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Abstract

The use of random coins in the implementation of cryptographic algorithms is needed

in order to achieve higher security levels. This can however be costly in terms of

bandwidth and computation. Minimizing the amount of fresh randomness required

is important for an overall efficiency but could also lead to security flaws. Therefore,

randomness reuse is an optimization that must be carefully studied on a theoretical

level in order to attain the necessary security.

In this dissertation we look at how randomness reuse can be applied across different

cryptographic primitives. We focus our attention on joint signature and encryption, as

well as on the KEM-DEM paradigm, where randomness reuse can, in specific circum-

stances, provide not only efficiency gains, but also additional security guarantees.
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Resumo

A utilização de aleatoriedade na implementação de algoritmos criptográficos é ne-

cessária para satisfazer requisitos de segurança mais exigentes. Esta operação pode,

no entanto, revelar-se dispendiosa a ńıvel de largura de banda e de esforço computa-

cional. Minimizar o recurso à aleatoriedade é importante para melhorar a eficiência

dos algoritmos, embora eventuais falhas de segurança inerentes ao processo não devam

ser desconsideradas. A reutilização de aleatoriedade entre primitivas criptográficas é

portanto uma optimização que deve ser cuidadosamente estudada a ńıvel teórico para

que se possa alcançar os padrões de segurança desejados.

Nesta dissertação, procura-se estudar a reutilização de aleatoriedade entre diversas pri-

mitivas criptográficas, dando ênfase à sua aplicação entre as primitivas criptográficas

de assinatura e de cifra, assim como ao paradigma KEM-DEM. Resultam desta técnica

não só ganhos de eficiência, como também, em casos particulares, novas garantias de

segurança.
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Chapter 1

Introduction

Modern cryptography deals with much more than just hiding information; mathe-

maticians and computer scientists study methods to securely (and efficiently) transmit

messages through computer networks. Depending on the intended goal, secure trans-

missions aim to assure confidentiality on the transmitted messages, or the messages’

authenticity and integrity. On many applications, both guarantees are needed.

Confidentiality is achieved thanks to encryption schemes. The security of such schemes

can be defined in several ways. Intuitively, one may argue that an encryption scheme

should hide a message in such a way that any part of the message becomes unreadable

to anyone but the intended receiver. To formalize this intuition, it is required that

an encryption scheme produces ciphertexts (from messages of the same size) that are

indistinguishable from each other. Loosely speaking, the ciphertexts should look-alike

to any illegitimate user, in the sense that given any two messages and a ciphertext of

one of those messages, an illegitimate user should not be able to tell to which message

the ciphertext corresponds to1. This notion of security applies to both symmetric and

asymmetric encryption schemes.

Although asymmetric cryptography simplifies key distribution, symmetric cryptosys-

tems are much more efficient. Hence, in the public-key setting, hybrid encryption

schemes take advantage of keyed symmetric algorithms. Cramer and Shoup [36, 16]

developed a framework where hybrid encryption schemes are constructed with two

distinct components: an asymmetric key encapsulation mechanism (KEM) and a sym-

metric data encapsulation mechanism (DEM).

Signature schemes have the purpose to mimic handwritten signatures. They offer au-

thenticity and integrity; a digital signature over a message binds the signer to the

1A precise definition of ciphertext-indistinguishability is given in Section 3.2
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message. Because both signature and encryption schemes are two fundamental cryp-

tographic primitives, they can be joined together to form a new primitive called sign-

cryption [5], which fulfills the functionalities of both schemes.

Randomness is employed in several cryptographic schemes in order to reach strong secu-

rity definitions such as indistinguishability of ciphertexts, and to ease the construction

of signature schemes. However, the use of random coins comes with an additional

computational cost and possibly a higher bandwidth usage. The generation of the

randomness itself, as well as the operation usually needed to hide the random coins

from potential attackers, are resource consuming. This is more noticeable as the size

of fresh randomness increases, which is the case when the same algorithm is instanti-

ated a number of times, or different algorithms are used. One approach to minimize

this problem is to reuse randomness across the multiple instantiations of algorithms,

previously done in the context of batch operations where messages are encrypted to

multiple recipients [8]. It could be even more challenging to reuse randomness across

different cryptographic primitives.

New scenarios where randomness reuse could be employed are the KEM-DEM paradigm,

or between a signature scheme and an encryption scheme. Despite the gain in load-

processing and bandwidth, this optimization must be pursued with caution as it can

lead to security flaws.

1.1 Our contribution

The aim of this dissertation is to extend the existing results on randomness reuse and

study its application across different primitives. We focus our attention on the com-

bination of signature and encryption, where randomness reuse can, in specific circum-

stances, provide not only efficiency gains, but also additional security guarantees. This

includes finding the proper definition of security for each case, by describing the secu-

rity goals and the attack models, and presenting the required properties for identifying

wherever randomness reuse can be safely employed. The benefits and disadvantages of

randomness reuse are also highlighted.

We closely follow the results from [5], where the requirements for generic constructions

of signcryption primitives are stated. The motivation for this work is to generalize

the optimization techniques typically used in the construction of concrete signcryption

schemes [42].

Then, we turn our attention to the KEM-DEM paradigm. We show that this combi-
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nation can be easily and naturally extended to allow for randomness reuse between the

two components. We demonstrate this with the practical case of Cramer-Shoup KEM

[14], and one-time symmetric encryption based on the cipher-block chaining (CBC)

mode of operation DEM [20]. The advantage of this approach in comparison to com-

mon practice is that the initialization vector (IV) no longer needs to be derived from the

common secret, which permits aligning the practical use of the KEM-DEM paradigm

with existing theoretical results without any efficiency loss.

1.2 Dissertation organisation

We start in Chapter 2 by briefly discussing related work, security definitions, standard

techniques employed in theoretic security proofs, and how to compare results in prov-

able security.

In Chapter 3, we explain the notation used throughout this dissertation. We also

give definitions for the various primitives used later on, including their syntax, attack

models, and security goals. Since we focus on signcryption and KEM-DEM construc-

tion, we review some important aspects such as signcryption insider attacks and hybrid

public-key encryption.

Chapter 4 revisits the results obtained by An, Dodis and Rabin [5] on sequential black-

box compositions of signature and encryption schemes. Proofs from [5] are included

in Appendix A so that they can easily be compared to the proofs of our theorems

(the notation and code-based game playing technique employed are consistent with

the rest of this document). We then extend these results in Chapter 5 to apply the

same randomness across signature and encryption schemes. Finally we compare our

results to those already known, and show candidates that may satisfy the requirements

for instantiation of this framework.

KEM-DEM receives the same treatment in Chapter 6. Randomness reuse is applied

across KEM and DEM, and a possible instantiation for this construction is presented.

Finally, in Chapter 7 we discuss the relevance and implications of the results in this

dissertation.
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Chapter 2

Related Work

2.1 The role of definitions in public-key

cryptography

Until 1982, before the work of Goldwasser and Micali, who introduced the notion of

security proof for a public-key encryption scheme [25], there could be no assurance

that schemes were secure beyond resistance to specific attacks. An encryption scheme

satisfying the definition of security introduced by Goldwasser and Micali is known

as semantically secure, a widely-used definition of security for asymmetric encryption

schemes. For an encryption scheme to be semantically secure, it must be infeasible for a

computationally-bounded adversary to extract any information (except the size of the

message) from a ciphertext, even when the encryption algorithm and the public-key are

known. The primary motivation of this seminal was to propose an encryption scheme

provably secure under a complexity-theoretic assumption. The proof took the form of a

reduction: if the algorithm didn’t meet the security definition, the quadric residuosity

problem wouldn’t be intractable. This marks the beginning of provable security. From

a point of view shared by many authors, beyond being an art, cryptography became a

science [34, 28].

Semantic security is equivalent to ciphertext-indistinguishability under chosen plaintext

attacks [26] (also introduced by Goldwasser and Micali), which is a much more common

definition nowadays because it better suits the constructions of security proofs. The

interaction between the adversary and the encryption scheme made clear the need for

separately defining the attack model and the security goal. The attack model specifies

the capabilities of the adversary (e.g. which algorithms it can access during his attack),

and the goal states when the adversary is deemed successful (e.g. it must tell which
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of two messages are encrypted in the challenge-ciphertext). Together, they define the

security model.

Later, other attack models emerged, and stronger capabilities are now given to the

adversary. These new powers allow the adversary to decrypt ciphertexts of his choice;

the models are called chosen-chipertext attacks. In the real world, an attacker may

have access to some ciphertexts and the messages underneath (it could simply be the

case that a confidential message becomes intentionally public, or some drafts were left

behind). Even in this scenario, we would like the security of other encrypted mes-

sages not to be compromised. First, Naor and Yung [32] formulated non-adaptive

chosen-chipertext attacks (CCA1), and later, Rackoff and Simon [33] strengtten this

model to adaptive chosen-chipertext attacks (CCA2). In these models, the adversary

is allowed to decrypt before the challenge is issued, or at any time except, for obvious

reasons, the given challenge-ciphertext (CCA1 and CCA2 attack models, respectively).

Although these attack models may seem to give unrealistic powers to the adversary

(the adversary may choose which ciphertexts he wishes to decrypt), pessimistic defini-

tions are better than definitions that may underestimate the adversary’s capabilities.

Still, several schemes satisfying these stronger definitions were found [23, 14], and CCA2

security is now considered a requirement for general-purpose encryption schemes.

Formal definitions of indistinguishability (IND) under chosen-plaintext attack (CPA),

non-adaptive chosen-ciphertext attack (CCA1) and adaptive chosen-ciphertext attack

(CCA2) models are given in Section 3.2. Analogous models for signature schemes exist

and are presented in Section 3.3. Naturally, the security goal is no longer to distinguish

between ciphertexts, but rather to forge signatures.

2.2 Game hopping proofs

Security proofs written in a conventional probabilistic language can be very complex

and hardly verifiable. For this reason, proofs are not always error-free [29]. A tech-

nique popularized by Shoup [37], known as game-hopping, allows cryptographers to

write proofs broken down into small steps.

In game-hopping proofs, we conceptualize the adversary’s interaction with its environ-

ment as a game, which in the proof is part of a sequence of games. The first game is

a transposition of the security model for the scheme we want to prove secure. So, we

want to determine an upper-bound of the probability that an adversary has in winning
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this game. If this upper-bound probability is very low1, then the scheme is secure. The

first game then suffers a small change, provably imperceptible to the adversary, result-

ing in a new game (this transition is called a game-hop). Other consecutive changes

are applied until we obtain a game which is simple enough to calculate an upper-bound

of the probability that an adversary has in winning it (see Figure 2.1). As a result, the

adversary’s probability of winning the first game is upper-bounded by the increased

probability of success that comes from each game-hop, and the probability of winning

the last game of the sequence. Because the probability of breaking a scheme is related

to the probability of winning the game which is a transposition of the security model,

we obtain an upper-bound of the chances a real attacker has in breaking the scheme.

Game 0 Game 1 Game 2 Game n. . .

hop 1 hop 2

We want to determine an
upper-bound of the probability

that an adversary has in
winning Game 0

An upper-bound of
the probability that an

adversary has in winning
Game n is easy to obtain

The probability of an
adversary detecting
that the environment

has changed is very small

Figure 2.1: Security proof as a sequence of games

Adopting the guidelines given by Bellare and Rogaway [10], we define a game as a pro-

gram that runs inside it an adversary, which is a sub-program. By describing games

and adversaries in a pseudocode language, we make proofs more rigorous, as well as

more easily verifiable. This technique also allows proofs to be checked by automatic

verification tools [11], which is another upside.

The game has two environment procedures: Initialize and Finalize. All other proce-

dures are oracles available to the adversary. At the beginning of the game, Initialize

runs and its output is passed to the adversary. After receiving the output of Initial-

ize, the adversary executes. During its execution, it may call any available oracle as

it pleases. When the adversary terminates its execution, its output is passed to the

Finalize procedure and the outcome of the game is known. Either the adversary won

1We define what “very low” means in Section 2.3.
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the game or it lost the game. For a visual description of this interaction, see Figure 2.2

(this diagram is similar to Figure 2 of [10]).

Adversary

Game

. . .

procedure
Initialize

procedure
Finalize

procedure
Pn

procedure
P1

outcome

41

1

2

3

Figure 2.2: The interaction between an adversary an its environment conceptualized as a game

There are three types of game-hops [19]:

• Bridging steps

The environment is rephrased but from the adversary’s point of view nothing

actually changes. The probability of the adversary winning the rephrased game

is exactly the same as winning the previous game.

• Transitions based on indistinguishability

The output of one of the procedure changes. It must be provable that the proba-

bility of winning the new game does not increase more than a very small amount.

This can be proved by contradiction: if the adversary’s behavior changes sig-

nificantly, then we can build another adversary that uses the first one to do a

computationally hard task (e.g. distinguish between values sampled from indis-

tinguishable distributions).

• Transitions based on failure events

A failure event is an event that occurs with a arguably very small probability. The

new game is exactly as the previous one, except when this event occurs. From

the Difference Lemma we conclude that the adversary’s increased probability of
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success from one game to another is not larger than the probability of the failure

event occurring. By building an adversary that does a computationally hard task

whenever the failure event occurs (e.g. solve a computationally hard problem),

we upper-bound the probability of this incident.

Difference Lemma. Let A,B,F be events defined in some probability distribu-

tion, and suppose that A ∧ ¬F ⇔ B ∧ ¬F . Then |Pr[A]− Pr[B]| ≤ Pr[F ].

Proof. The calculation is straightforward. We have

|Pr[A]− Pr[B]| = |Pr[A ∧ F ] + Pr[A ∧ ¬F ]− Pr[B ∧ F ]− Pr[B ∧ ¬F ]|

= |Pr[A ∧ F ]− Pr[B ∧ F ]|

≤ Pr[F ].

Because code-based proofs are written in a pseudocode language, game-hops based on

indistinguishability and failure events are argued by building adversaries in the same

pseudocode language. All proofs in this dissertation use this code-based game-hopping

technique. The notation employed is detailed in Section 3.1.

2.3 Computational security

Computational security can be defined for all primitives (symmetric encryption, public-

key encryption, digital signature, ...). Contrarily to perfectly secure encryption [35]

(which is impractical for most applications because it requires a key as long as all

messages encrypted with it), computationally secure encryption can always be broken

if unlimited resources were available to an attacker. However, no realistic attacker has

unlimited computational power!

There are two common approaches to treat computational security: the asymptotic

approach and the concrete security approach. The asymptotic approach relies on the

security parameter of the scheme2, and defines attackers as probabilistic polynomial-

time (PPT) adversaries. An algorithm is probabilistic if it tosses some coins during

its execution; several executions with the same input may result in different outputs.

2The security parameter is usually the key length.
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It is said to run in polynomial time if there exists a polynomial p(.) such that for

every input x ∈ {0, 1}∗, the algorithm runs at most within time p(|x|), where |x| is

the size of the input. Here, time can be measured in steps, and the size of the input

is that of the security parameter. Moreover, this approach equates the notion of “very

small” with that of a function that decreases faster than any inverse polynomial in the

security parameter of the scheme. A function with this behavior is called negligible

(see Definition 2.1). Thus, a scheme is asymptotically secure if any PPT adversary has

negligible probability of breaking the scheme. This approach guarantees the security

of the scheme for sufficiently large values of the security parameter.

Definition 2.1. A function f(.) is negligible if for every polynomial p(.) there exists

an n such that for all integers i > n it holds that f(i) < 1
p(i)

.

While asymptotic security is an important guarantee, it fails to answer with which

value the security parameter should be instantiated. This obviously depends on the

attacker’s computational power and how small we want his chances in breaking the

scheme to be. The concrete security approach explicitly quantifies the maximum ac-

ceptable probability of success of any adversary running within a specific time. That

is, let t be the amount of time an adversary is allowed to run (e.g. 280 steps) and ε

the maximum acceptable probability of an adversary breaking the scheme (e.g. 2−30).

Using the concrete security approach, a scheme is (t, ε)-secure if any adversary running

for no longer than t steps succeeds in breaking the scheme with probability at most ε.

We skip the concrete security approach in this dissertation because the task of deter-

mining the security parameter depends on specific instantiations of our constructions

and their usage.

2.4 Standard model vs. random oracle model

Some cryptographic schemes cannot be proven secure without making strong assump-

tions regarding the behavior of hash functions. For this reason, a popular methodology

for designing cryptographic schemes models hash functions has random oracles. These

oracles are a mathematical abstraction that map every input query to a point of the

hash function’s codomain, chosen uniformly at random, with one exception: if queried

twice on the same input, the random oracle replies the same answer to both queries.
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Schemes proven secure using this idealized model are described as being secure in the

random oracle model, as opposed to secure in the standard model.

When comparing the current state-of-the-art schemes proven secure in the standard

model to those proven secure in the random oracle model, it is clear that the latter are

more efficient. The encryption scheme designed by Kurosawa and Desmedt [30], which

encrypts computing one exponentiation less than the scheme of Cramer and Shoup [14]

(both proven secure in the standard model), is still less efficient than the RSA-OAEP [9]

scheme proposed by Bellare and Rogaway in 1994. On one hand, RSA-OAEP encrypts

messages with only one exponentiation operation, while Kurosawa-Desmedt encryption

algorithm executes four exponentiations; on the other hand, RSA-OAEP has only be

proven secure in the random oracle model [23] while Cramer-Shoup and Kurosawa-

Desmedt schemes just require a universal one-way hash function.

Looking at signature schemes, the scenario is not much different. Efficient signature

schemes that have be proven secure in the standard model rely on stronger and less

standard assumptions, such as Strong RSA3 [15, 22, 24], or are based on bilinear maps

[12, 40]. All these signature schemes have another important point in common: they

are all probabilistic.

Although the random oracle model is a useful tool to provide some confidence about

the security of a scheme, no “real” function can implement a true random oracle, and it

is unclear that schemes proven secure in this model are indeed secure when the random

oracle is replaced by a hash function such as SHA-256 [1]. In fact, Canetti, Goldreich

and Halevi [13] created an artificial signature and encryption schemes proven secure

in the random oracle model, but for which any implementation of the random oracle

results in insecure schemes.

In this dissertation, we strictly rely on the standard model. However, because we deal

with primitives as black boxes, their instantiations must be secure in the standard

model as well, otherwise the result is subject to the random oracle model if one of the

primitives is.

3Please refer to one of the articles for details about the Strong RSA assumption.
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2.5 Randomness reuse in multi-recipient

encryption schemes

Bellare, Boldyreva and Staddon [8] studied the problem of reusing randomness exam-

ining multi-recipient encryption, and consider the particular case of constructing such

schemes by running multiple instances of a public-key encryption scheme, whilst shar-

ing randomness across them. A suitable security definition was given and a general

method, called reproducibility test, for identifying public-key encryption schemes that

are secure when used in this scenario was presented.

Therefore, in order to efficiently (with computational and bandwidth savings) use an

encryption scheme as the base of a secure multi-recipient encryption scheme, the en-

cryption scheme must be reproducible. This condition states that given a ciphertext of

any message under any public-key, it is possible to create a new ciphertext for a new

message under an arbitrary key pair, such that the ciphertext uses the same random

coins as that of the input ciphertext. This is a reasonable condition. Indeed, several

popular encryption schemes have efficient reproduction algorithms.

This raises the following question: are there analogous reproducibility tests which de-

tect when randomness can be safely reused across different primitives? We answer this

question later on when we study the particular case of reusing random coins between

signature and encryption schemes, as well as between the KEM and the DEM compo-

nents of a hybrid encryption scheme.

2.6 Signcrytion, one primitive for authenticity and

confidentiality

Signature and encryption are two fundamental cryptographic primitives. The former

guarantees authenticity, integrity and non-repudiation. The latter achieves confiden-

tiality. Because both primitives are often needed in secure communication, a single

primitive called signcryption accomplishes the functionalities of signature and encryp-

tion in a single step. This primitive aims to simplify the usage of cryptographic schemes

for practitioners, while effectively decreasing the computational costs and communica-

tion overheads in comparison to the usage of signature and encryption as two indepen-

dent blocks.

The first signcryption scheme was introduced by Zheng in 1997 [42]. Since then, a
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number of researchers have dedicated their time designing more efficient and secure

schemes [43, 6, 38, 5, 41, 31, 18, 17].

When building new signcryption schemes, one may think of doing so by joining a

signature scheme and an encryption scheme in an encrypt-then-sign (EtS) or sign-

then-encrypt (StE) manner. From a theoretical point of view, the security of the

joined signature and encryption construction may not be as expected. An, Dodis and

Rabin [5] extensively studied these constructions.

Some signcryption schemes were already designed to take advantage of randomness

reuse, such as the scheme designed by Barbosa and Farshim [7]. Although the primary

concern of the authors was not to extensively study randomness reuse in signcryption

schemes, but rather present a specific construction. The proposed scheme can still be

seen as an encrypt-then-sign construction with random coins shared between encryp-

tion and signature. It is interesting to note that this resulted in even stronger security4

due to the extra binding provided by randomness reuse. Although the authors de-

signed their scheme in the certificateless scenario, we restrict ourselves to the standard

public-key setting.

In Chapter 5 we extend the generic constructions used in [5] to those reusing random-

ness across signature and encryption components, and take advantage of the benefits

this optimization may offer.

2.7 Hybrid encryption

In symmetric-key cryptosystems, the sender and the receiver must share a common se-

cret key in order to communicate securely. Although symmetric-key encryption schemes

are usually very efficient, the same key is used to encrypt and decrypt the data (each

two parties must agree on some secret key in order to establish a secure channel to

communicate). In a multi-user setting, messages are exchanged between multiple par-

ties and a different secret key is required for each channel.

In a multi-user scenario, public-key cryptosystems are more convenient in that each

party possesses a private decryption key and a corresponding public encryption key. In

order to send an encrypted message, the sender only needs to be aware of the receiver’s

public-key; no setup between the sender and the receiver is required. However, public-

key encryption schemes usually rely on more complex computations, which leads to

4The scheme has full insider security (see Section 4.3).
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lower efficiency. Moreover, “pure” public-key encryption schemes have a limited mes-

sage space (which depends on the setup parameters of the scheme), while symmetric-key

encryption schemes have an infinite message space.

Hybrid encryption schemes take advantage of both worlds: they have an unlimited

message space, and are almost as efficient as symmetric-key encryption schemes (for

long messages), while still in the public-key setting. Cramer and Shoup [36, 16] devel-

oped a framework where hybrid encryption schemes are constructed with two distinct

components: a key encapsulation mechanism (KEM) and a data encapsulation mech-

anism (DEM). The KEM, which is the public-key component, encapsulates a random

secret-key encrypting it with the receiver’s public-key. The DEM, which is a symmetric-

key encryption scheme, encapsulates the data, encrypting it with the randomly chosen

secret-key. The ciphertext is composed by both the key-encapsulation and the data-

encapsulation mechanisms. The receiver can obviously recover the secret-key with his

own private-key, and then decrypt the encrypted data with the secret-key. Note that a

hybrid encryption scheme is itself a public-key encryption scheme (the public-key and

the private-key are the same as in the KEM). A formal definition of this construction

is given in Section 3.5.
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Chapter 3

Preliminaries

3.1 Notation

Let a, b, . . . , Z be elements of {0, 1}? unless stated otherwise. Let A,B, . . . ,Z be al-

gorithms, and A,B, . . . ,Z sets. We write a ← b to denote the algorithmic action of

assigning the value of b to the variable a. We write a
$← A for sampling a from the

set A uniformly at random. ⊥1,⊥2, . . . ,⊥n /∈ {0, 1}? are special failure symbols. If A

is a probabilistic algorithm we write a
$← A(i1, i2, . . . , in) for the action of running A

on inputs i1, i2, . . . , in with random coins, and assigning the result to a. Sometimes we

run A on specific coins r and write a ← A(i1, i2, . . . , in; r). For a space S ⊆ {0, 1}?,
we identify S with its characteristic function. In other words, f(a) = T if and only if

a ∈ S. The symbol ∪ is used for the union of sets, e.g., S ← S ∪ {a} adds the element

a to the set S. The relative complement of A in B is denoted by B \ A. Therefore, if

we want to remove the element a from the set S, we simply write S ← S \ {a}.
When elements can be repeated or the their order matters, we consider lists as another

data structure. The empty list is represented by square brackets []. List← a : List ap-

pends the element a to the head of List. The function first() returns the first element

of a list: a← first(List) assigns the value of the first element of List to the variable a.

The function tail() returns the list passed as argument without the first element, e.g.,

List← tail(List) removes the first element from List.

‘Find’ is used for searching a set and assigning values to uninitialized elements with

the first match that satisfies a certain condition. For exemplification purpose, suppose

that the element a as no value assigned to it yet, and suppose that S is a set of pairs of

integers. Find (a, 3) ∈ S If Not Found a← 0 assigns to a the first element of the first

pair found in S which as the value 3 in its second element. If no such pair is found,
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the value 0 is assigned to a.

‘If’, ‘Then’, ‘Else’ are logic operators. The symbol | means “such that”. Sometimes it

is useful to include comments in the code. To do so, lines start with %, only exist for

understanding purposes, and can be discarded. A gray background is used to high-

light the changes in each game hop.

3.2 Public-key encryption

A public-key encryption scheme E = (Gen,Enc,Dec) is specified by three polynomial-

time algorithms (in the length of their inputs) associated with a message spaceM and

a randomness space R.

• Gen(1λ) is the probabilistic key-generation algorithm which takes as input the

security parameter and returns a secret key sk and a matching public key pk.

The security parameter is given as a string of 1’s of size λ to be consistent with

standard convention that requires all algorithms to run in polynomial time in the

length of their input.

• Enc(m, pk; r) is the probabilistic encryption algorithm. On input a message m ∈
M, a public key pk, and possibly some random coins r ∈ R, this algorithm

outputs a ciphertext c.

• Dec(c, sk) is the deterministic decryption algorithm. On input of a ciphertext c

and a key sk, this algorithm outputs a message m or a special failure symbol ⊥.

The correctness of a public-key encryption scheme requires that for any λ ∈ N,

any (sk, pk)
$← Gen(1λ), any m ∈ M, and any random coins r ∈ R, we have that

Dec(Enc(m, pk; r), sk) = m.

The standard notions of security for a public key encryption scheme are indistinguisha-

bility under various attack models. We define games for the most common attack mod-

els: chosen-plaintext attacks (Figure 3.1), chosen-chiphertext attacks (Figure 3.2) and

adaptive chosen-ciphertext attacks (Figure 3.3). The games are played as described in

Section 2.2, except that the adversary may only call Left-Right once with m0,m1 ∈M
such that |m0| = |m1|. The advantage of an adversary A against a public-key encryp-

tion scheme E is defined by AdvIND-ATK
E (A)

def
= 2 · Pr[IND-ATKAE ⇒ T]− 1.

In game IND-CPA no decryption oracle is available to the adversary.
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procedure Initialize(λ):

(sk, pk)
$← Gen(1λ)

b
$← {0, 1}

Return pk

procedure Left-Right(m0,m1):

c
$← Enc(mb, pk)

Return c

procedure Finalize(b′):

Return (b = b′)

Figure 3.1: Game IND-CPA for a public-key encryption E

Game IND-CCA1 has a decryption oracle, but the adversary may only query it before

the challenge is issued (i.e., before querying Left-Right).

procedure Initialize(λ):

(sk, pk)
$← Gen(1λ)

b
$← {0, 1}
S ← ∅
Return pk

procedure Left-Right(m0,m1):

c
$← Enc(mb, pk)

S ← S ∪ {c}
Return c

procedure Dec(c):

If S = ∅ Then

m← Dec(c, sk)

Return m

Else Return ⊥

procedure Finalize(b′):

Return (b = b′)

Figure 3.2: Game IND-CCA1 for a public-key encryption E

In game IND-CCA2, the adversary may call the decryption oracle whenever he pleases

but may not ask for the decryption of the challenge.

procedure Initialize(λ):

(sk, pk)
$← Gen(1λ)

b
$← {0, 1}
S ← ∅
Return pk

procedure Left-Right(m0,m1):

c
$← Enc(mb, pk)

S ← S ∪ {c}
Return c

procedure Dec(c):

If c ∈ S Return ⊥
m← Dec(c, sk)

Return m

procedure Finalize(b′):

Return (b = b′)

Figure 3.3: Game IND-CCA2 for a public-key encryption E

3.3 Digital signature

A digital signature scheme S = (Gen, Sign,Verify) is specified by three polynomial-time

algorithms (in the length of their inputs) associated with a randomness space R (we
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assume that signature schemes are based on the hash-then-sign paradigm and so the

message space M = {0, 1}? is infinite).

• Gen(1λ) is the probabilistic key-generation algorithm which takes as input the

security parameter and returns a secret key sk and a matching public key pk.

• Sign(m, sk; r) is the probabilistic signature generation algorithm. On input a

message m, a secret key sk, and possibly some random coins r ∈ R, this algorithm

outputs a signature σ.

• Verify(m,σ, pk) is the deterministic signature verification algorithm. On input of

a signature σ, a message m and a public key pk, this algorithm outputs a boolean

value T or F.

The correctness of a signature scheme requires that for any λ ∈ N, any (sk, pk)
$← Gen(1λ),

any m ∈ {0, 1}?, and any random coins r ∈ R, we have Verify(Sign(m, sk; r),m, pk) =

T.

The standard notion of security for a digital signature scheme is unforgeability under

chosen-message attacks at various strengths. Again, we define games for the most com-

mon attack models: existential unforgeability under no-message attacks (Figure 3.4),

existential unforgeability under chosen-message attacks (Figure 3.5) and strong exis-

tential unforgeability under chosen-message attacks (Figure 3.6). The advantage of an

adversary A against a digital signature scheme S is defined by following expression:

Adv
(s)UF-ATK
S (A)

def
= Pr[(s)UF-ATKAS ⇒ T].

Game UF-NMA has no signing oracle.

procedure Initialize(λ):

(sk, pk)
$← Gen(1λ)

Return pk

procedure Finalize(m,σ):

If Verify(m,σ, pk) Return T

Else Return F

Figure 3.4: Game UF-NMA for a digital signature S

A signing oracle is available in game UF-CMA, but no signature on a message that has

been queried to the signing oracle is a valid forgery.
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procedure Initialize(λ):

(sk, pk)
$← Gen(1λ)

S ← ∅
Return pk

procedure Sign(m):

σ
$← Sign(m, sk)

S ← S ∪ {m}
Return σ

procedure Finalize(m,σ):

If m ∈ S Return F

If Verify(m,σ, pk) Return T

Else Return F

Figure 3.5: Game UF-CMA for a digital signature S

In game sUF-CMA, only signatures returned by the signing oracle (with their corre-

sponding messages) are invalid signatures.

procedure Initialize(λ):

(sk, pk)
$← Gen(1λ)

S ← ∅
Return pk

procedure Sign(m):

σ
$← Sign(m, sk)

S ← S ∪ {(m,σ)}
Return σ

procedure Finalize(m,σ):

If (m,σ) ∈ S Return F

If Verify(m,σ, pk) Return T

Else Return F

Figure 3.6: Game sUF-CMA for a digital signature S

3.4 Signcryption

A signcryption scheme SC = (Gen, Signcrypt,Unsigncrypt) is specified by three polynomial-

time algorithms (in the length of their inputs) associated with a message spaceM and

a randomness space R.

• Gen(1λ) is the probabilistic key-generation algorithm which takes as input the

security parameter and returns a secret key sk and a matching public key pk.

Unless one wishes to signcrypt a message to oneself, two key pairs are required

to signcrypt and unsigncrypt.

• Signcrypt(m, skS, pkR; r) is the probabilistic signcryption algorithm. On input

a message m ∈ M, the secret key of the sender skS, the public key of the

receiver pkR, and possibly some random coins r ∈ R, this algorithm outputs a

signcryption φ.

• Unsigncrypt(φ, pkS, skR) is the deterministic unsigncryption algorithm. On input

a signcryption φ, the public key of the sender pkS, and the secret key of the

receiver skR, this algorithm outputs a message m or a special failure symbol ⊥.

The correctness of a signcryption scheme requires that for any m ∈ M, any λ ∈ N,

any (skS, pkS)
$← Gen(1λ), any (skR, pkR)

$← Gen(1λ), and any random coins r ∈ R,
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we have Unsigncrypt(Signcrypt(m, skS, pkR; r), pkS, skR) = m.

Before defining games for the most common attack models as we did for public-key en-

cryption and digital signature, we need to address some subtleties about signcryption.

In the next section we look at two kind of adversaries that are relevant in this context,

and we define confidentiality and authenticity games accordingly.

3.4.1 Insider and outsider adversaries

A signcryption scheme aims to protect the sender’s authenticity and the receiver’s con-

fidentiality from everyone else. But, should this protection be extended to the actual

agents involved in the communication? Suppose that Alice signcrypts a message to

Bob. In one scenario, the adversary is an outsider adversary which only knows Al-

ice and Bob’s public keys. Another scenario captures a stronger notion of security in

which Alice’s authenticity is protected even against Bob, and Bob’s confidentiality is

protected even against Alice. This means that, if Alice “forgets” a message previously

sent to Bob, she will no longer be able to learn anything about that message (this is

known as forward secrecy, as it safeguards past messages from adversaries that corrupt

Alice’s secret key). Similarly, Bob should also be unable to create new ciphertexts that

decrypt to valid messages under Alice’s public key (this allows for non-repudiation to

be achieved under some conditions). To model such scenarios, the adversary knows

the sender’s private key when playing a confidentiality game, and the receiver’s private

key when playing an authenticity game. These types of attackers are called insider

adversaries.

We define here games against both types of adversaries, but only for the strongest no-

tions of security. Games for other attack models can be easily written based on games

in previous sections. Starting with confidentiality, we define games IND-oCCA2 and

IND-iCCA2, which are played against outsider and insider adversaries, respectively. As

before, Left-Right can only be called once. We define next sUF-oCMA and sUF-iCMA

authenticity games. Again, these games are played against outsider and insider ad-

versaries, respectively. The ‘o’ visibly stands for outsider adversary, and the ‘i’ for

insider adversary. The advantage of an adversary A against the confidentiality of a

signcryption scheme SC is defined by AdvIND-ATK
SC (A)

def
= 2 · Pr[IND-ATKASC ⇒ T]− 1.

Game IND-oCCA2 for signcryption is very similar to game IND-CCA2 for public-key

encryption. However, notice the extra signcryption oracle which is needed because an

outsider adversary cannot signcrypt messages by itself.
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procedure Initialize(λ):

(skS , pkS)
$← Gen(1λ)

(skR, pkR)
$← Gen(1λ)

b
$← {0, 1}
S ← ∅
Return (pkS , pkR)

procedure Left-Right(m0,m1):

φ
$← Signcrypt(mb, skS , pkR)

S ← S ∪ {φ}
Return φ

procedure Signcrypt(m):

φ
$← Signcrypt(m, skS , pkR)

Return φ

procedure Unsigncrypt(φ):

If φ ∈ S Return ⊥
m← Unsigncrypt(φ, pkS , skR)

Return m

procedure Finalize(b′):

Return (b = b′)

Figure 3.7: Game IND-oCCA2 for a signcryption SC

In game IND-iCCA2, the signcryption oracle is no longer needed since the adversary

now receives the sender’s secret key.

procedure Initialize(λ):

(skS , pkS)
$← Gen(1λ)

(skR, pkR)
$← Gen(1λ)

b
$← {0, 1}
S ← ∅
Return (skS , pkS , pkR)

procedure Left-Right(m0,m1):

φ
$← Signcrypt(mb, skS , pkR)

S ← S ∪ {φ}
Return φ

procedure Unsigncrypt(φ):

If φ ∈ S Return ⊥
m← Unsigncrypt(φ, pkS , skR)

Return m

procedure Finalize(b′):

Return (b = b′)

Figure 3.8: Game IND-iCCA2 for a signcryption SC

The advantage of an adversary B against the authenticity of a signcryption scheme

SC is defined by Adv
(s)UF-ATK
SC (B)

def
= Pr[(s)UF-ATKBSC ⇒ T]. Authenticity games are

similar to those of a signature scheme, but in game sUF-oCMA, a unsigncryption oracle

is available to outsider adversaries.

procedure Initialize(λ):

(skS , pkS)
$← Gen(1λ)

(skR, pkR)
$← Gen(1λ)

S ← ∅
Return (pkS , pkR)

procedure Signcrypt(m):

φ
$← Signcrypt(m, skS , pkR)

S ∪ {φ}
Return φ

procedure Unsigncrypt(φ):

m← Unsigncrypt(φ, pkS , skR)

Return m

procedure Finalize(φ):

If φ ∈ S Return F

m← Unsigncrypt(φ, pkS , skR)

If m 6=⊥ Return T

Else Return F

Figure 3.9: Game sUF-oCMA for a signcryption SC
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In game sUF-iCMA, the unsigncryption oracle is no longer necessary since the adversary

now possesses the receiver’s secret key.

procedure Initialize(λ):

(skS , pkS)
$← Gen(1λ)

(skR, pkR)
$← Gen(1λ)

S ← ∅
Return (pkS , skR, pkR)

procedure Signcrypt(m):

φ
$← Signcrypt(m, skS , pkR)

S ∪ {φ}
Return φ

procedure Finalize(φ):

If φ ∈ S Return F

m← Unsigncrypt(φ, pkS , skR)

If m 6=⊥ Return T

Else Return F

Figure 3.10: Game sUF-iCMA for a signcryption SC

3.5 KEM-DEM

Cramer and Shoup developed a framework where hybrid encryption schemes are con-

structed with two distinct components: a key encapsulation mechanism (KEM) and a

data encapsulation mechanism (DEM). As stated in Section 2.7, a hybrid encryption

scheme is itself a public-key encryption scheme. For this reason, the indistinguishabil-

ity games are the same as for any other public-key encryption scheme. We first describe

a KEM and a DEM separately, and then describe how a hybrid public-key encryption

scheme can be constructed from the two components.

3.5.1 Key encapsulation mechanism

A key encapsulation mechanism K = (Gen,Enc,Dec) is specified by three polynomial-

time algorithms (in the length of their inputs) associated with a shared-key space SK
and a randomness space R, as follows.

• Gen(1λ) is the probabilistic key-generation algorithm which takes as input the

security parameter and returns a secret key sk and a matching public key pk.

• Encap(pk; r) is the probabilistic encapsulation algorithm. On input a public key

pk, and possibly some random coins r ∈ R, this algorithm outputs a pair con-

taining a shared key k ∈ SK, and a ciphertext c of k encrypted under pk.

• Decap(c, sk) is the deterministic decapsulation algorithm. On input a ciphertext

c and a secret key sk, this algorithm outputs a shared key k or a special failure

symbol ⊥.
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The correctness of a key encapsulation mechanism requires that for any λ ∈ N, any

(sk, pk)
$← Gen(1λ), and any random coins r, we have that Encap(pk; r) = (c, k) ⇒

Decap(c, sk) = k.

We only define here security against adaptive chosen-ciphertext attacks (Figure 3.11)

since other attack models are not in the main focus of this work. The advantage of an

adversaryA against a key encapsulation mechanismK is defined by AdvIND-CCA2
K (A)

def
= 2·

Pr[IND-CCA2AK ⇒ T] − 1. In the following game, real-or-random oracle can only be

called once.

procedure Initialize(λ):

(sk, pk)
$← Gen(1λ)

b
$← {0, 1}
S ← ∅
Return pk

procedure Real-Random():

(c, k0)
$← Encap(pk)

k1
$← SK

S ← S ∪ {c}
Return (c, kb)

procedure Decap(c):

If c ∈ S Return ⊥
k ← Decap(c, sk)

Return k

procedure Finalize(b′):

Return (b = b′)

Figure 3.11: Game IND-CCA2 for a key encapsulation mechanism K

3.5.2 Data encapsulation mechanism

A data encapsulation mechanism D = (Enc,Dec) is specified by two polynomial-time

algorithms (in the length of their inputs) associated with a key space SK and a ran-

domness space R.

• Encap(m, k; r) is the probabilistic encapsulation algorithm. On input a message

m ∈ {0, 1}?, a shared key k ∈ SK, and possibly some random coins r ∈ R, this

algorithm outputs a ciphertext c.

• Decap(c, k) is the deterministic decapsulation algorithm. On input of a ciphertext

c and a shared key k ∈ SK , this algorithm outputs a message m or a special

failure symbol ⊥.

The correctness of a data encapsulation mechanism requires that for any k ∈ SK, any

m ∈ {0, 1}?, and any random coins r ∈ R we have Decap(Encap(m, k; r), k) = m.

None of the security models for public-key encryption provides an encryption oracle

because the adversary can produce ciphertexts of his choice by himself. To do so, he

relies on the public-key made available in the beginning of the game. But this scenario

does not apply to symmetric encryption. We now have to consider another dimension
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for the definition of DEM’s attack model: “single plaintext” or “multiple plaintext”.

The former model is adequate for one-time symmetric encryption schemes, since each

shared key is only used to encrypt a single message; no encryption oracle is therefore

available to the adversary in this model, and the only ciphertext the adversary obtains

in the game is the challenge. For some applications, one must consider a “multiple

plaintext” attack, where the adversary is allowed to obtain many encryptions of his

choice, and not just a single encryption. In this attack model, beyond a decryption or-

acle, an encryption oracle is also available. However, a one-time symmetric encryption

scheme is sufficient for the hybrid construction of Cramer and Shoup. Thus the security

model defined here for DEM captures single plaintext and adaptive chosen-ciphertext

attacks (Figure 3.12). The advantage of an adversary A against a data encapsulation

mechanism D is defined by AdvIND-CCA2
D (A)

def
= 2 ·Pr[IND-CCA2AD ⇒ T]−1. Once more,

left-or-right oracle can only be called once.

procedure Initialize():

k
$← SK

b
$← {0, 1}
S ← ∅
Return

procedure Left-Right(m0,m1):

c
$← Encap(mb, k)

S ← S ∪ {c}
Return c

procedure Decap(c):

If c ∈ S Return ⊥
m← Decap(c, k)

Return m

procedure Finalize(b′):

Return (b = b′)

Figure 3.12: Game IND-CCA2 for a data encapsulation mechanism D

3.5.3 Hybrid construction

First of all, the two components must be compatible: they must share the same key

space SK. The message space of a hybrid encryption scheme is that of the DEM, i.e.,

M = {0, 1}?. A hybrid encryption scheme H = (Gen,Enc,Dec) is specified by three

polynomial-time algorithms (in the length of their input) as follows:

• Gen(1λ) is the same as K.Gen(1λ).

• Enc(m, pk) computes the sequence: (c1, k)
$← K.Encap(pk); c2

$← D.Encap(m, k);

c← (c1, c2); return c.

• Dec(c, sk) computes the sequence: (c1, c2) ← c; k ← K.Decap(c1, sk); m ←
D.Decap(c2, k); return m.
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Finally, a theorem from [16] concludes the security achieved with the above construc-

tion:

Theorem 1. If KEM K and DEM D are secure against adaptive chosen ciphertext

attacks, then so is the hybrid public-key encryption scheme H.
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Chapter 4

Security of Sequential Compositions

of Signature and Encryption

There are two obvious ways to transmit a message with authenticity and confidentiality:

encrypt-then-sign (EtS) and sign-then-encrypt (StE). Contrarily to what one may

expect, this operation sometimes result in a weaker security than those assumed on

encryption and signature components when analysed independently.

4.1 Two constructions

The constructions are very simple. Let S be a digital signature scheme and E a public-

key encryption scheme. A signcryption scheme based on the encrypt-then-sign (EtS)

construction works as follows:

• Gen(1λ) runs (sk1, pk1)
$← S.Gen(1λ) and (sk2, pk2)

$← E .Gen(1λ), joins the keys

together (sk, pk)← ((sk1, sk2), (pk1, pk2)), and outputs (sk, pk).

• Signcrypt(m, skS, pkR) computes the sequence: (sk1, sk2) ← skS; (pk1, pk2) ←
pkR; c

$← Enc(m, pk2); σ
$← Sign(c, sk1); φ← (c, σ); return φ.

• Unsigncrypt(φ, pkS, skR) computes the sequence: (pk1, pk2) ← pkS; (sk1, sk2) ←
skR; (c, σ)← φ; if Verify(c, σ, pk1) return Dec(c, sk2) else return ⊥.

A signcryption scheme based on the sign-then-encrypt construction (StE) has the same

Gen as above but the other algorithms differ:

• Signcrypt(m, skS, pkR) computes the sequence: (sk1, sk2) ← skS; (pk1, pk2) ←
pkR; σ

$← Sign(m, sk1); return Enc((m,σ), pk2).
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• Unsigncrypt(φ, pkS, skR) computes the sequence: (pk1, pk2) ← pkS; (sk1, sk2) ←
skR; (m,σ)← Dec(φ, sk2); if Verify(m,σ, pk1) return m else return ⊥.

For simplicity of exposition, we assume that the message space of E is {0, 1}?. Hence,

the message space of EtS and StE is also {0, 1}?.

4.2 gCCA2-security, a relaxation of CCA2-security

Using a sequential composition of signature and encryption, security against insider

attacks on both the strongest confidentiality and authenticity constrains (IND-iCCA2

and sUF-iCMA) cannot be attained. Briefly, this happens because an insider adversary

can win the IND-iCCA2 game of an encrypt-then-sign construction by simply producing

a new signature on the challenge ciphertext, and submitting the pair to the unsigncryp-

tion oracle. Analogously, an insider adversary can easily break the sign-then-encrypt

construction by decrypting the ciphertext with its private-key and re-encrypting the

result under the receiver’s publick-key (this is a valid forgery in game sUF-iCMA).

An et al. [5] extensively studied these constructions, and noticed that the above con-

structions are secure when only UF-iCMA and IND-iCCA1 security are required. But,

IND-iCCA1 is too weak of a definition to be adequate for a signcryption scheme when

compared to UF-iCMA-security (which is a reasonable definition). To overcome this,

they proposed a new attack model called generalized CCA2 (gCCA2).

An encryption scheme is secure against gCCA2 attacks if there exists an efficient

decryption-respecting relation f with the property f(c1, c2) = T ⇒ Dec(c1) = Dec(c2)

such that, besides preventing the adversary from querying the decryption oracle with

ciphertexts satisfying the relation f with the challenge, the attack model is the same

as CCA2. f is efficiently computable and captures cases of benign malleability, e.g.,

appending a bit to the ciphertext and querying decryption is no longer a successful

attack. Formally, IND-gCCA2 is described in Figure 4.1.
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procedure Initialize(λ):

(sk, pk)
$← Gen(1λ)

b
$← {0, 1}
S ← ∅
Return pk

procedure Left-Right(m0,m1):

c
$← Enc(mb, pk)

S ← S ∪ {c}
Return c

procedure Dec(c):

Find c′ ∈ S | f(c, c′) = T

Return ⊥
If Not Found

m← Dec(c, sk)

Return m

procedure Finalize(b′):

Return (b = b′)

Figure 4.1: Game IND-gCCA2 for a public-key encryption E

In this chapter, we revisit the main theorems in [5] which are based on this new security

model. In Section 4.5 we synthesize and discuss the results of sequential compositions

of signature and encryption.

4.3 From a two-user setting to a multi-user

setting

Even UF-iCMA and IND-iCCA2 security fail to capture all possible attacks one can do

to a signcryption scheme. Let φ be the signcryption of a message m Alice sent to Bob.

If the signcryption scheme used by Alice is a simple sequential black box composition

of encrypt-then-sign, Eve, who intercepted the signcryption φ, could simply discard

the signature part of the signcryption φ, re-sign the ciphertext with her own private

key, and convince Bob that she sent him the message m (without knowing m!). On

the other hand, if the signcryption scheme is a sequential black box composition of

sign-then-encrypt, Bob could decrypt the signcryption φ with his own private key, re-

encrypt the message m and Alice’s signature with Charlie’s public key (let us call this

other party Charlie), and convince Charlie that Alice sent him the message m.

An et al. [5] call these trivial attacks “identity fraud”. The approach adopted by the

authors is to study both constructions in the two-user setting, where these attacks are

obviously not possible since no other user is considered, and then fix the construction

to ensure security in the multi-user setting. By doing so, the constructions are simpler,

and so are the security proofs.

The schemes resulting of StE and EtS constructions proven secure in the two-user

settings remain secure in the multi-user setting, as long as the message is binded to

the public key of the sender and to the public key of the receiver. So, the fix works as
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follows:

• Before encrypting something, concatenate the public key of the sender (pkS) to

whatever is going to be encrypted.

• Before signing something, concatenate the public key of the receiver (pkR) to

whatever is going to be signed.

• The reverse process must validate that the public keys pkS and pkR match what

is expected.

For a formal proof of the above transformation, please refer to [5].

4.4 Security proofs

The following theorems (theorems 2 and 3 of [5]) will serve as a starting point to our

study. The proofs of these theorems are included in Appendix A for completeness. The

notation described in Section 3.1 and the code-based game playing technique described

in Section 2.2 are employed for consistency.

Theorem 2. If E is IND-CPA and S is UF-CMA, then EtS is IND-ogCCA21 and

UF-iCMA.

Theorem 3. If E is IND-gCCA2 and S is UF-NMA, then StE is IND-igCCA22 and

UF-oCMA.

4.5 Results summary

Tables 4.1 and 4.2 summarise the generic results obtained by An et al. [5] for the EtS
and StE constructions. The authors argue that UF-CMA and IND-gCCA2 are the right

definitions to assure authenticity and confidentiality. The cells in grey highlight the

minimum conditions where the constructions satisfy these security definitions, against

both insider and outsider adversaries.

For the reasons mentioned in Section 4.2, IND-iCCA2 does not appear in Table 4.1, as

1EtS is IND-ogCCA2 with respect to the decryption-respecting relation f such that
f((c1, σ1), (c2, σ2)) = T⇔ c1 = c2.

2StE is IND-igCCA2 with respect to the same decryption-respecting relation f of E .
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well as sUF-iCMA does not appear in Table 4.2. However, full outsider security3 can

be achieved with both EtS and StE constructions.

Table 4.1: Results obtained by An et al. [5] for the EtS construction.

IND-CPA IND-gCCA2 IND-CCA2

UF-NMA
UF-oNMA IND-oCPA UF-oNMA IND-ogCCA2 UF-oNMA IND-ogCCA2
UF-iNMA IND-iCPA UF-iNMA IND-igCCA2 UF-iNMA IND-igCCA2

UF-CMA
UF-oCMA IND-ogCCA2 UF-oCMA IND-ogCCA2 UF-oCMA IND-ogCCA2
UF-iCMA IND-iCPA UF-iCMA IND-igCCA2 UF-iCMA IND-igCCA2

sUF-CMA
sUF-oCMA IND-oCCA2 sUF-oCMA IND-oCCA2 sUF-oCMA IND-oCCA2
sUF-iCMA IND-iCPA sUF-iCMA IND-igCCA2 sUF-iCMA IND-igCCA2

Table 4.2: Results obtained by An et al. [5] for the StE construction.

IND-CPA IND-gCCA2 IND-CCA2

UF-NMA
UF-oNMA IND-oCPA UF-oCMA IND-ogCCA2 sUF-oCMA IND-oCCA2
UF-iNMA IND-iCPA UF-iNMA IND-igCCA2 UF-iNMA IND-iCCA2

UF-CMA
UF-oCMA IND-oCPA UF-oCMA IND-ogCCA2 sUF-oCMA IND-oCCA2
UF-iCMA IND-iCPA UF-iCMA IND-igCCA2 UF-iCMA IND-iCCA2

sUF-CMA
UF-oCMA IND-oCPA UF-oCMA IND-ogCCA2 sUF-oCMA IND-oCCA2
UF-iCMA IND-iCPA UF-iCMA IND-igCCA2 UF-iCMA IND-iCCA2

3“Full security” means security in terms of IND-CCA2 and sUF-CMA models.
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Chapter 5

Security of Sequential Compositions

of Signature and Encryption with

Randomness Reuse

In this chapter we extend the results of Chapter 4 to construct signcryption schemes

which use the same randomness across the two modular primitives. Our generic con-

structions capture concrete signcryption schemes as particular cases. Our results show

that the joint use of signature and encryption is not necessarily a motivation for weaker

security models that tolerate “benign” malleability (UF-iCMA and IND-gCCA2).

We propose a framework to construct signcryption schemes that are no longer subject

to these malleability attacks, thanks to the additional binding provided by randomness

reuse. We identify candidates that may fit in this framework, which guarantees full

insider security (sUF-iCMA and IND-iCCA2).

5.1 Partitioned and compatible schemes

The notion of joint signature and encryption in the public-key setting with randomness

reuse implies that the signature and encryption algorithms share the same random coins

in their input. In order to clarify the concept and simplify the security proofs, we will

restrict our attention to partitioned schemes that produce signatures and ciphertexts

of the form (σ,R) and (c, R) respectively, where R depends only on the random coins

r. Furthermore, we require the signature and encryption schemes to be compatible, i.e.,

on input the same random coins r, the signature and encryption algorithms produce
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the same R. More precisely, a signature scheme S and an encryption scheme E are

compatible if they share the same random space R, and the code in Figure 5.1 always

returns T for any message m.

(skS , pkS)
$← S.Gen(1λ)

(skR, pkR)
$← E.Gen(1λ)

r
$←R

(σ,R)← Sign(m, skS ; r)

(c, R′)← Enc(m, pkR; r)

Return (R = R′)

Figure 5.1: Compatibility between S and E

Later in this dissertation we discuss instantiations for our constructions and show that

partitioning is not an unnatural characteristic to impose on encryption and signature

schemes.

5.2 Two constructions with randomness reuse

We briefly describe the constructions of Section 4.1 but now with randomness reuse.

Let a digital signature S and a public-key encryption E be two compatible schemes,

associated with the randomness space R. A signcryption scheme based on the encrypt-

then-sign construction (EtS) with randomness reuse works as follows:

• Gen(1λ) runs (sk1, pk1)
$← S.Gen(1λ) and (sk2, pk2)

$← E .Gen(1λ), joins the keys

together (sk, pk)← ((sk1, sk2), (pk1, pk2)), and outputs (sk, pk).

• Signcrypt(m, skS, pkR) computes the sequence: (sk1, sk2) ← skS; (pk1, pk2) ←
pkR; r

$← R; (c, R)← Enc(m, pk2; r); (σ,R)← Sign((c, R), sk1; r); φ← (c, σ, R);

return φ.

• Unsigncrypt(φ, pkS, skR) computes the sequence: (pk1, pk2) ← pkS; (sk1, sk2) ←
skR; (c, σ, R) ← φ; if Verify((c, R), (σ,R), pk1) return Dec((c, R), sk2) else return

⊥.

In the sign-then-encrypt construction (StE) with randomness reuse, Gen is the same

as above but the other two algorithms differ:

• Signcrypt(m, skS, pkR) computes the sequence: (sk1, sk2) ← skS; (pk1, pk2) ←
pkR; r

$← R; (σ,R)← Sign(m, sk1; r); return Enc((m, (σ,R)), pk2; r).
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• Unsigncrypt(φ, pkS, skR) computes the sequence: (pk1, pk2) ← pkS; (sk1, sk2) ←
skR; (c, R)← φ; (m, (σ,R′))← Dec((c, R), sk2); ifR == R′∧Verify(m, (σ,R), pk1)

return m else return ⊥.

Once more, for simplicity of exposition we assume that the message space of E is {0, 1}?.
Comparing the size of the signcryption φ on both constructions, one notices that the

EtS construction produces a shorter output. This happens because both the ciphertext

(c, R) and the signature (σ,R) are outputted, and since the R’s are the same, only one

needs to be included in the signcryption φ. In the StE construction, R is encrypted

inside the ciphertext as well so that the unsigncryption algorithm can check for consis-

tency. Intuitively this prevents an attacker from changing the encryption randomness,

which is not authenticated by the signature in this case.

5.3 Reproducibility

Similarly to the requirements in [8], in order to provide simulations in our proofs, we

need to define reproduction algorithms which achieve the same results as the standard

signature and encryption algorithms but rely on R instead of r. To achieve this without

contradicting security, these algorithms are also given the full key pair under which

the ciphertext or signature is to be produced. We say that a signature scheme (resp.

encryption scheme) is reproducible if there is a polynomial-time reproduction algorithm

RepS (resp. RepE) defined as follows:

• RepS(m, skS, R) is a deterministic reproduction algorithm for signature. On input

a message m, the signature key skS, and R, this algorithm outputs a signature

σ1 or a special failure symbol ⊥.

• RepE(m, skR, R) is a deterministic reproduction algorithm for encryption. On

input a message m, the decryption key skR, and R, this algorithm outputs a

ciphertext c2 or a special failure symbol ⊥.

The output of these reproduction algorithms must be consistent with their correspond-

ing signature and encryption algorithms. Formally, reproducibility for E is defined in

Figure 5.3 and reproducibility for S is defined in Figure 5.2. The schemes are repro-

ducible if the code in these figures always returns T for any message m.

1The whole signature is in fact (σ,R), but R is given as input.
2The whole ciphertext is in fact (c,R), but R is given as input.
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(sk, pk)
$← Gen(1λ)

r
$←R

(σ,R)← Sign(m, sk; r)

σ′ ← RepS(m, sk,R)

Return (σ = σ′)

Figure 5.2: Reproducibility for S

(sk, pk)
$← Gen(1λ)

r
$←R

(c, R)← Enc(m, pk; r)

c′ ← RepE(m, sk,R)

Return (c = c′)

Figure 5.3: Reproducibility for E

Notice that RepE receives as input the secret (decryption) key, while Enc only takes

the public (encryption) key. We show in Section 5.7 that reproducibility is available in

many asymmetric encryption schemes.

5.4 Randomness dependent attacks

We introduce two new attack models: one for encryption and one for digital signatures.

These new attack models are specific for partitioned schemes. We define a new security

model for encryption, which we call indistinguishability under randomness dependent

generalized chosen ciphertext attacks (IND-RDA).

As stated in Section 5.1, we restrict our attention to partitioned schemes which produce

ciphertexts of the form (c, R), where R depends only on the random coins r, and en-

cryption is otherwise deterministic if those coins are fixed. In Section 5.3 we introduced

the notion of reproducibility. A reproduction algorithm is an algorithm that achieve

the same result as the encryption algorithm of a scheme, but rely deterministically on

R. So, it is clear that if we fix R, we are also fixing r, although we may not know its

value.

This new IND-RDA model is similar to IND-gCCA2 except that the adversary receives

R in the beginning of the game, before choosing the two messages for the challenger.

For a correct simulation of this model, instead of splitting the encryption algorithm

in order to obtain the subroutine which computes R from r, we simply encrypt any

message3 under random coins r, and save the pair (r, R). Also, the left-or-right oracle

3For the games presented in this section, we fixed the message to be “00000”.
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must only be queried once. The advantage of an adversary A against a partitioned

public-key encryption E is defined by AdvIND-RDA
E (A)

def
= 2 · Pr[IND-RDAAE ⇒ T] − 1.

Game IND-RDA is defined in Figure 5.4.

procedure Initialize(λ):

(sk, pk)
$← Gen(1λ)

b
$← {0, 1}
S ← ∅

r
$←R

(c, R)← Enc(“00000”, pk; r)

Return (pk,R)

procedure Left-Right(m0,m1):

(c, R)← Enc(mb, pk; r)

S ← S ∪ {(c, R)}
Return (c, R)

procedure Dec(c, R):

Find (c′, R′) ∈ S | f((c, R), (c′, R′)) = T

Return ⊥
If Not Found

m← Dec((c, R), sk)

Return m

procedure Finalize(b′):

Return (b = b′)

Figure 5.4: IND-RDA for a public-key encryption E

We also introduce a new security model for signatures called unforgeability against

randomness dependent chosen message attacks (UF-RDA). The observations made so

far regarding IND-RDA apply analogously here. Here, the advantage of an adversary A
against a partitioned signature scheme S is defined by AdvUF-RDA

S (A)
def
= Pr[UF-RDAAS ⇒

T]. Game UF-RDA is defined in Figure 5.5.

procedure Initialize(λ):

(skS , pkS)
$← Gen(1λ)

S ← ∅
Listr ← []

ListR ← []

qi ← 0

while qi < q {

r
$←R

(c, R)← Sign(“00000”, pk; r)

Listr ← r : List

ListR ← R : List

qi ← qi + 1

}
Return (pkS , ListR)

procedure Sign(m):

r ← first(Listr)

Listr ← tail(Listr)

(σ,R)← Sign(m, skS ; r)

S ← S ∪ {m}
Return (σ,R)

procedure Finalize(m, (σ,R)):

If m /∈ S ∧ Verify(m, (σ,R), pkS) Return T

Else Return F

Figure 5.5: UF-RDA for a digital signature S

5.4.1 Multiple encryption queries

In our previous definition of model IND-RDA, we restrict the adversary from making

more than one query to the left-or-right oracle so that the model is as close as possible
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to the model IND-gCCA2. However, we show here that no weakness is exposed in

an IND-RDA encryption scheme via an attack involving the observation of ciphertexts

of many related messages, chosen adaptively as a function of ciphertexts of previous

messages. Although the adversary would gain a higher advantage in this scenario, the

gain is very limited.

Let B be an adversary against IND-RDA-q (Figure 5.6), which is a game identical to

IND-RDA except that now the adversary is given the capability of querying the left-or-

right oracle at most q times. Furthermore, to be coherent with the new powers that

allow the adversary to retrieve R before querying the left-or-right oracle, this game

also outputs a list of length q of values for each R of each ciphertext to be outputted

by this oracle.

procedure Initialize(λ):

(sk, pk)
$← Gen(1λ)

b
$← {0, 1}
S ← ∅
Listr ← []

ListR ← []

qi ← 0

while qi < q {

r
$←R

(c, R)← Enc(“00000”, pk; r)

Listr ← r : List

ListR ← R : List

qi ← qi + 1

}
Return (pk, ListR)

procedure Left-Right(m0,m1):

r ← first(Listr)

Listr ← tail(Listr)

(c, R)← Enc(mb, pk; r)

S ← S ∪ {(c, R)}
Return (c, R)

procedure Dec(c, R):

Find (c′, R′) ∈ S | f((c, R), (c′, R′)) = T

Return ⊥
If Not Found

m← Dec((c, R), sk)

Return m

procedure Finalize(b′):

Return (b = b′)

Figure 5.6: IND-RDA-q for a public-key encryption E

Using a so-called “hybrid argument”, we prove that the advantage of B against IND-RDA-q

is at most q times the advantage of an of adversary A which queries the left-or-right

oracle only once.

Theorem 4. AdvIND-RDA-q
E (B) ≤ q ·AdvIND-RDA

E (A).

Proof. First, we associate B with the sequence of games Game0, Game1, ..., Gameq.

These games only differ, relatively to game IND-RDA-q, on the behavior of the left-or-

right oracle: instead of throwing a coin to decide whether to encrypt m0 or m1, the

oracle encrypts the message on the left the first q − i times the adversary queries it,

and thenceforth encrypts the message on the right, being i the index of the game.
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procedure Initialize(λ):

(sk, pk)
$← Gen(1λ)

S ← ∅
Listr ← []

ListR ← []

qi ← 0

while qi < q {

r
$←R

(c, R)← Enc(“00000”, pk; r)

Listr ← r : List

ListR ← R : List

qi ← qi + 1

}
c← 0

Return (pk, ListR)

procedure Left-Right(m0,m1):

r ← first(Listr)

Listr ← tail(Listr)

If (c < (q − i)) Then (c, R)← Enc(m0, pk; r)

Else (c, R)← Enc(m1, pk; r)

c← c+ 1

S ← S ∪ {(c, R)}
Return (c, R)

procedure Dec(c, R):

Find (c′, R′) ∈ S | f((c, R), (c′, R′)) = T

Return ⊥
If Not Found

m← Dec((c, R), sk)

Return m

procedure Finalize(b′):

Return (b = b′)

Figure 5.7: Gamei

Let Pi = Pr[B outputs 1 in Gamei]. Now observe that:

AdvIND-RDA-q
E

def
= 2 · Pr[IND-RDA-qBE ⇒ T]− 1

= 2 · Pr[B outputs b]− 1

= 2 · (Pr[B outputs 0 ∧ b = 0] + Pr[B outputs 1 ∧ b = 1])− 1

= 2 · Pr[B outputs 0 ∧ b = 0] + 2 · Pr[B outputs 1 ∧ b = 1]− 1

= 2 · Pr[b = 0] · Pr[B outputs 0 | b = 0] +

2 · Pr[b = 1] · Pr[B outputs 1 | b = 1]− 1

= Pr[B outputs 0 | b = 0] + Pr[B outputs 1 | b = 1]− 1

= Pr[B outputs 0 | b = 0] + Pr[B outputs 1 | b = 1]−

(Pr[B outputs 0 | b = 0] + Pr[B outputs 1 | b = 0])

= Pr[B outputs 1 | b = 1]− Pr[B outputs 1 | b = 0]

= Pq − P0

To continue this proof, we show that there exists a program Ai (Figure 5.8) such that

AdvIND-RDA
E (Ai) = Pi+1 − Pi. This program simulates the environment of Gamei or

Gamei+1 for B. If the behavior of B changes significantly between the two games, it

means that B must be gaining some advantage in game AdvIND-RDA
E .
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procedure Initialize(pk,Ri):

S ← ∅
Listr ← []

ListR ← []

qi ← 0

while qi < q {
If qi = i Then

Listr ←⊥: List
ListR ← Ri : List

Else

r
$←R

(c, R)← Enc(“00000”, pk; r)

Listr ← r : List

ListR ← R : List

qi ← qi + 1

}
c← 0

Return (pk, ListR)

procedure Left-Right(m0,m1):

r ← first(Listr)

Listr ← tail(Listr)

If (c < (q − i)) Then (c, R)← Enc(m0, pk; r)

If qi = i Then (c, R)← IND-RDA.Left-Right(m0,m1)

Else (c, R)← Enc(m1, pk; r)

c← c+ 1

S ← S ∪ {(c, R)}
Return (c, R)

procedure Dec(c, R):

Find (c′, R′) ∈ S | f((c, R), (c′, R′)) = T

Return ⊥
If Not Found

m← IND-RDA.Dec(c, R)

Return m

procedure Finalize(b′):

Return (b = b′)

Figure 5.8: Program Ai

From here, with a few calculations we have that

q−1∑
i=0

(Pi+1 − Pi) =

q−1∑
i=0

(AdvIND-RDA
E (Ai))

⇔
q−1∑
i=0

(Pi+1)−
q−1∑
i=0

(Pi) =

q−1∑
i=0

(AdvIND-RDA
E (Ai))

⇔
q∑
i=1

(Pi)−
q−1∑
i=0

(Pi) =

q−1∑
i=0

(AdvIND-RDA
E (Ai))

⇔ Pq − P0 =

q−1∑
i=0

(AdvIND-RDA
E (Ai))

⇔ Pq − P0 ≤ q · max
0≤i<q

(AdvIND-RDA
E (Ai)).

Moreover, let

AdvIND-RDA
E (A) = max

0≤i<q
(AdvIND-RDA

E (Ai)).
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Finally, we have that

AdvIND-RDA-q
E (B) ≤ q ·AdvIND-RDA

E (A),

which concludes our proof.

5.5 New theorems and proofs

Closely following theorems 2 and 3 of [5], we now show how these can be altered to

capture the effects of randomness reuse, and achieve standard and stronger notions of

security (IND-iCCA2 and sUF-iCMA).

Theorem 5. If E is IND-CPA and reproducible, and S is UF-RDA, reproducible and

satisfies Property 1, then EtS with randomness reuse is IND-oCCA2 and sUF-iCMA.

First, let us state what property 1 is. Informally, we say that for any given R and m,

there is only one σ for which (σ,R) is a valid signature of m. This property simply

says that, for each message, the set of valid signatures and the set of randomnesses are

one-to-one. Again, we show later that this is a natural property in signature schemes.

Property 1. ∀(m,σ, (sk, pk)), Sign(m, sk) = (σ′, R) ∧ σ 6= σ′ ⇒ Verify(m, (σ,R), pk) = F

The theorem then follows from Lemmas 5.1 and 5.2.

Lemma 5.1. If E is IND-CPA and reproducible, and S is UF-RDA, reproducible and

satisfies Property 1, then EtS with randomness reuse is IND-oCCA2.

Proof. Let A be any probabilistic polynomial-time adversary against Game0 defined in

Figure 5.9, which is game IND-oCCA2 expanded according to the EtS construction

with randomness reuse described in Section 5.2. For simplicity of exposition, we do

not expand the key-generation algorithm.
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procedure Initialize(λ):

(skS , pkS)
$← Gen(1λ)

(skR, pkR)
$← Gen(1λ)

b
$← {0, 1}
S ← ∅
Return (pkS , pkR)

procedure Left-Right(m0,m1):

r
$←R

(c, R)← Enc(mb, pkR; r)

(σ,R)← Sign((c, R), skS ; r)

φ← (c, σ,R)

S ← S ∪ {φ}
Return φ

procedure Signcrypt(m):

r
$←R

(c, R)← Enc(m, pkR; r)

(σ,R)← Sign((c, R), skS ; r)

φ← (c, σ,R)

Return φ

procedure Unsigncrypt(φ):

(c, σ,R)← φ

If φ ∈ S Return ⊥
If Verify((c, R), (σ,R), pkS) Then

Return Dec((c, R), skR)

Return ⊥

procedure Finalize(b′):

Return (b = b′)

Figure 5.9: Game0 defines IND-oCCA2 for EtS with randomness reuse

In Game1 (Figure 5.10) we save the replies of the signcryption oracle, and before de-

crypting any query of the unsigncryption oracle we check if the answer is already known.

This is a bridging step from Game0 and from the adversary’s point of view, nothing

really changes.

procedure Initialize(λ):

(skS , pkS)
$← Gen(1λ)

(skR, pkR)
$← Gen(1λ)

b
$← {0, 1}
S1 ← ∅
S2 ← ∅
Return (pkS , pkR)

procedure Left-Right(m0,m1):

r
$←R

(c, R)← Enc(mb, pkR; r)

(σ,R)← Sign((c, R), skS ; r)

φ← (c, σ,R)

S1 ← S ∪ {φ}
Return φ

procedure Signcrypt(m):

r
$←R

(c, R)← Enc(m, pkR; r)

(σ,R)← Sign((c, R), skS ; r)

φ← (c, σ,R)

S2 ← S2 ∪ {(m, (c, R))}
Return φ

procedure Unsigncrypt(φ):

(c, σ,R)← φ

If φ ∈ S1 Return ⊥
If Verify((c, R), (σ,R), pkS) Then

Find (m, (c, R)) ∈ S2 Return m

If Not Found Return Dec((c, R), skR)

Return ⊥

procedure Finalize(b′):

Return (b = b′)

Figure 5.10: Game1

Property 1 allows us to rephrase the environment of Game1, and from the adversary’s

point of view, no part of the environment actually changes. This bridging step will

lead to Game2 (Figure 5.11).
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procedure Initialize(λ):

(skS , pkS)
$← Gen(1λ)

(skR, pkR)
$← Gen(1λ)

b
$← {0, 1}
S1 ← ∅
S2 ← ∅
Return (pkS , pkR)

procedure Left-Right(m0,m1):

r
$←R

(c, R)← Enc(mb, pkR; r)

(σ,R)← Sign((c, R), skS ; r)

φ← (c, σ,R)

S1 ← S1 ∪ {(c, R)}
Return φ

procedure Signcrypt(m):

r
$←R

(c, R)← Enc(m, pkR; r)

(σ,R)← Sign((c, R), skS ; r)

φ← (c, σ,R)

S2 ← S ∪ {(m, (c, R))}
Return φ

procedure Unsigncrypt(φ):

(c, σ,R)← φ

If (c, R) ∈ S1 Return ⊥
If Verify((c, R), (σ,R), pkS) Then

Find (m, (c, R)) ∈ S2 Return m

If Not Found Return Dec((c, R), skR)

Return ⊥

procedure Finalize(b′):

Return (b = b′)

Figure 5.11: Game2

In Game3, the line which makes use of the decryption algorithm is removed from the

simulation of the unsigncryption oracle. Let E be the event where the unsigncryption

oracle uses the decryption algorithm in Game2. The adversary A interacts with Game3

(Figure 5.12) exactly the same way it interacts with Game2 unless the event E occurs.

This transition is based on the failure event E, and as a result of the difference lemma

(see Section 2.2), |Pr[Game3 ⇒ T]− Pr[Game2 ⇒ T]| ≤ Pr[E].

procedure Initialize(λ):

(skS , pkS)
$← Gen(1λ)

(skR, pkR)
$← Gen(1λ)

b
$← {0, 1}
S1 ← ∅
S2 ← ∅
Return (pkS , pkR)

procedure Left-Right(m0,m1):

r
$←R

(c, R)← Enc(mb, pkR; r)

(σ,R)← Sign(c, skS ; r)

φ← (c, σ,R)

S1 ← S ∪ {(c, R)}
Return φ

procedure Signcrypt(m):

r
$←R

(c, R)← Enc(m, pkR; r)

(σ,R)← Sign((c, R), skS ; r)

φ← (c, σ,R)

S2 ← S ∪ {(m, (c, R))}
Return φ

procedure Unsigncrypt(φ):

(c, σ,R)← φ

If (c, R) ∈ S1 Return ⊥
If (Verify((c, R), (σ,R), pkS) Then

Find (m, (c, R)) ∈ S2 Return m

—————

Return ⊥

procedure Finalize(b′):

Return (b = b′)

Figure 5.12: Game3
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To complete the step, we must calculate an upper-bound of Pr[E]. Intuitively, in order

to make the event E occur, A has to break the signature scheme S. We argue this

by building a program B (Figure 5.13) that simulates the environment of Game2 and

breaks UF-RDA (Figure 5.5) whenever event E occurs. Thus, Pr[E] = AdvUF-RDA
S (B).

procedure Initialize(pkS , ListR):

(skR, pkR)
$← Gen(1λ)

b
$← {0, 1}
S1 ← ∅
S2 ← ∅
Return (pkS , pkR)

procedure Left-Right(m0,m1):

R← first(ListR)

ListR ← tail(ListR)

(c, R)← RepE(mb, skR, R)

(σ,R)← UF-RDA.Sign((c, R), R)

φ← (c, σ,R)

S1 ← S1 ∪ {(c, R)}
Return φ

procedure Signcrypt(m):

R← first(ListR)

ListR ← tail(ListR)

(c, R)← RepE(m, skR, R)

(σ,R)← UF-RDA.Sign((c, R), R)

φ← (c, σ,R)

S2 ← S2 ∪ {(m, (c, R))}
Return φ

procedure Unsigncrypt(φ):

(c, σ,R)← φ

If (c, R) ∈ S1 Return ⊥
If Verify((c, R), (σ,R), pkS) Then

Find (m, (c, R)) ∈ S2 Return m

If Not Found UF-RDA.Finalize((c, R), (σ,R))

Return ⊥

procedure Finalize(b′):

Return

Figure 5.13: Program B (Lemma 5.1)

Notice that in Game3 the unsigncryption oracle is useless to the adversary since it

only returns ⊥, or messages queried by the adversary to the signcryption oracle.

With this in mind, we construct a program C (Figure 5.14) that perfectly simulates

Game3 and wins game IND-CPA (Figure 3.1) whenever adversary A wins Game3. Thus,

AdvGame3(A) = AdvIND−CPA
E (C).
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procedure Initialize(pkR):

(skS , pkS)
$← Gen(1λ)

S1 ← ∅
S2 ← ∅
Return (pkS , pkR)

procedure Left-Right(m0,m1):

(c, R)
$← IND-CPA.Left-Right(m0,m1)

(σ,R)← RepS((c, R), skS , R)

φ← (c, σ,R)

S1 ← S1 ∪ {(c, R)}
Return φ

procedure Signcrypt(m):

r
$←R

(c, R)← Enc(m, pkR; r)

(σ,R)← Sign((c, R), skS ; r)

φ← (c, σ,R)

S2 ← S2 ∪ {(m, (c, R))}
Return φ

procedure Unsigncrypt(φ):

If (c, R) ∈ S1 Return ⊥
(c, σ,R)← φ

If Verify((c, R), (σ,R), pkS) Then

Find (m, (c, R)) ∈ S2 Return m

Return ⊥

procedure Finalize(b):

IND-CPA.Finalize(b)

Figure 5.14: Program C (Lemma 5.1)

Therefore: AdvIND-ogCCA2
EtS (A) ≤ AdvUF-RDA

S (B) + AdvIND-CPA
E (C).

Lemma 5.2. If E is reproducible, and S is UF-RDA and satisfies Property 1, then EtS
with randomness reuse is sUF-iCMA.

Proof. Let A be the adversary that plays against Game0 defined in Figure 5.15, which

is game sUF-iCMA expanded according to the EtS construction with randomness reuse

described in Section 5.2.

procedure Initialize(λ):

(skS , pkS)
$← Gen(1λ)

(skR, pkR)
$← Gen(1λ)

S ← ∅
Return (pkS , skR, pkR)

procedure Signcrypt(m):

r
$←R

(c, R)← Enc(m, pkR; r)

(σ,R)← Sign((c, R), skS ; r)

φ← (c, σ,R)

S ← S ∪ {φ}
Return φ

procedure Finalize(φ):

(c, σ,R)← φ

If φ ∈ S Return F

If Verify((c, R), (σ,R), pkS)

m← Dec((c, R), skR)

If m 6=⊥ Return T

Return F

Figure 5.15: Game0 defines sUF-iCMA for EtS with randomness reuse

Since the signature S satisfies Property 1, we can rephrase the environment of Game0,

and from the adversary’s point of view, no part of the environment actually changes.

This bridging step will lead to Game1 (Figure 5.16).
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procedure Initialize(λ):

(skS , pkS)
$← Gen(1λ)

(skR, pkR)
$← Gen(1λ)

S ← ∅
Return (pkS , skR, pkR)

procedure Signcrypt(m):

r
$←R

(c, R)← Enc(m, pkR; r)

(σ,R)← Sign((c, R), skS ; r)

φ← (c, σ,R)

S ← S ∪ {(c, R)}
Return φ

procedure Finalize(m,φ):

(c, σ,R)← φ

If (c, R) ∈ S Return F

If Verify((c, R), (σ,R), pkS)

m← Dec((c, R), skR)

If m 6=⊥ Return T

Return F

Figure 5.16: Game1

Now, we construct a program B (Figure 5.17) that simulates Game1 (Figure 5.16) and

breaks UF-RDA (Figure 5.5) of the signature S each time A wins its game.

procedure Initialize(pkS , ListR):

(skR, pkR)
$← Gen(1λ)

Return (pkS , skR, pkR)

procedure Signcrypt(m):

R← first(ListR)

ListR ← tail(ListR)

(c, R)← RepE(m, skR, R)

(σ,R)← UF-RDA.Sign((c, R), R)

φ← (c, σ,R)

Return φ

procedure Finalize(φ):

(c, σ,R)← φ

UF-CMA.Finalize((c, R), (σ,R))

Figure 5.17: Program B (Lemma 5.2)

Therefore: AdvsUF-iCMA
EtS (A) = AdvUF-RDA

S (B).

Theorem 6. If E is IND-CCA2 and S is reproducible and satisfies Property 1, then

EtS with randomness reuse is IND-iCCA2.

As opposed to what happens in game IND-oCCA2, a signcryption oracle is no longer

necessary since an insider adversary knows the sender’s private key. The sequential

encrypt-then-sign construction presented by An et al. does not achieve IND-iCCA2

because the adversary is able produce a new signature on the challenge-ciphertext, and

submit the signcrypion to the unsigncryption oracle, revealing the message underneath.

This attack is not possible for signcryption schemes contructed within our framework.

In fact, the only property required for the signature scheme states that for each message,
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the set of valid signatures and the set of randomness are one-to-one, which mandatorily

creates an extra bound between the ciphertext and the signature.

Proof. Let A be any probabilistic polynomial-time adversary against Game0 defined

in Figure 5.18, which is game IND-iCCA2 expanded according to the EtS construction

with randomness reuse.

procedure Initialize(λ):

(skS , pkS)
$← Gen(1λ)

(skR, pkR)
$← Gen(1λ)

b
$← {0, 1}
S ← ∅
Return (pkR, pkS , skS)

procedure Left-Right(m0,m1):

r
$←R

(c, R)← Enc(mb, pkR; r)

(σ,R)← Sign((c, R), skS ; r)

φ← (c, σ,R)

S ← S ∪ {φ}
Return φ

procedure Unsigncrypt(φ):

(c, σ,R)← φ

If φ ∈ S Return ⊥
If Verify((c, R), (σ,R), pkS)

Return Dec((c, R), skS)

Else Return ⊥

procedure Finalize(b′):

Return (b = b′)

Figure 5.18: Game0 defines IND-iCCA2 for EtS with randomness reuse

Because the signature scheme S satisfies Property 1, we can rephrase the environment

of Game0. This bridging step will lead to Game1.

procedure Initialize(λ):

(skS , pkS)
$← Gen(1λ)

(skR, pkR)
$← Gen(1λ)

b
$← {0, 1}
S ← ∅
Return (pkR, pkS , skS)

procedure Left-Right(m0,m1):

r
$←R

(c, R)← Enc(mb, pkR; r)

(σ,R)← Sign((c, R), skS ; r)

φ← (c, σ,R)

S ← S ∪ {(c, R)}
Return φ

procedure Unsigncrypt(φ):

(c, σ,R)← φ

If (c, R) ∈ S Return ⊥
If Verify((c, R), (σ,R), pkS)

Return Dec((c, R), skS)

Else Return ⊥

procedure Finalize(b′):

Return (b = b′)

Figure 5.19: Game1

With the help of algorithm RepS , we construct a program B that perfectly simulates

the environment of Game1, and wins game IND-CCA2 (Figure 3.3) every time A wins

Game1.
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procedure Initialize(pkR):

(skS , pkS)
$← Gen(1λ)

Return (pkR, pkS , skS)

procedure Left-Right(m0,m1):

(c, R)
$← IND-CCA2.Left-Right(m0,m1)

(σ,R)← RepS((c, R), skS , R)

φ← (c, σ,R)

S ← S ∪ {(c, R)}
Return φ

procedure Unsigncrypt(φ):

(c, σ,R)← φ

If (c, R) ∈ S Return ⊥
If Verify((c, R), (σ,R), pkS)

Return IND-CCA2.Dec((c, R), skS)

Else Return ⊥

procedure Finalize(b):

IND-CCA2.Finalize(b)

Figure 5.20: Program B

Therefore, AdvIND-iCCA2
EtS (A) = AdvIND-CCA2

E (B).

Theorem 7. If E is IND-RDA, reproducible and satisfies property 2, and S is UF-NMA

and reproducible, then StE with randomness reuse is IND-iCCA2 and sUF-oCMA.

First, let us state what Property 2 is. Informally, we say that for any given R, there

is only one c that decrypts to each message m. If a reproducible scheme does not

possess this property, there is an easy fix for it: Dec decrypts (c, R) as usual to obtain

a message m, then it reproduces the ciphertext again with Rep(m, sk,R) and compares

the ciphertexts, returning ⊥ if they differ.

Property 2. ∀(m, c, (sk, pk)),Enc(m, pk) = (c′, R) ∧ c 6= c′ ⇒ Dec((c,R), sk) 6= m

The theorem then follows from Lemmas 7.1 and 7.2.

Lemma 7.1. If E is IND-RDA and satisfies Property 2, and S is UF-NMA and repro-

ducible, then StE with randomness reuse is sUF-oCMA.

Proof. Let A be any probabilistic polynomial-time adversary against Game0 defined

in Figure 5.21, which is identical to game sUF-oCMA expanded according to the StE
construction with randomness reuse.
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procedure Initialize(λ):

(skS , pkS)
$← Gen(1λ)

(skR, pkR)
$← Gen(1λ)

S ← ∅
Return (pkS , pkR)

procedure Signcrypt(m):

r
$←R

(σ,R)← Sign(m, skS ; r)

(c, R)← Enc((m, (σ,R)), pkR; r)

φ← (c, R)

S ← S ∪ {φ}
Return φ

procedure Unsigncrypt(φ):

(c, R)← φ

(m, (σ,R′))← Dec((c, R), skR)

If R = R′ ∧ Verify(m, (σ,R), pkS) Return m

Else Return ⊥

procedure Finalize(φ):

If φ ∈ S Return F

(c, R)← φ

(m, (σ,R′))← Dec((c, R), skR)

If R = R′ ∧ Verify(m, (σ,R), pkS) Return T

Else Return F

Figure 5.21: Game0 defines sUF-oCMA for StE with randomness reuse

In Game1 (Figure 5.22) we save the replies of the signcryption oracle, and before de-

crypting any query of the unsigncryption oracle we check if the answer is already known.

This is a bridging step from Game0 and from the adversary’s point of view, nothing

really changes.

procedure Initialize(λ):

(skS , pkS)
$← Gen(1λ)

(skR, pkR)
$← Gen(1λ)

S1 ← ∅
S2 ← ∅
Return (pkS , pkR)

procedure Signcrypt(m):

r
$←R

(σ,R)← Sign(m, skS ; r)

(c, R)← Enc((m, (σ,R)), pkR; r)

φ← (c, R)

S1 ← S1 ∪ {φ}
S2 ← S2 ∪ {((m, (σ,R)), φ)}
Return φ

procedure Unsigncrypt(φ):

(c, R)← φ

Find ((m, (σ,R′)), φ′) ∈ S2 | f(φ, φ′) = T

If R = R′ Return m

Else Return ⊥
If Not Found

(m, (σ,R′))← Dec((c, R), skR)

If R = R′ ∧ Verify(m, (σ,R), pkS) Return m

Else Return ⊥

procedure Finalize(φ):

If φ ∈ S Return F

(c, R)← φ

(m, (σ,R′))← Dec((c, R), skR)

If R = R′ ∧ Verify(m, (σ,R), pkS) Return T

Else Return F

Figure 5.22: Game1

In Game2 (Figure 5.23), instead of correctly computing the signature of the message

for the simulation of the signcryption oracle, the challenger samples a new ephemeral

key and signs the message with this fake key. Although the content of the signature
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becomes irrelevant, its length must be equal to that of the signature produced with the

sender’s private key4. This is a transition based on indistinguishability. Intuitively, A
cannot detect this change (except with negligible probability) because the signature is

then encrypted (together with the message) and E is IND-RDA.

procedure Initialize(λ):

(skS , pkS)
$← Gen(1λ)

(skR, pkR)
$← Gen(1λ)

S1 ← ∅
S2 ← ∅
Return (pkS , pkR)

procedure Signcrypt(m):

r
$←R

(skF , pkF )
$← Gen(1λ)

(σ,R)
$← Sign(m, skF ; r)

(c, R)← Enc((m, (σ,R)), skR; r)

φ← (c, R)

S1 ← S1 ∪ {φ}
S2 ← S2 ∪ {((m, (σ,R)), φ)}
Return φ

procedure Unsigncrypt(φ):

(c, R)← φ

Find ((m, (σ,R′)), φ′) ∈ S2 | f(φ, φ′) = T

If R = R′ Return m

Else Return ⊥
If Not Found

(m, (σ,R′))← Dec((c, R), skR)

If R = R′ ∧ Verify(m, (σ,R), pkS) Return m

Else Return ⊥

procedure Finalize(φ):

If φ ∈ S1 Return F

(c, R)← φ

(m, (σ,R′))← Dec((c, R), skR)

If R = R′ ∧ Verify(m, (σ,R), pkS) Return T

Else Return F

Figure 5.23: Game2

To build a distinguishing program B that interpolates between Game1 and Game2, the

game that B plays must allow the left-or-right oracle to be queried several times and

R to be known a priori for the correct simulation of the signcryption oracle. As stated

in the theorem, E is IND-RDA, but B must play IND-RDA-q to be able to query the

left-or-right oracle more than once. However, we showed in Sub-Section 5.4.1 that

there exists a program C for which AdvIND-RDA-q
E (B) ≤ q · AdvIND-RDA

E (C), being q

the maximum number of times that B queries the left-or-right oracle. By building a

distinguishing program B that interpolates between Game1 and Game2, we argue that

Pr[Game2 ⇒ T]− Pr[Game1 ⇒ T] = AdvIND-RDA-q
E (B) ≤ q ·AdvIND-RDA

E (C).
4Instead of producing a real signature over a random key, we could have sampled a random string

of length equal to that of the signature produced with the legit key.
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procedure Initialize(pkR, ListR):

(skS , pkS)
$← Gen(1λ)

S1 ← ∅
S2 ← ∅
Return (pkS , pkR)

procedure Signcrypt(m):

R← first(ListR)

ListR ← tail(ListR)

(skF , pkF )
$← Gen(1λ)

(σ0, R)← RepS(m, skS , R)

(σ1, R)
$← RepS(m, skF , R)

m0 ← (m, (σ0, R))

m1 ← (m, (σ1, R))

(c, R)← IND-RDA-q.Left-Right(m0,m1, R)

φ← (c, R)

S1 ← S1 ∪ {φ}
S2 ← S2 ∪ {((m, (σ0, R)), φ)}
Return φ

procedure Unsigncrypt(φ):

(c, R)← φ

Find ((m, (σ,R′)), φ′) ∈ S2 | f(φ, φ′) = T

If R = R′ Return m

Else Return ⊥
If Not Found

(m, (σ,R′))← IND-RDA-q.Dec((c, R), skR)

If R = R′ ∧ Verify(m, (σ,R), pkS) Return m

Else Return ⊥

procedure Finalize(φ):

If φ ∈ S1 Return IND-RDA-q.Finalize(0)

(c, R)← φ

% Find ((m, (σ,R′)), φ′) ∈ S2 | f(φ, φ′) = T

% If R = R′ {contradicts property 2}
% Else {not a valid signcryption}
% If Not Found

(m, (σ,R′))← IND-RDA-q.Dec((c, R), skR)

If R = R′ ∧ Verify(m, (σ,R), pkS)

Return IND-RDA-q.Finalize(1)

Else Return IND-RDA-q.Finalize(0)

Figure 5.24: Program B (Lemma 7.1)

The claim follows once we observe that:

AdvIND-RDA-q
E (B)

def
= 2 · Pr[IND-RDA-q⇒ T]− 1

= 2 · Pr[B outputs b]− 1

= 2 · (Pr[B outputs 0 ∧ b = 0] + Pr[B outputs 1 ∧ b = 1])− 1

= 2 · Pr[B outputs 0 ∧ b = 0] + 2 · Pr[B outputs 1 ∧ b = 1]− 1

= 2 · Pr[b = 0] · Pr[B outputs 0 | b = 0] +

2 · Pr[b = 1] · Pr[B outputs 1 | b = 1]− 1

= Pr[B outputs 0 | b = 0] + Pr[B outputs 1 | b = 1]− 1

= Pr[A outputs an invalid forgery in Game1] +

Pr[A outputs a valid forgery in Game2]− 1

= Pr[Game1 ⇒ F] + Pr[Game2 ⇒ T]− 1

= (1− Pr[Game1 ⇒ T]) + Pr[Game2 ⇒ T]− 1

= Pr[Game2 ⇒ T]− Pr[Game1 ⇒ T]

We now construct a programD (Figure 5.25) which simulates the environment of Game2
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for A, and each time A wins Game2, D wins game UF-NMA as described in Figure 3.4.

Consequently, Pr[Game2 ⇒ T] = AdvUF-NMA
S (D).

procedure Initialize(λ):

(skS , pkS)
$← Gen(1λ)

(skR, pkR)
$← Gen(1λ)

S1 ← ∅
S2 ← ∅
Return (pkS , pkR)

procedure Signcrypt(m):

r
$←R

(skF , pkF )
$← Gen(1λ)

σ,R)
$← Sign(m, skF ; r)

(c, R)← Enc((m, (σ,R)), skR; r)

φ← (c, R)

S1 ← S1 ∪ {φ}
S2 ← S2 ∪ {((m, (σ,R)), φ)}
Return φ

procedure Unsigncrypt(φ):

(c, R)← φ

Find ((m, (σ,R′)), φ′) ∈ S2 | f(φ, φ′) = T

If R = R′ Return m

Else Return ⊥
If Not Found

(m, (σ,R′))← Dec((c, R), skR)

If R = R′ ∧ Verify(m, (σ,R), pkS) Return m

Else Return ⊥

procedure Finalize(φ):

If φ ∈ S1 Return F

(c, R)← φ

(m, (σ,R′))← Dec((c, R), skR)

If R = R′ ∧ Verify(m, (σ,R), pkS)

UF-NMA.Finalize(m, (σ,R′))

Else Return F

Figure 5.25: Program D

Therefore: AdvsUF-oCMA
StE (A) ≤ q ·AdvIND-RDA

E (C) + AdvUF-NMA
S (D).

Lemma 7.2. If E is IND-RDA and satisfies Property 2, and S is reproducible, then

StE with randomness reuse is IND-iCCA2.

Proof. Let A be any probabilistic polynomial-time adversary against Game0 defined

in Figure 5.26, which is identical to game IND-iCCA2 expanded according to the StE
construction with randomness reuse.
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procedure Initialize(λ):

(skS , pkS)
$← Gen(1λ)

(skR, pkR)
$← Gen(1λ)

b
$← {0, 1}
S ← ∅
Return (pkR, pkS , skS)

procedure Left-Right(m0,m1):

r
$←R

(σ,R)← Sign(mb, skS ; r)

(c, R)← Enc((mb, (σ,R)), pkR; r)

φ← (c, R)

S ← S ∪ {φ}
Return φ

procedure Dec(φ):

If φ ∈ S Return ⊥
(c, R)← φ

(m, (σ,R′))← Dec((c, R), skR)

If R = R′ ∧ Verify(m, (σ,R), pkS)

Return m

Else Return ⊥

procedure Finalize(b′):

Return (b = b′)

Figure 5.26: Game0 defines IND-iCCA2 for StE with randomness reuse

We prove this lemma by building a program B (Figure 5.27) that simulates the envi-

ronment of Game0 for A in a way that B wins IND-RDA (Figure 5.4) whenever A wins

Game0.

procedure Initialize(pkR, R):

(skS , pkS)
$← Gen(1λ)

S ← ∅
Return (pkR, pkS , skS)

procedure Left-Right(m0,m1):

(σ0, R)← RepS(m0, skS , R)

(σ1, R)← RepS(m1, skS , R)

m′
0 ← (m0, (σ0, R))

m′
1 ← (m1, (σ1, R))

(c, R)← IND-RDA.Left-Right(m′
0,m

′
1, R)

φ← (c, R)

S ← S ∪ {φ}
Return φ

procedure Dec(φ):

If φ ∈ S Return ⊥
(c, R)← φ

% Find (c′, R′) ∈ List | f((c, R), (c′, R′))

% If R = R′ {contradicts property 2}
% If R 6= R′ {not a valid signcryption}
% If Not Found

(m, (σ,R′))← IND-RDA.Dec(c, R)

If R = R′ ∧ Verify(m, (σ,R), pkS) Return m

Else Return ⊥

procedure Finalize(b):

IND-RDA.Finalize(b)

Return

Figure 5.27: Program B (Lemma 7.2)

Thus, AdvIND-iCCA2
StE (A) = AdvIND-RDA

E (B).

Theorem 8. If E is reproducible and satisfies Property 2, and S is sUF-CMA, then

StE with randomness reuse is sUF-iCMA.

Proof. Let A be any probabilistic polynomial-time adversary against Game0 defined

in Figure 5.28, which is game sUF-iCMA expanded according to the StE construction
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with randomness reuse.

procedure Initialize(λ):

(skS , pkS)
$← Gen(1λ)

(skR, pkR)
$← Gen(1λ)

S ← ∅
Return (pkS , pkR, skR)

procedure Signcrypt(m):

r
$←R

(σ,R)← Sign(m, skS ; r)

(c, R)← Enc((m, (σ,R)), pkR; r)

φ← (c, R)

S ← S ∪ {φ}
Return φ

procedure Finalize(φ):

If φ ∈ S Return F

(c, R)← φ

(m, (σ,R′))← Dec((c, R), skR)

If R = R′ ∧ Verify(m, (σ,R), pkS) Return T

Else Return F

Figure 5.28: Game0 defines sUF-iCMA for StE with randomness reuse

To prove this theorem, we do a simple reduction and construct a program B (Fig-

ure 5.29) that plays game sUF-CMA (Figure 3.6) and simulates the environment of

Game0. Each time A produces a valid forgery for Game0, B wins game sUF-CMA. In-

deed, if A outputs a valid forgery (c, R) it means that a) it is not in the set of signcryp-

tions produced by the signcryption oracle of Game0, and b) it decrypts to (m, (σ,R))

and (σ,R) is a valid signature on m. By Property 2, σ is unique, so (m, (σ,R)) is not

on the set of signatures produced by the signing oracle of game sUF-CMA either.

procedure Initialize(pkS):

(skR, pkR)
$← Gen(1λ)

Return (pkS , pkR, skR)

procedure Signcrypt(m):

(σ,R)
$← sUF-CMA.Sign(m)

(c, R)← RepE((m, (σ,R), skR, R)

φ← (c, R)

Return φ

procedure Finalize(φ):

(c, R)← φ

(m, (σ,R′))← Dec((c, R), skR)

sUF-CMA.Finalize(m, (σ,R))

Figure 5.29: Program B

Therefore, we have that AdvsUF-iCMA
StE (A) ≤ AdvsUF-CMA

S (B).
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5.6 Results summary

Tables 5.1 and 5.2 summarise our results for the EtS and StE constructions with ran-

domness reuse. Both full outsider security and full insider security can now be achieved

if encryption and signature meet the requirements. As discussed in Section 5.2, with

randomness reuse, EtS would be preferable over StE because it produces shorter sign-

cryptions.

Table 5.1: Results obtained for the EtS construction with randomness reuse.

IND-CPA + RepE IND-CCA2 + RepE

Property 1 + RepS
... ... ... ...
... ... ... IND-iCCA2

UF-RDA + Property 1 + RepS
sUF-oCMA IND-oCCA2 ... ...
sUF-iCMA ... sUF-iCMA IND-iCCA2

Table 5.2: Results obtained for the StE construction with randomness reuse.

Property 2 + RepE IND-RDA + Property 2 + RepE

UF-NMA + RepS
... ... sUF-oCMA IND-oCCA2
... ... ... IND-iCCA2

sUF-CMA + RepS
... ... ... ...

sUF-iCMA ... sUF-iCMA IND-iCCA2

5.7 Candidates for instantiation

As stated in Section 2.4 all proofs in this dissertation are in the standard model. If

we want the proposed constructions to be secure in the standard model, our frame-

work must be instantiated with primitives proven secure in the standard model as well.

First let us turn our attention to the security models in which encryption and signature

must be secure. New security models for authenticity and confidentiality have been

presented in this chapter, therefore, one should not expect to find in the literature

schemes that have been proven to comply with the new constrains. IND-RDA is a

stronger security notion than IND-gCCA2, which means that if an encryption scheme is

secure in the IND-RDA model, it is also secure in IND-gCCA2 model. Still, IND-gCCA2

is not a very standard security model (and this is exactly why we try to avoid the

sequential construction without randomness reuse which can only be proven secure in

this weaker and non-standard model). However, we point out that encryption schemes

most recently designed are IND-CCA2, which has become the standard notion of secu-

rity for encryption, and IND-CCA2 is just a special case of IND-gCCA2-security, where
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the decryption-respecting relation f is simply the identity function. With this in mind,

schemes like Cramer-Shoup[14] and Kurosawa-Desmedt[30] appear at the top of the

list as candidates which one should try to prove secure in the stronger IND-RDA model.

On the signature side, and since UF-RDA is a stronger notion of security than UF-CMA,

schemes secure in the latter model are the obvious candidates to try to prove secure in

the UF-RDA model.

Before suggesting any concrete schemes as candidates for the signature primitive, we

should look at reproducibility, which is required for both primitives in both EtS and

StE construction with randomness reuse. Many encryption schemes, including the two

already referred in this section, are reproducible, and reproduction algorithms are fairly

trivial[8]. Basically, it is so because reproduction algorithms for encryption take the

secret key as an additional parameter beyond those taken by the respective encryption

algorithms. This compensates the fact that only R is known instead of r. Taking

ElGamal[21] as an example5, the ciphertext c = m · gr·x is easily computable from

(g,m, r, pk = gx) as well as from (g,m,R = gr, sk = x). Reproduction algorithms

for signature take the same parameters as signature algorithms, and having the secret

key is no longer a plus. So, it seems that only signature schemes for which R = r

are reproducible, or the schemes are not as efficient as they could be. Luckily, Boneh-

Boyen signature [12] outputs r as part of the signature. Put differently, Boneh-Boyen

signature is partitioned and R = r, which makes the scheme reproducible.

Properties 1 and 2 are mathematical properties that must hold for signature and

encryption, respectively. It is not the goal of this dissertation to present concrete

signcryption schemes, but rather introduce new constructions based on randomness

reuse. Nevertheless, with a few calculations it is easy to verify that Property 1 holds

for Boneh-Boeyn signature scheme, and that Property 2 holds for Cramer-Shoup and

Kurosawa-Desmedt encryption schemes.

Finally, signature and encryption must be compatible, i.e., on input the same random

coins r, the signature and encryption algorithms produce the same R. Obviously, the

encryption algorithm cannot simply output r, otherwise the scheme would become triv-

ially breakable. However, Boneh-Boyen signature algorithm can be modified in order to

become compatible with Kurosawa-Desmedt encryption scheme by simply computing

r′ = hash(gr) and use r′ the same way as r in the original scheme. The efficiency of

the construction decreases with respect to the computation of an extra hash function,

but this is largely compensate by the reuse of random coins and extra security gained.

5ElGamal encryption scheme is not IND-CCA2 but it is presented here instead of Kurosawa-Desmedt
for simplicity of exposition.
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Chapter 6

KEM-DEM with Randomness

Reuse

In this chapter we extend the construction proposed by Cramer and Shoup to con-

struct hybrid schemes which allow for randomness reuse between KEM and DEM com-

ponents. Most symmetric-key encryption schemes are designed to be secure against

multiple plaintext attacks, which clearly requires the usage of some input randomness.

In block ciphers, this randomness usually takes the form of a initialization vector. The

advantage of our approach in comparison to common practice is that the initializa-

tion vector no longer needs to be fixed or derived from the secret key, which permits

aligning the practical usage of the KEM-DEM paradigm with existing theoretical re-

sults regarding the security of symmetric-key encryption schemes. We demonstrate the

practicality of our construction with a simple instantiation of our framework.

6.1 The construction

The construction is similar to the one described in Section 3.5.3 except that now,

KEM and DEM must share the same randomness spaceR from where random coins are

sampled only once for both KEM and DEM components. This hybrid construction with

randomness reuse is specified by the following three algorithms H = (Gen,Enc,Dec),

polynomial-time-bounded in the length of their input.

• Gen(1λ) is the same as K.Gen(1λ).

• Enc(m, pk) computes the sequence: r
$← R; (c1, k) ← K.Encap(pk; r); c2 ←

D.Encap(m, k; r); c← (c1, c2); return c.
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• Dec(c, sk) computes the sequence: (c1, c2) ← c; k ← K.Decap(c1, sk); m ←
D.Decap(c2, k); return m.

We do not require the decryption algorithm to verify that the ciphertext was con-

structed by instantiating KEM and DEM with the same random coins, as we did in

Section 5.2 for signcryption constructions with randomness reuse. This is because we

are not looking for security gains, since the construction proposed by Cramer and

Shoup already achieves IND-CCA2-security. However, performance gains in terms of

computational costs and bandwidth are still on the table. We study how those can be

achieved without compromising the security of the construction.

6.2 Reproducibility

To pursue safely with the optimization of reusing random coins in the construction of

a hybrid encryption scheme, reproducibility between KEM and DEM in both senses is

required. We say that KEM is reproducible from DEM if there is a polynomial-time

reproduction algorithm RepD→K, and we say that DEM is reproducible from KEM if

there is a polynomial-time reproduction algorithm RepK→D, as follows:

• RepD→K(sk, pk, c2) is a deterministic reproduction algorithm, which on input a

key air (sk, pk), and a ciphertext c2 resulting from some call of D.Encap( · ; r),

outputs a pair containing a shared key k ∈ SK, and a ciphertext c1 of k encrypted

under pk and the same random coins r.

• RepK→D(m, k, sk, pk, c1) is a deterministic reproduction algorithm, which on in-

put a message m, a shared key k ∈ SK, a key pair (sk, pk), and a ciphertext c1

resulting from K.Encap(pk; r), outputs a ciphertext c2 of m encrypted under the

shared key k and the same random coins r.

We show in Section 6.4 that it is possible to construct KEM and DEM such that repro-

duction algorithms exist in both senses, and we discuss the value of hybrid constructions

with randomness reuse.

6.3 New theorem and proof

Let A be any probabilistic polynomial-time adversary against Game0 defined in Fig-

ure 6.1, which is game IND-CCA2 expanded according to the KEM-DEM construction

with randomness reuse described in Section 6.1.
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procedure Initialize(λ):

(sk, pk)
$← Gen(1λ)

b
$← {0, 1}
S ← ∅
Return pk

procedure Left-Right(m0,m1):

r
$←R

(c1, k)← K.Encap(pk; r)
c2 ← D.Encap(mb, k; r)
c← (c1, c2)

S ← S ∪ {c}
Return c

procedure Dec(c):

If c ∈ S Return ⊥
(c1, c2)← c

k ← K.Decap(c1, sk)

m← D.Decap(c2, k)

Return m

procedure Finalize(b′):

Return (b = b′)

Figure 6.1: Game0 defines IND-CCA2 for K-D with randomness reuse

In Game1, D.Encap uses a random key to encrypt data instead of the key returned by

K.Encap. Because KEM is IND-CCA2, the adversary cannot detect this change (except

with negligible probability). This transition is based on indistinguishability.

procedure Initialize(λ):

(sk, pk)
$← Gen(1λ)

b
$← {0, 1}
S ← ∅
Return pk

procedure Left-Right(m0,m1):

r
$←R

(c1, k)← K.Encap(pk; r)

k′
$← SK

c2 ← D.Encap(mb, k′; r)
c← (c1, c2)

S ← S ∪ {c}
Return c

procedure Dec(c):

If c ∈ S Return ⊥
(c1, c2)← c

k ← K.Decap(c1, sk)

m← D.Decap(c2, k)

Return m

procedure Finalize(b′):

Return (b = b′)

Figure 6.2: Game1

We now build a distinguishing program B that interpolates between Game0 and Game1,

and argue that Pr[Game1 ⇒ T]−Pr[Game0 ⇒ T] = AdvIND-CCA2
K (B). Intuitively, if the

behavior ofA changes significantly between Game0 and Game1, B breaks the IND-CCA2-

security of KEM.
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procedure Initialize(pk):

(sk, pk)
$← Gen(1λ)

b
$← {0, 1}
S1 ← ∅
S2 ← ∅
Return pk

procedure Left-Right(m0,m1):

(c1, k)
$← K.IND-CCA2.Real-Random()

c2 ← RepK→D(mb, k, sk, pk, c1)

c← (c1, c2)

S1 ← S1 ∪ {c}
S2 ← S2 ∪ {(c1, k)}
Return c

procedure Dec(c):

If c ∈ S1 Return ⊥
(c1, c2)← c

Find (c1, k) ∈ S2
If Not Found k ← K.IND-CCA2.Decap(c1)

m← K.Decap(c2, k)

Return m

procedure Finalize(b′):

If b == b′ K.IND-CCA2.Finalize(1)

Else K.IND-CCA2.Finalize(0)

Figure 6.3: Program B

The claim follows once we observe that:

AdvIND-CCA2
K (B)

def
= 2 · Pr[K.IND-CCA2⇒ T]− 1

= 2 · Pr[B outputs b?]− 1

= 2 · (Pr[B outputs 0 ∧ b? = 0] + Pr[B outputs 1 ∧ b? = 1])− 1

= 2 · Pr[B outputs 0 ∧ b? = 0] + 2 · Pr[B outputs 1 ∧ b? = 1]− 1

= 2 · Pr[b? = 0] · Pr[B outputs 0 | b? = 0] +

2 · Pr[b? = 1] · Pr[B outputs 1 | b? = 1]− 1

= Pr[B outputs 0 | b? = 0] + Pr[B outputs 1 | b? = 1]− 1

= Pr[A outputs b′ 6= b in Game0] + Pr[A outputs b′ = b in Game1]− 1

= Pr[Game0 ⇒ F] + Pr[Game1 ⇒ T]− 1

= (1− Pr[Game0 ⇒ T]) + Pr[Game1 ⇒ T]− 1

= Pr[Game1 ⇒ T]− Pr[Game0 ⇒ T]

Game1 is then reduced to game IND-CCA2 of DEM. With the help of algorithm RepD→K,

we construct a program C that perfectly simulates the environment of Game1 and breaks

IND-CCA2-security of DEM (Figure 3.12) every time A wins Game1.
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procedure Initialize(λ):

(sk, pk)
$← Gen(1λ)

S ← ∅
Return pk

procedure Left-Right(m0,m1):

c2
$← D.IND-CCA2.Left-Right(m0,m1)

(c1, k)← RepD→K(sk, pk, c2)

c← (c1, c2)

S ← S ∪ {c}
Return c

procedure Dec(c):

If c ∈ S Return ⊥
(c1, c2)← c

k ← K.Decap(c1, sk)

m← D.Decap(c2, k)

Return m

procedure Finalize(b):

D.IND-CCA2.Finalize(b)

Figure 6.4: Program C

Therefore we conclude that AdvIND-CCA2
K-D (A) = AdvIND-CCA2

K (B) + AdvIND-CCA2
D (C).

6.4 Possible instantiations

Although the single plaintext attack model considered in Section 3.5.2 is sufficient for

constructing secure data encapsulation mechanisms for the KEM-DEM framework de-

veloped by Cramer and Shoup, most of symmetric encryption schemes are designed to

be secure against multiple plaintext attacks, where an adversary is allowed to adap-

tively obtain many encryptions of its choice, and not just the single ciphertext returned

by the real-or-random oracle. To formalize a game in a multiple plaintext attack model,

a new encryption oracle must be made available to the adversary, and the encryption

algorithm can no longer be deterministic, otherwise the scheme ceases to be secure in

this new security model.

The common practice is to set the initialization vector of the symmetric-key encryption

and decryptions algorithms to some fixed value, which still makes the scheme secure

against single plaintext attacks, and use resulting one-time symmetric-key encryption

scheme as DEM.

The construction we propose allow the symmetric-key encryption scheme to remain

secure against multiple plaintext attacks without a bandwidth overhead. In fact, we

suggest as a possible instantiation of our framework to use Cramer-Shoup KEM [2]

and AES cipher [3] in CBC mode [4] with PKCS #5 padding [39] as DEM, and set

the initialization vector to iv = hash(gr), where g is a parameter of KEM and r is the

randomness used to encrypt the symmetric-key k.

Since we now have a DEM which is secure against multiple plaintext attacks, whether
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it is possible or not to further optimize the hybrid encryption scheme described above

is a question that we leave open.
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Chapter 7

Conclusions and Future Directions

The aim of this dissertation was to extend the existing results on randomness reuse

and study its application across different primitives. More specifically, we sought to

show under which conditions can randomness be safely shared between signature and

encryption, and between key encapsulation mechanisms and data encapsulation mech-

anisms.

In Chapter 5 we introduced two new security models: IND-RDA for encryption and

UF-RDA for signature. These models were built on top of IND-gCCA2 and UF-CMA,

with the particularity that the attack models have been strengthened in order to allow

the adversary to adaptively query its oracles based on some information regarding the

randomness state. The idea was to closely follow the results from An et al. [5] but, in

our opinion, IND-gCCA2 is a definition that should be avoided due to the complexity of

the definition itself and because it is a non-standard definition. However, if we consider

the case where the decryption-respecting relation f is the identity function, the model

is identical to IND-CCA2, and our IND-RDA security model becomes much simpler too.

We suggested to instantiate our construction with Kurosawa-Desmedt encryption scheme,

which is the most efficient encryption scheme to date proven secure in the standard

model, and with a slightly modified version of Boneh-Boeyn signature scheme, which

is one of the most efficient signature schemes to date to have been proven secure in the

standard model. We haven’t proved that neither Kurosawa-Desmedt encryption scheme

is IND-RDA or Boneh-Boeyn signature scheme if UF-RDA. This is a question that still

needs to be investigated. If encryption is IND-RDA then, using the sign-then-encrypt

construction with randomness reuse, we could construct a signcryption scheme fully

secure against insider attackers. If the signature is UF-RDA then the encrypt-then-sign

construction with randomness reuse is the way to go. If both encryption and signature
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are secure in these new models, then it would be preferable to encrypt-then-sign be-

cause the signcryptions are shorter by the length of R, and the reduction of the proof is

tighter. In fact, notice that encrypting then signing with partitioned schemes produces

signcryptions of the form ((c, R), (σ,R′)). But, because we require the schemes to be

compatible in our construction, it must be that R = R′ and we don’t need to transmit

R twice.

Although any instantiation of our constructions will most probably end up with an

extra hash execution when compared to plain sequential composition of signature and

encryption, this slight damage to performance is largely compensated by the reuse of

randomness. More importantly, our framework serve as base for the construction of

signcryption schemes which also benefit from security enhancements. In fact, signcryp-

tion schemes fully secure against insider attackers in the standard model and according

to the strongest common definitions of security for confidentiality and authenticity,

which are IND-CCA2 and sUF-CMA, result from the instantiation of our framework.

Since no efficient and deterministic signature scheme is known to be secure in the

standard model [27], which would potentially lead a plain sequential encrypt-then-sign

construction full insider secure in the standard model, our framework is probably the

first step towards the construction of such signcryption schemes.

Although beyond of the scope of this dissertation, we point out that the same extra

bound achieved by randomness reuse in the proposed constructions is attainable with

a sequential sign-then-encrypt construction if encryption is IND-RDA and the signa-

ture algorithm signs R together with the message m, where R is the state information

regarding the random coins to be used by the encryption algorithm.

The construction we proposed for KEM-DEM allows the symmetric-key encryption

scheme to remain secure against multiple plaintext attacks without a bandwidth over-

head, and the common practice of fixing the value of the initialization vector is no

longer needed. This however costs an extra hash function to be computed, and it re-

mains unclear how could we take advantage of having a DEM which is secure against

multiple plaintext attacks.

Overall, we demonstrated through rigorous code-based game-hopping proofs that ran-

domness can be reused across different primitives in specific circumstances, and that

not only this may provide efficiency gains, but may also lead to additional security

guarantees.
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Appendix A

Proofs of Theorems 2 and 3

A.1 Proof of theorem 2

The theorem follows from lemmas 2.1 and 2.2.

Lemma 2.1. If E is IND-CPA and S is UF-CMA, then EtS is IND-ogCCA21.

Proof. Let A be any probabilistic polynomial-time (outsider) adversary against Game0

defined in Figure A.1, which is game IND-ogCCA2 expanded according to the EtS con-

struction, where f((c1, σ1), (c2, σ2)) = T⇔ c1 = c2. Let Pr[Si] be the probability Gamei

returns T.

procedure Initialize(λ):

(skS , pkS)
$← Gen(1λ)

(skR, pkR)
$← Gen(1λ)

b
$← {0, 1}
S1 ← ∅
S2 ← ∅
Return (pkS , pkR)

procedure Left-Right(m0,m1):

c
$← Enc(mb, pkR)

σ
$← Sign(c, skS)

φ← (c, σ)

S1 ← S1 ∪ {c}
Return φ

procedure Signcrypt(m):

c
$← Enc(m, pkR)

σ
$← Sign(c, skS)

φ← (c, σ)

S2 ← S2 ∪ {(m, c)}
Return φ

procedure Unsigncrypt(φ):

(c, σ)← φ

If c ∈ S1 Return ⊥
Find (m, c) ∈ S2 | Verify(c, σ, pkS) = T

Return m

If Not Found

If Verify(c, σ, pkS) Return Dec(c, skR)

Else Return ⊥

procedure Finalize(b′):

Return (b = b′)

Figure A.1: Game0 defines IND-ogCCA2 for EtS

1The decryption-respecting relation f is such that f((c1, σ1), (c2, σ2)) = T⇔ c1 = c2.
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Let E be the event where the unsigncryption oracle calls the second Verify and it re-

turns T. The adversary A interacts with Game1 (Figure A.2) exactly the same way

it interacts with Game0 (Figure A.1) unless the event E occurs. This transition is

based on the failure event E, and as a result of the Difference Lemma (see Section 2.2),

|Pr[S1]− Pr[S0]| ≤ Pr[E].

procedure Initialize(λ):

(skS , pkS)
$← Gen(1λ)

(skR, pkR)
$← Gen(1λ)

b
$← {0, 1}
S1 ← ∅
S2 ← ∅
Return (pkS , pkR)

procedure Left-Right(m0,m1):

c
$← Enc(mb, pkR)

σ
$← Sign(c, skS)

φ← (c, σ)

S1 ← S1 ∪ {c}
Return φ

procedure Signcrypt(m):

c
$← Enc(m, pkR)

σ
$← Sign(c, skS)

φ← (c, σ)

S2 ← S2 ∪ {(m, c)}
Return φ

procedure Unsigncrypt(φ):

(c, σ)← φ

If c ∈ S1 Return ⊥
Find (m, c) ∈ S2 | Verify(c, σ, pkS) = T

Return m

If Not Found

Return ⊥

procedure Finalize(b′):

Return (b = b′)

Figure A.2: Game1

Intuitively, in order to make the event E occur, A has to break the security of the sig-

nature S, which is UF-CMA. We will argue this by building a program B (Figure A.3)

that simulates the environment of Game0 (Figure A.1) and wins UF-CMA (Figure 3.5)

whenever event E occurs. Thus, Pr[E] = AdvUF-CMA
S (B).
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procedure Initialize(λ, pkS):

(skR, pkR)
$← Gen(1λ)

b
$← {0, 1}
S1 ← ∅
S2 ← ∅
Return (pkS , pkR)

procedure Left-Right(m0,m1):

c
$← Enc(mb, pkR)

σ
$← UF-CMA.Sign(c)

φ← (c, σ)

S1 ← S1 ∪ {c}
Return φ

procedure Signcrypt(m):

c
$← Enc(m, pkR)

σ
$← UF-CMA.Sign(c)

φ← (c, σ)

S2 ← S2 ∪ {(m, c)}
Return φ

procedure Unsigncrypt(φ):

(c, σ)← φ

If c ∈ S1 Return ⊥
Find (m, c) ∈ S2 | Verify(c, σ, pkS) = T

Return m

If Not Found

If Verify(c, σ, pkS)

UF-CMA.Finalize(c, σ)

Else Return ⊥

procedure Finalize(b):

Return

Figure A.3: Program B (Lemma 2.1)

Notice that in Game1 (Figure A.2) the unsigncryption oracle is completely useless to

the adversary A since it only returns ⊥ or messages used by the adversary to query the

signcryption oracle. We can easily construct a program C (Figure A.4) that simulates

the environment of Game1 and wins IND-CPA (Figure 3.1) when A wins Game1.

procedure Initialize(λ, pkR):

(skS , pkS)
$← Gen(1λ)

S1 ← ∅
S2 ← ∅
Return (pkS , pkR)

procedure Left-Right(m0,m1):

c
$← IND-CPA.Left-Right(m0,m1)

σ
$← Sign(c, skS)

φ← (c, σ)

S1 ← S1 ∪ {c}
Return φ

procedure Signcrypt(m):

c
$← Enc(m, pkR)

σ
$← Sign(c, skS)

φ← (c, σ)

S2 ← S2 ∪ {(m, c)}
Return φ

procedure Unsigncrypt(φ):

(c, σ)← φ

If c ∈ S1 Return ⊥
Find (m, c) ∈ S2 | Verify(c, σ, pkS) = T

Return m

If Not Found

Return ⊥

procedure Finalize(b):

IND-CPA.Finalize(b)

Return

Figure A.4: Program C (Lemma 2.1)

Therefore: AdvIND-ogCCA2
EtS (A) ≤ AdvUF-CMA

S (B) + AdvIND-CPA
E (C).
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Lemma 2.2. If E is IND-CPA and S is UF-CMA, then EtS is UF-iCMA.

Proof. Let A be any probabilistic polynomial-time adversary against Game0 (Fig-

ure A.5), which is game UF-iCMA expanded according to the EtS construction. We

prove the lemma by constructing a program B (Figure A.6) that simulates Game0, and

whenever A wins Game0, B forges a signature on game UF-CMA (Figure 3.5).

procedure Initialize(λ):

(skS , pkS)
$← Gen(1λ)

(skR, pkR)
$← Gen(1λ)

S ← ∅
Return (pkS , skR, pkR)

procedure Signcrypt(m):

c
$← Enc(m, pkR)

σ
$← Sign(c, skS)

φ← (c, σ)

S ← S ∪ {m}
Return φ

procedure Finalize(φ):

(c, σ)← φ

If Verify(c, σ, pkS) Then

m← Dec(c, skR)

If m 6=⊥ ∧ m /∈ S Return T

Return F

Figure A.5: Game0 (defines UF-iCMA for EtS)

procedure Initialize(pkS):

(skR, pkR)
$← Gen(1λ)

Return (pkS , skR, pkR)

procedure Signcrypt(m):

c
$← Enc(m, pkR)

σ
$← UF-CMA.Sign(c)

φ← (c, σ)

Return φ

procedure Finalize(φ):

(c, σ)← φ

UF-CMA.Finalize(c, σ)

Return

Figure A.6: Program B (Lemma 2.2)

Therefore: AdvUF-iCMA
EtS (A) = AdvUF-CMA

S (B).

A.2 Proof of theorem 3

The theorem follows from lemmas 3.1 and 3.2.

Lemma 3.1. If E is IND-gCCA22 and S is UF-NMA, then StE is UF-oCMA.

Proof. Let A be any probabilistic polynomial-time adversary against Game0 defined in

Figure A.7, which is game UF-oCMA expanded according to the StE construction.

2E is IND-gCCA2 with respect to any decryption-respecting relation f .
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procedure Initialize(λ):

(skS , pkS)
$← Gen(1λ)

(skR, pkR)
$← Gen(1λ)

S1 ← ∅
S2 ← ∅
Return (pkS , pkR)

procedure Signcrypt(m):

σ
$← Sign(m, skS)

c
$← Enc((m,σ), pkR)

S1 ← S1 ∪ {m}
S2 ← S2 ∪ {(m,σ)}
Return c

procedure Unsigncrypt(c):

(m,σ)← Dec(c, skR)

If (m,σ) ∈ S2 Return m

If Verify(m,σ, pkS) Return m

Else Return ⊥

procedure Finalize(c):

(m,σ)← Dec(c, skR)

If m /∈ S1 ∧ Verify(m,σ, pkS)

Return T

Else Return F

Figure A.7: Game0 (defines UF-oCMA for StE)

In Game1 (Figure A.8), instead of correctly computing the signature of the message for

the simulation of the signcryption oracle, the challenger samples a new ephemeral key

and signs the message with this fake key. This is a transition based on indistinguisha-

bility. Intuitively, A cannot detect this change (except with negligible probability) be-

cause the signature is then encrypted (together with the message) and E is IND-gCCA2.

procedure Initialize(λ):

(skS , pkS)
$← Gen(1λ)

(skR, pkR)
$← Gen(1λ)

S1 ← ∅
S2 ← ∅
Return (pkS , pkR)

procedure Signcrypt(m):

(skF , pkF )
$← Gen(1λ)

σ
$← Sign(m, skF )

c
$← Enc((m,σ), pkR)

S1 ← S1 ∪ {m}
S2 ← S2 ∪ {(m,σ)}
Return c

procedure Unsigncrypt(c):

(m,σ)← Dec(c, skR)

If (m,σ) ∈ S2 Return m

If Verify(m,σ, pkS) Return m

Else Return ⊥

procedure Finalize(c):

(m,σ)← Dec(c, skR)

If m /∈ S1 ∧ Verify(m,σ, pkS) = T

Return T

Else Return F

Figure A.8: Game1

By building a distinguishing program B that interpolates between Game0 and Game1,

we will argue that Pr[S1] − Pr[S0] = AdvIND-gCCA2-q
E (B). Game IND-gCCA2-q is iden-

tical to game IND-gCCA2 defined in Figure 4.1, expect that the adversary is allowed

to retrieve multiple related ciphertexts by making q queries to the left-or-right oracle,

chosen adaptively. Program B operates according to the description in Figure A.9.
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procedure Initialize(pkR):

(skS , pkS)
$← Gen(1λ)

S1 ← ∅
S2 ← ∅
S3 ← ∅
Return (pkS , pkR)

procedure Signcrypt(m):

σ1
$← Sign(m, skS)

(skF , pkF )
$← Gen(1λ)

σ2
$← Sign(m, skF )

c← IND-gCCA2-q.Left-Right((m,σ1), (m,σ2))

S1 ← S1 ∪ {m}
S2 ← S2 ∪ {(m,σ2)}
S3 ← S3 ∪ {(m, c)}
Return c

procedure Unsigncrypt(c):

Find (m, c′) ∈ S3 | f(c, c′) = T

Return m

In Not Found

(m,σ)← IND-gCCA2-q.Dec(c)

If (m,σ) ∈ S2 Return m

If Verify(m,σ, pkS) Return m

Else Return ⊥

procedure Finalize(c):

(m,σ)← IND-gCCA2-q.Dec(c)

If m /∈ S1 ∧ Verify(m,σ, pkS) = T Then

IND-gCCA2-q.Finalize(1)

Else IND-gCCA2-q.Finalize(0)

Figure A.9: Program B (Lemma 3.1)

The claim follows once we observe that:

AdvIND-gCCA2
E (B)

def
= 2 · Pr[IND-gCCA2 returns T]− 1

= 2 · Pr[B outputs 0 ∧ b = 0] + 2 · Pr[B outputs 1 ∧ b = 1]− 1

= Pr[B outputs 0 | b = 0] + Pr[B outputs 1 | b = 1]− 1

= (1− Pr[S0]) + Pr[S1]− 1

= Pr[S1]− Pr[S0]

Note that when b = 0, B simulates Game0, and when b = 1, B simulates Game1.

We now construct a program C which simulates the environment of Game1 for A, and

each time A wins Game1, C wins game UF-NMA as described in Figure 3.4. Conse-

quently, Pr[S1] = AdvUF-NMA
S (C). Program C is described in Figure A.10.
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procedure Initialize(pkS):

(skR, pkR)
$← Gen(1λ)

S ← ∅
Return (pkS , pkR)

procedure Signcrypt(m):

(skF , pkF )
$← Gen(1λ)

σ
$← Sign(m, skS)

c
$← Enc((m,σ), pkR)

S ← S ∪ {(m,σ)}
Return c

procedure Unsigncrypt(c):

(m,σ)← Dec(c, skR)

If (m,σ) ∈ S Return m

If Verify(m,σ, pkS) = T Return m

Else Return ⊥

procedure Finalize(c):

(m,σ)← Dec(c, SKR)

UF-NMA.Finalize(m,σ)

Figure A.10: Program C

Using a hybrid argument, we conclude that an adversary making at most q queries to

the left-or-right oracle cannot achieve an advantage greater than q times that of an

adversary making just one query to the left-or-right oracle. Indeed, there exists a D
such that AdvIND-gCCA2-q

E (B) ≤ q · AdvIND-gCCA2
E (D). This argument is described in

Section 5.4; simply consider that no information about the randomness is issued prior

to the phase where the adversary queries the left-or-right oracle.

As a result, we have that: AdvUF-oCMA
StE (A) ≤ q ·AdvIND-gCCA2

E (D) + AdvUF-NMA
S (C).

Lemma 3.2. If E is IND-gCCA2 and S is UF-NMA, then StE is IND-igCCA23.

Proof. Let A be any probabilistic polynomial-time (insider) adversary against Game0

defined in Figure A.11, which is game IND-igCCA2 expanded according to the StE con-

struction. We prove this lemma by building a program B (Figure A.12) that simulates

the environment of Game0 for A in a way that B wins IND-gCCA2 (Figure 4.1) when

A wins Game0.

3StE is IND-igCCA2 with respect to the same decryption-respecting relation f of E .
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procedure Initialize(λ):

(skS , pkS)
$← Gen(1λ)

(skR, pkR)
$← Gen(1λ)

b
$← {0, 1}
S ← ∅
Return (pkR, pkS , skS)

procedure Left-Right(m0,m1):

σ
$← Sign(mb, skS)

c
$← Enc((mb, σ), pkR)

S ← S ∪ {c}
Return c

procedure Dec(c):

Find c′ ∈ S | f(c, c′) = T

Return ⊥
If Not Found

(m,σ)← Dec(c, skR)

If Verify(m,σ, pkS) = T Return m

Else Return ⊥

procedure Finalize(b′):

Return (b = b′)

Figure A.11: Game0 (defines IND-igCCA2 for StE)

procedure Initialize(pkR):

(skS , pkS)
$← Gen(1λ)

S ← ∅
Return (pkR, pkS , skS)

procedure Left-Right(m0,m1):

σ0
$← Sign(m0, skS)

σ1
$← Sign(m1, skS)

c← IND-gCCA2.Left-Right((m0, σ0), (m1, σ1))

S ← S ∪ {c}
Return c

procedure Dec(c):

Find c′ ∈ S | f(c, c′) = T

Return ⊥
If Not Found

(m,σ)← IND-gCCA2.Dec(c, skR)

If Verify(m,σ, pkS) = T Return m

Else Return ⊥

procedure Finalize(b):

IND-gCCA2.Finalize(b)

Return

Figure A.12: Program B (Lemma 3.2)

Thus, AdvIND-igCCA2
StE (A) = AdvIND-gCCA2

E (B).
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