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Abstract

Formal approaches to critical systems development: a case study

using SPARK

Formal methods comprise a wide set of languages, technologies and tools based on

mathematics (logic, set theory) for specification, development and validation of software

systems. In some domains, its use is mandatory for certification of critical software

components requiring high assurance levels [1, 2].

In this context, the aim of this work is to evaluate, in practice and using SPARK

[3], the usage of formal methods, namely the ”Correctness by Construction” paradigm

[4], in the development of critical systems. SPARK is a subset of Ada language that

uses annotations (contracts), in the form of Ada comments, which describe the desired

behavior of the component.

Our case study is a microkernel of a real-time operating system based on MILS (Multiple

Independent Levels of Security/Safety) architecture [5]. It was formally developed in an

attempt to cover the security requirements imposed by the highest levels of certification.
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Resumo

Formal approaches to critical systems development: a case study

using SPARK

(Desenvolvimento formal de sistemas cŕıticos: caso de estudo

usando SPARK)

Os métodos formais agregam todo um conjunto de linguagens, tecnologias e ferramentas

baseadas em matemática (lógica, teoria de conjuntos) para a especificação, desenvolvi-

mento e validação de sistemas de software. A sua utilização é, em certos domı́nios,

inclusivamente obrigatória para a certificação de componentes de software cŕıtico se-

gundo os ńıveis mais elevados de segurança [1, 2].

Neste contexto, pretende-se com este trabalho avaliar em termos práticos e com o uso do

SPARK [3], a utilização dos métodos formais, nomeadamente o paradigma ”Correctness

by Construction” [4], no desenvolvimento de sistemas cŕıticos. A linguagem SPARK

consiste num subconjunto da linguagem Ada, que utiliza anotações (contractos), sob a

forma de comentários em Ada, que descrevem o comportamento desejado do componente.

O caso de estudo consiste num microkernel de um sistema operativo de tempo real

baseado na arquitectura MILS (Multiple Independent Levels of Security/Safety) [5]. A

sua modelação procurou cobrir os requisitos de segurança impostos pelos mais elevados

ńıveis de certificação.
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Chapter 1

Introduction

In our modern society, software is everywhere. Examples of systems controlled by soft-

ware can be found in sectors like aerospace, railway, banking, medical, energy, defense,

among others. Many of these systems are critical systems whose failures threaten hu-

man lives. So, the correction of this software is a demand. Any error on safety critical

systems can have catastrophic consequences, can originate loss of life or damage to the

environment. On security systems an error may be equally devastator, as in the case of

loss of national security or commercial reputation.

1.1 Critical systems

Safety critical and secure systems must be designed with great care, and the correctness

of the software is highly important to guarantee their integrity. This kind of systems

have a trusted set that consists in the hardware and software required to ensure the

system security policy. These components, and the software is no exception, have some

properties that are demanded for the behavior of the system to be considered safe and

secure. In software, wheres the scope of this work is, these properties can be expressed

as predicates that must be satisfied and maintained while the system works even with

the inputs/outputs interferences.

For example, an aircraft cabin pressure control is of vital importance to the passengers

and crew. This system ensures that the air pressure is maintained within predefined

limits, taking a special care in the rapid changes of pressure to ensure occupant comfort.

1



Chapter 1. Introduction 2

It also protects the airplane itself against problems that might be caused by high dif-

ference between internal and external pressure. System sensors read the pressure value

and pass those data on to the controllers to verify the need to increase or decrease the

pressure inside the plane. This management should be done within a set up time interval

to maintain the safety of occupants and the airplane itself. An aircraft cabin pressure

control helps to keep the plane in a safe state. Above 3000 meters a pressurization sys-

tem failure requires an emergency descent to 3000 meters for the availability of oxygen

to its occupants and hence for the masks to come out.

In this example, safety is defined with respect to occupants security and good condition

of airplane. The safety predicate for the software, besides of course that the system

must run always without errors, is the time that elapses between the inputs from the

sensors to the outputs of the actuators of the system that controls the air pressure. For

safety purposes, this predicate for the pressurization control software needs to increase or

decrease the pressure (to achieve safety values) inside of the aircraft at a range of initial

time set up beforehand. As mentioned above, a failure of the aircraft cabin pressure

control to be detected above 3000 meters requires a descent of the aircraft as well as the

triggering device that releases automatically oxygen masks for passengers. To control

all these devices and different associate systems we need an operating system (OS). The

OS allows all components to run and perform its tasks besides allowing communication

between them.

1.2 Operating system

Clearly the OS is a key component of the whole system, whose correctness and reliability

depends on the OS. So, the OS is part of the trusted set of the system. Yet these systems

with a security policy do not support the common OS (monolithic kernel), because they

can not deal with correctness, reliability, and security. The microkernels adapt better

to this type of systems due to the principles of least privilege and minimality used in

the architecture. However, in order to make a reliable microkernel, a correct design is

necessary and also a correct implementation of it. Those steps can be achieved with the

use of formal methods in order to be able to verify their accuracy. This is in fact the

main subject of this MSc work.
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1.3 Our aim and objectives

The main aim of this dissertation is to study the usage of SPARK [3] language and its

associate methodology in systems development. Following a Correctness by Construction

(CbyC)-based methodology, it aims to confirm what was demonstrated by other authors

(including [6, 7]) concerning the possibility of developing systems able to achieve high

levels of certification. The CbyC methodology was used by Altran Praxis and was

more widely disseminated in the Tokeneer project [8]. This project was a collaboration

of Praxis and NSA (National Security Agency) to demonstrate that it is possible to

develop systems up to the level of rigor required by the highest standards of the Common

Criteria. In Chapter 4, we introduce the Tokeneer project in more detail.

Therefore, ultimately we sought to apply the Tokeneer project’s outcome in a different

context, which constituted our case study. A kernel is surely a key central part of a

system and therefore it was chosen to apply the methodology above. More specifically,

a secure partitioning microkernel - a kernel with partitioning and security properties

required for critical systems - was considered. Starting from a simplified but yet repre-

sentative set of functional requirements for this type of system, we planed to develop a

secure partitioning microkernel-based simulator using the CbyC development method.

In order to accomplish this, we identified the following steps to be performed:

• To investigate the system requirements;

• To use the Z notation to create a high level specification;

• To construct a design of the system with INFORMED process;

• To implement the system in SPARK;

• To verify the system using the SPARK Examiner toolset.

1.4 Contribution

We strongly believe that the work presented in this dissertation is a valid contribution in

order to obtain a software capable of achieving the highest levels of certification, which is

required when security systems are concerned. The subject under study is also of great

relevance since it is a microkernel-based approach, which is clearly the central defining

feature of an OS.
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1.5 Dissertation outline

This dissertation is organized in six chapters. Chapter 1 introduces the main concepts

that are subject of study in this work. Chapter 2 gives a brief overview about software

engineering with formal methods and presents the SPARK language and the methodol-

ogy followed int the work. Chapter 3 presents the work that is to be developed, giving

an overview of what is a secure partitioning microkernel and the proposed solution.

Chapter 4 gives an overview about the state of the art involving formal verification

for kernels. Chapter 5 contains the development of the work, a formal model of the

secure partitioning microkernel followed the CbyC approach. Chapter 6 concludes this

dissertation by describing the most relevant conclusions of the work herein described.



Chapter 2

High assurance software

development with SPARK

In this chapter formal methods are reviewed. We separate them in three distinct cat-

egories: the classical approaches, the lightweight approaches, and the approaches more

directed to the code. We also introduce the SPARK language and the development

methodology that was used in this work.

2.1 Formal methods

Formal methods (FM) involve the application of mathematical techniques, most often

supported by development tools. They can be applied in different situations with system

models that specify every detail of the implementation or only the most abstract require-

ment, with different notations and different tools. FM are used in software specification

to obtain a precise statement of what the software does (its functionality), not concerned

about how to do it. They are also used in the implementation with the propose of code

verification.

Non safety-critical systems, normally use an informal method via some combination of

testing and inspections to verify the software with respect to functional requirements.

Failures that are not detected in these informal inspections are found later, with the

use of the software itself and with a huge cost associated. When speaking of software

5
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for critical systems, this kind of informal verification is inadequate and more rigorous

techniques are necessary. In some cases, the regulatory agencies are the ones that require

more rigorous methods, such as the use of FM.

There is a big difference in attitude with respect to FM. Generally speaking, FM are seen

as a key in academia; on the other hand, are seen as somewhat irrelevant in the industry,

with the exception of critical systems industry. Although there are some changes with

respect to greater acceptance and use of FM, there is still a long way to go to achieve a

general dissemination of their use in other areas beyond the critical areas.

Nevertheless there is a change of mentality after the first utilization of FM, as shown in

Table 2.1. The survey summarized in this table also shows that in the projects under

study the use of FM has always been of great success and in 75% of cases was even

assumed the recommendation of a similar techniques in new projects.

Improvement Worsening No effect/no data

Time 35% 12% 53%

Cost 37% 7% 56%

Quality 92% 0% 8%

Table 2.1: Time, cost and quality with use of Formal Methods - from [9].

An old adage of FM says that only proofs can show the absence of bugs, tests on the

systems can only show their presence. Unlike tests that usually can only cover a small

subset of possible executions, FM have the ability to cover all of these executions. Yet we

must bear in mind that a proved software only gives us confidence about the theorems,

we need to trust that the formalization was well done in the first place. The software can

be well coded, without errors in its processing, and yet it may well not do what it was

developed for. Do not just build a software and be confident that it works as expected.

After building a software convincing the others that it is indeed a good product is

necessary. To help in this process, validation is used, which consists of software tests in

order to show that it really does what is supposed to.

Currently, formal methods are divided into two main verification techniques: theorem

proving and model checking.
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The theorem proving approach consists of the description of the desired system proper-

ties in a formal logic, with a set of axioms, pre- and post-conditions in order to build

a model. Secondly, a mathematical proof is conceived with the aim to ensure that the

model satisfies the desired properties. Although theorem provers have evolved signifi-

cantly, by removing some of the tedious processes of the proof, they still need human

intervention to guide the more complex proofs. This is a process that requires significant

knowledge and is seen as the disadvantage of theorem proving.

One way in order to facilitate the process, with the aim to automatically discharge more

proofs, can be achieved with tools that provide the best possible solution to discharge

the proof - as with in Frama-C [10], where the proof can be discharged in several different

provers in a manner that benefit from the different characteristics of each prover. This

allows that different parts of the program are proved with different provers.

On contrary, the model checking has a greater automatism, thus requiring less human

intervention. Typically, model checking works on a model that contains only the neces-

sary and relevant system properties. This is necessary because the accessible state space

of a model will be thoroughly explored to determine if the properties are maintained;

obviously, this space should not grow in an unnecessary manner. The size of state space

thus becomes a handicap in contrast to what happens in theorem proving where the

state space is not a problem - and indeed makes it effective in more complex systems

and in full functional correctness. Typically, in these systems with more complexity, the

model checking is only used to verify some specific properties, not the whole system.

Besides the verifications on a model, there are tools like SLAM [11] that work directly

on the code, but once again, the properties checked are simple and do not cover the

whole system. Unlike theorem provers, the model checking is more accessible for rela-

tively inexpert users. There have been major advances with regards to the state space

explosion problem, which makes the model checkers a very practical tool especially if

placed in a native way in the IDE commonly used by developers.

Some FM are presented below divided into three distinct classes: the classical ap-

proaches, the lightweight approaches, and the approaches more directed to the code.

The classical and the more directed to the code approaches comprise methods with the-

orem proving but provide simultaneously model checking. The lightweight approaches

comprise only the model checking method.
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2.1.1 Classical

This classification of classical FM refers to the traditional approaches, which invokes

set theory and first order logic. Therefore, the three main model-oriented FM [12] are

presented below: the Z notation, the B-Method and the VDM. These are also the most

popular formal software development methods [13].

• The Z (pronounced ”zed”) notation is a specification language based on set theory

and first order predicate calculus. It has been developed in the late 1970s, by

the Programming Research Group (PRG) at the Oxford University Computing

Laboratory (OUCL), inspired by a Jean-Raymond Abrial work. The notation

was defined formally by Spivey in 1988 [14]. In order to facilitate the specification

process, Z notation allows the decomposing of the system specification into smaller

components. The individual components are then combined at the end in order

to describe the entire system as a whole. Z models are usually accompanied by

a narrative in a common language that helps readers, writers and reviewers to

understand the models. An introduction to this notation can be found below in

section 2.3.1.1 - Formal specification.

The notation has a wide range of support tools1, some of them are described below:

– The Community Z Tools (CZT) project [16] is an open source project pro-

viding an integrated toolset to support Z notation;

– Fuzz [17] is a type checker created by Spivey for the Z language;

– ProofPower [18] is a suite of tools supporting specification and proof in Higher

Order Logic (HOL) and in the Z notation;

– ProZ [19] is an extension of the B-Method tool ProB, that offers some support

for model checking and for animating Z specifications;

– HOL-Z [20] is an interactive theorem prover for Z based on Isabelle/HOL.

• The B-Method [21] is a formal development methodology based on set theory with

first-order logic. It uses the abstract machine notation (AMN) as specification

language and allows progress from an initial high-level specification all the way to

the implementation via formal refinement. B-Method has been developed by Jean-

Raymond Abrial (the originator of Z notation). B-method has been successfully

1The reader is referred to the section on Z notation available from the Wiki, set up by Jonathan
Bowen [15], were a more complete list of tools can be found.
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used in the development of many complex high integrity systems, as the driverless

metro line 14 in Paris [22] or the driverless shuttle for Paris-Roissy airport [23].

The main tools of B-Method are:

– The B-Toolkit [24], which is a set of integrated tools which fully supports the

B-Method for formal software development;

– Atelier B [25], which is the more complete tool for B-Method, include features

like type and static semantics checking, proof support and refinement;

– ProB [19], which is an animator and model checker for B-Method;

– The Rodin Platform [26] is an open source Eclipse-based IDE for Event-B

language. Event-B is an evolution of B-Method and one of the main reasons

for this evolution was simplicity [27].

• The Vienna Development Method (VDM) is a complete software development

method, whose features are modeling computing systems, analyzing models and

progressing to detailed design and coding. It has been developed in the IBM

Vienna Laboratory in the mid-1970s. VDM is a method which uses a specification

notation that is similar to Z. The first complete exposition of the notation and

method was made in [28]. The original VDM Specification Language (VDM-SL)

[29] was extended for VDM++ [30]. The main difference between VDM-SL and

VDM++ notations are the way in which structuring is dealt with. In VDM-SL

there is a conventional modular extension, whereas VDM++ has a traditional

object-oriented structuring mechanism with classes and multiple inheritance.

VDM has two main sets of support tools. They are:

– The VDMTools [31] is the leading commercial tool for VDM-SL and VDM++.

It supports syntax and type checking, includes a test coverage tool and also

includes automatic code generation;

– Overture [32] is an open source project that has the objective of developing

the next generation of open-source tools for VDM. In addition to support

VDM-SL and VDM++, these tools also offer support to VDM-RT (the new

extension of VDM that is concerned with real-time and distributed systems).

The Overture tools are written entirely in Java and build on top of the Eclipse

platform.
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2.1.2 Lightweight

Lightweight formal methods is a recent approach that combines the classical ideas of

a formal specification from methods like those presented above, and verification with

new automatic checking processes, usually for partial problems. They have the capacity

to yield results with a fast and easy application. They are usually applied with more

modest goals and the used tools require less specific knowledge to apply them. They can

be seen as a way of facilitating the incursion of the FM in the industry in general, because

they can be applied/added in the development cycle typically used in the company.

There are many works that use “heavyweight” methods in a light manner [33–36], i.e.

they only implement a piece of technology/methodology, or apply it to a single part of

the system. We do not present these methods in this section as they appear in sections

2.1.1 and 2.1.3. We give a special emphasis to model checking methods because their use

is often underestimated and people sometimes not perceive the potential and benefits

over standard tests. The model checker finds bugs in a more reliable way than normal

tests, since it verifies a state space with a much higher size.

Below are presented some of the lightweight formal methods commonly used:

• Alloy is a lightweight modeling language for software design. Alloy was devel-

oped at MIT by the Software Design Group under the guidance of Daniel Jackson

[37]. The language is strongly influenced by the Z specification language presented

above. The support tool is the Alloy Analyzer that provides a fully automatic

analysis and provides a visualizer that shows the solutions and counterexamples

that it finds.

• SPIN [38] is a popular model checker developed in 1980 at Bell Labs in the original

Unix group of the Computing Sciences Research Center. The formal models are

written in PROMELA (Process Meta Language). SPIN verifies the correctness

of distributed software models in a rigorous and mostly automated fashion and

provides support for linear temporal logic.

• UPPAAL [39] is a model checker developed in collaboration between the Depart-

ment of Information Technology at Uppsala University in Sweden, and the De-

partment of Computer Science at Aalborg University in Denmark. This tool is

indicated for real-time systems modeled as networks of timed automata. It enables

three model development stages: modeling, simulation/validation, and verification.
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• TLC [40] is a model checker and a simulator for specifications written in TLA+

[41]. TLA+ is a specification language based on TLA (Temporal Logic of Actions)

[42] and was developed by the Microsoft research center. It is particularly useful

for describing concurrent and distributed systems. The TLC model checker is

included in the main tool for TLA+, the TLA Toolbox [43].

2.1.3 Directed to the code

This section focuses on the methods directed to the source code. In these methods, as

first suggested by Hoare logic [44], assertions are used in the program code. The design-

by-contract2 is one of the code oriented formal methodologies. It receives highlight in

this section because part of this work uses the methodology.

The term Design by Contract was originally introduced by Bertrand Meyer [45]. He was

the founder of Eiffel [46, 47], the first language that supports the paradigm. Beyond

Eiffel, there are other languages that support also Design by Contract such as Spec# [48],

SPARK [3] (which will be used in this work), C with ACSL3 [49] and tools like frama-C

[10], Java with Java Modeling Language(JML) [50] or ESC/Java2 [51] and many more.

As defined in [52], a contract is a technique for specifying the obligations of participat-

ing objects. It is intended to formalize the collaboration and behavioral relationships

between objects in a non-ambiguous manner. A contract therefore defines communicat-

ing participants and their contractual obligations. The contractual obligations not only

comprise traditional type signatures but also capture behavioral dependencies. With

the help of formal verification methods, it is possible to prove that software behavior is

correct in respect to these specifications.

The contracts must be written in a previous stage than that of the code since they are

more abstract. This gives us a first model of the application design. The improvement

of this first approach is accomplished by refining the contracts. We are only ready

to move on to the code implementation when the architecture is stable. Contracts

enable the storage of details and assumptions towards the documentation of software

components and API usage. It avoids for example the constant check of arguments in

operations. Moreover, contracts are also important during the coding process to inform

the programmer what he/she is supposed to do.

2Design-by-Contract is a trademark of Interactive Software Engineering Inc.
3ANSI/ISO C Specification Language.
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The usefulness of contracts depends naturally on their quality and pertinence. In the

next sections we will try to show how this can be achieved.

2.2 SPARK overview

SPARK consists of a high level programming language. It has been conceived for writing

software for high integrity applications, where it is mandatory that the program is well

written (without errors). High integrity applications include both safety and security.

Safety critical applications are usually defined to be those where if program is in error,

life or the environment are at risk, whereas security applications concern the integrity

of information or the access to it. Of course, any application benefits if the program is

well written from the beginning and SPARK enables the prevention of errors since the

first stages.

In a safety-critical real-time system, a “run-time error” can be quite as hazardous as any

other kind of malfunction: all language violations must be detected prior to program

execution. This was taken into account in the design of SPARK .

SPARK can be used at various levels. Data flow analysis is the simplest level. This

analysis enables to find errors like mistaken identity or undefined values that are not

used. The intermediate level of information flow analysis enables control with respect

to inter-dependence between variables. Finally, the major analysis level enables formal

proof. This kind of analysis is used in applications with high requirements of integrity.

This analysis uses formal pre-conditions, post-conditions and other assertions. One

program can use various levels of analysis at the same time. For the most important

part formal analysis can be used, and for the rest of the program a more weak analysis.

SPARK is sometimes regarded as being just a subset of Ada with various annotations

that you have to write as Ada comments. This is true, but nevertheless, in accordance

with John Barnes [53], SPARK should be seen as a distinct language. It is justified

because SPARK contains the features required for writing reliable software and enables

techniques for analysis and proof according to the requirements of the program.

SPARK shares compiler technology with the standard language Ada, and this seems the

perfect choice, since Ada has a good lexical support for the concept of programming by

contract. Ada enables the paradigm programming by contract (already seen in previ-

ous section) in a natural way. Ada permits a description of a software interface (the
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contract) independently from its implementation (the code). They can be analyzed and

compiled separately because Ada contains a structure separating interface (know as a

specification) from the implementation (a body). This applies to individual subprograms

(procedures or functions) and to groups of entities encapsulated into packages. This is

one reason why Ada was chosen as base for SPARK .

In order to allow more information on the behavior of the implementation, annotations

are added to the specification and body. These annotations have the form of Ada

comments. There is no need for “strange” and “complicated” annotations, only simple

statement about access permissions that allow to verify if there are any inconsistencies

between what is pretended (the annotations) and what is really being done (the code).

The annotations can be divided in two categories, the first concerns flow analysis and

visibility control and the second concerns formal proof.

Getting strong contracts (accurate and relevant annotations) is a major objective of

SPARK , so as to move all the errors to a lower category or ideally find them all before

running the program.

Indeed, it is clear that SPARK is not a subset of Ada at all since SPARK imposes

additional requirements through the annotations. A SPARK program can be compiled

by a standard Ada compiler, because the annotation are Ada comments, and will be

ignored by the compiler.

The relationship between Ada and SPARK can be seen in Figure 2.1; the overlap between

them refers to the kernel. The kernel does not contemplate the exceptions, generics

(templates), access (pointers) types, or goto statements, because they create difficulties

in proving that a program is correct.

The SPARK core annotations (flow analysis and visibility control) are divided into sev-

eral types. There exist two important annotations used to increment information given

by the normal Ada specification: (i) the global definitions, declare the use of global vari-

ables by subprograms - is called data flow analysis and only comprise the direction of

data flow (only use the global annotation); and (ii) dependency relations of procedures,

specify the information flow between their imports and exports via both parameters and

global variables - is called information flow analysis and uses in addition the dependency

between variables (using the derives annotation). The annotations for access variables

in packages are also very important. They allow modularity between components. The
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Figure 2.1: Ada and SPARK - image from John Barnes book [53].

encapsulation in the sense of Object Oriented Programming (OOP) is obtained by pack-

ages. The packages control the access to hidden entities via subprograms (methods).

There are three types of annotations related with packages: (i) the inherit clauses con-

trols the visibility of packages, (ii) the own variable clauses controls access to variables of

packages, and (iii) the initialization annotations imposes the initialization of own vari-

ables, avoiding some common errors. The own variables describe the state of packages.

They can be used to represent values in the physical world. As mentioned earlier, all of

these annotations should be written in a early stage of design, before coding stage.

For a better understanding of the annotations described above, we present an example.

In this case a simple example of a stack, a last in, first out (LIFO) structure, but which

can express the several types of annotations that can be used.

First, we have the specification of the stack, which is shown below in Code Listing 2.1.

In this specification we can see the use of own clause at line 2, thus ensuring that the

package has a variable called “State”. On the next line we see the initializes clause, it

will require that the “State” variable is initialized in the body of the package. Later, we

have the specifications of “Push” and “Pop”, the operations that can be made by the

stack. For the “Push” procedure, which starts in line 5, we see, as expected, that one

value is passed on as parameter. This value represents the value entered in the stack,

it is of type “in” because it will be inputed. In lines 6 and 7, we have the annotations

of “Push” procedure, first the global clause that expresses how the procedure uses the

variable “State”, it has “in” and “out” modes, which means that the procedure will read



Chapter 2. High assurance software development with SPARK 15

and update the variable in the procedure. In the next line, we have the derives clause

that tracks dependencies, in this case we can observe that the final value of the variable

“State” depends not only on its initial value, but also depends of the value of the input

parameter “X”. A similar process is done for the “Pop” procedure, with the difference

that the parameter “X” is of output type. The “X” represents the value that was on

top of the stack. Another difference is in line 11, in the derives clause, where, both the

final value of the variable “State” and the value of the parameter “X” depend on the

initial value of variable “State”.

�
1 package The Stack

2 --# own State ;

3 --# initializes State ;

4 i s

5 procedure Push (X : in I n t eg e r ) ;

6 --# global in out State ;

7 --# derives State from State , X;

8

9 procedure Pop(X : out I n t eg e r ) ;

10 --# global in out State ;

11 --# derives State , X from State ;

12 end The Stack ;�
 	
Code Listing 2.1: Stack specification package

After the completion of the specification, we show in Code Listing 2.2 the package body

that will implement the previous specification. In this case, we can see that in line

2 we have again an own clause, but in this case represents a refinement, the variable

previously known simply as “State” is now transformed into two variables, the variable

“S” and the variable “Pointer”. Between lines 4 and 9 we declare the types. We can

see that variable “S” is a vector of integers and its indexes are of a range between 1 and

100, and the variable “Pointer” is of “Pointer Range” type, which means that its value

is between 0 and 100.

If we had not refined the variable “State”, annotations on procedure bodies would not be

needed, but, as we insert detail in variable “State”, we also need to detail the operating

procedures with the new annotations.

For the “Push” procedure, we can see in line 12 that variables “S” and “Pointer” are

both “in” and “out” modes, i.e. are input and output variables. In the next line, we

have the derives clause for variable “S”, which describes that the value of variable “S”

not only depends on its own initial value, but also on both the value of “X” parameter
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and the value of the “Pointer” variable - this was expected because the value of “X” will

be entered into the vector position corresponding to the value contained in “Pointer”

variable. In line 14, we have the continuation of the derives clause, in this case for

“Pointer” variable, that says the final value of the “Pointer” depends on its initial value.

In lines 17 and 18, we can see the behavior of the program and confirm that the previous

clauses are in compliance. Thus, we have that the final value of the variable “Pointer”

is incremented by one unit and that the “S” vector undergoes an update on the position

with the value contained in the “Pointer” variable, with the value that was passed on

in “X” parameter.

�
1 package body The Stack

2 --# own State is S , Pointer ; -- refinement definition

3 i s

4 Stack S i z e : constant := 100 ;

5 type Pointer Range i s range 0 . . S tack S i z e ;

6 subtype Index Range i s Pointer Range range 1 . . S ta ck S i z e ;

7 type Vector i s array ( Index Range ) of I n t eg e r ;

8 S : Vector ;

9 Pointer : Pointer Range ;

10

11 procedure Push (X : in I n t eg e r )

12 --# global in out S , Pointer ;

13 --# derives S from S , Pointer , X &

14 --# Pointer from Pointer ;

15 i s

16 begin

17 Pointer := Pointer + 1 ;

18 S( Pointer ) := X;

19 end Push ;

20

21 procedure Pop(X : out I n t eg e r )

22 --# global in S; in out Pointer ;

23 --# derives Pointer from Pointer &

24 --# X from S , Pointer ;

25 i s

26 begin

27 X := S( Pointer ) ;

28 Pointer := Pointer − 1 ;

29 end Pop ;

30

31 begin -- initialization

32 Pointer := 0 ;

33 S := Vector ’ ( Index Range => 0) ;

34 end The Stack ;�
 	
Code Listing 2.2: Stack body package
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Starting at line 21, we have the body of “Pop” procedure. In this case, we see that

“Pointer” variable continues to be of “in” and “out” modes, input and output respec-

tively - as happened in the specification of “State” variable - but “S” variable is only

of “in” mode, or just input - this is due to the fact that “S” is not updated in this

procedure. In line 23, begins the derives clause and we observe that the final value of

the “Pointer” variable depends only on its initial value. In the next line, we see that the

value of the parameter “X” depends on the values of “S” and “Pointer” variables, this

its because “X” will take the value contained in the vector “S” at the position equals

to the value contained in “Pointer” variable. In lines 27 and 28, we can confirm that

the operation does what expected, i.e. the “X” takes the value of the vector “S” in the

position of the value contained in “Pointer” and the “Pointer” is decremented by one

unit, depending its final value only on its initial value, without depending on any other

variable.

Last but not least, we have the initialization of “Pointer” and “S” variables, thereby

complying with initializes clause it was put in the specification of the package.

To ensure that a program cannot have certain errors related to the flow of information

(such as, the use of uninitialized variables and the overwriting of values before they are

used), the Examiner needs the SPARK language with its core annotations. However,

this kind of annotations does not address effectively the issue of dynamic behavior. To

deal with this, some proof annotations are added to allow analysis of dynamic behavior

prior to execution. The proof annotations can be as follows:

• Pre- and post-conditions of subprograms;

• Assertions, such as loop invariants and type assertions;

• Declarations of proof functions and proof types.

Continuing with the previous example of the stack, we show in Code Listing 2.3, how

proof annotations on “Push” and “Pop” procedures can be added. These annotations

should have been written before the code by another person other than the one who

wrote the code. For the “Push” procedure, a pre-condition annotation that checks

whether the value of “Pointer” is less than the value of “Stack Size” is in line 39 - this

is to prevent to access a position outside the bounds of the array. In the following two

lines the post-condition annotation was included - that shows us which values of “S” and

“Pointer” variables are obtained after the execution of the procedure. The final value of
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“Pointer” is equal to its initial value (“Pointer∼”) increased by 1 unit, as exactly as in

the body of the operation. The same happens with “S” that will update the position of

the value contained in “Pointer” with the value of “X”.

For the “Pop” procedure, a pre-condition annotation is entered in line 52 - that checks

whether the value contained in the “Pointer” is not zero, i.e. checks if the stack is

not empty; otherwise “Pop” can not run, a “Push” must be performed before that. In

lines 53 and 54 we have the post-conditions annotations which again are in accordance

with the code. They mean that the final value of “Pointer” is equal to its initial value

decremented by one unit, and that the parameter “X” takes the value of “S” at the

index position contained in “Pointer”.

�
35 procedure Push (X : in I n t eg e r )

36 --# global in out S , Pointer ;

37 --# derives S from S , Pointer , X &

38 --# Pointer from Pointer ;

39 --# pre Pointer < Stack_Size ;

40 --# post Pointer = Pointer ~ + 1 and

41 --# S = S ~[ Pointer => X ];

42 i s

43 begin

44 Pointer := Pointer + 1 ;

45 S( Pointer ) := X;

46 end Push ;

47

48 procedure Pop(X : out I n t eg e r )

49 --# global in S; in out Pointer ;

50 --# derives Pointer from Pointer &

51 --# X from S , Pointer ;

52 --# pre Pointer /= 0;

53 --# post Pointer = Pointer ~ - 1 and

54 --# X = S( Pointer ~) ;

55 i s

56 begin

57 X := S( Pointer ) ;

58 Pointer := Pointer − 1 ;

59 end Pop ;�
 	
Code Listing 2.3: Push and Pop procedures with proof annotations

With this example we are able to show the various types of annotations and how they

are used. The annotations are quite affordable and they allow the use of Examiner to

check the code (program).
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Technically, the SPARK was born through the work of Bob Phillips in 1970 at the Royal

Signals and Radar Establishment. The study consisted of understanding and analyzing

the behavior of existing programs and developed tools to perform such analysis. The

idea gained notoriety with the importance of the correction of software for applications

with critical security. In 1994 there appears the first version of SPARK (based on Ada

83) produced at the University of Southampton (with the support of the Ministry of

Defense of the United Kingdom) by Bernard Carré and Trevor Jennings.

Later, the language was gradually augmented and refined, first by Program Validation

Limited and later by Praxis Critical Systems Limited. In 1995 the Ada language was

revised, which resulted in the Ada 95, and in 2002 SPARK was adjusted so the language

corresponded to the version of Ada 95. In 2004, Praxis Critical Systems Limited changed

its name to Praxis High Integrity Systems Limited and in 2007 appears a new version

of the standard, called Ada 2005 to be distinguished from the previous version. More

recently, in 2009, a partnership with AdaCore resulted in the release of “SPARK Pro”

under the terms of GPL. In the middle of 2009, the SPARK GPL 2010 Edition emerged

with an initial set of new features for SPARK 2005. In 2010 the company merged with

SC2 to form Altran Praxis, which is now the company responsible for maintaining and

developing SPARK. More details on the history of SPARK can be found at [3, 53].

Although SPARK has emerged from a study where the initial objective was to verify

existing programs, the primary objective now is to write programs correctly.

2.3 Development methodology

In all engineering disciplines it is widely accepted that it is better to avoid the intro-

duction of errors beforehand rather than having to correct them at a later stage. For

example, as far as a manufactured physical component is concerned, realizing at a late

state that an entire batch of such a component was made out of the specifications, has

huge costs. This may also happen in software development. Generally, the later the er-

rors are found, the more expensive is to eliminate them. Those corrections may represent

a very large percentage of the development costs when we talk about critical systems

with high standards. The only way of obtaining the high levels of integrity required for

critical software at an acceptable cost, is by pursuing development methods that make

it hard to introduce errors and which facilitates their early detection. This is achieved

by an approach sometimes termed as Correctness by Construction [4].
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2.3.1 Correctness by construction

This process has been successfully used by Praxis in many projects. The proposed

process by Altran Praxis consists overall of the following five steps:

1. Requirements analysis;

2. Formal specification (using the formal language Z);

3. Design (INFORMED process);

4. Implementation in SPARK;

5. Verification (using the SPARK Examiner toolset).

As expected, requirements analysis is essential in any software project, so we need to

make explicit, first, what the software is supposed to do, and secondly, what their

features and peculiarities are. However, the passage of the requirements in text form to

implementation in code is not always easy to do, mostly because they have not specified

in an unambiguous way how to be implemented. To circumvent this problem, it is

recommended the modeling of requirements in order to eliminate possible ambiguities

in the requirements and for better understanding of the problem. One of the modeling

languages mostly used for this purpose is the Unified Modeling Language (UML), which

allows (depending on the type of the UML models) a more visual perspective of the

requirements and the software functionalities. There is an extensive list of UML model

types, and its creation does not always follow the same pattern, making it unclear and

informal, allowing more than one interpretation with the same model or introduces

difficulties to disambiguate certain requirements. On the other hand, using a formal

modeling language, it is possible to express the requirements in an unambiguous way,

so that there is only one interpretation of the problem.

The SPARK language and its support tool, the Examiner, are designed expressly to

support the CbyC paradigm, allowing an early stage detection of errors. This avoids the

normal validation by testing at the end of a project, with all the costs associated. A key

ingredient of the CbyC approach is an effective design method known by INFORMED.

This method is well defined by Praxis. Bellow we present its major aspects. This method

builds on the minimization of the flow of information between subsystems. INFORMED

is an INformation Flow ORiented MEthod of (object) Design. Unnecessary flow of

information between different parts of the system increases considerably the complexity
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of the SPARK annotations and consequently the difficulty of proofs. This can be done

by minimizing propagation of unnecessary detail with: a) a correct localization and

encapsulation of state; and b) avoiding making copies of data with an appropriate use

of hierarchy. Another principle is a clear separation of the essential from the inessential.

This gives priority to the core functionality of the system.

In the next two sections, we present steps 2 and 3 of the development process, the Formal

specification step (which in this case is made with the formal language Z) and the Design

step (that consists in the use of INFORMED process) respectively.

2.3.1.1 Formal specification

As mentioned earlier, it is extremely important to create a formal model of the problem.

This methodology uses the Z notation to achieve this.

Hereby we introduce the basics of Z notation, with its types and schemas.

The main building block in Z is a schema. A Z schema takes the form of a number of

state components and, optionally, constraints on the state.

SchemaName

declarations

constraints

The next schema represents a clock with hours and minutes. The obvious two constraints

are introduced: a) the value of the hours (h) must be between 0 and 23; and b) the value

of the minutes (m) must be between 0 and 59.

Clock

h : 

m : 

h < 24 ∧ m < 60

Schemas are used to describe behavior under change. To represent the new values of the

state, the “ ′ ” single quote is used.
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We can describe a simple increment in a minute of our clock. Note that the constraints

introduced in the above schema are still valid.

IncrementMinute

∆Clock

h ′ = h

m ′ = m + 1

The ∆Clock means that a change occurs on the state. Another useful definition is ΞClock

which describes the case where the state of the schema is unchanged. For example, for

operations that only have “read” permission.

In addition to schemas, Z allows us to define basic types which will be used thereafter

in the components of our schemas. Next, we introduce the concept of “alarm”, that can

be used to extend a simple clock to an alarm clock.

[ALARM ]

We can introduce axiomatic descriptions like:

seconds : 

seconds ≤ 59

We introduce the seconds with an obvious constraint, that they must be contained

between 0 and 59, and then let us introduce the alarm clock, with hours and minutes of

the previous Clock plus seconds and a buzz.

AlarmClock

Clock

s : seconds

buzz : ALARM

Only the basic notions of language were presented, with its basic elements. For a more

complete description of the language please read [54].
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2.3.1.2 INFORMED

The INFORMED design approach is a very important step because describes how

SPARK deals with properties of good software design, such as:

• Abstraction: this enables us to ignore certain levels of detail. Hiding unnecessary

detail allows us to focus on the essential properties of an object;

• Encapsulation: it is a separation of specification from implementation. The users

of an object should not be concerned with its internal behavior;

• Loose coupling: coupling is a measure of the strength of connections between

objects. High levels of coupling make modifications difficult to be performed as

changes occur in more than one place. On contrary, loose coupling makes modifi-

cations easy to occur;

• Low Cohesion: cohesion is a measure of the strength of connections between an

object attributes. A low degree of separation of attributes (low cohesion) allows

us to perform changes in a single attribute leaving the remaining unchanged. For

example, a car has an engine and doors, which represent two distinct attributes of

the car object; any change in the driver’s door does not affect at all the engine of

the car.

• Hierarchy: certain objects are contained inside others and cannot be reached

directly. For example, when we see a car we see immediately the doors too, but

to see the engine is necessary to access the car and open the hood.

The INFORMED is composed by five blocks, that form the basic design elements:

• Main program: this control the behavior of the entire system. It requires the

SPARK annotation main program;

• Variable package: this is the same as usually known as abstract state machine

or an object for example in Java. It is a SPARK package that contains static data

or “state”. It is annotated by an own variable annotation;

• Type package: known as abstract data type or a more vulgar class. It is also a

SPARK package although in this case does not have state;

• Utility Layer: introduces operations to the system but does not introduce state

or types;
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• Boundary Variable: these variables are used to represent real world entities.

The following notation, shown in Figure 2.2, is used to express the diagrams of the

system structure:

Figure 2.2: The INFORMED notation - image adapted from [55].

The arrows represent the dependence between elements (the element at the arrow head

is used (inherited) by the element at the arrow’s tail) and can be separated into:

• Strong coupling: represents use, either directly or indirectly of the global vari-

ables of a package;

• Weak coupling: represents use of types and utilities provided by a package

without using or affecting the state of the package.

The INFORMED design normally follows a few steps. The process consists of finding

a solution for each step and test them with the goal to move on to the next step. If

one step is becoming too complicated, possibly a wrong choice has been made in the

previous step. The steps are:

1. Identification of the system boundary, inputs and outputs

First, choosing and delineating the boundary system. Also identification and se-

lection of the physical inputs and outputs, as described in Figure 2.3.

2. Identification of the SPARK boundary

The selection of the boundary variables defines the SPARK system boundary, this

can be seen in Figure 2.4. The abstracted input/output values provided by the

boundary variables are the Input Data Items and Output Data Items from Figure

2.3.
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Figure 2.3: Identification of the system boundary, inputs and outputs - from [55].

Figure 2.4: Identification of the SPARK boundary - from [55].

3. Identification and localization of system state

Useful systems store data values in variables and therefore have “history” or

“state”. Selecting appropriate locations for this state is probably the single most

important design decision that influences the amount of information flow in the

system. The decisions involve deciding what must be stored, where it must be

stored and how it should be stored.

4. Handling initialization of state

State variables can be initialized using two distinct and separate approaches: a)

during program elaboration (the variable is considered to have a valid value prior

to execution of the main program); and b) during execution of the main program

by a program statement.

5. Handling secondary requirements
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Software designers frequently have to reconcile conflicting requirements; Amongst

these requirements are some which INFORMED describes as secondary “require-

ments” because, although they may be important to the success of the project,

they are not derived from the core functionality of the system being designed.

6. Implementing the internal behavior of components

Initially only annotated specifications for these objects are required allowing early

static analysis of the design. The first step should always be to see whether de-

composition into further, smaller INFORMED components is possible.

2.3.2 Tools

The tools are one of the strengths of the methodology, since they are in constant devel-

opment. Apart from being a complete package, it starts with a simple type check until

it may reach the proofs.

The SPARK tools are in an advanced phase of maturation, and may even be included

in the environment development GNAT Programming Studio – IDE.

The key SPARK tool is the Examiner [56]. It has two basic functions:

• It checks conformance of the code to the rules of the kernel language;

• It checks consistency between the code and the embedded annotations by control-

ling data and information flow analysis.

There is a high degree of confidence in the Examiner, once it was written in SPARK

and was submitted to itself [53]. The Examiner performs two kinds of static analysis.

The first, made up of language conformance checks and flow analysis, checks that the

program is “well-formed” and is consistent with the design information included in

its annotations (this analysis englobes the two basic functions listed in the preceding

paragraph). This stage is extremely straightforward and can be readily incorporated

into the coding phase of the development process. After this, it checks if the source code

is free of erroneous behavior and free of conditional and unconditional data flow error.

The second (optional) kind of analysis is verification, which shows by proof whether

the SPARK program has certain specified properties. The most straightforward is a

proof that the code is exception free, this adds Constraint Error to the list of possible

errors eliminated by SPARK. Proof can be used to demonstrate, unequivocally, that
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the code maintains important safety or security properties or even to show its complete

conformance with some suitable specification.

Based on proof annotations, the Examiner generate verification conditions (potential

theorems) which then have to be proved in order to verify whether the program is correct

with respect to the annotations. The verification conditions can be proved manually in

a process usually tedious and unreliable, or by using other tools such as the Simplifier

[57] and the Proof Checker [58].

The Simplifier is an automated theorem prover that processes the verification conditions

(VCs) produced by the Examiner. The proof of these VCs confirms critical program

properties, such as the freedom from run-time errors and exceptions, or specific safety

and security properties. The Simplifier main purpose is to simplify verification conditions

prior to developing a proof, but in many cases is able to reduce all the conclusions to

True. Any remaining undischarged conditions may be proved with the assistance of the

Proof Checker. This is an interactive proof tool that uses the same logic and inference

engine as the Simplifier. For a more readable visualization of results POGS (Proof

Obligation Summary Tool) [59] summarizes the semantic output files produced by the

Examiner, the Simplifier and the Proof Checker.

The use of tools like Examiner encourages the early use of a V&V (Verification and

Validation) approach. This is made possible with code written in SPARK with appro-

priate annotations and that are now able to be processed by Examiner, even if it still

can not be compiled. This is clearly the recommended approach, strongly discouraging

the consideration of an existing piece of Ada code and then add to it the annotations

(known as “Sparking Ada”). This is because it typically leads to extensive annotations

indicative of an unnecessarily complex structure. To avoid this, the annotations should

be seen as part of the design process.

2.4 Summary

The use of formal methods is important and even necessary for certain types of software.

Its use leads to more robust and more reliable software. There are various types of FM

that can and should be used for distinct purposes. As suggested by the development

method CbyC, SPARK needs to be introduced in the beginning of the software devel-

opment, not only in the common validation and verification stage, thus including also

this phase of the process from the very beginning. The INFORMED approach capture



Chapter 2. High assurance software development with SPARK 28

system design information in annotations and use it to influence the shape and char-

acteristics of the software implementing that system. The use of SPARK at the design

stage of the life cycle facilitates a cost-efficient CbyC development method.
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Case study: a secure

partitioning microkernel

The use of embedded devices has significantly grown in the last years. We have this type

of devices in any place around us. In cars, in mobiles, in houses and much more. This

type of devices is increasingly connected to the Internet. This can be a big vulnerability

because it creates opportunities for malicious users to exploit security weaknesses and

take control of these systems. These malicious people can access confidential informa-

tion, disable a critical system, or modify its default behavior. It is therefore necessary

to develop highly secure embedded systems to ensure our safety. Besides those already

mentioned, these embedded devices are also located in critical areas for homeland secu-

rity, such as Internet service providers, financial institutions or power companies. For

this, it is urgent to ensure the software of these devices is highly secure. In particular,

it is necessary that the embedded operating system is secure or “bullet proof”. The OS

is vital, because any application or security mechanism implemented could be bypassed,

if the OS is not safe in the first place.

The development of a commercial operating system usually follows the “Penetrate and

Patch” approach [60]. OS are attacked by viruses, worms and trojan horses, highlighting

their vulnerabilities. Thus vendors developed and released patches to fix the vulnerabil-

ities, almost by a trial and error method. Clearly this kind of approach is ineffective for

the systems we are talking about. The right solution is to provide an approach where

systems are designed to be safe and secure from the very beginning. To meet this need,

29
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the certification of software comes up, which allows a gain in confidence on the software

according to the certification level of it.

Various standards and criteria for certification of software have been created. Common

Criteria [61] is one of the most important. It is an internationally accepted standard to

specify and evaluate security assurance. The evaluation of security software through the

Common Criteria standard defines Evaluation Assurance Levels (EAL 1-7) that indicates

the process rigor associated with the development of an information technology product,

as shown below:

• EAL-1: Functionally tested;

• EAL-2: Structurally tested;

• EAL-3: Methodically tested and checked;

• EAL-4: Methodically designed, tested, and reviewed;

• EAL-5: Semi formally designed and tested;

• EAL-6: Semi formally verified, designed, and tested;

• EAL-7: Formally verified, designed, and tested.

Assurance levels start at EAL-1, the lowest level, and increases until EAL-7, the highest

level. Nowadays, the EAL-5 is considered the minimum acceptable level for critical

systems. And the search for EAL-7 is constant, in order to ensure high reliability

of the systems. The EAL-7 involves formal verification of the software product using

mathematical models and theorem proving.

As we have seen, the OS (or in more basic way and more low level, simply kernel), is

one of the most important parts of the system, and must be safe and secure in first

place, so that other applications (even these certified to high levels of assurance) are not

subject to vulnerabilities. However, due to their size and complexity, a kernel is difficult

to certify. In this context the concept of microkernel arises.

In the next section, we introduce the notion of microkernel which, as the name suggests,

is a kernel of tiny dimensions that contains only the essential features. In section 3.2 we

introduce the notion of separation kernel and its benefits.
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3.1 Microkernel

A microkernel is quite different from a conventional (monolithic) kernel, as shown in

Figure 3.1. In the conventional kernel, all OS services run with kernel permissions and

reside in the same memory area. Contrarily, in the microkernel all things that might

potentially bring down the system run outside of kernelspace, in individual processes

often known as servers. This enables that, if something goes wrong, just the faulty

component needs to be restarted. In this way, it does not crash the hole system and there

is no down time. Another advantage of a microkernel is its simplicity. In a microkernel,

each driver, filesystem, function, etc., is a separate process located in userspace. This

means that a microkernel is relatively simple and easier to maintain; it can be viewed

as a small component of the total system (essentially the core of the OS).

Figure 3.1: Monolithic kernel vs microkernel.

The microkernel must allow the development of OS services on top of it. It should

provide only the basic features, such as some way for dealing with address spaces, for

manipulating memory protection; some entity that represent the execution in CPU, usu-

ally the tasks or threads; and a inter-process communication (IPC), needed to invoke

the servers. This minimal design was introduced in [62], although the first time that

microkernel-like concepts appear seems to be in the RC4000 Multiprogramming System

in the 1960s [63] and the term microkernel appears in 1988, for the Mach kernel [64].
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Nevertheless, for efficiency purposes, some microkernels include the scheduler in ker-

nelspace. Many projects have attempted the kernel formalization, having in mind the

certification. This degree of assurance goes in the path of EAL-7. With this kind of

practices, the microkernel designs have also been used in systems made for high-security

applications, like military systems.

However, these types of systems have various types of applications, some more important

than others. For example, in a plane it is not hard to imagine that the application which

controls the temperature is slightly less important than the applications that controls

the engines. The solution was to have several computers, each of which controlling only

a single application. In this way, if any of them fails or has unexpected behavior, there

is not harm or change in the functioning of any other. However, if for each function we

have different hardware, it can easily be seen that for certain systems this solution is

inadequate.

Thus, the need for new solutions arises. This case is essentially a rediscover of the

concept of separation kernel. At the time it was introduced [65] it was not given a great

importance, because at the time there was no need for such architecture. However, times

changed and the concept was reviewed.

3.2 Separation kernel

The need to run separate applications on the same hardware has increased the relevance

of the concept of separation kernel. It is preferable to run several applications on the

same hardware than having several hardwares, one for each application. There are

great advantages in this approach. In some systems it is even impossible due to lack of

physical space (for example in robots of exploration). The major disadvantage of having

each application in a independent machine is the redundancy of resources. This leads

to disadvantages such as higher costs, more space occupied and power consumed. An

increasing of cooling, weight and more difficult installation and maintenance.

The concept of separation kernel was introduced by John Rushby in 1981 at the ACM

Symposium on Operating System Principles [65]. He introduced a new paradigm for

secure computing by redefining the mission of the OS security kernel in same way as a

distributed system. The new kernel simulates a distributed environment with only one

processor and ensures that there is no interaction between the properties of the kernel
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and the properties of the components that form such system. The separation between

components enables independent verification of the kernel and its components.

The use of this type of kernel is based on the concept of separation or partition. The main

purpose is to isolate faults of one component from the others. A failure or unexpected

behavior in one partition (component) must not cause failure or unexpected behavior in

another partitions.

The partitioning is divided in spatial partitioning and temporal partitioning. The spatial

partitioning must ensure that software in one partition cannot modify the software of

another partition. The address space of each partition is therefore isolated. Temporal

partitioning must ensure that for all the partitions - one at a time - a time slot is given

for shared resources, such as the CPU.

Until this point we used the term application to describe the computational entity within

a partition. This term depends on the implementation. An application could correspond

to the OS notions of process, or virtual machine, or other different notions. Generally,

an application is composed by smaller units of computation that are called or scheduled

separately. Again, this depends on the implementation, but generally these units are

tasks or threads. Partitioning must prevent applications to interfere with each other,

but the tasks within a single application are not protected from one another.

3.2.1 Spatial partitioning

The goal of spatial partitioning is to provide a mechanism to divide the memory, both

physical and virtual. This enables assigning a block of memory to each partition. The

addresses in this block are visible only for the partition owner of the block; all the other

partitions cannot access this piece of memory. This ensures that the other partitions do

not interfere in this memory space.

The most common mechanism used to guaranty that there are no violations of spatial

partitioning is provided by the hardware, either by the processor running mode, the

memory management unit (MMU), or a combination of both. The basic idea is that

the processor has two modes of operation (it can possibly have more): when in user

mode - the lowest privileged - the access to memory addresses are either checked or

translated using tables in the MMU. These tables can not be modified. Only the kernel

running in privilege mode can do it. The locations of blocks of memory in each partition



Chapter 3. Case study: a secure partitioning microkernel 34

are disjoint as expected. The only exception are the locations used for inter-partition

communications. The communications are discussed below.

The tasks executed in a partition access both the processor registers and the memory.

This information is called the context of a partition. When one partition is suspended

and another one starts, the kernel saves firstly the context of the partition being sus-

pended and secondly reloads the context saved for the partition that is meant to be

executed next.

3.2.2 Temporal partitioning

The temporal partitioning must guarantee that the execution of one partition does not

disturb the timing of events in other partitions. A mechanism is necessary to ensure

that a partition is executed in a dedicated time slot and that this slot of time will always

be available for this partition, unaffected by the execution of the remaining partitions.

In our microkernel, the sequence of execution time given to each partition is statically

scheduled to ensure determinism and simplification of the model.

The main problem to be solved is that one partition may get or keep exclusively posses-

sion of the CPU for itself. This can occur by bad intentions or simply by an error where

an application is retained in a infinite loop.

The most straightforward manner to overcome this problem is by scheduling at two levels,

as we can seen in Figure 3.2: first, the kernel schedules the partitions; then, the partition

schedules locally its own tasks. Usually, static scheduling is used at partition level. The

kernel ensures that the partition runs for a determined time at a specific frequency (for

example runs 10 ms, every 100 ms). Then, the scheduling inside a partition is dynamic -

based on common priorities of tasks. This gives the partition that is running the illusion

of exclusive access to computing resources. The concept of paravirtualization has the

same principles, where each partition is a virtualized OS, such as Linux or Windows.

3.3 Security partitioning and MILS

Besides space and time partitioning, and due to the need of information exchange be-

tween partitions, the necessity of information flow control emerges.
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Figure 3.2: Two level scheduler.

The MILS (Multiple Independent Levels of Security/Safety) architecture was introduced

in 1983 [66]. The authors, John Rushby and Brian Randell, recently discussed how this

architecture appeared [67]. This architecture adopts the best principles of security and

safety-critical design. It is based on the concept of a small separation kernel and was

proposed to be evaluated to the highest levels of security, namely EAL-7 and safety

assurance DO-178B1.

The MILS provides the following properties:

• Information Flow policy: only authorized communication between partitions is

allowed (pre-configured communication channels);

• Data Isolation policy: information in the state of one partition must not be acces-

sible to other partitions;

• Residual Information Protection policy: a context switch between partitions with

shared resources between them, can not allow unintended transfer of information;

• Damage limitation policy: failure in one partition is contained and does not disturb

other partitions.

1Developed by the Radio Technical Commission for Aeronautics (RTCA) DO-178B [68], is a set of
guidelines for the production of software for airborne systems. Designed to ensure that software meets
airworthiness requirements, is a method of component approval in many critical aerospace, defense and
other environments, including military, nuclear, medical, and communications applications.
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As we can see in Figure 3.3, the MILS architecture is decomposed in three indepen-

dent layers, a partitioning kernel, a MILS middleware layer, and a MILS application

layer. As we have already seen, the partitioning kernel enables a well defined separa-

tion between partitions and a secure transfer of control between them, as we shall see

below. The middleware allows application component creation by providing traditional

OS middleware, such as CORBA, Web Services, and a Partitioning Communication Sys-

tem (PCS) for communications middleware for MILS. The application layer implements

application-specific security functions, such as firewalls or cryptomod. The different lev-

els of classification for distinct partitions are based on military classification of security

levels classifications used by the U.S. Government, top secret (TS), secret (S), classified

(C) and unclassified (U).

Figure 3.3: Multiple Independent Levels of Safety/Security (MILS) architecture.

One of the first users of this technology was The Boeing Company [69], which has

employed the RTI [70] and Wind River MILS solution [71].

The scheduling of partitions is static: this implies that all inter-partition communication

must be asynchronous. Where a task needs the services of software in another parti-

tion, it places requests in the input buffer of task in other partitions and continues the

execution. When the following partition is activated, it looks within its own buffers for

replies or requests from other partitions. The process can be seen in Figure 3.4. It is

necessary to impose fixed quotas on the number or space available for requests that can

be made by each partition. This enables a great control and prevents the generation of

excessive number of requests to another partition by malicious software.
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Figure 3.4: Inter-partition communication.

There exists a Common Criteria Protection Profile for separation kernels entitled “U.S.

Government Protection Profile for Separation Kernels in Environments Requiring High

Robustness”, commonly known as SKPP [72].

In SKPP the monitored information flow between partitions is made with the help of a

Partition Information Flow Policy (PIFP). This is the same as channel in MILS architec-

ture. The information flow is identified by a triplet, which consists of two identifiers of

partitions and the availability of communication. The PIFP is based on the principle of

least privilege (PoLP): this constitutes a crucial element in the design of high assurance

systems. The PoLP minimizes the accesses between the entities: each component of

the system must have access only to the resources and data that it needs to perform its

function or purpose. There are two levels of policies of communication. With a higher

level of abstraction, it is assumed that all tasks in a partition have the same needs

to access resources in the exterior. This restricts the management of communication at

partition level, since all tasks in a partition can only do the same kind of communication.

Alternatively, the communication can be made in a more detailed way. The exchange of

information can be done between tasks of partitions. In this way, tasks within the same

partition have possibly distinct privileges for communication, as we can see in Figure

3.5.

The criticality of the application and the requirements of their security may require high

assurance levels. An example of this is an avionics system, such as a GPS receiver for

military purposes that requires safety and security approvals. In the past, these systems

were implemented using software on a dedicated hardware, ensuring that information

could not be shared outside the system. Nowadays, with architectures such as separation
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Figure 3.5: Policies of communication.

kernel and MILS, both classified and unclassified functions can be executed in a single

processor, with the desired level of security.

One of the leading OS in the military and aerospace markets, where reliability is ab-

solutely critical, is Green Hills [73]. They provide a set of products according to the

demand of customers. For example, the Integrity-178B OS is planned for the F-35’s

core processor and is slated for an upgrade to the F-22’s integrated core processor. The

Integrity-178B is designed to meet the EAL-6+ standard [74].

Other important company that provide good solutions for the safety-critical real-time

systems is LinuxWorks [75]. Its LynxSecure 3.0 separation kernel and hypervisor has

been designed to be certifiable to the Common Criteria EAL-7, and complies with the

aerospace industry’s DO-178B certification.

Another successful case, is PikeOS developed by SYSGO [76]. It is a real time OS

supporting the principle of software partitioning, widely used in defense, aerospace,

automotive, and industrial applications. This was completely developed according to

the development process requirements of the DO-178B and IEC 615082 specifications.

2Functional safety of electrical/electronic/programmable electronic safety-related systems by The
International Electrotechnical Commission (IEC).
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3.4 Summary

As seen throughout this chapter, the main characteristic of a microkernel is to have

some OS services running in user mode. This makes the microkernel simpler, safer,

and smaller, when compared with the normal kernels (monolithics). The microkernel is

therefore the ideal candidate to serve as the basis for the separation kernel, which arises

from the need of a system having to execute - in the same hardware - different tasks

independently and securely. We also introduce the secure partitioning microkernel that,

apart from containing space partitioning and time partitioning - which are included in

most recent microkernels - also contains secure communications, thus making it different

from others.

As can be seen in this chapter, building a secure partitioning microkernel is not an easy

task. The solution proposed to build the system - as mentioned previously - is based on

the CbyC development method. The work consists of the following steps:

1. To survey the requirements for the analysis of the system - i.e. obtaining the

necessary information to move forward towards the system implementation goal;

2. To build a high-level specification in a formal language (Z notation) - this step is

important for a full understanding of the features and properties of the system;

3. To use the INFORMED process in order to obtain a cleaner and more consistent

programming, removing repeated code and unnecessary exchange of information;

4. To implement the system in SPARK;

5. To verify the system (using the SPARK Examiner toolset).

Before undertaking this, we will review in the following chapter similar applications

implementing formalization and verification of kernels that are available from the liter-

ature.



Chapter 4

Formal approaches to kernel

development

There are many works in the literature on the subject of formalizing Kernels. This

is understandable because the kernel is the central core of any computing system and

its proper functioning is essential. The use of FM is of utmost importance because

it allows us to have a formal specification of a kernel that represents an unambiguous

description of its features (requirements) for the developers. A formal specification of

a kernel also serves to provide the basis for the verification of an implementation of

the kernel. The most usual technique is to prove that a formal representation of the

implementation is equivalent to the top level specification. Normally, the use of simple

formal notations and various levels of refinements aim to facilitate either manual proof or

the use of an automatic theorem prover. On the other hand, there is also the possibility

to verify directly on the implementation level without a more abstract specification

of its behavior. The works in literature related to the verification of kernels present

various levels of abstraction and various levels of completion. More recent projects,

which achieved satisfactory results, have benefited of the constant evolution of tools.

For example, the automation achieved with current theorem provers is a fundamental

help in the verification process, avoiding (at least in part) a tedious and very specialized

job.

In this chapter, we present the related work to formalization of both traditional and

separation kernels. Besides this, a more interested reader may consult the article, which

40



Chapter 4. Formal approaches to kernel development 41

served as the main reference for this chapter, on past and present approaches to kernel

verification [77]. This chapter includes some works described in that article, though in

less detail; it also describes other works that seem relevant in the context of our work.

In the penultimate section we present the Tokeneer project that was of great relevance

in the choices made in our work.

4.1 Traditional kernels

Earlier work on OS kernel formalization and verification includes Provably Secure Op-

erating System (PSOS) [78] and UCLA Secure Unix [79]. The focus of these works

was on capability-based security kernels, allowing security policies such as multi-level

security to be enforced. These efforts were hampered by the lack of mechanization and

appropriate tools available at the time, and so, while the designs were formalized, the

full verification proofs were not practical. Later, with the emergence of the first support

tools and automations of processes, all the works can achieve a new level of verification.

For example, KIT [80], which appeared some years later, describes verification of prop-

erties such as process isolation to source or object level. Although it is a simple kernel,

it is nonetheless significant the amount of properties that could be proved during the

project.

The PSOS [78] project began in 1973 and continued until 1983. PSOS not only focuses

on the kernel but on the whole system, including new hardware design. The system con-

tained new hardware and it is unclear which percentage of the system was implemented,

however the design seems to be very complete. The authors said that no code proofs

were done, only a few simple illustrative proofs were carried out. However, PSOS is a

project with an impressive effort that pioneered a number of important concepts for OS

verification and system design in general. Formal methods were applied during the whole

implementation of the system. PSOS has a layered architecture whose design comprises

17 layers. The bottom six were intended to be implemented by hardware. PSOS is not a

kernel-based system, instead it is based on the principles of layer abstraction, modules,

encapsulation, and information hiding. PSOS uses a capability mechanism that provide

a controllable basis for implementing the OS and its applications, as there is no other

way of accessing an object other than by presenting an appropriate capability designat-

ing that object. For designing PSOS, the project initially developed the Hierarchical

Development Method (HDM) [81] with its specification and assertion language SPE-

CIAL. Each system layer is composed by some number of encapsulated modules with
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a formal interface and each module was formally specified in SPECIAL. Some specifi-

cations evoluted up into the application level, including a confined-subsystem manager,

secure e-mail, and a simple relational database manager. In a retrospective report [82],

the authors claimed that the PSOS architecture effectively eliminated the popular myth

that hierarchical structures must be inherently inefficient. The design methodology of

PSOS was later used for some projects like in the Kernelized Secure Operating System

(KSOS) [83, 84] and in The Secure Ada Target (SAT) [85].

More recently, Verisoft project [86] also made an effort to verify the whole system,

including hardware, compiler, applications, and a microkernel. The project started in

2003 and was funded by the German government. The verification is made in a layered

approach similar to PSOS. One of the layers establishes a hardware independent interface

[87] which is very convenient for verification purposes because it isolates the parts of

the kernel that involve Assembly code. The system, through a simple OS, provides file

based input/output, IPC, sockets, and remote procedure calls to the application level.

The goal of the project was to end with only one final machine-checked theorem on

the whole system, including devices. This theorem has not yet been published and the

current proof state covers about 50% of the code - however, recent publications appeared

to go in this direction [88, 89]. Even without future results, this project constitutes an

evidence that with current technology state it is possible to obtain a trustworthy basis

for computing systems. Nevertheless, there are some issues that can not be ignored.

One of them is the fact that the project focuses only on implementation correctness and

did not investigate high-level security policies or the access control models of the OS;

another one, is the fact that the system is only available for the VAMP processor, and

the performance is not at the level of acceptable, because, one more time, it was not a

focus of the project.

The Verisoft project besides using a layered architecture as in PSOS, where each level

is implemented by different code, also uses a layered architecture at each layer. That is,

each layer has one or more specifications (formalizations) that differ only in the detail

level. This technique is called data refinement and consists of map existing functions

between the layers in order that an operation in the most abstract layer has the same

effect as that in the more concrete layer. The first project using this technique (although

at that time still did not have this name) was the UCLA Data Secure Unix [79]. It

is an OS that was aimed at providing a standard Unix interface to applications. Its

verification was focused on the kernel of the OS, which by its features is close to the

services of modern microkernels. UCLA provides threads, capabilities (access control),
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pages (virtual memory), and devices (input/output). The report does not specify when

the project started, but the first results began to appear in 1977. The specification of the

project was divided into four layers. Starting from the top, the “top-level specifications”,

the “abstract-level specifications”, the “low-level specifications”, and the “pascal code”

at the bottom. The authors concluded that code proofs, with the aid tools available

at the time, represented tedious hard work. They proved less than 20% of the code,

with XIVUS semi-automated verification system, and they recommended the separation

of the system development from the proofs. Nevertheless, they said that the system

needed to be developed with verification in mind. They also concluded that the time

spent in specification, verification, and implementation can be less than the time spent

on design, implementation, and debugging. This is because the time spent on testing

and validation corresponds to approximately 70% of the total time spent on development

of the system.

Almost a decade after PSOS and UCLA Secure Unix, KIT appeared [80, 90]. This is

a small OS kernel written for a uni-processor computer with a simple Von Neumann

architecture. It provides isolated tasks as its main service (like its name “Kernel for Iso-

lated Tasks” suggests), and also provides access to asynchronous I/O devices, exception

handling, and single-word message passing. Concerning memory, KIT does not provide

shared memory or virtual memory. The system is implemented in an artificial but real-

istic assembler instruction set. Even with its simplicity, KIT is important because it was

the first kernel that deserved the attribute formally verified, breaking down the idea that

the level of detail required in OS implementation verification is an intrinsic problem for

formal verification. The verification was carried out in the Boyer-Moore theorem prover

[91], the predecessor of the ACL2 prover [92]. Very similar to UCLA Secure Unix and

other refinement-based verifications, the proof of the KIT system shows correspondence

between the behavior of finite state machines. The corresponding proof shows that the

kernel correctly implements this abstraction in a single CPU.

Later on [93], Bevier and Smith also produced a formalization of the Mach microkernel

[64]. They specified legal Mach states and described Mach system calls using temporal

logic, but they did not proceed to implementation proofs. Nevertheless, this work served

as basis of a new approach to specification-based testing [94]. Here the authors used

the new approach to check properties of MK++ kernel [95], a descendant of the Mach

kernel. They suggested that a mathematical proof of an implementation model satisfy-

ing the specification is impractical given the complexity of the kernel implementation.

Therefore, they chose the approach of exploring the derivation of tests from the kernel
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specification, with the certainty that, if a test fails, the specification is incorrect. This

technique is similar to model checking, that generates a sequence of steps, which proves

the incorrectness of the specification, if some property is violated. However, normally,

the absence of this counter-example does not allow to ensure that the specification is

necessarily correct. As seen previously, in Section 2.1, this lack of assurance is due to the

inability to check the whole system. The complexity of the system leads to an explosion

of states which make it impractical because the computation time needed (if possible)

is unacceptable. So, the model checking is commonly applied only to specific parts of a

system.

In RUBIS kernel, G. Duval and J. Julliand used the technique above to model and

verify the entire inter-task communication features of the kernel [96]. The approach

taken consisted on communicating finite state machines. They used PROMELA as

specification language and the SPIN tool [38] to check the intertask communication

features of the system. They constructed various scenarios to test the properties of

communication, with the “confidence” that if the scenario did not produce any error the

communication mechanism test did not present errors.

The advantages of model checking are again exploited by a concurrent system with sim-

ilar characteristics to a microkernel [97]. For the verification of the system, the project

used a combination of TLA+/TLC as specification language and as model checker re-

spectively. The principal focus of this work was the resource management mechanism

and the protocols to ensure the consistency of the data in those shared resources. Re-

sources are mutually exclusive to ensure the consistency of data in shared resources. In

order to accomplish the objective of a real-time kernel, a priority handling mechanism

was presented. At the end of the work, a set of solutions for real time OS were proposed.

Another project that focused on only a single aspect of the kernel, was SELinux (Security-

Enhanced Linux) [98]. The project provided a mechanism for supporting access control

security policies as a Linux feature. It was based on the Flask architecture [99]. Flask

is an OS security architecture that provides flexible support for security policies. The

architecture was prototyped in the Fluke [100] research OS. Later on, it was taken by

the NSA to Linux as the security architecture in SELinux to transfer the technology

to a larger developer and user community. It was made subjected to two different ap-

proaches: one used TAME (Timed Automata Modelling Environment) [101] which is

based on the PVS prover [102]; the other, used model checking [103]. The two projects

analyzed the security policies themselves, but did not aim at proofs establishing that

the SELinux kernel correctly implements them.
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The kernel verification of the following three projects has the data refinement approach

in common. In the first one [104, 105], the authors offered an abstract model of the

functional and timing requirements for the kernel. It was designed to provide the minimal

functionality to support real-time Ada 95 applications closest to Ravenscar Profile. The

kernel was specified using the PVS specification language, with the temporal properties

expressed using a stylized version of RTL1 [106]. The kernel was specified in terms

of its state and a set of operations on that state. The structure of the specification

provides a clear distinction between the kernel and its environment, and defines how

they interact, nonetheless they not introduce memory. The sample implementation - in

Ada - provides the main features of the kernel as follows: the fixed priority preemptive

scheduling of tasks, delay operations, and asynchronous communication between tasks.

For the high-level operations, they used SPARK annotations. They did not use the full

SPARK annotations but they were verifying the functional correctness of the operations

with respect to the previous level of the development. The development method that

was used here, as we mentioned before, is based on splitting the development process

into a number of stages, and verifying the correctness at each stage, in a similar fashion

to VDM [28] or to B-Method [21]. At each stage, both the temporal properties and the

functional properties of the system are verified in relation to the previous stage in the

development. This enables a gradually abstraction decrease in the specification until the

final implementation is produced.

The second, is the delta-core OS [107]. It appeared as a refinement of an initial formal

specification. The formal specification was proved with the help of PowerEpsilon [108]

(a mathematical proof development system). The proofs achieved represent some im-

portant characteristics of the OS. They verified some system calls for tasks, queues and

semaphores.

The last of the three is a very helpful work when using FM to design, verify and im-

plement kernels. It used Z notation to present the concepts related to the kernel func-

tionalities in a fashion and comprehensive way [109]. The formal models of three OS

kernels were presented and some important concepts that sometimes are not addressed,

like hardware abstraction model, virtual storage, and interrupt service routines (ISR),

were also presented. The first model was a simple kernel, such as those that are used in

embedded and real-time systems. It was a basic kernel and does not dealt with ISR or

device drivers. The second kernel was an extension of the first one. It adds the device

drivers and a clock for the process-swap mechanism. Inter process communication (IPC)

1Real-time logic embedded in PVS.
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was implemented using shared memory and semaphores for synchronization control. The

last kernel modeled was a variation of the previous one. The difference was that IPC was

now implemented as message passing, using ISR. This required changes to the system

processes, as well as the addition of generic structures for handling interrupts and the

context switch. The kernels properties were provided and the proofs of the correct be-

havior were included. At the end of the book, a model for virtual storage was presented.

The initialization and refinement of models were not covered in this book. However, the

author published a second book which deals with refinement of models. The new book

is presented in the next section because it includes a separation kernel.

Instead of designing and implementing new kernels, other works undertook the verifica-

tion of existing ones. The two following projects, EROS (Extremely Reliable Operating

System) and L4, show this. For EROS verification [110–112], the authors gave an op-

erational semantics of the OS and proved a correctness of its architecture with respect

to confinement security policy. They developed a formal statement of requirements and

a simplified model, Agape (more powerful and more general than the EROS architec-

ture). They modeled Agape’s security policy, access control mechanism, and operational

semantics, and shown that Agape semantics satisfies the requirements of confinement.

Their proof provides a small number of essential lemmas that must be satisfied for any

system to provide confinement, and should generalize to other capability systems. The

EROS capability system defines an access control mechanism that determines what infor-

mation flow is possible between system resources. The model was not formally connected

to the EROS kernel implementation. This was supposed to change for it successor the

Coyotos kernel [113].

In Coyotos project the intention was to carry out verification since the very beginning.

They changed the approach and the project laid out a plan for the design and formal

implementation of the new kernel. For this, they identified the need to create a new

programming language for kernel implementation - one language that was safe, clean,

and suitable for verification and low-level implementation at the same time. The main

goal was not necessarily to invent new language features, but rather to pick and choose

from existing research and combine the necessary features into a targeted language for

implementing verified OS kernels. The reasons for this effort lies in: a) the difficult of

the verification of programs written in the main languages, like Assembler, C, and C++

with its many unsafe features; b) the benefits in future verification efforts. The Coyotos

project made significant progress on the design and implementation of the kernel itself
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until 2009. The design of BitC, the proposed new implementation language, has taken

advances more recently.

For the verification of L4 [62], two different projects appeared: seL4 (secure embed-

ded L4) and L4.verified [114, 115]. The first project was a descendant of L4 and

aimed to provide security improvements to communication control between applications,

and to kernel physical memory management. The second project aimed to provide a

machine-checked formal correctness proof of a high-performance implementation of the

first one. After a small pilot project in 2004, seL4 and L4.verified started concurrently

in 2005 [116]. The initial pilot project resulted in initial design ideas for seL4 [117], in

a case study on virtual memory of the existing L4 kernel (using the theorem prover Is-

abelle/HOL) [118, 119], and in a high-level specification of L4 IPC (using the B Method)

[120]. The seL4 project was concluded successfully by the end of 2007 and the result-

ing design provides the following kernel services: threads, IPC, virtual memory control,

capabilities, and interrupt control. The capability system of seL4 is similar to that of

EROS kernel and are not dependent on hardware, like in PSOS. The success of seL4

kernel was due in large part to the good integration and cooperation of both OS and

FM teams. They found a good balance, not privileging the OS team that would tend

to improve only the performance of the kernel, leaving the verification more difficult, or

the opposite, making verification easier but neglecting the details of performance, like in

Verisoft project. With this cooperation, they maintained the size manageable, contrary

to what happened in the PSOS. The L4.verified project was able to prove that the seL4

microkernel works correctly. Yet it was not able to prove that the seL4 is secure enough.

For instance, it does not imply that two isolated subsystems, each of which does not

possess any capabilities to the other nor to any shared resources, cannot send each other

information, either directly or indirectly.

A different approach from what we saw until this point, was carried out on VFiasco

(Verified Fiasco) project [121]. The project started in November 2001 and its aim was

verifying parts of the Fiasco microkernel (a compatible re-implementation of the L4)

directly on the implementation level (source code), without a more abstract specification

of its behavior. The implementation language was C++ with isolated interface code and

optimized IPC in Assembly. The approach followed in this work was a precise formal

semantics of the implementation language. C++ is a very large and not a very clean

language, it was not designed with verification in mind. The authors proposed a clean

semantics of C++ (Safe C++) that deals with those undesired features of C++ that

were used in the Fiasco sources. Besides it used model checking (SPIN) for safety
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properties on the IPC, the verification was made in the interactive theorem provers

Isabelle/HOL and PVS. They proved some object-store properties, such as: a) writing

to some allocated object does not accidentally modify any other allocated object; b)

after writing to an allocated object, reading from that object actually returns the value

written; and c) the order in which you allocate or deallocate objects is irrelevant as long

as you deallocate objects with the same allocator used in the first place. Nevertheless,

the verification was achieved only by a small portion of the implementation.

The ROBIN (Open Robust Infrastructures) project continued the VFiasco approach

to C++ source code verification [122, 123]. The project started in February 2006 and

aimed to investigate the verification of the Nova hypervisor, an L4-based kernel, this

is a different microkernel for OS virtualization. The project ended in April 2008 and

produced about 70% of a high-level specification for the Nova kernel [123]. Like what

happened with Vfiasco, this project also not achieved a verification of a considerable

part of the implementation.

This section is summarized in Table 4.1. The first column shows the name of the projects.

The next two columns show, respectively, the year when the project was made (years

between parentheses represent an estimation) and the specification language used in the

project. The fourth column identifies the use of model checking technique, and the next

two columns identify the amount of proofs achieved in the project and also the theorem

prover used for that. Finally, the last column shows whether the project achieved the

implementation level. The projects included in this table have different purposes: a)

PSOS and Verisoft aimed to verify the whole system; b) the complete kernel verification

was the purpose of UCLA Secure Unix, KIT, and L4.verified/seL4; c) the remaining

projects aimed to verify only specific parts of the kernel. Another aspect, is the use

of data refinement approach; this method was followed by UCLA Secure Unix, KIT,

Verisoft, and L4.verified/seL4; this method was not used in the remaining projects.
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Years
Specification

Language

Model

Checking
Proofs

Theorem

Prover
Implemented

PSOS 1973-1983 SPECIAL - - - partial

UCLA

Secure Unix
<1977-1980

Pascal

(extended)
- <20% XIVUS partial

KIT ?-1987
Boyer-Moore

logic
- yes

Boyer-

Moore
Assembly

RUBIS 1995 PROMELA SPIN - -
already

implemented

SELinux 2000-2002 TAME NuSMV few PVS
already

implemented

VFiasco/

ROBIN
2001-2008 - SPIN few

Isabelle/HOL

and PVS

C++ (already

implemented)

Verisoft 2003-(2010)
Isabelle

specification
-

about

50%

Isabelle/HOL

and PVS
C0

L4.verified/

seL4
2005-(2011) Haskell - yes Isabelle/HOL C/Assembly

Table 4.1: Traditional kernels verification - adapted from [77].

4.2 Separation kernels

As seen in Section 3.2, the separation kernel was introduced in the early 80’s [65, 124],

but only a few years later - given the need of such system - the concept was rediscovered.

Since this is a more specific type of kernel, there is less work available in the literature.

Below we will present some of the most relevant work reviewed.

One of the first works that appeared in the literature was a safety kernel for traffic

light control [125]. The work used a realistic example to show the possibility of imple-

menting a Rushby kernel. Properties of the system were specified in Z notation and an

implementation of the kernel written in Ada was proposed.

The Mathematically Analyzed Separation Kernel (MASK) [126, 127] emerged in the

current century. The MASK was designed and built using Specware [128]. The authors

started from high-level model and down to reach a low-level design, which was close

to an implementation with multiple formal refinement proofs. This low-level design

was manually translated into C and reviewed against the Specware models. Its main
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application was a cryptographic smartcard platform developed at Motorola. The project

was a collaboration between the NSA, Motorola, and the Kestrel Institute.

The delta-core OS, presented in the previous section, was extended by the same authors

with a partitioning optional feature [129]. The authors presented a formal specification

of partitioning and also presented the mathematical properties to provide assurance

for partitioning. The resulting specification contain the original dynamic scheduler for

tasks and increment a static scheduler for partitions. Like in the first specification,

PowerEpsilon was the language chosen for formalization. The specifications for the

address space were ignored.

The next work was a little different from all those presented until this point. It concerned

a verification of a microprocessor with intrinsic partitioning mechanism [130]. This was

not a kernel verification because a kernel is by definition a software, but the policies and

properties considered are very similar and closely related. The project concerned the

verification and Common Criteria EAL-7 certification of the AAMP7 microprocessor.

This is a microprocessor designed for use in embedded systems with security-critical or

safety-critical requirements. The AAMP7 provides a novel architectural feature, intrinsic

partitioning, that enables the microprocessor to enforce an explicit communication policy

between applications. The implementation language is processor microcode and they

used ACL2 to show that the AAMP7 microprocessor works as expected. They modeled

the implementation of the AAMP7 with respect to partitioning in great detail and the

model corresponds directly to the microcode of the microprocessor. The proof was

based on a generic high-level model of separation kernels proposed in an early work

[131]. In this, the code was translated into ACL2 automatically, opposed to the AAMP7

verification where the code was translated manually.

Still, having EAL-7 level as its objective, another work emerged. It proposed a novel

approach for verification and Common Criteria certification of a software-based embed-

ded device, featuring a separation kernel [132, 133]. The authors did not specify which

device, which kernel, and which evaluation level exactly, but the report mentions 3,000

lines of C and Assembly code as the size of the kernel and the proofs presented should

qualify EAL-7. They used TAME for verification and they proposed some steps to as-

sure that the kernel enforces data separation. To start with, a Top Level Specification

(TLS) of the kernel was done using the style introduced by a previous work [134]; until

they reached the phase of mapping this TLS to the source code. This project was a clear

demonstration that formal methods can be used with a high cost/benefit for verification

of these kind of systems.
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In [135] the author presents a continuation of what was already presented in the previ-

ous section [109]. In this new book, the author presents the specification, design, and

refinement for the executable code of two operating system kernels. Proofs for the re-

finement are presented to show that it is possible to refine and achieve code through

refinement. An advantage in presenting the proofs is that it is possible to conclude that

if the specifications are correct then consequently the refinements are correct too. Two

models of kernels are presented. The first model is, like in the previous book, a small

kernel that can be used in embedded systems. The other model is a separation kernel

as proposed by John Rushby, approached in the beginning of Section 3.2. This is an

important reference in our work because Z specification of a separation kernel is in fact

one of the objectives of this dissertation.

Producing an embedded microkernel using the B Method was proposed in [136]. This last

work was partially developed simultaneously with our work. Experiments were shared

between both works and some requirements of the case studies are the same, because they

were elaborated together. The author divided the work in three stages. First, it provided

a complete requirement analysis and a specification of a secure partitioning microkernel.

For this stage, he used the Atelier B and ProB tools. The second stage was composed

by a complete development of part of the secure partitioning microkernel, starting with

a high level specification, through successive refinements until the automatic generation

of code was possible. In this stage, the partitioning information flow policy (PIFP) was

the choice. The last stage of the work was the integration of the code generated in the

previous stage with a chosen microkernel. The microkernel chosen was Prex (Real-Time

Operating System). Although the code added to Prex was not formally proved, the

test results were encouraging. The author concluded that it was possible to achieve the

complete development of the secure partitioning microkernel using only the B Method.

However, it is possibly easier if different FM are used, according to the specific part to

be developed.

Only commercial projects of verified separation kernels could reach the implementa-

tion level. Nevertheless, these cases are not included in this review given the lack of

information referring to such systems.
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4.3 Tokeneer project

As mentioned above, the methodology used in this MSc work was based on the method-

ology that was used in the Tokeneer project, in a more simple way though imposed by

our somewhat limited experience to perform the various steps. The Tokeneer project was

carried out by Praxis and consisted of a re-development of the original work developed

by the NSA (National Security Agency).

The project arose from a proposal made by the NSA to Praxis with the following objec-

tives: a) to demonstrate that it is possible to develop highly secure systems in accordance

to the highest security levels of Common Criteria; b) to show that it is possible to develop

safe systems of a rigorous manner and simultaniously in a cost-effective manner.

The system consists of a secure enclave with controlled physical entry. Within the

enclave, there are various workstations and the users must pass security tests in order to

access the machines. The security tests are done with the presentation of a token (e.g.

smart-card) into a reader that is outside the enclave. The system uses the information

of the token to carry out biometric tests (e.g. fingerprint reading) of the user. If both

informations are matched, then the enclave door opens giving access to the user. At the

same time, the system checks what type of access is allowed for this user. The physical

devices are replaced by test drivers to avoid licensing issues and to ease testing. They

were developed by SPRE Inc. on a separate machine.

The development of the system was made according to Praxis CbyC process, containing

the following phases:

1. Requirements analysis (the REVEAL process);

2. Formal specification (Z notation);

3. Design (refinement of the specification and INFORMED process);

4. Implementation in SPARK;

5. Verification (SPARK Examiner toolset);

6. Top-down system testing.

The Tokeneer project material was released in July 2008 as a contribution to the Verified

Software Grand Challenge. It achieved EAL-5 in areas of development like configuration
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control, fault management, and testing. In other development areas, as specification,

design, implementation, or correspondence between representations, it achieved up to

EAL-6 or EAL-7.

4.4 Summary

Substantial work has already been done in the verification of kernels. The verification

purposes change from project to project: the verification of the whole system, the com-

plete kernel verification, or verification of specific parts of the kernel. In some instances

the kernel already existed, in others the approach was developed from scratch. As to the

data refinement approach, this also adopted by only some works. With respect to veri-

fication of separation kernels only commercial projects could reach the implementation

level given its specificity in both their properties and their utilization.

From this chapter we can draw some useful conclusions regarding the development of

verification of kernels, and ultimately of system verification in general:

• the system needs to be developed with verification in mind;

• the system performance should not be overlooked in favor of the verification;

• if the system has a strong low-level (hardware) component, it is important to

maintain a healthy balance between the requirements of the formal methods and

the hardware for verification and implementation issues respectively.

• at last, with the automatism of nowadays tools, FM can be used with a high

cost/benefit for verification of complex systems.

As stated in the aim and objectives of this work (see section 1.3), next chapter - on the

implementation - shows how Tokeneer CbyC methodology was followed in our work, and

how far the indications above were achieved.
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Implementation

In this chapter we show the implementation of the case study presented in Chapter 3

with the SPARK and the method proposed above in Chapter 2.

The project is based on an existing proposal and hence the functional requirements had

been almost defined. Even so, some changes had to be made in order to meet our specific

needs. Only the fundamental security requirements of the system are emphasized in here,

with special relevance to the three main properties described in the previous chapter:

• Spatial partitioning: each partition can only access its own memory (information),

the remainder memory is inaccessible;

• Temporal partitioning: a partition controls only the hardware during a given time.

Once this time is over, the partition has no longer control over the hardware, which

will be then controlled by another partition;

• Security partitioning: the communication between partitions is established safely.

Communication’s contents are only shared by partitions involved in the communi-

cation process.

The list of the requirements is presented in Appendix A.

After the survey of requirements and with a set of requirements well-defined, we passed

on to the implementation following the development cycle proposed above and shown in

Figure 5.1.

54
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Figure 5.1: Implementation steps.

5.1 Formal specification/design

In this section, we present the formalization of the requirements.

The core functions, based on the requirements, will be formally specified and modeled

using the Z notation, a mathematical notation accompanied by an English narrative.

The aim is to delineate unambiguously what the system is conceived for. After an initial

version, this was developed in parallel to the INFORMED design stage.

The specification models a number of state components and a number of operations that

change the state of the system. The entire model as been type-checked with the fuzz

type checker [17] in all expressions and gave no errors.

The proofs on the specification were not carried out, but the behavior will be checked

with a model-checker. To achieve this, we had to withdraw some abstraction from the

models, using concrete representations for the system state. Some things are still non-

deterministic, allowing a choice between two actions given the previous stage; others have

concrete states in order to define the priority of actions so that they can be admitted

and simulated with ProZ. This tool, as we present above in Chapter 2, is an extension

of the B-Method tool1. The behavior of the system is well visible using animation

and is a great support for the development. We obtained a model with intermediate

1The ProB tool [19] is an animator and model-checker for the B-Method, however it also supports
CSP-M and Z notation.
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characteristics between abstraction and concrete, which can be subjected to evaluation

of their behavior. Only the necessary aspects have been passed on to the concrete,

everything else remained with a high level of abstraction and low implementation details

to facilitate understanding.

As previously stated in the explanation of Z, the operations in most cases involve several

phases, each of them representing a small action. For example, the Send operation

involves a verification of the authorization to communicate (specified by the schema

CheckPIFP) and only after the success of this operation is possible a real communication

(specified by the schema ComSend). The overall process of sending can then be presented

as the combination of these two schemas. The system description is generated through

this way.

A summary of the specification is presented bellow. For the complete description of the

system models, the reader is referred to Appendix B.

The system state is represented by the Kernel schema shown bellow.

Kernel

Status : ReturnCode

FirstADDRAvailable : 

FreeMemory : 

Memory : seqBlock

Clock : 

Mode : WorkingMode

Partitions : �Partition

CurrPartition : 

PIFP : �Policy

Communications : �Communication

The kernel is represented by:

• Status: which represents the state of system and is updated by the operations;

• FirstADDRAvailable: which assumes the first address of free memory;

• FreeMemory: which assumes the size of free memory;

• Memory: which represents the physical memory and is constituted by a sequence

of blocks;

• Clock: which is the representation of the elapsed time;
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• Mode: which shows the working mode allowed at a given moment;

• Partitions: a set with the system partitions;

• CurrPartition: which represents the running partition;

• PIFP: a set that contains the communication policies for all system partitions;

• Communications: a set that contains the communications performed by the sys-

tem.

The enabled operations are:

• Start: this performs an initialization of the system;

• ContextSwitch: which changes the execution partition of the system when its time

is exhausted;

• ReadWrite: which performs a read or write operation (it tries the access to a

memory space);

• Send: which performs a communication to send a message;

• Receive: which performs a communication to receive a message;

• Tick: as the purpose to give a tick of the clock CPU generating an interruption

and, changing the kernel to privileged mode.

The main differences between the specification hereby proposed and some of the ones

available in the literature (e.g. [109, 135]), is the simple way in which they are developed

and yet still covering the requirements for the purposes established. The communication

mechanism implemented in our system has its own particularities different from the oth-

ers. These have to do principally with the need to meet a pre-established communication

security police.

Ideally, we should have two types of models. First, a formal specification of the system

with black-box behavior; second, a formal design which is a refinement of the first

model, but with implementation details. The objective is to separate the external visible

behavior of its internal design. This was not the approach followed since we wanted

something simpler and more high level for the perception of the system and its behavior.
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With the completion of this step, we could improve knowledge of the system and get

some of its peculiarities. This was a step of great value towards the final result because

it allowed us to obtain a general view of the system, with the elimination of ambiguities

in its features.

5.2 INFORMED in practice

Here, we present aspects of the design process that are not covered by the Formal Speci-

fication/Design, but that are required in order to make progress for the implementation

in SPARK. The INFOMERD helps to shape the architecture in terms of Ada packages,

defines types and operations provided by these packages and relates this with the formal

model. Furthermore, this step covers the file formats and file locations used by the

system.

5.2.1 Identification of the system boundary, inputs and outputs

The real world (or at least, the real peripherals) that are outside the kernel, will be

emulated. When the system starts, the configuration file provides input to the kernel. It

is up to the kernel to then respond by reading the real world input into its own internal

representation. The kernel receives stimulus from the real world and it changes itself

the real world. All real world entities are modeled as components of the real world.

The real world entities modeled are the memory and the configuration file, as shown in

Table 5.1. Only the memory changes with the execution of the system. The configuration

file represents the configuration chosen for the kernel.

Many components, like keyboard, screen, network card, etc, are dismissed because they

increase the complexity of the entire system.

Entity Input / Output Comments

memory input / output
The kernel uses the memory in the configuration process. The
memory also can be updated as part of the normal execution
of the kernel.

configuration file input
Data from the configuration file is used by kernel for configu-
ration of the system at the initialization process.

Table 5.1: System boundary, inputs and outputs.



Chapter 5. Implementation 59

5.2.2 Identification of the SPARK boundary

Figure 5.2 depicts the mapping of variables of the system boundary in SPARK packages,

delimitating the SPARK system boundary. The variables of the system boundary are

as follows, as seen in the previous section: the memory (Hardware), which was mapped

in the Memory SPARK boundary variable, and the configuration file (FileData), which

was mapped in the File SPARK boundary variable.

Figure 5.2: SPARK system boundary.

5.2.3 Identification and localization of system states

At this stage, we need to identify the state that needs to be saved. This is one of the most

important stages of the entire development, because these choices have a major influence

in the amount of information flow in the system. The System is divided in various

packages. The principals are SYT (System Table) that contains the tables with the

state of the system, SEF (System Error and Faults) that contains the health condition of

the system, Hardware that simulates the real hardware, ConfigValues that is important

for the initialization of the system, CMS (Configuration Management System) that

configures and maintains the system, and PRT (Partition) that facilitates the creation

and manipulation of partitions. Table 5.2 describes the packages that keep the state.
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State Constituents Comments

SYT

Partitions Table
Saves the information concerning partitions

that belong to the system.

Communications Table
Saves the information concerning the commu-

nications, intended by the partitions.

PIFP Table
Saves the information concerning the PIPF

policy.

PartitionsExecutionSequence Table
Saves the information concerning the parti-

tions execution sequence.

SEF Errors Table
Saves the information concerning the errors

that occur in the system.

Hardware Mem
Represents the current state of the physical

memory.

ConfigValues

Partitions State
A local copy of one partition which was read

from the configuration file.

Size Of Blocks For Communication The size of blocks for communication.

PIFP Line
A local copy of one PIFP line which was read

from the configuration file.

Partitions Execution Sequence
A local copy of partitions execution sequence

which was read from the configuration file.

FileState
Saves the data from the configuration file at

the initialization time.

Table 5.2: State identification.

The overall localization of state is given by Figure 5.3. As we can see, only SYT, SEF,

Hardware, and ConfigValues are variable packages (packages with state). Then, we have

the CMS and the File that are of the type utility layer and the rest of packages are

abstract data types.
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Figure 5.3: Localization of state.

5.3 Handling initialization of state

State variables can be initialized using two approaches: a) during program elaboration

(the variable is considered to have a valid value prior to execution of the main program);

and, b) during execution of the main program by a program statement.

All state variables are initialized during program elaboration. Some of which are up-

dated, specifically the memory state and the state variables from SYT which represent

the concrete state of kernel. These will be updated by a procedure call of the main

program. This procedure call has the responsibility to update the kernel state (tables)

with information contained in the configuration file.

5.4 Handling secondary requirements

In this development, we not need to deal with any type of secondary requirements.
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5.5 Implementing the internal behavior of compo-

nents

The facilities provided by each of the library level packages in the system, the correspon-

dence with Z models (that can be found in Appendix B), and the respective references to

the requirements (that can be founded in Appendix A) are summarized in this section.

We show the specifications of the packages. The specifications are presented with anno-

tations, allowing an early static analysis of the design. The specifications presented con-

tain the Ada signature for the operations and its annotations, which include the global

state used or modified by the operation (the global clause) and the relationship between

the global state and the operation parameters (the derives clause). Some functions and

procedures are specified with proof annotations. After the specification packages are

completed, body packages with implementation of operations are developed. Here, only

the specifications are shown, the complete code can be found in Appendix C.

DefaultValues

In the DefaultValues package, there are some default values for the configuration of the

system, such as the name and the path for the configuration file of the system or the

value of memory size that can been handled by the system.

PartitionTypes

The PartitionTypes package contains the types needed for the partitions, which were

used in the PRT package. All of the types are presented in Table 5.3 and are described

below with more detail.
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Ada Type Type Classification Z Type Requirements

Partition Mode enumeration State PRT#04

Communication Mode enumeration CommunicationOP CMS#03

OperationType enumeration - -

ProcessesType record - -

Partition record Partition PRT#(01, 04, 09)

Table 5.3: PartitionTypes package.

• Partition Mode: is composed by “IDLE”, “NORMAL” and “ERROR” values.

Each partition has its state in one of these values;

• Communication Mode: consists on the “FREE”, “READ”, “WRITE” and

“BLOCKED” values. It allows to know the state in the communication space for

a partition;

• OperationType: specifies the enabled operations, which can be “OP Nothing”

(when the purpose is literally to do anything, just to consume time), “OP ReadWrite”

(to read and write from/to memory), and “OP Communication” (for both com-

munications, send and receive);

• ProccessesType: is composed by an operation of the previous type and the

values for these operation: in case of “OP Communication”, it needs the size,

the mode (send or receive), and the identifier of the recipient of communication;

in the case of “OP ReadWrite”, only the address and the size for the operation

are needed. There is no need to know if it is read or write because there is no

distinction between operations, we only need to know if there is permission to

access that area of memory (i.e. if the space we want to access to belongs to the

partition);

• Partition: is composed by an unique identifier, its memory bounds, the runtime

allowed, its mode (which is one of the values of “OperationType”), a list of Pro-

cesses (that will be run by the partition), and the state of memory spaces for

communication (that will be the values of “Communication Mode”).
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PRT

The PRT package has the function to create and manipulate partitions. It has the

operations summarized in Table 5.4.

Ada Operation Operation Type Z Operation Requirements

GetID function - PRT#04

GetDuration function GetDuration PRT#03

GetPartitionMode function - PRT#03

SetPartitionMode procedure

PartitionResumes,

PartitionSuspends,

CurrPartitionError

PRT#03

Init procedure NewPartition PRT#02

ClearCommunicationList procedure - PRT#03

Table 5.4: PRT package.

Only the “partition mode” has a setter (Code Listing 5.2), this is the unique label that

can be subsequently updated. The labels “ID”, “duration” and “mode” have a getter

function (Code Listing 5.1) that retrieves its values.

�
5 function GetID (P : Part i t ionTypes . P a r t i t i o n ) return Par t i t i on type s . IdType ;

6 --# return P. ID ;

7

8 function GetDuration (P : Part i t ionTypes . P a r t i t i o n ) return ←↩

Part i t ionTypes . Par t i t i on Dura t i on ;

9 --# return P. Duration ;

10

11 function GetPartitionMode (P : Part i t ionTypes . P a r t i t i o n ) return ←↩

Part i t ionTypes . Part it ion Mode ;

12 --# return P. Mode ;�
 	
Code Listing 5.1: PRT specification package (GetID, GetDuration and

GetPartitionMode functions)
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�
14 procedure SetPart it ionMode (P : in out Part i t ionTypes . P a r t i t i o n ;

15 Mode Part it ion : in ←↩

Part i t ionTypes . Part it ion Mode ) ;

16 --# derives P from P , Mode_Partition ;

17 --# post P. ID = P ~. ID and

18 --# P. MemoryBounds = P ~. MemoryBounds and

19 --# P. Duration = P ~. Duration and

20 --# P. Mode = Mode_Partition and

21 --# P. Processes = P ~. Processes and

22 --# P. Com = P ~. Com ;�
 	
Code Listing 5.2: PRT specification package (SetPartitionMode procedure)

As we can see in the Code Listing 5.3, the “Init” procedure is a constructor for objects

from “Partition” type. This procedure is used at the initialization of the system to

create the partitions specified by the configuration file.

�
24 procedure I n i t (P : out Part i t ionTypes . P a r t i t i o n ;

25 ID Par t i t i on : in Part i t ionTypes . IdType ;

26 MemoryBounds Partition : in Part i t ionTypes . Tuple ;

27 Durat i on Par t i t i on : in Part i t ionTypes . Par t i t i on Dura t i on ;

28 Mode Part it ion : in Part i t ionTypes . Part it ion Mode ;

29 Proc : in Part i t ionTypes . P r o c e s s e s L i s t ) ;

30 --# derives P from ID_Partition , MemoryBounds_Partition , ←↩

Duration_Partition , Mode_Partition , Proc ;

31 --# post P. ID = ID_Partition and

32 --# P. MemoryBounds = MemoryBounds_Partition and

33 --# P. Duration = Duration_Partition and

34 --# P. Mode = Mode_Partition and

35 --# P. Processes = Proc and

36 --# P. Com = PartitionTypes . Communication ’( PartitionTypes . Index_Range ←↩

=> PartitionTypes . BLOCKED );�
 	
Code Listing 5.3: PRT specification package (Init procedure)

The communication list has a procedure to clean its information. The “ClearCommuni-

cationList” procedure, as we can see in the Code Listing 5.4, resets the state of memory

spaces for communication for a particular partition. This operation is executed always

before the partition receives the state of current partition.
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�
38 procedure ClearCommunicationList (P : in out Part i t ionTypes . P a r t i t i o n ) ;

39 --# derives P from P;

40 --# post P. ID = P ~. ID and

41 --# P. MemoryBounds = P ~. MemoryBounds and

42 --# P. Duration = P ~. Duration and

43 --# P. Mode = P ~. Mode and

44 --# P. Processes = P ~. Processes and

45 --# P. Com = PartitionTypes . Communication ’( PartitionTypes . Index_Range ←↩

=> PartitionTypes . BLOCKED );�
 	
Code Listing 5.4: PRT specification package (ClearCommunicationList procedure)

We can see in all operations above the SPARK annotations in blue. In our case, they

are: the derives annotations for the procedures, and the proof annotations in functions

with return clause or in procedures with post clause.

TablesTypes

The TablesTypes package contain the types used in SYT package. It has the operations

summarized in Table 5.5.

Ada Type Type Classification Z Type Requirements

PartitionsTable array -
PRT#(05, 07),
CMS#(04, 05)

CommunicationState record Communication -

CommunicationsTable array - CMS#(03, 04, 05)

FlowMode enumeration FlowMode -

PIFPTable array -
CMS#(02, 04, 05),

PIFP#01

PartitionsExecSeqTable array - PRT#(06, 07)

Table 5.5: TableTypes package.

The package contains the “CommunicationState” type that represents a communication

made in the system. This type has the following labels:

• Blk: information of the memory intended for communication;

• State: current state of the communication (“FREE” or “OCCUPIED”);
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• From Partition and To Partition: identifiers of the partitions involved in the com-

munication;

• Mode: type of communication, i.e. send (“WRITE”) or receive (“READ”);

• FreeSize: free size of its memory (enables the use of all blocks of communication).

�
1 with DefaultValues , Part i t ionTypes ;

2 --# inherit DefaultValues , PartitionTypes ;

3 package TablesTypes i s

4

5 type Par t i t i on sTab l e i s array ( Part i t ionTypes . Partit ionsNumber ) of ←↩

Part i t ionTypes . P a r t i t i o n ;

6

7 type Blocks Sta te i s (FREE, OCCUPIED) ;

8

9 type TupleCommunication i s record

10 i n i t : Part i t ionTypes . AddrAllowValues ;

11 sz : Part i t ionTypes . CommunicationsBlockSizeAllowValues ;

12 end record ;

13

14 type CommunicationState i s record

15 Blk : TupleCommunication ;

16 State : B locks Sta te ;

17 From Part i t ion : Part i t ionTypes . IdType ;

18 To Part i t i on : Part i t ionTypes . Partit ionsNumber ;

19 Mode : Part i t ionTypes . CommunicationMode ;

20 FreeS i ze : Natural ;

21 end record ;

22

23 subtype CommunicationsBlocksNumber i s I n t eg e r range 1 . . ←↩

DefaultValues . Number Of Communications Blocks ;

24

25 type CommunicationsTable i s array ( CommunicationsBlocksNumber ) of ←↩

CommunicationState ;

26

27 type FlowMode i s (R, W, RW, N) ;

28

29 type P a r t i t i o n s i s array ( Part i t ionTypes . Partit ionsNumber ) of FlowMode ;

30

31 type PIFPTable i s array ( Part i t ionTypes . Partit ionsNumber ) of P a r t i t i o n s ;

32

33 subtype Part i t i onsExecut ionIndex i s I n t eg e r range 1 . . ←↩

DefaultValues . Partit ionsExecutionNumber ;

34

35 type Part i t ionsExecut ionSequenceTable i s array ( Par t i t i onsExecut ionIndex ) ←↩

of Part i t ionTypes . Partit ionsNumber ;

36

37 end TablesTypes ;�
 	
Code Listing 5.5: TablesTypes specification package
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It also contains the “FlowMode” type, that allows the control of the communications;

this is constituted by “R”, “W”, “RW”, “N”, respectively, read, write, read and write,

and none.

The package contains four types of tables. The “PartitionsTable”, as we can see in

Code Listing 5.5, is an array of the “Partition” type, its dimension depends on the

number of partitions specified for the system. The “CommunicationsTable” is an array

of the “CommunicationState” type, its dimension depends on the number of blocks for

communication specified for the system. The “PIFPTable” is an array of “FlowMode”

type, its dimension, one more time, depends on the number of partitions specified for

the system. Finally, the “PartitionsExecutionSequenceTable” is an array of “Partition-

Types.PartitionNumber” (this type represents the “ID” of one partition) and its dimen-

sion depends on the value of “DefaultValues.PartitionsExecutionNumber” specified for

the system.

HardwareTypes

In this package we have the representation of the physical memory which contains a

description of the state of the system memory. The memory is divided into blocks and

each block contains the starting address, the size and its state, which can be either free

or occupied.

ErrorTypes

This package contains the types of errors and the facilities necessary for the SEF package.

It has the operations summarized in Table 5.6.

Ada Type Type Classification Z Type Requirements

Faults enumeration - SEF#(01, 02), SYT#02

State enumeration - -

ErrorsTable array - SEF#02, SYT#02

Table 5.6: ErrorTypes package.

The “Faults” type represents the different sorts of errors, which can take the following

values:
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• Hardware: for problems with memory;

• Configuration: representing a bad initialization of the system;

• Deadline: when the change of partitions exceed the time expected;

• Application: error assigned to a partition.

The “State” type represents two values, “NoError” or “Error” and the “ErrorsTable”

type is an array with all of errors (“Faults”) and the state (“State”) corresponding to

each of them.

SEF

In this package we have the “Errors Table” table and the operation that changes its

state, as shown in Table 5.7.

This package has only one operation that is used to change the status of errors in the

“Errors Table” table. It is in this table that the system saves information about the

system errors and, when one of the shortcomings listed above happens, the state of the

table is updated.

Ada Operation Operation Type Z Operation Requirements

Error procedure - SEF#(01, 02)

Table 5.7: SEF package.

As we can see in the Code Listing 5.6, there exists an inherit annotation for the Er-

rorTypes package which is necessary for enabling the use of its types. As it is a vari-

able package it contains one annotation to indicate that the package has a state (“Er-

rors Table”), the own annotation, and there is also the initializes annotation which

requires the initialization of this state. In line 8, the “Errors Table” is initialized.

Then, in the next lines, the “Error” procedure to change the state of “Error Table” is

also annotated with a global, a derives and a proof annotations.
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�
1 with ErrorTypes ;

2 --# inherit ErrorTypes ;

3 package SEF

4 --# own Errors_Table ;

5 --# initializes Errors_Table ;

6 i s

7

8 Errors Table : ErrorTypes . ErrorsTable := ←↩

ErrorTypes . ErrorsTable ’ ( ErrorTypes . Faults => ErrorTypes . NoError ) ;

9

10 procedure Error ( Fault : in ErrorTypes . Faults ) ;

11 --# global in out Errors_Table ;

12 --# derives Errors_Table from Errors_Table , Fault ;

13 --# post Errors_Table ( Fault ) = ErrorTypes . Error ;

14

15 end SEF ;�
 	
Code Listing 5.6: SEF specification package

Hardware

This package deals with memory which, for our purposes, just needs a few operations

listed below in Table 5.8.

Ada Operation Operation Type Z Operation Requirements

CanAllocate function - -

AllocBlock procedure - -

Init procedure InitMemory SEF#01

Table 5.8: Hardware package.

The specification, presented in Code Listing 5.7, shows three operations. The “CanAl-

locate” function returns a boolean value. This function checks if there exists space

of memory free. The “AllockBlock” procedure really occupies a memory area and the

“Init” procedure initializes the memory; this operation is carried out at the initialization

of the system. This package was built with the refinement process, i.e. its state variable

was decomposed thereafter in the body package. This refinement passes on to the body

the proof annotations.
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�
9 function CanAllocate (S : HardwareTypes . Memory Range ) return Boolean ;

10 --# global Mem ;

11

12 procedure AllocBlock (S : in HardwareTypes . Memory Range ;

13 A : out HardwareTypes . Memory Range ;

14 OK : out Boolean ) ;

15 --# global in out Mem ;

16 --# derives Mem from Mem , S &

17 --# A from Mem , S &

18 --# OK from Mem , S ;

19

20 procedure I n i t ( S i z e : in I n t eg e r ; Success : out Boolean ) ;

21 --# global Mem ;

22 --# derives Mem from Size &

23 --# Success from Size ;�
 	
Code Listing 5.7: Hardware specification package (CanAllocate function and

AllocBlock, Init procedures)

CMS

The CMS package’s objective is to configure the system and has the right procedures

for its operation that are listed below in Table 5.9.

Ada Operation Operation Type Z Operation Requirements

InitSystem procedure InitSystem CMS#(01, 02, 03), SYT#(01, 03)

RunProcesses procedure - PRT#(09, 10, 11), PRC#(05)

ContextSwitch procedure ContextSwitch PRT#(07, 08)

Table 5.9: CMS package.

The “InitSystem” procedure, as the name suggests, serves to initialize the system. It

initializes the memory, the kernel, the partitions, and the memory dedicated for com-

munication.

The remaining procedures have the function of: 1) running the processes of one partition

(the current partition); and 2) doing one context switch, i.e., switch the current partition

respecting the pre-established sequence.
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SYT

This package contains the system tables. It contains procedures for the initialization

of their tables (partitions, communications and PIFP), and provides the facilities for

managing these tables. The operations are summarized in Table 5.10.

Ada Operation Operation Type Z Operation Requirements

InitPartitionsTable procedure Init CMS#02, SYT#03

InitCommunicationsTable procedure InitComunications CMS#03, SYT#03

InitPIFPTable procedure InitPIFP CMS#03, SYT#03

GetPartitionIndex function - -

UpdateCommunicationList procedure UpdateComTable
PRC#(01, 02, 03),

PIFP#06

Communication procedure Send, Receive PRC#04, PIFP#04

DeleteComForPartition procedure - PRC#(01, 02, 03)

ReadWrite procedure ReadWrite -

CheckPIFP procedure CheckPIFP PIFP#(02, 03, 05)

ChangePartitionMode procedure
PartitionResumes,
PartitionSuspends,
CurrPartitionError

PRT#03

GetDurationPRT function GetDuration PRT#03

Table 5.10: SYT package.

The operations of initialization are used at the system boot time in the “InitSystem”

procedure from CSM package. The “InitPartitionsTable” procedure ensures that par-

titions are not created with shared memory spaces; the “InitCommunicationsTable”

procedure ensures that the blocks of memory for communication do not belong to any

of the partitions.

The other operations are used in the normal system operating. The “UpdateCommu-

nicationList” procedure is used by the processes with the aim to communicate with

the processes in other partitions, the remaining operations are used by the kernel in

the “ContextSwitch” procedure enabling or not the communications according to the

partition information flow policy chosen for the system.

Each partition can only access its memory and the communication memory that respects

the PIFP, they can not access the kernel memory or the other partitions memory, nor

the communication memory that belongs to them. In the communication memory each
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partition has access to the free blocks; the access to the occupied blocks is only possible

when the target partition is the partition itself.

ConfigValues

This package is used to read the configuration file during the system booting. It contains

local states which are used only in the startup of the system. The package is necessary

to comply with the SYT#03 (the initial state of the system should be a secure state)

requirement. This package is extremely important because it verifies the integrity of the

configuration file, checks whether the format is well defined, if there is enough memory

to boot the system, and if there is a PIFP for all the partitions.

File

This package provides file utilities. It is distributed by praxis in the Tokeneer project

[8].

5.6 Other issues

The configuration file

The configuration data is supplied in a file named config.dat. The format of a configura-

tion data file is presented in Table 5.11. Each field is presented in a new line and takes

the form of a field identifier followed by at least one space and the value of the field.

Each line is terminated by a CR (carriage return) and LF (line feed). The file format

has been selected to provide a user-friendly interface for entering values.

An example of a valid configuration file is presented in Appendix D.



Chapter 5. Implementation 74

File Format Comments

PartitionsNumber nn Number of partitions.

NumberOfCommunicationsBlocks nn Number of blocks for communication.

CommunicationBlocksSize nn Size of communications blocks.

NumberOfProcessesPerPartition nn Number of processes per partition.

PARTITION

Identifier of a partition description, must be followed by Parti-

tionID, PartitionSIZE, PartitionDURATION and PROCESS

(the process must be appear n times, specified above in Num-

berOfProcessesPerPartition).

PartitionID nn
The partition ID, the value range is 1 .. n defined above in

PartitionsNumber. Repetitions are not allowed.

PartitionSIZE nn The partition size.

PartitionDURATION nn The partition duration.

PROCESS
Identifier of a process description. Must be following by Pro-

cessOperation.

ProcessOperation tt

Values of tt are Communication and Nothing. If value is Com-

munication must be following by CommunicationMode, Com-

municationSize and CommunicationTo.

CommunicationMode tt Values of tt are Read and Write.

CommunicationSize nn

Size of Communication. The value range is 1 .. NumberOf-

CommunicationsBlocks * CommunicationBlocksSize specified

above.

CommunicationTo nn

Partition ID with which it is supposed to communicate with.

The value range is 1 .. nn defined above in PartitionsNumber,

with the exception of your own ID.

PartitionsExecutionNumber nn Number of partitions that can be executed per cycle.

PartitionsExecutionSequence

Identifier of a partition sequence execution description. Must

be followed by ID’s of partitions, ordered. Repetitions are

allowed.

PIFP
Identifier of a PIFP description. Must be followed by the

description of PIFP.

ID

Must have all ID’s of partitions and for each ID must be spec-

ified the policy of flow towards the other partitions. This is

achieved by a value of PartitionID followed by the policy. This

policy can be: N, R, W, and RW - respectively no-flow, read,

write, and read-write.

Table 5.11: Configuration file format.
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The communication mechanism

There are two modes of communication, one mode to read and an other mode to write.

If the communication is “read”, then the process only reserves memory for future com-

munication with a particular partition that will run later. This may seem like a failure,

but if the partition to which the space was reserved in their respective space of time does

not use it, then the kernel will automatically release the space of memory. One possible

state of communication memory can be seen in Figure 5.4, which shows that the blocks

are occupied according to the recipient of the message, that is, messages with different

senders, but with the same recipient can be allocated in a unique block.

Figure 5.4: A possible state of communication memory.

The system tests

When using CbyC development method Altran Praxis undertakes tests against a fully

detailed system specification using test coverage tools to ensure 100% coverage, and

fully-automated testing to ease regression testing. In addition, in order to detect system

integration failures they also test the full final system application. This procedure was

not carried out though because it is beyond the scope of this MSc work.

The tests performed in this work were simple tests to verify if the behavior of the system

was in accordance with what was expected. In the specification we used the model

checking technique to observe the system behavior. Tests were done on the executable

simulator that resulted from this work itself.
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For these tests, we created a Ada package that allowed the visualization of the system

state, i.e. allowed us to compare the system behavior and the state of the variable

packages (packages with state) with the expected result. The Ada package created

allowed us to see the state of the following variable packages: SYT.Partitions Table,

SYT.Communications Table, SYT.PIFP Table, SYT.PartitionsExecutionSequence Table,

SEF.Errors Table, and Hardware.Mem.

Tests performed consisted of checking if it was the correct behavior, in accordance with

the selected configuration file (config.dat), by viewing the state of the system. Various

configuration files were created to test several possible scenarios. The different scenarios

that were tested can be separated into two groups:

• initialization: that tests the correct start of the system, such as the memory al-

location, the creation of partitions and processes, and the load of static tables

(PIFP Table and PartitionsExecutionSequence Table);

• execution: that tests the normal behavior of the system, like the memory access

control, the partitions exchange, the processes execution within a given partition,

and the communications between partitions matching the established PIFP.

Overall, any tests that may be undertaken complement the static analysis of the system

in order to confirm its dynamic behavior.

Results

The INFORMED stage is extremely useful because it allows us to have a mapping from

the formal design to the code prior to writing the code.

The static analysis can start with only the specification packages. This lets us know if

we adhere to the constraints of the SPARK language. With the specifications concluded,

we move on to the development of the bodies and consequently the implementation of

operations. With the facilities of the tools for SPARK we examine and verify the code

as we go. The operations can be analyzed with the SPARK Examiner to verify the data

and information flow properties of the code against the annotations in the specification.

Thus, we obtain the check of code before it is compiled.

When the code of the packages is complete, the SPARK Examiner provides a check for

run-time errors. This allows us to make sure that the code is free of errors that can cause
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a run-time exception, such as accessing arrays outside their bounds or the overflow of

numeric types.

SPARK Examiner generates a number of VCs (Verification Conditions) for each sub-

program which needs to be shown true to conclude the proof of the subprogram. With

the POGS we always have an overview of the validation of the project. When there

are VCs that could not be discharged automatically, we can consult the file .siv of the

subprogram and see the problem. With this method it was possible to find some basic

flaws that had remained undetected. Figure 5.5 is an extract of the final result of POGS

and, as we can see, the Examiner and the Simplifier were able to prove all VCs in a fully

automatic way.

Figure 5.5: POGS summary.
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Conclusions

This chapter concludes the work described in this dissertation. An overview of the main

purpose of this study and its value to the scientific community is made. It is presented a

comparison of the results achieved with the initial objectives proposed; some limitations

that occurred during the work development also are pointed out. Finally, we present

some recommendations for future work, both regarding possible extensions/improve-

ments in the scope of this work or referring to new works with a similar development

methodology.

6.1 Main aim and objectives

We can say that the main aim initially indicated, the use of CbyC development method

to build a secure partitioning microkernel-based simulator, in order to confirm that it is

indeed possible to develop systems able to achieve high levels of certification, was overall

achieved.

As explained above, in Chapter 3, we outlined five objectives in order to achieve the

main aim. The work undertaken and the results obtained in each step are summarized

below.

1. To investigate the system requirements: this was indeed an essential step of

the work. It enabled the collection of the necessary information in order to move

78
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forward towards the system implementation goal. The documents SKPP [72] and

ARINC-653 [137] were used as reference;

2. To use the Z notation to create a high level specification: this step was

important for a full understanding of the features and properties of the system.

It enabled the creation of one specification (formal model), with the requirements

achieved in the previous step, in an unambiguous manner. In order to help the

understanding of the features and properties of the system, we used an animator

(ProZ) to obtain a more visual and interactive perspective of the specification.

The resulting model is simple but very representative of the system core;

3. To construct a design of the system with INFORMED process: with the

completion of this step, we produced an architecture that respects the specification

created above. Although the formal specification has been started first, the final

versions of the two stages were completed simultaneously. It allowed us, based on

the information contained in the formal specification to develop an architecture,

that besides helping in the elimination of unnecessary exchange of information,

it also serves as a complementary component that facilitates the passage of the

formal model for the packages used in the implementation of the system;

4. To implement the system in SPARK: the purpose of this step is to make the

various packages of the system. It is divided into two stages: first, the specification

creation; secondly, the bodies. The package specifications were created with the

assistance of the formal model and the resulting architecture from the INFORMED

design. These specifications include the Ada signature of the operations and the

respective SPARK annotations. With this, we carried out a basic check - between

the code and the annotations - to the information flow of operations. After the

completion of the specification packages, their respective implementations (the

body packages) were created. In the implementation, annotations that allowed the

following checks were inserted: data flow analysis, information flow analysis, and

proof of the absence of run-time errors. The properties of the formal specification

were included in the implementation as SPARK proof annotations;

5. To verify the system (using the SPARK Examiner toolset): the SPARK

Examiner tool was used over the resulting implementation from the previous step,

in order to perform the verification that the properties described in the specifica-

tions were matched in the code. Thus, we have the possibility to make an early

checking of the code (before compilation), so that we can prevent the introduction

of some common mistakes, for example the use of uninitialized variables. We can
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also check that we have no run-time errors, such as the access outside array or

the overflow of numeric types. The SPARK approach reduces the need for testing,

replacing it with analysis. The SPARK Examiner and SPADE Simplifier tools

were used on the implementation source code, in order to discharge the associ-

ated proof obligations (Verification Conditions (VCs) generated). The VCs who

have not been automatically proved were inspected, thereby finding some errors

that may would have been unnoticed; also, some annotations were remade so that

so they can be discharged automatically. In this way, we can reduce the num-

ber of VCs not discharged. However, some VCs were not automatically proved,

these could/should be further analyzed and proved, by hand or with the aid of a

semi-automatic prover, such as the Proof Checker tool.

The work reported in this dissertation addresses two subjects of great importance, as

the Formal Methods and the Operating Systems. The first one is important to assure

that a piece of software is well designed and implemented, and the second is also very

important because is the core of any system - the services that run on it depend directly

on its reliability. It is therefore inevitable, or at least it would be desirable, especially

when it comes to critical systems, that the construction of OS were carried out with the

use of formal methods. The work presented here, aims to highlight some aspects of this

combination in order to contribute to a better understanding of the needs and benefits

that may result from its use. This type of works, usually count on the association of

a large team with high technical skills and many years of experience in both areas. It

is clear enough that both of the subjects covered in this work have a high complexity;

the case study (secure partitioning microkernel) that has very advanced OS concepts

and the verification of software that becomes more complex and elaborate as the system

size increases. It was assumed from the very beginning that the lack of experience

would impose an important component of learning in the two fields in order to achieve

the objective. However, despite the learning effort done, we are aware that a greater

knowledge in these two areas is required to fully achieve the goals. There are two points,

one in each area, that limited our work. In the FM area, we talk about the notion of

manual proof; in the OS field, we talk about the integration with hardware. To some

extent these aspects constituted a limitation, restricting the scope of our work. In spite

of the difficulties above, it is expected that the results obtained may provide a basis for

new approaches on the subject, enabling knowledge about the properties and structures

necessary for its development.
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Evaluating this work globally, it can be concluded that the various steps followed that

compose the CbyC development method represent an added value when we want to

build a system with high standards of reliability. As explained previously in Chapter

2, the fact that a software has been fully proved does not guarantee that it really does

what it is expected to do. It may ensure that what ever is carried out is done without

errors. However, the use of the CbyC development method allows one to visualize and

understand, throughout the several steps, the system behavior, thus minimizing the risk

above. Even if the software does not need to achieve high levels of certification, this

methodology is very good to minimize mistakes and ultimately enables to make better

software.

6.2 Contributions

The verification and certification of software is an area of enormous importance as it

aims to ensure that no problems arise in delicate areas, safeguarding the preservation

of human life and the environment that surrounds it. The subject under study is also

of great relevance since it is a microkernel-based approach, which is clearly the central

defining feature of an OS.

The final aim of this work was not only the system per se but also to better understand

the development process and to increase the confidence on it. This work was part of a

perspective to enable the increase of awareness and recognition that formal methods of

software development can be used in a practical context. It is essentially a platform for

knowledge transfer and use of advanced tools for software engineering in an important

area such as safety critical.

The methodology used was based in the CbyC development method, which has been ap-

plied successfully in several contexts by Altran Praxis. As Anthony Hall says, “Correct-

ness by Construction is a radical, effective and economical method of building software

with high integrity especially for security-critical and safety-critical applications”. This

methodology was used in the Tokeneer project that intended to demonstrate that it was

possible to develop systems up to the level of rigor required by the highest standards of

the Common Criteria.

Our motivation emerges from the same line of the Tokeneer project (with the differences

of context and inherent limitations), but with another subject of study. The chosen case

study was a secure partitioning microkernel, which is very important and absolutely
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necessary in some critical systems. As previously mentioned, there are a considerable

number of efforts towards the formalization and verification of kernels, nevertheless the

majority does not concern this particular type of microkernel with partition and security

properties. Only in the commercial field this kind of system exists with high levels of

certification.

The contribution of this case study is therefore essentially a help to convince the software

safety community that is really possible to develop secure systems in a rigorous way

without neglecting the costs. Even so, we are aware that our work has not reached yet

a state that complies to the level of rigor required by the standards of the highest levels

of certification, which are required when security systems are concerned. Nevertheless,

all the steps undertaken during our work and the fulfillment as match as possible of the

CbyC development method allows us to assure that our secure partitioning microkernel-

based simulator does indeed what it was meant to.

We can say that the use of the CbyC development method leads us to develop well built

systems with a high level of quality. We strongly believe that this work may serve as a

basis in the development of other new works in the regards to the verification field using

FM.

6.3 Future work

Some suggestions for future contributions to improve the final result have emerged

throughout this work. The main topics are presented below.

• to make a formal specification more complete, in order to encompass the whole

system, in which all the properties of the system are proved, with more concrete

elements for a direct mapping to implementation;

• to automate the passage of the properties of formal specification for the SPARK

proof annotations, ensuring that the properties contained in the specification are

rigorously passed on to the implementation;

• to add proof annotations to enable a full system coverage, and afterwards, if nec-

essary, to prove all verification conditions generated by the SPARK tools, with

the proof assistant or by hand, thereby ensuring that the implementation of the

system is error-free;
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• to investigate the “concurrency part”1 of SPARK in order to add some concurrency

properties, like time, since this work only used the “sequential part” of SPARK ;

• to change some aspects in order to make the system more flexible, like removing

the restriction on the fixed number of processes per partition;

• to add functionality to the kernel, such as support for keyboard or external devices,

in order to make broader use of the system;

• the followed step-by-step development method lead us to some choices, like specific

methods used in the various steps, that can be replaced if considered more conve-

nient (for example, changing the formal specification language, if people involved

have more experience in another formal language).

As a final remark, it should be noted that, in order to help and guide in the choices and

restrictions required by the hardware in works with a strong low level component, it is

extremely useful that the team involved in it may count on members with high skills on

OS. This is in fact an important factor both to guarantee the correct implementation

in the hardware available, and to ensure thereafter a level of acceptable performance,

given the wide range of peculiarities that can affect this.

1The “concurrency part” of SPARK, also known as RavenSPARK, was based on the Ravenscar
Profile [138] that defines a subset of the tasking features of Ada (giving deterministic concurrency)
providing the means to construct highly-reliable concurrent programs.
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Appendix A

Requirements

The list of the requirements is presented in this appendix. The documents SKPP [72]

and ARINC-653 [137] were used as reference to this survey of requirements.

SKPP is a Common Criteria Protection Profile for separation kernels and ARINC-653

is a standard specification for system partitioning and scheduling, particularly in the

avionics industry.

Similarities between SKPP and ARINC-653 are quite obvious. Both are used in appli-

cations requiring a design for high robust environments. The main difference is in com-

munication. In SKKP communication between applications requires an authorization,

whereas in ARINC-653 is not required any permission. Both SKPP and ARINC-653

provide a definition of mechanism that tries to address the enabling of multiple appli-

cations to be executed. The difference in SKPP is that each application should execute

not only in a safe environment but also in a secure one.

Below are presented the functional requirements of the system. A functional requirement

is a type of requirement that specifies a function that a system or component must be

able to perform.

The Table A.1 show the format in which the system requirements are presented.
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Identifier Is composed in the following way, Type#Number. Where Type parameter is the type

of the requirement refers to, and Number parameter is a sequential number starting

in one (when the type changes the counting restarts). The types allowed are:

• Configuration Management System (CMS)

• System Errors and Faults (SEF)

• System Tables (SYT)

• Partition (SYT)

• Process (PRC)

• Partition Information Flow Policy (PIFP)

Title Consists on the intuitive title of the requirement, so that one can quickly understand

the purpose of the requirement

Description Consists on a more detailed overview of the requirement

Rationale Field that has the objective of justifying the existence of the requirement

Table A.1: Requirement format.

A.1 Configuration management system requirements

Identifier CMS#01

Title Configuration Management System

Description The system shall have a Configuration Management System (CMS)

Rationale It is necessary to have a CMS with the ability to configure the system appropriated

Table A.2: CMS requirement # 01.
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Identifier CMS#02

Title System Information Requirements

Description The system integrator shall have information about the system capabilities: memory

and duration requirements

Rationale It is necessary to system integrator to have the adequate information about the

system. Without that information it will be impossible to provide the correct config-

uration

Table A.3: CMS requirement # 02.

Identifier CMS#03

Title Configuration Vector Information

Description The system shall have a configuration vector with the responsibility for:

• Memory allocation for each partition

• Creation of each partition

• For each partition the time processing

• Processes for each partition

• Communication principles

• Partition information flow policy

Rationale The configuration vector is responsibility of the system integrator. The information

provided by the configuration vector is responsible for initialize the system with the

appropriated information

Table A.4: CMS requirement # 03.

Identifier CMS#04

Title Configuration Tables CMS

Description Configuration tables shall be provided whit CMS

Rationale Configuration tables must be build by the system integrator, they contain information

that can be known when the configuration of partitions are defined

Table A.5: CMS requirement # 04.
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Identifier CMS#05

Title Configuration Tables Information

Description Configuration tables shall be provided. Configuration tables shall have information

about the communication, memory requirements and health monitor (HM)

Rationale Configuration tables are required for the secure partitioning kernel work correctly. It

provides the basic information for the system start working

Table A.6: CMS requirement # 05.

A.2 System error and faults requirements

Identifier SEF#01

Title Faults Detection

Description Faults shall be detected by several elements

Rationale The elements that faults shall be detected are:

• Hardware: memory protection violation, privilege execution violation

• Configuration: initialization of the system fails

• Deadline: a partition exceed the time expected

• Application: error assigned to a partition

Table A.7: SEF requirement # 01.

Identifier SEF#02

Title Error Report

Description The HM shall be able to audit and report all the errors defined in the faults list

Rationale The faults list has defined in the previous requirement

Table A.8: SEF requirement # 02.
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A.3 System table requirements

Identifier SYT#01

Title Health Monitor Composition

Description The HM shall use configuration tables to handle each occurring error

Rationale The HM table is provided by the system integrator in the initialization of the system

by the CMS

Table A.9: SYT requirement # 01.

Identifier SYT#02

Title System Health Monitor Tables Level

Description The system HM table shall define the level of an error (hardware, configuration,

deadline, and application) according to the detected error and the state of the system

Rationale System HM table gives the level of the error associated with the error and state of

the system

Table A.10: SYT requirement # 02.

Identifier SYT#03

Title Secure State Definition

Description The initial state of the system shall be a secure state

Rationale A secure state is a state where the system passes all the previous test functions

Table A.11: SYT requirement # 03.
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A.4 Partition requirements

Identifier PRT#01

Title Partition Attributes

Description Each partition shall have the following attributes:

• Identifier: uniquely defined on a system-wide basis, and used to facilitate

partition activation and message routing

• Memory requirements: defines memory bounds (minimum and maximum quo-

tas) of the partition, with appropriate code/data segregation

• Duration: the amount of processor time given to the partition

Rationale N/A

Table A.12: PRT requirement # 01.

Identifier PRT#02

Title Partition Resources Configuration

Description The resources used by each configuration shall be specified at build time because of

static configuration

Rationale Static configuration change is the only permitted configuration. In this type of con-

figuration partitions and processes are only created during the start-up of the system

Table A.13: PRT requirement # 02.

Identifier PRT#03

Title Partition Minimal Services

Description The system shall have at least two services, SET PARTITION MODE and

GET PARTITION MODE

Rationale These two services will help to deal with the state of the partitions.

SET PARTITION MODE request a change in its operational mode.

GET PARTITION MODE returns the current mode of the partition

Table A.14: PRT requirement # 03.
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Identifier PRT#04

Title Partition Modes

Description The Partition shall have the following modes:

• IDLE: in this mode the partition is not executing any processes within its

allocated partition windows. The partition is not initialized (e.g., none of the

ports associated to the partition are initialized), no processes are executing,

but the time windows allocated to the partition are unchanged

• NORMAL: in this mode the process scheduler is active. All processes have

been created and those that are in the ready state are able to run. The system

is in an operational mode

• ERROR: in this mode the partition is not initialized again because an error

has occurred.

Rationale N/A

Table A.15: PRT requirement # 04.

Identifier PRT#05

Title Partition Independency

Description The operation mode of one partition shall be independent from others partitions

Rationale This requirement is important to guarantee the space partitioning. If the mode of

one partition is independent from others partitions then if one error occurs in one

partition the others should be independent, and continuous working correctly

Table A.16: PRT requirement # 05.

Identifier PRT#06

Title Partition Scheduling in Partitions

Description The schedule shall be fixed for the particular configuration of partitions on the pro-

cessor

Rationale N/A

Table A.17: PRT requirement # 06.
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Identifier PRT#07

Title Partition Scheduling Characteristics

Description The main characteristics of the partition scheduling model shall be:

• The scheduling unit is a partition

• Partitions have no priority

• The scheduling algorithm is predetermined, repetitive with a fixed periodicity,

and is configurable by the system configuration only. At least one partition

window is allocated to each partition during each cycle

Rationale N/A

Table A.18: PRT requirement # 07.

Identifier PRT#08

Title Partition Scheduling Mode Transitions

Description The possible mode transitions shall be:

• IDLE to NORMAL

• NORMAL to IDLE

• NORMAL to ERROR

Rationale N/A

Table A.19: PRT requirement # 08.

Identifier PRT#09

Title Partition Multiple Processes

Description Multiple processes shall be supported within the partition

Rationale Each partition could have multiple processes working inside the partition

Table A.20: PRT requirement # 09.
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Identifier PRT#10

Title Partition Process Isolation

Description The partition shall be responsible for the behavior of its internal processes

Rationale The behavior of one process inside one partition could not affect the correct func-

tionality of other processes in other partition

Table A.21: PRT requirement # 10.

Identifier PRT#11

Title Partition Code

Description Partition code shall execute only in user mode

Rationale System has two modes of working, user mode and privilege mode. In case of partition

code, it should execute in user mode

Table A.22: PRT requirement # 11.

A.5 Process requirements

Identifier PRC#01

Title Processes Allocation

Description Processes shall be created and allocated at partition initialization

Rationale Processes are statically defined at build time

Table A.23: PRC requirement # 01.

Identifier PRC#02

Title Process Creation Unique Time

Description Each process shall only be created once during life of the partition

Rationale N/A

Table A.24: PRC requirement # 02.
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Identifier PRC#03

Title Processes in Partition Behavior

Description A partition shall be able to reinitialize any of its processes at anytime, and shall also

be able to prevent a process from becoming eligible to receive processor resources

Rationale N/A

Table A.25: PRC requirement # 03.

Identifier PRC#04

Title Process Communication Mechanism

Description The mechanisms used by the processes, for inter process communication and syn-

chronization, are also created during the initialization phase, and are not destroyed

Rationale Mechanisms for inter process communication and synchronization are created at ini-

tialization phase. This mechanism has an information flow authorization associated

Table A.26: PRC requirement # 04.

Identifier PRC#05

Title Processes Scheduling Model

Description The main characteristics of the scheduling model used at the partition level shall be:

• One of the main activities of the OS is to arbitrate the competition that

results in a partition when several processes of the partition each want exclusive

control over the processor

• Each process has a priority

• The scheduling algorithm is priority preemptive. If several processes have the

same current priority, the OS selects the oldest one

• Periodic and aperiodic scheduling of processes are both supported

• All the processes within a partition share the resources allocated to the parti-

tion

Rationale Scheduler has two levels, the system level in which the scheduler sees only the parti-

tions and not the processes inside the partition, and the partition level, in which the

scheduler sees the processes inside the partition

Table A.27: PRC requirement # 05.
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A.6 Partition information flow requirements

Identifier PIFP#01

Title Partition Information Flow Policy

Description The system shall have a partition information flow policy (PIFP)

Rationale PIFP is one of the most important properties in the system. It implements the policy

for processes from one partition communicate with processes from others partitions.

It is statically defined and do not change while system is working. It should be

implemented by the system integrator

Table A.28: PIFP requirement # 01.

Identifier PIFP#02

Title Partition Information Flow Policy Enforcement

Description The system shall enforce the PIFP for all possible operations that cause information

flow between partitions

Rationale N/A

Table A.29: PIFP requirement # 02.

Identifier PIFP#03

Title Partition Information Flow Policy in Operations

Description The system shall ensure that all operations that cause any information flow between

partitions are covered by a partition information flow policy

Rationale N/A

Table A.30: PIFP requirement # 03.
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Identifier PIFP#04

Title Partition Information Flow Policy Transparency

Description The data contents of a message are transparent to the message passing system

Rationale The message passing system shall be independent from any partition and process.

This is important to guarantee that when a process sends a message to another

process, the message must remain confidential to other processes

Table A.31: PIFP requirement # 04.

Identifier PIFP#05

Title Partition Information Flow Policy OS Responsibility

Description The OS is responsible for encapsulating and transporting messages, such that the

message arrives at the destination unchanged

Rationale Any fragmentation, segmentation, sequencing and routing of the message data by the

core software, required to transport the data from source to destination, is invisible

to the application(s). The core software is responsible for ensuring the integrity of

the message data i.e., messages should not be corrupted in transmission

Table A.32: PIFP requirement # 05.

Identifier PIFP#06

Title Partition Information Flow Policy Attributes

Description The OS shall enforce the PIFP as a partition abstraction or a least privilege abstrac-

tion based on the flow(s) caused by an operation

Rationale The principles of partition abstraction and least privilege abstraction have been de-

fined. The principle associated to each partition and process depends on the type of

communication. The principle should be defined by the system integrator

Table A.33: PIFP requirement # 06.
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Z models

B.1 Types

The specification starts with the definition of the different types needed for the system.

We separate them into four categories: memory, kernel, partition, and communication.

B.1.1 Memory

The allowed values for the memory addresses are defined in terms of a range. The lower

bound (NullAddr) is the address with the value 0, and the upper bound (MaxAddr) is

the value of the maximum address supported by the processor that will be used; in this

case, it takes the value 2048.

NullAddr ,MaxAddr : 

NullAddr == 0

MaxAddr == 2048

The MemState type is defined below. Each block of memory has only one single state,

out of the two possible, at any time.

MemState ::= FREE | OCCUPIED

This type represents the “state” of a memory block, it represents a free block or an

occupied block of memory. The next schema, Block, is the memory block definition.

109
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Block

Addr : NullAddr . .MaxAddr − 1

Sz : 1 . .MaxAddr

St : MemState

Each Block of memory is constituted by a triplet:

• Addr : is the initial address of the block;

• Sz : defines the size of the block;

• St : represents the state of the block.

B.1.2 Kernel

The processor can run in two distinct ways, with different privileges.

WorkingMode ::= PrivilegeMode | UserMode

The PrivilegeMode is meant to run the operations of the kernel and the UserMode is

used for the partitions to run their operations. With the purpose to initialize the system,

some constants were needed.

KernelSize == 200

PartitionsNumber == 3

PartitionSizeMinValue == 25

PartitionSizeMaxValue == 512

PartitionTimeMinValue == 1

PartitionTimeMaxValue == 5

CommunicationNumber == 3

CommunicationSize == 10

Below, we define each one of the constants above.

• KernelSize: specifies the space occupied by the kernel in memory;

• PartitionsNumber : represents the number of partitions in the system;

• PartitionSizeMinValue: represents the minimum size of a partition;

• PartitionSizeMaxValue: represents the maximum size of a partition;

• PartitionTimeMinValue: represents the minimum duration time of a partition;
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• PartitionTimeMaxValue: represents the maximum duration time of a partition;

• CommunicationNumber : specifies the number of communications supported by

the system;

• CommunicationSize: specifies the maximum size that each communication may

have.

The ReturnCode type identifies the state of the kernel, and is used to verify whether the

kernel is in a normal state (OK ), in an error state (NOK ), or in a context switch state

(CTX ).

ReturnCode ::= OK | NOK | CTX

B.1.3 Partition

The State type represents the state of a partition. Each partition can only assume one

of the states below at any time.

State ::= IDLE | NORMAL | ERROR

The names denote themselves the posible states:

• IDLE : is the state of a partition that is ready to execute but not yet executing;

• NORMAL: is the state of a partition that is currently executing;

• ERROR: is the state of a partition that is not ready to execute, because an error

has occurred.
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The Partition type is, as the name indicates, the definition of a partition.

Partition

ID : 

Duration : 

Addr : 

Size : 

Mode : State

ID > 0

Duration ∈ PartitionTimeMinValue . . PartitionTimeMaxValue

Addr ∈ (KernelSize + CommunicationNumber ∗ CommunicationSize) . . (

MaxAddr − PartitionSizeMinValue)

Size ∈ PartitionSizeMinValue . . PartitionSizeMaxValue

The Partition type is represented by a 5-tuple:

• ID : is the unique identifier of a partition;

• Duration: is the time available for the partition to run;

• Addr : is the initial address of memory for the partition;

• Size: is the size of memory available for the partition;

• Mode: represents the state of a partition.

B.1.4 Communication

In order to implement the desired communication policy, the type FlowMode was created.

FlowMode ::= N | R |W | RW

Their values, as the characters suggest, represent the permission types. They are, re-

spectively: “None”, “Read”, “Write”, and “Read/Write”. Communications within the

same partition are of the “None” type, as it is an inter-partition communication system.
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The Policy type is represented by a triplet and contains the allowed communication

between partitions To and From.

Policy

To : 

From : 

Mode : FlowMode

To = From ⇒ Mode = N

Bellow is presented the schema Communication that represents a communication be-

tween two partitions. It contains the destiny and source partition IDs, the initial address

in the memory, and the size of the communication.

Communication

To : 

From : 

Addr : 

Size : 

Size ∈ 0 . . CommunicationSize

The CommunicationOp type identifies the type of communication. It can be to Send or

to Receive information.

CommunicationOp ::= Send | Receive

B.2 System state

The global state of the system is presented bellow by the Kernel schema.

Kernel

Status : ReturnCode

FirstADDRAvailable : 

FreeMemory : 

Memory : seqBlock

Clock : 

Mode : WorkingMode

Partitions : �Partition

CurrPartition : 

PIFP : �Policy

Communications : �Communication
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The kernel is represented by:

• Status: represents the state of the system, it is updated along the time by the

operations;

• FirstADDRAvailable: assumes the first address of free memory;

• FreeMemory : assumes the size of free memory;

• Memory : is constituted by a sequence of memory blocks;

• Clock : is the representation of the elapsed time;

• Mode: shows the working mode allowed at the moment;

• Partitions: a set with the system partitions;

• CurrPartition: represents the running partition;

• PIFP : a set that contains the communications policies for all the system partitions;

• Communications: a set that contains the communications performed by the sys-

tem.

This global system state is changed, along the time, by the operations executed. These

operations were divided into four categories: 1)Initialization operations: that deal with

the initialization of the system; 2)Partition operations: that comprise the operations

of the partitions; 3)User operations: contain the operations that can run in UserMode;

4)Kernel operations: comprise the operations that can run in PrivilegeMode.
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B.2.1 Initialization operations

The system initialization is divided into different parts. First, the system initializes with

no partitions and with their sets empty, as shown in Init schema.

Init

Kernel ′

Status′ = OK

FirstADDRAvailable′ = NullAddr

FreeMemory ′ = NullAddr

Memory ′ = 〈〉
Clock ′ = 0

Mode′ = PrivilegeMode

Partitions′ = �

CurrPartition ′ = 0

PIFP ′ = �

Communications′ = �

Then, the system initializes the memory, as shown in InitMemory schema. It builds a

block with the size of available memory and allocates memory for the kernel.

InitMemory

∆Kernel

b1, b2 : Block

FirstADDRAvailable = NullAddr

Mode = PrivilegeMode

b1.Addr = NullAddr

b1.Sz = KernelSize

b1.St = OCCUPIED

b2.Addr = b1.Sz

b2.Sz = MaxAddr − b1.Sz

b2.St = FREE

Status′ = Status

FirstADDRAvailable′ = b2.Addr

FreeMemory ′ = b2.Sz

Memory ′ = 〈b1〉 � 〈b2〉
Clock ′ = Clock

Mode′ = Mode

Partitions′ = Partitions

CurrPartition ′ = CurrPartition

PIFP ′ = PIFP

Communications′ = Communications
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After that, the system communications are initialized by InitCommunications schema

with the defined size for communications.

InitCommunications

∆Kernel

b1, b2 : Block

c : Communication

FirstADDRAvailable 6= NullAddr

Mode = PrivilegeMode

#Communications < CommunicationNumber

b1.Addr = FirstADDRAvailable

b1.Sz = CommunicationSize

b1.St = OCCUPIED

b2.Addr = b1.Addr + b1.Sz

b2.Sz = FreeMemory − b1.Sz

b2.St = FREE

c.To = 0

c.From = 0

c.Addr = b1.Addr

c.Size = 0

Status′ = Status

FirstADDRAvailable′ = b2.Addr

FreeMemory ′ = b2.Sz

Memory ′ = front Memory � 〈b1〉 � 〈b2〉
Clock ′ = Clock

Mode′ = Mode

Partitions′ = Partitions

CurrPartition ′ = CurrPartition

PIFP ′ = PIFP

Communications′ = Communications ∪ {c}
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Finally, the PIFP is initialized by InitPIFP schema considering the settled permissions

for the system partitions.

InitPIFP

∆Kernel

p1, p2, p3, p4, p5, p6, p7, p8, p9 : Policy

FirstADDRAvailable 6= NullAddr

Mode = PrivilegeMode

PIFP = �

#Communications = CommunicationNumber

∀ t1, t2 : PIFP • t1.To = t2.To ⇒ t1.From 6= t2.From

p1.To = 1 ∧ p1.From = 1 ∧ p1.Mode = N

p2.To = 1 ∧ p2.From = 2 ∧ p2.Mode = N

p3.To = 1 ∧ p3.From = 3 ∧ p3.Mode = RW

p4.To = 2 ∧ p4.From = 1 ∧ p4.Mode = W

p5.To = 2 ∧ p5.From = 2 ∧ p5.Mode = N

p6.To = 2 ∧ p6.From = 3 ∧ p6.Mode = R

p7.To = 3 ∧ p7.From = 1 ∧ p7.Mode = R

p8.To = 3 ∧ p8.From = 2 ∧ p8.Mode = RW

p9.To = 3 ∧ p9.From = 3 ∧ p9.Mode = N

Status′ = Status

FirstADDRAvailable′ = FirstADDRAvailable

FreeMemory ′ = FreeMemory

Memory ′ = Memory

Clock ′ = Clock

Mode′ = Mode

Partitions′ = Partitions

CurrPartition ′ = CurrPartition

PIFP ′ = {p1, p2, p3, p4, p5, p6, p7, p8, p9}
Communications′ = Communications

The initialization process is represented below by the InitSystem operation. It is the

combination of all the initializations described above.

InitSystem =̂ Init � InitMemory � InitCommunications � InitPIFP
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B.2.2 Partiton operations

The NewPartition schema creates a new partition in the system. For this purpose, it

receives the ID (id? ), the duration (d? ), and the size (s? ) as parameters.

NewPartition

∆Kernel

id?, d?, s? : 

b1, b2 : Block

p : Partition

Mode = PrivilegeMode

#Partitions < PartitionsNumber

PIFP 6= �

∀ pr : Partition | pr ∈ Partitions • pr .ID 6= id?

id? ∈ 1 . . PartitionsNumber

d? ∈ PartitionTimeMinValue . . PartitionTimeMaxValue

s? ∈ PartitionSizeMinValue . . PartitionSizeMaxValue

s? ∈ 1 . . FreeMemory

b1.Addr = FirstADDRAvailable

b1.Sz = s?

b1.St = OCCUPIED

b2.Addr = FirstADDRAvailable + b1.Sz

b2.Sz = FreeMemory − b1.Sz

b2.St = FREE

p /∈ Partitions

p.ID = id?

p.Duration = d?

p.Addr = FirstADDRAvailable

p.Size = s?

p.Mode = IDLE

Status′ = Status

FirstADDRAvailable′ = b2.Addr

FreeMemory ′ = b2.Sz

Memory ′ = front Memory � 〈b1〉 � 〈b2〉
Clock ′ = Clock

Mode′ = Mode

Partitions′ = Partitions ∪ {p}
CurrPartition ′ = CurrPartition

PIFP ′ = PIFP

Communications′ = Communications
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In PartitonResumes schema, a partition that is ready (the CurrPartition) enters the

critical section and is then activated - its mode is changed from IDLE to NORMAL.

The partition can only become active if no other partition is active.

PartitonResumes

∆Kernel

p1, p2 : Partition

Status = OK

Mode = PrivilegeMode

#Partitions = PartitionsNumber

¬ (∃ p : Partition | p ∈ Partitions • p.Mode = NORMAL)

p1 ∈ Partitions

p1.ID = CurrPartition

p1.Mode = IDLE

p2.ID = p1.ID

p2.Duration = p1.Duration

p2.Addr = p1.Addr

p2.Size = p1.Size

p2.Mode = NORMAL

Status′ = Status

FirstADDRAvailable′ = FirstADDRAvailable

FreeMemory ′ = FreeMemory

Memory ′ = Memory

Clock ′ = Clock

Mode′ = UserMode

Partitions′ = (Partitions \ {p1}) ∪ {p2}
CurrPartition ′ = CurrPartition

PIFP ′ = PIFP

Communications′ = Communications
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In PartitonSuspends schema, the active partition (the CurrPartition) leaves the critical

section - its mode is changed from NORMAL to IDLE. This operation is used when the

partition time slice is over. The system state is changed to CTX, in order to represent

a context switch.

PartitonSuspends

∆Kernel

p1, p2 : Partition

Status = OK

Mode = PrivilegeMode

#Partitions = PartitionsNumber

p1 ∈ Partitions

p1.ID = CurrPartition

p1.Mode = NORMAL

p1.Duration = Clock

p2.ID = p1.ID

p2.Duration = p1.Duration

p2.Addr = p1.Addr

p2.Size = p1.Size

p2.Mode = IDLE

Status′ = CTX

FirstADDRAvailable′ = FirstADDRAvailable

FreeMemory ′ = FreeMemory

Memory ′ = Memory

Clock ′ = Clock

Mode′ = Mode

Partitions′ = (Partitions \ {p1}) ∪ {p2}
CurrPartition ′ = CurrPartition

PIFP ′ = PIFP

Communications′ = Communications
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The CurrPartitonError schema is an operation that is performed when the kernel is in

NOK state. It puts the CurrPartition in the ERROR mode, so that this partition can

not be rescheduled again. As in the previous operation, the system state is changed to

CTX, in order to represent a context switch.

CurrPartitonError

∆Kernel

p1, p2 : Partition

Status = NOK

Mode = PrivilegeMode

#Partitions = PartitionsNumber

CurrPartition > 0

∃ p : Partition | p ∈ Partitions • p.Mode = NORMAL

p1 ∈ Partitions

p1.ID = CurrPartition

p2.ID = p1.ID

p2.Duration = p1.Duration

p2.Addr = p1.Addr

p2.Size = p1.Size

p2.Mode = ERROR

Status′ = CTX

FirstADDRAvailable′ = FirstADDRAvailable

FreeMemory ′ = FreeMemory

Memory ′ = Memory

Clock ′ = p1.Duration

Mode′ = Mode

Partitions′ = (Partitions \ {p1}) ∪ {p2}
CurrPartition ′ = CurrPartition

PIFP ′ = PIFP

Communications′ = Communications
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The GetDuration schema, does not change the system state. This is a read operation

and it returns the allowed duration (the time slice) of a given partition.

GetDuration

ΞKernel

id? : 

time! : 

p : Partition

Status = OK

Mode = PrivilegeMode

#Partitions = PartitionsNumber

time! = p.Duration

p ∈ Partitions

p.ID = id?
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B.2.3 User operations

For the purpose of this work, both the read and write operations were implemented as

a single operation, ReadWrite. This was because the concern is only on whether the

operation can access a particular memory space. The ReadWrite operation receives, as

parameters, the address (a? ) and the size (s? ) of memory that it wants to access. If

the desired memory space belongs to the CurrPartition, the system state remains OK,

otherwise, it is changed to NOK.

ReadWrite

∆Kernel

a? : 

s? : 

p : Partition

Status = OK

Mode = UserMode

s? > 0

p ∈ Partitions

p.ID = CurrPartition

p.Mode = NORMAL

Status′ = if (p.Addr ≤ a? ∧ (p.Addr + p.Size ≥ a? + s?))

then (OK ) else (NOK )

FirstADDRAvailable′ = FirstADDRAvailable

FreeMemory ′ = FreeMemory

Memory ′ = Memory

Clock ′ = Clock

Mode′ = Mode

Partitions′ = Partitions

CurrPartition ′ = CurrPartition

PIFP ′ = PIFP

Communications′ = Communications
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The CheckPIFP operation checks whether a given communication is allowed by the

PIFP table, i.e. it meets the PIFP policy of the system. The operation verifies if there

is any permission for the communication between the CurrPartition and the partition

with the ID specified (id? ). If so, the system state remains OK, it is changed to NOK

otherwise. If op? equals to Send, then the policy mode can be RW or W ; on the other

hand, if op? equals to Receive, then the policy mode can be RW or R.

CheckPIFP

∆Kernel

op? : CommunincationOp

id? : 

p : Policy

Status = OK

Mode = UserMode

p ∈ PIFP

p.To = if op? = Send then id? else CurrPartition

p.From = if op? = Send then CurrPartition else id?

Status′ = if ((op? = Send ∧ (p.Mode = RW ∨ p.Mode = W )) ∨
(op? = Receive ∧ (p.Mode = RW ∨ p.Mode = R)))

then (OK ) else (NOK )

FirstADDRAvailable′ = FirstADDRAvailable

FreeMemory ′ = FreeMemory

Memory ′ = Memory

Clock ′ = Clock

Mode′ = Mode

Partitions′ = Partitions

CurrPartition ′ = CurrPartition

PIFP ′ = PIFP

Communications′ = Communications
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Next, we present the communication operations meant to send or to receive a message,

respectively ComSend and ComReceive schemas. The ComSend operation accepts two

parameters, the ID of the partition to where the message is supposed to be sent (to? ),

and the size of the message (s? ). If the communication memory has enough space to

perform the send operation then the kernel state remains OK, it is changed to NOK

otherwise.

ComSend

∆Kernel

to? : 

s? : 

c1, c2 : Communication

Status = OK

Mode = UserMode

∃ p : Partition | p ∈ Partitions • p.ID = to?

to? 6= CurrPartition

s? > 0

c1 ∈ Communications

c1.To = 0 ∨ c1.To = to?

c2.To = to?

c2.From = CurrPartition

c2.Addr = c1.Addr

c2.Size = if ((c1.Size + s?) ≤ CommunicationSize)

then (c1.Size + s?) else (0)

Status′ = if (c2.Size > 0) then (OK ) else (NOK )

FirstADDRAvailable′ = FirstADDRAvailable

FreeMemory ′ = FreeMemory

Memory ′ = Memory

Clock ′ = Clock

Mode′ = Mode

Partitions′ = Partitions

CurrPartition ′ = CurrPartition

PIFP ′ = PIFP

Communications′ = if (Status′ = OK )

then ((Communications \ {c1}) ∪ {c2})
else (Communications)



Appendix B. Z models 126

The ComReceive operation accepts one input parameter that represents the ID of the

partition from where the message comes (from? ). This operation returns the initial

memory address of the message. However, if it tries to access a partition that was not

included in the communication, then the kernel state is changed to NOK.

ComReceive

∆Kernel

from? : 

a! : 

c : Communication

Status = OK

Mode = UserMode

CurrPartition 6= 0

a! = if (Status′ = OK ) then (c.Addr) else (0)

c ∈ Communications

Status′ = if (c.To = CurrPartition ∧ c.From = from?) then

(OK ) else (NOK )

FirstADDRAvailable′ = FirstADDRAvailable

FreeMemory ′ = FreeMemory

Memory ′ = Memory

Clock ′ = Clock

Mode′ = Mode

Partitions′ = Partitions

CurrPartition ′ = CurrPartition

PIFP ′ = PIFP

Communications′ = Communications

The operations to perform communications require permission from PIFP policy to

execute, therefore the operations can be summarized as below.

Send(to?, s?) =̂ CheckPIFP(Send , to?) � ComSend(to?, s?)

and

Receive(from?, a!) =̂ CheckPIFP(Receive, from?) � ComReceive(from?, a!)
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B.2.4 Kernel operations

After the completion of the initialization, if all went well (Status = OK ), the kernel

starts with the schema presented below. This operation picks one of the partitions and

assigns its ID to the CurrPartition.

StartKernel

∆Kernel

p : Partition

Status = OK

Mode = PrivilegeMode

#Partitions = PartitionsNumber

CurrPartition = NullAddr

p ∈ Partitions

Status′ = Status

FirstADDRAvailable′ = FirstADDRAvailable

FreeMemory ′ = FreeMemory

Memory ′ = Memory

Clock ′ = Clock

Mode′ = Mode

Partitions′ = Partitions

CurrPartition ′ = p.ID

PIFP ′ = PIFP

Communications′ = Communications

In order to complete the step of starting the kernel, it is necessary to perform the

PartitionResumes operation. The complete step to start the kernel is shown below.

Start =̂ StartKernel � PartitionResumes
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The UpdateComTable schema is utilized to update the communication table, deleting

the entries that have both a To partition that has just run, and a To partition that has

in ERROR mode. This operation is performed in the context switch mechanism.

UpdateComTable

∆Kernel

p : Partition

c1, c2 : Communication

Status = CTX

Mode = PrivilegeMode

p ∈ Partitions

p.Mode = ERROR

c1 ∈ Communications

c1.To = CurrPartition ∨ c1.To = p.ID

c2.To = 0

c2.From = 0

c2.Addr = c1.Addr

c2.Size = CommunicationSize

Status′ = Status

FirstADDRAvailable′ = FirstADDRAvailable

FreeMemory ′ = FreeMemory

Memory ′ = Memory

Clock ′ = Clock

Mode′ = Mode

Partitions′ = Partitions

CurrPartition ′ = CurrPartition

PIFP ′ = PIFP

Communications′ = (Communications \ {c1}) ∪ {c2}
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The Scheduler schema resets the Clock to zero and changes the CurrPartition to one

partition that is in IDLE mode. If there is not exist any partition in IDLE mode then

the kernel state is changed to NOK.

Scheduler

∆Kernel

p : Partition

Status = CTX

Mode = PrivilegeMode

Status′ = if (∃ prt : Partition | prt ∈ Partitions • prt .Mode = IDLE ∧ prt .ID = p.ID)

then (OK ) else (NOK )

FirstADDRAvailable′ = FirstADDRAvailable

FreeMemory ′ = FreeMemory

Memory ′ = Memory

Clock ′ = 0

Mode′ = Mode

Partitions′ = Partitions

CurrPartition ′ = if (Status′ = OK ) then (p.ID) else (0)

PIFP ′ = PIFP

Communications′ = Communications

This Scheduler schema is part of the ContextSwitch mechanism presented below.

ContextSwitch =̂ (PartitionSuspends ∨ CurrPartitonError) � UpdateComTable �

Scheduler � PartitionResumes

In this operation, either the PartitionSuspends or the CurrPartitonError is performed

according to the kernel state is OK or NOK respectively.
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The ChangeMode operation modifies the kernel Mode, it is changed between Privilege-

Mode and UserMode.

ChangeMode

∆Kernel

CurrPartition 6= 0

Status′ = Status

FirstADDRAvailable′ = FirstADDRAvailable

FreeMemory ′ = FreeMemory

Memory ′ = Memory

Clock ′ = Clock

Mode′ = if (Mode = PrivilegeMode)

then (UserMode) else (PrivilegeMode)

Partitions′ = Partitions

CurrPartition ′ = CurrPartition

PIFP ′ = PIFP

Communications′ = Communications

The Tick operation has the purpose to give a tick of the CPU clock (the kernel Clock

is increased in one unit), an interrupt is made, and the kernel Mode is changed to the

PrivilegeMode.

Tick

∆Kernel

Mode = UserMode

Status′ = Status

FirstADDRAvailable′ = FirstADDRAvailable

FreeMemory ′ = FreeMemory

Memory ′ = Memory

Clock ′ = Clock + 1

Mode′ = PrivilegeMode

Partitions′ = Partitions

CurrPartition ′ = CurrPartition

PIFP ′ = PIFP

Communications′ = Communications
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SPARK packages

C.1 DefaultValues

1 package DefaultValues i s

2

3 Name Of Conf igurat ion Fi le : constant St r ing := ” . / c o n f i g F i l e . dat” ;

4

5 Memory Size : constant := 2048 ;

6 Kerne lS i ze : constant := 512 ;

7

8 Number Of Part it ions : constant := 5 ;

9 Part i t ionSizeMinValue : constant := 100 ;

10 Part it ionSizeMaxValue : constant := 1024 ;

11 PartitionMaxTime : constant := 3600 ;

12 Number Of Processes Per Part i t ion : constant := 2 ;

13

14 Number Of Communications Blocks : constant := 3 ;

15 CommunicationsBlockSizeMinValue : constant := 1 ;

16 CommunicationsBlockSizeMaxValue : constant := 30 ;

17

18 Partit ionsExecutionNumber : constant := 6 ;

19

20 end DefaultValues ;

Code Listing C.1: DefaultValues package

C.2 PartitionTypes

1 with DefaultValues ;

2 --# inherit DefaultValues ;

131
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3 package Part i t ionTypes i s

4

5 type Part it ion Mode i s (IDLE , NORMAL, ERROR) ;

6

7 subtype Part i t i onS i z eAl l owVa lues i s I n t eg e r range ←↩

DefaultValues . Part i t ionSizeMinValue . . DefaultValues . Part it ionSizeMaxValue ;

8 subtype ReadWriteAllowValues i s I n t eg e r range 1 . . ←↩

DefaultValues . Part it ionSizeMaxValue ;

9 subtype AddrAllowValues i s I n t eg e r range 0 . . DefaultValues . Memory Size ;

10

11 type Tuple i s record

12 i n i t : AddrAllowValues ;

13 sz : Par t i t i onS i zeA l l owVa lues ;

14 end record ;

15

16 type Tuple2 i s record

17 i n i t : AddrAllowValues ;

18 sz : ReadWriteAllowValues ;

19 end record ;

20

21 subtype Index Range i s I n t eg e r range 1 . . ←↩

DefaultValues . Number Of Communications Blocks ;

22 type Communication Mode i s (FREE, READ, WRITE, BLOCKED) ;

23 type Communication i s array ( Index Range ) of Communication Mode ;

24

25 subtype IdType i s I n t eg e r range 0 . . DefaultValues . Number Of Part it ions ;

26

27 subtype Partit ionsNumber i s I n t eg e r range 1 . . ←↩

DefaultValues . Number Of Part it ions ;

28

29 type OperationType i s ( OP Nothing , OP Communication , OP ReadWrite ) ;

30

31 subtype CommunicationMode i s Communication Mode range READ . . WRITE;

32

33 subtype CommunicationsBlockSizeAllowValues i s I n t eg e r range ←↩

DefaultValues . CommunicationsBlockSizeMinValue . . ←↩

DefaultValues . CommunicationsBlockSizeMaxValue ;

34

35 subtype SizeOfCommunication i s I n t eg e r range ←↩

CommunicationsBlockSizeAllowValues ’ F i r s t . . ←↩

DefaultValues . Number Of Communications Blocks ∗ ←↩

CommunicationsBlockSizeAllowValues ’ Last ;

36 subtype SizeOfCommunication2 i s I n t eg e r range 0 . . ←↩

DefaultValues . Number Of Communications Blocks ∗ ←↩

CommunicationsBlockSizeAllowValues ’ Last ;

37

38 type ProcessesType i s record

39 operat ion : OperationType ;

40 blk : Tuple2 ;

41 mode : CommunicationMode ;

42 s i z e : SizeOfCommunication ;

43 to : Partit ionsNumber ;

44 end record ;

45
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46 subtype Index Range Proce s s e s Pe r Par t i t i t on i s I n t eg e r range 1 . . ←↩

DefaultValues . Number Of Processes Per Part i t ion ;

47 type P r o c e s s e s L i s t i s array ( Index Range Proce s s e s Pe r Par t i t i t on ) of ←↩

ProcessesType ;

48 subtype Par t i t i on Dura t i on i s I n t eg e r range 1 . . ←↩

DefaultValues . PartitionMaxTime ;

49

50 type P a r t i t i o n i s record

51 ID : IdType ;

52 MemoryBounds : Tuple ;

53 Duration : Par t i t i on Dura t i on ;

54 Mode : Part it ion Mode ;

55 Proce s s e s : P r o c e s s e s L i s t ;

56 Com : Communication ;

57 end record ;

58

59 end Part i t ionTypes ;

Code Listing C.2: PartitionTypes package

C.3 PRT

Specification

1 with Part i t ionTypes ;

2 --# inherit PartitionTypes ;

3 package PRT i s

4

5 function GetID (P : Part i t ionTypes . P a r t i t i o n ) return Par t i t i on type s . IdType ;

6 --# return P. ID ;

7

8 function GetDuration (P : Part i t ionTypes . P a r t i t i o n ) return ←↩

Part i t ionTypes . Par t i t i on Dura t i on ;

9 --# return P. Duration ;

10

11 function GetPartitionMode (P : Part i t ionTypes . P a r t i t i o n ) return ←↩

Part i t ionTypes . Part it ion Mode ;

12 --# return P. Mode ;

13

14 procedure SetPart it ionMode (P : in out Part i t ionTypes . P a r t i t i o n ;

15 Mode Part it ion : in ←↩

Part i t ionTypes . Part it ion Mode ) ;

16 --# derives P from P , Mode_Partition ;

17 --# post P. ID = P ~. ID and

18 --# P. MemoryBounds = P ~. MemoryBounds and

19 --# P. Duration = P ~. Duration and

20 --# P. Mode = Mode_Partition and

21 --# P. Processes = P ~. Processes and

22 --# P. Com = P ~. Com ;

23

24 procedure I n i t (P : out Part i t ionTypes . P a r t i t i o n ;
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25 ID Par t i t i on : in Part i t ionTypes . IdType ;

26 MemoryBounds Partition : in Part i t ionTypes . Tuple ;

27 Durat i on Par t i t i on : in Part i t ionTypes . Par t i t i on Dura t i on ;

28 Mode Part it ion : in Part i t ionTypes . Part it ion Mode ;

29 Proc : in Part i t ionTypes . P r o c e s s e s L i s t ) ;

30 --# derives P from ID_Partition , MemoryBounds_Partition , ←↩

Duration_Partition , Mode_Partition , Proc ;

31 --# post P. ID = ID_Partition and

32 --# P. MemoryBounds = MemoryBounds_Partition and

33 --# P. Duration = Duration_Partition and

34 --# P. Mode = Mode_Partition and

35 --# P. Processes = Proc and

36 --# P. Com = PartitionTypes . Communication ’( PartitionTypes . Index_Range ←↩

=> PartitionTypes . BLOCKED );

37

38 procedure ClearCommunicationList (P : in out Part i t ionTypes . P a r t i t i o n ) ;

39 --# derives P from P;

40 --# post P. ID = P ~. ID and

41 --# P. MemoryBounds = P ~. MemoryBounds and

42 --# P. Duration = P ~. Duration and

43 --# P. Mode = P ~. Mode and

44 --# P. Processes = P ~. Processes and

45 --# P. Com = PartitionTypes . Communication ’( PartitionTypes . Index_Range ←↩

=> PartitionTypes . BLOCKED );

46

47 end PRT;

Code Listing C.3: PRT specification package

Body

1 package body PRT i s

2

3 function GetID (P : Part i t ionTypes . P a r t i t i o n ) return Par t i t i on type s . IdType i s

4 begin

5 return P. ID ;

6 end GetID ;

7

8 function GetDuration (P : Part i t ionTypes . P a r t i t i o n ) return ←↩

Part i t ionTypes . Par t i t i on Dura t i on i s

9 begin

10 return P. Duration ;

11 end GetDuration ;

12

13 function GetPartitionMode (P : Part i t ionTypes . P a r t i t i o n ) return ←↩

Part i t ionTypes . Part it ion Mode i s

14 begin

15 return P. Mode ;

16 end GetPartitionMode ;

17

18 procedure SetPart it ionMode (P : in out Part i t ionTypes . P a r t i t i o n ;

19 Mode Part it ion : in ←↩

Part i t ionTypes . Part it ion Mode ) i s
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20 begin

21 P. ID := P. ID ;

22 P. MemoryBounds := P. MemoryBounds ;

23 P. Duration := P. Duration ;

24 P. Mode := Mode Part it ion ;

25 P.Com := P.Com;

26 P. Proce s s e s := P. Proce s s e s ;

27 end SetPart it ionMode ;

28

29 procedure I n i t (P : out Part i t ionTypes . P a r t i t i o n ;

30 ID Par t i t i on : in Part i t ionTypes . IdType ;

31 MemoryBounds Partition : in Part i t ionTypes . Tuple ;

32 Durat i on Par t i t i on : in Part i t ionTypes . Par t i t i on Dura t i on ;

33 Mode Part it ion : in Part i t ionTypes . Part it ion Mode ;

34 Proc : in Part i t ionTypes . P r o c e s s e s L i s t ) i s

35 begin

36 P. ID := ID Par t i t i on ;

37 P. MemoryBounds := MemoryBounds Partition ;

38 P. Duration := Durat i on Par t i t i on ;

39 P. Mode := Mode Part it ion ;

40 P. Proce s s e s := Proc ;

41 P.Com := Part i t ionTypes . Communication ’ ( Part i t ionTypes . Index Range => ←↩

Part i t ionTypes .BLOCKED) ;

42 end I n i t ;

43

44 procedure ClearCommunicationList (P : in out Part i t ionTypes . P a r t i t i o n ) i s

45 begin

46 P. ID := P. ID ;

47 P. MemoryBounds := P. MemoryBounds ;

48 P. Duration := P. Duration ;

49 P. Mode := P. Mode ;

50 P.Com := Part i t ionTypes . Communication ’ ( Part i t ionTypes . Index Range => ←↩

Part i t ionTypes .BLOCKED) ;

51 end ClearCommunicationList ;

52

53 end PRT;

Code Listing C.4: PRT body package

C.4 TablesTypes

1 with DefaultValues , Part i t ionTypes ;

2 --# inherit DefaultValues , PartitionTypes ;

3 package TablesTypes i s

4

5 type Par t i t i on sTab l e i s array ( Part i t ionTypes . Partit ionsNumber ) of ←↩

Part i t ionTypes . P a r t i t i o n ;

6

7 type Blocks Sta te i s (FREE, OCCUPIED) ;

8

9 type TupleCommunication i s record

10 i n i t : Part i t ionTypes . AddrAllowValues ;
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11 sz : Part i t ionTypes . CommunicationsBlockSizeAllowValues ;

12 end record ;

13

14 type CommunicationState i s record

15 Blk : TupleCommunication ;

16 State : B locks Sta te ;

17 From Part i t ion : Part i t ionTypes . IdType ;

18 To Part i t i on : Part i t ionTypes . Partit ionsNumber ;

19 Mode : Part i t ionTypes . CommunicationMode ;

20 FreeS i ze : Natural ;

21 end record ;

22

23 subtype CommunicationsBlocksNumber i s I n t eg e r range 1 . . ←↩

DefaultValues . Number Of Communications Blocks ;

24

25 type CommunicationsTable i s array ( CommunicationsBlocksNumber ) of ←↩

CommunicationState ;

26

27 type FlowMode i s (R, W, RW, N) ;

28

29 type P a r t i t i o n s i s array ( Part i t ionTypes . Partit ionsNumber ) of FlowMode ;

30

31 type PIFPTable i s array ( Part i t ionTypes . Partit ionsNumber ) of P a r t i t i o n s ;

32

33 subtype Part i t i onsExecut ionIndex i s I n t eg e r range 1 . . ←↩

DefaultValues . Partit ionsExecutionNumber ;

34

35 type Part i t ionsExecut ionSequenceTable i s array ( Par t i t i onsExecut ionIndex ) ←↩

of Part i t ionTypes . Partit ionsNumber ;

36

37 end TablesTypes ;

Code Listing C.5: TablesTypes package

C.5 HardwareTypes

1 with DefaultValues ;

2 --# inherit DefaultValues ;

3 package HardwareTypes i s

4

5 NullAddr : constant := 0 ;

6

7 subtype Memory Range i s I n t eg e r range NullAddr . . DefaultValues . Memory Size ;

8

9 type State i s (FREE, OCCUPIED) ;

10

11 type Block i s record

12 Addr : Memory Range ;

13 Sz : Memory Range ;

14 St : State ;

15 end record ;

16
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17 type PhysicalMemory i s array ( Memory Range ) of Block ;

18

19 end HardwareTypes ;

Code Listing C.6: HardwareTypes package

C.6 ErrorTypes

1 package ErrorTypes i s

2

3 type Faults i s ( Hardware , Conf igurat ion , Deadline , Appl i cat ion ) ;

4 type State i s ( NoError , Error ) ;

5 type ErrorsTable i s array ( Faults ) of State ;

6

7 end ErrorTypes ;

Code Listing C.7: ErrorTypes package

C.7 SEF

Specification

1 with ErrorTypes ;

2 --# inherit ErrorTypes ;

3 package SEF

4 --# own Errors_Table ;

5 --# initializes Errors_Table ;

6 i s

7

8 Errors Table : ErrorTypes . ErrorsTable := ←↩

ErrorTypes . ErrorsTable ’ ( ErrorTypes . Faults => ErrorTypes . NoError ) ;

9

10 procedure Error ( Fault : in ErrorTypes . Faults ) ;

11 --# global in out Errors_Table ;

12 --# derives Errors_Table from Errors_Table , Fault ;

13 --# post Errors_Table ( Fault ) = ErrorTypes . Error ;

14

15 end SEF ;

Code Listing C.8: SEF specification package

Body

1 package body SEF i s

2

3 procedure Error ( Fault : in ErrorTypes . Faults ) i s

4 begin
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5 Errors Table ( Fault ) := ErrorTypes . Error ;

6 end Error ;

7

8 end SEF ;

Code Listing C.9: SEF body package

C.8 Hardware

Specification

1 with HardwareTypes , DefaultValues ;

2 use type HardwareTypes . State ;

3 --# inherit HardwareTypes , DefaultValues ;

4 package Hardware

5 --# own Mem ;

6 --# initializes Mem ;

7 i s

8

9 function CanAllocate (S : HardwareTypes . Memory Range ) return Boolean ;

10 --# global Mem ;

11

12 procedure AllocBlock (S : in HardwareTypes . Memory Range ;

13 A : out HardwareTypes . Memory Range ;

14 OK : out Boolean ) ;

15 --# global in out Mem ;

16 --# derives Mem from Mem , S &

17 --# A from Mem , S &

18 --# OK from Mem , S ;

19

20 procedure I n i t ( S i z e : in I n t eg e r ; Success : out Boolean ) ;

21 --# global Mem ;

22 --# derives Mem from Size &

23 --# Success from Size ;

24

25 end Hardware ;

Code Listing C.10: Hardware specification package

Body

1 package body Hardware

2 --# own Mem is M , First_ADDR_Available , Free_Memory ;

3 i s

4

5 M : HardwareTypes . PhysicalMemory := ←↩

HardwareTypes . PhysicalMemory ’ ( HardwareTypes . Memory Range => ←↩

HardwareTypes . Block ’ ( Addr => HardwareTypes . Memory Range ’ F i r s t , Sz => ←↩

HardwareTypes . Memory Range ’ F i r s t , St => HardwareTypes .FREE) ) ;
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6

7 First ADDR Available : HardwareTypes . Memory Range := ←↩

HardwareTypes . Memory Range ’ F i r s t ;

8

9 Free Memory : HardwareTypes . Memory Range := ←↩

HardwareTypes . Memory Range ’ f i r s t ;

10

11 function CanAllocate (S : HardwareTypes . Memory Range ) return Boolean

12 --# global Free_Memory ;

13 --# return Free_Memory >= S;

14 i s

15 r : Boolean ;

16 begin

17 r := False ;

18 i f Free Memory >= S then r := True ; end i f ;

19 return r ;

20 end CanAllocate ;

21

22 procedure AllocBlock (S : in HardwareTypes . Memory Range ;

23 A : out HardwareTypes . Memory Range ;

24 OK : out Boolean )

25 --# global in out Free_Memory , First_ADDR_Available , M;

26 --# derives M from M , S , Free_Memory , First_ADDR_Available &

27 --# A from M , First_ADDR_Available , S , Free_Memory &

28 --# First_ADDR_Available from First_ADDR_Available , S , ←↩

Free_Memory , M &

29 --# Free_Memory from Free_Memory , S , First_ADDR_Available , M &

30 --# OK from S , Free_Memory , First_ADDR_Available , M;

31 --# post ( OK -> (( A = M( First_ADDR_Available ~) . Addr ) and

32 --# CanAllocate (S , Free_Memory ~) and

33 --# ( Free_Memory = Free_Memory ~ - S) and

34 --# (M( First_ADDR_Available ~) . Sz = S) and

35 --# (M( First_ADDR_Available ~) . St = HardwareTypes . OCCUPIED ) and

36 --# ( First_ADDR_Available = First_ADDR_Available ~ + 1) and

37 --# (M( First_ADDR_Available ). Addr = ←↩

M( First_ADDR_Available ~) . Addr + S) and

38 --# (M( First_ADDR_Available ). Sz = Free_Memory )));

39 i s

40 begin

41 A := 0 ;

42 OK := False ;

43 i f ( CanAllocate (S) and Free Memory − S >= 0 and First ADDR Available ←↩

<= HardwareTypes . Memory Range ’ Last − 1 and M( First ADDR Available ) . Addr ←↩

+ S <= HardwareTypes . Memory Range ’ Last ) then

44 M( First ADDR Available ) . St := HardwareTypes .OCCUPIED;

45 M( First ADDR Available ) . Sz := S ;

46 A := M( First ADDR Available ) . Addr ;

47 M( First ADDR Available + 1) . Addr := M( First ADDR Available ) . Addr + S ;

48 First ADDR Available := First ADDR Available + 1 ;

49 Free Memory := Free Memory − S ;

50 M( First ADDR Available ) . Sz := Free Memory ;

51 OK := True ;

52 end i f ;

53 end AllocBlock ;
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54

55 procedure I n i t ( S i z e : in I n t eg e r ; Success : out Boolean )

56 --# global out M , Free_Memory , First_ADDR_Available ;

57 --# derives First_ADDR_Available from Size &

58 --# Free_Memory , M from Size &

59 --# Success from Size ;

60 --# post ( Success -> ( Size <= DefaultValues . Memory_Size and

61 --# First_ADDR_Available = 0 and

62 --# Free_Memory = Size and

63 --# (M = ←↩

HardwareTypes . PhysicalMemory ’( HardwareTypes . Memory_Range => ←↩

HardwareTypes . Block ’( Addr => 0, Sz => Size , St => HardwareTypes . FREE )))));

64 i s

65 begin

66 Success := False ;

67 First ADDR Available := 1 ;

68 Free Memory := 1 ;

69 M := HardwareTypes . PhysicalMemory ’ ( HardwareTypes . Memory Range => ←↩

HardwareTypes . Block ’ ( Addr => 0 , Sz => 1 , St => HardwareTypes .FREE) ) ;

70 i f ( S i z e >= 1 and S i z e <= DefaultValues . Memory Size ) then

71 First ADDR Available := 0 ;

72 Free Memory := S i z e ;

73 M := HardwareTypes . PhysicalMemory ’ ( HardwareTypes . Memory Range => ←↩

HardwareTypes . Block ’ ( Addr => 0 , Sz => Size , St => HardwareTypes .FREE) ) ;

74 Success := True ;

75 end i f ;

76 end I n i t ;

77

78 end Hardware ;

Code Listing C.11: Hardware body package

C.9 CMS

Specification

1 with Part it ionTypes , SYT, Hardware , DefaultValues , ConfigValues , SEF, ←↩

ErrorTypes , TablesTypes ;

2 use type Part i t ionTypes . CommunicationMode ;

3 --# inherit PartitionTypes , SYT , Hardware , DefaultValues , ConfigValues , SEF , ←↩

ErrorTypes , TablesTypes ;

4 package CMS i s

5

6 procedure In i tSystem ( Status : out Boolean ) ;

7 --# global in out SYT . Communications_Table , ConfigValues . Partition_State , ←↩

ConfigValues . FileState , ConfigValues . Size_Of_Blocks_For_Communication , ←↩

SEF . Errors_Table ;

8 --# in out SYT . Partitions_Table ;

9 --# out Hardware . Mem ;

10 --# in out SYT . PartitionsExecutionSequence_Table ;

11 --# in out ConfigValues . Partitions_Execution_Sequence ;
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12 --# in out SYT . PIFP_Table ;

13 --# in out ConfigValues . PIFP_Line ;

14 --# derives SYT . Partitions_Table from SYT . Partitions_Table , ←↩

ConfigValues . FileState &

15 --# SYT . Communications_Table from SYT . Communications_Table , ←↩

ConfigValues . Size_Of_Blocks_For_Communication , ConfigValues . FileState &

16 --# Hardware . Mem from ←↩

ConfigValues . Size_Of_Blocks_For_Communication , ConfigValues . FileState &

17 --# ConfigValues . Partition_State from ←↩

ConfigValues . Partition_State , ConfigValues . FileState &

18 --# ConfigValues . FileState from ConfigValues . FileState &

19 --# ConfigValues . Size_Of_Blocks_For_Communication from ←↩

ConfigValues . Size_Of_Blocks_For_Communication , ConfigValues . FileState &

20 --# SEF . Errors_Table from SEF . Errors_Table , ←↩

ConfigValues . FileState &

21 --# Status from ConfigValues . FileState &

22 --# SYT . PartitionsExecutionSequence_Table from ←↩

SYT . PartitionsExecutionSequence_Table , ConfigValues . FileState &

23 --# ConfigValues . Partitions_Execution_Sequence from ←↩

ConfigValues . FileState , ConfigValues . Partitions_Execution_Sequence &

24 --# SYT . PIFP_Table from SYT . PIFP_Table , ConfigValues . FileState , ←↩

ConfigValues . PIFP_Line &

25 --# ConfigValues . PIFP_Line from ConfigValues . PIFP_Line , ←↩

ConfigValues . FileState ;

26

27 procedure RunProcesses ( cu r r en tPa r t i t i on ID : in ←↩

Part i t ionTypes . Partit ionsNumber ;

28 OK : out Boolean ) ;

29 --# global in out SYT . Communications_Table , SYT . Partitions_Table , ←↩

SEF . Errors_Table ;

30 --# derives SYT . Communications_Table from SYT . Partitions_Table , ←↩

SYT . Communications_Table , currentPartition_ID &

31 --# OK from currentPartition_ID , SYT . Communications_Table , ←↩

SYT . Partitions_Table &

32 --# SYT . Partitions_Table from SYT . Partitions_Table , ←↩

SYT . Communications_Table , currentPartition_ID &

33 --# SEF . Errors_Table from SEF . Errors_Table , SYT . Partitions_Table , ←↩

SYT . Communications_Table , currentPartition_ID ;

34

35 procedure ContextSwitch ( cu r r en tPa r t i t i on ID : in ←↩

Part i t ionTypes . Partit ionsNumber ;

36 nextPar t i t i on ID : in ←↩

Part i t ionTypes . Partit ionsNumber ) ;

37 --# global in out SYT . Communications_Table ;

38 --# in out SYT . Partitions_Table ;

39 --# in SYT . PIFP_Table ;

40 --# derives SYT . Communications_Table from nextPartition_ID , ←↩

SYT . Communications_Table , currentPartition_ID , SYT . PIFP_Table &

41 --# SYT . Partitions_Table from SYT . Partitions_Table , ←↩

nextPartition_ID , SYT . Communications_Table , currentPartition_ID , ←↩

SYT . PIFP_Table ;

42

43 end CMS;

Code Listing C.12: CMS specification package
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Body

1 package body CMS i s

2

3 procedure In i tSystem ( Status : out Boolean ) i s

4 begin

5 --# accept Flow_Message , 22 , " Invariant ";

6 Hardware . I n i t ( DefaultValues . Memory Size , Status ) ;

7 i f Status then

8 ConfigValues . Open( Status ) ;

9 i f Status then

10 SYT. I n i t P a r t i t i o n s T a b l e ;

11 SYT. InitCommunicationsTable ;

12 SYT. InitPIFPTable ;

13 ConfigValues . Close ( Status ) ;

14 else

15 SEF . Error ( ErrorTypes . Conf igurat ion ) ;

16 end i f ;

17 else

18 SEF . Error ( ErrorTypes . Hardware ) ;

19 end i f ;

20 --# end accept ;

21 end In i tSystem ;

22

23 procedure ContextSwitch ( cu r r en tPa r t i t i on ID : in ←↩

Part i t ionTypes . Partit ionsNumber ;

24 nextPar t i t i on ID : in ←↩

Part i t ionTypes . Partit ionsNumber ) i s

25 begin

26 SYT. DeleteCommunicationForPartit ion ( cu r r en tPa r t i t i on ID ) ;

27 SYT. CheckPIFP( nextPar t i t i on ID ) ;

28 SYT. UpdateCommunicationList ( nextPar t i t i on ID ) ;

29 SYT. ChangePartitionMode ( cur r entPar t i t i on ID , Part i t ionTypes . IDLE) ;

30 SYT. ChangePartitionMode ( nextPart i t ion ID , Part i t ionTypes .NORMAL) ;

31 end ContextSwitch ;

32

33 procedure RunProcesses ( cu r r en tPa r t i t i on ID : in ←↩

Part i t ionTypes . Partit ionsNumber ;

34 OK : out Boolean ) i s

35 begin

36 for i in Part i t ionTypes . Index Range Proce s s e s Pe r Par t i t i t on loop

37 --# assert i in PartitionTypes . Index_Range_Processes_Per_Partititon ;

38 case ←↩

SYT. Par t i t i on s Tab l e (SYT. GetPart i t ionIndex ( cu r r en tPa r t i t i on ID ) ) . Proce s s e s ( i ) . operat ion ←↩

i s

39 when Part i t ionTypes . OP Communication => ←↩

SYT. Communication ( cur r entPar t i t i on ID , i , OK) ;

40 when Part i t ionTypes . OP ReadWrite => ←↩

SYT. ReadWrite (SYT. GetPart i t ionIndex ( cu r r en tPa r t i t i on ID ) , i , OK) ;

41 when others => OK := True ;

42 end case ;

43 end loop ;

44 end RunProcesses ;

45



Appendix C. SPARK packages 143

46 end CMS;

Code Listing C.13: CMS body package

C.10 SYT

Specification

1 with TablesTypes , Part it ionTypes , ConfigValues , PRT, HardwareTypes , Hardware ,

2 SEF, ErrorTypes , DefaultValues ;

3 use type Part i t ionTypes . CommunicationMode ;

4 --# inherit TablesTypes , PartitionTypes , ConfigValues , PRT , HardwareTypes , ←↩

Hardware , SEF , ErrorTypes , DefaultValues ;

5 package SYT

6 --# own Partitions_Table , Communications_Table , PIFP_Table , ←↩

PartitionsExecutionSequence_Table ;

7 --# initializes Partitions_Table , Communications_Table , PIFP_Table , ←↩

PartitionsExecutionSequence_Table ;

8 i s

9

10 Par t i t i on s Tab l e : TablesTypes . Par t i t i on sTab l e := ←↩

TablesTypes . Part i t i onsTab le ’ ( Part i t ionTypes . Partit ionsNumber => ←↩

Part i t ionTypes . Par t i t i on ’ ( ID => Part i t ionTypes . IdType ’ F i r s t , ←↩

MemoryBounds => Part i t ionTypes . Tuple ’ ( i n i t => ←↩

Part i t ionTypes . AddrAllowValues ’ F i r s t , sz => ←↩

Part i t ionTypes . Part i t i onS izeAl lowValues ’ F i r s t ) , Duration => ←↩

Pos i t ive ’ f i r s t , Mode => Part i t ionTypes . Partit ion Mode ’ F i r s t , Proce s s e s ←↩

=> ←↩

Part i t ionTypes . P ro c e s s e s L i s t ’ ( Part i t ionTypes . Index Range Proce s s e s Pe r Par t i t i t on ←↩

=> Part i t ionTypes . ProcessesType ’ ( operat ion => ←↩

Part i t ionTypes . OperationType ’ F i r s t , blk => Part i t ionTypes . Tuple2 ’ ( i n i t ←↩

=> Part i t ionTypes . AddrAllowValues ’ F i r s t , sz => ←↩

Part i t ionTypes . ReadWriteAllowValues ’ F i r s t ) , mode => ←↩

Part i t ionTypes . CommunicationMode ’ F i r s t , s i z e => ←↩

Part i t ionTypes . SizeOfCommunication ’ F i r s t , to => ←↩

Part i t ionTypes . PartitionsNumber ’ F i r s t ) ) , Com => ←↩

Part i t ionTypes . Communication ’ ( Part i t ionTypes . Index Range => ←↩

Part i t ionTypes . Communication Mode ’ Last ) ) ) ;

11

12 Communications Table : TablesTypes . CommunicationsTable := ←↩

TablesTypes . CommunicationsTable ’ ( TablesTypes . CommunicationsBlocksNumber ←↩

=> TablesTypes . CommunicationState ’ ( Blk => ←↩

TablesTypes . TupleCommunication ’ ( i n i t => ←↩

Part i t ionTypes . AddrAllowValues ’ F i r s t , sz => ←↩

Part i t ionTypes . CommunicationsBlockSizeAllowValues ’ F i r s t ) , State => ←↩

TablesTypes . Blocks State ’ F i r s t , From Part i t ion => ←↩

Part i t ionTypes . IdType ’ F i r s t , To Part i t i on => ←↩

Part i t ionTypes . PartitionsNumber ’ F i r s t , Mode => ←↩

Part i t ionTypes . CommunicationMode ’ Last , FreeS i ze => ←↩

Part i t ionTypes . CommunicationsBlockSizeAllowValues ’ F i r s t ) ) ;

13
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14 PIFP Table : TablesTypes . PIFPTable := ←↩

TablesTypes . PIFPTable ’ ( Part i t ionTypes . Partit ionsNumber => ←↩

( TablesTypes . Par t i t i on s ’ ( Part i t ionTypes . Partit ionsNumber => ←↩

TablesTypes . FlowMode ’ Last ) ) ) ;

15

16 Part i t i onsExecut ionSequence Table : ←↩

TablesTypes . Part i t ionsExecut ionSequenceTable := ←↩

TablesTypes . Part i t ionsExecut ionSequenceTable ’ ( TablesTypes . Par t i t i onsExecut ionIndex ←↩

=> TablesTypes . Part i t ionsExecut ionIndex ’ F i r s t ) ;

17

18

19 procedure I n i t P a r t i t i o n s T a b l e ;

20 --# global out Partitions_Table ;

21 --# in out ConfigValues . Partition_State ;

22 --# in out Hardware . Mem ;

23 --# in out ConfigValues . FileState ;

24 --# in out ConfigValues . Size_Of_Blocks_For_Communication ;

25 --# in out SEF . Errors_Table ;

26 --# out PartitionsExecutionSequence_Table ;

27 --# in out ConfigValues . Partitions_Execution_Sequence ;

28 --# derives Partitions_Table from Hardware . Mem , ConfigValues . FileState &

29 --# Hardware . Mem from Hardware . Mem , ConfigValues . FileState &

30 --# ConfigValues . Partition_State from ←↩

ConfigValues . Partition_State , ConfigValues . FileState &

31 --# ConfigValues . FileState from ConfigValues . FileState &

32 --# SEF . Errors_Table from SEF . Errors_Table , ←↩

ConfigValues . FileState , Hardware . Mem &

33 --# PartitionsExecutionSequence_Table from ConfigValues . FileState &

34 --# ConfigValues . Partitions_Execution_Sequence from ←↩

ConfigValues . Partitions_Execution_Sequence , ConfigValues . FileState &

35 --# ConfigValues . Size_Of_Blocks_For_Communication from ←↩

ConfigValues . Size_Of_Blocks_For_Communication , ConfigValues . FileState ;

36

37 procedure InitCommunicationsTable ;

38 --# global in out Communications_Table ;

39 --# in out Hardware . Mem ;

40 --# in ConfigValues . Size_Of_Blocks_For_Communication ;

41 --# derives Communications_Table from Communications_Table , Hardware . Mem , ←↩

ConfigValues . Size_Of_Blocks_For_Communication &

42 --# Hardware . Mem from Hardware . Mem , ←↩

ConfigValues . Size_Of_Blocks_For_Communication ;

43

44 procedure InitPIFPTable ;

45 --# global in out PIFP_Table ;

46 --# in out ConfigValues . FileState ;

47 --# in out configValues . PIFP_Line ;

48 --# in out SEF . Errors_Table ;

49 --# derives configValues . PIFP_Line from configValues . PIFP_Line , ←↩

ConfigValues . FileState &

50 --# PIFP_Table from PIFP_Table , configValues . PIFP_Line , ←↩

ConfigValues . FileState &

51 --# ConfigValues . FileState from ConfigValues . FileState &

52 --# SEF . Errors_Table from SEF . Errors_Table , ConfigValues . FileState ;

53
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54 function GetPart i t ionIndex ( ID : Part i t ionTypes . Partit ionsNumber ) return ←↩

Part i t ionTypes . Partit ionsNumber ;

55 --# global Partitions_Table ;

56 --# return M => ( Partitions_Table (M). ID = ID -> M = M);

57

58 procedure UpdateCommunicationList ( P ID : in ←↩

Part i t ionTypes . Partit ionsNumber ) ;

59 --# global in Communications_Table ;

60 --# in out Partitions_Table ;

61 --# derives Partitions_Table from Partitions_Table , P_ID , ←↩

Communications_Table ;

62

63 procedure Communication (PIDFrom : in Part i t ionTypes . Partit ionsNumber ; ←↩

Index : in Part i t ionTypes . Index Range Proce s s e s Pe r Par t i t i t on ; OK : out ←↩

Boolean ) ;

64 --# global in out Communications_Table ;

65 --# in out Partitions_Table ;

66 --# in out SEF . Errors_Table ;

67 --# derives Communications_Table from Partitions_Table , ←↩

Communications_Table , PIDFrom , Index &

68 --# OK from PIDFrom , Communications_Table , Index , ←↩

Partitions_Table &

69 --# Partitions_Table from Partitions_Table , Communications_Table , ←↩

PIDFrom , Index &

70 --# SEF . Errors_Table from SEF . Errors_Table , Partitions_Table , ←↩

Communications_Table , PIDFrom , Index ;

71

72 procedure DeleteCommunicationForPartit ion ( ID Part i ton : in ←↩

Part i t ionTypes . IdType ) ;

73 --# global in out Communications_Table ;

74 --# derives Communications_Table from Communications_Table , ID_Partiton ;

75

76 procedure ReadWrite (PID : in Part i t ionTypes . Partit ionsNumber ; Index : in ←↩

Part i t ionTypes . Index Range Proce s s e s Pe r Par t i t i t on ; OK : out Boolean ) ;

77 --# global in out Partitions_Table ;

78 --# in out SEF . Errors_Table ;

79 --# derives OK from PID , Index , Partitions_Table &

80 --# Partitions_Table from Partitions_Table , PID , Index &

81 --# SEF . Errors_Table from SEF . Errors_Table , Partitions_Table , ←↩

PID , Index ;

82

83 procedure CheckPIFP( ID Part i ton : in Part i t ionTypes . IdType ) ;

84 --# global in out Communications_Table ;

85 --# in PIFP_Table ;

86 --# derives Communications_Table from Communications_Table , ID_Partiton , ←↩

PIFP_Table ;

87

88 procedure ChangePartitionMode ( ID Par t i t i on : in ←↩

Part i t ionTypes . Partit ionsNumber ; Mode : in Part i t ionTypes . Part it ion Mode ) ;

89 --# global in out Partitions_Table ;

90 --# derives Partitions_Table from Partitions_Table , ID_Partition , Mode ;

91

92 function GetDurationPRT ( ID Par t i t i on : Part i t ionTypes . Partit ionsNumber ) ←↩

return Part i t ionTypes . Par t i t i on Dura t i on ;
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93 --# global Partitions_Table ;

94 --# return Partitions_Table ( GetPartitionIndex ( ID_Partition , ←↩

Partitions_Table )). Duration ;

95

96 end SYT;

Code Listing C.14: SYT specification package

Body

1 package body SYT i s

2

3 procedure I n i t P a r t i t i o n s T a b l e i s

4 P a r t i t i o n : Part i t ionTypes . P a r t i t i o n ;

5 Status : Boolean ;

6 OK : Boolean ;

7 ADDR : HardwareTypes . Memory Range ;

8 begin

9 Par t i t i on s Tab l e :=

10 TablesTypes . Part i t i onsTab le ’ ( Part i t ionTypes . Partit ionsNumber => ←↩

Part i t ionTypes . Par t i t i on ’

11 ( ID => Part i t ionTypes . IdType ’ F i r s t ,

12 MemoryBounds => ←↩

Part i t ionTypes . Tuple ’ ( i n i t => Part i t ionTypes . AddrAllowValues ’ F i r s t , sz ←↩

=> Part i t ionTypes . Part i t i onS izeAl lowValues ’ F i r s t ) ,

13 Duration => Pos i t ive ’ f i r s t ,

14 Mode => ←↩

Part i t ionTypes . Partit ion Mode ’ F i r s t ,

15 Proce s s e s => ←↩

Part i t ionTypes . P ro c e s s e s L i s t ’ ( Part i t ionTypes . Index Range Proce s s e s Pe r Par t i t i t on ←↩

=> Part i t ionTypes . ProcessesType ’

16 ←↩

( operat ion => Part i t ionTypes . OperationType ’ F i r s t ,

17 ←↩

blk => Part i t ionTypes . Tuple2 ’ ( i n i t => ←↩

Part i t ionTypes . AddrAllowValues ’ F i r s t , sz => ←↩

Part i t ionTypes . ReadWriteAllowValues ’ F i r s t ) ,

18 ←↩

mode => Part i t ionTypes . CommunicationMode ’ F i r s t ,

19 ←↩

s i z e => Part i t ionTypes . SizeOfCommunication ’ F i r s t ,

20 ←↩

to => Part i t ionTypes . PartitionsNumber ’ F i r s t ) ) ,

21 Com => ←↩

Part i t ionTypes . Communication ’ ( Part i t ionTypes . Index Range => ←↩

Part i t ionTypes . Communication Mode ’ Last ) ) ) ;

22

23 Part i t i onsExecut ionSequence Table := ←↩

TablesTypes . Part i t ionsExecut ionSequenceTable ’ ( TablesTypes . Par t i t i onsExecut ionIndex ←↩

=> TablesTypes . Part i t ionsExecut ionIndex ’ F i r s t ) ;

24

25 ConfigValues . Read Size Of Blocks For Communication ( Status ) ;

26
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27 i f s t a tu s then

28 for i in Part i t ionTypes . Partit ionsNumber loop

29 --# assert i <= PartitionTypes . PartitionsNumber ’ last and i >= ←↩

PartitionTypes . PartitionsNumber ’ first ;

30 ConfigValues . Read PRT Values ( Status ) ;

31 i f Status then

32 Hardware . Al locBlock ( Conf igValues . Ge t Pa r t i t i on S i z e , ADDR, OK) ;

33 i f OK then

34 PRT. I n i t ( Par t i t i on , Conf igValues . Get Part i t ion ID , ←↩

Part i t ionTypes . Tuple ’ ( i n i t => ADDR, sz => ←↩

ConfigValues . G e t P a r t i t i o n S i z e ) , Conf igValues . Get Part i t ion Durat ion , ←↩

ConfigValues . Get Partit ion Mode , Conf igValues . G e t Pa r t i t i on Pro c e s s e s ) ;

35 Par t i t i on s Tab l e ( i ) := P a r t i t i o n ;

36 else

37 SEF . Error ( ErrorTypes . Hardware ) ;

38 end i f ;

39 else

40 SEF . Error ( ErrorTypes . Conf igurat ion ) ;

41 end i f ;

42 end loop ;

43 ConfigValues . Read PRT Exec Sequence ( Status ) ;

44 i f Status then

45 Part i t i onsExecut ionSequence Table := ←↩

ConfigValues . Par t i t i ons Execut i on Sequence ;

46 else

47

48 SEF . Error ( ErrorTypes . Conf igurat ion ) ;

49 end i f ;

50 else

51 SEF . Error ( ErrorTypes . Conf igurat ion ) ;

52 end i f ;

53 end I n i t P a r t i t i o n s T a b l e ;

54

55 procedure InitCommunicationsTable i s

56 OK : Boolean ;

57 ADDR : HardwareTypes . Memory Range ;

58 begin

59 for i in TablesTypes . CommunicationsBlocksNumber loop

60 --# assert i <= TablesTypes . CommunicationsBlocksNumber ’ last and i ←↩

>= TablesTypes . CommunicationsBlocksNumber ’ first ;

61 Hardware . Al locBlock ( Conf igValues . Size Of Blocks For Communication , ←↩

ADDR, OK) ;

62 i f OK then

63 Communications Table ( i ) . Blk := ←↩

TablesTypes . TupleCommunication ’ ( i n i t => ADDR, sz => ←↩

ConfigValues . Size Of Blocks For Communicat ion ) ;

64 Communications Table ( i ) . State := TablesTypes .FREE;

65 Communications Table ( i ) . From Part i t ion := ←↩

Part i t ionTypes . IdType ’ F i r s t ;

66 Communications Table ( i ) . To Part i t i on := ←↩

Part i t ionTypes . PartitionsNumber ’ F i r s t ;

67 Communications Table ( i ) . Mode := Part i t ionTypes .READ;

68 Communications Table ( i ) . FreeS i ze := Communications Table ( i ) . Blk . sz ;

69 end i f ;
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70 end loop ;

71 end InitCommunicationsTable ;

72

73 procedure In i tP i fPTab le i s

74 Status : Boolean ;

75 ID : Part i t ionTypes . Partit ionsNumber ;

76 begin

77 ConfigValues . Read PifP ( Status ) ;

78 i f Status then

79 for i in Part i t ionTypes . Partit ionsNumber loop

80 --# assert i in PartitionTypes . PartitionsNumber ;

81 ConfigValues . Read PifP Line ( Status , ID) ;

82 i f Status then

83 PifP Table ( ID) := Conf igValues . Pi fP Line ;

84 else

85 SEF . Error ( ErrorTypes . Appl i cat ion ) ;

86 end i f ;

87 end loop ;

88

89 else

90 SEF . Error ( ErrorTypes . Conf igurat ion ) ;

91 end i f ;

92 end In i tP i fPTab le ;

93

94 function GetPart i t ionIndex ( ID : Part i t ionTypes . Partit ionsNumber ) return ←↩

Part i t ionTypes . Partit ionsNumber i s

95 Index : Part i t ionTypes . Partit ionsNumber ;

96 begin

97 Index := Part i t ionTypes . PartitionsNumber ’ F i r s t ;

98 for i in Part i t ionTypes . Partit ionsNumber loop

99 --# assert i in PartitionTypes . PartitionsNumber ;

100 i f Par t i t i on s Tab l e ( i ) . ID = ID then

101 Index := i ;

102 end i f ;

103 end loop ;

104 return Index ;

105 end GetPart i t ionIndex ;

106

107

108 procedure UpdateCommunicationList ( P ID : in ←↩

Part i t ionTypes . Partit ionsNumber )

109 i s

110 function CommunicationsTableStateIsFree ( Index : ←↩

TablesTypes . CommunicationsBlocksNumber ) return Boolean

111 --# global Communications_Table ;

112 i s

113 r : Boolean ;

114 begin

115 case Communications Table ( Index ) . State i s

116 When TablesTypes .FREE => r := True ;

117 When TablesTypes .OCCUPIED => r := False ;

118 end case ;

119 return r ;

120 end CommunicationsTableStateIsFree ;
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121

122 function Get Part i t i onIndex ( ID : Part i t ionTypes . Partit ionsNumber ) ←↩

return Part i t ionTypes . Partit ionsNumber

123 --# global Partitions_Table ;

124 i s

125 Index : Part i t ionTypes . Partit ionsNumber ;

126 begin

127 Index := Part i t ionTypes . PartitionsNumber ’ F i r s t ;

128 for i in Part i t ionTypes . Partit ionsNumber loop

129 --# assert i in PartitionTypes . PartitionsNumber ;

130 i f Par t i t i on s Tab l e ( i ) . ID = ID then

131 Index := i ;

132 exit ;

133 end i f ;

134 end loop ;

135 return Index ;

136 end Get Part i t i onIndex ;

137

138 begin

139 for i in Part i t ionTypes . Index Range loop

140 --# assert i <= PartitionTypes . Index_Range ’ last and i >= 1;

141 i f CommunicationsTableStateIsFree ( i ) then

142 Par t i t i on s Tab l e ( Get Part i t i onIndex ( P ID ) ) .Com( i ) := ←↩

Part i t ionTypes .FREE;

143 else

144 i f (not CommunicationsTableStateIsFree ( i ) ) and ←↩

( Communications Table ( i ) . To Part i t i on = P ID ) then

145 i f Communications Table ( i ) . Mode = Part i t ionTypes .WRITE then

146 Par t i t i on s Tab l e ( Get Part i t i onIndex ( P ID ) ) .Com( i ) := ←↩

Part i t ionTypes .READ;

147 else

148 Par t i t i on s Tab l e ( Get Part i t i onIndex ( P ID ) ) .Com( i ) := ←↩

Part i t ionTypes .WRITE;

149 end i f ;

150 else

151 Par t i t i on s Tab l e ( Get Part i t i onIndex ( P ID ) ) .Com( i ) := ←↩

Part i t ionTypes .BLOCKED;

152 end i f ;

153 end i f ;

154 end loop ;

155 end UpdateCommunicationList ;

156

157 procedure Communication (PIDFrom : in Part i t ionTypes . Partit ionsNumber ; ←↩

Index : in Part i t ionTypes . Index Range Proce s s e s Pe r Par t i t i t on ; OK : ←↩

out Boolean ) i s

158 CanSend : Boolean ;

159 tempTo : Part i t ionTypes . Partit ionsNumber ;

160 tempMode : Part i t ionTypes . CommunicationMode ;

161 tempSize : Part i t ionTypes . SizeOfCommunication2 ;

162

163 procedure UpdateCommunicationsTable ( Index : in ←↩

TablesTypes . CommunicationsBlocksNumber ;

164 ID PTo : in ←↩

Part i t ionTypes . Partit ionsNumber ;



Appendix C. SPARK packages 150

165 M : in ←↩

Part i t ionTypes . CommunicationMode ;

166 S : in ←↩

Part i t ionTypes . SizeOfCommunication )

167 --# global in out Communications_Table ;

168 --# in PIDFrom ;

169 --# derives Communications_Table from Communications_Table , Index , ←↩

PIDFrom , ID_PTo , M , S;

170 i s

171 begin

172 Communications Table ( Index ) . Blk := Communications Table ( Index ) . Blk ;

173 Communications Table ( Index ) . State := TablesTypes .OCCUPIED;

174 Communications Table ( Index ) . From Part i t ion := PIDFrom ;

175 Communications Table ( Index ) . To Part i t i on := ID PTo ;

176 Communications Table ( Index ) . Mode := M;

177 i f ( ( ( ( Communications Table ( Index ) . FreeS i ze ) − S) >= ←↩

DefaultValues . CommunicationsBlockSizeMinValue ) and ←↩

( ( ( Communications Table ( Index ) . FreeS i ze ) − S) <= ←↩

DefaultValues . CommunicationsBlockSizeMaxValue ) ) then

178 Communications Table ( Index ) . FreeS i ze := ←↩

Communications Table ( Index ) . FreeS i ze − S ;

179 end i f ;

180 end UpdateCommunicationsTable ;

181

182 procedure CanSendMessage ( Index : out Part i t ionTypes . Index Range ;

183 OK : out Boolean ;

184 ID PTo : in Part i t ionTypes . Partit ionsNumber ;

185 M : in Part i t ionTypes . CommunicationMode ;

186 S : in Part i t ionTypes . SizeOfCommunication )

187 --# global in PIDFrom , Communications_Table , Partitions_Table ;

188 --# derives Index from PIDFrom , M , S , Communications_Table , ID_PTo , ←↩

Partitions_Table &

189 --# OK from PIDFrom , M , S , Communications_Table , ID_PTo , ←↩

Partitions_Table ;

190 i s

191 function WriteBlockHaveSpace ( Index : ←↩

TablesTypes . CommunicationsBlocksNumber ) return Boolean

192 --# global Partitions_Table , PIDFrom , M , S , Communications_Table , ←↩

ID_PTo ;

193 i s

194 r : Boolean ;

195 begin

196 case Par t i t i on s Tab l e ( GetPart i t ionIndex (PIDFrom) ) .Com( Index ) i s

197 when Part i t ionTypes .WRITE =>

198 i f Communications Table ( Index ) . Mode = M and ←↩

( Communications Table ( Index ) . FreeS i ze >= S) and ←↩

( Communications Table ( Index ) . To Part i t i on = ID PTo)

199 then r := True ;

200 else r := False ;

201 end i f ;

202 when others => r := False ;

203 end case ;

204 return r ;

205 end WriteBlockHaveSpace ;
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206

207 function BlockIsFree ( Index : ←↩

TablesTypes . CommunicationsBlocksNumber ) return Boolean

208 --# global PIDFrom , Partitions_Table ;

209 i s

210 r : Boolean ;

211 begin

212 case Par t i t i on s Tab l e ( GetPart i t ionIndex (PIDFrom) ) .Com( Index ) i s

213 when Part i t ionTypes .FREE => r := True ;

214 when others => r := False ;

215 end case ;

216 return r ;

217 end BlockIsFree ;

218

219 begin

220 OK := False ;

221 Index := 1 ;

222 for i in Part i t ionTypes . Index Range loop

223 --# assert i <= PartitionTypes . Index_Range ’ last and i >= 1;

224 i f WriteBlockHaveSpace ( i ) then

225 OK := True ;

226 Index := i ;

227 exit ;

228 end i f ;

229 i f BlockIsFree ( i ) then

230 OK := True ;

231 Index := i ;

232 exit ;

233 end i f ;

234 end loop ;

235 end CanSendMessage ;

236

237 procedure SendMessageSpl it (OK : out Boolean ;

238 ID PTo : in Part i t ionTypes . Partit ionsNumber ;

239 M : in Part i t ionTypes . CommunicationMode ;

240 S : in Part i t ionTypes . SizeOfCommunication )

241 --# global in out Communications_Table , Partitions_Table ;

242 --# in PIDFrom ;

243 --# derives OK from PIDFrom , M , S , Communications_Table , ←↩

ID_PTo , Partitions_Table &

244 --# Communications_Table from M , S , ID_PTo , Partitions_Table , ←↩

Communications_Table , PIDFrom &

245 --# Partitions_Table from M , S , Communications_Table , ID_PTo , ←↩

PIDFrom , Partitions_Table ;

246 i s

247 S i zeLe f t , SizeLeft Temp : Part i t ionTypes . SizeOfCommunication2 ;

248 Part it ions Table Temp : TablesTypes . Par t i t i on sTab l e ;

249 Communications Table Temp : TablesTypes . CommunicationsTable ;

250 Flag : Boolean ;

251

252 procedure WriteBlockHaveSpace ( Index : in ←↩

TablesTypes . CommunicationsBlocksNumber ; r : out Boolean )

253 --# global in out Communications_Table_Temp ;
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254 --# in PIDFrom , M , ID_PTo , Partitions_Table , SizeLeft_Temp , ←↩

Partitions_Table_Temp ;

255 --# derives r from Index , PIDFrom , M , ID_PTo , Partitions_Table , ←↩

SizeLeft_Temp , Partitions_Table_Temp , Communications_Table_Temp &

256 --# Communications_Table_Temp from Partitions_Table_Temp , ←↩

Partitions_Table , Communications_Table_Temp , PIDFrom , M , ID_PTo , ←↩

SizeLeft_Temp , Index ;

257 i s

258

259 begin

260 case ←↩

Part it ions Table Temp ( GetPart i t ionIndex (PIDFrom) ) .Com( Index ) i s

261 when Part i t ionTypes .WRITE =>

262 i f Communications Table Temp ( Index ) . Mode = M and

263 ( Communications Table Temp ( Index ) . FreeS i ze >= ←↩

SizeLeft Temp ) and

264 ( Communications Table Temp ( Index ) . To Part i t i on = ID PTo)

265 then r := True ;

266 else

267 i f Communications Table Temp ( Index ) . Mode = ←↩

Part i t ionTypes .READ and

268 ( Communications Table Temp ( Index ) . FreeS i ze >= ←↩

SizeLeft Temp ) and

269 ( Communications Table Temp ( Index ) . From Part i t ion = ←↩

ID PTo) and

270 ( Communications Table Temp ( Index ) . To Part i t i on = ←↩

PIDFrom) then

271 Communications Table Temp ( Index ) . From Part i t ion := ID PTo ;

272 Communications Table Temp ( Index ) . To Part i t i on := PIDFrom ;

273 r := True ;

274 else

275 r := False ;

276 end i f ;

277 end i f ;

278 when others => r := False ;

279 end case ;

280 end WriteBlockHaveSpace ;

281

282 function BlockIsFree ( Index : ←↩

TablesTypes . CommunicationsBlocksNumber ) return Boolean

283 --# global PIDFrom , Partitions_Table_Temp , Partitions_Table ;

284 i s

285 r : Boolean ;

286 begin

287 case ←↩

Part it ions Table Temp ( GetPart i t ionIndex (PIDFrom) ) .Com( Index ) i s

288 When Part i t ionTypes .FREE => r := True ;

289 When Others => r := False ;

290 end case ;

291 return r ;

292 end BlockIsFree ;

293

294 procedure UpdateFreeSize

295 --# global in out Communications_Table_Temp ;
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296 --# derives Communications_Table_Temp from Communications_Table_Temp ;

297 i s

298 begin

299 for i in tablesTypes . CommunicationsBlocksNumber loop

300 --# assert i in tablesTypes . CommunicationsBlocksNumber ;

301 i f Communications Table Temp ( i ) . Mode = Part i t ionTypes .READ then

302 Communications Table Temp ( i ) . FreeS i ze := ←↩

Communications Table Temp ( i ) . Blk . sz ;

303 end i f ;

304 end loop ;

305 end UpdateFreeSize ;

306

307 begin

308 S i z e L e f t := S ;

309 SizeLeft Temp := S ;

310 Part it ions Table Temp := Par t i t i on s Tab l e ;

311 Communications Table Temp := Communications Table ;

312 loop

313 --# assert True ;

314 i f Communications Table Temp (1) . Blk . sz >= SizeLeft Temp then

315 Flag := False ;

316 for i in Part i t ionTypes . Index Range loop

317 --# assert i <= PartitionTypes . Index_Range ’ last and i >= ←↩

PartitionTypes . Index_Range ’ first ;

318 WriteBlockHaveSpace ( i , OK) ;

319 i f OK then

320 Flag := True ;

321 Communications Table Temp ( i ) . Blk := ←↩

Communications Table Temp ( i ) . Blk ;

322 Communications Table Temp ( i ) . State := ←↩

TablesTypes .OCCUPIED;

323 Communications Table Temp ( i ) . From Part i t ion := PIDFrom ;

324 Communications Table Temp ( i ) . To Part i t i on := ID PTo ;

325 Communications Table Temp ( i ) . Mode := M;

326 i f Communications Table Temp ( i ) . FreeS i ze >= ←↩

SizeLeft Temp then

327 Communications Table Temp ( i ) . FreeS i ze := ←↩

Communications Table Temp ( i ) . FreeS i ze − SizeLeft Temp ;

328 end i f ;

329 ←↩

Part it ions Table Temp ( GetPart i t ionIndex (PIDFrom) ) .Com( i ) := ←↩

Part i t ionTypes .WRITE;

330 i f ( S i z e L e f t − SizeLeft Temp ) >= 0 then

331 S i z e L e f t := S i z e L e f t − SizeLeft Temp ;

332 SizeLeft Temp := S i z e L e f t ;

333 end i f ;

334 else

335 i f BlockIsFree ( i ) then

336 Flag := True ;

337 OK := True ;

338 Communications Table Temp ( i ) . Blk := ←↩

Communications Table Temp ( i ) . Blk ;

339 Communications Table Temp ( i ) . State := ←↩

TablesTypes .OCCUPIED;
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340 Communications Table Temp ( i ) . From Part i t ion := PIDFrom ;

341 Communications Table Temp ( i ) . To Part i t i on := ID PTo ;

342 Communications Table Temp ( i ) . Mode := M;

343 i f Communications Table Temp ( i ) . FreeS i ze >= ←↩

SizeLeft Temp then

344 Communications Table Temp ( i ) . FreeS i ze := ←↩

Communications Table Temp ( i ) . FreeS i ze − SizeLeft Temp ;

345 end i f ;

346 ←↩

Part it ions Table Temp ( GetPart i t ionIndex (PIDFrom) ) .Com( i ) := ←↩

Part i t ionTypes .WRITE;

347 i f ( S i z e L e f t − SizeLeft Temp ) >= 0 then

348 S i z e L e f t := S i z e L e f t − SizeLeft Temp ;

349 SizeLeft Temp := S i z e L e f t ;

350 end i f ;

351 end i f ;

352 end i f ;

353 i f Flag then

354 exit ;

355 end i f ;

356 end loop ;

357 else

358 SizeLeft Temp := SizeLeft Temp − 1 ;

359 OK := True ;

360 end i f ;

361

362 i f S i z e L e f t = 0 then

363 UpdateFreeSize ;

364 Par t i t i on s Tab l e := Part it ions Table Temp ;

365 Communications Table := Communications Table Temp ;

366 end i f ;

367 exit when SizeLeft Temp = 0 or (not OK) ;

368 end loop ;

369 end SendMessageSpl it ;

370

371 begin

372 tempTo := ←↩

Par t i t i on s Tab l e ( GetPart i t ionIndex (PIDFrom) ) . Proce s s e s ( Index ) . to ;

373 tempMode := ←↩

Par t i t i on s Tab l e ( GetPart i t ionIndex (PIDFrom) ) . Proce s s e s ( Index ) . mode ;

374 tempSize := ←↩

Par t i t i on s Tab l e ( GetPart i t ionIndex (PIDFrom) ) . Proce s s e s ( Index ) . s i z e ;

375 OK := False ;

376 SendMessageSpl it (CanSend , tempTo , tempMode , tempSize ) ;

377 i f CanSend then

378 OK := True ;

379 else

380 SEF . Error ( ErrorTypes . Appl i cat ion ) ;

381 Par t i t i on s Tab l e ( GetPart i t ionIndex (PIDFrom) ) . Mode := ←↩

Part i t ionTypes .ERROR;

382 end i f ;

383 end Communication ;

384
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385 procedure DeleteCommunicationForPartit ion ( ID Part i ton : in ←↩

Part i t ionTypes . IdType ) i s

386 begin

387 for i in Tablestypes . CommunicationsBlocksNumber loop

388 --# assert i in Tablestypes . CommunicationsBlocksNumber ;

389 i f Communications Table ( i ) . To Part i t i on = ID Part i ton then

390 Communications Table ( i ) . State := Tablestypes .FREE;

391 Communications Table ( i ) . From Part i t ion := ←↩

Part i t ionTypes . IdType ’ F i r s t ;

392 Communications Table ( i ) . To Part i t i on := ←↩

Part i t ionTypes . PartitionsNumber ’ F i r s t ;

393 Communications Table ( i ) . Mode := Part i t ionTypes .READ;

394 Communications Table ( i ) . FreeS i ze := Communications Table ( i ) . Blk . sz ;

395 end i f ;

396 end loop ;

397 end DeleteCommunicationForPartit ion ;

398

399 procedure ReadWrite (PID : in Part i t ionTypes . Partit ionsNumber ; Index : in ←↩

Part i t ionTypes . Index Range Proce s s e s Pe r Par t i t i t on ; OK: out Boolean ) i s

400 begin

401 OK:= False ;

402 i f ( Pa r t i t i on s Tab l e (PID) . MemoryBounds . i n i t <= ←↩

Par t i t i on s Tab l e (PID) . Proce s s e s ( Index ) . blk . i n i t and

403 ←↩

( Pa r t i t i on s Tab l e (PID) . MemoryBounds . i n i t+Par t i t i on s Tab l e (PID) . MemoryBounds . sz ) ←↩

>= ( Par t i t i on s Tab l e (PID) . Proce s s e s ( Index ) . blk . i n i t + ←↩

Par t i t i on s Tab l e (PID) . Proce s s e s ( Index ) . blk . sz ) )

404 then OK := True ;

405 else

406 Par t i t i on s Tab l e (PID) . Mode := Part i t ionTypes .ERROR;

407 SEF . Error ( ErrorTypes . Appl i cat ion ) ;

408 end i f ;

409 end ReadWrite ;

410

411 procedure CheckPifP ( ID Part i ton : in Part i t ionTypes . IdType ) i s

412 begin

413 for i in Tablestypes . CommunicationsBlocksNumber loop

414 --# assert i in Tablestypes . CommunicationsBlocksNumber ;

415 i f ( Communications Table ( i ) . To Part i t i on = ID Part i ton and ←↩

Communications Table ( i ) . From Part i t ion > 0 and ←↩

Communications Table ( i ) . To Part i t i on > 0) then

416 case ←↩

( Pi fP Table ( Communications Table ( i ) . From Part i t ion ) ( Communications Table ( i ) . To Part i t i on ) ) ←↩

i s

417 When TablesTypes .N => Communications Table ( i ) . State := ←↩

Tablestypes .FREE;

418 Communications Table ( i ) . From Part i t ion := ←↩

Part i t ionTypes . IdType ’ F i r s t ;

419 Communications Table ( i ) . To Part i t i on := ←↩

Part i t ionTypes . PartitionsNumber ’ F i r s t ;

420 Communications Table ( i ) . Mode := Part i t ionTypes .READ;

421 Communications Table ( i ) . FreeS i ze := ←↩

Communications Table ( i ) . Blk . sz ;
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422 When TablesTypes .R => i f Communications Table ( i ) . Mode /= ←↩

Part i t ionTypes .READ then Communications Table ( i ) . State := Tablestypes .FREE;

423 Communications Table ( i ) . From Part i t ion := ←↩

Part i t ionTypes . IdType ’ F i r s t ;

424 Communications Table ( i ) . To Part i t i on := ←↩

Part i t ionTypes . PartitionsNumber ’ F i r s t ;

425 Communications Table ( i ) . Mode := Part i t ionTypes .READ;

426 Communications Table ( i ) . FreeS i ze := ←↩

Communications Table ( i ) . Blk . sz ; end i f ;

427 When TablesTypes .W => i f Communications Table ( i ) . Mode /= ←↩

Part i t ionTypes .WRITE then Communications Table ( i ) . State := ←↩

Tablestypes .FREE;

428 Communications Table ( i ) . From Part i t ion := ←↩

Part i t ionTypes . IdType ’ F i r s t ;

429 Communications Table ( i ) . To Part i t i on := ←↩

Part i t ionTypes . PartitionsNumber ’ F i r s t ;

430 Communications Table ( i ) . Mode := Part i t ionTypes .READ;

431 Communications Table ( i ) . FreeS i ze := ←↩

Communications Table ( i ) . Blk . sz ; end i f ;

432 When TablesTypes .RW => null ;

433 end case ;

434 end i f ;

435 end loop ;

436 end CheckPifP ;

437

438 procedure ChangePartitionMode ( ID Par t i t i on : in ←↩

Part i t ionTypes . Partit ionsNumber ; Mode : in ←↩

Part i t ionTypes . Part it ion Mode ) i s

439 begin

440 ←↩

PRT. SetPart it ionMode ( Pa r t i t i on s Tab l e ( GetPart i t ionIndex ( ID Par t i t i on ) ) , ←↩

Mode) ;

441 end ChangePartitionMode ;

442

443 function GetDurationPRT ( ID Par t i t i on : Part i t ionTypes . Partit ionsNumber ) ←↩

return Part i t ionTypes . Par t i t i on Dura t i on i s

444 begin

445 return Par t i t i on s Tab l e ( GetPart i t ionIndex ( ID Par t i t i on ) ) . Duration ;

446 end GetDurationPRT ;

447

448 end SYT;

Code Listing C.15: SYT body package

C.11 ConfigValues

Specification

1 with Part it ionTypes , TablesTypes ;

2 use type Part i t ionTypes . OperationType ;

3 --# inherit PartitionTypes , TablesTypes , File , DefaultValues ;
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4 package ConfigValues

5 --# own Partition_State , Size_Of_Blocks_For_Communication , PIFP_Line , ←↩

Partitions_Execution_Sequence , FileState ;

6 --# initializes FileState , Size_Of_Blocks_For_Communication , ←↩

Partitions_Execution_Sequence , Partition_State , PIFP_Line ;

7

8 i s

9

10 Size Of Blocks For Communicat ion : ←↩

Part i t ionTypes . CommunicationsBlockSizeAllowValues := ←↩

Part i t ionTypes . CommunicationsBlockSizeAllowValues ’ F i r s t ;

11 PIFP Line : TablesTypes . P a r t i t i o n s := ←↩

TablesTypes . Pa r t i t i on s ’ ( Part i t ionTypes . Partit ionsNumber => ←↩

TablesTypes . FlowMode ’ Last ) ;

12 Part i t i ons Execut i on Sequence : ←↩

TablesTypes . Part i t ionsExecut ionSequenceTable :=

13 ←↩

TablesTypes . Part i t ionsExecut ionSequenceTable ’ ( TablesTypes . Par t i t i onsExecut ionIndex ←↩

=> TablesTypes . Part i t ionsExecut ionIndex ’ F i r s t ) ;

14

15 procedure Va l i da t eF i l e ( Success : out Boolean ) ;

16 --# global in out FileState ;

17 --# derives Success , FileState from FileState ;

18

19 procedure Open (OK : out Boolean ) ;

20 --# global in out FileState ;

21 --# derives FileState , OK from FileState ;

22

23 procedure Close (OK : out Boolean ) ;

24 --# global in out FileState ;

25 --# derives FileState , OK from FileState ;

26

27 procedure Read PRT Values ( Success : out Boolean ) ;

28 --# global out Partition_State ;

29 --# in out FileState ;

30 --# derives Success , FileState from FileState &

31 --# Partition_State from FileState ;

32

33 function Get Part i t i on ID return Part i t ionTypes . IdType ;

34 --# global Partition_State ;

35

36 function G e t P a r t i t i o n S i z e return Part i t ionTypes . Par t i t i onS i zeAl l owVa lues ;

37 --# global Partition_State ;

38

39 function Get Par t i t i on Durat ion return Part i t ionTypes . Par t i t i on Dura t i on ;

40 --# global Partition_State ;

41

42 function Get Part it ion Mode return Part i t ionTypes . Part it ion Mode ;

43 --# global Partition_State ;

44

45 function Get Pa r t i t i on Pro c e s s e s return Part i t ionTypes . P r o c e s s e s L i s t ;

46 --# global Partition_State ;

47
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48 function Get Size Of Blocks For Communicat ion return ←↩

Part i t ionTypes . CommunicationsBlockSizeAllowValues ;

49 --# global Size_Of_Blocks_For_Communication ;

50

51 procedure Read Size Of Blocks For Communication ( Success : out Boolean ) ;

52 --# global in out Size_Of_Blocks_For_Communication ;

53 --# in out FileState ;

54 --# derives Success , FileState from FileState &

55 --# Size_Of_Blocks_For_Communication from ←↩

Size_Of_Blocks_For_Communication , FileState ;

56

57

58 procedure Read PIFP ( Success : out Boolean ) ;

59 --# global in out FileState ;

60 --# derives Success , FileState from FileState ;

61

62 procedure Read PIFP Line ( Success : out Boolean ; ID : out ←↩

Part i t ionTypes . Partit ionsNumber ) ;

63 --# global in out PIFP_Line ;

64 --# in out FileState ;

65 --# derives PIFP_Line from PIFP_Line , FileState &

66 --# Success , FileState from FileState &

67 --# ID from FileState ;

68

69 procedure Read PRT Exec Sequence ( Success : out Boolean ) ;

70 --# global out Partitions_Execution_Sequence ;

71 --# in out FileState ;

72 --# derives Partitions_Execution_Sequence from FileState &

73 --# Success , FileState from FileState ;

74

75

76 end ConfigValues ;

Code Listing C.16: ConfigValues specification package

Body

1 with Fi l e , DefaultValues ;

2

3 package body ConfigValues

4 --# own Partition_State is ID_Partition , Size_Of_Partition , ←↩

Duration_Partition , Mode_Partition , Processes_Of_Partition &

5 --# FileState is ConfigFile ;

6 i s

7

8 ID Par t i t i on : Part i t ionTypes . IdType := Part i t ionTypes . IdType ’ F i r s t ;

9 S i z e O f P a r t i t i o n : Part i t ionTypes . Par t i t i onS i zeAl l owVa lues := ←↩

Part i t ionTypes . Part i t i onS izeAl lowValues ’ F i r s t ;

10 Durat i on Par t i t i on : Part i t ionTypes . Par t i t i on Dura t i on := ←↩

Part i t ionTypes . Par t i t i on Durat ion ’ F i r s t ;

11 Mode Part it ion : Part i t ionTypes . Part it ion Mode := ←↩

Part i t ionTypes . Partit ion Mode ’ F i r s t ;

12 P r o c e s s e s O f P a r t i t i o n : Part i t ionTypes . P r o c e s s e s L i s t :=
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13 ←↩

Part i t ionTypes . P ro c e s s e s L i s t ’ ( Part i t ionTypes . Index Range Proce s s e s Pe r Par t i t i t on ←↩

=> ( Part i t ionTypes . ProcessesType ’

14 ←↩

( operat ion => Part i t ionTypes . OperationType ’ F i r s t ,

15 ←↩

blk => Part i t ionTypes . Tuple2 ’ ( i n i t => ←↩

Part i t ionTypes . AddrAllowValues ’ F i r s t , sz => ←↩

Part i t ionTypes . ReadWriteAllowValues ’ F i r s t ) ,

16 ←↩

mode => Part i t ionTypes . CommunicationMode ’ F i r s t ,

17 ←↩

s i z e => Part i t ionTypes . SizeOfCommunication ’ F i r s t ,

18 ←↩

to => Part i t ionTypes . PartitionsNumber ’ F i r s t ) ) ) ;

19

20 subtype Partit ionsNumberTextI i s P o s i t i v e range 1 . . 1 7 ;

21 subtype PartitionsNumberTextT i s St r ing ( Partit ionsNumberTextI ) ;

22 Part i t ionsNumberTit le : constant PartitionsNumberTextT := ←↩

” Partit ionsNumber ” ;

23

24 subtype CommunicationBlocksSizeI i s P o s i t i v e range 1 . . 2 4 ;

25 subtype CommunicationBlocksSizeT i s St r ing ( CommunicationBlocksSizeI ) ;

26 Communicat ionBlocksSizeTit le : constant CommunicationBlocksSizeT := ←↩

” CommunicationBlocksSize ” ;

27

28 subtype P a r t i t i o n I i s P o s i t i v e range 1 . . 9 ;

29 subtype Part i t ionT i s St r ing ( P a r t i t i o n I ) ;

30 P a r t i t i o n T i t l e : constant Part i t ionT := ”PARTITION” ;

31

32 subtype Par t i t i on IDI i s P o s i t i v e range 1 . . 1 2 ;

33 subtype Partit ionIDT i s St r ing ( Par t i t i on IDI ) ;

34 Par t i t i on IDTi t l e : constant Partit ionIDT := ” Part i t i onID ” ;

35

36 subtype Part i t ionSIZEI i s P o s i t i v e range 1 . . 1 4 ;

37 subtype Partit ionSIZET i s St r ing ( Part i t i onSIZEI ) ;

38 Par t i t i onSIZETi t l e : constant Partit ionSIZET := ” Part i t ionSIZE ” ;

39

40 subtype PartitionDURATIONI i s P o s i t i v e range 1 . . 1 8 ;

41 subtype PartitionDURATIONT i s St r ing ( PartitionDURATIONI ) ;

42 PartitionDURATIONTitle : constant PartitionDURATIONT := ←↩

”PartitionDURATION ” ;

43

44 subtype Proce s s I i s P o s i t i v e range 1 . . 7 ;

45 subtype ProcessT i s St r ing ( Proce s s I ) ;

46 Proc e s sT i t l e : constant ProcessT := ”PROCESS” ;

47

48 subtype ProcessOperat ionI i s P o s i t i v e range 1 . . 1 7 ;

49 subtype ProcessOperationT i s St r ing ( ProcessOperat ionI ) ;

50 Proces sOperat ionTi t l e : constant ProcessOperationT := ” ProcessOperat ion ” ;

51

52 subtype OperationTextI i s P o s i t i v e range 1 . . 1 3 ;

53 subtype OperationTextT i s St r ing ( OperationTextI ) ;

54
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55 type OperationStr ingT i s record

56 Text : OperationTextT ;

57 Length : OperationTextI ;

58 end record ;

59

60 type OperationStringLookUpT i s array ( Part i t ionTypes . OperationType ) of ←↩

OperationStr ingT ;

61 OperationStringLookUp : constant OperationStringLookUpT :=

62 OperationStringLookUpT ’

63 ( Part i t ionTypes . OP Nothing => OperationStringT ’ ( ”Nothing ” , ←↩

7) ,

64 Part i t ionTypes . OP Communication => ←↩

OperationStringT ’ ( ”Communication” , 13) ,

65 Part i t ionTypes . OP ReadWrite => OperationStringT ’ ( ”ReadWrite ” , ←↩

9) ) ;

66

67 subtype CommunicationModeI i s P o s i t i v e range 1 . . 1 8 ;

68 subtype CommunicationModeT i s St r ing ( CommunicationModeI ) ;

69 CommunicationModeTitle : constant CommunicationModeT := ←↩

”CommunicationMode ” ;

70

71 subtype CommunicationModeTextI i s P o s i t i v e range 1 . . 5 ;

72 subtype CommunicationModeTextT i s St r ing ( CommunicationModeTextI ) ;

73

74 type CommunicationModeStringT i s record

75 Text : CommunicationModeTextT ;

76 Length : CommunicationModeTextI ;

77 end record ;

78

79 type CommunicationModeStringLookUpT i s array ←↩

( Part i t ionTypes . CommunicationMode ) of CommunicationModeStringT ;

80 CommunicationModeStringLookUp : constant CommunicationModeStringLookUpT :=

81 CommunicationModeStringLookUpT ’

82 ( Part i t ionTypes .READ => CommunicationModeStringT ’ ( ”Read ” , 4) ,

83 Part i t ionTypes .WRITE => CommunicationModeStringT ’ ( ”Write” , 5) ) ;

84

85

86 subtype CommunicationSizeI i s P o s i t i v e range 1 . . 1 8 ;

87 subtype CommunicationSizeT i s St r ing ( CommunicationSizeI ) ;

88 CommunicationSizeTit le : constant CommunicationSizeT := ←↩

”CommunicationSize ” ;

89

90 subtype CommunicationToI i s P o s i t i v e range 1 . . 1 6 ;

91 subtype CommunicationToT i s St r ing ( CommunicationToI ) ;

92 CommunicationToTitle : constant CommunicationToT := ”CommunicationTo ” ;

93

94 subtype Part it ionsExecut ionNumberI i s P o s i t i v e range 1 . . 2 6 ;

95 subtype PartitionsExecutionNumberT i s St r ing ( Part it ionsExecut ionNumberI ) ;

96 Part i t ionsExecut ionNumberTit le : constant PartitionsExecutionNumberT := ←↩

” Partit ionsExecutionNumber ” ;

97

98 subtype Part i t i onsExecut ionSequence I i s P o s i t i v e range 1 . . 2 7 ;

99 subtype Part i t ionsExecut ionSequenceT i s ←↩

St r ing ( Par t i t i onsExecut ionSequence I ) ;
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100 Part i t i on sExecut i onSequenceT i t l e : constant Part i t ionsExecut ionSequenceT ←↩

:= ” Part i t i onsExecut ionSequence ” ;

101

102 subtype PifpTextI i s P o s i t i v e range 1 . . 4 ;

103 subtype PifpTextT i s St r ing ( Pi fpTextI ) ;

104 P i f p T i t l e : constant PifpTextT := ”PIFP” ;

105

106 subtype IDTextI i s P o s i t i v e range 1 . . 3 ;

107 subtype IDTextT i s St r ing ( IDTextI ) ;

108 IDTit l e : constant IDTextT := ”ID ” ;

109

110 subtype FlowTextI i s P o s i t i v e range 1 . . 3 ;

111 subtype FlowTextT i s St r ing ( FlowTextI ) ;

112

113 type FlowStringT i s record

114 Text : FlowTextT ;

115 Length : FlowTextI ;

116 end record ;

117

118 type FlowStringLookUpT i s array ( TablesTypes . FlowMode) of FlowStringT ;

119 FlowStringLookUp : constant FlowStringLookUpT :=

120 FlowStringLookUpT ’

121 ( TablesTypes .R => FlowStringT ’ ( ” R ” , 2) ,

122 TablesTypes .W => FlowStringT ’ ( ” W ” , 2) ,

123 TablesTypes .RW => FlowStringT ’ ( ” RW” , 3) ,

124 TablesTypes .N => FlowStringT ’ ( ” N ” , 2) ) ;

125

126

127 Con f i gF i l e : F i l e .T := F i l e . Nu l lF i l e ;

128

129 procedure Va l i da t eF i l e ( Success : out Boolean )

130 --# global in out ConfigFile ;

131 --# derives Success , ConfigFile from ConfigFile ;

132 i s

133 OK : Boolean ;

134

135 procedure ReadPartitionsNumberValue

136 --# global in out ConfigFile ;

137 --# out Success ;

138 --# derives ConfigFile ,

139 --# Success from ConfigFile ;

140 i s

141 Partit ionsNumber : I n t eg e r ;

142 begin

143 F i l e . GetInteger ( Conf igFi l e , PartitionsNumber , 0 , Success ) ;

144 i f Success and then

145 ( Partit ionsNumber = DefaultValues . Number Of Part it ions ) then

146 Success := True ;

147 else

148 Success := False ;

149 end i f ;

150 i f F i l e . EndOfLine ( Con f i gF i l e ) then

151 F i l e . SkipLine ( Conf igFi l e , 1) ;

152 else
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153 Success := False ;

154 end i f ;

155 end ReadPartitionsNumberValue ;

156

157 procedure ReadSystemPartitionsNumber

158 --# global in out ConfigFile ;

159 --# out Success ;

160 --# derives ConfigFile ,

161 --# Success from ConfigFile ;

162 i s

163 TheTit le : PartitionsNumberTextT ;

164 Stop : Natural ;

165 begin

166 F i l e . GetStr ing ( Conf igFi l e , TheTitle , Stop ) ;

167 i f Stop = TheTitle ’ Last and then

168 TheTit le = Part i t ionsNumberTit le then

169 ReadPartitionsNumberValue ;

170 else

171 Success := False ;

172 end i f ;

173 end ReadSystemPartitionsNumber ;

174

175 begin

176

177 F i l e . SetName( TheFile => Conf igFi l e ,

178 TheName => DefaultValues . Name Of Conf igurat ion Fi le ) ;

179

180 i f F i l e . Ex i s t s ( Con f i gF i l e ) then

181 F i l e . OpenRead ( TheFile => Conf igFi l e ,

182 Success => Success ) ;

183 i f Success then

184 ReadSystemPartitionsNumber ;

185 end i f ;

186 F i l e . Close ( TheFile => Conf igFi l e ,

187 Success => OK) ;

188 Success := Success and OK;

189 else

190 Success := False ;

191 end i f ;

192 end Va l i da t eF i l e ;

193

194 procedure Open (OK : out Boolean )

195 --# global in out ConfigFile ;

196 --# derives ConfigFile , OK from ConfigFile ;

197 i s

198 Status : Boolean ;

199 begin

200 F i l e . SetName( TheFile => Conf igFi l e ,

201 TheName => DefaultValues . Name Of Conf igurat ion Fi le ) ;

202 i f F i l e . Ex i s t s ( Con f i gF i l e ) then

203 F i l e . OpenRead ( TheFile => Conf igFi l e ,

204 Success => Status ) ;

205 else

206 Status := False ;
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207 end i f ;

208 OK := Status ;

209 end Open ;

210

211 procedure Close (OK : out Boolean )

212 --# global in out ConfigFile ;

213 --# derives ConfigFile , OK from ConfigFile ;

214 i s

215 Status : Boolean ;

216 begin

217 F i l e . Close ( TheFile => Conf igFi l e ,

218 Success => Status ) ;

219 OK := Status ;

220 end Close ;

221

222 procedure Read PRT Values ( Success : out Boolean )

223 --# global out ID_Partition , Size_Of_Partition , Duration_Partition , ←↩

Mode_Partition , Processes_Of_Partition ;

224 --# in out ConfigFile ;

225 --# derives Success , ConfigFile from ConfigFile &

226 --# ID_Partition , Size_Of_Partition , Duration_Partition , ←↩

Mode_Partition , Processes_Of_Partition from ConfigFile ;

227

228 i s

229 Process : Part i t ionTypes . ProcessesType ;

230

231 procedure ReadPar t i t i onTi t l e

232 --# global in out ConfigFile ;

233 --# out Success ;

234 --# derives ConfigFile ,

235 --# Success from ConfigFile ;

236 i s

237 TheTit le : Part i t ionT ;

238 Stop : Natural ;

239 begin

240 F i l e . GetStr ing ( Conf igFi l e , TheTitle , Stop ) ;

241 i f Stop = TheTitle ’ Last and then

242 TheTit le = P a r t i t i o n T i t l e then

243 i f F i l e . EndOfLine ( Con f i gF i l e ) then

244 F i l e . SkipLine ( Conf igFi l e , 1) ;

245 Success := True ;

246 else

247 Success := False ;

248 end i f ;

249 else

250 Success := False ;

251 end i f ;

252 end ReadPar t i t i onTi t l e ;

253

254 procedure ReadPartit ionID

255 --# global in out ConfigFile ;

256 --# out Success ;

257 --# out ID_Partition ;

258 --# derives ConfigFile , Success from ConfigFile &
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259 --# ID_Partition from ConfigFile ;

260 i s

261 TheTit le : Part it ionIDT ;

262 Stop : Natural ;

263

264 procedure ReadPartit ionIDValue

265 --# global in out ConfigFile ;

266 --# out Success ;

267 --# out ID_Partition ;

268 --# derives ConfigFile , Success from ConfigFile &

269 --# ID_Partition from ConfigFile ;

270 i s

271 Value : In t eg e r ;

272 begin

273 F i l e . GetInteger ( Conf igFi l e , Value , 0 , Success ) ;

274 i f Success and Value > 0 and Value <= ←↩

DefaultValues . Number Of Part it ions then

275 ID Par t i t i on := Value ;

276 else

277 ID Par t i t i on := 1 ;

278 end i f ;

279 i f F i l e . EndOfLine ( Con f i gF i l e ) then

280 F i l e . SkipLine ( Conf igFi l e , 1) ;

281 else

282 Success := False ;

283 end i f ;

284 end ReadPartit ionIDValue ;

285

286 begin

287 F i l e . GetStr ing ( Conf igFi l e , TheTitle , Stop ) ;

288 i f Stop = TheTitle ’ Last and then

289 TheTit le = Par t i t i on IDTi t l e then

290 ReadPartit ionIDValue ;

291 else

292 Success := False ;

293 ID Par t i t i on := 1 ;

294 end i f ;

295 end ReadPartit ionID ;

296

297 procedure ReadPart i t i onS ize

298 --# global in out ConfigFile ;

299 --# out Success ;

300 --# out Size_Of_Partition ;

301 --# derives ConfigFile , Success from ConfigFile &

302 --# Size_Of_Partition from ConfigFile ;

303 i s

304 TheTit le : Partit ionSIZET ;

305 Stop : Natural ;

306

307 procedure ReadPartitionSIZEValue

308 --# global in out ConfigFile ;

309 --# out Success ;

310 --# out Size_Of_Partition ;

311 --# derives ConfigFile , Success from ConfigFile &
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312 --# Size_Of_Partition from ConfigFile ;

313 i s

314 Value : In t eg e r ;

315 begin

316 F i l e . GetInteger ( Conf igFi l e , Value , 0 , Success ) ;

317 i f Success and Value in Part i t ionTypes . Par t i t i onS i zeAl l owVa lues ←↩

then

318 S i z e O f P a r t i t i o n := Value ;

319 else

320 S i z e O f P a r t i t i o n := ←↩

Part i t ionTypes . Part i t i onS izeAl lowValues ’ F i r s t ;

321 end i f ;

322 i f F i l e . EndOfLine ( Con f i gF i l e ) then

323 F i l e . SkipLine ( Conf igFi l e , 1) ;

324 else

325 Success := False ;

326 end i f ;

327 end ReadPartitionSIZEValue ;

328

329 begin

330 F i l e . GetStr ing ( Conf igFi l e , TheTitle , Stop ) ;

331 i f Stop = TheTitle ’ Last and then

332 TheTit le = Par t i t i onSIZETi t l e then

333 ReadPartitionSIZEValue ;

334 else

335 S i z e O f P a r t i t i o n := Part i t ionTypes . Part i t i onS izeAl lowValues ’ F i r s t ;

336 Success := False ;

337 end i f ;

338 end ReadPart i t i onS ize ;

339

340 procedure ReadPart it ionDurat ion

341 --# global in out ConfigFile ;

342 --# out Success ;

343 --# out Duration_Partition ;

344 --# derives ConfigFile , Success from ConfigFile &

345 --# Duration_Partition from ConfigFile ;

346 i s

347 TheTit le : PartitionDURATIONT ;

348 Stop : Natural ;

349

350 procedure ReadPart it ionDurationValue

351 --# global in out ConfigFile ;

352 --# out Success ;

353 --# out Duration_Partition ;

354 --# derives ConfigFile , Success from ConfigFile &

355 --# Duration_Partition from ConfigFile ;

356 i s

357 Value : In t eg e r ;

358 begin

359 F i l e . GetInteger ( Conf igFi l e , Value , 0 , Success ) ;

360 i f Success and Value in Part i t ionTypes . Par t i t i on Dura t i on then

361 Durat i on Par t i t i on := Value ;

362 else

363 Durat i on Par t i t i on := 1 ;
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364 end i f ;

365 i f F i l e . EndOfLine ( Con f i gF i l e ) then

366 F i l e . SkipLine ( Conf igFi l e , 1) ;

367 else

368 Success := False ;

369 end i f ;

370 end ReadPart it ionDurationValue ;

371

372 begin

373 F i l e . GetStr ing ( Conf igFi l e , TheTitle , Stop ) ;

374 i f Stop = TheTitle ’ Last and then

375 TheTit le = PartitionDURATIONTitle then

376 ReadPartitionDURATIONValue ;

377 else

378 Durat i on Par t i t i on := 1 ;

379 Success := False ;

380 end i f ;

381 end ReadPart it ionDurat ion ;

382

383 procedure ReadProcessTit le

384 --# global in out ConfigFile ;

385 --# out Success ;

386 --# derives ConfigFile ,

387 --# Success from ConfigFile ;

388 i s

389 TheTit le : ProcessT ;

390 Stop : Natural ;

391 begin

392 F i l e . GetStr ing ( Conf igFi l e , TheTitle , Stop ) ;

393 i f Stop = TheTitle ’ Last and then

394 TheTit le = Proc e s sT i t l e then

395 i f F i l e . EndOfLine ( Con f i gF i l e ) then

396 F i l e . SkipLine ( Conf igFi l e , 1) ;

397 Success := True ;

398 else

399 Success := False ;

400 end i f ;

401 else

402 Success := False ;

403 end i f ;

404 end ReadProcessTit le ;

405

406 procedure ReadProcess

407 --# global in out ConfigFile ;

408 --# out Success ;

409 --# out Process ;

410 --# derives ConfigFile , Success from ConfigFile &

411 --# Process from ConfigFile ;

412 i s

413

414 procedure ReadProcessOperation

415 --# global in out ConfigFile ;

416 --# out Success ;

417 --# in out Process ;
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418 --# derives ConfigFile , Success from ConfigFile &

419 --# Process from Process , ConfigFile ;

420 i s

421 TheTit le : ProcessOperationT ;

422 RawOperation : OperationTextT ;

423 Stop : Natural ;

424 Matched : Boolean := False ;

425

426 begin

427 Process . operat ion := Part i t ionTypes . OperationType ’ F i r s t ;

428 F i l e . GetStr ing ( Conf igFi l e , TheTitle , Stop ) ;

429 i f Stop = TheTitle ’ Last and then

430 TheTit le = Proce s sOperat i onTi t l e then

431

432 F i l e . GetLine ( Conf igFi l e , RawOperation , Stop ) ;

433 for OP in Part i t ionTypes . OperationType loop

434 --# assert OP in PartitionTypes . OperationType ;

435 i f Stop = OperationStringLookUp (OP) . Length then

436 --# assert OP in PartitionTypes . OperationType and

437 --# Stop in OperationTextI ;

438 Matched := True ;

439 for I in OperationTextI range 1 . . Stop loop

440 --# assert OP in PartitionTypes . OperationType and

441 --# Stop in OperationTextI and

442 --# Stop = Stop % and

443 --# I in OperationTextI and

444 --# I <= Stop ;

445 i f OperationStringLookUp (OP) . Text ( I ) /= ←↩

RawOperation ( I ) then

446 Matched := False ;

447 exit ;

448 end i f ;

449 end loop ;

450 end i f ;

451 i f Matched then

452 Process . operat ion := OP;

453 exit ;

454 end i f ;

455 end loop ;

456 Success := Matched ;

457 else

458 Success := False ;

459 end i f ;

460 end ReadProcessOperation ;

461

462 procedure ReadProcessCommunicationMode

463 --# global in out ConfigFile ;

464 --# out Success ;

465 --# in out Process ;

466 --# derives ConfigFile , Success from ConfigFile &

467 --# Process from Process , ConfigFile ;

468 i s

469 TheTit le : CommunicationModeT ;

470 RawMode : CommunicationModeTextT ;
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471 Stop : Natural ;

472 Matched : Boolean := False ;

473

474 begin

475 Process . mode := Part i t ionTypes .READ;

476 F i l e . GetStr ing ( Conf igFi l e , TheTitle , Stop ) ;

477 i f Stop = TheTitle ’ Last and then

478 TheTit le = CommunicationModeTitle then

479 F i l e . GetLine ( Conf igFi l e , RawMode , Stop ) ;

480 for M in Part i t ionTypes . CommunicationMode loop

481 --# assert M in PartitionTypes . CommunicationMode ;

482 i f Stop = CommunicationModeStringLookUp (M) . Length then

483 --# assert M in PartitionTypes . CommunicationMode and

484 --# Stop in CommunicationModeTextI ;

485 Matched := True ;

486 for I in CommunicationModeTextI range 1 . . Stop loop

487 --# assert M in PartitionTypes . CommunicationMode and

488 --# Stop in CommunicationModeTextI and

489 --# Stop = Stop % and

490 --# I in CommunicationModeTextI and

491 --# I <= Stop ;

492 i f CommunicationModeStringLookUp (M) . Text ( I ) /= ←↩

RawMode( I ) then

493 Matched := False ;

494 exit ;

495 end i f ;

496 end loop ;

497 end i f ;

498 i f Matched then

499 Process . mode := M;

500 exit ;

501 end i f ;

502 end loop ;

503 Success := Matched ;

504 else

505 Success := False ;

506 end i f ;

507 end ReadProcessCommunicationMode ;

508

509 procedure ReadProcessCommunicationSize

510 --# global in out ConfigFile ;

511 --# out Success ;

512 --# in out Process ;

513 --# derives ConfigFile , Success from ConfigFile &

514 --# Process from Process , ConfigFile ;

515 i s

516 TheTit le : CommunicationSizeT ;

517 Stop : Natural ;

518

519 procedure ReadProcessCommunicationSizeValue

520 --# global in out ConfigFile ;

521 --# out Success ;

522 --# in out Process ;

523 --# derives ConfigFile , Success from ConfigFile &
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524 --# Process from Process , ConfigFile ;

525 i s

526 Value : In t eg e r ;

527 begin

528 Process . s i z e := 2 ;

529 F i l e . GetInteger ( Conf igFi l e , Value , 0 , Success ) ;

530 i f Success and Value in ←↩

Part i t ionTypes . CommunicationsBlockSizeAllowValues then

531 Process . s i z e := Value ;

532 end i f ;

533 i f F i l e . EndOfLine ( Con f i gF i l e ) then

534 F i l e . SkipLine ( Conf igFi l e , 1) ;

535 else

536 Success := False ;

537 end i f ;

538 end ReadProcessCommunicationSizeValue ;

539

540 begin

541 Process . s i z e := 2 ;

542 F i l e . GetStr ing ( Conf igFi l e , TheTitle , Stop ) ;

543 i f Stop = TheTitle ’ Last and then

544 TheTit le = CommunicationSizeTit le then

545 ReadProcessCommunicationSizeValue ;

546 else

547 Success := False ;

548 end i f ;

549 end ReadProcessCommunicationSize ;

550

551 procedure ReadProcessCommunicationTo

552 --# global in out ConfigFile ;

553 --# out Success ;

554 --# in out Process ;

555 --# derives ConfigFile , Success from ConfigFile &

556 --# Process from Process , ConfigFile ;

557 i s

558 TheTit le : CommunicationToT ;

559 Stop : Natural ;

560

561 procedure ReadProcessCommunicationToValue

562 --# global in out ConfigFile ;

563 --# out Success ;

564 --# in out Process ;

565 --# derives ConfigFile , Success from ConfigFile &

566 --# Process from Process , ConfigFile ;

567 i s

568 Value : In t eg e r ;

569 begin

570 Process . to := Part i t ionTypes . PartitionsNumber ’ F i r s t ;

571 F i l e . GetInteger ( Conf igFi l e , Value , 0 , Success ) ;

572 i f Success and Value > 0 and Value <= ←↩

DefaultValues . Number Of Part it ions then

573 Process . to := Value ;

574 end i f ;

575 i f F i l e . EndOfLine ( Con f i gF i l e ) then
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576 F i l e . SkipLine ( Conf igFi l e , 1) ;

577 else

578 Success := False ;

579 end i f ;

580 end ReadProcessCommunicationToValue ;

581

582 begin

583 Process . to := Part i t ionTypes . PartitionsNumber ’ F i r s t ;

584 F i l e . GetStr ing ( Conf igFi l e , TheTitle , Stop ) ;

585 i f Stop = TheTitle ’ Last and then

586 TheTit le = CommunicationToTitle then

587 ReadProcessCommunicationToValue ;

588 else

589 Success := False ;

590 end i f ;

591 end ReadProcessCommunicationTo ;

592

593

594 begin

595 Process . operat ion := Part i t ionTypes . OP Communication ;

596 Process . blk . i n i t := 1 ;

597 Process . blk . sz := 1 ;

598 Process . mode := Part i t ionTypes .READ;

599 Process . s i z e := 2 ;

600 Process . to := Part i t ionTypes . PartitionsNumber ’ F i r s t ;

601

602 ReadProcessOperation ;

603 i f Process . operat ion = Part i t ionTypes . OP Communication then

604 ReadProcessCommunicationMode ;

605 i f Success then

606 ReadProcessCommunicationSize ;

607 end i f ;

608 i f Success then

609 ReadProcessCommunicationTo ;

610 end i f ;

611 end i f ;

612 end ReadProcess ;

613

614 begin

615

616 ID Par t i t i on := 1 ;

617 S i z e O f P a r t i t i o n := Part i t ionTypes . Part i t i onS izeAl lowValues ’ F i r s t ;

618 Durat i on Par t i t i on := 1 ;

619 Mode Part it ion := Part i t ionTypes . IDLE ;

620 Process . operat ion := Part i t ionTypes . OP Nothing ;

621 Process . blk . i n i t := 1 ;

622 Process . blk . sz := 1 ;

623 Process . mode := Part i t ionTypes .READ;

624 Process . s i z e := 2 ;

625 Process . to := Part i t ionTypes . PartitionsNumber ’ F i r s t ;

626 P r o c e s s e s O f P a r t i t i o n := ←↩

Part i t ionTypes . P ro c e s s e s L i s t ’ ( Part i t ionTypes . Index Range Proce s s e s Pe r Par t i t i t on ←↩

=> Process ) ;

627 ReadPar t i t i onTi t l e ;
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628 i f Success then

629 ReadPartit ionID ;

630 --# assert True ;

631 i f Success then

632 ReadPart i t i onS ize ;

633 end i f ;

634 --# assert True ;

635 i f Success then

636 ReadPart it ionDurat ion ;

637 end i f ;

638 i f Success then

639 for i in Part i t ionTypes . Index Range Proce s s e s Pe r Par t i t i t on loop

640 --# assert i in ←↩

PartitionTypes . Index_Range_Processes_Per_Partititon ;

641 ReadProcessTit le ;

642 --# assert True ;

643 i f Success then

644 ReadProcess ;

645 end i f ;

646 --# assert True ;

647 P r o c e s s e s O f P a r t i t i o n ( i ) := Process ;

648 end loop ;

649 end i f ;

650 i f Success then

651 Mode Part it ion := Part i t ionTypes . IDLE ;

652 end i f ;

653 end i f ;

654

655 end Read PRT Values ;

656

657 function Get Part i t i on ID return Part i t ionTypes . IdType

658 --# global ID_Partition ;

659 i s

660 begin

661 return ID Par t i t i on ;

662 end Get Part i t i on ID ;

663

664 function G e t P a r t i t i o n S i z e return Part i t ionTypes . Par t i t i onS i zeAl l owVa lues

665 --# global Size_Of_Partition ;

666 i s

667 begin

668 return S i z e O f P a r t i t i o n ;

669 end G e t P a r t i t i o n S i z e ;

670

671

672 function Get Par t i t i on Durat ion return Part i t ionTypes . Par t i t i on Dura t i on

673 --# global Duration_Partition ;

674 i s

675 begin

676 return Durat i on Par t i t i on ;

677 end Get Par t i t i on Durat ion ;

678

679 function Get Part it ion Mode return Part i t ionTypes . Part it ion Mode

680 --# global Mode_Partition ;
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681 i s

682 begin

683 return Mode Part it ion ;

684 end Get Part it ion Mode ;

685

686 function Get Pa r t i t i on Pro c e s s e s return Part i t ionTypes . P r o c e s s e s L i s t

687 --# global Processes_Of_Partition ;

688 i s

689 begin

690 return P r o c e s s e s O f P a r t i t i o n ;

691 end Ge t Pa r t i t i on Pro c e s s e s ;

692

693 procedure Read Size Of Blocks For Communication ( Success : out Boolean )

694 --# global in out Size_Of_Blocks_For_Communication ;

695 --# in out ConfigFile ;

696 --# derives Success , ConfigFile from ConfigFile &

697 --# Size_Of_Blocks_For_Communication from ←↩

Size_Of_Blocks_For_Communication , ConfigFile ;

698

699 i s

700 procedure SetDe fau l t s

701 --# global out Size_Of_Blocks_For_Communication ;

702 --# derives Size_Of_Blocks_For_Communication from ;

703 i s

704 begin

705 Size Of Blocks For Communicat ion := 4 ;

706 end SetDe fau l t s ;

707

708 procedure ReadCommunicationBlocksSizeValue

709 --# global in out ConfigFile ;

710 --# out Success ;

711 --# in out Size_Of_Blocks_For_Communication ;

712 --# derives ConfigFile ,

713 --# Success from ConfigFile &

714 --# Size_Of_Blocks_For_Communication from ←↩

Size_Of_Blocks_For_Communication , ConfigFile ;

715 i s

716 Value : In t eg e r ;

717 begin

718 F i l e . GetInteger ( Conf igFi l e , Value , 0 , Success ) ;

719 i f Success and then

720 ( Value >= 1 and Value <= ←↩

DefaultValues . CommunicationsBlockSizeMaxValue ) then

721 Success := True ;

722 Size Of Blocks For Communicat ion := Value ;

723 else

724 Success := False ;

725 end i f ;

726

727 i f F i l e . EndOfLine ( Con f i gF i l e ) then

728 F i l e . SkipLine ( Conf igFi l e , 1) ;

729 F i l e . SkipLine ( Conf igFi l e , 1) ;

730 else

731 Success := False ;
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732 end i f ;

733

734 end ReadCommunicationBlocksSizeValue ;

735

736 procedure ReadBlocksSize

737 --# global in out ConfigFile ;

738 --# out Success ;

739 --# derives Success , ConfigFile from ConfigFile ;

740 i s

741 TheTit le : CommunicationBlocksSizeT ;

742 Stop : Natural ;

743 begin

744 F i l e . SkipLine ( Conf igFi l e , 1) ;

745 F i l e . GetStr ing ( Conf igFi l e , TheTitle , Stop ) ;

746 i f Stop = TheTitle ’ Last and then

747 TheTit le = Communicat ionBlocksSizeTit le then

748 Success := True ;

749 else

750 Success := False ;

751 end i f ;

752 end ReadBlocksSize ;

753

754 begin

755 ReadBlocksSize ;

756 i f Success then

757 ReadCommunicationBlocksSizeValue ;

758 else

759 SetDe fau l t s ;

760 end i f ;

761

762 Success := Success ;

763 end Read Size Of Blocks For Communication ;

764

765 function Get Size Of Blocks For Communicat ion return ←↩

Part i t ionTypes . CommunicationsBlockSizeAllowValues i s

766 begin

767 return Size Of Blocks For Communicat ion ;

768 end Get Size Of Blocks For Communicat ion ;

769

770 procedure Read PIFP ( Success : out Boolean )

771 --# global in out ConfigFile ;

772 --# derives Success , ConfigFile from ConfigFile ;

773 i s

774 TheTit le : PifpTextT ;

775 Stop : Natural ;

776 begin

777 F i l e . GetStr ing ( Conf igFi l e , TheTitle , Stop ) ;

778 i f Stop = TheTitle ’ Last and then

779 TheTit le = P i f p T i t l e then

780 Success := True ;

781 F i l e . SkipLine ( Conf igFi l e , 1) ;

782 else

783 Success := False ;

784 end i f ;
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785 end Read PIFP ;

786

787 procedure Read PIFP Line ( Success : out Boolean ; ID : out ←↩

Part i t ionTypes . Partit ionsNumber )

788 --# global in out PIFP_Line ;

789 --# in out ConfigFile ;

790 --# derives PIFP_Line from PIFP_Line , ConfigFile &

791 --# ID from ConfigFile &

792 --# Success , ConfigFile from ConfigFile ;

793 i s

794 P ID Temp : Part i t ionTypes . Partit ionsNumber ;

795 Mode Temp : TablesTypes . FlowMode ;

796

797 procedure Read ID

798 --# global out Success ;

799 --# out ID ;

800 --# in out ConfigFile ;

801 --# derives Success , ID , ConfigFile from ConfigFile ;

802 i s

803 TheTit le : IDTextT ;

804 Stop : Natural ;

805 procedure Read ID Value

806 --# global out Success ;

807 --# out ID ;

808 --# in out ConfigFile ;

809 --# derives Success , ID , ConfigFile from ConfigFile ;

810 i s

811 Value : In t eg e r ;

812 begin

813 ID := Part i t ionTypes . PartitionsNumber ’ F i r s t ;

814 F i l e . GetInteger ( Conf igFi l e , Value , 0 , Success ) ;

815 i f Success and then

816 ( Value in Part i t ionTypes . Partit ionsNumber ) then

817 Success := True ;

818 ID := Value ;

819 else

820 Success := False ;

821 end i f ;

822

823 i f F i l e . EndOfLine ( Con f i gF i l e ) then

824 F i l e . SkipLine ( Conf igFi l e , 1) ;

825 else

826 Success := False ;

827 end i f ;

828 end Read ID Value ;

829 begin

830 ID := Part i t ionTypes . PartitionsNumber ’ F i r s t ;

831 F i l e . GetStr ing ( Conf igFi l e , TheTitle , Stop ) ;

832 i f Stop = TheTitle ’ Last and then

833 TheTit le = IDTit le then

834 Read ID Value ;

835 else

836 Success := False ;

837 end i f ;
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838 end Read ID ;

839

840 procedure Read Flow ( P ID : out Part i t ionTypes . Partit ionsNumber ; Mode ←↩

: out TablesTypes . FlowMode)

841 --# global out Success ;

842 --# in out ConfigFile ;

843 --# derives Success , P_ID , Mode , ConfigFile from ConfigFile ;

844 i s

845 Value : In t eg e r ;

846 procedure Read Mode

847 --# global in out ConfigFile ;

848 --# out Success ;

849 --# out Mode ;

850 --# derives ConfigFile , Success from ConfigFile &

851 --# Mode from ConfigFile ;

852 i s

853 RawMode : FlowTextT ;

854 Stop : Natural ;

855 Matched : Boolean := False ;

856 begin

857 Mode := TablesTypes . FlowMode ’ Last ;

858 F i l e . GetLine ( Conf igFi l e , RawMode , Stop ) ;

859 for M in TablesTypes . FlowMode loop

860 --# assert M in TablesTypes . FlowMode ;

861 i f Stop = FlowStringLookUp (M) . Length then

862 --# assert M in TablesTypes . FlowMode and

863 --# Stop in FlowTextI ;

864 Matched := True ;

865 for I in FlowTextI range 1 . . Stop loop

866 --# assert M in TablesTypes . FlowMode and

867 --# Stop in FlowTextI and

868 --# Stop = Stop % and

869 --# I in FlowTextI and

870 --# I <= Stop ;

871 i f FlowStringLookUp (M) . Text ( I ) /= RawMode( I ) then

872 Matched := False ;

873 exit ;

874 end i f ;

875 end loop ;

876 end i f ;

877 i f Matched then

878 Mode := M;

879 exit ;

880 end i f ;

881 end loop ;

882 Success := Matched ;

883 end Read Mode ;

884

885 begin

886 P ID := Part i t ionTypes . PartitionsNumber ’ F i r s t ;

887 Mode := TablesTypes . FlowMode ’ Last ;

888 F i l e . GetInteger ( Conf igFi l e , Value , 0 , Success ) ;

889 i f Success and then

890 ( Value in Part i t ionTypes . Partit ionsNumber ) then
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891 P ID := Value ;

892 Read Mode ;

893 else

894 Success := False ;

895 end i f ;

896 end Read Flow ;

897

898 procedure SetDe fau l t s

899 --# global in out PIFP_Line ;

900 --# derives PIFP_Line from PIFP_Line ;

901 i s

902 begin

903 for i in Part i t ionTypes . Partit ionsNumber loop

904 --# assert i in PartitionTypes . PartitionsNumber ;

905 PIFP Line ( i ) := TablesTypes .W;

906 end loop ;

907 end SetDe fau l t s ;

908

909 begin

910 Read ID ;

911 i f Success then

912 for i in Part i t ionTypes . Partit ionsNumber loop

913 --# assert i in PartitionTypes . PartitionsNumber ;

914 Read Flow (P ID Temp , Mode Temp) ;

915 PIFP Line (P ID Temp) := Mode Temp ;

916 end loop ;

917 else

918 SetDe fau l t s ;

919 end i f ;

920 end Read PIFP Line ;

921

922 procedure Read PRT Exec Sequence ( Success : out Boolean )

923 --# global out Partitions_Execution_Sequence ;

924 --# in out ConfigFile ;

925 --# derives Partitions_Execution_Sequence from ConfigFile &

926 --# Success , ConfigFile from ConfigFile ;

927 i s

928 Part i t i onID : Part i t ionTypes . Partit ionsNumber ;

929 procedure Read Partit ionsExecutionNumber

930 --# global in out ConfigFile ;

931 --# out Success ;

932 --# derives Success , ConfigFile from ConfigFile ;

933 i s

934 TheTit le : PartitionsExecutionNumberT ;

935 Stop : Natural ;

936 temp : In t eg e r ;

937 begin

938 F i l e . GetStr ing ( Conf igFi l e , TheTitle , Stop ) ;

939 i f Stop = TheTitle ’ Last and then

940 TheTit le = Part i t ionsExecut ionNumberTit le then

941

942 F i l e . GetInteger ( Conf igFi l e , temp , 0 , Success ) ;

943 i f Success and then

944 ( temp = DefaultValues . Partit ionsExecutionNumber ) then
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945 Success := True ;

946 else

947 Success := False ;

948 end i f ;

949 i f F i l e . EndOfLine ( Con f i gF i l e ) then

950 F i l e . SkipLine ( Conf igFi l e , 1) ;

951 else

952 Success := False ;

953 end i f ;

954 else

955 Success := False ;

956 end i f ;

957 end Read Partit ionsExecutionNumber ;

958

959 procedure Read Part i t i onsExecut ionSequenceTi t l e

960 --# global in out ConfigFile ;

961 --# out Success ;

962 --# derives Success , ConfigFile from ConfigFile ;

963 i s

964 TheTit le : Part i t ionsExecut ionSequenceT ;

965 Stop : Natural ;

966 begin

967 F i l e . GetStr ing ( Conf igFi l e , TheTitle , Stop ) ;

968 i f Stop = TheTitle ’ Last and then

969 TheTit le = Par t i t i onsExecut i onSequenceT i t l e then

970 i f F i l e . EndOfLine ( Con f i gF i l e ) then

971 F i l e . SkipLine ( Conf igFi l e , 1) ;

972 Success := True ;

973 else

974 Success := False ;

975 end i f ;

976 else

977 Success := False ;

978 end i f ;

979 end Read Part i t i onsExecut ionSequenceTi t l e ;

980

981 procedure ReadPart it ionValue

982 --# global in out ConfigFile ;

983 --# out Success ;

984 --# in out PartitionID ;

985 --# derives ConfigFile ,

986 --# Success from ConfigFile &

987 --# PartitionID from PartitionID , ConfigFile ;

988 i s

989 Value : In t eg e r ;

990 begin

991 F i l e . GetInteger ( Conf igFi l e , Value , 0 , Success ) ;

992 i f Success and then

993 ( Value in Part i t ionTypes . Partit ionsNumber ) then

994 Success := True ;

995 Part i t i onID := Value ;

996 else

997 Success := False ;

998 end i f ;
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999

1000 i f F i l e . EndOfLine ( Con f i gF i l e ) then

1001 F i l e . SkipLine ( Conf igFi l e , 1) ;

1002 else

1003 Success := False ;

1004 end i f ;

1005

1006 end ReadPart it ionValue ;

1007

1008 begin

1009 Part i t i ons Execut i on Sequence := ←↩

TablesTypes . Part i t ionsExecut ionSequenceTable ’ ( TablesTypes . Par t i t i onsExecut ionIndex ←↩

=> TablesTypes . Part i t ionsExecut ionIndex ’ F i r s t ) ;

1010 Read Partit ionsExecutionNumber ;

1011 i f Success then

1012 Read Part i t i onsExecut ionSequenceTi t l e ;

1013 i f Success then

1014 for i in TablesTypes . Par t i t i onsExecut ionIndex loop

1015 --# assert i in TablesTypes . PartitionsExecutionIndex ;

1016 Part i t i onID := Part i t ionTypes . PartitionsNumber ’ F i r s t ;

1017 ReadPart it ionValue ;

1018 i f Success then

1019 Part i t i ons Execut i on Sequence ( i ) := Part i t i onID ;

1020 end i f ;

1021 end loop ;

1022 end i f ;

1023 end i f ;

1024 end Read PRT Exec Sequence ;

1025

1026 end ConfigValues ;

Code Listing C.17: ConfigValues body package
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Example of a configuration file

An example of a valid configuration file is presented in this appendix. In this configu-

ration file, as we can see in the first three lines, the kernel has 3 partitions, it has 20

blocks of memory for communication, and every one is divided in 4. Each partition has

obligatorily 2 processes, as we can see in line number four.

The partition with ID=1, as we can see in between lines twenty and twenty-nine, has

size=350, has a duration=12, and has one process that wants to communicate with the

partition with ID=2, to “Write” and the message size is 5. It has another process to do

“Nothing”. The partition with ID=2, as we can see in between lines six and eighteen,

has size=149, has a duration=3 and has two processes that want to communicate; both

want to communicate with partition ID=1, one is to “Read” being the message size

4, and the other is to “Write” being the message size 1. Finally, the partition with

ID=3, as we can see in between lines thirty-one and thirty-seven, has size=170, has a

duration=11 and both processes are specified to do “Nothing”.

The cycle of execution consists of 4 partitions, and the sequence is respectively, ID=2,

ID=1, ID=2, ID=3, as we can see in between lines thirty-eight and forty-three. The

partition information flow policy, as we can see from line forty-five until de end of the

file, is composed by: the partition ID=1, can communicate with partitions ID=2 and

ID=3 to “Read/Write”; the partition which ID=2 only can communicate with partition

ID=1 to “Read/Write”; and the partition ID=3 can not communicate with any of them.

179
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1 Partit ionsNumber 3

2 NumberOfCommunicationsBlocks 20

3 CommunicationBlocksSize 4

4 NumberOfProcessesPerPart it ion 2

5 PARTITION

6 Part i t i onID 2

7 Part i t ionSIZE 149

8 PartitionDURATION 3

9 PROCESS

10 ProcessOperat ion Communication

11 CommunicationMode Read

12 CommunicationSize 4

13 CommunicationTo 1

14 PROCESS

15 ProcessOperat ion Communication

16 CommunicationMode Write

17 CommunicationSize 1

18 CommunicationTo 1

19 PARTITION

20 Part i t i onID 1

21 Part i t ionSIZE 350

22 PartitionDURATION 12

23 PROCESS

24 ProcessOperat ion Communication

25 CommunicationMode Write

26 CommunicationSize 5

27 CommunicationTo 2

28 PROCESS

29 ProcessOperat ion Nothing

30 PARTITION

31 Part i t i onID 3

32 Part i t ionSIZE 170

33 PartitionDURATION 11

34 PROCESS

35 ProcessOperat ion Nothing

36 PROCESS

37 ProcessOperat ion Nothing

38 Partit ionsExecutionNumber 4

39 Part i t i onsExecut ionSequence

40 2

41 1

42 2

43 3

44 PIFP

45 ID 3

46 1 N

47 2 N

48 ID 1

49 2 RW

50 3 RW

51 ID 2

52 1 RW

53 3 N
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