presented
should be well suited to a wide range of scenarios, we still abstract it
with an oracle in order to not impair the applicability of the mech-
anism in other, at this time unpredicted, scenarios. It is important
to notice that if the estimation of local nodes is inaccurate, which
happens when the view size is inferior to c the probability of replying
adequately will be compromised. This comes from the fact that if the
totalNodesEstimate becomes smaller than 1, in the case c is greater
than the viewSize then the calculation on line 37 will yield a value
greater than 1 and therefore the node will always reply to the contact
request. This is easy to observe as viewSize/localNodesEstimate
always yields a value greater than 1, when the localNodesEstimate
is strictly smaller than 1, which will impair the optimal behaviour
we intend to achieve. Thus, this abnormality is corrected by ignor-
ing the wrong local nodes estimation and making it simply 10viewSize

(lines 34 and 35).

The advantages of this new bootstrapping mechanism are many fold.
First, we eliminate the need to maintain a list of well-known nodes
somewhere out of the model, as contact nodes are drawn from all the
local nodes on the overlay. As such this also has an impact on the
quality of the overlay as contact nodes are chosen more uniformly
and therefore the problem of the well-known nodes and its direct
neighbours having high degrees is alleviated. Furthermore, a joining
node now knowns several initial contact points instead of just one,
which e�ectively improves its connectivity. Finally, the subscriptions
along with the c additional copies are sent to di�erent parts of the
overlay instead of only the neighbours of the contact node, as in the
original protocol, which e�ectively counters the clustering around
those nodes.

46 CHAPTER 4. NETWORK-AWARE RELIABLE MULTICAST

Despite this advantages the proposed mechanism still has one im-
portant drawback, which is why we initially said that the problem is
solved only partially. Although this mechanism works well when the
local areas are established and there are known remote nodes, the
initial bootstrap of a whole local area could not be addressed with
this mechanism. This is due to the fact that initially no remote nodes
are known on the starting local area and as such we still require a
set of well-known remote nodes to bootstrap a whole local area, pro-
vided by the administrator. Nonetheless, after this initial step the
external mechanism could be discarded and, as such our proposal
may be used for the rest of the life-cycle with the application with
all the advantages we pointed above.

To conclude, the Peer Sampling Service o�ers two primitives to
upper layers, such as the dissemination protocol: PeerSampleLocal
and PeerSampleRemote, which provide a set of local and remote
peers respectively.

4.3 Dissemination Protocol

In this Section we will describe the dissemination protocol developed,
which leverages on the previous work done in the Emergent proto-
col [7]. For details about Emergent please refer to the background
Section 2.1.2 and 2.2.3.

The Emergent protocol o�ers to the programmer two di�erent dis-
semination strategies: eager and lazy push. In eager push the latency
to infect all the nodes is minimal, as every nodes eagerly trans-
mits the message payload upon reception to its neighbours. On the
lazy strategy, the payload transmission is delayed to a latter phase,
and therefore the bandwidth requirements of this strategy are much
lighter than in the lazy approach, at the cost of increased latency in
the dissemination process.

As one of the main goals of this thesis is to reduce the load imposed
on 'undesirable links', it is possible to take advantage of the di�erent
dissemination strategies o�ered by the Emergent protocol in order to
further reduce the number of message payloads that traverse those
costlier links.

The rationale behind this is to lazily send messages to the remote
nodes, in order to reduce the load imposed on the long distance
links, while attaining a desirable latency trade-o�. If we use an ea-

4.3. DISSEMINATION PROTOCOL 47

ger strategy while disseminating in local areas and a lazy strategy
when disseminating to remote ones this is achieved in a seamless way,
without compromising the reliability of the dissemination. Further-
more, if we tune the protocol parameters to send the messages in a
eager fashion to the remote nodes and then, after a 'small' number
of rounds fall back to a lazy approach, we could further reduce the
overall latency of the dissemination process. The intuition to sup-
port this claim is that as soon as some nodes in a given local area
have the payload of a given message, they could use a eager strategy
to quickly disseminate the message in their local area, as bandwidth
constraints are more relaxed on local areas that in the links that
interconnect them.

The notion of local areas interconnected by expensive links is a per-
vasive concept across all the developed work, however it is unfortu-
nately absent in the original protocol. As such, this section deals
with the deployment of this concept in the dissemination protocol,
in order to further reduce the load imposed on the costlier links that
connect the di�erent local areas.

The rest of this section describes the changes necessary to enable a
locality aware dissemination protocol, which are the following:

• Introduction of two distinct rounds to re�ect locality;

• Reorganization of the queue of pending message payload re-
quests, to give precedence to local nodes.

4.3.1 Locality awareness on the selection of peers

The introduction of two distinct rounds is fundamental to enable the
locality awareness of the dissemination protocol. This comes from
the fact that if the protocol used only a single round to disseminate
messages, local and remote nodes could not be distinguished on the
peer selection part of the protocol, which is shown is Listing 4.4.
For instance, it will be impossible to build a dissemination strategy
that only disseminates to local or remote nodes, precluding the ef-
fective use of the network awareness that the Peer Sampling Service
o�ers by means of its PeerSampleLocal and PeerSampleRemote
primitives. Apart from seriously reducing the protocol performance
trade-o�s achievable, the dissemination protocol will not take advan-
tage of the network knowledge present on the overlay carefully built
on the previous section. Thus, two distinct and independent rounds
are used, one to the intra-local area dissemination and other to the

48 CHAPTER 4. NETWORK-AWARE RELIABLE MULTICAST

inter-local area dissemination. The independence of the rounds is
due to the way each one is increased, the local round count is only
increased when messages traverse local area links, whereas the re-
mote round count is only increased when messages traverse inter-
local area links. Furthermore, when a message is received through
a remote area, its local area round count must be reset, because it
is meaningless to the current area where the message is being dis-
seminated. Failure to do so will seriously impact the reliability of
the protocol, as the message will not be relayed enough times in the
given local area, therefore failing to infect all the members of such
area. For instance, suppose that the protocol is con�gured with a
given maximum local area round count of maxRI. As the message is
disseminated in the originating local area the local round count nat-
urally increases. Eventually, the message payload will be received by
another local area with a local round count of, say maxRI−2. If the
receiving local area does not reset this counter, the message will only
be disseminated for two more rounds (as maxRI − 2 + 2 < maxRI
wields false, see line 14 of Listing 4.4), compromising the reliability
guarantees we seek.

With the necessity of two rounds, one for local dissemination, and
other for remote dissemination of application level messages ex-
plained, we will now describe the impact of such changes in the
protocol pseudo-code, in Listing 4.4, focusing only on the changes
necessary to the original protocol. The introduction of two rounds,
naturally implies the addition of new parameters to the protocol.
These are maxRi and maxRe which specify the maximum number
of rounds a message is to be relayed internally and externally, re-
spectively, and remoteFanout and localFanout, which indicate the
number of gossip targets that must be drawn from each set of neigh-
bours. These two last parameters could be expressed in a single
fanout parameter and use some sort of weighting to choose between
remote and local neighbours, similar to what is done in the peer
sampling service, but for the sake of clarity and simpleness we de-
cided to clearly separate them. As such, in the Forward procedure,
each round count is compared to their respective maximums (lines
12 and 16), and if the maximums have not been reached, the given
number of peers is drawn from the respective set (lines 13 and 17), if
available. Then the L−Send procedure of the next layer is invoked
for the each one of the chosen peers. To �nalize, in the L−Receive
procedure the internal round count is reseted if the message comes
from an remote node (lines 23 and 24). The isExternal oracle ab-
stracts the problem of identifying the origin, in terms of locality, of

4.3. DISSEMINATION PROTOCOL 49

1

2 initially
3 K = ∅ /∗known messages∗/
4

5 proc Multicast(d)
6 Forward(mkdId(),d,0,0)
7

8 proc Forward(i,d,ri,re)
9 Deliver(d)

10 K = K ∪ {i}
11 P = ∅
12 if re < maxRe
13 P = P ∪ PeerSampleRemote(remoteFanout)
14 for each p ∈ P
15 L−Send(i,d,ri,re+1,p)
16 if ri < maxRi
17 P = P ∪ PeerSampleLocal(localFanout)
18 for each p ∈ P
19 L−Send(i,d,ri+1,re,p)
20

21 upon L−Receive(i,d,ri,re,s)
22 if i /∈ K
23 if isExternal(s)
24 ri = 0
25 Forward(i,d,r)

Listing 4.4: Dissemination Protocol: Peer Selection

a node and can be build in the same way as the oracle isLocal on
the previous section.

4.3.2 Lazy push optimization

While the introduction of two distinct rounds is crucial in the dis-
semination protocol in order to make it locality-aware, the next con-
tribution is a improvement that stems naturally from the observation
of the protocol's behaviour when dealing with lazily sent messages.
The pseudo-code is presented in Listing 4.5. When the isEager or-
acle that controls the strategy to use when relaying a message to a
given node 'decides' to sent a message lazily, two things happen (lines
10 and 11): the message payload is stored in a temporary bu�er in
order to answer future requests, and an advertisement of the mes-
sage is sent to the target. Upon reception of the advertisement by
the target (lines 14 to 16) the message is queued for retrieval in a
point in the future. The actual scheduling policy is abstracted by the
ScheduleNext procedure, which is application dependent. Nonethe-
less, if we observe the pattern of message advertisements/payloads
transmitted, it is possible to further reduce the number of message
payloads that traverse the costlier links by rescheduling the requests
to give precedence to local nodes. In this way, the payloads are

50 CHAPTER 4. NETWORK-AWARE RELIABLE MULTICAST

lazily pushed over the local area links whenever possible, instead of
the long-distance links that connect the di�erent local areas. In fact,
if the dissemination strategy is chosen carefully, for instance acting
in a pure eager fashion in local areas and also eagerly to remote areas
for a small number or rounds and then fall back to a lazy approach,
few transmissions are actually made lazily over the long distance
links. This is because the initial payloads sent eagerly to remote ar-
eas, and gossiped eagerly within that areas, will quickly overrun the
necessity to ask for the payload transmission over the long distance
links. Nonetheless, this measure is important as a way to reduce the
payload transmissions over those undesirable links, whenever such
strategy is not feasible or applicable.

To implement this, we modi�ed the original protocol in the follow-
ing way. When an advertisement of a message is received (line 14),
instead of promptly scheduling the request as in the original proto-
col, the request queue is rearranged (lines 32 to 39) in order to give
precedence to request on the local area. If the newly received adver-
tisement source 'is closer' to the already scheduled request, then the
order of them is swapped. The 'is closer' relation is abstracted by
means of the isCloser oracle, which calculates an application level
distance between the available message payload sources, and can be
built over the isExternal and/or isLocal oracles de�ned above.

For the sake of completeness an example of such oracle is given in
Listing 4.6. As it is possible to observe, the oracle returns false if and
only if the new source for the message is from a remote node and the
already known source is from a local node. This oracle con�guration
has an interesting side e�ect, if both nodes are at the same distance,
i.e. either both are local or remote, the oracle returns true, which
e�ectively swaps the older entry with the new one. As fresh entries
are given precedence in the queue, this tightens the time window
to node faults, as nodes 'tend' to fail as times passes, therefore im-
proving the con�dence that the node who has the required message
payload is still alive.

4.3. DISSEMINATION PROTOCOL 51

1

2 initially
3 ∀i: C[i] = ⊥
4 R = ∅
5

6 proc L−Send(i,d,ri,re,p)
7 if isEager(i,d,ri,re,p)
8 send(p,MSG(i,d,ri,re))
9 else

10 C[i] = (d,ri,re)
11 send(p,IHAVE(i))
12 R = R ∪ {i}
13

14 upon receive(IHAVE(i),s)
15 if i /∈ R
16 QueueMsg(i,s)
17

18 upon receive(MSG(i,d,ri,re),s)
19 if i /∈ R
20 R = R ∪ {i}
21 Clear(i)
22 L−Receive(i,d,ri,re,s)
23

24 upon receive(IWANT(i),s)
25 (d,ri,re) = C[i]
26 send(s,MSG(i,d,ri,re))
27

28 forever
29 (i,s) = ScheduleNext()
30 send(s,IWANT(i))
31

32 proc QueueMsg(i,newSource)
33 if i /∈ Queue
34 Queue.add(i,newSource)
35 else
36 (i,oldSource) = Queue.get(i)
37 Queue.add(i,newSource)
38 if isCloser(newSource,oldSource)
39 Queue.swap(newSource,oldSource)

Listing 4.5: Dissemination Protocol:P2P Communication

1

2 proc isCloser(newSource,oldSource)
3 if isExternal(newSource) and (not isExternal(OldSource))
4 return False
5 else
6 return True

Listing 4.6: A possible isCloser Oracle

52 CHAPTER 4. NETWORK-AWARE RELIABLE MULTICAST

Chapter 5

Experimental Evaluation

It doesn't matter how beautiful your

theory is, it doesn't matter how smart

you are. If it doesn't agree with

experiment, it's wrong.

Richard Feynman

This Chapter has three main Sections. In the �rst, 5.1, we describe
the experimental environment set up to analyse the impact of the
protocol developed with respect to the goals outlined in Chapter 3.
In Section 5.2 we run a set of experiments to access the quality of the
Peer Sampling Service with respect to several graph metrics, analyse
the impact of the degree balancing mechanism and the bootstrapping
algorithm. Finally, in Section 5.3 we compare the e�ectiveness of the
Peer Sampling Service in the transmission of messages through the
long distance links. To this end, we use �rst a pure eager �ooding
gossip protocol, and then the improved version of the Emergent pro-
tocol in order to attest the improvements bring by a more carefully
designed dissemination protocol. For each one of the experiments
we present a explanation of the results obtained and discuss the
rationale behind them.

As the Peer Sampling Protocol we designed is completely �at, i.e. it
does not possess hierarchical characteristics, such as special nodes to
handle locality, our proposal is compared against the Scamp proto-
col. This is supported by the reliability level Clon provides, which
is similar to Scamp and is not obtainable with hierarchical protocols.
To this end we implemented Scamp, Clon and the improved version
of Emergent on the simulator.

53

54 CHAPTER 5. EXPERIMENTAL EVALUATION

5.1 Experimental Scenario Description

The experimental test bed consists of a custom made simulator writ-
ten in the Python programming language [33]. Python has chosen
over other languages due to our �uency with it, and due to its rapid
prototyping capabilities, which enable the quick setup and modi�ca-
tion of the experimental scenario, to �t the experimentation needs.
The simulation is done in discrete time steps, and messages are han-
dled by a global message queue that delivers them to their intended
recipients in a First In First Out fashion. The overlay construction
and management protocols have been implemented over graphs, by
means of the NetworkX graph library. NetworkX is a python package
for the creation, manipulation, and study of the structure, dynamics,
and functions of complex networks, modeled a graphs. Depending on
the particular experiment, several data is gathered and logged, such
as the total, local and remote number of messages received by each
node. Due to the large amount of data generated, which amounts to
over 60 gigabytes in some experiments, the data is logged to disk for
latter post-processing. The processing is done by python scripts us-
ing the R Programming Language [14] to extract the statistical prop-
erties from the logged data. R is further used to generated some of
the presented graphics, along with gnuplot [1]. R is a programming
language for statistical analysis that provides powerful mechanisms
to infer the statistical properties of sets of data. The experiments
have been run on a 8 core Intel Xeon CPU with 8 gigabytes of Ram
and a 500 gigabytes hard drive running the GNU/Linux Ubuntu 8.10
operating system.

The experimental scenario used in all the experiments consists of
1000 nodes divided in 5 local areas with 200 nodes each. Further-
more, we assume that all the local ares are connected to each other
by long distance links, in order to provide a federation-like scenario.
With this particular setup we always ensure that the number of re-
mote nodes is �ve times superior to the number of local ones, which
is relevant to attest the biasing of the overlay to local nodes.

5.2 Peer Sampling Service Evaluation

In this Section we analyse the quality of the overlay built by our Peer
Sampling Service and compare it to an implementation of the Scamp
protocol in several relevant graph metrics such as connectivity, clus-
tering coe�cient and average path length. To access the behaviour

5.2. PEER SAMPLING SERVICE EVALUATION 55

of both protocols in the presence of failures we devised three di�erent
strategies that randomly remove nodes from the generated overlays.
Each strategy randomly drops nodes from the speci�ed universe from
0 to 100% at increasing steps of 10%. The di�erent strategies are:
UniformDrops, which removes nodes from the overlay in a uniform
fashion, considering all the existing nodes; OneAreaDrops, which
drops nodes uniformly from a given local area; and TwoAreaDrops,
which disconnects nodes uniformly from two pre-selected local ar-
eas. To apply each one of the strategies and their increasing drop
rates we proceeded, for both protocols, as follows: �rst we generated
the overlay using the particular protocol and keep a copy of it; af-
ter, we apply the given drop strategy for each drop rate and store
the intermediate overlays, ensuring that each drop rate is applied to
the initial overlay instead of the intermediate overlay generated just
before it. For example, a given strategy with a drop rate of 20%
is applied to the initial overlay instead of the overlay obtained by
the dropping of 10% of the nodes. Furthermore, we do not allow
the overlays to heal that is all nodes are removed at the same time
instant. By not allowing the overlays to heal we precisely measure a
lower bound on the resilience to massive failures, i.e. the results can
be improved by means of healing, but not worsened (if we assume a
random distribution of failures). For each one of the obtained over-
lays we then extract the properties to study which are: connectivity,
clustering coe�cient and average path length.

In the following experiments both protocols are parametrized with
c = 6, which indicates the resilient to failures, as explained in [23].
Due to the value of the c parameter and the number of total nodes,
the view size of each node converges, on average, to 9 which comes
from log(1000) + c = log(1000) + 6 = 9. Nodes are created sequen-
tially in the overlay and the contact is chosen randomly across the
existing nodes, as per the original Scamp protocol. Furthermore, the
locality oracle in Clon is con�gured in order to obtain, on average,
2 remote and 7 local nodes on the view of each node.

5.2.1 Overlay properties

When building an overlay that should encompass all the nodes in
the system, the most important measure is the connectivity of the
overlay. If connectivity is not guaranteed in the presence of high
churn rates and/or massive failures, the overlay network will parti-
tion, isolating one or more parts of the overlay from the rest. Fig-
ure 5.1 depicts the results obtained when applying the di�erent node

56 CHAPTER 5. EXPERIMENTAL EVALUATION

dropping strategies presented above, at increasing rates, without ap-
plying the degree balancing mechanism. In the Y axis it is possible
to read the amount of alive nodes globally reachable, and in the X
axis the amount of dropped nodes for each strategy.

If we analyse the connectivity in the presence of faults in a global set-
ting, by applying the UniformDrops strategy, it is possible to observe
that the connectivity of Clon , green line, closely matches that of
Scamp, red line, up to 60% global nodes dropped, only breaking up
at above 70%. Nonetheless, the results of Scamp from those values
up also drop well behind the desired connectivity ratio, so all the
results obtained from 60% of dropped nodes up are meaningless. In
fact, for up to 50% failures and without any type of healing, the
connectivity is not perceivable a�ected for both protocols which at-
test their resilience. For drop rates up to 60%, which means 3 local
areas out of 5, the connectivity stays in reasonable values above 90%
which means that despite the massive failures, on average each node
loses slightly more than half of its links, almost all nodes are still
reachable.

If we now observe the results for localized drops on one local area,
by applying the OneAreaDrops, we observe that the connectivity
is not a�ected for either Clon , pink line, or Scamp, blue line,
This means that the complete failure of a whole local area does
not a�ect the inter-connectivity among the others. In a real world
scenario a complete failure of a whole data center/local area, could be
externally perceived if, for instance, the links that connect it to the
exterior go down, e�ectively precluding the physical network access
to such data center. It is important to note that as the X axis is the
percentage of nodes dropped globally, the values for this strategy end
up at 20%, which corresponds to the complete removal of one local
area out of the �ve we have in this scenario. For the same reason, the
measurements in the TwoAreaDrops strategy end up at 40%, which
corresponds to the complete removal of two local areas, as expected
in this strategy. Finally, the light blue and yellow line correspond to
Scamp and Clon respectively, in a TwoAreaDrops strategy. As it is
possible to observe, the impact on connectivity of this localized drop
strategy continues to not endanger the connectivity of the overlay.

For the two remaining graphics that depict the other graph prop-
erties we intend to analyse, we only plot the results obtained from
the UniformDrops strategy in order to not clutter them up. Fur-
thermore, the impact of the other strategies is not as relevant to the
other metrics as it is for connectivity.

5.2. PEER SAMPLING SERVICE EVALUATION 57

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90

%
 A

liv
e

N
od

es
 R

ea
ch

ab
le

% Nodes Dropped

Scamp UniformDrops
CLON UniformDrops

Scamp OneAreaDrops
CLON OneAreaDrops

Scamp TwoAreaDrops
CLON TwoAreaDrops

Figure 5.1: Overlay Connectivity.

In Figure 5.2, we plotted the evolution of the clustering coe�cient in
face of the increasing global drop rates for both Clon , green line,
and Scamp, red line. It is possible to observe an almost constant
value that separates the higher clustering coe�cient of Clon from
the lower values of Scamp. This di�erence is easily explained by
the goal of Clon itself, which gives preference to local nodes over
remote ones and thus, the overlay tends to naturally cluster in order
to re�ect the clustered topology of the underlying network.

As the reader may remember from the background Section 2.1.2,
overlays with high clustering coe�cients tend to partition as the co-
e�cient measures the closeness of neighbour relations and high val-
ues indicate that the neighbours are highly connected among them,
but poorly connected to the exterior. As Clon tends to bias the
overlay to a naturally clustered network, it is normal to observe an
increase in the clustering coe�cient. However, if we observe again
Figure 5.1, it is possible to see that the connectivity is almost iden-
tical to that of Scamp, which allow us to conclude that the increase
in the clustering coe�cient is despicable with respect to the impact
on connectivity. The other e�ect of higher clustering coe�cients,
is the increased redundancy of messages transmitted among neigh-
bours, however to analyze the impact of this, we have to wait for
Section 5.3.

58 CHAPTER 5. EXPERIMENTAL EVALUATION

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0 10 20 30 40 50 60 70 80 90

 C
lu

st
er

in
g

% Nodes dropped

Scamp UniformDrops
CLON UniformDrops

Figure 5.2: Overlay Clustering.

The next metric related to the graph properties we analyse is the
average path length, which is depicted in Figure 5.3. As it is possible
to observe, the average path length increases steadily in both pro-
tocols until the 60%-70% rupture point where the overlay becomes
disconnected. The discrepancy between Clon and Scamp is again
related to the way links are established in the protocols. While in
Scamp the probability of having a far away neighbour is the same
as having a close one, in Clon it is much probable to have local
neighbours and 'few' remote neighbours. If a given node and its im-
mediate neighbours do not have a link to all the other local areas,
which is likely, then the average path length increases naturally as
not all the local areas are reachable directly for any given node. As
we intend to reduce the load imposed on the long-distance links, we
will inevitably fall on the latency-bandwidth conundrum, which is
re�ected by the increase of the average path length and thus latency.

5.2.2 Degree balancing mechanism

In this Subsection we analyse the e�ectiveness of the degree balanc-
ing mechanism by observing its impact on the degree distribution
and also on the graph metrics presented in the previous Subsection.

As stated in the protocol description Section 4.2, our proposal in-

5.2. PEER SAMPLING SERVICE EVALUATION 59

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 10 20 30 40 50 60 70 80 90 100

 P
at

h
Le

ng
th

% Nodes dropped

Scamp UniformDrops
CLON UniformDrops

Figure 5.3: Overlay Average Path Length.

troduces a fully decentralized mechanism to balance the degree of
the nodes in the overlay, in order to achieve a uniform overlay dis-
tribution and produce better quality overlays. We will now assess
the quality of the degree balancing algorithm by showing an overlay
before the algorithm is run, in Figure 5.4, and the same overlay after
a hundred runs of the algorithm, in Figure 5.5.

Although the original Scamp algorithm guarantees that the average
degree distribution will tend to the right value, the degree distribu-
tion in Figure 5.4 shows that the distribution is far from optimal.
Considering that the ideal degree in this scenario is 9, it is possible
to see that only slightly more than 15% of nodes have that degree,
and around 45% of nodes are on the ideal degree value with a de-
viation of ±1. Furthermore, a considerable amount of nodes has
either very low or very high degrees, for instance some nodes have
degrees above 25 which clearly inhibits the reliability and quality of
the overlay. This is explained by the 'age' of nodes. As nodes stay in
the overlay for more and more time, they will receive more and more
subscription requests. Despite the probability of a request being in-
tegrated decreases with the increase of the node degree (or view),
some subscriptions will eventually get accepted, as the integration
function has a probabilistic base, and thus those nodes will tend to
have very large degrees. On the other hand, when the membership

60 CHAPTER 5. EXPERIMENTAL EVALUATION

Figure 5.4: Initial Overlay Degree Distribution.

remains stable, i.e. no joins or leaves, the last nodes that joined the
overlay will not receive new subscriptions and therefore their degrees
will remain low.

With the degree balancing mechanism we proposed, the overlay ef-
fectively evolves by swapping links from nodes whose degrees are
high to those whose degrees are low, therefore promoting an evenly
degree distribution. If we observe Figure 5.5 which depicts the same
overlay as above it is possible to see that degrees are more evenly
distributed. For instance, more 50% nodes now are on the ideal de-
gree distribution with a ±1 deviation. Furthermore, the very high
degree nodes have been eliminated, although some still have high de-
grees, and the same applies to the lower degree nodes. By running
this optimization for the whole time of the dissemination process
we will eventually obtain a narrow degree distribution around the
ideal degree and thus contribute to better quality and more reliable
overlays.

To assess the impact of the degree balancing mechanism with respect
to the previous analysed graph metrics, we plot them again after
running the degree balancing procedure.

5.2. PEER SAMPLING SERVICE EVALUATION 61

Figure 5.5: Overlay Degree Distribution After 100 runs.

Figure 5.6 depicts the connectivity of the overlay after applying the
degree balancing procedure. As it is possible to observe, the proce-
dure e�ectively improves the connectivity of the overlay, by moving
the links in the high degree nodes to the low degree ones. In fact,
with this optimization Clon becomes more resilient than Scamp
up to 60% and 70% drop rates, reaching nearly 100% of the alive
nodes up to 60% global failures. As the impact of the optimization
with respect to the connectivity for the other two drop strategies is
negligible we do not plot them.

In Figure 5.7 it is possible to observe the impact of the degree bal-
ancing mechanism in the clustering of the overlay. The clustering
of the underlying graph drop from the previous 0.28 of Figure 5.7 to
below 0.22, approximating the values obtainable with Scamp.

The improvement in the path length that the degree balancing pro-
cedure brings is depicted in Figure 5.8. As it is possible to observe
the exchange of links promoted by the degree balancing mechanism
e�ectively improves the average path length, bringing it to values
closer to Scamp.

In summary, and to �nalize the evaluation of properties of the overlay

62 CHAPTER 5. EXPERIMENTAL EVALUATION

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90

%
 A

liv
e

N
od

es
 R

ea
ch

ab
le

% Nodes Dropped

Scamp UniformDrops
CLON UniformDrops

Figure 5.6: Overlay Connectivity after degree balancing.

built by Clon , we observe that it is possible to achieve the same
tolerance to massive amounts of failures as in Scamp, while carefully
building the overlay and establishing links among nodes in a way
that re�ects the underlying network topology. The cost to pay is a
slightly increase in the clustering coe�cient, due to the fact that the
protocol tries to mimic the inherently clustered network topology,
and an increase in the average path length, related again to the
way links are established among nodes. Apart from those metrics,
the overlay balancing mechanism proves to be e�ective, as it tends
to normalize the degree distribution by reducing the degree of high
degree nodes and consequently increasing the degree of nodes with
lower degrees. Furthermore, it improves the connectivity, clustered
coe�cient and average path length of the overlay, to levels closer
of Scamp. Insofar, our experimental evaluation shows that Clon
is by no means superior to Scamp, with the exception of the degree
balancing mechanism. This is expected as Scamp builds a completely
uniform overlay, in terms of links established between remote and
local neighbours, and Clon disrupts this uniformity by biasing the
overlay to take into account locality. However, the work done on
the carefully establishment of the links starts to give results in the
next Section, when we evaluate the impact of the overlay in the
dissemination process.

5.2. PEER SAMPLING SERVICE EVALUATION 63

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0 10 20 30 40 50 60 70 80 90

 C
lu

st
er

in
g

% Nodes dropped

Scamp UniformDrops
CLON UniformDrops

Figure 5.7: Overlay Clustering after degree balancing.

5.2.3 Bootstrapping mechanism

In this Subsection we analyse the proposed bootstrapping mecha-
nism in order to assess if it satis�es the requisite of providing the
joining nodes with several contact nodes.

To this end we used di�erent sendOracle con�gurations, starting
from a naive one and improving it to obtain the optimal con�guration
in described in Section 4.2.3. The results obtained can be observed in
Table 5.2.3. The table is organized as follows: the �rst two columns
describe the con�guration of the sendOracle and externalContactOracle,
respectively; the third column presents the number of messages ex-
changed by the nodes in the runs of the bootstrapping mechanism,
without considering the messages sent by the joiners after receiving
the contact; in the fourth column it is possible to observe the to-
tal number of replies a given joiner obtained; �nally the last three
columns show the total, local and remote nodes e�ectively integrated
in the view of the joiner. For each con�guration we run 5000 join
operations and extracted the averages of the results obtained. Fur-
thermore, each new run is independent of the previous, i.e. we run
the bootstrapping mechanism for a joining node, and after the pro-
cess ends, we proceed to the next round with a new overlay.

As it is possible to observe for all the con�gurations the

64 CHAPTER 5. EXPERIMENTAL EVALUATION

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 10 20 30 40 50 60 70 80 90 100

 P
at

h
Le

ng
th

% Nodes dropped

Scamp UniformDrops
CLON UniformDrops

Figure 5.8: Overlay Average Path Length after degree balancing.

externalContactOracle is con�gured to return true with a probabil-
ity of 50%, which means that half of the replies will be with local
nodes and the other half with remote ones.

On the �rst row of the table we show a naive con�guration of the
sendOracle, where it is con�gured to always return true. As such,
the bootstrap generates 400 messages, 200 for the initial broadcast
procedure and 200 replies to the joiner as each node always reply
to the requests in this con�guration. With this con�guration the
joiner obtains on 200 replies, one for each node on its local area,
but only integrates 20 on its view. This is due to the probability
of integration being restricted by the actual size of the view, as
explained in Section 4.2.3. Of this 20 nodes integrated into the view
12 are local and 8 are remote.

On the next con�guration, in the second row of the table, the sendOracle
only replies to the contact requests 5% of the times, which results in
sending to the joiner 10 replies (0.05 ∗ 200 = 10). Of this 10 replies
only 5 are e�ectively integrated into the view of the joiner, of which
3 are local and 5 remote. The con�guration of 5% is just a arbitrary
small probability chosen to infer the behaviour of the bootstrapping
mechanism.

On the next con�guration we start to exploit the local knowledge
available in order to approximate the desired optimal behaviour. In

5.3. DISSEMINATION PROTOCOL EVALUATION 65

Oracles Probabilities Msgs

Generated

Contacts

O�ered

Nodes Integrated

send external Total Local Remote

1 0.5 400 200 20 12 8

0.05 0.5 210 10 5 3 2

viewSize global 0.5 286 86 13 8 5

viewSize local 0.5 238 38 9 6 3

Table 5.1: Di�erent bootstrapping con�gurations.

this con�guration the oracle estimates the total number of nodes in
the system, but does not knowns the number of local areas, and as
such the probability of replying is only based on the total number of
nodes it estimated. Nonetheless, the result is interesting as it gets
closer to the ideal value of 9 links established by the joining node.

Finally, in the last con�guration we exploit the knowledge of the
previous con�guration but assume that the number of local areas is
known beforehand. As the number of local areas (or data centers) in
our scenario is fairly static, it is reasonable to assume that that value
is well known. This con�guration corresponds then to the example
oracle given in Listing 4.3. With this knowledge available, it is pos-
sible to achieve the optimal results in the bootstrapping mechanism.
In fact, in this setting the joiner receives 38 contact replies and of
those integrates 9 in its view, the value of the average degree of the
overlay. Furthermore, the proportion of local and remote nodes is
also closely approximated, as our biasing mechanism tends to build
views with 7 local nodes and 2 remote ones.

To conclude the analysis of the bootstrapping mechanism, the above
experiments show that is possible to achieve near optimal con�gu-
rations with the local knowledge available at each node, as in the
third con�guration. Furthermore, if the number of local areas of the
federation is known beforehand, it is possible to obtain an optimal
bootstrapping mechanism that makes joining nodes indistinguish-
able from the other nodes already present in the overlay.

5.3 Dissemination Protocol Evaluation

This section has two main objectives: to analyse the impact of the
overlays previously constructed on the dissemination of application
level messages, and to assess the impact of the developed dissemina-
tion protocol, based on Emergent. The experiment for both proto-
cols runs as follows: each node on the overlay injects a new message

66 CHAPTER 5. EXPERIMENTAL EVALUATION

on the system, the simulator executes the dissemination protocol and
when there are no more messages to be delivered, the data is anal-
ysed with the tools mentioned previously. For each experiment, the
total, remote and local number of messages transmitted is logged.
Furthermore, for the Emergent protocol, the number of total, remote
and local advertisements exchanged is also logged. Unless otherwise
stated, all the experiments are run on the overlays previously anal-
ysed without applying any drop strategy.

The dissemination protocols are run on the previously analysed over-
lays without applying any drop strategy. With respect to Clon we
use two di�erent overlays: one obtained without applying the de-
gree balancing mechanism, and the other after applying the degree
balancing mechanism as explained in the previous Section, which is
identi�ed as ClonBalance .

5.3.1 Flooding dissemination protocol

In this Subsection we conduct an experiment that consists of a �ood-
ing gossip protocol acting in a pure eager fashion. In this protocol,
as soon as a new message is received, it is relayed to all known
neighbours, following an infect and die model. This protocol is very
bandwidth demanding as multiple copies of the same payload are
received by each node, through its neighbours. The goal is to access
the impact of the peer sampling services used, with respect to the
total, remote and locally received messages by each node. The ratio-
nale is that if we are able to obtain signi�cant results, i.e. reducing
the number of messages that traverse long distance links, the results
will be even more interesting with a locality aware dissemination
protocol as the one presented in Section 4.3.

Figure 5.9 depicts the results obtained from the above experiment.
As it is possible to observe, the number of total messages received,
the sum of remote and local messages, by each node is the same in
both protocols and is around 9000. This value is easily explained
by the overlay characteristics and the dissemination protocol. Each
node knowns on average 9 neighbours and 1000 di�erent messages
are injected on the system which e�ectively accounts for 9000 mes-
sages received. However, if we now focus on the messages received
remotely, the red bar, we start to see the bene�ts of using a peer
sampling service that takes into account locality. Where in Scamp
nearly 7000 messages are received remotely, in Clon this value drops
slightly below 2000, an improvement of more than three times the
value obtained in Scamp. The bulk of messages transmitted in Clon

5.3. DISSEMINATION PROTOCOL EVALUATION 67

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

Scamp Clon ClonBalance

N
um

be
r

of
 m

es
sa

ge
s

R
ec

ei
ve

d

Protocol

Messages received remotely/locally by each protocol

Local
Remote

Figure 5.9: Messages received using a �ooding dissemination proto-
col.

is therefore done locally, for the same reliability level, which e�ec-
tively demonstrates the impact of a judiciously built overlay that
takes into account the underlying network topology. The results
obtained by ClonBalance shown a minimal improvement in the
number of remotely received messages with respect to Clon. While
the di�erence is nominal to support substantial claims on the im-
provement bring by the balanced version of Clon, this result attests
that the balancing mechanism preserves the biasing of the overlay,
while enhancing the graph properties as shown in the previous Sec-
tion. Nonetheless, if the degree balancing mechanism is run contin-
uously, nodes with high degrees will be eventually eliminated and
thus the unnecessary redundancy in messages transmission will be
eliminated, further reducing the number of transmissions over the
long distance links.

5.3.2 Improved Emergent dissemination protocol

In the next experiment, we used the improved version of the Emer-
gent dissemination protocol with a simple policy: relay messages to
local nodes using an eager strategy, and use the lazy strategy for
all the remote nodes, using the same overlays as in the previous ex-

68 CHAPTER 5. EXPERIMENTAL EVALUATION

periment. The results obtained are depicted in Figure 5.10 and we
discuss then next.

The impact of using a locality aware dissemination protocol is per-
haps the most interesting insight of Figure 5.10. In fact, by using
the aforementioned dissemination strategy, the amount of message
payloads transmitted over long distance links decreases considerably,
both in Scamp and Clon. In Scamp this value dropped from around
7000 messages to slightly above 2000, which is similar to the values
obtained solely by using Clon with a �ooding dissemination strat-
egy. The improvements of Clon is also considerably, going from
around 1900 to about 600 payload transmissions. This results is
quite important as it shows that by combining a locality-aware peer
sampling service with a locality-aware dissemination protocol, it is
possible to reduce the number of message payload transmissions over
long distance links by an order of magnitude, when comparing pro-
tocols unaware of network locality. This can be observed by the
results obtained by a combination of Scamp with a �ooding proto-
col which yields around 7000 message payload transmissions on long
distance links with a combination of Clon with the locality aware
emergent, which achieves around 600 transmissions for the same dis-
semination scenario. Nonetheless, there are other interesting results
that provides us with insights of the impact of combining the di�er-
ent dissemination and peer sampling protocols. The discrepancy of
locally received messages, green bar, in Scamp and Clon could be
explained as follows. The dissemination on local nodes uses a pure
eager strategy, i.e. �ooding, and as such a considerable amount of
redundant message payloads will be transmitted in each local area.
As in Scamp links are established without taking into account lo-
cality, each node knows, on average, more remote neighbours than
local ones (remember that we have �ve times more remote nodes
than local ones), and as such the number of locally redundant trans-
missions on Scamp is much lower than that of Clon. As nodes
running Clon known more local nodes than remote ones the re-
dundancy of locally received messages considerable increases. This
could be mitigated by using a more meticulous dissemination strat-
egy with respect to local nodes, such as transmitting eagerly for a
certain number of rounds when local nodes are likely to not have
the message, and then fall back to a lazy strategy to conservatively
infect the remaining nodes. However, for the sake of simplicity we
have not considered this approach in this scenario, as it is not our
main goal. A detailed analysis of possible dissemination strategies
can be found in the original Emergent paper [7]. The last result to

5.3. DISSEMINATION PROTOCOL EVALUATION 69

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

Scamp Clon ClonBalance

N
um

be
r

of
 p

ay
lo

ad
s/

an
no

uc
em

en
ts

 r
ec

ei
ve

d

Protocol

Message payloads/annoucements received remotely/locally by each protocol

AnnoucRemote
Local
Remote

Figure 5.10: Messages/Advertisements Received using the improved
Emergent dissemination protocol.

analyse in this experiment is the number of message advertisements
in both protocols. The dissemination strategy used only sends ad-
vertisements to remote nodes and as such the blue bars re�ects at
the same time the total and remotely send advertisements. The dif-
ference between Scamp and Clon is again substantial and draws
from the di�erences in the overlay topologies. As in Scamp the most
part of nodes known are remote, a considerable amount of adver-
tisements are sent over the long distance links and consequently the
payloads are lazily pushed over those links, which explains the reduc-
tion of message payloads transmitted to remote nodes. In Clon, the
amount of remote nodes known is smaller and as such the quantity
of advertisements sent is smaller than that of Scamp. Once again
the results obtained by relying on the balanced overlay ClonBal-
ance show an almost imperceptible improvement as in the �ooding
dissemination protocol pointed above.

The next experiment, depicted in Figure 5.11 is completely di�er-
ent from the previous ones, and measures the impact in the laten-
cy/bandwidth trade o� that the Emergent protocol o�ers. The goal
is to observe the impact of the chosen payload transmission strategy
(by means of the isEager oracle, see Listing 4.5) on the latency and
bandwidth consumption of the dissemination process. To this end

70 CHAPTER 5. EXPERIMENTAL EVALUATION

1

2 proc isEager(i,d,ri,re,p)
3 if isExternal(p)
4 return re < TTL
5 else
6 return True

Listing 5.1: isEager oracle with a TTL con�guration

we run a set of experiments where the isEager oracle returns False
if and only if the target node is external and the external round is
below a given threshold, as depicted in Listing 5.1. The rationale
is to transmit the message payloads eagerly for a certain number
of rounds and then fall back to lazy strategy. In the experiment
we varied the TTL value from 0 to 9, and for each value we run
the emergent dissemination protocol on top of the overlay build by
Clon, without applying the degree balancing strategy. On the X
axis it is possible to observe the di�erent TTL used for each run.
As such on the leftmost part of the axis we have a completely lazy
strategy that becomes gradually eager as we move to the right. On
the left Y axis we measure the bandwidth consumption, blue line,
with respect to the number of message payloads transmitted over
the long distance links. On the right Y axis we measure the latency
of the dissemination, green line, in the number of hops necessary to
infect all nodes in the overlay.

For instance, in the completely lazy strategy, i.e. when lazy after
the round zero, nodes receive on average slightly more than 600
messages through remote links, which con�rms the values obtained
in Figure 5.10. With this con�guration the latency to infect all nodes
is 11 hops.

As expected, the bandwidth increases with the eagerness to transmit
the payloads, as more redundant messages are sent, while the latency
decreases, as messages reach all nodes quicker, without the additional
roundtrips of a lazy strategy. It is interesting to notice that in this
scenario the latency reaches its minimum after 4 eager rounds, when
it becomes close to the overlay diameter. On the other hand, the
bandwidth tens to stabilize only around the 7th round. Therefore,
in this scenario using a eager strategy for more than four rounds
will only waste bandwidth without bringing any improvement on
the latency of the dissemination process.

The point where the two lines intersect presents an interesting trade
o� as it is when the bandwidth required for the dissemination is at
a minimum, with a moderate latency penalty.

5.3. DISSEMINATION PROTOCOL EVALUATION 71

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 1 2 3 4 5 6 7 8 9
 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 M
sg

 P
ay

lo
ad

s
R

em
ot

el
y

R
ec

ei
ve

d

 M
ax

. H
op

 C
ou

nt

 Lazy after round

Clon : Bandwidth
Clon : Latency

Figure 5.11: Bandwidth/Latency trade o� of the di�erent strategies
using the improved Emergent dissemination protocol.

72 CHAPTER 5. EXPERIMENTAL EVALUATION

Chapter 6

Conclusion

One must have a good memory to be

able to keep the promises one makes.

Friedrich Nietzsche

In this �nal Chapter we present the main conclusions drawn for the
work done, summarize the contributions this dissertation o�ers, and
give pointers to future research questions.

6.1 Conclusions

By clearly addressing the problem of reliable multicast at two dis-
tinct levels: the peer sampling service and the dissemination pro-
tocol, we have been able to satisfactorily achieve the requirements
presented in Chapter 3, as the extensive experimental evaluation con-
ducted attests. Namely, the proposed set of protocols achieves reli-
able dissemination of messages to all the correct peers in the pres-
ence of massive rates of failures, while adapting to changing system
sizes. The resilience of the protocols is assessed by the experimental
evaluation conducted in Section 5.2. The advantages of the link dif-
ferentiation promoted by Clon become evident in the dissemination
of the application level messages, as there is a substantial reduction
on the load imposed on the long distance links, as it is possible to
observe in Section 5.3.

The key to the successful combination of this often adverse objectives
relies on the overlay produced by Clon: by biasing the overlay to
the network topology fewer remote links are established and there-
fore the load imposed on them is reduced; and by refusing to rely on

73

74 CHAPTER 6. CONCLUSION

special nodes to handle locality as in previous proposals, and using
instead a �at unstructured approach, the inherent resilience and scal-
ability of the latter protocols is preserved. Furthermore the natural
resilience to churn that unstructured approaches present allows our
protocol to cope with the requirement of mitigating the undesirable
churn e�ects.

The continuous balancing of the node degrees proved to be an e�ec-
tive mechanism in the improvement of the overlay properties, which
results in a superior overlay than the one obtained with the ini-
tial protocol, as shown in Section5.2. The mechanism improves the
connectivity, clustering coe�cient and average path length of the
obtained overlay, approximating them to the values obtained with a
protocol oblivious to locality, without disrupting the biasing previ-
ously established. In fact, by standardizing the degree of the nodes
is is possible to tolerate more failures than a �at locality unaware
protocol, such as Scamp.

The bootstrapping mechanism breaks some barriers by providing a
more reliable and decentralized, yet not completely, way of providing
the joining nodes with initial contact nodes. Using this mechanism
joining nodes acquire several contact points to establish the initial
links and as such the overall quality of the overlay is increased. Fur-
thermore, it was been shown that by using an appropriate oracle it
is possible to establish as many initial links as the average view size,
which contributes to the indistinguishability between joining nodes
and nodes already on the overlay.

By enabling the locality awareness on the dissemination protocol
with the introduction of distinct rounds, and taking advantage of
the overlay built by the peer sampling service we have been able
to achieve an overall improvement of an order of magnitude on the
number of messages that traverse the long distance links.

Finally, it is important to stress the �exibility that the oracles confer
to the proposed protocols. Instead of choosing a-priori con�gurations
to each one of the oracles that 'should work on most scenarios', we
defer that decision to the programmer who is able to adjust the pa-
rameters to his/her particular application environment. Therefore,
we not restrict the protocols to the set scenarios we envision, widen-
ing its potential applicability to novel, maybe unpredicted settings.

6.2. SUMMARY OF CONTRIBUTIONS 75

6.2 Summary of Contributions

This Section brie�y summarizes the contributions of this disserta-
tion, which are the following:

• Design of a peer sampling service that establishes links among
nodes, at construction time, taking into account locality;

• Development of a degree balancing mechanism that further in-
creases the quality of the overlay obtained, without disrupting
the locality properties of the overlay;

• Introduction of a decentralized bootstrapping mechanism that
o�ers to the joining nodes several contact points instead of just
one;

• Introduction of two distinct rounds in the dissemination pro-
tocol, to handle separately local and remote nodes;

• Reordering of the queue of pending lazy pushes to give prefer-
ence to local nodes over remote ones.

6.3 Future Work

After the work done on this thesis, we do believe that many pending
and challenging issues still remain in the problem of reliable multi-
cast in very large and dynamic distributed systems. An ambitious
research direction will be to study the possibility of applying the
knowledge obtained here in applications with di�erent requirements,
such as the ones we present below.

The overlays built by Clon mimic the network topology by estab-
lishing links with remote and local nodes with di�erent probabili-
ties. Although we have not studied it, it will be interesting to in-
fer whether the current proposal addresses scenarios where remote
nodes are at di�erent distances. For example it may be desirable to
establish links with a remote data center located in the country with
more probability than establishing links with a remote data center in
another continent. Possibly this can be achieved by con�guring the
oracles properly, but a full assessment of this scenarios will de�nitely
widen the applicability scenarios of the presented protocols.

Additionally, it will be interesting to infer the possibility of using the
rationale behind the biasing mechanism in order to provide reliable

76 CHAPTER 6. CONCLUSION

dissemination guarantees only to certain groups of nodes, based on
their interests. This will imply a careful study of message �ltering
protocols and research on the possibility of biasing the overlay to
approximate the interest groups. Thus the goal will be to reduce or
even eliminate the number of messages that reach peers that are not
particularly interested in them.

The developed set of protocols only guarantee the reliable dissem-
ination of messages to peers. However, in certain scenarios this is
not su�cient, as the application may require total ordering of the re-
ceived messages. Inferring whether or not the proposed set of proto-
cols is suitable, as a starting point, to provide total order guarantees
will be surely a challenging and interesting research direction.

Bibliography

[1] gnuplot. http://www.gnuplot.info.

[2] DC2MS: Dependable Cloud Computing Management Services.
http://gsd.di.uminho.pt/projects/projects/DC2MS, 2008.

[3] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, com-
modity data center network architecture. SIGCOMM Comput.
Commun. Rev., 38(4):63�74, 2008.

[4] Amazon.com, Inc. Amazon Elastic Compute Cloud.
http://aws.amazon.com/ec2, 2009.

[5] N. Bailey. The Mathematical Theory of Infectious Diseases and
its Applications. Hafner Press, second edition edition, 1975.

[6] K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and
Y. Minsky. Bimodal multicast. ACM Trans. Comput. Syst.,
17(2):41�88, 1999.

[7] N. Carvalho, J. Pereira, R. Oliveira, and L. Rodrigues. Emer-
gent structure in unstructured epidemic multicast. In DSN '07:
Proceedings of the 37th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks, pages 481�490,
Washington, DC, USA, 2007. IEEE Computer Society.

[8] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron.
Scribe: A large-scale and decentralized application-level multi-
cast infrastructure. IEEE Journal on Selected Areas in Com-
munications (JSAC, 20:2002, 2002.

[9] M. Castro, M. B. Jones, A.-M. Kermarrec, A. Rowstron,
M. Theimer, H. Wang, and A. Wolman. An evaluation of scal-
able application-level multicast built using peer-to-peer over-
lays. In In Infocom'03, 2003.

77

78 BIBLIOGRAPHY

[10] P. Eugster, R. Guerraoui, A. M. Kermarrec, and L. Massoulie.
From epidemics to distributed computing. IEEE Computer,
37(5):60�67, May 2004.

[11] P. T. Eugster and R. Guerraoui. Hierarchical Probabilistic Mul-
ticast. Technical report, 2001.

[12] P. T. Eugster, R. Guerraoui, S. B. Handurukande,
P. Kouznetsov, and A.-M. Kermarrec. Lightweight prob-
abilistic broadcast. ACM Trans. Comput. Syst., 21(4):341�374,
2003.

[13] Y. Fang and D. J. Neufeld. The pendulum swings back: individ-
ual acceptance of re-centralized application platforms. SIGMIS
Database, 37(2-3):33�41, 2006.

[14] R. Foundation. The r project for statistical computing.
http://www.r-project.org/.

[15] A. J. Ganesh, A.-M. Kermarrec, and L. Massoulie. SCAMP:
Peer-to-peer lightweight membership service for large-scale
group communication. In Networked Group Communication,
pages 44�55, 2001.

[16] A. J. Ganesh, A.-M. Kermarrec, and L. Massoulié. Hiscamp:
self-organizing hierarchical membership protocol. In EW10:
Proceedings of the 10th workshop on ACM SIGOPS European
workshop, pages 133�139, New York, NY, USA, 2002. ACM.

[17] C. Gkantsidis, M. Mihail, and A. Saberi. Random walks in peer-
to-peer networks: algorithms and evaluation. Perform. Eval.,
63(3):241�263, 2006.

[18] Google. App Engine. http://code.google.com/appengine, 2009.

[19] J. Jannotti, D. K. Gi�ord, K. L. Johnson, F. M. Kaashoek, and
J. W. O'Toole. Overcast: Reliable multicasting with an overlay
network. In Usenix OSDI Symposium 2000, pages 197�212,
October 2000.

[20] M. Jelasity, R. Guerraoui, A.-M. Kermarrec, and M. van Steen.
The peer sampling service: experimental evaluation of unstruc-
tured gossip-based implementations. In Proc. of the 5th ACM/I-
FIP/USENIX Intl. Conf. on Middleware, pages 79�98, New
York, NY, USA, 2004. Springer-Verlag New York, Inc.

BIBLIOGRAPHY 79

[21] B. Kaldehofe. Bu�er management in probabilistic peer-to-peer
communication protocols. pages 76�85, Oct. 2003.

[22] R. Karp, C. Schindelhauer, S. Shenker, and B. Vocking. Ran-
domized rumor spreading. In FOCS '00: Proceedings of the 41st
Annual Symposium on Foundations of Computer Science, page
565, Washington, DC, USA, 2000. IEEE Computer Society.

[23] A.-M. Kermarrec, L. Massoulie, and A. Ganesh. Probabilistic
reliable dissemination in large-scale systems. Parallel and Dis-
tributed Systems, IEEE Transactions on, 14(3):248�258, March
2003.

[24] J. Leitão, J. Pereira, and L. Rodrigues. HyParView: A member-
ship protocol for reliable gossip-based broadcast. In IEEE/IFIP
International Conference on Dependable Systems and Networks,
pages 419�428. IEEE Computer Society, 2007.

[25] M. J. Lin and K. Marzullo. Directional gossip: Gossip in a
wide area network. In J. Hlavicka, E. Maehle, and A. Patar-
icza, editors, Dependable Computing - EDCC-3, Third Euro-
pean Dependable Computing Conference, Prague, Czech Repub-
lic, September 15-17, 1999, Proceedings, volume 1667 of Lecture
Notes in Computer Science, pages 364�379. Springer, 1999.

[26] F. Makikawa, T. Matsuo, T. Tsuchiya, and T. Kikuno. Con-
structing overlay networks with low link costs and short paths.
Network Computing and Applications, 2007. NCA 2007. Sixth
IEEE International Symposium on, pages 299�304, July 2007.

[27] L. MassouliÃ c©, A. marie Kermarrec, and A. J. Ganesh. Net-
work awareness and failure resilience in self-organising overlay
networks. In In Proceedings of the 22nd Symposium on Reliable
Distributed Systems (SRDS 2003, pages 47�55, 2003.

[28] M. Matos, J. Pereira, and R. Oliveira. Self tuning with self con-
�dence. In In "Fast Abstract", Supplement of the 38th Annual
IEEE/IFIP International Conference on Dependable Systems
and Networks. IEEE, 2008.

[29] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in
the presence of faults. J. ACM, 27(2):228�234, 1980.

[30] J. Pereira and R. Oliveira. Rewriting �the turtle and the hare�:
Sleeping to get there faster. In First Workshop on Hot Topics
in System Dependability, 2005.

80 BIBLIOGRAPHY

[31] J. Pereira, L. Rodrigues, and R. Oliveira. Semantically reliable
multicast: De�nition, implementation, and performance evalu-
ation. IEEE Trans. Comput., 52(2):150�165, 2003.

[32] J. Pereira, L. Rodrigues, R. Oliveira, and A. Kermarrec. Neem:
Network-friendly epidemic multicast. In In Proceedings of the
22nd Symposium on Reliable Distributed Systems, pages 15�24.
IEEE, 2003.

[33] Python Software Foundation. Python programming language.
http://python.org, 1990-2009.

[34] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Schenker. A scalable content-addressable network. In SIG-
COMM '01: Proceedings of the 2001 conference on Applica-
tions, technologies, architectures, and protocols for computer
communications, pages 161�172, New York, NY, USA, 2001.
ACM.

[35] S. Ratnasamy, M. Handley, R. M. Karp, and S. Shenker.
Application-level multicast using content-addressable networks.
In NGC '01: Proceedings of the Third International COST264
Workshop on Networked Group Communication, pages 14�29,
London, UK, 2001. Springer-Verlag.

[36] L. Rodrigues, U. D. Lisboa, S. Handurukande, J. Pereira,
J. P. U. do Minho, R. Guerraoui, and A.-M. Kermarrec. Adap-
tive gossip-based broadcast. In In Proceedings of the Interna-
tional Conference on Dependable Systems and Networks (DSN,
pages 47�56, 2003.

[37] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized
object location and routing for large-scale peer-to-peer systems.
In Lecture Notes in Computer Science, pages 329�350, 2001.

[38] salesforce.com, inc. http://www.salesforce.com, 2000 - 2009.

[39] A. Stavrou, D. Rubenstein, and S. Sahu. A lightweight, robust
p2p system to handle �ash crowds. In IEEE Journal on Selected
Areas in Communications (JSAC, pages 6�17, 2002.

[40] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F.
Kaashoek, F. Dabek, and H. Balakrishnan. Chord: a scal-
able peer-to-peer lookup protocol for internet applications.
IEEE/ACM Trans. Netw., 11(1):17�32, 2003.

BIBLIOGRAPHY 81

[41] R. Van Renesse, K. P. Birman, and W. Vogels. Astrolabe: A
robust and scalable technology for distributed system monitor-
ing, management, and data mining. ACM Trans. Comput. Syst.,
21(2):164�206, May 2003.

[42] S. Voulgaris, D. Gavidia, and M. Steen. Cyclon: Inexpensive
membership management for unstructured p2p overlays. Jour-
nal of Network and Systems Management, 13(2):197�217, June
2005.

[43] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An
infrastructure for fault-tolerant wide-area location and routing.
Technical Report UCB/CSD-01-1141, UC Berkeley, apr 2001.

[44] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and J. D.
Kubiatowicz. Bayeux: An architecture for scalable and fault-
tolerant wide-area data dissemination. pages 11�20, 2001.

	Miguel Ângelo Marques de Matos.pdf
	Página 1
	Página 2
	Página 3

	thesis.pdf
	Contents
	List of Figures
	List of Tables
	Listings
	Introduction
	Motivation
	Brief Problem Presentation
	Dissertation Outline

	Related Work
	Background
	Structured Overlay Networks
	Unstructured Overlay Networks

	State of the Art of Unstructured Networks
	Flat Protocols
	Hierarchical/Locality-aware Protocols
	Dissemination Protocols

	Problem Statement
	Network-Aware Reliable Multicast
	Approach
	Peer Sampling Service
	Network-awareness
	Degree Balancing
	Bootstrapping mechanism

	Dissemination Protocol
	Locality awareness on the selection of peers
	Lazy push optimization

	Experimental Evaluation
	Experimental Scenario Description
	Peer Sampling Service Evaluation
	Overlay properties
	Degree balancing mechanism
	Bootstrapping mechanism

	Dissemination Protocol Evaluation
	Flooding dissemination protocol
	Improved Emergent dissemination protocol

	Conclusion
	Conclusions
	Summary of Contributions
	Future Work

	References

	Miguel Ângelo Marques de Matos.pdf
	Página 1
	Página 2
	Página 3

