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Statement  

Real-time Structural Mechanics Simulation for Tetrahedral Meshes with Dynamic Topology. 

 

Abstract 

The simulation of meshes with dynamic geometry and topology (also known as dynamic 

meshes) is a new and unexplored field. Recently, motivated by the challenge of developing 

multidisciplinary solutions for exploring design variations, such as to simultaneously design and 

engineer products, the scientific community has started taking interest in dynamic meshes. 

The traditional simulation procedure for meshes with constant topology builds a system of 

equations which then is solved to reveal the solution of the studied problem. The first 

approaches to dynamic mesh simulation reuse this procedure as many times as the number of 

topological changes suffered by the simulated object.  

In this thesis, a new approach to the simulation of dynamic meshes is presented. This 

methodology is different from the previous developed approaches as it avoids the systematic 

rebuilds of the system of equations. Instead, a methodology was developed that quickly and 

locally revalidates the system so that it always represents the current state of the dynamic 

mesh. 

Tests comparing the performance of the presented methodology with the previous approaches, 

show a significant reduction in the simulation time, achieving real-time performance for 

meshes with higher complexity. 
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Tema 

Simulação de estruturas mecânicas em tempo real para malhas com topologia dinâmica. 

 

Resumo 

A simulação de malhas com geometria e topologia dinâmicas (também apelidadas de malhas 

dinâmicas) é um campo novo e pouco explorado. Recentemente, a comunidade científica 

começou a mostrar interesse na simulação destas malhas. Este interesse é especialmente 

motivado pelo desafio de desenvolver soluções multidisciplinares para a exploração de 

variações de design, tais como permitir que o desenho e a análise a nível da engenharia de um 

produto sejam efectuados em simultâneo. 

O processo tradicional para a simulação de malhas com topologia constante constrói um 

sistema de equações que é depois resolvido para revelar a solução do problema estudado. As 

primeiras abordagens à simulação de malhas dinâmicas reutilizam este processo tantas vezes 

quanto o número de alterações topológicas sofridas pelo objecto em estudo. 

Esta tese apresenta uma nova abordagem à simulação de malhas dinâmicas. A nova 

metodologia é diferente das abordagens anteriores na medida em que esta evita a 

reconstrução sistemática do sistema de equações. Um algoritmo foi desenvolvido para 

rapidamente e localmente revalida o sistema, de forma a que este represente sempre o estado 

actual da malha dinâmica. 

Os resultados dos testes comparando a performance da metodologia proposta com as 

abordagens anteriores mostram uma redução significativa no tempo de simulação, alcançando 

performance em tempo real para malhas com maior complexidade. 
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1 Introduction 

1.1 Motivation 

Structural mechanics is the field of continuous mechanics that deals with the computation of 

deformations and stresses within structures. Structural mechanics simulators are widely used 

to drive the engineering design process of mechanical structures, such as automobiles, ships 

and airplanes. In the context of simulation, these structures are digitally represented by means 

of their geometric shape and material properties. In the simulation process, the shape of these 

structures is typically handled as a constant input, in other words, the geometry remains 

constant and only the material properties are modified. Nowadays, the exploration of design 

variations within the simulation stage has motivated the modification of the shape, leading to 

changes in the geometry and topology of the mesh, also called dynamic meshes. The dynamic 

meshes field is therefore new and unexplored, having so far very few approaches to its 

simulation. 

The traditional simulation procedure for meshes with constant topology starts by building a 

system of equations based on the involved physical laws and properties of the object. This 

system of equations is then solved to reveal the displacement of the object. The first 

implementations of simulation for dynamic meshes iterate on this procedure, building and 

solving a system of equations every time the object suffers a topological change ([KFCO06]). 

Although this technique works, it is very expensive due to the successive rebuilds of the system 

of equations. 

1.2 Objective 

The objective of this thesis work is to devise an efficient procedure for the simulation of 

dynamic meshes. The matrix of the aforementioned system of equations is known in the 
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simulation context as the global stiffness matrix. This matrix defines the elasticity of the 

simulated object and thus when the slightest topology change occurs, this matrix becomes 

invalid, as it no longer represents the current object. Opposed to the reconstruction of the 

whole matrix done by other approaches to dynamic mesh simulation, this thesis presents a 

methodology that revalidates the matrix with lower resource consumption (both in processor 

usage as in memory access). Using a revalidation method instead of the rebuild, the simulation 

cycle time decreases (as shown in Figure 1.1) resulting in an increase of the number of frames 

per second. 

 

Figure 1.1 - Three simulation cycles on the traditional approach (on the left) and on the proposed approach (on the right) to 
dynamic mesh simulation.  

The presented methodology revalidates the global stiffness matrix after every topological 

change. It takes as input the information of the applied topological changes that combined with 

the mesh information reveals which are the entries of the matrix that were affected and 

therefore need to be recomputed.  



3 
 

In order to test the performance of the proposed methodology a static linear finite element 

simulator was developed. Results revealed that the implemented revalidation strategy is a 

success compared to the reconstruction of the global stiffness matrix. It solves in real-time for 

meshes of 30,000 elements. 

1.3 Thesis Organization 

This thesis is structured in the following way: 

Chapter 2 - Review of the State of the Art. This chapter describes the literature survey done to 

assess the state of the art in terms of: what other approaches have been developed so far to 

simulate meshes with dynamic topology; the simulation characteristics of the studied problem; 

and the most appropriate solvers to find the solution of the system of equations. 

Chapter 3 - Static Finite Element Analysis. In this chapter the key concepts of the static finite 

element analysis are presented. This is an introductory chapter meant to ease the reader to the 

simulation process. 

Chapter 4 - Methodology. This chapter describes the methods and algorithms developed, in 

order to implement, test and prove the proposed methodologies. Section 4.1 explains how to 

build the stiffness matrix from the involved physical laws. Section 4.2 and 4.3 describe the 

concept and the build of the equivalent matrix representation. Section 4.4 explains how the 

linear system is revalidated after a geometrical or topological change. Section 4.5 shows the 

adaptations made to the solving technique to allow the usage of the equivalent matrix. 

Chapter 5 - Results. This chapter offers performance comparisons between the different 

implemented techniques. It is divided into sections where the test being performed is 

explained, the results are shown and a discussion is provided. 

Chapter 6 - Conclusion.  In this chapter the conclusions from this thesis work are drawn out. It 

ends with a couple of suggestions for future work that can increase the performance of the 

proposed methods. 
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2 Review of the State of the Art 

This thesis work started with the study of different techniques in computer graphics such as 

deformable models ([NMK+06]), shape modeling ([Ale06]), animation ([MSJT08]) and 

simulation ([BFMF06]), in order to understand how linear systems are used within this 

community. The study of these techniques revealed, that linear systems are used in a classical 

way and that there are no optimization procedures to minimize its build time. Hence, partial 

differential equations ([Lan03]) and discretization techniques were analyzed, particularly the 

Finite Element Method ([Hug00, She94]), in order to explore the requirements for building 

linear systems. 

Additionally, aiming at understanding how the solution of a linear system is computed, the 

literature regarding iterative solvers ([SVDV00]) and specially the conjugate gradient method 

([She94]) was revised. Some solvers might be better suited than others depending on the 

characteristics of the problem to be solved. Therefore, the revision of the literature was done 

having in mind the solid mechanics problem [Bow09], so that the properties of the generated 

systems (symmetry, definiteness, among others) would be taken into account when choosing a 

solver. 

Augarde et al. [ARS06] explained that in the linear elasticity problem, the Galerkin method 

causes the stiffness matrix to be symmetric and positive definite. This fact makes the Conjugate 

Gradient Method a suitable solver for the linear system of equations yielded in the linear 

elasticity problem. Saad and Vorst presented, in [SVDV00], an in-depth historical perspective of 

iterative solutions of linear systems and they attributed their origin to the work of Gauss in the 

early nineteenth century and show how the main contributions over the years led to the 

iterative solvers we have nowadays. 

The studied related work suggests that the Conjugate Gradient method is currently the most 

appropriate solver for computing the solution of a linear system of equations in an iterative 

form and without using a hierarchy of discretizations or adaptivity methods. For this reason, the 
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Conjugate Gradient Method is the chosen solver for this thesis study. The implementation of 

this solving technique is based on [She94], where Shewchuk presents a practical explanation on 

how the Conjugate Gradient works and also shows the building blocks and its interconnections, 

i.e. the method of Steepest Descent, the method of Conjugate Directions and finally their 

relations within the Conjugate Gradient method. 

As mentioned before, this thesis work was motivated by the aim to find an algorithm, which is 

able to handle the simulation of dynamic meshes at interactive rates.  The computer graphics 

community has not deeply dealt with the simulation of changing meshes, but there are some 

interesting approaches. Bro-Nielsen ([BNC96, BN96]) presented the advantages of condensed 

or Fast Finite Elements for deformable models in surgery simulation, where only the surface of 

the volumetric model is considered for the simulation. Gissler et al. [GBT07] proposed recently 

constraint sets for FE models, where topological changes (merging and breaking) of deformable 

tetrahedral meshes are supported, by means of replacing mass points by mass portions (in a 

constraint set) according to the number of incident tetrahedra. 

Klinger et al. [KFCO06] developed a fluid animation application, which requires the remesh of 

the whole model after every iteration (or mesh change), leading also to a rebuild of the linear 

system (see Figure 2.1).  

 

Figure 2.1 – A rectangle moving through fluid (from [KFCO06]). 

Von Funck et al. [vFTS06] developed an algorithm for shape deformation based on time-

dependent divergence-free vector fields, for which they need to build a linear system, in order 
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to find the path between steps. They also implemented a remesh step, since the deformation of 

the mesh between steps led to poor quality triangles, which affected the convergence of the 

linear system. Hence, they also need to rebuild the linear system after every remesh step. 

There are several algorithms dealing with the simulation of physically-based deformable 

models. For example Mezger et al. [MTPS08] proposed a real time physically-based shape 

editing algorithm based on the simulation of the mechanical properties of the model with a 

Finite Element Method discretization. However they used computing meshes with few 

tetrahedral elements (up to 1,500) and the rebuild of the linear system (for every geometry 

change, the topology is constant) did not cause any performance problem. These kinds of 

simulations with bigger meshes (around 10,000 tetrahedral elements) will not achieve real time 

performance. 

Based on the performed studies it is foreseen that several applications in computer graphics 

can benefit from the developed methodology, by improving their convergence and their 

performance, reducing the number of iterations and the computation time. The methodology 

proposed in this thesis, will specially contribute to the rapid simulation of dynamic meshes. To 

the best of the author’s knowledge, there are no investigations in the same direction as the 

proposed in this thesis. There have been made several efforts regarding the improvement of 

solvers, either with new methods or with parallelization techniques on the CPU or the GPU, but 

there is not enough information about the intelligent handling and processing of linear systems. 
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3 Static Finite Element Analysis  

The static finite element simulation can be divided in various steps: The problem under study is 

defined based on the object, the material properties and the user defined constraints. Then, a 

linear system of equations is built using the finite element method and the physical laws under 

study. Finally, this system of equations is solved to reveal the solution of the simulation. 

Here follow the simplified methods needed to perform static structural analysis simulation 

using the finite element method (these are explained in more detail on the following sections): 

1. Divide the object under study into elements; 

2. Define shape functions; 

3. Compute the stiffness matrices for all elements; 

4. Assemble the matrices into the global stiffness matrix; 

5. Modify the global stiffness matrix to enforce the boundary constraints; 

6. Solve the system 𝐾𝑢 = 𝑓 to find the displacements; 

7. Calculate the strains; 

8. Calculate the stresses. 

3.1 Continuum Mechanics 

Computer simulation often uses Continuum Mechanics to reproduce the behavior of materials 

modeled as a continuum. Even though all matter is made of atoms separated by empty space 

(which leads to heterogeneity on the substance of a body), the continuum concept assumes 

that matter is evenly distributed throughout a body and that it fills completely the space 

occupied by that body. 
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Figure 3.1 - A 1D problem using a cantilever
1
. 

There are three key quantities that describe the behavior of a continuous object: displacement, 

stress and strain. Consider the one dimensional problem shown in Figure 3.1. The beam with 

cross sectional area A and original length l suffers an expansion of ∆l when the force f is 

applied. These quantities along with the material property E can be related via Hooke’s law: 

 
𝑓

𝐴
= 𝐸

∆𝑙

𝑙
 

(3.1) 

The constant E is the Young’s modulus of the beam’s material and it represents the elastic 

stiffness of the material. Analyzing (3.1) it is easy to observe some logic properties such as: the 

bigger the force applied per area, the bigger will be the beam’s relative elongation; and stiffer 

materials will elongate less, provided they have the same area and length.  

3.1.1 Displacement 

A mechanical object is usually defined by its shape and the properties of the object’s material. 

The undeformed shape, also known as equilibrium configuration or rest shape, describes the 

object in a state where no forces are being applied and therefore the displacement is null. To 

study the behavior of an object, the coordinates of a point in an undeformed shape will be 

henceforward referred to as x. Applying forces to an object causes stress inside it and leads to 

displaced points. These displaced points have new locations p(x). The displacement suffered by 

a point will be referred to as u(x) where 

                                                      
1
 A cantilever is a beam supported on only one end. 
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 𝑢 𝑥 = 𝑝 𝑥 − 𝑥 (3.2) 

3.1.2 Strain and Stress Fields 

The strain (𝜀 = ∆𝑙 𝑙 ) represents the relative elongation of the object. The strain field is usually 

irregular over the object since the strain is function of the displacements and because some 

parts of the beam can deform more than others. In a three dimensional problem the strain is no 

longer a scalar, it is represented by a symmetric 3 by 3 tensor: 

 𝜀 =  

𝜀𝑥𝑥 𝜀𝑥𝑦 𝜀𝑥𝑧
𝜀𝑥𝑦 𝜀𝑦𝑦 𝜀𝑦𝑧
𝜀𝑥𝑧 𝜀𝑦𝑧 𝜀𝑧𝑧

  (3.3) 

The strain takes this form so it can represent the relative elongation in any direction with 

respect to any spatial variable (x, y or z). The strain computation can be based on three 

theories: Infinitesimal strain theory, finite strain theory and large-displacement theory. The 

infinitesimal strain tensor, most commonly known as Cauchy’s strain tensor (equation (3.4)), 

linearly calculates strain from the gradient of the displacement field. The common non-linear 

alternative is the finite strain tensor, or Green’s strain tensor (equation (3.5)), which is better 

suited for the simulation of large displacements. 

 𝜀𝐺 =
1

2
 ∇𝑢 +  ∇𝑢 𝑇 +  ∇𝑢 𝑇∇𝑢  

(3.5) 

Since in three dimensions the displacement field has three components (u, v and w), the 

gradient of the displacement field is a 3 by 3 matrix where the three components are derived 

by the three spatial variables. 

 ∇𝑢 =  

𝑢,𝑥 𝑢,𝑦 𝑢,𝑧

𝑣,𝑥 𝑣,𝑦 𝑣,𝑧

𝑤,𝑥 𝑤,𝑦 𝑤,𝑧

  (3.6) 

Stress defines the force applied (𝜎 = 𝑓 𝐴 ). Following the same logic applied to (3.3), the stress 

is also represented as a 3 by 3 tensor. Since both strain and stress are representable by 

 𝜀𝐶 =
1

2
 ∇𝑢 +  ∇𝑢 𝑇  

(3.4) 
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symmetric 3 by 3 matrices, one alternative representation is with vectors containing the 6 

independent coefficients: 

 𝜀 =  𝜀𝑥𝑥 𝜀𝑦𝑦 𝜀𝑧𝑧 𝜀𝑥𝑦 𝜀𝑦𝑧 𝜀𝑧𝑥   (3.7) 

 𝜎 =  𝜎𝑥𝑥 𝜎𝑦 𝜎𝑧𝑧 𝜎𝑥𝑦 𝜎𝑦𝑧 𝜎𝑧𝑥   (3.8) 

3.1.3 Constitutive Laws  

Constitutive laws relate physical quantities and in structural analysis one is needed to relate 

stress with strain. Hooke’s law (3.1) relates both, so it can be re-written as 

 𝜎 = 𝐸𝜀 (3.9) 

This linear relationship can only be used for isotropic materials which means that the properties 

of the material are independent of direction in space. By substituting (3.7) and (3.8) in (3.9), the 

constant of proportionality E can be expressed as a 6 by 6 matrix resulting in the following 

equation 

 

 
 
 
 
 
 
𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑧𝑧
𝜎𝑥𝑦
𝜎𝑦𝑧
𝜎𝑧𝑥  

 
 
 
 
 

=
𝐸

 1 + 𝑣  1− 2𝑣 

 
 
 
 
 
 
1− 𝑣 𝑣 𝑣 0 0 0
𝑣 1− 𝑣 𝑣 0 0 0
𝑣 𝑣 1− 𝑣 0 0 0
0 0 0 1− 2𝑣 0 0
0 0 0 0 1− 2𝑣 0
0 0 0 0 0 1− 2𝑣 

 
 
 
 
 

 
 
 
 
 
 
𝜀𝑥𝑥
𝜀𝑦𝑦
𝜀𝑧𝑧
𝜀𝑥𝑦
𝜀𝑦𝑧
𝜀𝑧𝑥  
 
 
 
 
 

 (3.10) 

Equation (3.10) is called Hooke’s law in stiffness form. The v represents the Poisson’s ratio 

which defines the change in volume caused by the stretching of the material and E is the 

aforementioned Young’s modulus. 

3.2 Finite Element Method  

Newton’s second law of motion 𝑓 = 𝑚𝑝  defines the relation between the applied forces and 

the kinematics of an object. Dividing the whole equation by the volume yields the equation of 

motion for infinitesimal volume elements:  
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 𝜌𝑝 = 𝑓(𝑥) (3.11) 

Since f(x) represents the global forces acting on point x, f(x) can be decomposed into external 

forces (such as prescribed forces, gravity or collision forces) and internal forces (resulting from 

deformations). Thus, the partial differential equation governing elastic materials is: 

 𝜌𝑝 = ∇ · 𝜎 + 𝑓𝑒𝑥𝑡  (3.12) 

The Finite Element Method is a mathematic procedure used to find approximate solutions to 

partial differential equations. There are other possible numerical methods such as finite 

differences and finite volume methods, but the finite element is the proven standard in 

structural analysis. The finite element approach divides the entire domain into a set of 

elements. These elements can be triangles, tetrahedrons, bricks or other (there are various 

choices depending on the dimensionality of the problem) and they are spread through the 

domain in a manner that covers the whole domain without overlaps. Figure 3.2 shows a 

possible discretization of a two dimensional beam. 

 

Figure 3.2 – A 2D cantilever beam discretized using triangular elements. 

If the object is discretized, the governing equation also has to be discretized so that it can be 

applied to the points under study. Thus, equation (3.12) gets discretized into 𝑀𝑢 + 𝐾𝑢 = 𝑓 

where M is the diagonal mass matrix, K is the stiffness matrix and ü is the acceleration caused 

by the external forces f. The focus of this thesis is static structural analysis, which means, the 
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problem is studied at an instant of time where the object is in equilibrium, in other words, the 

acceleration of every point on the (deformed) object is zero. Thus, the previous equation can be 

simplified into 

 𝐾𝑢 = 𝑓 (3.13) 

3.2.1 Principle of Virtual Work 

The Principle of Virtual Work is the basis of solid mechanics analysis when using the Finite 

Element Method. Going back to Newton’s second law of motion, Equation (3.12) can be 

rewritten as: 

 𝜌
𝑑𝑣𝑖
𝑑𝑡

=
𝜕𝜎𝑗𝑖

𝜕𝑦𝑖
+ 𝜌𝑏𝑖  

(3.14) 

Through the Principle of Virtual Work it is possible to convert the derivatives of the partial 

differential equations into an equivalent integral which is easier to handle numerically (also 

called weak form of the problem). The displacements, strains and stresses for linear elasticity 

can be found through these formulas respectively: 

  𝐶𝑖𝑗𝑘𝑙
𝜕𝑢𝑘
𝜕𝑥𝑙

𝜕𝛿𝑣𝑖
𝜕𝑥𝑗

𝑑𝑉

𝑅

−  𝑏𝑖𝛿𝑣𝑖𝑑𝑉

𝑅

−  𝑡𝑖
∗𝛿𝑣𝑖𝑑𝐴

𝜕2𝑅

= 0 (3.15) 

 𝜀𝑖𝑗 =
1

2
(
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
) (3.16) 

 𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙 𝜀𝑘𝑙  
(3.17) 

for all virtual velocity fields 𝛿𝑣𝑖  where 𝛿𝑣𝑖 = 0. 𝐶𝑖𝑗𝑘𝑙 represents the elastic constants of the 

object. To calculate the resulting displacement for a discrete set of points on the object, the 

displacement field needs to be discretized. The discretization of the formulas is achieved 

through the use of shape functions 𝑁𝑎(𝑥). These interpolations are function of position, they 

vary linearly within the element and each shape function has value one at one node of the 
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element and value zero at the other nodes. The discretized displacement and virtual velocity 

can be defined as 

 𝑢𝑖 𝑥 =  𝑁𝑎(𝑥)𝑢𝑖
𝑎

𝑛

𝑎=1

 (3.18) 

 𝛿𝑣𝑖 𝑥 =  𝑁𝑎(𝑥)𝛿𝑣𝑖
𝑎

𝑛

𝑎=1

 (3.19) 

respectively. Substituting the interpolated fields (3.18) and (3.19) into the virtual work equation 

(3.15) results in 

 𝐶𝑖𝑗𝑘𝑙
𝜕𝑁𝑏(𝑥)

𝜕𝑥𝑙
𝑢𝑘
𝑏
𝜕𝑁𝑎(𝑥)

𝜕𝑥𝑗
𝛿𝑣𝑖

𝑎𝑑𝑉

𝑅

−  𝑏𝑖𝑁
𝑎(𝑥)𝛿𝑣𝑖

𝑎𝑑𝑉

𝑅

−  𝑡𝑖
∗𝑁𝑎(𝑥)𝛿𝑣𝑖

𝑎𝑑𝐴

𝜕2𝑅

= 0 (3.20) 

which in matrix form shows a more clear representation of the linear system to be solved: 

  𝐾𝑎𝑖𝑏𝑘 𝑢𝑘
𝑏 − 𝐹𝑖

𝑎 𝛿𝑣𝑖
𝑎 = 0 (3.21) 

 𝐾𝑎𝑖𝑏𝑘 𝑢𝑘
𝑏 = 𝐹𝑖

𝑎  (3.22) 

where 

 𝐾𝑎𝑖𝑏𝑘 =  𝐶𝑖𝑗𝑘𝑙
𝜕𝑁𝑎(𝑥)

𝜕𝑥𝑗

𝜕𝑁𝑏(𝑥)

𝜕𝑥𝑙
𝑑𝑉

𝑅

 
(3.23) 

 𝐹𝑖
𝑎 =  𝑏𝑖𝑁

𝑎 𝑥 𝑑𝑉

𝑅

+  𝑡𝑖
∗𝑁𝑎 𝑥 𝑑𝐴

𝜕2𝑅

 
(3.24) 

The shape function derivatives with respect to global coordinates are calculated as follows: 

 
𝜕𝑁𝑎

𝜕𝑥𝑗
=
𝜕𝑁𝑎

𝜕𝜉𝑖

𝜕𝜉𝑖
𝜕𝑥𝑗

 (3.25) 
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The first parcel of the multiplication (𝜕𝑁𝑎 𝜕𝜉𝑖 ) are the shape functions with respect to a local, 

dimensionless, coordinate system (𝜉) within the element. The second parcel is calculated as 

follows: 

 
𝜕𝜉𝑗

𝜕𝑥𝑖
=  

𝜕𝑥𝑖
𝜕𝜉𝑗

 

−1

=   
𝜕𝑁𝑎(𝜉)

𝜕𝜉𝑗
𝑥𝑖
𝑎

𝑁𝑒

𝑎=1

 

−1

 
(3.26) 

The stiffness matrix of a tetrahedron can be computed by iterating on the four nodes (a and b) 

for all coordinates (i and k) on the formula: 

 𝑘𝑎𝑖𝑏𝑘 =  𝑤𝐼𝐶𝑖𝑗𝑘𝑙
𝜕𝑁𝑎 𝜉𝑖

𝐼 

𝜕𝜉𝑝

𝜕𝜉𝑝

𝜕𝑥𝑗

𝜕𝑁𝑏 𝜉𝑗
𝐼 

𝜕𝜉𝑞

𝜕𝜉𝑞

𝜕𝑥𝑙
𝐽(𝜉𝑖

𝐼)

𝑁𝐼

𝐼=1

 
(3.27) 

where 𝐽 is the determinant of the Jacobian matrix (Jacobian determinant): 

 𝐽 = det⁡ 
𝜕𝑥𝑖
𝜕𝜉𝑗

  (3.28) 

and the components of the elastic modulus tensor 𝐶𝑖𝑗𝑘𝑙  are computed as 

 𝐶𝑖𝑗𝑘𝑙 =
𝐸

2 1 + 𝑣 
 𝛿𝑖𝑙𝛿𝑗𝑘 + 𝛿𝑖𝑘𝛿𝑗𝑙  +

𝐸𝑣

 1 + 𝑣  1− 2𝑣 
𝛿𝑖𝑗 𝛿𝑘𝑙  

(3.29) 

where 𝐸 represents the Young’s modulus, 𝑣 the Poisson’s ratio and 𝛿 the Kronecker delta. 

3.3 Stiffness Matrix 

The Stiffness Matrix is a key concept in the finite element method as it stores the material 

stiffness of an element with respect to all the degrees of freedom. The discretization step 

induces in the stiffness matrix two characteristics: symmetry and positive definiteness 

([ARS06]). An element stiffness matrix’s size depends on the number of nodes per element and 

on the number of dimensions of the problem. Considering as an example a triangle (3 nodes) in 

2D (2 dimensions), an element stiffness matrix would have size 6 by 6 so it could relate the 

stiffness between any pair of nodes in any dimensions. 
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The most common finite element implementations combine all element stiffness matrices into 

one global stiffness matrix (see APPENDIX B 

 for an explanation of the assembly process). This matrix is therefore very large and sparse since 

it defines all nodes’ stiffness relations.  

3.4 Loads and Constraints 

To create the conditions in which the objects are being studied loads (also known as boundary 

conditions) are defined. Loads are applied forces and the most typical loads are: 

1. Prescribed forces – These are forces applied directly to nodes (vertices of the elements). 

2. Distributed loads – Define the applied force per unit of area. In a finite element point of 

view these loads are applied to element faces. 

3. Body forces - Define the applied force per unit of volume. These are applied to the 

element, e.g. gravitational loading. 

Constraints restrict the motion of nodes by defining their displacements and therefore 

influence the movement of the whole object. When applied to some or all degrees of freedom 

of a node, the displacement of this node in the constrained directions will be zero. To illustrate 

both concepts consider Figure 3.2. Nodes N1 and N6 are constrained in all directions so that 

they will not move and node N10 has a prescribed force. 

3.5 Solver 

The solver is an implementation of a mathematic procedure to find the solution of systems of 

equations and it is a core component of a structural analysis simulator. Consider a problem 

where N is the number of nodes times the number of degrees of freedom. The solver is used to 

find the displacements (u ) in (3.13) where K  is a N  by N  matrix and u  and f are both N  size 

vectors. 
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There are various methods to solve linear systems of equations and these can be classified as 

iterative or direct. As seen in [SVDV00], iterative methods are easier to implement and the 

memory and arithmetic cost does not grow much with the problem size as it does for direct 

methods. These advantages make iterative methods the typical solvers used in structural 

analysis.  

A technique called preconditioning can be used to improve the condition number of a matrix, 

hence increasing the convergence and reliability of the solution ([KK09]). Applying 

preconditioning to a system 𝐴𝑥 = 𝑏 implies multiplying both sides of the system by a 

symmetric, positive-definite matrix that approximates A, but is easier to invert. 
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4 Methodology 

In order to find what gets affected by the dynamic topology and how to implement an efficient 

revalidation strategy, all aspects of the simulation process were studied.  A closer look at the 

global stiffness matrix reveals that every value relates to the elasticity between a pair of nodes. 

Based on this characteristic, the proposed revalidation methodology updates only the cells of 

the matrix that were affected by the topological change leaving the rest of the matrix intact. 

However, adding, removing or editing arbitrary cells can prove to be an expensive task 

depending on how the matrix is stored in memory. Therefore, it is required a storing structure 

for the global stiffness matrix that enables inexpensive operations regarding its entries. This 

thesis proposes a matrix representation that provides such features while also taking into 

account the properties of a global stiffness matrix (sparsity and symmetry) (see Section 4.2). 

Having a new matrix representation influences the work of the solution techniques of the 

system of equations. Solvers perform a series of operations with the matrix in order to find the 

solution of the system, being the most expensive of all the multiplication with a vector. In this 

thesis, a multiplication algorithm using the new matrix representation is proposed that proves 

to be faster than the ones with other matrix representations (see Section 4.5). This 

representation also provides the flexibility of allowing the matrix to be traversed in any 

arbitrary order. Such ability can be used by solvers to increase convergence or in any other 

method (even from other fields) that requires fast traversal of a matrix in a specific order. 

This methodology created to enable the simulation of dynamic meshes results in a different 

procedure (see Figure 4.1) compared to the one used for the simulation of constant meshes. At 

initialization, the global stiffness matrix is computed based on the rest state of the simulated 

model. Then, for every occurred topological change, the stiffness values of the affected 

elements are recomputed and updated on the global stiffness matrix. 
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Figure 4.1 - Proposed procedure for the simulation of dynamic meshes. (GSM stands for Global Stiffness Matrix) 

The specific simulation type studied in this thesis is Finite Element Method for static linear 

elasticity. Table 4.1 shows which characteristics influence the linearity of the simulation and 

one example for each option. 

Table 4.1 - Characteristics that define the overall linearity of the simulation. (Only one example is shown per option) 

Characteristic/Property Linearity Examples 

Stress strain relationship 

(Material linearity) 

Linear Hooke’s law of elasticity 

𝜎 = 𝐸𝜀 

Non-linear Hyperelasticity 

𝜎 = 𝜌𝐹
𝜕𝜑

𝜕𝐸
𝐹𝑇  

Measure of strain 

(Geometric linearity) 

Linear Cauchy’s strain tensor 

𝜀𝐶 =
1

2
 ∇𝑢 +  ∇𝑢 𝑇  

Non-linear Green’s strain tensor 

𝜀𝐺 =
1

2
 ∇𝑢 +  ∇𝑢 𝑇 +   ∇𝑢 𝑇∇𝑢  

Basis Function Linear 4 points tetrahedron 
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Quadratic 10 points tetrahedron 

 

 

4.1 Computing the element stiffness matrices 

The behavior of the simulated object is defined by its material properties and by its mesh. By 

combining these two the stiffness matrix can be obtained. Bower shows in [Bow09] a method 

to implement the computation of the element stiffness matrices through the generalized Finite 

Element Method. 

The construction of an element stiffness matrix can be done linearly thanks to the three 

restrictions imposed by the studied problem: 

1. Material linearity: Its linear due to the use of Hooke’s law; 

2. Geometric linearity: Cauchy’s strain tensor is linear; 

3. Basis Function: The used meshes are composed of 4 point tetrahedra. 

One important concept that influences the computation of the element’s stiffness is the order 

in which the nodes of an element are defined. The two possibilities are the right-hand rule and 

the left-hand rule. The proposed implementation works with the right-hand rule, but a 

workaround was created to enable the use of both: when loading a mesh from a file, a volume 

check is performed on the first element to determine which is the used hand rule and if a 

conversion should be done (see APPENDIX B 



20 
 

). 

The implemented algorithm for the element stiffness matrices calculation can be seen in 

Algorithm 4.1. 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
11. 

foreach element do 
     Set integration points and weights 
     Compute shape functions derivatives wrt local coordinates 
     Compute Jacobian matrix 
     Compute Jacobian determinant 
     Convert shape function derivatives to derivatives wrt global coordinates 
     foreach (a,i,b,k) do 
          Compute Equation (3.27) 
          Add result to element stiffness matrix 
     endfor 
endfor 

Algorithm 4.1 – Element Stiffness Matrices calculation. 

4.2 Equivalent matrix representation 

The proposed algorithm aims at effectively building, updating and solving linear systems, by 

means of reducing the processing time and of minimizing the memory consumption. A linear 

system represented in the matrix form is: 

 A x =  b (4.1) 

where 𝐴 is the matrix of coefficients, 𝑥 is the vector of unknowns and 𝑏 is the vector of 

solutions. The study of the related work provided an understating of the objective of this 

system in getting the solution of the problem. The matrix of coefficients aims at collecting the 

information for the equations regarding the connectivity of the vertices (edge topology) and of 

the unknowns (vertices without boundary conditions) themselves. The process for building the 

matrix of coefficients is normally based on traversing the given mesh (element by element), in 

order to identify the neighboring elements, which need to contribute to an edge (non diagonal 

positions) or to a vertex (diagonal positions). This process is expensive and when the geometry 

and the topology of the mesh are changed, the matrix of coefficients also needs to be changed. 
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Hence, it became clear that if it was possible to have the information concerning the elements 

around an edge, it would be easy to collect and build the information of the non diagonal 

positions of the linear system (see Figure 4.2 and Table 4.2). Moreover, if the computed 

information for every edge (elements around the edge) is stored within a small edge matrix, it 

will provide enough flexibility to modify or recompute only the incident edges to a vertex, when 

the vertex changes, without affecting the rest of the linear system. Analogically, the same 

strategy can be applied for storing the computed information of the diagonal positions of the 

linear system (see Figure 4.2 and Table 4.3), computing a small diagonal matrix for every 

unknown. These two sets of matrices are an equivalent representation of the matrix of 

coefficients, which will be henceforward referred to as the equivalent matrix.  

 

 

Figure 4.2 - Mesh composed of six elements. 
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Table 4.2 - Elements needed to calculate the stiffness of 
each edge. 

Edge Elements needed 

Edge1 Elem1 

Edge2 Elem1 

Edge3 Elem1, Elem2 

Edge4  Elem3 

Edge5 Elem2, Elem3 

Edge6 Elem2, Elem4 

Edge7 Elem3, Elem5 

Edge8 Elem4 

Edge9 Elem5 

Edge10 Elem5, Elem6 

Edge11 Elem4, Elem6 

Edge12 Elem6 
 

Table 4.3 - Elements needed to calculate the stiffness of each 
vertex. 

Vertex Elements needed 

V1 Elem1 

V2 Elem1, Elem2, Elem4 

V3 Elem1, Elem2, Elem3 

V4 
Elem2, Elem3, Elem4, Elem5, 

Elem6 

V5 Elem3, Elem5 

V6 Elem4, Elem6 

V7 Elem5, Elem6 
 

 

Structure wise, the matrix of coefficients is no longer stored in a traditional sparse matrix 

([SGV05]). Instead, it is divided into two vectors (see Figure 4.3  for a visual representation). In 

one vector is stored the edge matrices and in the other is stored the diagonal matrices. Every 

element of both vectors is a 𝑛x𝑛 matrix where 𝑛 is the dimension (1D, 2D or 3D) of the 

problem.  
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Figure 4.3 - Graphical representation of a matrix of coefficients (left). The same matrix of coefficients represented as the 
equivalent matrix (right). 

The two main characteristics of a matrix of coefficients, sparcity and symmetry, are used by the 

equivalent matrix to minimize memory consumption: only the nonzero values are stored and 

only one instance of every edge is stored for every pair of connected vertices. In order to 

explain how the proposed algorithm uses these characteristics for building the equivalent 

matrix and for the sake of clarity, the process is subdivided into three steps: 

1. Constructing the needed neighboring information; 

2. Computing the set of edge matrices; 

3. Computing the set of diagonal matrices. 

These three simple steps enable the minimization of the space in memory and the reduction of 

the processing time. In addition, the new representation of the matrix of coefficients allows the 

flexible handling and modification of individual vertices or edges, without affecting the rest of 

the matrix. The example mesh shown in Figure 4.4 will be used in association with Figure 4.5 

and Figure 4.6 to help follow the explanations given on how to compute the edge matrices and 

diagonal matrices respectively. 
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Figure 4.4 - A 2D mesh composed of three triangular elements 

4.3 Build of the equivalent matrix 

The equivalent matrix replaces the matrix of coefficients by a set of small matrices, which can 

be computed faster and requires less space in memory. In order to avoid traversing the whole 

mesh, when computing the equivalent matrix, the neighboring information is pre-computed. 

The element matrices are also pre-computed and they are the basis for computing the edge 

and diagonal matrices. Normally, the element matrices are not computed, since the 

contribution of the elements is directly considered during the solution of the system. However, 

this thesis aim at effectively handling geometrical or topological changes, therefore it is more 

efficient to use the element matrices for updating the edge matrices or the diagonal matrices 

according to the changes, than re-computing the needed element matrices every time. 

4.3.1 Constructing the neighboring information 

In order to build the equivalent matrix efficiently these three kinds of neighboring information 

need to be pre-computed: i) the elements around an edge, ii) the elements around an unknown 

and iii) the vertices of an edge. This information is computed during the initialization process 

and it is revalidated, if some changes to the topology of the mesh are made. The neighboring 

information allows the independent computation of the non diagonal and the diagonal 

positions of the matrix of coefficients and it also provides the information regarding the 

relationship between vertices. The proposed methodology uses a mesh data structure that 

automatically constructs the neighboring information, however this process will be explained 

for the sake of completeness.  
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During the loading process of the mesh, three double arrays (db) are initialized, where the 

needed information for the edges (dbEdg) is stored, for the unknowns (dbUkn) and for the 

vertices of the edges (dbVtsEdg). For every read element, its index is appended to its six 

corresponding edges in dbEdg and to its four corresponding vertices (unknowns) in dbUkn, and 

the corresponding pair of vertices is added to every one of the six edges within dbVtsEdg. By 

the end of the loading process, the neighboring information is also ready. 

4.3.2 Computing the edge matrices 

Given the neighboring information of the elements around an edge (dbEdg) and the element 

matrices, the non diagonal positions can easily be computed, by means of traversing the 

elements around the edge and adding the contribution of the corresponding element. On 

Figure 4.5 it is shown the computations involved in the build of Edge2. Since both elements 

Elem0 and Elem1 share Edge2, the components of both elements regarding this edge (colored 

in grey) are added to the Edge2's matrix. Note that each element has two contributions to 

every used edge and since one is the transposed of the other, only one is added to the edge 

matrix. The used contribution is chosen based on the direction of the edge.  
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Figure 4.5 - Element contributions to the build of the third edge matrix (E2). 

4.3.3 Computing the diagonal matrices 

The diagonal positions of the linear system are computed in a similar way to the edge positions. 

In this case, the neighboring information regarding the elements around an unknown (dbUkn) is 

used and the contribution of every involved element is considered to the diagonal. Consider 

Figure 4.6, where the build of the diagonal for vertex V1 is being performed. From Figure 4.4 it 

is clear that vertex V1 is shared by the three elements. Therefore, D1 is calculated by adding up 

the three contributions to V1 of the three elements.  
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Figure 4.6 - Element contributions to the build of the second diagonal matrix (D1). 

The union of the edge matrices and the diagonal matrices is equivalent to a matrix of 

coefficients. Although, these two sets of matrices need to be considered in order to solve the 

system, the order in which the equations will be solved can be arbitrary decided. This flexibility 

could be advantageous for a rapid convergence, since it is equivalent to having a linear system 

with an optimized ordering of the unknowns, leading to an improvement of the performance of 

the solver ([OLHB02, Bar96, BW98]). Moreover, since the matrices within the two sets are 

independent, they can be changed or revalidated without a major effort, because that would 

only require the recomputation of a small set of matrices, avoiding the computation of the 

whole system of equations. 

4.4 Revalidation of the equivalent system 

Every change that is done to the topology of the mesh implies a revalidation of the matrix of 

coefficients so that the latter continues to represent the changed mesh.  For the sake of 

functionality, the implemented revalidation method allows the processing of more than one 
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change to the mesh per call. The proposed method's procedure is based on adding or removing 

the contribution of the elements that were affected by the change. The arrays of edge matrices 

and diagonal matrices effectively support the addition and removal of vertices or elements. The 

arrays are implemented with a buffer according to the size of the mesh, enabling addition of 

new vertices or elements. In case of removal, the corresponding matrices are flagged as 

“removed”, but there are no memory reallocations, in order to avoid this expensive task. The 

double arrays for the neighboring information have the same capabilities. Algorithm 4.2 shows 

the steps taken to perform the revalidation:  

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 

foreach removed element do 
     remove element contribution 
endfor 
reserve space for new elements 
foreach added element do 
     compute element contribution 
     add element contribution 
endfor 
foreach moved node do 
     foreach element shared by this node do 
          add element to recomputeVector 
     endfor 
endfor 
foreach element in recomputeVector do 
     remove element contribution 
     recompute element contribution 
     add element contribution 
endfor 

Algorithm 4.2 - Method to revalidate the equivalent matrix. 

 

The algorithm can be subdivided into three phases, representing the three possible kinds of 

changes, which can be applied to the topology and geometry of the mesh: 

1. Remove an element (line 1 to 3) - The contribution of each removed element is 

subtracted from the corresponding entries in the equivalent matrix, according to the 

neighboring information (no memory reallocation is performed);  

2. Add an element (line 4 to 8) - Additional space is acquired (the additional space is 

obtained from the available buffer) to incorporate the new elements. The contribution 
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of each added element is computed and added to the equivalent matrix (to the  

corresponding entries according to the neighboring information);  

3. Move a vertex (line 9 to 18) - To avoid re-computing the contribution of an affected 

element more than once, an initial loop is done to find out which elements are affected 

by the movement of the vertices. For each affected element, its contribution is removed 

from the equivalent matrix. Then, its contribution is recomputed using the new vertices 

positions and finally it is added back to the equivalent matrix. 

Note that adding or removing an element contribution to the equivalent matrix is done by 

iterating over the edges and diagonals that are shared by that element. If a vertex is removed, 

no special operation needs to be considered, since it implies the elimination (flagged as 

“removed”) of the corresponding diagonal matrix and the edges matrices incident to that 

vertex. The neighboring information is also revalidated, therefore the following operations will 

not involve the “removed” vertices. 

4.5 Solution of the equivalent system 

The implemented algorithm to solve the linear system of equations is the Conjugate Gradient 

with Jacobi preconditioning as it was proposed in [She94]. The only two noticeable changes 

done so far are: the way the multiplication of the equivalent matrix with a vector is done; and 

the addition of a filter system to apply the constraints ([BW98]). Although, the Preconditioned 

Conjugate Gradient method was chosen for solving the linear system, the presented 

methodology is completely independent of the kind of solver. It is suitable for other iterative 

methods as well as for direct methods. 

4.5.1 Multiplication of the equivalent matrix with a vector 

Having the matrix of coefficients stored in the equivalent matrix form requires a special method 

for its multiplication with a vector. 
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1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
11. 
12. 

foreach rst in resultVector do 
     resultVector[rst]  ← 0 
endfor 
foreach edge in edgeVector  do 
     edgeStartVertex ← start vertex of this edge 
     edgeEndVertex ← end vertex of this edge 
     resultVector ← resultVector + (edgeVector[edge] * multiVector) 
     resultVector ← resultVector + (edgeVector[edge]T * multiVector) 
endfor 
foreach diag in diagVector do 
     resultVector ← resultVector + (diagVector[diag] * multiVector) 
endfor 

Algorithm 4.3 – Multiplication of the equivalent matrix with a vector 
(multiVector) and its result (resultVector). 

 

Algorithm 4.3 shows the main steps that are performed to multiply the equivalent matrix with a 

vector. This method starts by setting the resultVector to zero so that the results of the 

multiplications performed over the matrix can be added to it. For every edge, the vertices that 

form that edge (edgeStartVertex and edgeEndVertex) are found by consulting the 

neighborhood information (dbVtsEdg). This is done to know which is this edge’s position in the 

matrix. Doing so it is known with which position of multiVector this edge should be multiplied 

and in what position of resultVector it should be stored. 

Also notice that for every edge two multiplications are done. This is due to the symmetric 

characteristic of the matrix. To provide a better understanding of this procedure consider the 

example shown in Figure 4.7. Assuming that the algorithm is iterating on edge E1 and that this 

edge has vertex 0 as a starting vertex and vertex 3 as an ending vertex: In line 7 of the algorithm 

E1 would be multiplied by V3 and its result would be stored in R0 (red boxes). And in line 8, 

since E1 also connects vertex 3 to vertex 0 with the same value, in R3 would be stored the 

multiplication of the transposed E1 with V0 (green boxes). 
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Figure 4.7 - Multiplication of the equivalent matrix (represented as a normal matrix for simplification) with a vector. The 
green and red lined colored boxes indicate the used values when the multiplication iterates on edge E1. 

After processing all the edges, the algorithm iterates on the diagonals (line 10 to 12). The 

process is similar but simpler for each diagonal relates a vertex to itself. 
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5 Results 

Both the equivalent matrix (DEM2) and its multiplication with a vector have been implemented 

as proposed in the previous chapter. This implementation is not complex and it can easily be 

reproduced following the given indications. The implementation is single threading and a 

desktop PC Intel Core 2 Quad Q6600 with 3.25 GB RAM was used to make the measurements. 

In order to compare the performance of the algorithms, the classical form to represent the 

matrix of coefficients (the sparse matrix) has also been implemented. Four implementations of 

the sparse matrix were programmed: 

1. Linked lists without the symmetric characteristic (CSM),  

2. Linked lists with the symmetric characteristic (SSM),  

3. Compressed row storage (CRS) and  

4. Block compressed row storage (BCRS).  

The first two implementations (CSM and SSM) were only made for the sake of completeness, 

hence a simple array of linked lists was employed. The last two implementations (CRS and 

BCRS) were done without considering the symmetric characteristic, since the aim was to have 

faster access during the multiplication of the matrix with a vector (SPMV). The implementation 

of the multiplication with a vector was made for the four representations as well. The build 

process of CSM, SSM, CRS, and BCRS uses the neighboring information, in other words, the 

needed information is stored in the representation without traversing the whole mesh. For the 

multiplication process, the neighboring information was not used for CSM, SSM, CRS and BCRS, 

since each one has fields for identifying the corresponding position in the mesh. 

In order to measure the performance of the five implementations, two different tetrahedral 

meshes were used: i) a gargoyle with almost 50,000 elements and ii) a hand with almost 

100,000 elements. Table 5.1 presents the relevant topological information of the meshes 

                                                      
2
 DEM stands for Diagonal-Edge Matrix. 
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(shown in Figure 5.1, Figure 5.2, Figure 5.3 and Figure 5.4). In order to present the capabilities 

of the revalidation process, three operations representing the basic changes in the mesh 

(remove an element, add an element and move a vertex) were used: i) decimate, ii) mirror and 

iii) scale. The decimate operation takes a mesh and removes 50% of the elements of the model. 

The mirror operation doubles the number of elements of the mesh. The scale operation moves 

every vertex of the mesh. For the test of these operations, the dragon, the gargoyle and the 

bunny were used (Figure 5.5, Figure 5.6 and Figure 5.7 show the three aforementioned 

operations, one on each model).  

Table 5.1 - Topological information of the meshes used for the measurements. 

Mesh Vertices Edges Elements 

Bunny 2,087 12,796 9,997 

Gargoyle 13,044 71,873 49,996 

Hand 26,649 144,669 99,995 

Dragon 26,436 144,285 100,000 

 

 

Figure 5.1 - Bunny model. 

 

Figure 5.2 - Gargoyle model. 
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Figure 5.3 - Hand model. 

 

Figure 5.4 - Dragon model. 

5.1 Build and Multiplication of the matrix of coefficients 

Two kinds of measurements were performed, one for the build process and one for the 

multiplication with a vector process. For the times regarding the multiplication with a vector 20 

multiplications were considered, in order to be able to measure the time, since the 

measurement for a single multiplication is not very accurate. Table 5.2 shows the results in 

milliseconds for the mesh models and the two processes. These measurements were made for 

the five representations (CSM, SSM, CRS, BCRS and DEM) of the linear system. 

Table 5.2 - Measurements for the build and multiplication processes (in milliseconds). . 

Process Build Multiplication 

Mesh Gargoyle Hand Gargoyle Hand 

CSM 203 456 213 598 

SSM 115 256 140 347 

CRS 459 901 313 691 

BCRS 203 420 83 225 

DEM 94 215 78 179 
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These results show that the proposed algorithm is faster than the other four implementations. 

The algorithm is, for the build process, between 49% and 80% faster than the CSM, CRS and 

BCRS implementations, since these implementations require almost two times the space in 

memory than the SSM and ours. However, for the multiplication process, the CRS and BCRS 

implementations will have an advantage, because of the direct access, but this is not the case 

for the CSM, where the access is more expensive (because of the linked lists). Although the 

build process for the SSM implementation is similar to the CSM, the latter is still 18% faster. 

In the multiplication process our algorithm performs between 44% and 75% faster than the 

CSM, SSM and CRS implementations. The reason for these results is the expensive access of the 

linked lists (CSM and SSM). The CRS implementation is slower than the CBRS implementation, 

because it also considers the nonzero entries of the 𝑛x𝑛 element matrices (where 𝑛 is the 

dimension of the problem). On the other hand, the BCRS implementation considers the 𝑛x𝑛 

element matrices as a block, improving the performance during the multiplication process. 

DEM is in this case only 6% faster for the Gargoyle and 20% faster for the Hand. These results 

also show that the BCRS algorithm does not present a proportional behavior to the number of 

elements, but DEM does.  

Although the BCRS algorithm could be an interesting alternative for the multiplication process, 

it will be useless for topological changes, since it will require the addition and removal of block 

entries and therefore memory reallocation in the arrays (the memory is continuous), a special 

characteristic that DEM can handle very well. In terms of memory consumption, the CSM, CRS 

and BCRS implementations require more memory than the SSM and the DEM implementations, 

since these do not profit from the symmetric characteristic of the matrix of coefficients. Only 

the upper or the lower part of the matrix of coefficients is stored in the SSM and the DEM 

implementations, hence they have similar memory consumption. 
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5.2 Solving with Preconditioned Conjugate Gradient (RealTime) 

The primary aim of the proposed implementation is to effectively support geometrical and 

topological modification of mesh-based techniques, requiring the utilization of linear systems. 

Nevertheless, the limits of this implementation in terms of real time performance were also 

explored. Table 5.3 presents the measurements for 20 iterations (not only the multiplication) of 

the conjugate gradient method with a Jacobi preconditioner for three meshes with different 

sizes. 

Table 5.3 - Meshes with real time performance (time in milliseconds). 

Mesh Vertices Elements Time FPS 

Bunny_10 2,087 9,997 16 63 

Gargoyle_30 7,944 29,998 47 21 

Gargoyle_50 13,044 49,996 99 10 

 

These results reveal that this algorithm can perform in real time with meshes up to 30,000 

elements and at interactive rates with meshes up to 50,000 elements.  

5.3 Topological changes and the corresponding revalidations 

As mentioned above, the developed algorithms aim at effectively handling geometrical and 

topological changes. Because of that, the pre-computation of the element matrices is stored, in 

order to easily revalidate the equivalent system, whenever a change in the topology (remove or 

add vertices and elements) or in the geometry (move vertices) happens. The three 

implemented operations (decimate, mirror and scale) are extreme examples, since they employ 

at least the 50% of the elements or the vertices and this is not a common activity in computer 

graphics, where fast performance is expected. 

The decimate operation removes half of the elements of the model, hence only the elements, 

which are on the boundary of the removal are recomputed (see Table 5.4). Since the elements 
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on the boundary of the removal are much less than half of the model, the revalidation process 

is much faster than the reconstruction. 

Table 5.4 - Measurements for the decimate operation (in milliseconds). 

Mesh Initialization Revalidation Reconstruction 

Bunny 140 <1 67 

Gargoyle 702 71 359 

Dragon 1,427 47 719 

 

 

Figure 5.5 - Decimated bunny. 

The revalidation process for the mirror operation takes approximately 50% of the time of the 

reconstruction (see Table 5.5), because it only processes the mirrored elements in comparison 

with the reconstruction, which processes two times the number of elements (the original and 

the mirrored ones). 

 

Table 5.5 - Measurements for the mirror operation (in milliseconds). 

Mesh Initialization Revalidation Reconstruction 

Bunny 140 125 276 

Gargoyle 702 783 1,416 

Dragon 1,427 1,380 2,857 
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Figure 5.6 - Mirrored gargoyle. 

The revalidation process for the scale operation takes slightly more time than the 

reconstruction (see Table 5.6), however moving the complete set of vertices in a single step is 

the worst case scenario and thus any other operation involving moving vertices will perform 

much faster than the reconstruction. 

Table 5.6 - Measurements for the scale operation (in milliseconds). 

Mesh Initialization Revalidation Reconstruction 

Bunny 140 140 141 

Gargoyle 702 736 703 

Dragon 1,427 1,483 1,427 
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Figure 5.7 - Scaled dragon. 

The presented three operations show the performance of the revalidation algorithm for 

geometrical and topological changes. These tests demonstrate that this algorithm is in normal 

conditions (no extreme examples) much faster than a complete reconstruction of the linear 

system. This is an improvement towards mesh-based applications such as simulation, shape 

deformation, virtual surgery, and fluid/smoke animation, among others, where geometrical 

(and sometimes topological) changes affect the linear system, which needs to be solved. These 

kinds of applications will not only benefit from faster revalidations, but also from faster 

solutions, as demonstrated with the multiplication process.  

Hence, this methodology proves to be a step forward in dynamic mesh simulation as it enables 

interactive rates for dynamic meshes with up to 50,000 elements in a single thread. The 

previous results also reveal that the proposed algorithms behave proportionally to the size of 

the meshes. In other words, the complexity of the algorithms is 𝑂 𝑛 . 
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6 Conclusion 

The objective of this thesis involved the development of a methodology that would surpass the 

previous approaches to the simulation of dynamic meshes. This methodology should have a 

faster simulation cycle, which consequently would allow real-time performance for meshes 

with higher complexity.  

In order to achieve this goal, a revalidation strategy was created to avoid the systematic rebuild 

of the matrix of coefficients. This involved the development of a special storing structure for 

the matrix that allowed fast operations regarding its entries with little memory manipulation. 

Also, the build and revalidation of the matrix were aided by the use of the precomputed 

neighboring information. This proved to be a crucial improvement as it avoided the expensive 

task of querying the mesh for its nodes’ connectivity. 

The previous chapter confirms that the methodology developed within this thesis work 

represents a step forward towards the simulation of dynamic meshes. The results show that the 

revalidation strategy is faster than the rebuild of linear system of equations. Hence, higher 

frame rates can be achieved and bigger meshes can be simulated in real-time. 

An implementation of this methodology will be used in a product development application to 

simultaneously design and analyze mechanical structures. 

6.1 Future Work 

However, there is still room for improvement, as the proposed methodology opens doors to 

other possible optimizations. Although the implemented solver on this case was the 

preconditioned conjugate gradient, the equivalent matrix is solver independent. Plus, the 

matrix can be traversed in any given order, which means that solvers that can take advantage 

of this ordering flexibility will perform better with this matrix. Strategies like Cuthill-McKee 
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(RCM), self-avoiding walk (SAW), out-in ordering or multi layer solving can be used to re-order 

the equations of the matrix to meet the solver requirements. 

Another possible improvement could be done through the parallelization of the presented 

methodology. The results shown in the previous chapter were achieved with a single threaded 

implementation, but a parallelization in either the CPU or GPU would certainly yield smaller 

simulation times. 
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APPENDIX A 

Assembly of the global stiffness matrix 

Consider the cantilever beam shown in Figure 3.2. This beam is discretized into 8 elements. In 

this 2D triangular element example, each stiffness matrix is a 6 by 6 matrix. After computing the 

element stiffness, these can be assembled into a global stiffness matrix. Each cell of an element 

matrix is added to the global stiffness matrix at the cell where the pair of nodes and spatial 

coordinates match. 

In this particular case, the global stiffness matrix is a band matrix. A different ordering of the 

nodes in the object discretization will result in a different distribution of the non-zero values on 

the matrix. 

 

Figure A.1 - Element stiffness matrices (on the left side) and the same matrices assembled into a global stiffness matrix (on 
the right side). 
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APPENDIX B 

Workaround to load both right and left hand rule tetrahedra 

The implemented element stiffness matrix construction algorithm takes as input right hand rule 

tetrahedron (as the one shown in Figure B.1). In order to be able to load both right and left 

hand rule tetrahedra, a test is performed to the first tetrahedron of the mesh to identify the 

hand rule of the mesh. This check is performed by calculating the volume of the tetrahedron 

through the formula: 

𝑽 =
 𝑵𝟎 − 𝑵𝟑 × ( 𝑵𝟏 − 𝑵𝟑 ⋅ (𝑵𝟐− 𝑵𝟑))

𝟔
 

In the cases were the volume is negative, the tetrahedron is right hand rule and therefore no 

conversion needs to be done (like the tetrahedron in Figure B.1). 

 

Figure B.1 – Right hand rule tetrahedron. 

In the cases were the volume is positive, the tetrahedron is left hand rule). In such cases, a 

reordering of the nodes is performed to every tetrahedron of the mesh by exchanging the two 

last nodes. This operation does not change the geometry or topology of the tetrahedra and 

changes them to right hand rule. 
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On the left side of Figure B.2 a left hand tetrahedron is shown. The volume test is positive, so 

the last two nodes are switched. The only consequence of this reordering was turning the 

tetrahedron to right hand rule (right hand rule of Figure B.2). 

 

Figure B.2 – On the left, a left hand rule tetrahedron. On the right, the same tetrahedron converted to right hand rule. 
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