
Outubro de 2009

Universidade do Minho
Escola de Engenharia

João Abrantes de Oliveira

Analysis and Proposal of a Shadow
Mapping Remix Approach

Mestrado em Informática

Trabalho efectuado sob a orientação do
Professor Doutor António Ramires Fernandes

Outubro de 2009

Universidade do Minho
Escola de Engenharia

João Abrantes de Oliveira

Analysis and Proposal of a Shadow
Mapping Remix Approach

DECLARAÇÃO

Nome ____João Abrantes de Oliveira__

Endereço electrónico: _joao.abrantes.80@gmail.com_ Telefone: _966071667_ / _______________

Número do Bilhete de Identidade: __11807813__________

Título dissertação ? /tese ?

_ Analysis Analysis and Proposal of a Shadow Mapping Remix Approach_________

Or ientador(es):

___António Ramires Fernandes___

__ Ano de conclusão: __2009_________

Designação do Mestrado ou do Ramo de Conhecimento do Doutoramento:

______Mestrado em Informática__

Nos exemplares das teses de doutoramento ou de mestrado ou de outros trabalhos entregues para
prestação de provas públicas nas universidades ou outros estabelecimentos de ensino, e dos quais é
obrigatoriamente enviado um exemplar para depósito legal na Biblioteca Nacional e, pelo menos outro para
a biblioteca da universidade respectiva, deve constar uma das seguintes declarações:

1. É AUTORIZADA A REPRODUÇÃO INTEGRAL DESTA TESE/TRABALHO APENAS PARA EFEITOS DE
INVESTIGAÇÃO, MEDIANTE DECLARAÇÃO ESCRITA DO INTERESSADO, QUE A TAL SE
COMPROMETE;

2. É AUTORIZADA A REPRODUÇÃO PARCIAL DESTA TESE/TRABALHO (indicar, caso tal seja

necessário, nº máximo de páginas, ilustrações, gráficos, etc.), APENAS PARA EFEITOS DE
INVESTIGAÇÃO, , MEDIANTE DECLARAÇÃO ESCRITA DO INTERESSADO, QUE A TAL SE
COMPROMETE;

3. DE ACORDO COM A LEGISLAÇÃO EM VIGOR, NÃO É PERMITIDA A REPRODUÇÃO DE QUALQUER

PARTE DESTA TESE/TRABALHO

Universidade do Minho, ___/___/______

Assinatura : __

iii

Analysis and Proposal of a Shadow Mapping Remix Approach

Abstract

Virtual Environments creation is becoming increasingly demanding, trying to

portrait all the aspects of reality with great detail. Fast hardware innovation turns

possible the implementation of some real-time techniques that were not feasible

only a few years ago using a single, ordinary computer.

Shadow effects are one of the contributions for the realism improvement in

virtual environments. One of the most successful high-quality real-time shadow

effect techniques used is shadow mapping. This technique is efficient and

simple to implement, but its standard implementation has its drawbacks and

limitations, so it is necessary to improve this technique according to the type of

scene we want to show.

This work starts by analyzing the standard implementation of the shadow

mapping algorithm, pointing out its main issues. Then, the most relevant

contributions to solve/alleviate those issues are presented. For each

contribution it is shown which issues are tackled, how they are tackled, and,

where appropriate, the new issues that have arisen from the contribution itself.

Based on this analysis, the most relevant sections of each contribution are

highlighted and a new algorithm, built with pieces from the presented

contributions is proposed. This new algorithm, named Shadow Mapping Remix

Approach, attempts to combine the strengths of each contribution without

incurring into new issues, providing a more complete solution to the shadow

mapping problem.

The results show that, although as expected the proposed approach has a

lower performance than each individual contribution, its results are far superior

to any of the previous contributions.

iv

v

Análise e proposta de uma abordagem recombinada de

algoritmos de Shadow Mapping

Resumo

A criação de ambientes virtuais está-se a tornar cada vez mais exigente,

tentando assemelhar-se da realidade com grande detalhe. A rápida inovação

do hardware torna agora possível a implementação de certas técnicas em

tempo real.Os efeitos de sombras são uma das contribuições para a melhoria

no realismo em ambientes virtuais. Uma das mais bem sucedidas técnicas de

geração de sombras em tempo real de alta qualidade é o shadow mapping.

Para além de ser eficiente, é também simples de implementar. Porém a sua

implementação básica apresenta muitos inconvenientes e limitações.

O nosso trabalho começa por analisar a implementação básica do algoritmo de

shadow mapping, apontando os seus principais problemas. Seguidamente,

apresentamos as contribuições mais relevantes que resolvem/atenuam os

problemas apresentados. Para cada contribuição, são descritos os problemas

abordados e de que forma são resolvidos, sendo também apresentados, em

alguns casos, problemas que derivam dessa mesma contribuição. Tendo em

conta a análise efectuada, serão realçadas as secções mais importantes de

cada contribuição e um novo algoritmo, baseado nessas mesmas secções,

será proposto.

Este novo algoritmo, denominado por Shadow Mapping Remix Approach,

combina assim os pontos mais fortes de cada um dos algoritmos propostos

tentando não introduzir novos problemas, providenciando uma solução mais

completa para a problemática do shadow mapping.

Os resultados mostram que, apesar de ser esperado um decréscimo na

performance relativamente ao algoritmo apresentado, os nossos resultados

visuais são muito superiores a qualquer uma das contribuições apresentadas.

vi

Contents

1. Introduction ... 1

1.1. Motivation ... 6

1.2. Research Methodologies .. 6

1.3. Overview .. 8

2. Fundamentals ... 11

2.1. Basic Algorithm ... 11

2.2. Shadow Mapping Issues ... 12

2.2.1. Perspective Aliasing ... 13

2.2.2. Projection Aliasing .. 15

2.2.3. Texture Resolution Constraints .. 16

2.2.4. Self-Shadowing .. 17

2.2.5. Adaptive Light Frustum .. 22

2.2.6. Hard Shadows Binary Status.. 23

2.3. Percentage Closer Filtering Algorithm .. 24

2.4. Conclusion .. 26

3. State of the Art .. 27

3.1. Perspective Shadow Mapping .. 30

3.1.1. Implementation – General Case ... 32

3.1.2. Special Cases .. 33

3.2. Trapezoidal Shadow Mapping .. 37

vii

3.2.1. Reducing the resolution problem .. 38

3.2.2. Implementation... 41

3.2.3. Solving the Polygon Offset Problem ... 49

3.2.4. Special Cases .. 51

3.3. Parallel-Split Shadow Mapping ... 51

3.3.1. Split Scheme Discussion .. 53

3.3.2. Light frustum split ... 55

3.3.3. Implementation... 57

3.3.4. Discussion .. 57

3.4. Variance Shadow Mapping ... 59

3.4.1. Implementation... 60

3.4.2. Discussion .. 61

3.5. Conclusion .. 63

4. Analysis and Proposal of a Shadow Mapping Remix Approach 69

4.1. Analysis - Contributors’ Strongest Features .. 69

4.2. Remix Approach Proposal .. 71

4.2.1. The Detailed Algorithm ... 72

4.2.2. Artifacts Analysis .. 74

4.3. Discussion .. 75

4.3.1. Visualizing the implementation ... 76

4.3.2. Performance estimation ... 82

4.4. Conclusion .. 83

viii

5. Results .. 85

5.1. The Setup ... 85

5.2. Visual Results ... 86

TreeLine... 86

SparseCity ... 93

5.3. Performance Results ...100

Application Speed ...100

5.4. Conclusion ...101

6. Conclusions ...103

6.1. Future Work ...104

Appendix A ..105

Trapezoid side lines computation ...105

References ..107

Web References ..109

Models and Utilities ..110

ix

List of Abbreviations

SSM – Standard Shadow Mapping

PCF – Percentage Closer Filtering

PSM – Perspective Shadow Mapping

LiSPSM – Light Space Perspective Shadow Mapping

TSM – Trapezoidal Shadow Mapping

VSM – Variance Shadow Mapping

CSM – Convolution Shadow Mapping

ESM – Exponential Shadow Mapping

SMRA – Shadow Mapping Remix Approach

x

List of Figures

Figure 1: Hard Shadow (left) vs. Soft Shadow (right)... 2

Figure 2: A 2D diagram showing shadow volume geometry 3

Figure 3: Shadow Mapping depth comparison: z is the occluder’s distance to

the light. d is the distance of the surface to the light. p will be shadowed,

since z < d.. 4

Figure 4: Aliased shadow due to insufficient shadow map resolution 4

Figure 5: Hybrid Shadow Rendering Algorithm interaction. 5

Figure 6: Shadow created with a shadow map. Bottom-left square shows a

shadow map created from the light point of view. 12

Figure 7: Aliased shadow map, mainly due to insufficient resolution. The red

square, representing a texel in the shadow map, isn’t detailed enough to

represent the shadow of the woman’s shoulder. 13

Figure 8: While distant shadows will be detailed, nearby shadows will suffer of

insufficient resolution. This problem is caused by perspective aliasing. 14

Figure 9: The result of projection aliasing is insufficient shadow map resolution

for shadows in surfaces close to parallel to light-view direction. 15

Figure 10: The projection aliasing artifacts (dark stripes at building walls) in the

eye view (left image) are caused by too few samples of the cubes sides as

seen from the light view (right image). .. 16

Figure 11: A single 4096x4096 shadow map has not enough resolution (right) to

produce detail for a large-scale virtual environment with 8 square kms (left).

 .. 17

Figure 12: Sampling differences between light point-of-view and camera point-

of-view can lead to incorrect self-shadowing. ... 19

xi

Figure 13: Depth quantization due to shadow map finite precision also leads to

incorrect self-shadowing .. 20

Figure 14: The moiré patterns are caused by sampling conflicts and depth

quantization problems .. 21

Figure 15: Continuity problem due to adaptation of the light frustum to the scene

as viewed from the camera: The top picture shows a scene containing a

palm tree; as the camera moves, a big building enters the scene,

introducing drastic changes to the shadow map resolution. 23

Figure 16: Hard shadow (left) vs. filtered shadow map (right). 24

Figure 17: Standard Shadow Maps process (top) vs. Shadow Maps with

Percentage Closer Filtering process (bottom). ... 25

Figure 18: Standard shadow mapping (Top Left) and the respective shadow

map (Top Right) generated as if the scene was rendered from the light’s

point of view. Perspective Shadow mapping (Bottom Left) reduces aliasing

by applying a perspective transformation while generating the shadow map

(Bottom Right). ... 31

Figure 19: World View (left) is transformed to Post-perspective space (right) in

order to perform perspective shadow mapping. The shadow map pixels,

once projected on the scene surface will be evenly distributed, according to

the camera-view. .. 32

Figure 20: Mapping of lights in world space to post perspective space.

Directional lights in world space become point lights in post perspective

space (Top). Also, lights from behind the camera become inverted. Point

lights in world space remain point lights in post perspective space, except

for boundary cases (Bottom). ... 34

Figure 21: Computation of the scene’s (world-space) region of interest for

shadow map generation. .. 36

xii

Figure 22: Case where the region of interest for the shadow map generation

needs to be extended in order to avoid scene disfiguration introduced by

the post-perspective transformation. .. 37

Figure 23: The most similar to shape to a view-frustum as seen from the top is

noticeably a trapezoid. Using a square for the approximation, some non-

interest areas of the scene would be included in the transformation......... 39

Figure 24: Trapezoidal approximation vs. Bounding-box approximation 40

Figure 25: Side lines of the trapezoid (left) are calculated according to the 80%

rule (right), so that the stretching of trapezoid does not introduce sampling

artifacts (center) ... 42

Figure 26: Trapezoidal transformation: mapping trapezoidal corners to square

edge corners .. 43

Figure 27: TSM application of T1 .. 44

Figure 28: TSM application of R .. 44

Figure 29: TSM application of T2 .. 45

Figure 30: TSM application of H .. 45

Figure 31: TSM application of S1 .. 46

Figure 32: TSM application of N .. 46

Figure 33: TSM application of T3 .. 47

Figure 34: TSM application of S2 .. 47

Figure 35: TSM application of NT .. 48

Figure 36: Scene shadowed with TSM using standard polygon offset problem

(large bias). .. 49

Figure 37: Scene shadowed with TSM after polygon offset problem tackling. . 50

xiii

Figure 38: The view frustum is split into three parts, each of them will be

rendered to a different shadow map with the same resolution 52

Figure 39: Although PSSM assumes directional light sources, point light

sources can be converted once in light's post-perspective space............. 52

Figure 40: Split planes distribution along the view frustum z axis 53

Figure 41: Split schemes presented by Parallel-Split Shadow Maps 55

Figure 42: Light’s frustum split (Wi) computation according to the respective

view split frustum Vi and its bounding box Bi .. 56

Figure 43: Split discontinuity problem .. 58

Figure 44: Scene rendered with a 512 shadow map: (left) PCF 4x4 vs. (right)

VSM ... 62

Figure 45: Scene shadow rendered with VSM suffers of light bleeding (left). The

same scene shadow is rendered using Standard Shadow Mapping (right).

Note that both images have their contrast levels increased so that artifacts

are more perceivable. .. 62

Figure 46: A scene with projection aliasing, right before the projection aliasing

removal technique is applied (top) and after the technique is applied

(bottom). .. 75

Figure 47: Scene rendered without shadows .. 76

Figure 48: Scene rendered with SSM 512x512 ... 77

Figure 49: Trapezoidal approximation of the view frustum, as seen from the light

 .. 77

Figure 50: Shadow Map generated using SSM (left) and TSM (right) 78

Figure 51: Scene rendered with TSM 512x512 ... 79

Figure 52: PSSM scene splits, as seen from the camera 79

xiv

Figure 53: Scene rendered with PSSM 3x512x512 ... 80

Figure 54: Scene rendered with PSSM and TSM 3x512x512 80

Figure 55: Scene rendered using VSM 512x512 ... 81

Figure 56: Scene rendered using SMRA 3x512x512 81

Figure 57: TreeLine rendered with SMRA ... 86

Figure 58: TreeLine scene being rendered with SSM using shadow mapping

resolutions 512x512 (Top Left), 1024x1024 (Top Right) and 2048x2048

(Bottom) ... 87

Figure 59: TreeLine scene being rendered with TSM using shadow mapping

resolutions 512x512 (Top Left), 1024x1024 (Top Right) and 2048x2048

(Bottom) ... 89

Figure 60: TreeLine scene being rendered with PSSM using shadow mapping

resolutions 512x512 (Top Left), 1024x1024 (Top Right) and 2048x2048

(Bottom) ... 90

Figure 61: TreeLine scene being rendered with VSM using shadow mapping

resolutions 512x512 (Top Left), 1024x1024 (Top Right) and 2048x2048

(Bottom) ... 91

Figure 62: TreeLine scene being rendered with SMRA using shadow mapping

resolutions 512x512 (Top Left), 1024x1024 (Top Right) and 2048x2048

(Bottom) ... 92

Figure 63: SparseCity rendered with SMRA .. 93

Figure 64: SparseCity scene being rendered with SSM using shadow mapping

resolutions 512x512 (Top Left), 1024x1024 (Top Right) and 2048x2048

(Bottom) ... 94

Figure 65: SparseCity scene being rendered with TSM using shadow mapping

resolutions 512x512 (Top Left), 1024x1024 (Top Right) and 2048x2048

(Bottom) ... 96

xv

Figure 66: SparseCity scene being rendered with PSSM using shadow mapping

resolutions 512x512 (Top Left), 1024x1024 (Top Right) and 2048x2048

(Bottom) ... 97

Figure 67: SparseCity scene being rendered with VSSM using shadow mapping

resolutions 512x512 (Top Left), 1024x1024 (Top Right) and 2048x2048

(Bottom) ... 98

Figure 68: SparseCity scene being rendered with SMRA using shadow mapping

resolutions 512x512 (Top Left), 1024x1024 (Top Right) and 2048x2048

(Bottom) ... 99

Figure 69: A 1D homogenous perspective projection problem to compute q ..105

xvi

List of Tables

Table 1: Problems present (red) vs. problems tackled (green) for each of the

presented techniques. Note: (N.A.) means the current algorithm does not

suffer from the referred artifact ... 66

Table 2: Rendering speed (in frames per second) for the most relevant

algorithms. ..100

1

1. Introduction

Although graphics hardware do not provide shadows by default, shadows are a

precious element for 3D perception of a scene – they provide visual cues that

help to perceive the geometric relationship between objects, clarifying objects’

position, size and geometry. Even though we don’t stop to think about what

shadows really mean for our comprehension of the surroundings, we

immediately notice that a 3D scene without shadows lacks life and realism. This

is why calculation of shadows is a very important component when representing

virtual environments.

At first, the main Graphics’ APIs (OpenGL, Direct3D) did not support

mechanisms for shadows generation, so their implementation was made 100%

by software.

With the increasingly growth of functionality of GPUs, these APIs enabled the

possibility of real-time shadowing. The hardware performance improvement has

been encouraging the usage of these mechanisms, so the research around this

subject has grown.

Naively, a shadow is a binary status: a point is either «in shadow» or not – there

is no penumbra. This corresponds to hard shadows.

Hard Shadows suffer of a problem which is the binary status described above.

This binary status produces very noticeable shadow edges, being easily noticed.

In light to this problem arises a technique called soft shadows: this technique

applies a soft transition between the shadowed and unshadowed areas,

creating a smooth transition between lit and unlit surfaces (see Figure 1).

2

Figure 1: Hard Shadow (left) vs. Soft Shadow (right)

Although there are some filtering techniques for applying to the hard-shadows,

these rely on a fixed-size penumbra basis, while soft shadows enable a

variable-size penumbra, which may be dependent on light and occluder

distance to the projected shadow surface. For a more thorough discussion

about this topic, consult [SRTSSA03] and [ASSMT08].

As to Hard-Shadows the most popular real-time generation techniques that

have emerged over time are Shadow Volumes and Shadow Maps.

Shadow volumes approach [SACG77] uses the geometry to produce the exact

volume of the shadow, rendering boundaries without aliasing. This technique

works in object space, being required a full connectivity information of all

polygons in order to produce the silhouette of each shadow caster (see Figure

2). Therefore, the scene complexity directly influences the application

performance.

3

Figure 2: A 2D diagram showing shadow volume geometry

Shadow Maps approach [CCSCS78] distinguishes itself amongst other

algorithms thanks to its implementation simplicity. This algorithm works partially

in image space, so the performance hit is less dependent on scene complexity

and the possibility of being taken from arbitrary locations with no performance

hits turns this algorithm very popular. Shadow mapping is basically a two-pass

algorithm. In the first pass, the scene is rendered from the light's point of view,

the depth buffer stores the distance of the scene to the light (creating the so

called shadow map). In the second pass, the scene is rendered from the eye's

point of view, and each pixel is again transformed into the light's view space,

performing a comparison between its distance to the light with the value stored

in the shadow map: If the distance value of the pixel is larger than the depth

value stored in the shadow map this pixel is shadowed, otherwise, it is not

shadowed (see Figure 3).

4

Figure 3: Shadow Mapping depth comparison: z is the occluder’s distance to the light. d is the

distance of the surface to the light. p will be shadowed, since z < d.

Since the algorithm relies on two different perspectives it suffers from aliasing

problems: the shadow map resolution may be insufficient for the scene being

rendered and stretching the shadow map to the needed space will introduce

pixelated shadows (see Figure 4).

Figure 4: Aliased shadow due to insufficient shadow map resolution

There is also a hybrid algorithm for rendering hard shadows [EHSRA04],

combining the strengths of shadow maps for identifying the pixels in the image

5

that lie near shadow discontinuities and shadow volumes for ensuring accurate

shadow edges at these discontinuities. This approach simultaneously avoids

the edge aliasing artifacts of standard shadow maps and avoids the high fill rate

consumption of standard shadow volumes.

Figure 5 shows this hybrid algorithm at work. Red and blue pixels are non-

silhouette pixels while black and green pixels are shadow silhouette pixels.

Hybrid Shadow Rendering Algorithm uses Shadow Maps for determining which

pixels are in shadow (red) and which ones are not (blue) and uses Shadow

Volumes for determining which ones are in shadow (black) and which ones are

not (green).

Figure 5: Hybrid Shadow Rendering Algorithm interaction.

This thesis focuses on Shadow Maps, presenting the general algorithm and

some of the most relevant proposals that try solve its artifacts, improving the

quality of the generated shadows. Based on these algorithms, a new proposal

will be presented, where some components of the presented algorithms will be

used and recombined in order to achieve a better quality of the projected

shadows at the best possible performance. As to soft shadows, its

implementation is complementary to the hard shadows generation and is out of

the scope of this investigation.

6

1.1. Motivation

As stated before, although Shadow Maps are a very straight-forward technique,

there are issues that result directly from the algorithm’s design. Summarily, we

can point out the following: perspective aliasing, projection aliasing, surface

self-shadowing, texture resolution constraints, shadows discontinuity, binary

shadow status representation.

Over time, many algorithms have been proposed, each one of them presenting

different (and sometimes complementary) solutions to some of these problems.

In a general way, we can identify the area of action for each one of these

algorithms as one of the following:

 Perspective Correction;

 Texture Filtering;

 Scene Partitioning.

Although there are notorious improvements in the presented algorithms, there

are still limitations associated to each one of them: they focus on a specific

shadow mapping artifact, not covering the whole problematic of shadow maps

limitations.

Our work is to identify each of the shadow maps algorithm limitations, present

algorithms based on shadow maps that solve some of these limitations

(comparing different solutions for the same problem) and finally propose a

solution based on parts of each of the best complementary approaches. This

remix approach will be able to render a large scene in real-time, providing high

resolution shadows for all perceivable parts of the scene, as viewed from the

camera.

1.2. Research Methodologies

This research will start with a bibliographic research in order to evaluate the

state-of-the-art in Shadow Mapping techniques. This investigation will be

complemented with a study of some terms and techniques required for the

7

implementation of shadow maps, as matrix transformations, blending, texture

mapping, texture filtering, frame buffers, amongst others.

Based on this investigation and we will implement an OpenGL based

application capable of comparing all the shadow mapping techniques presented

in this thesis, including the one we propose – this application will be able to

provide both performance and visual results in real-time for the same scene, by

swapping between algorithms, shadow maps resolutions, cameras, light

position, and logging the results.

Given this, we will start with a first version, where a scene will be displayed with

standard shadow mapping and where all the theoretically identified artifacts are

present.

In a second step, we will evaluate which algorithms are more suitable for

correcting each class of the artifacts and implement them, comparing the results

with the standard algorithm (also called uniform shadow mapping).

After implementing all the relevant algorithms and comparing them to the

standard shadow mapping, we will compare the algorithms between themselves,

in an attempt to fully grasp, together with the theoretical basis, what are their

strengths and limitations.

In a final phase, we will implement our algorithm based on the strong aspects of

all the studied algorithms and compare it with the previously implemented

approaches.

According to this, the research methodology that better seems to suit to our

plans is the one designated as Action-Research. This methodology belongs to a

family of methodologies action (or changing) and research (or understanding) at

the same time.

Initially it will be made a cyclic process (or in spiral) that alternates between

action and critical analysis, later it will happen an understanding of the methods

and data, being continuously improved.

8

This is an emerging process that acquires its shape with the knowledge growth

and is also an iterative process that converges for a better perception of what

actually happens.

The Action-Research is carried out as follows:

 Problem identification;

 Problem analysis – find ways to solve it;

 Implementation of improvement proposals;

 Evaluation of the implementation of improvement proposals;

 Modification of the learning methods;

 Re-definition of the Action-Research methods.

Thus, with this thesis, we are looking for an algorithm that answers the following

challenges:

 Solve severe aliasing present in Standard Shadow Mapping approach;

 Filter shadow maps in order to smooth the shadow silhouettes;

 Achieve the above results with the maximum performance possible,

having in mind that shadow mapping is used for real-time rendering.

1.3. Overview

The remaining of this thesis is organized as follows. Chapter 2 presents the

fundamentals for understanding the following chapters. It will be given a

description of the Shadow Mapping algorithm, stating all its problems/limitations.

It will also be given an introduction to shadow map filtering, referring to

Percentage-close Filtering.

Chapter 3 presents the state of the art relatively to Shadow Mapping algorithms.

For each algorithm, we explain the approach, discuss their contribution to

standard shadow mapping, identifying the class of artifacts it reduces, and

present its limitations.

9

Chapter 4 presents our algorithm’s implementation: “Shadow Maps Remix

Approach”. We will explain how the pieces of some of the algorithms present in

Chapter 3 are reconnected, giving birth to a new, more complete algorithm,

capable of presenting improved shadow quality for large-scale environments.

Chapter 5 shows the results of each implementation, comparing the results with

the other algorithms, including Standard Shadow Maps as worst case scenario

and Shadow Maps Remix Approach as the proof of concept.

Chapter 6 is the conclusion, where we summarize all our efforts and present

future research directions regarding this investigation.

10

11

2. Fundamentals

In this chapter we will describe the standard shadow maps algorithm,

presenting its artifacts. It will also be given a brief description of the percentage-

close filtering technique, which in addition to the current hardware support for

this feature, is the basis for all shadow mapping filtering techniques presented

in this thesis.

2.1. Basic Algorithm

Shadow mapping (SSM) was introduced by Lance Williams [CCSCS78] in 1978

and has been extensively used since then, in both offline and real-time

rendering.

Shadow mapping is a two-pass algorithm: in a first pass the scene is rendered

from the light point of view, being gathered the depth values in the so called

shadow map (see Figure 6). These depth values represent the distance from

each visible point (according to the light point of view) to the light source;

Afterwards, in the second pass the scene is rendered from the camera point of

view, each pixel being transformed into light space and its distance to the light

compared to the value stored in the shadow map. The comparison is made for

shadow determination: If the stored value is smaller than the distance to the

light, the pixel is shadowed; otherwise, the pixel is not in shadow.

12

Figure 6: Shadow created with a shadow map. Bottom-left square shows a shadow map

created from the light point of view.

2.2. Shadow Mapping Issues

Shadow mapping suffers of many problems, mostly due to aliasing issues

relative to the nature of the algorithm itself. These aliasing errors are mainly

caused by the under-sampling (insufficient shadow map resolution). Such

aliasing errors can be further classified into perspective aliasing and projection

aliasing [PSM02].

In Figure 7 the aliasing of shadow maps can be seen. It is noticeable the lack of

resolution as square blocks refer to one texel of the shadow map, magnified in

eye-space. It is also clear from the image that the resolution problem is more

noticeable near the point-of-view of the camera because the shadow map texels

in far-away from the camera, when viewed from the camera’s point of view, are

small enough to provide sufficient shadow resolution for far away objects.

Below, we present a list of issues related to shadow mapping limitations. Some

are applicable to every virtual environment, while others are noticed especially

in large-scale or outdoor environments:

13

Figure 7: Aliased shadow map, mainly due to insufficient resolution. The red square,

representing a texel in the shadow map, isn’t detailed enough to represent the shadow of the

woman’s shoulder.

2.2.1. Perspective Aliasing

Perspective aliasing is a common problem with standard shadow maps

considering a perspective eye view. A perspective view shows nearby objects

larger than distant objects, where distance is relative to the camera. The light

space, in which the standard shadow map is computed, is usually taken from a

different point of view - it does not incorporate this information.

Considering a directional light, an object is stored with a fixed resolution in the

shadow map, regardless of the distance to the eye. The outcome is a shadow

resolution that does not match the resolution of the perspective camera; hence

it is clearly insufficient for nearby objects (relative to the camera). For distant

objects in eye space, the problem is not so noticeable. In Figure 8, the shadow

map is represented by a grid (in the top); the space between the grid strips

represents a texel. We assume the light direction as straight top-down. The

14

camera is observing this scene from the side. The shadow resolution applied to

the shadow map created in light-space is not equally distributed in eye-space,

which leads to potentially over-sampling (wastage of resolution) for far away

shadows and under-sampling (insufficient resolution) for the shadows near the

camera.

As to the different light configurations, we can have point lights and directional

lights. For directional lights, this mismatch has a maximum if the light direction

is perpendicular to the view direction, while the minimum mismatch occurs if the

light direction and the camera are facing in the same direction (are parallel to

each other). For point lights the problem becomes more pronounced as the

light’s direction moves away from the camera viewing direction, having its most

pronounced mismatch when the light and camera are facing each other. This is

known as the dueling frusta problem.

Figure 8: While distant shadows will be detailed, nearby shadows will suffer of insufficient

resolution. This problem is caused by perspective aliasing.

15

2.2.2. Projection Aliasing

When a surface is roughly parallel to the light direction, its depth information will

be sampled sparsely in the shadow map, resulting in the so called projection

aliasing error. In Figure 9, the shadow map is represented by a grid (in the top),

being a texel represented by the space between the grid strips; we also assume

the light direction as straight top-down. As the object’s side is close to parallel to

the light’s view direction, a simple shadow map texel will gather the depth

information for almost the whole side surface of the object. Thus, at eye-view,

we will see incorrect shadows due to the projection of too many pixels to a

single shadow texel.

Another issue regarding to projection aliasing is related to its large temporal

discontinuity on camera movement. This will lead to severe shadow flickering

while moving around in a scene, disturbing the intended effect of shadows.

Figure 9: The result of projection aliasing is insufficient shadow map resolution for shadows in

surfaces close to parallel to light-view direction.

Projection aliasing is only dependent on the angle between the light direction

and the surface normal (as opposed to perspective aliasing, where the angle

between camera and light direction dictates the amount of aliasing).

16

Thus, projection aliasing will be largest if the surface normal is perpendicular to

the light direction – in this case the surface projected into the shadow map has

no area, leading to lack of depth information stored, resulting in arbitrary

shadowing results and infinite aliasing projection error. If light direction is

parallel to the surface normal, then the opposite case happens, leading to a

maximum of depth information in the shadow map, avoiding projection aliasing.

Figure 10: The projection aliasing artifacts (dark stripes at building walls) in the eye view (left

image) are caused by too few samples of the cubes sides as seen from the light view (right

image).

As seen in Figure 10, light direction is straight top-down and buildings’ walls are

perpendicular to the light direction. This is the extreme case of projection

aliasing mentioned above, as the lack of depth information for buildings walls

leads to arbitrary shadowing. The shadow should cover all the buildings walls,

but instead, dark stripes appear over the walls. Also, while moving the camera,

these stripes shape will change randomly, causing unwanted flickering effects.

2.2.3. Texture Resolution Constraints

In order to produce high-quality shadowing effects for large-scale virtual

environments, a very large shadow map resolution is required. Current

hardware still imposes a limitation to the maximum texture resolution. Hence it

is insufficient to use a single huge shadow map. Consider for instance an

17

outdoor scene with an area of 1 square km. If we select a shadow map

resolution of 1024x1024, and considering a directional light perpendicular to the

ground, each texel would occupy an area of roughly 1 square meter. Even

considering the most up to date hardware, which allows for 8192x8192 as the

maximum resolution for a texture, a single texel would occupy a square with

more than 12 centimeters on the side.

Figure 11: A single 4096x4096 shadow map has not enough resolution (right) to produce detail

for a large-scale virtual environment with 8 square kms (left).

As shown in Figure 11 (above), although a large scene (8 square kms) can be

rendered from far-away with satisfactory shadows (left picture), when closing up

the camera (right picture) it is noticeable the lack of resolution of a large shadow

map (4096x4096).

2.2.4. Self-Shadowing

Shadow mapping process has two instants where sampling takes place:

First when the shadow map is created viewing the scene from the light point-of-

view. In this case, the depth information is stored in a regular grid.

18

Second, when the scene is rendered through the eye-point-of-view and the

fragments are calculated, having to fit the output resolution. In many cases,

these two processes lead to different samplings of the scene data.

In Figure 12, the shadow map is represented by a grid (in the top); the space

between the grid strips represents a texel and again, we assume the light

direction as straight top-down. The sampling is represented through the vertical

lines starting in the middle of the corresponding texels of the shadow map. The

camera is located at the side. As described in the picture, the distance from eye

point-of-view should be equal to the depth stored in the shadow map, but in this

case, observer’s distance is calculated as greater than the shadow depth

sampled from the light point-of-view. The result will be the polygon erroneously

shadowed by itself, which is obviously wrong. This artifact happens often in

shadow mapping process and is known as self-shadowing, also called “shadow

acne”.

Depth quantization problems also lead to self-shadowing. The shadow map is

discretized, hence the information that is stores in the shadow map is not the

exact depth, but a floating point (sometimes an integer) representation of limited

precision. This representation often leads to conflicts. When a texel receives the

depth information, it may not be represented exactly, being always rounded to

the nearest depth available for the current precision.

19

Figure 12: Sampling differences between light point-of-view and camera point-of-view can lead

to incorrect self-shadowing.

In Figure 13, the shadow map is again represented by a grid (in the top); the

space between the grid strips represents a texel and we assume the light

direction as straight top-down. The vertical lines coming from the light source

may not assume their exact length, but just certain lengths that are limited to the

precision of the shadow map.

20

Figure 13: Depth quantization due to shadow map finite precision also leads to incorrect self-

shadowing

The light green horizontal lines represent the depth values able to be stored in

the shadow map. Therefore, the depth that is captured from the shadow map for

the depth comparison is not the exact depth of the geometry.

Figure 14 shows the results of incorrect self-shadowing in a large scene.

Although the expected shadows are well represented, we can notice visible

patterns of shadowed/unshadowed regions in places that should be mostly

unshadowed (e.g.: on the ground).

21

Figure 14: The moiré patterns are caused by sampling conflicts and depth quantization

problems

In light to this problem, a technique that is usually adopted is to create the

shadow map with front face culling enabled and then render the scene with

back face culling enabled, so that these conflicts do not take place anymore.

Unfortunately, most of the times, 3D models are not as solid as they appear to

be (not including some back faces that are supposed to exist in a real model),

leading to light leaking artifacts, in the boundaries between the model and the

ground.

Thus, using the face culling technique for avoiding self-shadowing is not enough

to remove this artifact.

22

2.2.5. Adaptive Light Frustum

The adaptive light frustum procedure increases the effective shadow map

resolution by focusing as much as possible the shadow map on the objects

within the view frustum as seen from the light. This is achieved by adapting the

frustum from the camera that is capturing the shadow map so that it is as tight

as possible around the visible geometry. Nevertheless, in large scenes the

empty gaps between objects may still represent a waste of great amount of

resolution.

An issue that arises from the adaptive light frustum is the sudden change in

shadow resolution, also known as the continuity problem, resulting in the

flickering of shadows as the camera moves around. This problem may be

noticeable as large shapes enter the view frustum due to camera movements,

or when occluders not present in the view frustum come into play. The frustum

of the light may be significantly altered to include all the new geometry and its

increase in size may result in a loss of shadow map or depth resolution.

Figure 15 represents the continuity problem explained above, when a drastic

change in the scene as viewed from the camera point-of-view (a big object is

added or removed from the scene) changes the resolution of the shadow map

due to the adaptive light frustum procedure.

23

Figure 15: Continuity problem due to adaptation of the light frustum to the scene as viewed from

the camera: The top picture shows a scene containing a palm tree; as the camera moves, a big

building enters the scene, introducing drastic changes to the shadow map resolution.

2.2.6. Hard Shadows Binary Status

As said before, the crispy boundaries of the hard shadows make them

unrealistic due to the total absence of penumbra. In the limit, it can lead to

24

erroneous perception of the scenario, mistakenly perceiving the dark shadow as

an object instead of what a shadow is: absence of direct light projected on a

surface. Figure 16 shows the difference between a shadow mapping process

with no filtering and a shadow mapping with filtering applied (which is different

from soft-shadowing in the sense of umbra/penumbra generation).

Figure 16: Hard shadow (left) vs. filtered shadow map (right).

2.3. Percentage Closer Filtering Algorithm

Percentage Closer Filtering was proposed by W. Reeves [PCF87] in 1987.

This technique calculates the percentage of the surface that is closer to the light

and therefore not in shadow, avoiding the already mentioned binary status of

hard shadows. This is done by performing multiple shadow map comparisons

per pixel and averaging the results, outputting the percentage visibility value as

a shadow indicator.

Figure 17 shows how percentage closer filtering works, as opposed to standard

shadow mapping with no filtering process. While rendering the scene, for each

pixel it will be made a comparison whether it is in shadow or not. In case of PCF,

it will rely on a kernel surrounding the pixel, being stored in each element of the

grid the boolean result of the depth comparison between the surface distance

and the shadow map (as with standard shadow mapping). After all the elements

25

of the kernel are calculated, the intensity of the shadow will be the percentage

of shadowed elements in the kernel. That being said, it will be easy to

understand that, at shadow boundaries, the binary status will disappear, giving

place to a smoother transition between shadowed surface and lit surface

(smoothness will depend on the kernel size).

Figure 17: Standard Shadow Maps process (top) vs. Shadow Maps with Percentage Closer

Filtering process (bottom).

For some years now, most graphics cards support PCF, which greatly

enhances shadow quality when using shadow mapping in real-time rendering.

26

2.4. Conclusion

In this chapter we introduced shadow mapping as an important technique to

enhance realism of virtual environments. We have also discussed the various

problems associated to shadow mapping: perspective aliasing, projection

aliasing, texture resolution, self-shadowing, adaptive light frustum and hard

shadows binary status. Finally, we also introduced the basic filtering technique

Percentage Closer Filtering, which is also supported by most graphics cards.

New algorithms have been proposed, solving distinct issues (as described

earlier). All approaches are intended to be real-time rendering, based on

standard shadow mapping, updating shadow maps in every pass. These

techniques will be presented in the next chapter

27

3. State of the Art

In this section we start with a brief approach over the most important

contributions for the field of shadow mapping. Then, we will choose the most

relevant approaches for our study and analyze them more thoroughly. We

finalize by presenting the main advantages and limitations of the analyzed

algorithms.

As said before, Shadow Mapping suffers of some problems, mainly aliasing

issues. This can be improved by the addition of other techniques to the basic

shadow mapping algorithm. Solutions range from generating the shadow map in

post perspective space, constructing hierarchical and adaptive shadow maps to

increase the resolution where needed, to scene partitioning into multiple

shadow maps and finally shadow map filtering.

All the algorithms mentioned below will work as improvements to the basic

shadow mapping algorithm. Some are complementary, while others are

different approaches for the same problem.

A number of papers have tried to solve perspective aliasing using perspective

transformations. Perspective re-parameterization has been first proposed in

Perspective Shadow Maps [PSM02], in which both the scene and the light

source are transformed to the post-perspective space, which is the space after

perspective transformation (also known as normalized device coordinate space).

The shadow map is generated in this space by rendering a view from the

transformed light source to the transformed view frustum. Since the shadow

map sees the scene after perspective projection, perspective aliasing can be

significantly decreased. Despite its drawbacks, this paper has inspired and

opened the door to more general shadow map re-parameterization approaches.

Light Space Perspective Shadow Maps [LiSPSM04] is a work that avoids some

of the PSM inconveniences and leverages the aliasing distribution over the

whole depth range. Trapezoidal Shadow Maps [TSM04] is another perspective

re-parameterization and very similar in concept to PSM and LiSPSM. The

28

essential difference between TSM and prior perspective parameterizations is

that a different perspective warping transform is used in TSM, such that the

user-focused portion at the front of the frustum is mapped to the 80% line on the

shadow plane.

Adaptive Shadow Maps [ASM01] reduces aliasing by storing the shadow map

as a hierarchical grid structure. By evaluating the contributions of shadow map

pixels to the overall image quality, it is refined to create higher resolution at

regions that contain shadow boundaries. Artifacts at those critical regions are

thus greatly reduced without requiring a flat shadow map of huge resolution.

However, the traversal and refinement operations require many rendering

passes and aren't feasible for real-time applications for current graphics

hardware.

Practical Shadow Mapping [PraSM02] proposes bounding box calculation for

the view frustum. The tight fitting frustum makes the shadow map focusing to

the visible part of the scene, enabling an available shadow map resolution

increase.

Plural Sunlight Depth Buffers Shadow Mapping [PluSM01] approach uses a

dynamic texture array comprised of multiple shadow maps with varying

resolutions. It divides the view frustum into several parts to approximate the

continuously varying of the resolution along the distance from the view point.

Parallel-Split Shadow Mapping [PSSM06] proposes to divide the viewing

frustum into multiple splits, generating a shadow map for each one, improving

the overall scene shadows resolution. The main differences to [PluSM01] are

the uniform resolution distribution along the shadow map and the split scheme,

which is efficiently calculated according to a pre-determined set of rules, instead

of the complicated and time-consuming computations for optimal lengths of split

parts of [PluSM01] (which are generated using recursive searching procedures).

Percentage Closer Filtering [PCF87] is the first approach to alleviate projection

problems by filtering shadow map texture. Extending the concept of classical

bilinear filtering used in texture sampling, it enables anti-aliasing around shadow

boundaries. PCF determines the coverage of a camera pixel in light space and

29

applies the shadow test to a number of samples distributed over this region to

get a filtered result.

Variance Shadow Mapping [VSM06] is a probabilistic approach that supports

pre-filtering, and additional convolutions. When the shadow map is calculated,

the z and z-squared values are stored, being used during the render to estimate

the probability of a point being lit or not. It may produce noticeable high

frequency light leaking artifacts for scenes with a high depth complexity.

Convolution Shadow Mapping [CSM07] achieves anti-aliased shadows by

approximating the shadow test with a Fourier series expansion. Depending on

the truncation order, z-values are converted into several basis textures. In the

final rendering, pre-filtered texture samples are fetched to reconstruct a

smoother shadow. CSM have the same desirable properties as VSM, but do not

exhibit such severe light leaking artifacts. However, a reliable shadow test

requires a high truncation order, which in turn increases memory consumption

and filtering as well as reconstruction effort. This makes CSM less attractive for

practical and real-time applications.

Finally, Exponential Shadow Mapping [ESM08] presents an algorithm that

allows efficient pre-filtering, being inspired by CSM, but using a single-term

approximation, while CSM uses typically 16 terms. Besides ESM not suffering

from light leaking of VSM and being much faster than CSM, it can also exploit

latest texture filtering modes supported by today’s graphics hardware (such as

anisotropic filtering).

For a more thorough analysis of part of the existing algorithms, please refer to

[SSA90] and [STIRTA04].

30

3.1. Perspective Shadow Mapping

Perspective Shadow Mapping (PSM) is the first algorithm suggesting shadow

map post-perspective transformations resulting on a non-uniform distribution of

the shadow map. This distribution enables high resolution shadows near the

camera, and lower resolution as the shadows move away from the viewpoint.

A standard shadow mapping produces aliased shadows, and this effect is more

perceivable near the camera due to the uniform distribution of the depth.

Perspective shadow mapping reduces aliasing by applying a perspective

transformation while generating the shadow map, such that nearby objects have

increased shadow resolution, while faraway objects have reduced shadow

resolution, which is less perceivable because of the distance to the camera.

Perspective shadow maps are computed in post-perspective space of the

camera. This perspective is obtained by transforming the world to a

perspective-distorted space where proximity produces objects enlargement and

distance enables objects shrinking (see Figure 18).

31

Figure 18: Standard shadow mapping (Top Left) and the respective shadow map (Top Right)

generated as if the scene was rendered from the light’s point of view. Perspective Shadow

mapping (Bottom Left) reduces aliasing by applying a perspective transformation while

generating the shadow map (Bottom Right).

PSM distinguishes itself from SSM mostly by using a 4x4 matrix which

represents the shadow map projection with homogeneous coordinates.

It projects the camera view frustum to a unit cube, being the final image

generated by a parallel projection of this cube along z. Thus, the first step is to

map the scene to post-perspective space and generate a shadow map in this

space. This is done by rendering a view from the similarly transformed light

source to the unit cube (Figure 19).

32

Figure 19: World View (left) is transformed to Post-perspective space (right) in order to perform

perspective shadow mapping. The shadow map pixels, once projected on the scene surface will

be evenly distributed, according to the camera-view.

3.1.1. Implementation – General Case

Although PSM relies on a relatively simple transformation to the standard

shadow mapping algorithm, this technique has many particular cases with non-

trivial resolutions where the general case in not enough to produce detailed,

reliable shadows. These special cases will be briefly addressed later in this

section.

As for the general case, this algorithm is composed of two steps, which are

described below:

1st step - Shadow Map Generation

In order to create the shadow map, it if first needed to apply a post-perspective

transform to the camera view. Let MV and MP be the model-view and projection

matrices for the eye-view, respectively. The post-perspective transform M for

the eye-view is:

33

M = MV * MP

Also, the light source should be transformed similarly.

Let LV and LP be the model-view and projection matrices for the light view,

respectively. Then, the post-perspective transform L for the light-view is:

L = LV * LP

Having M and L, it is now possible to calculate the transform matrix, which is:

L’ = M * L

Using L’ for the perspective transform, the shadow map is now created.

2nd step – Rendering the scene

While rendering the scene, each fragment of the world should be multiplied by

the inverse of L’ for getting the texture coordinate of the shadow map. Then, the

standard shadow map comparison for shadow determination is used.

3.1.2. Special Cases

In order to produce reliable shadows, some scenarios that are not covered by

the general case have to be considered. These cases relate to the light source

type and its position relative to the view frustum, also taking into account all

objects casting shadows into the view frustum, even if they are not present in

that view. A short overview will now be presented, for a more thorough analysis

please refer to [PSM02].

34

Directional/Point Light Sources

Directional light sources can be considered as point lights at infinity and the

perspective mapping moves these sources to a finite position. The settings for

all possible cases are shown in Figure 20, where the top cases are related to

transformation of directional light sources, and the bottom cases refer to

transformation of point light sources.

Figure 20: Mapping of lights in world space to post perspective space. Directional lights in world

space become point lights in post perspective space (Top). Also, lights from behind the camera

become inverted. Point lights in world space remain point lights in post perspective space,

except for boundary cases (Bottom).

35

PSM results will depend greatly on how lights are positioned and oriented

relative to the camera. For directional light sources, the success is proportional

to the light direction perpendicularity to the camera direction. As the smallest

angle formed between these two directions decreases, also the advantages of

the PSM approach decrease (if the angle is 0, then PSM converges into

Standard Shadow Maps).

As for point light sources, the algorithm effectiveness is also proportional to the

distance between the point light and the view frustum. The further away from

the view frustum the more similar a point light is to a directional light.

Including all Objects Casting Shadows

In addition to objects within the view frustum, a shadow map must contain all

potential occluders outside the frustum that cast shadows onto the visible part

of the scene.

Consider the scene present in Figure 21 (below). Let S be the bounding shape

of all objects present in the scene, V be the view frustum as seen from the

camera and L be the view frustum as seen from the light source. The light

source is positioned at position l.

In order to compute the (world-space) region of interest H for shadow map

generation, it is first needed to generate a convex hull M of all rays emanated

from l to V. Then, H will be the result of the intersection of M with the scene

bounding shape S and light frustum L:

H = M ∩ S ∩ L , where M = convex_hull(l U V)

36

Figure 21: Computation of the scene’s (world-space) region of interest for shadow map

generation.

At this point of the process, the algorithm is still in world-space, so it is needed

to move into post-perspective space before generating the shadow map.

While transforming lines from world to post-perspective space, points in the line

may change their relative order: imagine a line intersecting the camera plane;

the point of intersection is mapped to infinity, so these points behind the camera

plane are projected to beyond the infinity plane.

Hence, converting H to post-perspective space imposes some concerns:

If H is completely in front of the viewer, it can be transformed to post-

perspective space immediately;

37

Figure 22: Case where the region of interest for the shadow map generation needs to be

extended in order to avoid scene disfiguration introduced by the post-perspective transformation.

Else, if H has some objects casting shadows to the scene that are positioned

behind the camera, a virtual shift to the camera is required so that the view

frustum includes all objects casting shadows to generate the shadow map. If the

camera is shifted back to infinity, then it would become an orthogonal camera,

and post perspective space would be equivalent to world space (see Figure 22).

In this case the benefits of the post perspective transformation are null, with the

penalty of the geometry approximations and post-perspective transformations.

In practice only a small shift is required for most cases.

3.2. Trapezoidal Shadow Mapping

Trapezoidal Shadow Maps (TSM) is proposed after Perspective Shadow

Mapping, suggesting a transformation that is the result of trapezoidal

38

approximations of the eye's frusta as seen from the light. Similarly to PSM, TSM

produces a shadow map with enhanced distribution enabling high resolution

shadows near the camera, and lower resolution as the shadows move away

from the viewpoint.

This algorithm deals with the resolution problem of shadow maps, while treating

the continuity problem, which is present in the majority of shadow mapping

algorithms that try to fix the shadow aliasing problem using greedy adaptive

frustum (e.g.: PSM, which introduces severe continuity problems due to its

adaptive light frustum algorithm). Greedy adaptive frustum implies that the

frustum usage is maximized for the projection used. It builds a light frustum that

contains only the visible geometry and the occluders. As mentioned before, the

light frustum may change significantly when new geometry enters the view

frustum. TSM proposes a non-greedy optimization of the usage of the shadow

map; hence the light frustum changes smoothly from frame to frame.

3.2.1. Reducing the resolution problem

One of the main challenges while addressing the resolution problem is to better

utilize the shadow map, adapting the light frustum to the area within eye’s

frustum.

Obviously, the resolution of a shadow map is inversely proportional to the size

of the area of interest, so the tighter we can put the region of interest of a

determined scene, the better resolution we get. Practical Shadow Mapping

[PraSM02], in addition to uniformly spaced depth values, proposed a tight fitting

frustum recurring to the smallest bounding box of the interest area.

TSM approach goes beyond the idea of Practical Shadow Mapping, claiming

that the shadow map could be further optimized. When at light post-perspective

space, the camera view frustum looks like a polygon with up to six edges

39

(Figure 23). A rectangular based frustum is clearly not the best approximation to

the camera frustum. Large areas of the shadow map become useless under this

approximation.

The main goal behind TSM is to find a better approximation, avoiding the non-

visible areas from eye-view. In light of this problem, TSM suggests the

trapezoidal shape, as opposed to the squared-box. A trapezoid is very similar to

the view-frustum as seen from the top.

Figure 23: The most similar to shape to a view-frustum as seen from the top is noticeably a

trapezoid. Using a square for the approximation, some non-interest areas of the scene would be

included in the transformation.

Figure 24 refers to the wastage of the bounding-box approach proposed by

Practical Shadow Mapping as opposed to the trapezoid approach proposed by

TSM. Due to view-frustum shape, the bounding box approach will minimize less

non-interest parts of the scene, when compared to the trapezoid approach. In

addition to that, the trapezoid can stretch its base line so that it reaches the

shape of a square, increasing its resolution for near-camera objects.

40

Figure 24: Trapezoidal approximation vs. Bounding-box approximation

The top and base parallel lines of the trapezoid enable a powerful mechanism

for controlling the shadow map resolution for each frame, solving also the

continuity problem associated to the greedy adaptive light frustum algorithms

suggested by many shadow mapping techniques.

The increase in gained resolution in the ideal case, where the light direction and

the eye vector are perpendicular, is mostly in areas near the view camera;

hence we may end up with relative under-sampling for objects further away

from the camera.

Associated to the trapezoid side lines, TSM presents a mechanism to better

spread the available resolution to objects within a specified focus region. While

the bounding box approach cannot stretch its shape to the unit cube, the

trapezoid can be warped according to a pre-determined rule (described later in

this section) for avoiding over-sampling in objects near the camera and under-

sampling as distance to the camera increases.

41

3.2.2. Implementation

Similarly to standard shadow mapping, TSM first creates the shadow map and

then – while rendering the scene – for each fragment, it is determined whether it

is shadowed or not. Despite the similarities, a comprehensive and sometimes

computationally expensive calculation needs to be made before the shadow

map generation: the so called normalization matrix N needs to be calculated in

order to (right before shadow map generation) transform the post-perspective

space of the light to a N-space, where N refers to the trapezoidal space

described above.

Thus, instead of the standard 2 steps, TSM is composed of 3 main steps, which

are described below:

1st step - Normalization matrix calculation

The normalization matrix NT results of the mapping of the four corners of the

trapezoidal T into a unit square (described later, in this section).

In order to calculate T, one needs to obtain the base and top lines of the

trapezoid (referring to the approximation of the far and near planes respectively).

Then, the side lines of the trapezoid are computed using the bottom and top

lines. These steps are done as follows:

Trapezoidal base and top lines determination

Let E be the area within the eye’s frustum as seen from the light. The base and

top lines refer to the approximation of the far and near planes of E respectively.

The algorithm for calculating these lines is as follows:

 Transform eye’s frustum into post-perspective space of the light (E is

obtained);

42

 Compute the center line l. This line connects the centers of the near

plane and far plane of E;

 Generate the 2D convex hull H of E;

 Compute the top line lt, which is perpendicular to l and touches the

boundary of H: lt intersects l at a point closer to the center of the near

plane of E than that of the far plane;

 Compute the base line lb which is parallel to lt (not being the same), also

touching the boundary of H.

Trapezoidal side lines determination

The base line of the trapezoid (which is related to the far plane) should always

be wider than the top line (which is related to the near plane). As the trapezoid

is stretched to fit the unit square, the top line is stretched until it has the same

length as the base line. With this process, the objects close to the near plane

will have over-sampled shadows, while the objects close to the far plane will

have under-sampled shadows.

Figure 25: Side lines of the trapezoid (left) are calculated according to the 80% rule (right), so

that the stretching of trapezoid does not introduce sampling artifacts (center)

To avoid this, TSM proposes an algorithm for achieving a balanced shadow

mapping, reducing both under-sampling and over-sampling (see Figure 25 –

43

above). This algorithm relies on the side lines of the trapezoid, which dictates

the stretching effect provided by the transform matrix NT.

For more details about the determination of trapezoidal side lines, please

consult Appendix A.

Trapezoidal-to-square transformation steps

One last step for calculating the transformation matrix NT is needed: The four

corners (t0, t1, t2, t3) of the trapezoid previously generated need to be mapped

to a square that refers to the front side of the unit cube (Figure 26).

Thus, NT is generated according to the following equations:

 3*

2*

1*

0*

)1.1

)1.1

)1.1

)1.1

tNTT

tNTT

tNTT

tNTT

Figure 26: Trapezoidal transformation: mapping trapezoidal corners to square edge corners

These equations establish the connection between the trapezoid and the

square, being NT used to move each of the corners t0, t1 ,t2 ,t3 to the

respective corner of the cube.

In order to achieve this, TSM propose a sequence of steps formed of rotation

(R), translation (T1, T2, T3), shearing (H), scaling (S1, S2) and normalizing (N)

operations, each of them resulting in a matrix. At the end, these matrices are

combined, returning the matrix normalization matrix NT.

This process will now be described:

44

1. Calculate T1

It is first needed to center the top edge of the trapezoid to the origin of the light

post perspective view:

1000

0100

010

001

1

2

32

y

x

u

u

T

tt
u

Figure 27: TSM application of T1

2. Calculate R

Then, the trapezoid needs to be rotated, so that its top edge is collinear with the

x-axis:

1000

0100

00

00

32

32

xy

yx

uu

uu

R

tt

tt
u

Figure 28: TSM application of R

45

3. Calculate T2

After step 2, the point i resultant of the intersection of the side lines is translated

to the origin:

1000

0100

01

01

2

1

yy

xy

uu

uu

T

iTRu

Figure 29: TSM application of T2

4. Calculate H

Shearing needs to be applied to the current trapezoid, so that it becomes

symmetrical along the y-axis:

1000

0100

0010

001

2

32*1**2

y

x

u

u

H

ttTRT
u

Figure 30: TSM application of H

46

5. Calculate S1

Scale the trapezoid, so that the angle formed between the side edges is 90º

and also the distance between the top edge and the x-axis is 1:

1000

0100

00
1

0

000
1

1

2*1**2*

y

x

u

u

S

tTRTHu

Figure 31: TSM application of S1

6. Calculate N

Now, transform the trapezoid into a rectangle:

1010

0100

1010

0001

N

Figure 32: TSM application of N

47

7. Calculate T3

Then translate the rectangle to the origin, so that both center of rectangle and

origin should be coincident:

1000

0100

010

0001

3

2

2*1**2**1*

0*1**2**1*

w
T

v

v

u

u

w

tTRTHSNv

tTRTHSNu

w

y

w

y

Figure 33: TSM application of T3

8. Calculate S2

Finally, scale the rectangle along the y-axis, so that it acquires the form of the

square that covers the front side of the unit cube:

1000

0100

000

0001

2

0*1**2**1**3

y

w

u

u

S

tTRTHSNTu

Figure 34: TSM application of S2

48

9. Calculate NT

Now that all required matrices are set, the transform matrix can be generated as

follows:

1**2**1**3*2 TRTHSNTSNT

Figure 35: TSM application of NT

2nd step - Shadow Map Generation

In order to use the normalization matrix calculated in the first step, it is needed

to create the post-perspective matrix of the light view:

Let LV and LP be the model-view and projection matrices for the light view,

respectively. Then, the post-perspective transform L for the light-view is:

L = LV * LP

Having NT (from the previous step) and L, it is now time to calculate the

transform matrix, which is:

T’ = NT * L

Using T’ for the N-space, the shadow map is now created.

3rd step – Rendering the scene

While rendering the scene, each vertex should be transformed by the N-space

transformation matrix NT and use the resultant texture coordinates as the

49

shadow map position, comparing the fragment z-value with the one present in

the shadow map for shadow determination.

3.2.3. Solving the Polygon Offset Problem

Although the transformation matrix NT greatly improves the resolution problem

and continuity problems, it worsens the polygon offset problem due to a non-

uniform distribution of the z-values. This happens because, affecting the x and y

coordinates values of each vertex inside the trapezoid, NT also affects the z

coordinate value accordingly. This introduces severe polygon offset artifacts to

generated shadows, even with the standard polygon offset resolution enabled (if

bias is too big, nearby areas’ shadows will disappear; else, if bias is too small

surface-acne will appear in distant areas).

Figure 36 shows an example of a scene shadowed with Trapezoidal Shadow

Mapping algorithm:

Figure 36: Scene shadowed with TSM using standard polygon offset problem (large bias).

50

A way to solve this is to transform only the x and y vertex values as follows:

In the shadow map generation stage, the vertex shader transforms each vertex

v to VT = (XT,YT,ZT,WT) and assigns VL = (XL,YL,ZL,WL) as its texture

coordinate. Then, the fragment stage replaces the fragment depth by ZL/WL

added by an offset.

In the shadow determination step, at vertex shader each vertex is transformed

to the post-perspective space of the camera, being computed VT =

(XT,YT,ZT,WT) and assigned VL = (XL,YL,ZL,WL). At fragment shader, each

fragment shadow status is tested by comparing ZL/WL with the stored shadow

map, indexed by XT/WT and YT/WT.

Figure 37 shows the scene presented in Figure 36, now using the offset

problem resolution proposed by TSM.

Figure 37: Scene shadowed with TSM after polygon offset problem tackling.

51

3.2.4. Special Cases

The algorithm described so far assumes that the light frustum contains the view

frustum. This is the case in outdoor scenes using sun light for instance.

However, when considering short range point lights this may not be the case.

In light for this problem, TSM needs to adapt its algorithm for cases where the

camera-view frustum does not lie completely within light-view frustum. Hence

the algorithm described above needs to be altered so that it only transforms the

portion of the camera-view frustum that is inside of the light-view frustum, since

the remains are not illuminated.

Thus, TSM needs to process the area A that is the intersection of both light and

camera view frustums and compute the center point c of A. Hence the line l

mentioned above is now the line passing through the camera point of view and

the point c. The rest of the algorithm should be recomputed accordingly.

For more details on the re-computation of the trapezoid for cases where

camera-view frustum is not inside light-view frustum, please refer to [TSM04].

3.3. Parallel-Split Shadow Mapping

According to Parallel-Split Shadow Maps (PSSM), it is impractical to achieve

sufficient sampling densities for a large scene with a single shadow map, even

with a high resolution texture.

PSSM as the above discussed techniques, lies in the fact that it is needed to

produce different samplings densities based on the distance of points to the

viewer. However, instead of proposing post-perspective transformations to the

light view, this approach splits the view frustum into multiple discrete layers

through split planes disposed along the view plane. Each split is thus rendered

to an independent shadow map (see Figure 38).

52

Figure 38: The view frustum is split into three parts, each of them will be rendered to a different

shadow map with the same resolution

Hence each rendered shadow map will be the result of different

parameterizations applied for each layer. A single shadow map with large size

will be replaced by multiple, smaller ones, which requires less memory than the

required for covering the same area with the standard approach and at the

same time providing improved shadow resolution.

This algorithm assumes lights as directional, but since the shadow maps are

rendered in the light’s post-perspective space, all objects need to be

transformed, including point light sources, which can at this point be converted

to directional light sources (see Figure 39).

Figure 39: Although PSSM assumes directional light sources, point light sources can be

converted once in light's post-perspective space

53

3.3.1. Split Scheme Discussion

Based on the observation that for different depths layers need different texture

resolutions, PSSM suggests the partition of the view-frustum in various splits.

Although the shadow maps associated with each split can have the same

resolution, each split will have a different depth, according to the distance to the

camera.

Consider Ci as the depth of the ith split plane in camera space and

11 mi , where m is the number of split parts. Let n and f be the near and far

planes of the view frustum.

Figure 40 shows how the split planes are distributed along the z axis.

Figure 40: Split planes distribution along the view frustum z axis

54

In order to estipulate a rule for this distribution, PSSM present three split-

schemes: uniform split scheme, logarithmic split scheme and practical split

scheme.

Uniform split scheme proposes the following formula for the depth of split

planes:

m

inf
nCuniform

i

This is the simplest split scheme, placing the split planes uniformly along the z

axis. The aliasing distribution in this split scheme is same to that of standard

shadow maps. Below, Figure 41 (left) shows the under-sampling for near points

and over sampling for distant points. As a view-driven resolution, points near

the camera need to have a more dense distribution, which turns this split

scheme impractical.

Logarithmic split scheme proposes the following formula for the depth of split

planes:

m

i

i
n

f
nC

log

It produces a logarithmic distribution of perspective aliasing errors. In practice,

this scheme is not suitable due to the scene’s potential intrinsic complexity.

Figure 41 (middle) shows the over-sampling for near points and under-sampling

for further points which is supposed to occur using this split scheme. Also, since

this split scheme produces small lengths for split parts near the viewer, few

objects can be included in these split parts.

Logarithmic split scheme behaves inversely to the uniform split scheme; a

balanced algorithm would take into account both of them, proposing a moderate

sampling of the points in the shadow map with a better aliasing distribution.

In light to this requirement, PSSM presents the practical split scheme, which is

expressed as the following formula:

55

b
CC

C
uniform

ii
i

2

log

,

with b being a non-negative bias for adjusting the clip positions according to

each application requirement.

Practical split scheme is then given by changing the variables:

mib
m

inf
n

n

f
n

C

m

i

i

 0,
2

According to PSSM, unlike the other split schemes, this one satisfies the

requirements of most practical applications (see Figure 41 – right).

Figure 41: Split schemes presented by Parallel-Split Shadow Maps

3.3.2. Light frustum split

Since view-frustum is split into planes disposed along the distance to the

camera, also light (as mentioned before: directional light sources) will be split

accordingly.

Let V and W be the global view and light frustum respectively. Let also Vi and

Wi be the ith split part of V and W respectively, with mi 1 .

56

PSSM splits W into Wi smaller light frustums, each one being constructed with

the help of a bounding box that intersects W with the current split. Thus, for

each split:

Wi = Vi ∩ W

Where Wi should cover Vi and objects casting shadows into Vi.

Figure 42 demonstrates the process: B and Bi refer to the bounding box of V

and Vi respectively. In order to maximize shadow maps resolution, W and W i

will focus in the region of Bi and B respectively.

Figure 42: Light’s frustum split (W i) computation according to the respective view split frustum Vi

and its bounding box Bi

This “greedy” adaptive light frustum proposed by PSSM makes the shadow map

focusing only on the relevant object for each split, as opposed to a global

adaptive light frustum where the focus would be whole scene V. As there may

be non-interesting areas between Vi in V, implementing this adaptive light

frustum per split will gain resolution for each split’s shadow map. However, this

greedy adaptive frustum approach reintroduces the continuity problem.

57

3.3.3. Implementation

As a Standard Shadow Maps based algorithm, Parallel-Split Shadow Maps is

also processed in 2 steps: the first is the shadow mapping generation while the

second one consists of rendering the scene with shadow map comparison.

Thus, in order to implement PSSM, it is needed to:

 Split the view frustum into multiple depth parts, according to the practical

split-scheme described above;

 Split the light frustum into multiple smaller ones, according to the light

frustum split process described above;

 For each split Vi, render it to the respective shadow map denoted as Ti,

in the space Wi (Bi in case of using the PSSM adaptive light frustum

technique);

 Render the scene and apply the correct shadow map for each pixel.

There are two options for rendering the scene: using the fixed-function pipeline

or through a programmable pipeline approach. In case of using a fixed-function

pipeline, for each split, execute the standard shadow map comparison. In case

of using the programmable pipeline, while rendering the scene, current

fragment’s depth needs to be compared with the stored depth in the respective

shadow map Ti. In order to do so, one needs to pick the correct shadow map by

comparing the pixel’s depth with each of the splits ranges. Having the

respective shadow map, the pixel should be transformed to its respective light

space Wi (Bi in case of using the PSSM adaptive light frustum technique) and

compared to the stored depth determining the shadow status.

3.3.4. Discussion

According to results presented by PSSM, with a number of splits less or equal

to 4, the algorithm shows visual effects far better than with a single split of

greater resolution.

58

As to the algorithm’s performance, it will greatly depend on the hardware: the

use of multiple shadow maps, requires multiple passes, (one per split), unless

the GPU supports multiple rendering targets (MRT): using MRT, enables the

generation of multiple shadow maps in a single pass.

As to the scene rendering, multiple rendering passes are also needed by default

(one per split). If the GPU has a programmable pipeline, a single pass will also

be possible by determining the appropriated shadow map for each rasterized

fragment on-screen.

The majority of current hardware already provides GPU programmable

pipelines, which makes this technique more appealing, also for being integrated

with other complementary shadow mapping techniques.

Also, PSSM does not solve the noticeable discontinuity present in shadow

maps’ split transition. This discontinuity happens due to the different distribution

of the depth between splits.

Figure 43: Split discontinuity problem

59

As Figure 43 shows, PSSM doesn’t handle well the transition between the splits,

by not smoothing the areas where shadow maps are put together.

3.4. Variance Shadow Mapping

A shadow map is basically a texture and, as any texture, it may suffer from

aliasing. Although we’ve been referring to algorithms that reduce aliasing

through post-perspective transformations and scene partitioning, we now refer

to a different, complementary approach that reduces aliasing by filtering the

shadow map as a texture.

Unlike a normal texture, shadow maps cannot use the existing hardware built-in

methods to reduce aliasing on color textures (e.g.: mipmapping, anisotropic

filtering).

Also, shadow maps (depending on the distance between the query point and

the light source) will change at each frame, turning pre-filtering for use of these

techniques impossible.

Shadow map filtering approaches relied on nearest neighbor sampling or on

taking multiple shadow samples and averaging them together (this former case

is the one of PCF). Unfortunately, none of these approaches is sufficient to

eliminate aliasing (even the PCF approach, despite being supported by current

hardware, uses a small kernel for efficiency reasons).

Variance Shadow Mapping (VSM) addresses the limitations of PCF and

proposes shadow map filtering using an upper bound approximation of the

results given by the PCF algorithm.

Until here, each texel of a shadow map represented the depth of a single point.

VSM presents a way of representing a distribution of depths for each shadow

map texel. In order to do so, this approach stores the mean depth and mean

squared depth, also known as the first and second moments respectively.

60

The moments are needed for computing the bound of the distribution being

shaded. They also provide an approximation for the amount of light reaching the

given surface.

As opposed to depths, moments can be interpolated. This means that, by using

moments, hardware built-in methods such as mipmapping and anisotropic

filtering can now be used for reducing aliasing, delivering improved quality

shadows with low performance penalty.

3.4.1. Implementation

Being based on standard shadow mapping algorithm, VSM is composed of its

two standard steps, plus some intermediate steps:

First, at shadow map generation step, the scene is transformed to post-

perspective space of the light. Instead of generating a standard shadow map,

this space is rendered to a two-channel buffer, where the first channel receives

the depth (as in standard shadow mapping) and the second channel receives

the square of that same depth.

Then, mipmaps generation is set, in order to facilitate filtering by hardware. The

outcome of this operation is the moments M1 and M2.

Having M1 and M2, the mean and variance 2 are calculated as follows:

 1MxE

 2

12

222)(MMxExE

where xE and 2xE derive from moments M1 and M2, which are the result of

hardware filtering applied to the two-channel buffer carrying the depth and

square depth respectively.

61

Finally, while rendering the scene from the camera point of view, for each

fragment, its depth should be compared with :

If depth < m then the surface is unshadowed;

Otherwise, the surface is shadowed with intensity maxp , which is the equation

for Chebyshev’s inequality:

22

2

max
)(

t
tp

3.4.2. Discussion

Light Leaking Artifacts Origin

Variance 2 is seen as a measure of the width of a distribution. Hence, it

should place a bound on how much of the distribution can be concentrated far

away from the mean. This bound is stated precisely in Chebyshev’s Inequality,

as presented by VSM:

Let x be a random variable drawn from a distribution with mean and

variance 2 . Then for t > :

22

2

max
)(

t
tptxP

As presented in VSM, the quantity txP in Chebyshev’s Inequality is exactly

the quantity needed in order to perform PCF, since it represents the fraction of

pixels over a filter region that will fail the depth comparison with a fixed depth t.

For more details on how this upper bound is enough to provide a good

approximation to PCF, please refer to [VSM06].

62

Figure 44: Scene rendered with a 512 shadow map: (left) PCF 4x4 vs. (right) VSM

Although being clearly superior to PCF (as shown in Figure 44), the VSM

algorithm still suffers from light bleeding (also known as light leakage) artifacts:

When variance 2 is close or equal to zero, these noticeable artifacts can

appear over the shadow (as seen in Figure 45, left image).

Figure 45: Scene shadow rendered with VSM suffers of light bleeding (left). The same scene

shadow is rendered using Standard Shadow Mapping (right). Note that both images have their

contrast levels increased so that artifacts are more perceivable.

In practice, it happens only for scenes with high depth complexity.

63

3.5. Conclusion

In this chapter we gave a brief overview of algorithms that contributed for

alleviating shadow mapping artifacts. Then, we have presented the most

relevant algorithms to our investigation:

Perspective Shadow Mapping is the first algorithm addressing the aliasing

problem for objects near the camera by introducing a non-uniform

parameterization, working in the post-perspective space. This approach

improves resolution for some cases, depending on the position of the light

relatively to the camera, but its implementation is rather non-trivial with many

tradeoffs that are hard to optimize, compromising the use of this algorithm to

interactive environments (where the user has the camera control and/or light

changes dynamically). Also, the 3D convex hull needed to determine the region

of interest requires a robust implementation, together with intersection and

union operations and a successive set of approximations for tightening this

same polygon.

Another unwanted characteristic of this approach is the continuity problem, due

to the adaptive light frustum proposed by PSM. The convex hull can change

suddenly, as the scene changes dynamically, causing noticeable changes in the

resolution of the shadow map. Also, this approach may need to virtually move

eye position (to avoid the inverted order of objects due to perspective

projection), among other virtual modifications dependent of scene configuration.

These abrupt changes on the convex hull, again will introduce severe continuity

problems in shadows.

Polygon offset problem is worsened: since PSM transforms the post-

perspective space in a non-linear way, depth values will also change differently,

so the basic solution of adding a constant bias for removing the surface acne

effects may not be enough.

Finally, although perspective correction enables a major improvement to

shadow map resolution as seen from the camera, it may not be enough when

representing large scenes. Although PSM has been very criticized due to its

shortcomings, it was the first approach to decrease aliasing through perspective

64

non-uniform parameterizations, being the basis for Light Space Perspective

Shadow Mapping and the inspiration for Trapezoidal Shadow Mapping.

Trapezoidal Shadow Mapping proposes a different non-uniform

parameterization, by warping a trapezoid to achieve the shadow map squared

shape. This trapezoid is the post-perspective approximation of the view-frustum,

as seen from the light. TSM reduces the shadow map resolution problem by

using the transformation matrix generated by the trapezoid warping. This

calculation may be computationally expensive for some scene configurations,

but the algorithm handles all the cases more gracefully than PSM. Similarly to

PSM, TSM also suffers from the polygon offset problem, but in this case, it is

provided a very straight-forward method for solving the problem, by maintaining

the depth values and transforming only the x and y coordinates of the polygons

(avoiding the non-uniform parameterization of the depth).

TSM is an adaptive light frustum based technique, but it is not prone to the

continuity problem, since it successfully avoids the problem while constructing

the trapezoid (more specifically, the base and top lines of the trapezoid being

parallel), assuring a smooth transition when the eye moves relative to the light

from frame to frame.

Also, the problem of over-sampling near the camera and under-sampling at

distance is solved, by the 80% rule introduced while calculating the trapezoid

side lines, so that there is an effective use of the available shadow map

resolution along the scene distance.

As to the dueling frusta case, both PSM and TSM cannot respond effectively,

falling back to the standard shadow mapping algorithm.

Although TSM greatly improves the shadow map resolution, similarly to PSM it

may not be enough to address the resolution problem for large scenes,

especially with the fallbacks to standard shadow mapping (associated with, for

instance, the dueling frusta case).

65

Parallel Split Shadow Mapping is especially useful for large scenes. The

approach proposes the scene partitioning into several splits distributed along

camera distance and for each split, the use of different shadow maps.

Each split will have a determined size and position, according to a practical split

scheme that ensures smaller split sizes near the camera and bigger split sizes

distant to the camera.

Having said that, it is easily noticed that PSSM addresses the same problems

as PSM and TSM, but instead of a non-uniform parameterization at light post-

perspective space, PSSM uses multiple discrete layers.

Large scenes shadow mapping is greatly improved by introducing multiple

shadow maps instead of a large one. Also, the memory requirements are less

demanding than a single shadow map of equivalent dimensions.

Also, PSSM does not propose a solution to the noticeable discontinuity present

in shadow maps’ split transition.

PSSM does not solve the perspective aliasing, focusing only on the texture

resolution constraints associated to large scenes, being seen as a

complementary approach that is often used for large scenes. Since each split is

exclusively related to a shadow map, other shadow mapping techniques can be

seamlessly integrated into this split scheme.

Variance Shadow Mapping is a simple and effective filtering approach for

addressing the aliasing in shadow maps. As opposed to the previously

presented algorithms, it does not introduce any parameterization, simply

working at the shadow mapping filtering (as with PCF). This algorithm performs

an upper bound on the result of the percentage closer filtering algorithm,

providing a close approximation to it and at the same time taking full advantage

of graphics’ hardware built-in filtering techniques, leading to improved results in

performance and shadows quality.

As with other methods, this technique only addresses a part of the limitations of

the standard shadow maps, namely focusing only on reducing the binary status

of hard-shadows through shadow map filtering. This can therefore be a

66

complementary technique to other algorithms that address different problems of

the standard shadow mapping algorithm.

Although being a very straight-forward technique, VSM is a probabilistic

approach, and as any probability, it is prone to unsatisfactory results. In this

case, since the probability is based on an upper bound of the estimation

whether a point is in shadow or not (despite providing fast results to a technique

that is time-consuming), it produces the referred light leaking effects in scenes

with high depth complexity relative to the light source.

As a concluding remark, from the presented techniques, none of them solves all

the problems associated with Shadow Mapping standard algorithm. Also, there

are techniques that while addressing a specific problem introduce another.

Table 1 shows a summary of the problems solved by each one of the presented

algorithms.

Table 1: Problems present (red) vs. problems tackled (green) for each of the presented

techniques. Note: (N.A.) means the current algorithm does not suffer from the referred artifact

A
lg

o
ri
th

m

 P
e
rs

p
e
c
ti
v
e

A
lia

s
in

g

P
ro

je
c
ti
o

n
 A

lia
s
in

g

T
e
x
tu

re
 R

e
s
o
lu

ti
o

n

S
e
lf
-S

h
a
d

o
w

in
g

C
o
n
ti
n

u
it
y
 P

ro
b

le
m

H
a
rd

S

h
a

d
o

w
s

B
in

a
ry

 S
ta

tu
s

SSM

(N.A.)

PSM

TSM

PSSM

VSM

67

Analyzing the table, we conclude that there is no perfect technique; instead

there are complementary techniques which combined may form a more robust

algorithm able to solve the majority of the problems inherent to the shadow

mapping technique.

Also, projection aliasing is a problem that is not addressed by any of the

mentioned techniques. Some approaches suggested solutions for alleviating the

projection aliasing problem, namely LiSPSM suggests combining surface

blurring and a phong lighting model for “disguising” projection aliasing. Also,

Adaptive Shadow Maps suggests a view-dependent hierarchical grid structure

able to improve determined regions shadow resolution as the ones with

projection aliasing (which is a signal of lack of resolution). Nevertheless, this

artifact hasn’t yet been addressed effectively by any of the shadow mapping

analyzed solutions.

68

69

4. Analysis and Proposal of a Shadow Mapping Remix

Approach

In this chapter we propose the Shadow Mapping Remix Approach (SMRA). We

start by identifying the strengths of the algorithms presented in Chapter 3.

Afterwards, we describe our algorithm’s implementation where we start by

outlining its setup, and then we present our approach implementation steps.

Then, we address to one artifact that is not addressed by any of the contributors

to our new algorithm proposal and, for that reason, it needs to be described in

more detail than all the other implementation steps.

Next, follows a discussion about minor changes to the contributors’ algorithm

techniques and also performance estimation for our approach.

Finally, a conclusion will summarize the findings of this chapter.

4.1. Analysis - Contributors’ Strongest Features

Our work builds on the analysis of the most important contributions that improve

standard shadow mapping and proposes a remix approach that merges the

strongest points of each algorithm. In this section, we will focus on the most

relevant features of each algorithm.

In Chapter 3 we have presented 4 algorithms which we consider as being the

main contributions to our work. From a theoretical point of view, perhaps the

most important contribution to the shadow mapping algorithm is Perspective

Shadow Mapping, because it is the first to propose a transformation to tackle

the aliasing problem. However, its implementation is rich in particular cases,

70

which makes it less attractive than other newer approaches. That’s why we will

not extract any specific feature from PSM for our implementation.

Trapezoidal Shadow Mapping, an algorithm following PSM algorithm, offers a

solution for the same issues without the shortcomings of PSM. As mentioned in

the previous chapter, TSM proposes a non-uniform parameterization, by

warping a trapezoid to achieve the shadow map squared shape. This is a very

straightforward technique for reducing two of the main shadow mapping

artifacts: perspective aliasing and the continuity problem introduced by greedy

adaptive light frustum techniques. Also, it proposes an efficient way to alleviate

the polygon offset problem worsened due to the non-uniform parameterization.

Parallel-Split Shadow Mapping is another algorithm we find as a big contribution

to shadow mapping, mostly for large scenes, where the shadow map resolution

is a critical factor for the aliasing. In order to assure enough resolution for the

scene, almost independently of its dimension, PSSM proposes scene

partitioning into several splits distributed along camera distance. For each split

a shadow map would capture its depth values and the same shadow map would

later be used for shadow determination. Basically, it extends the standard

shadow mapping to multiple instances, each of the being applied to a different

part of the scene. Although it may be expensive in terms of performance, it

helps to solve another shadow mapping artifact - the texture resolution

constraints.

Finally, Variance Shadow Mapping is a shadow mapping variant for generating

filtered shadows. It relies in the basic shadow mapping algorithm, not requiring

post-perspective transformations or other mechanisms other than texture

filtering. VSM performs an upper bound on the result of the percentage closer

filtering algorithm, while taking full advantage of graphics’ hardware built-in

filtering techniques. This will alleviate another shadow mapping artifact, which is

the hard shadows binary status, with performance gains (when compared to the

basic shadow filtering approach: PCF).

71

4.2. Remix Approach Proposal

Having highlighted the most relevant features for building our algorithm, we

introduce our Shadow Mapping Remix Approach.

The main idea is to merge the strongest features of TSM with PSSM and VSM,

which happen to be complementary.

PSSM is the only proposal that addresses the resolution problem in a way

which is suitable both for indoor and outdoor large scale scenes. The frustum

splitting strategy will be a component of the remix. The greedy adaptive frustum

approach proposed in PSSM is going to be discarded because it introduces the

continuity problem.

TSM proposal to transform the light frustum into a trapezoidal shape will be

used for each split. The nature of this algorithm provides full usage of the

shadow map resolution; hence it minimizes the resolution problem without the

continuity problems of greedy adaptive frustum approaches such as the one

used in the original PSSM approach. The transformation of the frustum

proposed by TSM will be a component of the remix.

VSM offer the final touch by filtering the shadows, helping to alleviate the

aliasing problem, both perspective and projective aliasing. In the remix, VSM

will be used to compute the data for each split, after transformed into a

trapezoidal shape, and perform the depth comparison.

As previous shadow mapping techniques, SMRA is a two pass approach. In the

first step the following steps are executed:

72

 The view frustum is split according to the practical scheme proposed in

PSSM;

 For each split, the trapezoidal transformation is computer (as proposed in

TSM);

 For each pixel in the shadow map, the depth and square depth will be

stored (according to the 1st step of VSM)

In the second pass, for each split, once again the TSM transformation is

required to compute the appropriate texture coordinates to the shadow map.

Then, VSM formula to compute the shadow status will be used.

4.2.1. The Detailed Algorithm

The algorithm is done according to the following steps:

1. First of all, the view frustum is split into multiple depth parts Vi,

according the practical split-scheme (refer to Section 3, Parallel Split

Shadow Mapping);

2. Then, comes the generation of the shadow map: For each split Vi:

a. Approximate current split’s eye frustum Vi as seen from the

light with a trapezoid to warp it onto a shadow map:

b. Transform the eye’s frustum 8 vertices into light point of view;

c. Construct the trapezoidal approximation based on these 8

vertices;

i. Obtain the base and top lines of the trapezoid (refer to

Section 3, Trapezoidal Shadow Mapping);

ii. Obtain the side lines, according to the 80% rule, (refer

to Section 3, Trapezoidal Shadow Mapping);

iii. Generate the trapezoidal transformation matrix, which

maps the four corners of the constructed trapezoid to

the side face of a unit cube - a square (refer to Section 3,

Trapezoidal Shadow Mapping);

73

d. Transform the scene split into post-perspective space of the

light Wi (refer to Section 3, Perspective Shadow Mapping);

e. Assign current depth value to a temporary texture coordinate;

f. Transform the light post-perspective space Wi into the

normalized N-space, by applying the trapezoidal

transformation Ni;

g. In the fragment shader, replace the transformed fragment

depth by the depth stored in the temporary texture coordinate;

h. Render the transformed scene split Ni to a 2-channel buffer Ti,

where the first channel receives the depth (as in standard

shadow mapping) and the second channel receives the square

of that same depth;

 Before the 2nd pass begins, mipmaps generation is enabled for facilitating

shadow maps filtering by hardware;

3. Finally, in the 2nd pass, for each scene split, for each fragment p:

a. At vertex shader, transform p to the post-perspective space of

the camera p’;

b. Assign current depth value to a temporary texture coordinate;

c. Transform p’ into the N-space, generating p’’;

d. In fragment shader, replace the transformed fragment p’’ depth

by the one stored in the temporary texture coordinate (p’

depth);

e. Get the mean and variance 2 for the moments resultant

from the interpolated, transformed shadow map;

f. Compare the depth of p’’ with :

i. If depth < then the surface is unshadowed;

ii. Otherwise, the surface is shadowed with intensity maxp

(refer to Section 3, Variance Shadow Mapping).

74

4.2.2. Artifacts Analysis

From the analysis of our approach, we can identify one artifact that hasn’t yet

been addressed, which is the projection aliasing problem.

Improving Projection Aliasing

As mentioned before, projection aliasing results of insufficient detail about a

determined surface depth. Projection aliasing is only dependent on the angle

between the light vector and the surface normal. Thus, when this angle

approaches 90º, the maximum projection aliasing occurs.

We propose a very simple heuristic to alleviate extreme projection aliasing: In

the second shadow mapping pass (rendering the scene split), execute the

following steps (integrated in the aforementioned algorithm):

 Calculate fragment normal;

 Calculate the angle α formed between the normal and light direction;

 Before comparing the depths, if the angle α is close to 90º (say, 85º ≤ α ≤

90º), then we assume the scene is fully shadowed with half of maximum

intensity, suppressing the steps 3.e and 3.f of the algorithm’s 2nd pass.

Our approach therefore assumes that surfaces close to orthogonal to the light

never gather enough light, resulting in a deliberate self-shadowing. It is a very

lightweight technique, not involving any additional image processing; just a

simple condition is introduced.

Figure 46 shows the projection aliasing removal technique effect. Most of the

black stripes present in the buildings are transformed into a solid shadow.

75

Figure 46: A scene with projection aliasing, right before the projection aliasing removal

technique is applied (top) and after the technique is applied (bottom).

4.3. Discussion

After explaining the algorithm, follows a brief set of considerations.

76

4.3.1. Visualizing the implementation

As we claim, none of the contributions by itself is enough for addressing

standard shadow mapping artifacts.

In this section we show the effect of all the contributions through renders of the

same scene for each one of the contributions.

First, the scene is drawn with no shadows (Figure 47):

Figure 47: Scene rendered without shadows

As we stated before, a scene without shadows lack of realism – there is no

perception of the geometric relationship between objects.

Using the standard shadow mapping algorithm for shadow generation, this

geometric relationship between objects is now present (Figure 48):

77

Figure 48: Scene rendered with SSM 512x512

Although, the shadow mapping algorithm suffers of too many problems (mainly

texture resolution constraints and aliasing).

As we introduce TSM, the aliasing is greatly reduced thanks to the trapezoidal

approximation of the view frustum (as seen in Figure 49).

Figure 49: Trapezoidal approximation of the view frustum, as seen from the light

Figure 49 shows the scene rendered from the light point of view. It is noticeable

the view-frustum (in white) and the trapezoidal approximation polygon (in violet).

78

This trapezoid is then warped so that it provides more detail for nearby objects

and less detail for far-away objects. Figure 50 shows the difference between a

shadow map generated using TSM (non-uniform parameterization) and the

same shadow map generated using a uniform parameterization (as in SSM).

Figure 50: Shadow Map generated using SSM (left) and TSM (right)

As we can notice, the top of the TSM shadow map, which represents the nearby

shadows, is enlarged and the bottom of the shadow map is shrunk, while the

SSM shadow map is like a photo taken from the light position (the depth

densities are uniformly distributed along the shadow map).

This trapezoidal transformation not only reduces perspective aliasing, but also

avoids the continuity problem. However, this technique may not be enough,

when addressing the shadow map resolution problem: large scenes may

require more resolution, which leads to a fast degeneration of the shadow map

resolution along the distance, when using only TSM (Figure 51). Although far

better than the original SSM approach, there is aliasing in the shadows near to

the camera.

79

Figure 51: Scene rendered with TSM 512x512

In light of this problem, we use PSSM multiple shadow maps approach. For this

scene, we render it using 3 splits (Figure 52), distributed along the distance to

the camera. The splits are determined according to the practical split scheme

described above.

Figure 52: PSSM scene splits, as seen from the camera

The result of rendering the scene with PSSM is as follows (Figure 53):

80

Figure 53: Scene rendered with PSSM 3x512x512

As it is noticeable, PSSM produces better shadows on the trunks compared to

TSM, while having worse results on the floor. On the other hand it produces

slightly better results with distant shadows. In order to improve the precision

even more, we introduce TSM to each split of the PSSM. This way, not only we

address aliasing and continuity problems (tackled by TSM), but also shadow

map resolution problems (tackled by PSSM). Figure 54 shows the scene

rendered with the mixture of PSSM and TSM:

Figure 54: Scene rendered with PSSM and TSM 3x512x512

81

Finally, in order to produce smoother shadows, we use the filtering proposed by

VSM. VSM by itself would only address the binary status of hard shadows, not

addressing any of the above described artifacts (Figure 55):

Figure 55: Scene rendered using VSM 512x512

This filtering technique makes all the sense when put together with TSM and

PSSM, forming a complete and improved algorithm called Shadow Mapping

Remix Approach (Figure 56):

Figure 56: Scene rendered using SMRA 3x512x512

82

4.3.2. Performance estimation

Since SMRA is a mixture of many complementary techniques, its computational

cost is higher than using each one of the contributors’ approaches by itself.

However, as stated in next section, this speed penalty is compensated by the

serious visual improvements, when compared with each of the presented

techniques, still being perfectly applicable for real-time applications when using

moderate shadow map resolutions.

83

4.4. Conclusion

In this section we have proposed an algorithm for improving visual results of

shadow mapping. Shadow Mapping Remix Approach mixes different techniques

proposed by three algorithms. Since these techniques are complementary, their

interaction is simple to perform with minor changes to some of these techniques.

We have also presented a visualization of the implementation of SMRA, through

the various steps of rendering a scene unshadowed, shadowed with standard

shadow mapping, also with the main contributions’ algorithms and finally with

SMRA. The results show a clear visual improvement when combining the

components.

84

85

5. Results

In this section we present the results of rendering shadows using the algorithms

discussed above and also the presented our approach: Shadow Mapping

Remix Approach. First, we will describe the configuration in which the tests

were performed. Then, we present the visual results of each algorithm while

varying the shadow maps resolutions. We also present and discuss the

performance of each algorithm. Finally, we conclude by summarizing our

findings.

5.1. The Setup

In order to test each one of the presented algorithms, we have created a

platform called ShadowExplorer, capable of running each one of these

approaches and change all shadows algorithms, including each algorithm

specific properties, in real-time. The platform and each one of the algorithms

were implemented using Visual C++ and OpenGL, under Microsoft Windows

Vista.

We ran the tests using an Intel Core2Duo processor working at 1.8Ghz, with

3Gb RAM and a NVidia GeForce 8400M GT GPU with 128Mb of dedicated

memory.

We used a viewport with resolution 800x600, varying shadow mapping

resolutions. Camera and light positions were also user controlled, through the

application.

We used two different scenes for gathering the results: the TreeLine (using

111.000 triangles) and the SparseCity (using 33.000 triangles).

Both scenes were rendered with a field of view of 45 degrees. As to the near

and far plane, TreeLine had its camera view frustum set with 1 for near plane

86

and 50 for far plane, while SparseCity configured camera view frustum near and

far planes to 15 and 5000 respectively.

5.2. Visual Results

In this section, scenes will be rendered separately: First, TreeLine, which is the

most demanding scene in terms of triangles; then, SparceCity which is the most

demanding scene in terms of shadow resolution requirements.

Each scene will be rendered 3 times with different shadow map resolutions

(512x512; 1024x1024; 2048x2048) per algorithm (SSM, TSM, PSSM, VSM and

SMRA).

TreeLine

TreeLine is composed of 3 high-detailed trees disposed through a line, over the

floor. This scene was designed for studying the detail capabilities of each

shadow algorithm, more precisely on how shadows of leafs and small tree

branches are projected to the ground, from a distant light).

Figure 57: TreeLine rendered with SMRA

87

Standard Shadow Maps

Figure 58: TreeLine scene being rendered with SSM using shadow mapping resolutions

512x512 (Top Left), 1024x1024 (Top Right) and 2048x2048 (Bottom)

88

Figure 58 shows the scene rendered with standard shadow mapping. As it is

noticeable, using low shadow map resolutions, the shadows become heavily

pixelated. This is caused by insufficient shadow map resolution. In the bottom

picture, the used shadow map has a 2048x2048 resolution and still, for a

relatively small scene, pixelated areas are noticeable. This is due to the

perspective aliasing problem already mentioned, where shadows become under

sampled near the eye and over sampled as the distance to the camera

increases (the far-away tree’s shadow is over sampled, when compared with

the shadows nearby the camera).

Figure 59 presents the result of the scene rendered with the TSM approach.

This approach introduces a non-uniform depth distribution in the shadow map,

alleviating the aliasing noticed in the previous approach. In this case, lack of

shadow resolution is detected even for the largest small shadow map resolution

in the trunks of the closest tree.

PSSM addresses the shadow map resolution constraints, but does not

introduce any uneven distribution to the shadow map. Thus, if the resolution is

still insufficient, then aliasing will be noticeable (it can be noticed in Figure 60,

where the resolution is not sufficient for the current scene).

Figure 61 shows the scene rendered with VSM. This algorithm presents the

same problems as in SSM, so when SSM fails massively, this algorithm will

never succeed (since it only filters the shadow map, introducing a smooth effect

to the shadow edges).

89

Trapezoidal Shadow Maps

Figure 59: TreeLine scene being rendered with TSM using shadow mapping resolutions

512x512 (Top Left), 1024x1024 (Top Right) and 2048x2048 (Bottom)

90

Parallel-Split Shadow Maps

Figure 60: TreeLine scene being rendered with PSSM using shadow mapping resolutions

512x512 (Top Left), 1024x1024 (Top Right) and 2048x2048 (Bottom)

91

Variance Shadow Maps

Figure 61: TreeLine scene being rendered with VSM using shadow mapping resolutions

512x512 (Top Left), 1024x1024 (Top Right) and 2048x2048 (Bottom)

92

Shadow Mapping Remix Approach

Figure 62: TreeLine scene being rendered with SMRA using shadow mapping resolutions

512x512 (Top Left), 1024x1024 (Top Right) and 2048x2048 (Bottom)

93

Figure 62 renders the same scene, but in this case with our proposed algorithm:

SMRA. The output is very positive, providing better defined shadows than any

of the isolated methods. The VSM depth comparison introduces some light

leakage as can be seen in Figure 62.

SparseCity

SparseCity is a big scene that is composed almost entirely of low detail

buildings. Although the scene has a very big area, it is less complex in terms of

geometry. The scene was designed for studying how each one of the algorithms

behave in large environments, more precisely, by rendering a large scale area

that includes some small, detailed entities inside (which are going to be

focused).

Figure 63: SparseCity rendered with SMRA

94

Standard Shadow Maps

Figure 64: SparseCity scene being rendered with SSM using shadow mapping resolutions

512x512 (Top Left), 1024x1024 (Top Right) and 2048x2048 (Bottom)

95

Figure 64 shows the large scene being rendered with SSM. None of the

available resolutions is enough to produce acceptable shadows for the entity in

the image. This is mainly due to resolution constraints that are not addressed by

this algorithm.

Figure 65 shows the same large scene rendered with TSM. The trapezoidal

non-uniform distribution of depth shows far better results near the camera,

however in the buildings the shadows are worse than with SSM. All resolution

shadow maps introduce some pixelation to the scene shadows, mainly in the

buildings.

PSSM is rendered in Figure 65. This algorithm was specially proposed for this

type of scenes, which leads to satisfactory results with high resolution shadow

maps. However, it is still difficult to avoid aliasing since PSSM does not address

any special parameterization for that purpose. The errors in the shadows are

more distributed than with TSM as expected.

VSM, again produces smooth shadows, but based on SSM. Since SSM failed in

producing acceptable shadows for such a large surface, VSM will also fail,

alleviating the visual effect a bit due to the shadow map filtering.

Our approach again succeeds at providing better results. The resolution is now

better distributed, and the VSM provides smooth shadows in the skeleton.

There is however an artifact that is introduced by the usage of VSM, light

leakage.

96

Trapezoidal Shadow Maps

Figure 65: SparseCity scene being rendered with TSM using shadow mapping resolutions

512x512 (Top Left), 1024x1024 (Top Right) and 2048x2048 (Bottom)

97

Parallel-Split Shadow Maps

Figure 66: SparseCity scene being rendered with PSSM using shadow mapping resolutions

512x512 (Top Left), 1024x1024 (Top Right) and 2048x2048 (Bottom)

98

Variance Shadow Maps

Figure 67: SparseCity scene being rendered with VSSM using shadow mapping resolutions

512x512 (Top Left), 1024x1024 (Top Right) and 2048x2048 (Bottom)

99

Shadow Mapping Remix Approach

Figure 68: SparseCity scene being rendered with SMRA using shadow mapping resolutions

512x512 (Top Left), 1024x1024 (Top Right) and 2048x2048 (Bottom)

100

5.3. Performance Results

Application Speed

fps SSM TSM PSSM VSM SMRA

S
p
a
rs

e
C

it
y

3
3
K

 Δ

512x512 102 88 85 98 79

1024x1024 98 84 78 96 64

2048x2048 97 70 63 88 49

T
re

e
L
in

e

1
1
1
K

 Δ

512x512 78 56 27 77 40

1024x1024 74 54 26 74 38

2048x2048 72 52 24 68 36

Table 2: Rendering speed (in frames per second) for the most relevant algorithms.

As we can see, TSM and VSM are very lightweight. The slowest algorithm,

besides SMRA, is PSSM, due to its multiple steps. Since SMRA is based on

these three contributor’s main strengths, with the algorithm complexity (created

by mixing many complementary techniques, each one of the proposing

additional computation to the standard algorithm), it turns also slower than the

others, but still acceptable for real-time rendering with a noticeable visual

improvement.

101

5.4. Conclusion

From the results presented above, we can conclude that no shadow mapping

algorithm flawlessly solves all the standard shadow mapping artifacts, since it

always depend on the scene complexity (size, camera relative to the light) and

also on hardware capability (texture sizes, filtering techniques). Despite of that,

our algorithm Shadow Mapping Remix Approach, which is formed from the

partitioning of TSM, PSSM and VSM behaves well, far better than any of the

contributors, although introducing some light leakage from VSM. The expected

performance penalty is considered acceptable.

102

103

6. Conclusions

Our investigation focused in the analysis of the most relevant contributions for

the technique Shadow Mapping. Shadow Mapping is one of the most popular

techniques for real-time shadows generation, since its basic algorithm is

relatively simple to implement, producing high quality shadows. Although, as an

algorithm that is partially based on image-space operations, it is prone to

aliasing problems. These problems can be introduced in many ways, such as

relationship between the eye and the light, texture size, angle of the light

relative to the surfaces being lit, precision errors, among others. Many

algorithms have proposed different approaches to solving each of the shadow

mapping issues. Some of them have themselves introduced other errors while

alleviating others, but at the same time, served as a basis for other more recent

algorithms that tackle the shadow mapping problems more efficiently.

We have presented Shadow Mapping Remix Approach, an algorithm based on

different, complementary approaches. From our investigation, we conclude that

shadow mapping approaches can be split into three main categories: scene

partitioning, perspective parameterizations and texture filtering.

Parallel split shadow maps are efficient for large scale scenes, namely outdoor

scenes providing an even distribution of the shadow map along a large range of

depths. However, each split is performed with standard shadow mapping,

hence it has the same issues, although to a lesser extent due to the partitioning

of the space. PSSM also introduced a greedy adaptive frustum approach which

was not used in our approach since it introduces the continuity problem.

Trapezoidal Shadow Mapping provides a perspective parameterization that

redistributes the resolution focusing on the areas near the camera. However

this produces worse shadows far away from the camera than SSM, although

these are not as relevant.

Variance Shadow Mapping provides a mechanism to filter the shadows

efficiently, taking advantage of the hardware enabled filtering operations the

104

shadows. It adds some softness to the shadows without incurring into a

significant performance penalty. The main issue with VSM is the introduced light

leakage.

Based on these three complementary categories, we chose the most relevant

contributions and extracted from them the most effective techniques for

addressing the shadow mapping issues, merging all the extracted techniques

into a more robust algorithm that is able to address most of the categories of

problems with which shadow mapping is associated. There is a natural

performance penalty, but it remains highly acceptable. The visual results show

a more effective distribution of the resolution of the shadow maps, with a nice

soft effect, although it introduces some light leakage associated with VSM.

6.1. Future Work

The redistribution of the resolution of the depth maps provides better results but

still not optimal. The resolution of each split does not necessarily have to be the

same. Exploring strategies to better distribute the resolution in this axis is still

unchartered territory that may prove fruitful.

Also the light leakage from VSM is too noticeable in some situations. Other

filtering strategies should be explored to overcome this problem.

105

Appendix A

Trapezoid side lines computation

Assuming the first d distance from the near plane as the focus region, the

camera frustum is then truncated at that distance. Let PL be the point d distant

from the near plane, lying on l in post-perspective space of the light L (Figure

69). Let also d’ be the distance of PL from the top line of the trapezoid. The

trapezoid is then constructed in order to contain E, so that the transformation

matrix maps PL to a point on the line l of 80% of the shadow map. This

approach is termed by TSM as the 80% rule.

Figure 69: A 1D homogenous perspective projection problem to compute q

For doing this, it is necessary to formulate a perspective projection problem in

order to compute the position q on l, being q the center of projection on l,

mapping PL to the so called 80% line ξ = y = 1,6 where the base line is y=-1

106

and the top line is y=1. Let also nf [λ] be the distance between base and top

lines of the trapezoid.

The distance qn [η] from q to the top line will be computed through a

homogenous perspective projection*:

nfdnf

dnfdnf
qn

2

* For more details on this homogenous perspective projection, please refer to

[TSM04].

From here, q is calculated and the two side lines of the trapezoid are extracted.

These lines pass through q and touch the convex hull of E.

107

References

[ASM01] Fernando R., Fernandez S., Bala K, Greenberg D.P.; Adaptive

Shadow Maps, 2001

[ASSMT08] Bavoil L.; Advanced Soft Shadow Mapping Techniques, 2008

[CasSM07] Dimitrov R.; Cascaded Shadow Maps, 2007

[CCSCS78] Williams L.; Casting curved shadows on curved surfaces, 1978

 [CSM07] Annen T., Mertens T., Bekaert P., Seidel H.P., Kautz J.; Convolution

Shadow Maps, 2007

[EHSRA04] Chan E., Durand F.; An Efficient Hybrid Shadow Rendering

Algorithm, 2004

[ESM08] Annen T., Mertens T., Seidel H.P., Flerackers E. Kautz J.; Exponential

Shadow Maps, 2008

[FastSTM92] Segal M.,Korobkin C.,Widenfelt R.v.,Foran J.,Haeberli P.; Fast

Shadows and Lighting Effects Using Texture Mapping, 1992

[Heckbert86] Heckbert P.; Survey of Texture Mapping,1986

[MathGMCG] Lengyel E., Mathematics for 3D Game Programming and

Computer Graphics

[LiSPSM04] Wimmer M., Scherzer D., Purgathofer W.; Light Space Perspective

Shadow Maps, 2004

[OPG6ed] Shreiner D., Woo M., Neider J., Davis T.; OpenGL Programming

Guide, 6th Edition

[PCF87] Reeves W., Salesin D., Cook R.; Rendering anti-aliased shadows with

depth maps, 1987

108

[PluSM01] Tadamura K., Qin X., Jiao G., Nakamae E.; Rendering optimal solar

shadows with plural sunlight depth buffers, 2001

[PraSM02] Brabec S., Annen T., Seidel H.P.; Practical Shadow Mapping, 2002

[PSM02] Stamminger M., Drettakis G.; Perspective Shadow Maps, 2002

[PSSM06] Zhang F., Sun H., Xu L., Lun L.K.; Parallel-Split Shadow Maps for

Large-scale Virtual Environments, 2006

[SACG77] Crow F.; Shadows Algorithms for Computers Graphics, 1977

[SalviESM08] Salvi M.; Rendering filtered shadows with exponential shadow

maps, 2008

[SoftSM05] Valient M., Bujnak T.; GPU friendly, anti-aliased, soft shadow

mapping, 2005

[SRTSSA03] Hasenfratz, J.M., Lapierre M., Holzschuch N., Sillion F.; A survey

of Real-time Soft Shadows algorithms, 2003

[SSA90] Woo A., Poulin P., Fournier A.; A Survey of Shadow Algorithms, 1990

[STIRTA04] Brabec S., Shadow Techniques for Interactive and Real-Time

Applications, 2004

[TSM04] Martin T., Tan T.S.; Anti-aliasing and Continuity with Trapezoidal

Shadow Maps, 2004

[VSM06] Donnelly W., Lauritzen A.; Variance Shadow Maps, 2006

109

Web References

[WwwARF] Fernandes A.R.; OpenGL @ Lighthouse 3D,

http://www.lighthouse3d.com

[WwwTSM] Martin T.; Trapezoidal Shadow Maps (TSM) – Recipe,

http://www.comp.nus.edu.sg/~tants/tsm/TSM_recipe.html

http://www.lighthouse3d.comm/
http://www.comp.nus.edu.sg/~tants/tsm/TSM_recipe.html

110

Models and Utilities

City model generated using Citygen

http://citygen.net/

Trees and other models from 3dVia

http://www.3dvia.com

http://citygen.net/
http://www.3dvia.com/

	oão Abrantes de Oliveira.pdf
	Página 1
	Página 2
	Página 3

