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Analysis and Proposal of a Shadow Mapping Remix Approach 

Abstract 

Virtual Environments creation is becoming increasingly demanding, trying to 

portrait all the aspects of reality with great detail. Fast hardware innovation turns 

possible the implementation of some real-time techniques that were not feasible 

only a few years ago using a single, ordinary computer. 

Shadow effects are one of the contributions for the realism improvement in 

virtual environments. One of the most successful high-quality real-time shadow 

effect techniques used is shadow mapping. This technique is efficient and 

simple to implement, but its standard implementation has its drawbacks and 

limitations, so it is necessary to improve this technique according to the type of 

scene we want to show. 

This work starts by analyzing the standard implementation of the shadow 

mapping algorithm, pointing out its main issues. Then, the most relevant 

contributions to solve/alleviate those issues are presented. For each 

contribution it is shown which issues are tackled, how they are tackled, and, 

where appropriate, the new issues that have arisen from the contribution itself. 

Based on this analysis, the most relevant sections of each contribution are 

highlighted and a new algorithm, built with pieces from the presented 

contributions is proposed. This new algorithm, named Shadow Mapping Remix 

Approach, attempts to combine the strengths of each contribution without 

incurring into new issues, providing a more complete solution to the shadow 

mapping problem. 

The results show that, although as expected the proposed approach has a 

lower performance than each individual contribution, its results are far superior 

to any of the previous contributions.
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Análise e proposta de uma abordagem recombinada de 

algoritmos de Shadow Mapping  

Resumo 

A criação de ambientes virtuais está-se a tornar cada vez mais exigente, 

tentando assemelhar-se da realidade com grande detalhe. A rápida inovação 

do hardware torna agora possível a implementação de certas técnicas em 

tempo real.Os efeitos de sombras são uma das contribuições para a melhoria 

no realismo em ambientes virtuais. Uma das mais bem sucedidas técnicas de 

geração de sombras em tempo real de alta qualidade é o shadow mapping. 

Para além de ser eficiente, é também simples de implementar. Porém a sua 

implementação básica apresenta muitos inconvenientes e limitações. 

O nosso trabalho começa por analisar a implementação básica do algoritmo de 

shadow mapping, apontando os seus principais problemas. Seguidamente, 

apresentamos as contribuições mais relevantes que resolvem/atenuam os 

problemas apresentados. Para cada contribuição, são descritos os problemas 

abordados e de que forma são resolvidos, sendo também apresentados, em 

alguns casos, problemas que derivam dessa mesma contribuição. Tendo em 

conta a análise efectuada, serão realçadas as secções mais importantes de 

cada contribuição e um novo algoritmo, baseado nessas mesmas secções, 

será proposto. 

Este novo algoritmo, denominado por Shadow Mapping Remix Approach, 

combina assim os pontos mais fortes de cada um dos algoritmos propostos 

tentando não introduzir novos problemas, providenciando uma solução mais 

completa para a problemática do shadow mapping. 

Os resultados mostram que, apesar de ser esperado um decréscimo na 

performance relativamente ao algoritmo apresentado, os nossos resultados 

visuais são muito superiores a qualquer uma das contribuições apresentadas. 
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1. Introduction 

 

Although graphics hardware do not provide shadows by default, shadows are a 

precious element for 3D perception of a scene – they provide visual cues that 

help to perceive the geometric relationship between objects, clarifying objects’ 

position, size and geometry. Even though we don’t stop to think about what 

shadows really mean for our comprehension of the surroundings, we 

immediately notice that a 3D scene without shadows lacks life and realism. This 

is why calculation of shadows is a very important component when representing 

virtual environments. 

At first, the main Graphics’ APIs (OpenGL, Direct3D) did not support 

mechanisms for shadows generation, so their implementation was made 100% 

by software. 

With the increasingly growth of functionality of GPUs, these APIs enabled the 

possibility of real-time shadowing. The hardware performance improvement has 

been encouraging the usage of these mechanisms, so the research around this 

subject has grown. 

Naively, a shadow is a binary status: a point is either «in shadow» or not – there 

is no penumbra. This corresponds to hard shadows. 

Hard Shadows suffer of a problem which is the binary status described above. 

This binary status produces very noticeable shadow edges, being easily noticed. 

In light to this problem arises a technique called soft shadows: this technique 

applies a soft transition between the shadowed and unshadowed areas, 

creating a smooth transition between lit and unlit surfaces (see Figure 1). 
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Figure 1: Hard Shadow (left) vs. Soft Shadow (right) 

 

Although there are some filtering techniques for applying to the hard-shadows, 

these rely on a fixed-size penumbra basis, while soft shadows enable a 

variable-size penumbra, which may be dependent on light and occluder 

distance to the projected shadow surface. For a more thorough discussion 

about this topic, consult [SRTSSA03] and [ASSMT08]. 

As to Hard-Shadows the most popular real-time generation techniques that 

have emerged over time are Shadow Volumes and Shadow Maps.  

Shadow volumes approach [SACG77] uses the geometry to produce the exact 

volume of the shadow, rendering boundaries without aliasing. This technique 

works in object space, being required a full connectivity information of all 

polygons in order to produce the silhouette of each shadow caster (see Figure 

2). Therefore, the scene complexity directly influences the application 

performance. 

 



3 

 

 

Figure 2: A 2D diagram showing shadow volume geometry 

 

Shadow Maps approach [CCSCS78] distinguishes itself amongst other 

algorithms thanks to its implementation simplicity. This algorithm works partially 

in image space, so the performance hit is less dependent on scene complexity 

and the possibility of being taken from arbitrary locations with no performance 

hits turns this algorithm very popular. Shadow mapping is basically a two-pass 

algorithm. In the first pass, the scene is rendered from the light's point of view, 

the depth buffer stores the distance of the scene to the light (creating the so 

called shadow map). In the second pass, the scene is rendered from the eye's 

point of view, and each pixel is again transformed into the light's view space, 

performing a comparison between its distance to the light with the value stored 

in the shadow map: If the distance value of the pixel is larger than the depth 

value stored in the shadow map this pixel is shadowed, otherwise, it is not 

shadowed (see Figure 3). 
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Figure 3: Shadow Mapping depth comparison: z is the occluder’s distance to the light. d is the 

distance of the surface to the light. p will be shadowed, since z < d. 

 

Since the algorithm relies on two different perspectives it suffers from aliasing 

problems: the shadow map resolution may be insufficient for the scene being 

rendered and stretching the shadow map to the needed space will introduce 

pixelated shadows (see Figure 4). 

 

Figure 4: Aliased shadow due to insufficient shadow map resolution 

There is also a hybrid algorithm for rendering hard shadows [EHSRA04], 

combining the strengths of shadow maps for identifying the pixels in the image 
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that lie near shadow discontinuities and shadow volumes for ensuring accurate 

shadow edges at these discontinuities. This approach simultaneously avoids 

the edge aliasing artifacts of standard shadow maps and avoids the high fill rate 

consumption of standard shadow volumes. 

Figure 5 shows this hybrid algorithm at work. Red and blue pixels are non-

silhouette pixels while black and green pixels are shadow silhouette pixels. 

Hybrid Shadow Rendering Algorithm uses Shadow Maps for determining which 

pixels are in shadow (red) and which ones are not (blue) and uses Shadow 

Volumes for determining which ones are in shadow (black) and which ones are 

not (green). 

 

 

Figure 5: Hybrid Shadow Rendering Algorithm interaction. 

 

This thesis focuses on Shadow Maps, presenting the general algorithm and 

some of the most relevant proposals that try solve its artifacts, improving the 

quality of the generated shadows. Based on these algorithms, a new proposal 

will be presented, where some components of the presented algorithms will be 

used and recombined in order to achieve a better quality of the projected 

shadows at the best possible performance. As to soft shadows, its 

implementation is complementary to the hard shadows generation and is out of 

the scope of this investigation. 
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1.1. Motivation 

As stated before, although Shadow Maps are a very straight-forward technique, 

there are issues that result directly from the algorithm’s design. Summarily, we 

can point out the following: perspective aliasing, projection aliasing, surface 

self-shadowing, texture resolution constraints, shadows discontinuity, binary 

shadow status representation. 

Over time, many algorithms have been proposed, each one of them presenting 

different (and sometimes complementary) solutions to some of these problems. 

In a general way, we can identify the area of action for each one of these 

algorithms as one of the following: 

 Perspective Correction; 

 Texture Filtering; 

 Scene Partitioning. 

Although there are notorious improvements in the presented algorithms, there 

are still limitations associated to each one of them: they focus on a specific 

shadow mapping artifact, not covering the whole problematic of shadow maps 

limitations. 

Our work is to identify each of the shadow maps algorithm limitations, present 

algorithms based on shadow maps that solve some of these limitations 

(comparing different solutions for the same problem) and finally propose a 

solution based on parts of each of the best complementary approaches. This 

remix approach will be able to render a large scene in real-time, providing high 

resolution shadows for all perceivable parts of the scene, as viewed from the 

camera. 

1.2. Research Methodologies 

This research will start with a bibliographic research in order to evaluate the 

state-of-the-art in Shadow Mapping techniques. This investigation will be 

complemented with a study of some terms and techniques required for the 
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implementation of shadow maps, as matrix transformations, blending, texture 

mapping, texture filtering, frame buffers, amongst others. 

Based on this investigation and we will implement an OpenGL based 

application capable of comparing all the shadow mapping techniques presented 

in this thesis, including the one we propose – this application will be able to 

provide both performance and visual results in real-time for the same scene, by 

swapping between algorithms, shadow maps resolutions, cameras, light 

position, and logging the results. 

Given this, we will start with a first version, where a scene will be displayed with 

standard shadow mapping and where all the theoretically identified artifacts are 

present. 

In a second step, we will evaluate which algorithms are more suitable for 

correcting each class of the artifacts and implement them, comparing the results 

with the standard algorithm (also called uniform shadow mapping). 

After implementing all the relevant algorithms and comparing them to the 

standard shadow mapping, we will compare the algorithms between themselves, 

in an attempt to fully grasp, together with the theoretical basis, what are their 

strengths and limitations. 

In a final phase, we will implement our algorithm based on the strong aspects of 

all the studied algorithms and compare it with the previously implemented 

approaches. 

According to this, the research methodology that better seems to suit to our 

plans is the one designated as Action-Research. This methodology belongs to a 

family of methodologies action (or changing) and research (or understanding) at 

the same time. 

Initially it will be made a cyclic process (or in spiral) that alternates between 

action and critical analysis, later it will happen an understanding of the methods 

and data, being continuously improved. 
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This is an emerging process that acquires its shape with the knowledge growth 

and is also an iterative process that converges for a better perception of what 

actually happens. 

The Action-Research is carried out as follows: 

 Problem identification; 

 Problem analysis – find ways to solve it; 

 Implementation of improvement proposals; 

 Evaluation of the implementation of improvement proposals; 

 Modification of the learning methods; 

 Re-definition of the Action-Research methods. 

 

Thus, with this thesis, we are looking for an algorithm that answers the following 

challenges: 

 Solve severe aliasing present in Standard Shadow Mapping approach; 

 Filter shadow maps in order to smooth the shadow silhouettes; 

 Achieve the above results with the maximum performance possible, 

having in mind that shadow mapping is used for real-time rendering. 

 

1.3. Overview 

The remaining of this thesis is organized as follows. Chapter 2 presents the 

fundamentals for understanding the following chapters. It will be given a 

description of the Shadow Mapping algorithm, stating all its problems/limitations. 

It will also be given an introduction to shadow map filtering, referring to 

Percentage-close Filtering. 

Chapter 3 presents the state of the art relatively to Shadow Mapping algorithms. 

For each algorithm, we explain the approach, discuss their contribution to 

standard shadow mapping, identifying the class of artifacts it reduces, and 

present its limitations. 
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Chapter 4 presents our algorithm’s implementation: “Shadow Maps Remix 

Approach”. We will explain how the pieces of some of the algorithms present in 

Chapter 3 are reconnected, giving birth to a new, more complete algorithm, 

capable of presenting improved shadow quality for large-scale environments. 

Chapter 5 shows the results of each implementation, comparing the results with 

the other algorithms, including Standard Shadow Maps as worst case scenario 

and Shadow Maps Remix Approach as the proof of concept. 

Chapter 6 is the conclusion, where we summarize all our efforts and present 

future research directions regarding this investigation.



10 

 



11 

 

2. Fundamentals 

 

In this chapter we will describe the standard shadow maps algorithm, 

presenting its artifacts. It will also be given a brief description of the percentage-

close filtering technique, which in addition to the current hardware support for 

this feature, is the basis for all shadow mapping filtering techniques presented 

in this thesis. 

 

2.1. Basic Algorithm 

Shadow mapping (SSM) was introduced by Lance Williams [CCSCS78] in 1978 

and has been extensively used since then, in both offline and real-time 

rendering. 

Shadow mapping is a two-pass algorithm: in a first pass the scene is rendered 

from the light point of view, being gathered the depth values in the so called 

shadow map (see Figure 6). These depth values represent the distance from 

each visible point (according to the light point of view) to the light source; 

Afterwards, in the second pass the scene is rendered from the camera point of 

view, each pixel being transformed into light space and its distance to the light 

compared to the value stored in the shadow map. The comparison is made for 

shadow determination: If the stored value is smaller than the distance to the 

light, the pixel is shadowed; otherwise, the pixel is not in shadow. 
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Figure 6: Shadow created with a shadow map. Bottom-left square shows a shadow map 

created from the light point of view. 

 

2.2. Shadow Mapping Issues 

Shadow mapping suffers of many problems, mostly due to aliasing issues 

relative to the nature of the algorithm itself. These aliasing errors are mainly 

caused by the under-sampling (insufficient shadow map resolution). Such 

aliasing errors can be further classified into perspective aliasing and projection 

aliasing [PSM02]. 

In Figure 7 the aliasing of shadow maps can be seen. It is noticeable the lack of 

resolution as square blocks refer to one texel of the shadow map, magnified in 

eye-space. It is also clear from the image that the resolution problem is more 

noticeable near the point-of-view of the camera because the shadow map texels 

in far-away from the camera, when viewed from the camera’s point of view, are 

small enough to provide sufficient shadow resolution for far away objects. 

Below, we present a list of issues related to shadow mapping limitations. Some 

are applicable to every virtual environment, while others are noticed especially 

in large-scale or outdoor environments: 
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Figure 7: Aliased shadow map, mainly due to insufficient resolution. The red square, 

representing a texel in the shadow map, isn’t detailed enough to represent the shadow of the 

woman’s shoulder. 

 

2.2.1. Perspective Aliasing 

Perspective aliasing is a common problem with standard shadow maps 

considering a perspective eye view. A perspective view shows nearby objects 

larger than distant objects, where distance is relative to the camera. The light 

space, in which the standard shadow map is computed, is usually taken from a 

different point of view - it does not incorporate this information. 

Considering a directional light, an object is stored with a fixed resolution in the 

shadow map, regardless of the distance to the eye. The outcome is a shadow 

resolution that does not match the resolution of the perspective camera; hence 

it is clearly insufficient for nearby objects (relative to the camera). For distant 

objects in eye space, the problem is not so noticeable. In Figure 8, the shadow 

map is represented by a grid (in the top); the space between the grid strips 

represents a texel. We assume the light direction as straight top-down. The 
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camera is observing this scene from the side. The shadow resolution applied to 

the shadow map created in light-space is not equally distributed in eye-space, 

which leads to potentially over-sampling (wastage of resolution) for far away 

shadows and under-sampling (insufficient resolution) for the shadows near the 

camera.  

As to the different light configurations, we can have point lights and directional 

lights. For directional lights, this mismatch has a maximum if the light direction 

is perpendicular to the view direction, while the minimum mismatch occurs if the 

light direction and the camera are facing in the same direction (are parallel to 

each other). For point lights the problem becomes more pronounced as the 

light’s direction moves away from the camera viewing direction, having its most 

pronounced mismatch when the light and camera are facing each other. This is 

known as the dueling frusta problem. 

 

Figure 8: While distant shadows will be detailed, nearby shadows will suffer of insufficient 

resolution. This problem is caused by perspective aliasing. 

 



15 

 

2.2.2. Projection Aliasing 

When a surface is roughly parallel to the light direction, its depth information will 

be sampled sparsely in the shadow map, resulting in the so called projection 

aliasing error. In Figure 9, the shadow map is represented by a grid (in the top), 

being a texel represented by the space between the grid strips; we also assume 

the light direction as straight top-down. As the object’s side is close to parallel to 

the light’s view direction, a simple shadow map texel will gather the depth 

information for almost the whole side surface of the object. Thus, at eye-view, 

we will see incorrect shadows due to the projection of too many pixels to a 

single shadow texel. 

Another issue regarding to projection aliasing is related to its large temporal 

discontinuity on camera movement. This will lead to severe shadow flickering 

while moving around in a scene, disturbing the intended effect of shadows. 

 

Figure 9: The result of projection aliasing is insufficient shadow map resolution for shadows in 

surfaces close to parallel to light-view direction. 

  

Projection aliasing is only dependent on the angle between the light direction 

and the surface normal (as opposed to perspective aliasing, where the angle 

between camera and light direction dictates the amount of aliasing). 
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Thus, projection aliasing will be largest if the surface normal is perpendicular to 

the light direction – in this case the surface projected into the shadow map has 

no area, leading to lack of depth information stored, resulting in arbitrary 

shadowing results and infinite aliasing projection error. If light direction is 

parallel to the surface normal, then the opposite case happens, leading to a 

maximum of depth information in the shadow map, avoiding projection aliasing. 

  

Figure 10: The projection aliasing artifacts (dark stripes at building walls) in the eye view (left 

image) are caused by too few samples of the cubes sides as seen from the light view (right 

image). 

 

As seen in Figure 10, light direction is straight top-down and buildings’ walls are 

perpendicular to the light direction. This is the extreme case of projection 

aliasing mentioned above, as the lack of depth information for buildings walls 

leads to arbitrary shadowing. The shadow should cover all the buildings walls, 

but instead, dark stripes appear over the walls. Also, while moving the camera, 

these stripes shape will change randomly, causing unwanted flickering effects. 

 

2.2.3. Texture Resolution Constraints 

In order to produce high-quality shadowing effects for large-scale virtual 

environments, a very large shadow map resolution is required. Current 

hardware still imposes a limitation to the maximum texture resolution. Hence it 

is insufficient to use a single huge shadow map. Consider for instance an 
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outdoor scene with an area of 1 square km. If we select a shadow map 

resolution of 1024x1024, and considering a directional light perpendicular to the 

ground, each texel would occupy an area of roughly 1 square meter. Even 

considering the most up to date hardware, which allows for 8192x8192 as the 

maximum resolution for a texture, a single texel would occupy a square with 

more than 12 centimeters on the side. 

 

  

Figure 11: A single 4096x4096 shadow map has not enough resolution (right) to produce detail 

for a large-scale virtual environment with 8 square kms (left). 

 

As shown in Figure 11 (above), although a large scene (8 square kms) can be 

rendered from far-away with satisfactory shadows (left picture), when closing up 

the camera (right picture) it is noticeable the lack of resolution of a large shadow 

map (4096x4096). 

 

2.2.4. Self-Shadowing 

Shadow mapping process has two instants where sampling takes place: 

First when the shadow map is created viewing the scene from the light point-of-

view. In this case, the depth information is stored in a regular grid. 
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Second, when the scene is rendered through the eye-point-of-view and the 

fragments are calculated, having to fit the output resolution. In many cases, 

these two processes lead to different samplings of the scene data. 

In Figure 12, the shadow map is represented by a grid (in the top); the space 

between the grid strips represents a texel and again, we assume the light 

direction as straight top-down. The sampling is represented through the vertical 

lines starting in the middle of the corresponding texels of the shadow map. The 

camera is located at the side. As described in the picture, the distance from eye 

point-of-view should be equal to the depth stored in the shadow map, but in this 

case, observer’s distance is calculated as greater than the shadow depth 

sampled from the light point-of-view. The result will be the polygon erroneously 

shadowed by itself, which is obviously wrong. This artifact happens often in 

shadow mapping process and is known as self-shadowing, also called “shadow 

acne”.  

Depth quantization problems also lead to self-shadowing. The shadow map is 

discretized, hence the information that is stores in the shadow map is not the 

exact depth, but a floating point (sometimes an integer) representation of limited 

precision. This representation often leads to conflicts. When a texel receives the 

depth information, it may not be represented exactly, being always rounded to 

the nearest depth available for the current precision. 
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Figure 12: Sampling differences between light point-of-view and camera point-of-view can lead 

to incorrect self-shadowing. 

 

In Figure 13, the shadow map is again represented by a grid (in the top); the 

space between the grid strips represents a texel and we assume the light 

direction as straight top-down. The vertical lines coming from the light source 

may not assume their exact length, but just certain lengths that are limited to the 

precision of the shadow map. 
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Figure 13: Depth quantization due to shadow map finite precision also leads to incorrect self-

shadowing 

 

The light green horizontal lines represent the depth values able to be stored in 

the shadow map. Therefore, the depth that is captured from the shadow map for 

the depth comparison is not the exact depth of the geometry. 

Figure 14 shows the results of incorrect self-shadowing in a large scene. 

Although the expected shadows are well represented, we can notice visible 

patterns of shadowed/unshadowed regions in places that should be mostly 

unshadowed (e.g.: on the ground). 
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Figure 14: The moiré patterns are caused by sampling conflicts and depth quantization 

problems 

 

In light to this problem, a technique that is usually adopted is to create the 

shadow map with front face culling enabled and then render the scene with 

back face culling enabled, so that these conflicts do not take place anymore. 

Unfortunately, most of the times, 3D models are not as solid as they appear to 

be (not including some back faces that are supposed to exist in a real model), 

leading to light leaking artifacts, in the boundaries between the model and the 

ground. 

Thus, using the face culling technique for avoiding self-shadowing is not enough 

to remove this artifact. 
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2.2.5. Adaptive Light Frustum 

The adaptive light frustum procedure increases the effective shadow map 

resolution by focusing as much as possible the shadow map on the objects 

within the view frustum as seen from the light. This is achieved by adapting the 

frustum from the camera that is capturing the shadow map so that it is as tight 

as possible around the visible geometry. Nevertheless, in large scenes the 

empty gaps between objects may still represent a waste of great amount of 

resolution. 

An issue that arises from the adaptive light frustum is the sudden change in 

shadow resolution, also known as the continuity problem, resulting in the 

flickering of shadows as the camera moves around. This problem may be 

noticeable as large shapes enter the view frustum due to camera movements, 

or when occluders not present in the view frustum come into play. The frustum 

of the light may be significantly altered to include all the new geometry and its 

increase in size may result in a loss of shadow map or depth resolution. 

Figure 15 represents the continuity problem explained above, when a drastic 

change in the scene as viewed from the camera point-of-view (a big object is 

added or removed from the scene) changes the resolution of the shadow map 

due to the adaptive light frustum procedure. 
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Figure 15: Continuity problem due to adaptation of the light frustum to the scene as viewed from 

the camera: The top picture shows a scene containing a palm tree; as the camera moves, a big 

building enters the scene, introducing drastic changes to the shadow map resolution. 

 

2.2.6. Hard Shadows Binary Status 

As said before, the crispy boundaries of the hard shadows make them 

unrealistic due to the total absence of penumbra. In the limit, it can lead to 
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erroneous perception of the scenario, mistakenly perceiving the dark shadow as 

an object instead of what a shadow is: absence of direct light projected on a 

surface. Figure 16 shows the difference between a shadow mapping process 

with no filtering and a shadow mapping with filtering applied (which is different 

from soft-shadowing in the sense of umbra/penumbra generation). 

 

  

Figure 16: Hard shadow (left) vs. filtered shadow map (right). 

 

2.3. Percentage Closer Filtering Algorithm 

Percentage Closer Filtering was proposed by W. Reeves [PCF87] in 1987.  

This technique calculates the percentage of the surface that is closer to the light 

and therefore not in shadow, avoiding the already mentioned binary status of 

hard shadows. This is done by performing multiple shadow map comparisons 

per pixel and averaging the results, outputting the percentage visibility value as 

a shadow indicator. 

Figure 17 shows how percentage closer filtering works, as opposed to standard 

shadow mapping with no filtering process. While rendering the scene, for each 

pixel it will be made a comparison whether it is in shadow or not. In case of PCF, 

it will rely on a kernel surrounding the pixel, being stored in each element of the 

grid the boolean result of the depth comparison between the surface distance 

and the shadow map (as with standard shadow mapping). After all the elements 
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of the kernel are calculated, the intensity of the shadow will be the percentage 

of shadowed elements in the kernel. That being said, it will be easy to 

understand that, at shadow boundaries, the binary status will disappear, giving 

place to a smoother transition between shadowed surface and lit surface 

(smoothness will depend on the kernel size). 

 

Figure 17: Standard Shadow Maps process (top) vs. Shadow Maps with Percentage Closer 

Filtering process (bottom). 

 

For some years now, most graphics cards support PCF, which greatly 

enhances shadow quality when using shadow mapping in real-time rendering. 
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2.4. Conclusion 

In this chapter we introduced shadow mapping as an important technique to 

enhance realism of virtual environments. We have also discussed the various 

problems associated to shadow mapping: perspective aliasing, projection 

aliasing, texture resolution, self-shadowing, adaptive light frustum and hard 

shadows binary status. Finally, we also introduced the basic filtering technique 

Percentage Closer Filtering, which is also supported by most graphics cards. 

New algorithms have been proposed, solving distinct issues (as described 

earlier). All approaches are intended to be real-time rendering, based on 

standard shadow mapping, updating shadow maps in every pass. These 

techniques will be presented in the next chapter
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3. State of the Art 

 

In this section we start with a brief approach over the most important 

contributions for the field of shadow mapping. Then, we will choose the most 

relevant approaches for our study and analyze them more thoroughly. We 

finalize by presenting the main advantages and limitations of the analyzed 

algorithms. 

As said before, Shadow Mapping suffers of some problems, mainly aliasing 

issues. This can be improved by the addition of other techniques to the basic 

shadow mapping algorithm. Solutions range from generating the shadow map in 

post perspective space, constructing hierarchical and adaptive shadow maps to 

increase the resolution where needed, to scene partitioning into multiple 

shadow maps and finally shadow map filtering. 

All the algorithms mentioned below will work as improvements to the basic 

shadow mapping algorithm. Some are complementary, while others are 

different approaches for the same problem. 

A number of papers have tried to solve perspective aliasing using perspective 

transformations. Perspective re-parameterization has been first proposed in 

Perspective Shadow Maps [PSM02], in which both the scene and the light 

source are transformed to the post-perspective space, which is the space after 

perspective transformation (also known as normalized device coordinate space). 

The shadow map is generated in this space by rendering a view from the 

transformed light source to the transformed view frustum. Since the shadow 

map sees the scene after perspective projection, perspective aliasing can be 

significantly decreased. Despite its drawbacks, this paper has inspired and 

opened the door to more general shadow map re-parameterization approaches. 

Light Space Perspective Shadow Maps [LiSPSM04] is a work that avoids some 

of the PSM inconveniences and leverages the aliasing distribution over the 

whole depth range. Trapezoidal Shadow Maps [TSM04] is another perspective 

re-parameterization and very similar in concept to PSM and LiSPSM. The 
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essential difference between TSM and prior perspective parameterizations is 

that a different perspective warping transform is used in TSM, such that the 

user-focused portion at the front of the frustum is mapped to the 80% line on the 

shadow plane. 

Adaptive Shadow Maps [ASM01] reduces aliasing by storing the shadow map 

as a hierarchical grid structure. By evaluating the contributions of shadow map 

pixels to the overall image quality, it is refined to create higher resolution at 

regions that contain shadow boundaries. Artifacts at those critical regions are 

thus greatly reduced without requiring a flat shadow map of huge resolution. 

However, the traversal and refinement operations require many rendering 

passes and aren't feasible for real-time applications for current graphics 

hardware. 

Practical Shadow Mapping [PraSM02] proposes bounding box calculation for 

the view frustum. The tight fitting frustum makes the shadow map focusing to 

the visible part of the scene, enabling an available shadow map resolution 

increase. 

Plural Sunlight Depth Buffers Shadow Mapping [PluSM01] approach uses a 

dynamic texture array comprised of multiple shadow maps with varying 

resolutions. It divides the view frustum into several parts to approximate the 

continuously varying of the resolution along the distance from the view point. 

Parallel-Split Shadow Mapping [PSSM06] proposes to divide the viewing 

frustum into multiple splits, generating a shadow map for each one, improving 

the overall scene shadows resolution. The main differences to [PluSM01] are 

the uniform resolution distribution along the shadow map and the split scheme, 

which is efficiently calculated according to a pre-determined set of rules, instead 

of the complicated and time-consuming computations for optimal lengths of split 

parts of [PluSM01] (which are generated using recursive searching procedures). 

Percentage Closer Filtering [PCF87] is the first approach to alleviate projection 

problems by filtering shadow map texture. Extending the concept of classical 

bilinear filtering used in texture sampling, it enables anti-aliasing around shadow 

boundaries. PCF determines the coverage of a camera pixel in light space and 
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applies the shadow test to a number of samples distributed over this region to 

get a filtered result. 

Variance Shadow Mapping [VSM06] is a probabilistic approach that supports 

pre-filtering, and additional convolutions. When the shadow map is calculated, 

the z and z-squared values are stored, being used during the render to estimate 

the probability of a point being lit or not. It may produce noticeable high 

frequency light leaking artifacts for scenes with a high depth complexity. 

Convolution Shadow Mapping [CSM07] achieves anti-aliased shadows by 

approximating the shadow test with a Fourier series expansion. Depending on 

the truncation order, z-values are converted into several basis textures. In the 

final rendering, pre-filtered texture samples are fetched to reconstruct a 

smoother shadow. CSM have the same desirable properties as VSM, but do not 

exhibit such severe light leaking artifacts. However, a reliable shadow test 

requires a high truncation order, which in turn increases memory consumption 

and filtering as well as reconstruction effort. This makes CSM less attractive for 

practical and real-time applications. 

Finally, Exponential Shadow Mapping [ESM08] presents an algorithm that 

allows efficient pre-filtering, being inspired by CSM, but using a single-term 

approximation, while CSM uses typically 16 terms. Besides ESM not suffering 

from light leaking of VSM and being much faster than CSM, it can also exploit 

latest texture filtering modes supported by today’s graphics hardware (such as 

anisotropic filtering). 

For a more thorough analysis of part of the existing algorithms, please refer to 

[SSA90] and [STIRTA04]. 
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3.1. Perspective Shadow Mapping 

Perspective Shadow Mapping (PSM) is the first algorithm suggesting shadow 

map post-perspective transformations resulting on a non-uniform distribution of 

the shadow map. This distribution enables high resolution shadows near the 

camera, and lower resolution as the shadows move away from the viewpoint.  

A standard shadow mapping produces aliased shadows, and this effect is more 

perceivable near the camera due to the uniform distribution of the depth. 

Perspective shadow mapping reduces aliasing by applying a perspective 

transformation while generating the shadow map, such that nearby objects have 

increased shadow resolution, while faraway objects have reduced shadow 

resolution, which is less perceivable because of the distance to the camera.  

Perspective shadow maps are computed in post-perspective space of the 

camera. This perspective is obtained by transforming the world to a 

perspective-distorted space where proximity produces objects enlargement and 

distance enables objects shrinking (see Figure 18). 
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Figure 18: Standard shadow mapping (Top Left) and the respective shadow map (Top Right) 

generated as if the scene was rendered from the light’s point of view. Perspective Shadow 

mapping (Bottom Left) reduces aliasing by applying a perspective transformation while 

generating the shadow map (Bottom Right).  

 

PSM distinguishes itself from SSM mostly by using a 4x4 matrix which 

represents the shadow map projection with homogeneous coordinates. 

It projects the camera view frustum to a unit cube, being the final image 

generated by a parallel projection of this cube along z. Thus, the first step is to 

map the scene to post-perspective space and generate a shadow map in this 

space. This is done by rendering a view from the similarly transformed light 

source to the unit cube (Figure 19). 
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Figure 19: World View (left) is transformed to Post-perspective space (right) in order to perform 

perspective shadow mapping. The shadow map pixels, once projected on the scene surface will 

be evenly distributed, according to the camera-view. 

 

3.1.1. Implementation – General Case 

Although PSM relies on a relatively simple transformation to the standard 

shadow mapping algorithm, this technique has many particular cases with non-

trivial resolutions where the general case in not enough to produce detailed, 

reliable shadows. These special cases will be briefly addressed later in this 

section. 

As for the general case, this algorithm is composed of two steps, which are 

described below: 

 

 

1st step - Shadow Map Generation 

In order to create the shadow map, it if first needed to apply a post-perspective 

transform to the camera view. Let MV and MP be the model-view and projection 

matrices for the eye-view, respectively. The post-perspective transform M for 

the eye-view is: 
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M = MV * MP 

Also, the light source should be transformed similarly. 

Let LV and LP be the model-view and projection matrices for the light view, 

respectively. Then, the post-perspective transform L for the light-view is: 

L = LV * LP 

Having M and L, it is now possible to calculate the transform matrix, which is: 

L’ = M * L 

Using L’ for the perspective transform, the shadow map is now created. 

2nd step – Rendering the scene 

While rendering the scene, each fragment of the world should be multiplied by 

the inverse of L’ for getting the texture coordinate of the shadow map. Then, the 

standard shadow map comparison for shadow determination is used. 

 

 

 

 

 

3.1.2. Special Cases 

In order to produce reliable shadows, some scenarios that are not covered by 

the general case have to be considered. These cases relate to the light source 

type and its position relative to the view frustum, also taking into account all 

objects casting shadows into the view frustum, even if they are not present in 

that view. A short overview will now be presented, for a more thorough analysis 

please refer to [PSM02]. 



34 

 

Directional/Point Light Sources 

Directional light sources can be considered as point lights at infinity and the 

perspective mapping moves these sources to a finite position. The settings for 

all possible cases are shown in Figure 20, where the top cases are related to 

transformation of directional light sources, and the bottom cases refer to 

transformation of point light sources. 

 

 

 
  

 

 

 

 

 

Figure 20: Mapping of lights in world space to post perspective space. Directional lights in world 

space become point lights in post perspective space (Top). Also, lights from behind the camera 

become inverted. Point lights in world space remain point lights in post perspective space, 

except for boundary cases (Bottom). 
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PSM results will depend greatly on how lights are positioned and oriented 

relative to the camera. For directional light sources, the success is proportional 

to the light direction perpendicularity to the camera direction. As the smallest 

angle formed between these two directions decreases, also the advantages of 

the PSM approach decrease (if the angle is 0, then PSM converges into 

Standard Shadow Maps). 

As for point light sources, the algorithm effectiveness is also proportional to the 

distance between the point light and the view frustum. The further away from 

the view frustum the more similar a point light is to a directional light. 

 

Including all Objects Casting Shadows 

In addition to objects within the view frustum, a shadow map must contain all 

potential occluders outside the frustum that cast shadows onto the visible part 

of the scene.  

Consider the scene present in Figure 21 (below). Let S be the bounding shape 

of all objects present in the scene, V be the view frustum as seen from the 

camera and L be the view frustum as seen from the light source. The light 

source is positioned at position l. 

In order to compute the (world-space) region of interest H for shadow map 

generation, it is first needed to generate a convex hull M of all rays emanated 

from l to V. Then, H will be the result of the intersection of M with the scene 

bounding shape S and light frustum L: 

H = M ∩ S ∩ L  ,      where M = convex_hull( l U V) 
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Figure 21: Computation of the scene’s (world-space) region of interest for shadow map 

generation. 

 

At this point of the process, the algorithm is still in world-space, so it is needed 

to move into post-perspective space before generating the shadow map. 

While transforming lines from world to post-perspective space, points in the line 

may change their relative order: imagine a line intersecting the camera plane; 

the point of intersection is mapped to infinity, so these points behind the camera 

plane are projected to beyond the infinity plane. 

Hence, converting H to post-perspective space imposes some concerns: 

If H is completely in front of the viewer, it can be transformed to post-

perspective space immediately; 
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Figure 22: Case where the region of interest for the shadow map generation needs to be 

extended in order to avoid scene disfiguration introduced by the post-perspective transformation. 

 

Else, if H has some objects casting shadows to the scene that are positioned 

behind the camera, a virtual shift to the camera is required so that the view 

frustum includes all objects casting shadows to generate the shadow map. If the 

camera is shifted back to infinity, then it would become an orthogonal camera, 

and post perspective space would be equivalent to world space (see Figure 22). 

In this case the benefits of the post perspective transformation are null, with the 

penalty of the geometry approximations and post-perspective transformations. 

In practice only a small shift is required for most cases. 

 

3.2. Trapezoidal Shadow Mapping 

Trapezoidal Shadow Maps (TSM) is proposed after Perspective Shadow 

Mapping, suggesting a transformation that is the result of trapezoidal 
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approximations of the eye's frusta as seen from the light. Similarly to PSM, TSM 

produces a shadow map with enhanced distribution enabling high resolution 

shadows near the camera, and lower resolution as the shadows move away 

from the viewpoint.  

This algorithm deals with the resolution problem of shadow maps, while treating 

the continuity problem, which is present in the majority of shadow mapping 

algorithms that try to fix the shadow aliasing problem using greedy adaptive 

frustum (e.g.: PSM, which introduces severe continuity problems due to its 

adaptive light frustum algorithm). Greedy adaptive frustum implies that the 

frustum usage is maximized for the projection used. It builds a light frustum that 

contains only the visible geometry and the occluders. As mentioned before, the 

light frustum may change significantly when new geometry enters the view 

frustum. TSM proposes a non-greedy optimization of the usage of the shadow 

map; hence the light frustum changes smoothly from frame to frame. 

 

3.2.1. Reducing the resolution problem 

One of the main challenges while addressing the resolution problem is to better 

utilize the shadow map, adapting the light frustum to the area within eye’s 

frustum. 

 

Obviously, the resolution of a shadow map is inversely proportional to the size 

of the area of interest, so the tighter we can put the region of interest of a 

determined scene, the better resolution we get. Practical Shadow Mapping 

[PraSM02], in addition to uniformly spaced depth values, proposed a tight fitting 

frustum recurring to the smallest bounding box of the interest area. 

 

TSM approach goes beyond the idea of Practical Shadow Mapping, claiming 

that the shadow map could be further optimized. When at light post-perspective 

space, the camera view frustum looks like a polygon with up to six edges 
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(Figure 23). A rectangular based frustum is clearly not the best approximation to 

the camera frustum. Large areas of the shadow map become useless under this 

approximation. 

 

The main goal behind TSM is to find a better approximation, avoiding the non-

visible areas from eye-view. In light of this problem, TSM suggests the 

trapezoidal shape, as opposed to the squared-box. A trapezoid is very similar to 

the view-frustum as seen from the top. 

 

Figure 23: The most similar to shape to a view-frustum as seen from the top is noticeably a 

trapezoid. Using a square for the approximation, some non-interest areas of the scene would be 

included in the transformation. 

 

Figure 24 refers to the wastage of the bounding-box approach proposed by 

Practical Shadow Mapping as opposed to the trapezoid approach proposed by 

TSM. Due to view-frustum shape, the bounding box approach will minimize less 

non-interest parts of the scene, when compared to the trapezoid approach. In 

addition to that, the trapezoid can stretch its base line so that it reaches the 

shape of a square, increasing its resolution for near-camera objects.  

 

 



40 

 

 

Figure 24: Trapezoidal approximation vs. Bounding-box approximation 

 

The top and base parallel lines of the trapezoid enable a powerful mechanism 

for controlling the shadow map resolution for each frame, solving also the 

continuity problem associated to the greedy adaptive light frustum algorithms 

suggested by many shadow mapping techniques. 

The increase in gained resolution in the ideal case, where the light direction and 

the eye vector are perpendicular, is mostly in areas near the view camera; 

hence we may end up with relative under-sampling for objects further away 

from the camera. 

Associated to the trapezoid side lines, TSM presents a mechanism to better 

spread the available resolution to objects within a specified focus region. While 

the bounding box approach cannot stretch its shape to the unit cube, the 

trapezoid can be warped according to a pre-determined rule (described later in 

this section) for avoiding over-sampling in objects near the camera and under-

sampling as distance to the camera increases. 
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3.2.2. Implementation 

Similarly to standard shadow mapping, TSM first creates the shadow map and 

then – while rendering the scene – for each fragment, it is determined whether it 

is shadowed or not. Despite the similarities, a comprehensive and sometimes 

computationally expensive calculation needs to be made before the shadow 

map generation: the so called normalization matrix N needs to be calculated in 

order to (right before shadow map generation) transform the post-perspective 

space of the light to a N-space, where N refers to the trapezoidal space 

described above. 

Thus, instead of the standard 2 steps, TSM is composed of 3 main steps, which 

are described below: 

 

1st step - Normalization matrix calculation 

The normalization matrix NT results of the mapping of the four corners of the 

trapezoidal T into a unit square (described later, in this section). 

In order to calculate T, one needs to obtain the base and top lines of the 

trapezoid (referring to the approximation of the far and near planes respectively). 

Then, the side lines of the trapezoid are computed using the bottom and top 

lines. These steps are done as follows: 

 

 

Trapezoidal base and top lines determination 

Let E be the area within the eye’s frustum as seen from the light. The base and 

top lines refer to the approximation of the far and near planes of E respectively.  

The algorithm for calculating these lines is as follows: 

 Transform eye’s frustum into post-perspective space of the light (E is 

obtained); 
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 Compute the center line l. This line connects the centers of the near 

plane and far plane of E; 

 Generate the 2D convex hull H of E; 

 Compute the top line lt, which is perpendicular to l and touches the 

boundary of H: lt intersects l at a point closer to the center of the near 

plane of E than that of the far plane; 

 Compute the base line lb which is parallel to lt (not being the same), also 

touching the boundary of H. 

 

Trapezoidal side lines determination 

The base line of the trapezoid (which is related to the far plane) should always 

be wider than the top line (which is related to the near plane). As the trapezoid 

is stretched to fit the unit square, the top line is stretched until it has the same 

length as the base line. With this process, the objects close to the near plane 

will have over-sampled shadows, while the objects close to the far plane will 

have under-sampled shadows. 

 

 

Figure 25: Side lines of the trapezoid (left) are calculated according to the 80% rule (right), so 

that the stretching of trapezoid does not introduce sampling artifacts (center) 

 

To avoid this, TSM proposes an algorithm for achieving a balanced shadow 

mapping, reducing both under-sampling and over-sampling (see Figure 25 – 
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above). This algorithm relies on the side lines of the trapezoid, which dictates 

the stretching effect provided by the transform matrix NT. 

For more details about the determination of trapezoidal side lines, please 

consult Appendix A. 

 

Trapezoidal-to-square transformation steps 

One last step for calculating the transformation matrix NT is needed: The four 

corners (t0, t1, t2, t3) of the trapezoid previously generated need to be mapped 

to a square that refers to the front side of the unit cube (Figure 26). 

Thus, NT is generated according to the following equations: 
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Figure 26: Trapezoidal transformation: mapping trapezoidal corners to square edge corners 

 

These equations establish the connection between the trapezoid and the 

square, being NT used to move each of the corners t0, t1 ,t2 ,t3 to the 

respective corner of the cube. 

In order to achieve this, TSM propose a sequence of steps formed of rotation 

(R), translation (T1, T2, T3), shearing (H), scaling (S1, S2) and normalizing (N) 

operations, each of them resulting in a matrix. At the end, these matrices are 

combined, returning the matrix normalization matrix NT. 

This process will now be described: 
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1. Calculate T1 

It is first needed to center the top edge of the trapezoid to the origin of the light 

post perspective view: 
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Figure 27: TSM application of T1 

 

 

2. Calculate R 

Then, the trapezoid needs to be rotated, so that its top edge is collinear with the 

x-axis:  
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Figure 28: TSM application of R 
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3. Calculate T2 

After step 2, the point i resultant of the intersection of the side lines is translated 

to the origin: 
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Figure 29: TSM application of T2 

 

 

4. Calculate H 

Shearing needs to be applied to the current trapezoid, so that it becomes 

symmetrical along the y-axis: 
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Figure 30: TSM application of H 
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5. Calculate S1 

Scale the trapezoid, so that the angle formed between the side edges is 90º 

and also the distance between the top edge and the x-axis is 1: 
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Figure 31: TSM application of S1 

 

 

6. Calculate N 

Now, transform the trapezoid into a rectangle: 
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Figure 32: TSM application of N 

 

 

 



47 

 

7. Calculate T3 

Then translate the rectangle to the origin, so that both center of rectangle and 

origin should be coincident: 
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Figure 33: TSM application of T3 

 

 

 

8. Calculate S2 

Finally, scale the rectangle along the y-axis, so that it acquires the form of the 

square that covers the front side of the unit cube: 
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Figure 34: TSM application of S2 
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9. Calculate NT 

Now that all required matrices are set, the transform matrix can be generated as 

follows: 

 

1**2**1**3*2 TRTHSNTSNT   

 

Figure 35: TSM application of NT 

 

2nd step - Shadow Map Generation 

In order to use the normalization matrix calculated in the first step, it is needed 

to create the post-perspective matrix of the light view: 

Let LV and LP be the model-view and projection matrices for the light view, 

respectively. Then, the post-perspective transform L for the light-view is: 

L = LV * LP 

Having NT (from the previous step) and L, it is now time to calculate the 

transform matrix, which is: 

T’ = NT * L 

Using T’ for the N-space, the shadow map is now created. 

3rd step – Rendering the scene 

While rendering the scene, each vertex should be transformed by the N-space 

transformation matrix NT and use the resultant texture coordinates as the 
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shadow map position, comparing the fragment z-value with the one present in 

the shadow map for shadow determination. 

 

3.2.3. Solving the Polygon Offset Problem 

Although the transformation matrix NT greatly improves the resolution problem 

and continuity problems, it worsens the polygon offset problem due to a non-

uniform distribution of the z-values. This happens because, affecting the x and y 

coordinates values of each vertex inside the trapezoid, NT also affects the z 

coordinate value accordingly. This introduces severe polygon offset artifacts to 

generated shadows, even with the standard polygon offset resolution enabled (if 

bias is too big, nearby areas’ shadows will disappear; else, if bias is too small 

surface-acne will appear in distant areas). 

Figure 36 shows an example of a scene shadowed with Trapezoidal Shadow 

Mapping algorithm: 

 

 

Figure 36: Scene shadowed with TSM using standard polygon offset problem (large bias). 
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A way to solve this is to transform only the x and y vertex values as follows: 

In the shadow map generation stage, the vertex shader transforms each vertex 

v to VT = (XT,YT,ZT,WT) and assigns VL = (XL,YL,ZL,WL) as its texture 

coordinate. Then, the fragment stage replaces the fragment depth by ZL/WL 

added by an offset. 

In the shadow determination step, at vertex shader each vertex is transformed 

to the post-perspective space of the camera, being computed VT = 

(XT,YT,ZT,WT) and assigned VL = (XL,YL,ZL,WL). At fragment shader, each 

fragment shadow status is tested by comparing ZL/WL with the stored shadow 

map, indexed by XT/WT and YT/WT. 

 

Figure 37 shows the scene presented in Figure 36, now using the offset 

problem resolution proposed by TSM. 

 

 

Figure 37: Scene shadowed with TSM after polygon offset problem tackling. 
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3.2.4. Special Cases 

The algorithm described so far assumes that the light frustum contains the view 

frustum. This is the case in outdoor scenes using sun light for instance. 

However, when considering short range point lights this may not be the case. 

In light for this problem, TSM needs to adapt its algorithm for cases where the 

camera-view frustum does not lie completely within light-view frustum. Hence 

the algorithm described above needs to be altered so that it only transforms the 

portion of the camera-view frustum that is inside of the light-view frustum, since 

the remains are not illuminated. 

Thus, TSM needs to process the area A that is the intersection of both light and 

camera view frustums and compute the center point c of A. Hence the line l 

mentioned above is now the line passing through the camera point of view and 

the point c. The rest of the algorithm should be recomputed accordingly. 

For more details on the re-computation of the trapezoid for cases where 

camera-view frustum is not inside light-view frustum, please refer to [TSM04]. 

 

3.3. Parallel-Split Shadow Mapping 

According to Parallel-Split Shadow Maps (PSSM), it is impractical to achieve 

sufficient sampling densities for a large scene with a single shadow map, even 

with a high resolution texture. 

PSSM as the above discussed techniques, lies in the fact that it is needed to 

produce different samplings densities based on the distance of points to the 

viewer. However, instead of proposing post-perspective transformations to the 

light view, this approach splits the view frustum into multiple discrete layers 

through split planes disposed along the view plane. Each split is thus rendered 

to an independent shadow map (see Figure 38). 
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Figure 38: The view frustum is split into three parts, each of them will be rendered to a different 

shadow map with the same resolution 

 

Hence each rendered shadow map will be the result of different 

parameterizations applied for each layer. A single shadow map with large size 

will be replaced by multiple, smaller ones, which requires less memory than the 

required for covering the same area with the standard approach and at the 

same time providing improved shadow resolution. 

This algorithm assumes lights as directional, but since the shadow maps are 

rendered in the light’s post-perspective space, all objects need to be 

transformed, including point light sources, which can at this point be converted 

to directional light sources (see Figure 39). 

 

Figure 39: Although PSSM assumes directional light sources, point light sources can be 

converted once in light's post-perspective space 
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3.3.1. Split Scheme Discussion 

Based on the observation that for different depths layers need different texture 

resolutions, PSSM suggests the partition of the view-frustum in various splits. 

Although the shadow maps associated with each split can have the same 

resolution, each split will have a different depth, according to the distance to the 

camera.  

Consider Ci as the depth of the ith split plane in camera space and 

11  mi , where m is the number of split parts. Let n and f be the near and far 

planes of the view frustum. 

Figure 40 shows how the split planes are distributed along the z axis. 

 

Figure 40: Split planes distribution along the view frustum z axis 
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In order to estipulate a rule for this distribution, PSSM present three split-

schemes: uniform split scheme, logarithmic split scheme and practical split 

scheme. 

Uniform split scheme proposes the following formula for the depth of split 

planes: 

 
m

inf
nCuniform

i


  

This is the simplest split scheme, placing the split planes uniformly along the z 

axis. The aliasing distribution in this split scheme is same to that of standard 

shadow maps. Below, Figure 41 (left) shows the under-sampling for near points 

and over sampling for distant points. As a view-driven resolution, points near 

the camera need to have a more dense distribution, which turns this split 

scheme impractical. 

Logarithmic split scheme proposes the following formula for the depth of split 

planes: 

m

i

i
n

f
nC 








log  

It produces a logarithmic distribution of perspective aliasing errors. In practice, 

this scheme is not suitable due to the scene’s potential intrinsic complexity. 

Figure 41 (middle) shows the over-sampling for near points and under-sampling 

for further points which is supposed to occur using this split scheme. Also, since 

this split scheme produces small lengths for split parts near the viewer, few 

objects can be included in these split parts. 

Logarithmic split scheme behaves inversely to the uniform split scheme; a 

balanced algorithm would take into account both of them, proposing a moderate 

sampling of the points in the shadow map with a better aliasing distribution. 

In light to this requirement, PSSM presents the practical split scheme, which is 

expressed as the following formula: 
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with b being a non-negative bias for adjusting the clip positions according to 

each application requirement. 

Practical split scheme is then given by changing the variables: 
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According to PSSM, unlike the other split schemes, this one satisfies the 

requirements of most practical applications (see Figure 41 – right). 

 

Figure 41: Split schemes presented by Parallel-Split Shadow Maps 

 

3.3.2. Light frustum split 

Since view-frustum is split into planes disposed along the distance to the 

camera, also light (as mentioned before: directional light sources) will be split 

accordingly. 

Let V and W be the global view and light frustum respectively. Let also Vi and 

Wi be the ith split part of V and W respectively, with  mi 1 . 
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PSSM splits W into Wi smaller light frustums, each one being constructed with 

the help of a bounding box that intersects W with the current split. Thus, for 

each split: 

Wi = Vi ∩ W 

Where Wi should cover Vi and objects casting shadows into Vi. 

Figure 42 demonstrates the process: B and Bi refer to the bounding box of V 

and Vi respectively. In order to maximize shadow maps resolution, W and W i 

will focus in the region of Bi and B respectively.  

 

 

 

Figure 42: Light’s frustum split (W i) computation according to the respective view split frustum Vi 

and its bounding box Bi 

 

This “greedy” adaptive light frustum proposed by PSSM makes the shadow map 

focusing only on the relevant object for each split, as opposed to a global 

adaptive light frustum where the focus would be whole scene V. As there may 

be non-interesting areas between Vi in V, implementing this adaptive light 

frustum per split will gain resolution for each split’s shadow map. However, this 

greedy adaptive frustum approach reintroduces the continuity problem. 
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3.3.3. Implementation 

As a Standard Shadow Maps based algorithm, Parallel-Split Shadow Maps is 

also processed in 2 steps: the first is the shadow mapping generation while the 

second one consists of rendering the scene with shadow map comparison. 

Thus, in order to implement PSSM, it is needed to: 

 Split the view frustum into multiple depth parts, according to the practical 

split-scheme described above; 

 Split the light frustum into multiple smaller ones, according to the light 

frustum split process described above; 

 For each split Vi, render it to the respective shadow map denoted as Ti, 

in the space Wi (Bi in case of using the PSSM adaptive light frustum 

technique); 

 Render the scene and apply the correct shadow map for each pixel. 

 

There are two options for rendering the scene: using the fixed-function pipeline 

or through a programmable pipeline approach. In case of using a fixed-function 

pipeline, for each split, execute the standard shadow map comparison. In case 

of using the programmable pipeline, while rendering the scene, current 

fragment’s depth needs to be compared with the stored depth in the respective 

shadow map Ti. In order to do so, one needs to pick the correct shadow map by 

comparing the pixel’s depth with each of the splits ranges. Having the 

respective shadow map, the pixel should be transformed to its respective light 

space Wi (Bi in case of using the PSSM adaptive light frustum technique) and 

compared to the stored depth determining the shadow status. 

 

3.3.4. Discussion 

According to results presented by PSSM, with a number of splits less or equal 

to 4, the algorithm shows visual effects far better than with a single split of 

greater resolution. 
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As to the algorithm’s performance, it will greatly depend on the hardware: the 

use of multiple shadow maps, requires multiple passes, (one per split), unless 

the GPU supports multiple rendering targets (MRT): using MRT, enables the 

generation of multiple shadow maps in a single pass. 

As to the scene rendering, multiple rendering passes are also needed by default 

(one per split). If the GPU has a programmable pipeline, a single pass will also 

be possible by determining the appropriated shadow map for each rasterized 

fragment on-screen. 

The majority of current hardware already provides GPU programmable 

pipelines, which makes this technique more appealing, also for being integrated 

with other complementary shadow mapping techniques. 

Also, PSSM does not solve the noticeable discontinuity present in shadow 

maps’ split transition. This discontinuity happens due to the different distribution 

of the depth between splits. 

 

Figure 43: Split discontinuity problem 
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As Figure 43 shows, PSSM doesn’t handle well the transition between the splits, 

by not smoothing the areas where shadow maps are put together. 

 

3.4. Variance Shadow Mapping 

A shadow map is basically a texture and, as any texture, it may suffer from 

aliasing. Although we’ve been referring to algorithms that reduce aliasing 

through post-perspective transformations and scene partitioning, we now refer 

to a different, complementary approach that reduces aliasing by filtering the 

shadow map as a texture. 

Unlike a normal texture, shadow maps cannot use the existing hardware built-in 

methods to reduce aliasing on color textures (e.g.: mipmapping, anisotropic 

filtering). 

Also, shadow maps (depending on the distance between the query point and 

the light source) will change at each frame, turning pre-filtering for use of these 

techniques impossible. 

Shadow map filtering approaches relied on nearest neighbor sampling or on 

taking multiple shadow samples and averaging them together (this former case 

is the one of PCF). Unfortunately, none of these approaches is sufficient to 

eliminate aliasing (even the PCF approach, despite being supported by current 

hardware, uses a small kernel for efficiency reasons). 

Variance Shadow Mapping (VSM) addresses the limitations of PCF and 

proposes shadow map filtering using an upper bound approximation of the 

results given by the PCF algorithm. 

Until here, each texel of a shadow map represented the depth of a single point. 

VSM presents a way of representing a distribution of depths for each shadow 

map texel. In order to do so, this approach stores the mean depth and mean 

squared depth, also known as the first and second moments respectively. 
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The moments are needed for computing the bound of the distribution being 

shaded. They also provide an approximation for the amount of light reaching the 

given surface. 

As opposed to depths, moments can be interpolated. This means that, by using 

moments, hardware built-in methods such as mipmapping and anisotropic 

filtering can now be used for reducing aliasing, delivering improved quality 

shadows with low performance penalty. 

 

3.4.1. Implementation 

Being based on standard shadow mapping algorithm, VSM is composed of its 

two standard steps, plus some intermediate steps: 

First, at shadow map generation step, the scene is transformed to post-

perspective space of the light. Instead of generating a standard shadow map, 

this space is rendered to a two-channel buffer, where the first channel receives 

the depth (as in standard shadow mapping) and the second channel receives 

the square of that same depth. 

Then, mipmaps generation is set, in order to facilitate filtering by hardware. The 

outcome of this operation is the moments M1 and M2. 

Having M1 and M2, the mean   and variance 2  are calculated as follows: 

  1MxE   

  2

12

222 )( MMxExE   

where  xE  and  2xE  derive from moments M1 and M2, which are the result of 

hardware filtering applied to the two-channel buffer carrying the depth and 

square depth respectively. 
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Finally, while rendering the scene from the camera point of view, for each 

fragment, its depth should be compared with  : 

If depth <  m then the surface is unshadowed; 

Otherwise, the surface is shadowed with intensity maxp , which is the equation 

for Chebyshev’s inequality: 
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3.4.2. Discussion 

Light Leaking Artifacts Origin 

Variance 2  is seen as a measure of the width of a distribution. Hence, it 

should place a bound on how much of the distribution can be concentrated far 

away from the mean. This bound is stated precisely in Chebyshev’s Inequality, 

as presented by VSM: 

Let x be a random variable drawn from a distribution with mean   and 

variance 2 . Then for t > : 
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As presented in VSM, the quantity  txP   in Chebyshev’s Inequality is exactly 

the quantity needed in order to perform PCF, since it represents the fraction of 

pixels over a filter region that will fail the depth comparison with a fixed depth t. 

For more details on how this upper bound is enough to provide a good 

approximation to PCF, please refer to [VSM06]. 
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Figure 44: Scene rendered with a 512 shadow map: (left) PCF 4x4 vs. (right) VSM 

 

Although being clearly superior to PCF (as shown in Figure 44), the VSM 

algorithm still suffers from light bleeding (also known as light leakage) artifacts: 

When variance 2  is close or equal to zero, these noticeable artifacts can 

appear over the shadow (as seen in Figure 45, left image). 

 

  

Figure 45: Scene shadow rendered with VSM suffers of light bleeding (left). The same scene 

shadow is rendered using Standard Shadow Mapping (right). Note that both images have their 

contrast levels increased so that artifacts are more perceivable. 

In practice, it happens only for scenes with high depth complexity. 
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3.5. Conclusion 

In this chapter we gave a brief overview of algorithms that contributed for 

alleviating shadow mapping artifacts. Then, we have presented the most 

relevant algorithms to our investigation: 

Perspective Shadow Mapping is the first algorithm addressing the aliasing 

problem for objects near the camera by introducing a non-uniform 

parameterization, working in the post-perspective space. This approach 

improves resolution for some cases, depending on the position of the light 

relatively to the camera, but its implementation is rather non-trivial with many 

tradeoffs that are hard to optimize, compromising the use of this algorithm to 

interactive environments (where the user has the camera control and/or light 

changes dynamically). Also, the 3D convex hull needed to determine the region 

of interest requires a robust implementation, together with intersection and 

union operations and a successive set of approximations for tightening this 

same polygon. 

Another unwanted characteristic of this approach is the continuity problem, due 

to the adaptive light frustum proposed by PSM. The convex hull can change 

suddenly, as the scene changes dynamically, causing noticeable changes in the 

resolution of the shadow map. Also, this approach may need to virtually move 

eye position (to avoid the inverted order of objects due to perspective 

projection), among other virtual modifications dependent of scene configuration. 

These abrupt changes on the convex hull, again will introduce severe continuity 

problems in shadows. 

Polygon offset problem is worsened: since PSM transforms the post-

perspective space in a non-linear way, depth values will also change differently, 

so the basic solution of adding a constant bias for removing the surface acne 

effects may not be enough. 

Finally, although perspective correction enables a major improvement to 

shadow map resolution as seen from the camera, it may not be enough when 

representing large scenes. Although PSM has been very criticized due to its 

shortcomings, it was the first approach to decrease aliasing through perspective 
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non-uniform parameterizations, being the basis for Light Space Perspective 

Shadow Mapping and the inspiration for Trapezoidal Shadow Mapping. 

Trapezoidal Shadow Mapping proposes a different non-uniform 

parameterization, by warping a trapezoid to achieve the shadow map squared 

shape. This trapezoid is the post-perspective approximation of the view-frustum, 

as seen from the light. TSM reduces the shadow map resolution problem by 

using the transformation matrix generated by the trapezoid warping. This 

calculation may be computationally expensive for some scene configurations, 

but the algorithm handles all the cases more gracefully than PSM. Similarly to 

PSM, TSM also suffers from the polygon offset problem, but in this case, it is 

provided a very straight-forward method for solving the problem, by maintaining 

the depth values and transforming only the x and y coordinates of the polygons 

(avoiding the non-uniform parameterization of the depth). 

TSM is an adaptive light frustum based technique, but it is not prone to the 

continuity problem, since it successfully avoids the problem while constructing 

the trapezoid (more specifically, the base and top lines of the trapezoid being 

parallel), assuring a smooth transition when the eye moves relative to the light 

from frame to frame. 

Also, the problem of over-sampling near the camera and under-sampling at 

distance is solved, by the 80% rule introduced while calculating the trapezoid 

side lines, so that there is an effective use of the available shadow map 

resolution along the scene distance. 

As to the dueling frusta case, both PSM and TSM cannot respond effectively, 

falling back to the standard shadow mapping algorithm. 

Although TSM greatly improves the shadow map resolution, similarly to PSM it 

may not be enough to address the resolution problem for large scenes, 

especially with the fallbacks to standard shadow mapping (associated with, for 

instance, the dueling frusta case). 
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Parallel Split Shadow Mapping is especially useful for large scenes. The 

approach proposes the scene partitioning into several splits distributed along 

camera distance and for each split, the use of different shadow maps.  

Each split will have a determined size and position, according to a practical split 

scheme that ensures smaller split sizes near the camera and bigger split sizes 

distant to the camera. 

Having said that, it is easily noticed that PSSM addresses the same problems 

as PSM and TSM, but instead of a non-uniform parameterization at light post-

perspective space, PSSM uses multiple discrete layers. 

Large scenes shadow mapping is greatly improved by introducing multiple 

shadow maps instead of a large one. Also, the memory requirements are less 

demanding than a single shadow map of equivalent dimensions. 

Also, PSSM does not propose a solution to the noticeable discontinuity present 

in shadow maps’ split transition. 

PSSM does not solve the perspective aliasing, focusing only on the texture 

resolution constraints associated to large scenes, being seen as a 

complementary approach that is often used for large scenes. Since each split is 

exclusively related to a shadow map, other shadow mapping techniques can be 

seamlessly integrated into this split scheme. 

Variance Shadow Mapping is a simple and effective filtering approach for 

addressing the aliasing in shadow maps. As opposed to the previously 

presented algorithms, it does not introduce any parameterization, simply 

working at the shadow mapping filtering (as with PCF). This algorithm performs 

an upper bound on the result of the percentage closer filtering algorithm, 

providing a close approximation to it and at the same time taking full advantage 

of graphics’ hardware built-in filtering techniques, leading to improved results in 

performance and shadows quality. 

As with other methods, this technique only addresses a part of the limitations of 

the standard shadow maps, namely focusing only on reducing the binary status 

of hard-shadows through shadow map filtering. This can therefore be a 
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complementary technique to other algorithms that address different problems of 

the standard shadow mapping algorithm. 

Although being a very straight-forward technique, VSM is a probabilistic 

approach, and as any probability, it is prone to unsatisfactory results. In this 

case, since the probability is based on an upper bound of the estimation 

whether a point is in shadow or not (despite providing fast results to a technique 

that is time-consuming), it produces the referred light leaking effects in scenes 

with high depth complexity relative to the light source. 

As a concluding remark, from the presented techniques, none of them solves all 

the problems associated with Shadow Mapping standard algorithm. Also, there 

are techniques that while addressing a specific problem introduce another. 

Table 1 shows a summary of the problems solved by each one of the presented 

algorithms.  

Table 1: Problems present (red) vs. problems tackled (green) for each of the presented 

techniques. Note: (N.A.) means the current algorithm does not suffer from the referred artifact  
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Analyzing the table, we conclude that there is no perfect technique; instead 

there are complementary techniques which combined may form a more robust 

algorithm able to solve the majority of the problems inherent to the shadow 

mapping technique. 

Also, projection aliasing is a problem that is not addressed by any of the 

mentioned techniques. Some approaches suggested solutions for alleviating the 

projection aliasing problem, namely LiSPSM suggests combining surface 

blurring and a phong lighting model for “disguising” projection aliasing. Also, 

Adaptive Shadow Maps suggests a view-dependent hierarchical grid structure 

able to improve determined regions shadow resolution as the ones with 

projection aliasing (which is a signal of lack of resolution). Nevertheless, this 

artifact hasn’t yet been addressed effectively by any of the shadow mapping 

analyzed solutions.  
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4. Analysis and Proposal of a Shadow Mapping Remix 

Approach 

 

In this chapter we propose the Shadow Mapping Remix Approach (SMRA). We 

start by identifying the strengths of the algorithms presented in Chapter 3. 

Afterwards, we describe our algorithm’s implementation where we start by 

outlining its setup, and then we present our approach implementation steps.  

Then, we address to one artifact that is not addressed by any of the contributors 

to our new algorithm proposal and, for that reason, it needs to be described in 

more detail than all the other implementation steps. 

Next, follows a discussion about minor changes to the contributors’ algorithm 

techniques and also performance estimation for our approach. 

Finally, a conclusion will summarize the findings of this chapter. 

 

4.1. Analysis - Contributors’ Strongest Features 

 

Our work builds on the analysis of the most important contributions that improve 

standard shadow mapping and proposes a remix approach that merges the 

strongest points of each algorithm. In this section, we will focus on the most 

relevant features of each algorithm. 

 

In Chapter 3 we have presented 4 algorithms which we consider as being the 

main contributions to our work. From a theoretical point of view, perhaps the 

most important contribution to the shadow mapping algorithm is Perspective 

Shadow Mapping, because it is the first to propose a transformation to tackle 

the aliasing problem. However, its implementation is rich in particular cases, 
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which makes it less attractive than other newer approaches. That’s why we will 

not extract any specific feature from PSM for our implementation. 

 

Trapezoidal Shadow Mapping, an algorithm following PSM algorithm, offers a 

solution for the same issues without the shortcomings of PSM. As mentioned in 

the previous chapter, TSM proposes a non-uniform parameterization, by 

warping a trapezoid to achieve the shadow map squared shape. This is a very 

straightforward technique for reducing two of the main shadow mapping 

artifacts: perspective aliasing and the continuity problem introduced by greedy 

adaptive light frustum techniques. Also, it proposes an efficient way to alleviate 

the polygon offset problem worsened due to the non-uniform parameterization. 

 

Parallel-Split Shadow Mapping is another algorithm we find as a big contribution 

to shadow mapping, mostly for large scenes, where the shadow map resolution 

is a critical factor for the aliasing. In order to assure enough resolution for the 

scene, almost independently of its dimension, PSSM proposes scene 

partitioning into several splits distributed along camera distance. For each split 

a shadow map would capture its depth values and the same shadow map would 

later be used for shadow determination. Basically, it extends the standard 

shadow mapping to multiple instances, each of the being applied to a different 

part of the scene. Although it may be expensive in terms of performance, it 

helps to solve another shadow mapping artifact - the texture resolution 

constraints. 

Finally, Variance Shadow Mapping is a shadow mapping variant for generating 

filtered shadows. It relies in the basic shadow mapping algorithm, not requiring 

post-perspective transformations or other mechanisms other than texture 

filtering. VSM performs an upper bound on the result of the percentage closer 

filtering algorithm, while taking full advantage of graphics’ hardware built-in 

filtering techniques. This will alleviate another shadow mapping artifact, which is 

the hard shadows binary status, with performance gains (when compared to the 

basic shadow filtering approach: PCF). 
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4.2. Remix Approach Proposal 

Having highlighted the most relevant features for building our algorithm, we 

introduce our Shadow Mapping Remix Approach.  

The main idea is to merge the strongest features of TSM with PSSM and VSM, 

which happen to be complementary. 

PSSM is the only proposal that addresses the resolution problem in a way 

which is suitable both for indoor and outdoor large scale scenes. The frustum 

splitting strategy will be a component of the remix. The greedy adaptive frustum 

approach proposed in PSSM is going to be discarded because it introduces the 

continuity problem. 

 

TSM proposal to transform the light frustum into a trapezoidal shape will be 

used for each split. The nature of this algorithm provides full usage of the 

shadow map resolution; hence it minimizes the resolution problem without the 

continuity problems of greedy adaptive frustum approaches such as the one 

used in the original PSSM approach. The transformation of the frustum 

proposed by TSM will be a component of the remix. 

 

VSM offer the final touch by filtering the shadows, helping to alleviate the 

aliasing problem, both perspective and projective aliasing. In the remix, VSM 

will be used to compute the data for each split, after transformed into a 

trapezoidal shape, and perform the depth comparison. 

 

As previous shadow mapping techniques, SMRA is a two pass approach. In the 

first step the following steps are executed: 
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 The view frustum is split according to the practical scheme proposed in 

PSSM; 

 For each split, the trapezoidal transformation is computer (as proposed in 

TSM); 

 For each pixel in the shadow map, the depth and square depth will be 

stored (according to the 1st step of VSM) 

 

In the second pass, for each split, once again the TSM transformation is 

required to compute the appropriate texture coordinates to the shadow map. 

Then, VSM formula to compute the shadow status will be used. 

 

4.2.1. The Detailed Algorithm 

The algorithm is done according to the following steps: 

1. First of all, the view frustum is split into multiple depth parts Vi, 

according the practical split-scheme (refer to Section 3, Parallel Split 

Shadow Mapping); 

2. Then, comes the generation of the shadow map: For each split Vi: 

a. Approximate current split’s eye frustum Vi as seen from the 

light with a trapezoid to warp it onto a shadow map: 

b. Transform the eye’s frustum 8 vertices into light point of view; 

c. Construct the trapezoidal approximation based on these 8 

vertices; 

i. Obtain the base and top lines of the trapezoid (refer to 

Section 3, Trapezoidal Shadow Mapping); 

ii. Obtain the side lines, according to the 80% rule, (refer 

to Section 3, Trapezoidal Shadow Mapping); 

iii. Generate the trapezoidal transformation matrix, which 

maps the four corners of the constructed trapezoid to 

the side face of a unit cube - a square (refer to Section 3, 

Trapezoidal Shadow Mapping); 
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d. Transform the scene split into post-perspective space of the 

light Wi (refer to Section 3, Perspective Shadow Mapping); 

e. Assign current depth value to a temporary texture coordinate; 

f. Transform the light post-perspective space Wi into the 

normalized N-space, by applying the trapezoidal 

transformation Ni; 

g. In the fragment shader, replace the transformed fragment 

depth by the depth stored in the temporary texture coordinate; 

h. Render the transformed scene split Ni to a 2-channel buffer Ti, 

where the first channel receives the depth (as in standard 

shadow mapping) and the second channel receives the square 

of that same depth; 

 

 Before the 2nd pass begins, mipmaps generation is enabled for facilitating 

shadow maps filtering by hardware; 

 

3. Finally, in the 2nd pass, for each scene split, for each fragment p: 

a. At vertex shader, transform p to the post-perspective space of 

the camera p’; 

b. Assign current depth value to a temporary texture coordinate; 

c. Transform p’ into the N-space, generating p’’; 

d. In fragment shader, replace the transformed fragment p’’ depth 

by the one stored in the temporary texture coordinate (p’ 

depth); 

e. Get the mean   and variance 2  for the moments resultant 

from the interpolated, transformed shadow map; 

f. Compare the depth of p’’ with  : 

i. If depth <   then the surface is unshadowed; 

ii. Otherwise, the surface is shadowed with intensity maxp  

(refer to Section 3, Variance Shadow Mapping). 
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4.2.2. Artifacts Analysis 

From the analysis of our approach, we can identify one artifact that hasn’t yet 

been addressed, which is the projection aliasing problem. 

 

Improving Projection Aliasing 

As mentioned before, projection aliasing results of insufficient detail about a 

determined surface depth. Projection aliasing is only dependent on the angle 

between the light vector and the surface normal. Thus, when this angle 

approaches 90º, the maximum projection aliasing occurs. 

We propose a very simple heuristic to alleviate extreme projection aliasing: In 

the second shadow mapping pass (rendering the scene split), execute the 

following steps (integrated in the aforementioned algorithm): 

 Calculate fragment normal; 

 Calculate the angle α formed between the normal and light direction; 

 Before comparing the depths, if the angle α is close to 90º (say, 85º ≤ α ≤ 

90º), then we assume the scene is fully shadowed with half of maximum 

intensity, suppressing the steps 3.e and 3.f of the algorithm’s 2nd pass. 

 

Our approach therefore assumes that surfaces close to orthogonal to the light 

never gather enough light, resulting in a deliberate self-shadowing. It is a very 

lightweight technique, not involving any additional image processing; just a 

simple condition is introduced. 

Figure 46 shows the projection aliasing removal technique effect. Most of the 

black stripes present in the buildings are transformed into a solid shadow. 
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Figure 46: A scene with projection aliasing, right before the projection aliasing removal 

technique is applied (top) and after the technique is applied (bottom). 

 

4.3. Discussion 

After explaining the algorithm, follows a brief set of considerations. 
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4.3.1. Visualizing the implementation 

As we claim, none of the contributions by itself is enough for addressing 

standard shadow mapping artifacts.  

In this section we show the effect of all the contributions through renders of the 

same scene for each one of the contributions. 

First, the scene is drawn with no shadows (Figure 47): 

 

Figure 47: Scene rendered without shadows 

As we stated before, a scene without shadows lack of realism – there is no 

perception of the geometric relationship between objects. 

Using the standard shadow mapping algorithm for shadow generation, this 

geometric relationship between objects is now present (Figure 48): 
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Figure 48: Scene rendered with SSM 512x512 

 

Although, the shadow mapping algorithm suffers of too many problems (mainly 

texture resolution constraints and aliasing). 

As we introduce TSM, the aliasing is greatly reduced thanks to the trapezoidal 

approximation of the view frustum (as seen in Figure 49). 

 

Figure 49: Trapezoidal approximation of the view frustum, as seen from the light 

Figure 49 shows the scene rendered from the light point of view. It is noticeable 

the view-frustum (in white) and the trapezoidal approximation polygon (in violet). 
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This trapezoid is then warped so that it provides more detail for nearby objects 

and less detail for far-away objects. Figure 50 shows the difference between a 

shadow map generated using TSM (non-uniform parameterization) and the 

same shadow map generated using a uniform parameterization (as in SSM). 

  

Figure 50: Shadow Map generated using SSM (left) and TSM (right) 

As we can notice, the top of the TSM shadow map, which represents the nearby 

shadows, is enlarged and the bottom of the shadow map is shrunk, while the 

SSM shadow map is like a photo taken from the light position (the depth 

densities are uniformly distributed along the shadow map). 

This trapezoidal transformation not only reduces perspective aliasing, but also 

avoids the continuity problem. However, this technique may not be enough, 

when addressing the shadow map resolution problem: large scenes may 

require more resolution, which leads to a fast degeneration of the shadow map 

resolution along the distance, when using only TSM (Figure 51). Although far 

better than the original SSM approach, there is aliasing in the shadows near to 

the camera. 
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Figure 51: Scene rendered with TSM 512x512 

In light of this problem, we use PSSM multiple shadow maps approach. For this 

scene, we render it using 3 splits (Figure 52), distributed along the distance to 

the camera. The splits are determined according to the practical split scheme 

described above. 

 

   

Figure 52: PSSM scene splits, as seen from the camera 

 

The result of rendering the scene with PSSM is as follows (Figure 53): 
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Figure 53: Scene rendered with PSSM 3x512x512 

As it is noticeable, PSSM produces better shadows on the trunks compared to 

TSM, while having worse results on the floor. On the other hand it produces 

slightly better results with distant shadows. In order to improve the precision 

even more, we introduce TSM to each split of the PSSM. This way, not only we 

address aliasing and continuity problems (tackled by TSM), but also shadow 

map resolution problems (tackled by PSSM). Figure 54 shows the scene 

rendered with the mixture of PSSM and TSM: 

 

Figure 54: Scene rendered with PSSM and TSM 3x512x512 
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Finally, in order to produce smoother shadows, we use the filtering proposed by 

VSM. VSM by itself would only address the binary status of hard shadows, not 

addressing any of the above described artifacts (Figure 55): 

 

Figure 55: Scene rendered using VSM 512x512 

This filtering technique makes all the sense when put together with TSM and 

PSSM, forming a complete and improved algorithm called Shadow Mapping 

Remix Approach (Figure 56): 

 

Figure 56: Scene rendered using SMRA 3x512x512 
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4.3.2. Performance estimation 

Since SMRA is a mixture of many complementary techniques, its computational 

cost is higher than using each one of the contributors’ approaches by itself. 

However, as stated in next section, this speed penalty is compensated by the 

serious visual improvements, when compared with each of the presented 

techniques, still being perfectly applicable for real-time applications when using 

moderate shadow map resolutions. 
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4.4. Conclusion 

 

In this section we have proposed an algorithm for improving visual results of 

shadow mapping. Shadow Mapping Remix Approach mixes different techniques 

proposed by three algorithms. Since these techniques are complementary, their 

interaction is simple to perform with minor changes to some of these techniques. 

We have also presented a visualization of the implementation of SMRA, through 

the various steps of rendering a scene unshadowed, shadowed with standard 

shadow mapping, also with the main contributions’ algorithms and finally with 

SMRA. The results show a clear visual improvement when combining the 

components. 
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5. Results 

In this section we present the results of rendering shadows using the algorithms 

discussed above and also the presented our approach: Shadow Mapping 

Remix Approach. First, we will describe the configuration in which the tests 

were performed. Then, we present the visual results of each algorithm while 

varying the shadow maps resolutions. We also present and discuss the 

performance of each algorithm. Finally, we conclude by summarizing our 

findings. 

 

5.1. The Setup 

In order to test each one of the presented algorithms, we have created a 

platform called ShadowExplorer, capable of running each one of these 

approaches and change all shadows algorithms, including each algorithm 

specific properties, in real-time. The platform and each one of the algorithms 

were implemented using Visual C++ and OpenGL, under Microsoft Windows 

Vista. 

We ran the tests using an Intel Core2Duo processor working at 1.8Ghz, with 

3Gb RAM and a NVidia GeForce 8400M GT GPU with 128Mb of dedicated 

memory. 

We used a viewport with resolution 800x600, varying shadow mapping 

resolutions. Camera and light positions were also user controlled, through the 

application. 

We used two different scenes for gathering the results: the TreeLine (using 

111.000 triangles) and the SparseCity (using 33.000 triangles). 

Both scenes were rendered with a field of view of 45 degrees. As to the near 

and far plane, TreeLine had its camera view frustum set with 1 for near plane 
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and 50 for far plane, while SparseCity configured camera view frustum near and 

far planes to 15 and 5000 respectively. 

5.2. Visual Results 

In this section, scenes will be rendered separately: First, TreeLine, which is the 

most demanding scene in terms of triangles; then, SparceCity which is the most 

demanding scene in terms of shadow resolution requirements. 

Each scene will be rendered 3 times with different shadow map resolutions 

(512x512; 1024x1024; 2048x2048) per algorithm (SSM, TSM, PSSM, VSM and 

SMRA). 

 

TreeLine 

TreeLine is composed of 3 high-detailed trees disposed through a line, over the 

floor. This scene was designed for studying the detail capabilities of each 

shadow algorithm, more precisely on how shadows of leafs and small tree 

branches are projected to the ground, from a distant light). 

 

Figure 57: TreeLine rendered with SMRA 
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Standard Shadow Maps 

  

 

 

Figure 58: TreeLine scene being rendered with SSM using shadow mapping resolutions 

512x512 (Top Left), 1024x1024 (Top Right) and 2048x2048 (Bottom) 
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Figure 58 shows the scene rendered with standard shadow mapping. As it is 

noticeable, using low shadow map resolutions, the shadows become heavily 

pixelated. This is caused by insufficient shadow map resolution. In the bottom 

picture, the used shadow map has a 2048x2048 resolution and still, for a 

relatively small scene, pixelated areas are noticeable. This is due to the 

perspective aliasing problem already mentioned, where shadows become under 

sampled near the eye and over sampled as the distance to the camera 

increases (the far-away tree’s shadow is over sampled, when compared with 

the shadows nearby the camera). 

 

Figure 59 presents the result of the scene rendered with the TSM approach. 

This approach introduces a non-uniform depth distribution in the shadow map, 

alleviating the aliasing noticed in the previous approach. In this case, lack of 

shadow resolution is detected even for the largest small shadow map resolution 

in the trunks of the closest tree. 

 

PSSM addresses the shadow map resolution constraints, but does not 

introduce any uneven distribution to the shadow map. Thus, if the resolution is 

still insufficient, then aliasing will be noticeable (it can be noticed in Figure 60, 

where the resolution is not sufficient for the current scene). 

 

Figure 61 shows the scene rendered with VSM. This algorithm presents the 

same problems as in SSM, so when SSM fails massively, this algorithm will 

never succeed (since it only filters the shadow map, introducing a smooth effect 

to the shadow edges). 
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Trapezoidal Shadow Maps 

  

 

 

Figure 59: TreeLine scene being rendered with TSM using shadow mapping resolutions 

512x512 (Top Left), 1024x1024 (Top Right) and 2048x2048 (Bottom) 

 

 



90 

 

Parallel-Split Shadow Maps 

  

 

Figure 60: TreeLine scene being rendered with PSSM using shadow mapping resolutions 

512x512 (Top Left), 1024x1024 (Top Right) and 2048x2048 (Bottom) 
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Variance Shadow Maps 

  

 

Figure 61: TreeLine scene being rendered with VSM using shadow mapping resolutions 

512x512 (Top Left), 1024x1024 (Top Right) and 2048x2048 (Bottom) 
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Shadow Mapping Remix Approach 

  

 

Figure 62: TreeLine scene being rendered with SMRA using shadow mapping resolutions 

512x512 (Top Left), 1024x1024 (Top Right) and 2048x2048 (Bottom) 
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Figure 62 renders the same scene, but in this case with our proposed algorithm: 

SMRA. The output is very positive, providing better defined shadows than any 

of the isolated methods. The VSM depth comparison introduces some light 

leakage as can be seen in Figure 62. 

SparseCity 

SparseCity is a big scene that is composed almost entirely of low detail 

buildings. Although the scene has a very big area, it is less complex in terms of 

geometry. The scene was designed for studying how each one of the algorithms 

behave in large environments, more precisely, by rendering a large scale area 

that includes some small, detailed entities inside (which are going to be 

focused). 

 

Figure 63: SparseCity rendered with SMRA 
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Standard Shadow Maps 

  

 

 

Figure 64: SparseCity scene being rendered with SSM using shadow mapping resolutions 

512x512 (Top Left), 1024x1024 (Top Right) and 2048x2048 (Bottom) 
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Figure 64 shows the large scene being rendered with SSM. None of the 

available resolutions is enough to produce acceptable shadows for the entity in 

the image. This is mainly due to resolution constraints that are not addressed by 

this algorithm. 

 

Figure 65 shows the same large scene rendered with TSM. The trapezoidal 

non-uniform distribution of depth shows far better results near the camera, 

however in the buildings the shadows are worse than with SSM. All resolution 

shadow maps introduce some pixelation to the scene shadows, mainly in the 

buildings. 

 

PSSM is rendered in Figure 65. This algorithm was specially proposed for this 

type of scenes, which leads to satisfactory results with high resolution shadow 

maps. However, it is still difficult to avoid aliasing since PSSM does not address 

any special parameterization for that purpose. The errors in the shadows are 

more distributed than with TSM as expected. 

 

VSM, again produces smooth shadows, but based on SSM. Since SSM failed in 

producing acceptable shadows for such a large surface, VSM will also fail, 

alleviating the visual effect a bit due to the shadow map filtering. 

 

Our approach again succeeds at providing better results. The resolution is now 

better distributed, and the VSM provides smooth shadows in the skeleton. 

There is however an artifact that is introduced by the usage of VSM, light 

leakage. 

 

 



96 

 

Trapezoidal Shadow Maps 

  

 

 

Figure 65: SparseCity scene being rendered with TSM using shadow mapping resolutions 

512x512 (Top Left), 1024x1024 (Top Right) and 2048x2048 (Bottom) 
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Parallel-Split Shadow Maps 

  

 

 

Figure 66: SparseCity scene being rendered with PSSM using shadow mapping resolutions 

512x512 (Top Left), 1024x1024 (Top Right) and 2048x2048 (Bottom) 
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Variance Shadow Maps 

  

 

 

Figure 67: SparseCity scene being rendered with VSSM using shadow mapping resolutions 

512x512 (Top Left), 1024x1024 (Top Right) and 2048x2048 (Bottom) 
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Shadow Mapping Remix Approach 

  

 

 

Figure 68: SparseCity scene being rendered with SMRA using shadow mapping resolutions 

512x512 (Top Left), 1024x1024 (Top Right) and 2048x2048 (Bottom) 
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5.3. Performance Results 

 

Application Speed 

 

fps  SSM TSM PSSM VSM SMRA 

S
p
a
rs

e
C

it
y
 

3
3
K

 Δ
 

512x512 102 88 85 98 79 

1024x1024 98 84 78 96 64 

2048x2048 97 70 63 88 49 

T
re

e
L
in

e
 

1
1
1
K

 Δ
 

512x512 78 56 27 77 40 

1024x1024 74 54 26 74 38 

2048x2048 72 52 24 68 36 

Table 2: Rendering speed (in frames per second) for the most relevant algorithms. 

 

As we can see, TSM and VSM are very lightweight. The slowest algorithm, 

besides SMRA, is PSSM, due to its multiple steps. Since SMRA is based on 

these three contributor’s main strengths, with the algorithm complexity (created 

by mixing many complementary techniques, each one of the proposing 

additional computation to the standard algorithm), it turns also slower than the 

others, but still acceptable for real-time rendering with a noticeable visual 

improvement. 
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5.4. Conclusion 

From the results presented above, we can conclude that no shadow mapping 

algorithm flawlessly solves all the standard shadow mapping artifacts, since it 

always depend on the scene complexity (size, camera relative to the light) and 

also on hardware capability (texture sizes, filtering techniques). Despite of that, 

our algorithm Shadow Mapping Remix Approach, which is formed from the 

partitioning of TSM, PSSM and VSM behaves well, far better than any of the 

contributors, although introducing some light leakage from VSM. The expected 

performance penalty is considered acceptable. 
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6. Conclusions 

 

Our investigation focused in the analysis of the most relevant contributions for 

the technique Shadow Mapping. Shadow Mapping is one of the most popular 

techniques for real-time shadows generation, since its basic algorithm is 

relatively simple to implement, producing high quality shadows. Although, as an 

algorithm that is partially based on image-space operations, it is prone to 

aliasing problems. These problems can be introduced in many ways, such as 

relationship between the eye and the light, texture size, angle of the light 

relative to the surfaces being lit, precision errors, among others. Many 

algorithms have proposed different approaches to solving each of the shadow 

mapping issues. Some of them have themselves introduced other errors while 

alleviating others, but at the same time, served as a basis for other more recent 

algorithms that tackle the shadow mapping problems more efficiently. 

We have presented Shadow Mapping Remix Approach, an algorithm based on 

different, complementary approaches. From our investigation, we conclude that 

shadow mapping approaches can be split into three main categories: scene 

partitioning, perspective parameterizations and texture filtering.  

Parallel split shadow maps are efficient for large scale scenes, namely outdoor 

scenes providing an even distribution of the shadow map along a large range of 

depths. However, each split is performed with standard shadow mapping, 

hence it has the same issues, although to a lesser extent due to the partitioning 

of the space. PSSM also introduced a greedy adaptive frustum approach which 

was not used in our approach since it introduces the continuity problem.  

Trapezoidal Shadow Mapping provides a perspective parameterization that 

redistributes the resolution focusing on the areas near the camera. However 

this produces worse shadows far away from the camera than SSM, although 

these are not as relevant.  

Variance Shadow Mapping provides a mechanism to filter the shadows 

efficiently, taking advantage of the hardware enabled filtering operations the 
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shadows. It adds some softness to the shadows without incurring into a 

significant performance penalty. The main issue with VSM is the introduced light 

leakage.  

Based on these three complementary categories, we chose the most relevant 

contributions and extracted from them the most effective techniques for 

addressing the shadow mapping issues, merging all the extracted techniques 

into a more robust algorithm that is able to address most of the categories of 

problems with which shadow mapping is associated. There is a natural 

performance penalty, but it remains highly acceptable. The visual results show 

a more effective distribution of the resolution of the shadow maps, with a nice 

soft effect, although it introduces some light leakage associated with VSM. 

 

 

6.1. Future Work 

 

The redistribution of the resolution of the depth maps provides better results but 

still not optimal. The resolution of each split does not necessarily have to be the 

same. Exploring strategies to better distribute the resolution in this axis is still 

unchartered territory that may prove fruitful. 

Also the light leakage from VSM is too noticeable in some situations. Other 

filtering strategies should be explored to overcome this problem.
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Appendix A 

 

Trapezoid side lines computation 

Assuming the first d distance from the near plane as the focus region, the 

camera frustum is then truncated at that distance. Let PL be the point d distant 

from the near plane, lying on l in post-perspective space of the light L (Figure 

69). Let also d’ be the distance of PL from the top line of the trapezoid. The 

trapezoid is then constructed in order to contain E, so that the transformation 

matrix maps PL to a point on the line l of 80% of the shadow map. This 

approach is termed by TSM as the 80% rule. 

 

Figure 69: A 1D homogenous perspective projection problem to compute q 

 

For doing this, it is necessary to formulate a perspective projection problem in 

order to compute the position q on l, being q the center of projection on l, 

mapping PL to the so called 80% line ξ = y = 1,6  where the base line is y=-1 
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and the top line is y=1. Let also nf [λ] be the distance between base and top 

lines of the trapezoid. 

The distance qn  [η] from q to the top line will be computed through a 

homogenous perspective projection*: 

 





nfdnf

dnfdnf
qn






2
 

 

* For more details on this homogenous perspective projection, please refer to 

[TSM04]. 

From here, q is calculated and the two side lines of the trapezoid are extracted. 

These lines pass through q and touch the convex hull of E. 
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Web References 

 

[WwwARF] Fernandes A.R.; OpenGL @ Lighthouse 3D,  

http://www.lighthouse3d.com 

 

[WwwTSM] Martin T.; Trapezoidal Shadow Maps (TSM) – Recipe, 

http://www.comp.nus.edu.sg/~tants/tsm/TSM_recipe.html

http://www.lighthouse3d.comm/
http://www.comp.nus.edu.sg/~tants/tsm/TSM_recipe.html
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Models and Utilities 

 

City model generated using Citygen 

http://citygen.net/ 

 

Trees and other models from 3dVia 

http://www.3dvia.com 

 

 

http://citygen.net/
http://www.3dvia.com/
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