Universidade do Minho
Escola de Engenharia

Bruno Luis da Silva e Costa

Dependable Cloud Computing
Management Services

Outubro de 2010

Universidade do Minho
Escola de Engenharia

Bruno Luis da Silva e Costa

Dependable Cloud Computing
Management Services

Dissertacao de Mestrado
Mestrado em Engenharia Informatica

Trabalho efectuado sob a orientacao do
Prof. Antéonio Luis Sousa

Outubro de 2010

E AUTORIZADA A REPRODUGAO PARCIAL DESTA DISSERTACAO APENAS PARA EFEITOS
DE INVESTIGACAO, MEDIANTE DECLARAGCAO ESCRITA DO INTERESSADO, QUE A TAL SE
COMPROMETE;

Universidade do Minho, /]

Assinatura:

Acknowledgements

To my advisor Prof. Anténio Sousa, for his invaluable assistance
and all the guidance during this project. Deepest gratitude also
to members of Distributed Systems Group, Prof. Rui Oliveira and
Prof. José Pereira for the critics and support.

To Miguel Matos, my teammate at DC2MS project, for all his vision
and invaluable assistance. Special thanks to all my colleagues at dis-
tributed systems laboratory for providing me an excellent working
environment and for their friendship. To all the department mem-
bers and colleagues, with a special word of gratitude to my group
members.

To Liliana, for all her love and patience.

To my beloved family and friends, for their understanding and pa-
tience through the duration of this work.

i

Resumo

A Computacao em Nuvem tem vindo a ganhar um papel preponde-
rante nas Tecnologias de Informacao nos tltimos anos, impulsionado
pelo boom da Web nos finais do século XX. A visao de proporcio-
nar ao utilizador recursos informéticos como um servico ¢ assim um
sonho tornado realidade. Contudo, para manter estes sistemas com
um elevado nivel de confiabilidade, os servicos de gestao devem ser
inerentemente escalaveis e tolerantes a faltas, para proporcionarem
aos seus utilizadores um servigo ininterrupto e que dé as garantias
necessarias para a adopcao dos servicos da Computacao em Nuvem,
sem restrigoes.

Apesar da natureza critica destes servicos de gestao, nao existem
solucoes em sistemas reais que satisfacam os requisitos de confiabi-
lidade exigidos para uma adopc¢ao da Computagao em Nuvem, no-
meadamente solugoes de gestao em que existam varios data-centers
envolvidos. Sendo assim, este trabalho centra-se no desenho, anéalise
e implementacao de diversas arquitecturas para os servigos de gestao
da Computacao em Nuvem.

v

Abstract

Cloud Computing has become an important paradigm in the IT field,
following the Web boom at the turn of the century. As such, the
long-held dream of computing resources as a service became true.
However, to keep these systems with a high level of resilience and
reliability, the Cloud management services must be inherently scal-
able and fault tolerant, delivering to its users a dependable service,
thus ensuring an accelerated adoption of Cloud Computing.

Even though these services are one of the critical components in the
Cloud Computing scenario, there are no management service solu-
tions whose dependability satisfies the requirements to a trustworthy
adoption of the Cloud Computing paradigm, namely those which in-
volves multi data-center Cloud infrastructures. As such, this work
focus on the design, analysis and implementation of different archi-
tectures proposed for management services in Cloud Computing.

vi

Contents

Contents viii
List of Figures. ix
List of Acronyms xi
1 Introduction 1
1.1 Motivation 2
1.2 Objectives e 3
1.3 Dissertation Outline 3
2 Related Work 5
2.1 Background oL 3
2.1.1 Cloud Computing Defined 5
2.1.2 Cloud versus Grid 6
2.1.3 Cloud on the Enterprise 7

2.2 Cloud Computing Layers 8
2.2.1 Infrastructure as a Service 9
2.2.2 Platform as a Service 9
2.2.3 Software as a Service 10
2.2.4 Other Classification Criteria 10

2.3 An Inside Perspective of the Cloud 11
2.3.1 Server Virtualization 11
2.3.2 Network Virtualization 12
2.3.3 Storage Virtualization 13
2.3.4 Services 14

2.4 Open-Source Project 14
2.4.1 Eucalyptus oL 14

Vil

viil

3 Problem Statement

4 Architectures for The Cloud

4.1 The Management System
41.1 KeyRoles

4.1.2 Soft State versus Hard State

4.1.3 Operations in the Cloud
4.2 Centralized Management
4.3 Decentralized Management
4.4 Fixed-size Management Group
4.5 Space-split Management Group

4.6 Hierarchical Management Group

5 Experimental Evaluation

5.1 Approach
5.2 Experimental Setup
5.2.1 Server Module
5.2.2 Worker Module
5.2.3 Client Module
5.2.4 Hardware

5.3 Management Service Evaluation

6 Conclusion

6.1 Future Work

References

CONTENTS

17

List of Figures

2.1
2.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1

Cloud services levels. 8
Eucalyptus Cloud architecture. 15
Cloud’s management system overview. 22
Algorithm of the Create operation. 24
Centralized architecture. 26
Decentralized architecture. 28
Fixed-size group architecture. 31
Space-split group architecture. 33
Hierarchical architecture. 36

Number of instances deployed on the Management
Server, at different request rates. 40

X

LIST OF FIGURES

List of Acronyms

APl Application Programming Interface
AWS Amazon Web Services

CAD Computer-aided Design

CC Cloud Computing

CPU Central Processing Unit

CRM Customer Relationship Management
CRUD Create, Read, Update and Delete
DBMS Database Management System
EC2 Elastic Cloud Computing

GCS Group Communication Service
laaS Infrastructure as a Service

IT Information Technology

JPA Java Persistence API

LAN Local Area Network

MS Management Server

NIC Network Interface Card

PaaS Platform as a Service

PDF Portable Document Format

REST Representational State Transfer

SaaS Software as a Service

xi

xii LIST OF ACRONYMS

SLA Service Level Agreement

SOAP Simple Object Access Protocol

TCO Total Cost of Ownership

VLAN Virtual LAN

VNET Virtual Network

WN Worker Node

WYSIWYG What You See Is What You Get

XML Extensible Markup Language

Chapter 1

Introduction

The IT started long ago, in a time where computing was concen-
trated on main-frames on large-sized rooms. By that time, comput-
ers were expensive and bulky, having its users submitting its job one
at a time. Thus, such powerful units were, inherently, time-shared
systems, used in batch mode to maximize their use and profit. By
that era (1943), the idea of distributed computing was not on the
thoughts of big enterprises, as some important people as Thomas J.
Watson (by the time president of IBM) stated “I think there is a
world market for about five computers”.

Later, the democratization of computers lead to easy access to com-
puting at our homes. The personal computer era had begun. Com-
puters were size-reduced and made available to the consumer market.
The hype was that every desktop and laptop had sufficient capabil-
ities and processing power to meet most of everyday tasks, such as
office productivity tools and other CAD /design tasks. The comput-
ers became accessible to everyone, gaining exponential power across
the years.

The network revolution brought the democratization of the Web,
which made the enterprises look to the Web as a new market to
promote their products and services. This so called dot-com boom in
the mid-1990s revealed data-centers with highly concentrated power
and reduced size to meet the Web requirements. Being considered
as a priority, the Web services became the core show-room for many
enterprises. This exclusively priced data-centers were only available
to enterprise-scale customers that justify this up-front commitment.

As a result, most medium to large-sized organizations invest on their
data-center to provide customers with their services. However, this
infrastructure needs to be over-provisioned to sustain peak loads,

2 CHAPTER 1. INTRODUCTION

and most of the time only a fraction of the resources were used.

Deploying these services on an elastic service will help the enterprises
to pay only for the resources needed. For all of this, the emergence
Cloud Computing paradigm.

1.1 Motivation

A Cloud Computing environment comprises a collection of nodes,
that are served to customers, using different abstractions. The in-
terface to the Cloud needs to be transparent and oblivious to the
architecture of the physical infrastructure, providing a trustworthy
service.

The core motivation of this work is to study the mechanisms used
in the management of a Cloud infrastructure, searching for archi-
tectures that provide a dependable management service, which will
greatly improve the adoption of the Cloud. Studying these mecha-
nisms involves delving into inner details of data-center operations,
revisiting typical infrastructure best-practices, and finally improving
them on the new perspective of the Cloud.

Current cloud management solutions do not account for a depend-
able and scalable management service, and tend to rely on central-
ized architectures in which one controller has god-like vision of the
whole system. On one hand, a fault at the controller compromises
the dependability, being a single point of failure. On the other hand,
the scalability is limited by the resources of the controller.

To overcome this limitation, new approaches need to be developed,
that assures scalability, reliability and dependability at a data-center
scenario. This involves the use of replication, synchronization and
coordination mechanisms large infrastructures as in a typical data-
center scenario.

This management service of the Cloud Computing environment is
the core of this study. In order to build a dependable Cloud man-
agement service, resource information needs to be replicated and
synchronized over a large number of nodes.

These motivations were also recognized by the I'T community, namely
in the HPLabs DC2MS |2]| project, which supported this study.

1.2. OBJECTIVES 3

1.2 Objectives

As outlined in the previous Section, a management service to a
Cloud environment needs to carefully address aspects of depend-
ability, scalability and reliability. In order to provide these guaran-
tees, an architecture that fulfills these requirements is fundamental.
Unfortunately, as current solutions are driven by centralized-based
architectures, it becomes the main goal of this work to design new
architectures that provide a dependable and scalable solution to a
Cloud Computing management service.

Studying these architectures we want to be able to clearly state the
advantages and disadvantages, and fundamentally have insight on
the better architecture for a giving scenario. This comes as priority
because nowadays Cloud Computing infrastructures involves multi-
ple location deployments, and we should reason on the usefulness of
a solution in a concrete deployment.

Following this study, the solutions purported need to be throughly
evaluated, using a meaningful scenario in the context of Cloud Com-
puting. This involves evaluation of the architectures considering a
large-scale deployment.

1.3 Dissertation Outline

The rest of the dissertation is organized as follows. Chapter 2
brings an introduction to the Cloud Computing paradigm, giving
an overview of different types of services offered in the market. Af-
terwards, different aspects of the Cloud are studied, focusing on the
management services for the Cloud. Chapter 3 presents the problem
that is being addressed, stating the rationale behind it. Chapter 4
carefully describes the different solutions proposed, discussing the
advantages and disadvantages of each proposal. Chapter 5 evaluates
the architecture in the light of the requirements presented at Chap-
ter 3. And finally, Chapter 6 concludes the dissertation, presenting
the results obtained from this work, and pointing directions towards
future research in this subject.

CHAPTER 1. INTRODUCTION

Chapter 2

Related Work

This Chapter gives an overview of the current technologies related to
Cloud Computing. It starts by giving an overall vision of the Cloud
Computing as an emerging platform, and then gradually converges
to the internal details.

2.1 Background

2.1.1 Cloud Computing Defined

Cloud Computing appears as “the long-held dream of computing as
a utility” [7] in which developers have a platform to deploy their
services on demand. In other words, Cloud Computing provides to
the IT industry a way to move their infrastructure, applications and
services to remotely managed servers. These servers usually provide
ways of monitoring and acquaint for the Cloud state, but in the ma-
jority of the cases it is the responsibility of the providers to account
for the condition of the services. The burden of administration is on
Cloud provider’s side, which brings the focus to development rather
than deployment, configuration and management.

From the point of view of the developer, the Cloud reliefs him /her
from the complex infrastructure planning, that become unpredictable
when there is unawareness related to the success of a project. For
start-ups and even some experimental projects, it is difficult to ac-
count for resources in advance: the deployment of an application im-
plies having the human resources with the required skills and having
access to an hardware platform to deploy the services.

Having justified the need for computing as an utility, a more clear

6 CHAPTER 2. RELATED WORK

definition of Cloud Computing is still missing. In [47], the authors
try to reach a Cloud Computing definition, since the concept is not
itself consensual in the community. The Cloud, as conceived today,
is a large pool of virtualized resources (computing, storage and net-
work) that are made available to the public. These resources are
dynamically provisioned in a way that meets usage demand, being
able to scale up and down appropriately. The model of usage is in
a pay-per-use fashion, where expenditures apply only to resources
being used.

A key element of Cloud Computing is “the illusion of infinite re-
sources” [7]. Being able to add and remove resources on demand
eliminates the need of capacity planning for provisioning. It also en-
ables Cloud users to provision more resources during peak loads, and
stay at minimum resources on the other periods. Planning the hard-
ware resources is not a trivial task since the usage and popularity of
a world-wide service is not predictable.

Moreover, the resources should appear to the end-user isolated from
other clients. Thus, the infrastructure should be able to appear to
the consumer as if he/she is the only one to access resources, de-
spite of other tenants. The disruption of nearby machines should
leave the resources from a client unaffected. Another key aspect is
the reduced time-to-market the Cloud provides for most business,
as it is imperative to deploy the system earliest as possible. Devel-
oping having the Cloud in mind, means that Web platforms can be
developed rapidly, and have scalability concerns from the beginning.

The dynamic provisioning provided by the Cloud also means that
resources can be used and released at will. This empowers the en-
terprises with a mechanism to do batch jobs quickly, without an
investment on large number of hardware components. A well-known
study case was the use of the Cloud by the Washington Post to
quickly deliver scanned PDF's to searchable online texts [4]. Being
the sources with 17,481 pages length, it would take approximately
30 minutes per page to deliver a single page to the readers. Having
the possibility to use the Cloud, Washington Post used 200 instances
at Amazon EC2 to prepare the documents to be delivered in only
26 hours.

2.1.2 Cloud versus Grid

A comparison between Cloud Computing and Grid is an inevitable
stop for those who first contact with the concept of Cloud Comput-

2.1. BACKGROUND 7

ing. The perception of the Grid Computing and Cloud Computing
is that they both take advantage of technological advances such as
multi-core processors and networked computing environments to de-
liver the customers new services that were not achievable with indi-
vidual computers [12]. However, a more careful examination of the
two topics clearly identify the differences between them.

In Grid Computing, we have an aggregation of distributed resources
(usually geographically dispersed and ruled by different organiza-
tions) that work together to achieve a result of a scientific applica-
tion. The Grid works on a time-shared basis, for computations that
require more than a single computer. On the other hand, Cloud
Computing is based on virtualization of resources to allow several
customers to use the same infrastructure (a property known as multi-
tenancy). The Cloud should be able to capture and solve scalability
and reliability requirements whereas in Grid each organization must
take account for their own.

2.1.3 Cloud on the Enterprise

Cloud Computing is very attractive to startup companies, where
new services can be built quickly with a relatively low financial risk
as it is evident that hardware equipment is not affordable by those
whose success of the enterprise is not certain. Being a fixed cost,
in-house deployment costs may not be sufficient to cover the income
in an initial phase. However, for settled companies, the arguments
in favor to the move to the Cloud simply do not apply. Established
companies already have investment plans on equipment and can eas-
ily predict provisioning demands following the trends of the market
and their expectations of growth of decay. Furthermore, enterprises
have some other challenges on moving to the Cloud: “Security, legis-
lation and dependence on the provider” [35] are just a few examples
of problems that an enterprise needs to face. More challenges arise
when customers have low bandwidth to the outside and need to move
large amount of data into the Cloud.

While most of these problems yield true to the majority of the en-
terprises, in some scenarios it is still advantageous to use remote
resources. The most evident is to accommodate peak loads. The
idea is to have the necessary hardware resources in-house to normal
conditions, expanding to the Cloud when the demand rises. Other-
wise, these companies would need to be over-provisioned to maintain
their services.

8 CHAPTER 2. RELATED WORK

PaaS

laaS

Figure 2.1: Cloud services levels.

The world conjecture in the latest years poses new questions in terms
of recovery and fail-over mechanisms. Being able to move services to
the Cloud in a catastrophic scenario is a good backup plan for those
enterprises whose on-line services are a priority.

However, “Cloud Computing does not meet enterprise requirements
yet” [45]. Having systems with infrastructures at multiple locations
poses problems of low connectivity, flexibility of having information
on both structures, among others.

New tools are required for enterprises to move transparently and
automatically the services to the Cloud.

2.2 Cloud Computing Layers

The current Cloud Computing providers offer services to different
usage scenarios. Analyzing these services, these can be categorized
using a layered division focusing on the type of service provided. The
services range from Web powered applications to full bare-metal vir-
tual machines, passing by intermediate platforms in which users can
deploy their applications. Based on these scenarios, some authors
such as [47] and [19] agreed on this classification of Cloud layers:
Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and
Software as a Service (SaaS).

The different abstraction levels of the Cloud stack can be built using
the functionalities of the level below it, as can be seen in Figure 2.1.

2.2. CLOUD COMPUTING LAYERS 9

2.2.1 Infrastructure as a Service

In the lowest abstraction level, the [aaS is offered as virtual ma-
chines to the end-users. These machines are assigned to each user
on demand, from a previously selected range of operating systems.
From the kernel up, everything in the stack is customizable. In this
scenario, each user can define the organization of the services, the
storage and the processing capabilities.

Despite of the responsibility of maintaining virtual machines up and
running, the burden of administration is still shared with the devel-
opers, whom have to take care of operating system customization,
application deployment and system tweaking. As such, scalability
and dynamic provisioning can be done on a manual fashion, accord-
ing to the demand of the users. We are able to define clear policies to
choose when to scale-out and when to reduce resources provisioned,
not being tied to the Cloud provider’s rules.

One of the major players on this kind is Amazon EC2 [5]. Being
one of the pioneers in this area, Amazon Web Services provides its
users with virtual machines that can be deployed on demand. These
machines are predefined in bundles that can be deployed using dif-
ferent configurations available. There are other providers that can
be chosen, targeting the diversity of the market, such as GoGrid [21],
Joyent [27], FlexiScale [16] and Rackspace Cloud [41] .

2.2.2 Platform as a Service

In the middle layer of the Figure 2.1, the PaaS support an abstrac-
tion for running applications in the Cloud. As the name implies,
a platform is provided to the developers, in which they can build
their applications. These platforms are usually locked-in, with APIs
available to different languages. The development process is done
on simulators/emulators before deploying the application into the
Cloud. PaaS providers provide more high level services to the user,
such as object storages and messaging services to help build scalable
applications.

At this level of abstraction, the detail is usually smaller than in the
[aaS. While some architectural aspects can be defined, there is no
such detail as a concrete hardware definition. Multi-tenancy is also
frequent in terms of application because applications run all on the
same environment, whereas in IaaS applications runs on different
virtual machines.

10 CHAPTER 2. RELATED WORK

The major players in the I'T industry have a strong presence in this
type of Cloud Computing, mainly because PaaS leads to a better
utilization of physical resources. This is due to the fact that many
applications can be run on parallel in the same machine. Examples
on this kind of Cloud are Google App Engine [23], Windows Azure
Platform [34| and Force.com [43].

2.2.3 Software as a Service

At the top of the stack there is the SaaS. This comprises services
that are ready in the Cloud to end-users. Many enterprises use these
services to leverage the burden of developing applications. Typically
this includes general services that are already well implemented such
as e-mail, office, CRMs and calendars.

These services come as a real alternative to running local applications
in individual computers. Office applications are a good example,
as a small to mid-size company benefit from using a SaaS rather
than acquiring licenses for the software. Additionally, the company
benefits from a solution that is accessible to the customer via a Web
browser, leading to a strong acceptance.

This less featured level constitutes most of the services on the Web.
As an example, we can cite Yahoo! Mail [50] and Google Docs [24].

2.2.4 Other Classification Criteria

While this layered approach for Cloud Computing seems to be the
most reasonable way to categorize the Cloud, other classifications
can be done. Focusing on the location of deployment of the Cloud,
we can have several types of Clouds: Public, Hybrid and Private
Clouds.

Public Clouds are the traditional approach in the Cloud, and from
whom the most benefits to the Cloud are obtained. These services
are available to the public in general, using a contract and ser-
vice level agreements. While this type of service seems to follow
a traditional supply-demand model, once an application/service is
acquired, there is a commitment between the user and the Cloud
provider. End users are locked using one provider and moving to
other provider later might not be an option because of the inter-
face/feature mismatch. Having a Cloud provider following standards
may improve the freedom of the user, but nowadays that is not a
reality.

2.3. AN INSIDE PERSPECTIVE OF THE CLOUD 11

The ideas of Cloud Computing are also being incorporated in inter-
nal enterprise infrastructure. While many authors argue that the
economical model of private cloud is nonsense, there are some ad-
vantages of running a private cloud. The concept is that services
in an enterprise have different peak loads unsynchronized and the
dynamic provisioning properties of the Cloud can be used.

Grids have always played an important role on academic environ-
ments. The Cloud Computing shares “the same original vision of
grid computing” [13], in which computers are aggregated to form a
superior infrastructure of computing. Thus, architectures and tech-
nologies involved tend to be similar, namely in terms of infrastruc-
ture management. In academic environments, a private Cloud en-
vironment can be an added value, where test environments can be
setup rapidly and in an automatic fashion.

2.3 An Inside Perspective of the Cloud

Cloud Computing is typically seen from the point of view of a cus-
tomer. However, an inside perspective comes more important when
we delve into Cloud Computing details. Though, offering Comput-
ing as an Utility means that core features need to be provided [28]:
1) Unified Control - a single entry point to the Cloud; 2) Freedom
from Physical Configuration - prevent rewiring of hardware on sys-
tem reconfiguration; 3) Resource Sharing - multi-tenancy on the
resources; 4) Resource Isolation - user should only be aware of his
own resources. To fulfill this task, several pieces of a puzzle must fit
together to provide the overall Cloud service. Here we are focusing
mainly on [aaS Cloud Computing layer, because this type is the base
to solving the others, as upper levels can be built upon it.

The core components inside inside the Cloud can be divided in three
different categories: Server Virtualization, Network Virtualization
and Storage Virtualization. These three aspects are carefully ana-
lyzed in detail in the next sections.

2.3.1 Server Virtualization

In a typical scenario of an IaaS, the Cloud presents an abstraction of
a virtual machine to the end-users. Each virtual machine is isolated
from the other machines in the Cloud, being failure independent
from other machines. From the inside of the data-center, the system

12 CHAPTER 2. RELATED WORK

administrators manage a pool of servers available to the outside,
each with several virtual machines.

A Cloud infrastructure needs a pool of servers that are correctly
synchronized to provide Cloud services. This type of synchronism
is needed to account for physical machines availability, status and
monitoring. The Cloud platforms need to be highly autonomic to
reduce Total Cost of Ownership (TCO), meaning that most of the
tasks are automated: “launching servers, shutting them down, load
balancing, failure detection and handling” [10]. For this task, there is
a thin layer of software that runs each node from the pool of servers
to control the physical machine from the outside.

This thin layer includes an Application Programming Interface (APT)
to create, run, update and destroy virtual machines. The managed
resources on a node include CPU slots, memory, network interfaces,
network bandwidth, storage access and I/O bandwidth. This API
is running on the host of the node from the pool, and is called Vir-
tual Machine Manager (VMM). Several aspects of the Cloud are also
dealt within the VMM, such as virtual machine migration, to pro-
vide a way of moving machines to provide elasticity, and to perform
maintenance tasks.

This pool of servers must be administered autonomically using a
Management Server that acquaints for the state of all the resources,
probing for their state and providing monitoring facilities. With this
management server we achieve an unified vision and control of the

Cloud.

2.3.2 Network Virtualization

Another component of critical importance is the network. There are
two key issues concerning these type of resources: 1) guarantee the
isolation of the virtual machines in a client basis; 2) account for the
performance of the network, reducing the network dedicated to the
infrastructure; 3) maximize bandwidth to customers and account for
fault tolerance.

In a typical environment, isolation is accomplished by deploying
physical Virtual LANs (VLANSs)s to the network. However, in a
typical Cloud scenario the number of users easily breaks the 2'2 lim-
itation barrier of VLANs [1], and need hardware support from the
routers and the switches. To solve these issues, Virtual Networks
(VNETSs) are used instead. In this scenario, physical machines com-
municate with each other over Ethernet protocols, and virtual ma-

2.3. AN INSIDE PERSPECTIVE OF THE CLOUD 13

chines use VNET to encapsulate the packets. VNET technology
guarantees that each packet is isolated from others VNET, being
transparent to the virtual machines.

From the point of view of simplification of deployment, in a data-
center physical machines resides in the same Layer 2 network and
typical infrastructure has components dedicated to management,
monitoring platforms, routing protocols, all of them making use of
the network. Furthermore, the environment in the Cloud is highly
flexible, large-scale, and each physical machine can accommodate
tens of virtual machines. As such, a protocol such as Diverter [14]
solves these issues using fully distributed routing system to achieve
“one hop” communication between virtual machines. Even though
this problem seems to be solved at the virtual machine layer, in-
frastructure components and services need to be aware of the Layer
2 problem. The authors of Diverter [14] also clearly states that if
broadcasts are used, it is unmanageable to run the infrastructure
above 1000 nodes, and even simple mechanisms of DNS resolving is
a burden at a large scale. In conclusion, management services should
be carefully designed, preventing broadcasts even for monitoring.

Another concern is related to the fault tolerance and bandwidth re-
quirements of the routers within the network. Typical solutions rely
on redundant hardware switches in a hierarchical division in which
the top most switches are more capable than the lower ones. This
division leads to expensive solutions because the top most switches
are not commodity hardware.In [3], the problem is solved using only
commodity parts, using a called “fat-tree” design, in which redun-
dant links are created in order to maximize bandwidth.

2.3.3 Storage Virtualization

With respect to storage, cloud management services need to provide
the virtual machines with a pool of block devices that are trans-
parently used. These storage devices must have an high degree of
availability, as most nodes depend on the storage devices to work. In
a data-center enterprise infrastructure, is frequent the use of SANs
and NASs to provide blocks of storage to the users, but this per se
does not meet the requirements of fair resource sharing and isolation.
Currently, management services have a thin layer of logic to provide
Virtual Storage Devices (VSDs) to virtual machines that satisfy the
guarantees stated above.

However, in most scenarios, namely in PaaS, other types of storage

14 CHAPTER 2. RELATED WORK

are offered to the customer. As the virtual machines/applications are
typical read-only data, higher level solutions exists to fulfill most
of the storage requirements, such as databases, object stores and
messaging queue systems.

Besides the topic off how to distribute the storage space to the vir-
tual machines, there is another concern on data reallocation at a
large-scale scenario. The instantiation of a virtual machine involves
to bulk copy a previously configured bundle to the physical ma-
chine. This poses many problems in terms of bandwidth utilization.
Solutions that involves caching and explore opportunistic placement
begin to appear in the literature, such as SnowFlock [31].

2.3.4 Services

In addition to these services, there are other critical services in the
internals of the Cloud that constitute problems due to the large-scale
deployment. One of this services is the configuration management at
each server in the Cloud. For this work, SmartFrog [22] is a frame-
work that leverages the deployment of components in a distributed
and clean fashion. It enables to deploy the desired services for the
Cloud using orchestration, which means the life-cycle of components
is automatically managed. This is critical to Cloud management ser-
vices whose components rely on the deployment of others in order
to be started.

Most Cloud providers also provide monitoring capabilities to the
deployed resources, having the customers to possibility of watch-
ing themselves in (almost) real-time the state of the different re-
sources. Such mechanisms already exist in most data-center de-
ployment for internal use, whose reference implementations are Na-
gios and RRDTool. However, at this scale, other protocols emerge
such as PRISM [26], Ganglia [33] and the PlanetLab monitoring tool
CoMon [39].

2.4 Open-Source Project

2.4.1 Eucalyptus

Eucalyptus [37] is an open platform provider for IaaS, namely for use
within private clouds. Eucalyptus was primarily build atop Xen [9],
having no concerns on network isolation and implementing Amazon

2.4. OPEN-SOURCE PROJECT 15

Web Browser SOAP-based tools REST-based tools

| Cloud Controller Walrus

Cluster A Cluster B

| Cluster Controller | |Storage Controller| | Cluster Controller

| Storage Controller |

Node Controller Node Controller

Node Controller Node Controller

Node Controller Node Controller

Figure 2.2: Eucalyptus Cloud architecture.

EC2 interface, namely the SOAP and Query interface based on Web
Services. By implementing this interface, Eucalyptus soon became
popular and a reference in the open-source world. To Eucalyptus
was also given a great boost from the fact that it became the Cloud
Computing reference for the Ubuntu Linux distribution.

Nowadays Eucalyptus is a mature laaS platform, that provides an
end-user solution for a Cloud Computing environment. Eucalyptus
is composed of five major building blocks, each one with a concrete
role.

Following Figure 2.2! from top to bottom, the first component is the
Cloud Controller (CLC) that exports the services of the Cloud to the
end-user. This is an entry point for all the requests to the Cloud,
which can be done not only by Web Services as referenced above,
but also from a Web interface developed in the Java programming
language. All the requests are further redirected to one of the Cluster
Controller (CC) which schedule the virtual machine instantiation to
a free Node Controller (NC). While these components of the platform
have a clear and well defined role, Eucalyptus has the flexibility of
allowing more than one role at the same physical machine.

The other two key components are the ones responsible for the Stor-
age devices in the Cloud. Walrus is a put and get storage service,
similar to Amazon S3, while the Storage Controller provides the
virtual machines with disk blocks, similar to Amazon EBS.

Image released under Creative Commons Attribution-Share Alike 3.0 Un-
ported license, authored by Stevenro

16

CHAPTER 2. RELATED WORK

Chapter 3

Problem Statement

This Chapter enlights the reader about the problem focused on this
dissertation. The first part carefully describes the target scenario
that we are focusing on, namely detailing some of the open issues
refered at Chapter 2. Then we analyze the requirements that a
Cloud Computing management service should meet, clearly stating
the rationale behind them. Finally, we compare and contrast some
key Cloud providers and explain why they do not satisfy these re-
quirements.

In a typical Cloud Computing infrastructure, we have a rack-mounted
system, comprising thousands of equally powered nodes, making the
Cloud a large scale infrastructure. Typically, internal rack communi-
cation is cheap, but global communication in the data-center needs to
be carefully addressed. This derives from the fact that communica-
tion between different racks involves the use of core routers from the
data-center and consequently more hops on the network. Sometimes,
a Cloud infrastructure is spanned across multiple data-centers, and
different logical locations, posing new problems on synchronization
among different regions.

We assume that the network for the management service is not ded-
icated. The rationale behind this decision is that it would require
separate hardware dedicated only to management, which will com-
promise the adoption of the solution due to its cost. Hence, the
bandwidth usage is shared between regular network traffic and man-
agement one, so service should cause minimal impact. As stated
in Section 2.3.2, broadcast on a large scale data-center is unman-
ageable and we do not assume the existence of multicast. Special
network hardware with processing capabilities and high buffer, was
not considered in this scenario, because such commitment would not

17

18 CHAPTER 3. PROBLEM STATEMENT

be profitable.

With respect to a typical load of a management service for the Cloud,
the statistics are understandably not available to the public. The
public naive study published on [42] and [49] is believed to be a
good estimation of a workload on Amazon EC2 [5]. It analyzes the
anatomy of the resource IDs, estimating the number of instantiations
during some period. Following this study, at 2009, Amazon EC2
was receiving request of above 50,000 instances (creation of virtual
machines) per day. These comprises only the resources provisioned
on the Cloud, and naturally we expect read-only operations to be
more frequently. This load is a base target for our scenario.

The first step on analyzing the requirements is to look at the per-
spective of the users of the Cloud. In case of a Cloud Computing
platform we have to determine the key functional requirements on
the perspective of the customer and from an administrator perspec-
tive.

From the point of view of the client, a cloud is an isolated envi-
ronment in which he/she has the ability to instantiate resources,
concretely virtual machines. This process proceeds with a client de-
scribing the components of the desired virtual machine in a XML file
that the Cloud provider has to instantiate. Most of the providers
facilitates even further this instantiation, offering the use of Web ser-
vices, Web-based WYSIWYG and custom interfaces. In most of the
interactions, users can bypass the configuration step and choose from
pre-configured virtual machines for common roles (eg. databases or
Web servers). Another key aspect is that the customer sees the man-
agement as a mean to define and control instances, and perceives that
a failure on the service should only influence these aspects, not the
Cloud as a whole. By this we mean that, in case of a disruption of
the management service, virtual machines already deployed should
remain running.

From the point of view of an administrator of the Cloud, a data-
center is a complex infrastructure, a system where change happens
continuously. Changes can occur to due to many factors, some of
them occur from a normal operation of the Cloud, while others oc-
curs from unexpected factors. The normal factors comprise the ones
that occur from the elasticity property of the Cloud: as the Cloud
is able to add and remove resources transparently to the client, it
must also be able to add and remove physical nodes, being able to
up/down-scale as needed. Furthermore, there are some scheduled
down-times, to perform system maintenance and reconfigurations

19

that should not disrupt the Cloud services. Other factors such as
hardware failures and catastrophic failures also affect the Cloud in a
unplanned mode. Occasional hardware failures should be dealt in a
transparent manner, moving the resources instantiated; and catas-
trophic failures must retain information of what is already deployed
and degrade gracefully.

Stating this vision, a Cloud management service must be able to deal
with a large scale system in a constant change. By this we mean
that to add dependability to a Cloud Computing platform requires
scalability, resilience and availability. To fulfill this perception that
we have on a Cloud, follows a summary of the requirements that a
management service must take into account:

1. Maintain currently deployed resources in case of management
service failure;

2. Provide re-instantiation of virtual machines on a node failures;

3. Provide an unified view of the system, both to data-center
operations team and to the outside world;

4. Ability to add and remove physical nodes to the system, being
able to up/down-scale when needed;

5. To be oblivious to hardware failures and be dependable and
safe on catastrophic scenarios;

6. To be able to deal transparently with multiple location deploy-
ments;

7. Scale on the number of nodes and requests.

The work of this thesis is focused on the definition of an architecture
for the management service in a Cloud Computing environment that
meets all these requirements. We are certain that these requirements
are of an extreme importance in two different perspectives. The for-
mer is to improve the adoption of the Cloud Computing paradigm in
scenarios where dependability is an essential requirement. The later
is to leverage the administration at Cloud data-centers to automated
and autonomic systems.

This research topic is also considered prominent in the literature.
The problem of dependability and scalability of the Cloud infrastruc-
ture is a key element of research as stated on the report of LADIS
2008 [10], whose topic was Cloud Computing. As a consequence, the

20 CHAPTER 3. PROBLEM STATEMENT

management service must follow the same principles of a dependable
infrastructure to achieve the same level of confidence. The results of
the conference give some insight on the challenges that we are facing,
namely searching for the better architecture in order to provide the
most adequate solution.

Despite these requirements naturally emerge from a detailed analy-
sis of the Cloud Computing, these requirements are not assured by
mainstream Cloud providers, which attest the relevance behind this
work. The management service in contemporary Cloud providers
is usually addressed on a best-effort basis, not guaranteeing all re-
quirements the stated above. In Amazon EC2 [5], instances are not
guaranteed to survive an hardware failure, as the customer is respon-
sible for the management of each virtual machine. Other solutions
as Eucalyptus [37] are merely based on hierarchy of management
servers. This platform does not account for dependability, as the
each management role on comprise one physical node. In this solu-
tion, a missing component such as the Cloud Controller compromises
all the system, being a Single Point of Failure.

Chapter 4

Architectures for The Cloud

This Chapter introduces a set of architectures for the management
service in a Cloud Computing environment. Firstly, we give an high-
level overview of the conceptual model, which focus the reader on
the overall system. Secondly, we propose different architectures and
throughly examine them in terms of the requirements enumerated on
the Chapter 3. And finally, we introduce some discussion on further
possible architectures.

Before delving into details on different architectures, we give some
intuition on the management system, combined with some key con-
cepts to familiarize the reader.

4.1 The Management System

Figure 4.1 presents an abstract view of the management system of
a Cloud Computing infrastructure. The system has a well defined
external entry point where client requests arrive. This is called the
Front End Layer, and is typically composed of Web/Application
Servers that interact directly with customers. Later on, the request
is submitted to the Management Layer, composed of one or more
Management Servers, which are responsible for choosing the node
where the virtual machines will be deployed. The Back End layer is
a pool of servers, called Worker Nodes, available to serve customers
requests.

21

22 CHAPTER 4. ARCHITECTURES FOR THE CLOUD

=
Requests at a A ratio ilil
-

Load Balancer

Front End
Management Servers
>
Hard <>
State
Management Layer
Worker Nodes Back End

Figure 4.1: Cloud’s management system overview.

4.1.1 Key Roles

Building an architecture for the management service involves choos-
ing from the pool of available servers: 1) which ones are part of the
management itself (Management Servers); 2) which are the servers
that host customer virtual machines (Worker Nodes). The distinc-
tion between Management Servers and Worker Nodes is crucial to
the understanding of the roles they play in the architecture.

On one hand, Management Servers are those who are responsible for
taking care of other servers state. The main goals of these servers are:
1) instantiate the resources requested; 2) maintain the current state
of the nodes they manage; 3) account for the presence or absence
of managed nodes, and acting on failures accordingly. To maintain
a cache of current state of each node, a Management Server relies
on polling the node or waiting for state change to occur. Using
this information, locating instances can be made at this layer. To
be aware of node failures, the Management Server uses an heartbeat
protocol to monitor Worker Nodes’s availability. The nodes allocated

4.1. THE MANAGEMENT SYSTEM 23

to the Management Layer should be kept at a minimum, maximizing
the nodes producing meaningful work.

On the other hand, Worker Nodes, being more numerous, supply
the computing power to accommodate all the customers resources.
Specifically, Worker Nodes are virtualization hosts that are able to
deploy virtual machines, using Xen [9], KVM [29], VirtualBox [38],
VMware [48], among others virtualization platforms. A thin soft-
ware layer is running at each Worker Node at the privileged domain
to exchange heartbeats and control messages with the Management
Servers, and to accomplish the tasks triggered by the Management
Server, namely the provisioning / unprovisioning of virtual machines.

4.1.2 Soft State versus Hard State

At a Cloud Computing platform, providers must account for the in-
stances already deployed. Ensuring that this information is durable,
allows this information to be used in case of a failure and, mostly
important, to be available on a catastrophic scenario.

In the management service there are two distinct states of the sys-
tem, and realizing this difference is one of the keys to reach depend-
ability. One comprises the state of current instances running - Soft
State - despite failures of Worker Nodes. This state, kept at Manage-
ment Servers, is extremely volatile as it matches the current running
resources. On a Worker Node failure, instances that were hosted in
it need to be reinstantiated, using for this purpose the Soft-State
information. However, in certain situations simultaneous failures at
Worker Nodes and Management Servers can occur. In that case,
after the Management Server recover, it needs to check somewhere
else this information. To checkpoint this information, the state of in-
stances is kept separately on the Hard-State. This Hard-State store
the virtual machines information in a consistent and durable fash-
ion, being accomplished by a database management system, which
guarantees these requirements. The Hard-State is not as volatile as
the Soft-State, as this state is only changed upon creation or removal
of instances using transactions and read upon Management Server
failures.

4.1.3 Operations in the Cloud

Operations submitted to a Cloud management service mimic a Cre-
ate, Read, Update and Delete (CRUD) interface, applied to virtual

24 CHAPTER 4. ARCHITECTURES FOR THE CLOUD

Front End
2.Choose \ ~ ~— ~— T T T —7-°
Management
4. Commit Server 3. Choose

) Worker
Hard Node
State \/ '

Worker Nodes Back End

Figure 4.2: Algorithm of the Create operation.

machines. Typically, for each virtual machine configuration, several
instances can be created, with the same configuration properties.
So, an instance is a deployment of a virtual machine in the Cloud,
being identified by the machine 1D, that varies from Cloud to Cloud
platform. An instance can be deployed - Create, be accounted for its
state - Read, have its resources updated - Update and terminated -
Remove.

In Figure 4.2 we present an illustration of the algorithm for the
Create operation. This operation is the most elaborated operation,
which involves using both of the Hard and Soft-State.

From Figure 4.2, we can identify these steps on the Create algorithm:

1. The customer requests the creation of a new instance of a vir-
tual machine, contacting one of the Front End servers.

2. The Front End server chooses a Management Server available

4.2. CENTRALIZED MANAGEMENT 25

to satisfy the request;

3. The Management Server looks up current state for resources,
choosing a Worker Node to create the instance;

4. The Management Server informs the Hard-State that a new
instance will be deployed at the chosen location;

5. The Hard-State replies to the Management Server;
6. The instantiation order is sent to the Worker Node;
7. The reply is sent back to the Front End;

8. The Front End server replies to the customer.

With respect to other operations, they follow a similar pattern and
therefore we do not need to present them here.

4.2 Centralized Management

The first approach is to allocate only one Management Server to the
management service, as shown in Figure 4.3. This seems to be a
reasonable approach to begin with, as we are trying to reduce the
resources dedicated to management.

In this centralized architecture all the requests are directed to the
Management Server, which is a well-known entry point. Upon re-
quest, the Management Server has global knowledge of resources
instantiated and is able to decide where to deploy the new instance.
Later, it follows the algorithm described in Section 4.1.3 to create
the virtual machine. In terms of configuration, this is reduced as at
the client-side there is a single entry point, and all the Worker Nodes
contact the same Management Server.

Using only one node to perform the management requires an addi-
tional effort in order to fulfill the requirements of Chapter 3. Focus-
ing on node failures, two different scenarios can happen: the first is a
failure of the Management Server and the second is failures of Worker
Nodes. On the first case, the failure of the Management Server leads
to a down-time in the management service, but Worker Nodes are
ready to maintain already deployed resources. When this happens,
the Management Server needs to be manually replaced and synchro-
nize its state before it becomes available: it needs to reconstruct
the state of running resources and then check with the Hard-State

26 CHAPTER 4. ARCHITECTURES FOR THE CLOUD

=
Requests at a A ratio ilil

1

Load Balancer

Front End
Management Server
>
Hard <>
State
Management Layer
Worker Nodes Back End

Figure 4.3: Centralized architecture.

to make sure everything is properly deployed. On the second case,
for each Worker Node failure, the Management Server needs to re-
deploy the resources in other available Worker Nodes, updating this
information at the Hard-State.

The most advantageous aspect of a centralized approach is that a
single Management Server offers an unified view of the current sys-
tem. The Soft-State included at the Management Server is sufficient
to provide information such as currently running instances and avail-

ability of Worker Nodes.

An important property of a management service is also its safety. On
a centralized architecture, the Management Server is fully confident
on its state. This clearly implies that safety can be assured if there is
only one Management Server at a time. In a catastrophic scenario,
if the Management Server is faulty it must be replaced manually to
prevent multiple Management Server, as they are not ready to run
concurrently. In terms of dependability, the resilience of the man-
agement service is limited to the Management Server node, which is

4.3. DECENTRALIZED MANAGEMENT 27

clearly insufficient. While we do not rely on special hardware, in a
real deployment the Management Server reliability can be improved
using redundant hardware. Still, it is a single point of failure.

The centralized solution is not scalable by design. A single Manage-
ment Server is not able to scale on the number of nodes it manages
and requests. While it is not clear the upper bound on the scalabil-
ity of this architecture, processing power and network grows linearly
with the number of Worker Nodes and requests. One one hand, in
a scenario with a large number of nodes, the Management Server
needs to account for more Soft-State and to receive more heartbeats
to keep the state updated. On the other hand, a large number of
requests saturates the Management Server as for each request a con-
nection needs to be maintained, and the resources allocated to fulfill
the request. As in the previous paragraph, if we admit special hard-
ware to the Management Server, the problem is only postponed until
the Management Server reaches its limit.

To sum up, a centralized approach is balanced in terms of the re-
quirements it fulfills. Maintaining deployed resources (requirement
1), providing re-instantiation on failures (requirement 2), providing
an unified view (requirement 3), being able to add and remove nodes
(requirement 4) and accounting for safety on catastrophic scenarios
are successfully addressed by a centralized solution. However, the
architecture fails on scalability (requirement 7), not providing a so-
lution to a ever growing number of nodes and requests at a Cloud
Computing environment. The dependability and resilience of the
management service (requirement 5) is compromised, as the Man-
agement Server is a single point of failure. The requirement of mul-
tiple location deployments (requirement 6) is not considered in this
analysis.

4.3 Decentralized Management

In order to meet dependability and resilience at the management
layer, a distributed approach was considered. In this solution, all
nodes represent both of the roles of Management Servers and Worker
Nodes, as shown in Figure 4.4.

The decentralized architecture provides a solution in which all the
nodes are organized in a peer-to-peer fashion. By this we mean
that nodes have equal roles in the system, having the same share
of responsibility on the management. All this group share the Soft-
State, which means this group has replicated information on cur-

28 CHAPTER 4. ARCHITECTURES FOR THE CLOUD

=
Requests at a A ratio ilil

1

Front End

Back End

- J

Figure 4.4: Decentralized architecture.

rently instantiated resources. To implement this replication process,
the literature provides several alternatives, namely active [44] and
passive [11] replication. The passive replication is adequate in this
scenario because operations cause a side-effect (commiting to hard-
state), thus they are done on one replica and then propagated to
other nodes. The design choices here are very subtle, but all of
them imply applying transactions to the Hard-State and then syn-
chronously propagating these changes to the Soft-State. Retaining
this information is sufficient to pinpoint some problems on scalability
later on.

This solution involves the use of a Group Communication Service
(GCS), such as JGroups |8 or the Spread Toolkit |6], to provide state
replication. The use of a GCS, facilitates the elasticity of the Cloud,
as the nodes can be dynamically added or removed to the group. It
also reliefs the implementation from Group Communication details,
such as electing a leader and node churn management.

In this architecture we cannot evaluate the management server reli-
ability alone, but the Cloud system as whole. Thus, as long as there
is a non-faulty node in the system, the management service is ready
to receive request. Every time a node fails, the coordinator chooses

4.3. DECENTRALIZED MANAGEMENT 29

from the group of nodes the place to redeploy the resources, pro-
ceeding accordingly. Using a coordinator prevents the other nodes
from redeploying the resources, which would lead to an inconsistent
state of the system.

The decentralized approach provides an unified view of the system
at each node. As each node contains the Soft-State replicated from
the coordinator, any node can be considered to consult the current
state of the Cloud Computing environment. By this we also mean
that read operations can be redirected to any node, as the knowledge
they have on the system is consistent and global.

The use of a GCS is advantageous because it brings consistency to
the state shared by the nodes, but also has some drawbacks. In
case of failures of a single node failure, this architecture behaves as
expected, removing the node and redeploying the resources as nec-
essary. However, in case of a catastrophic scenario, partitions can
occur. Following the CAP Theorem [20], we cannot achieve all the
three guarantees of Consistency, Availability and Partition Toler-
ance. Bearing this in mind, in case of partition the system should
stop, preventing each partition to continue to run independently.
This would lead to a redeployment of all the resources in each par-
tition, which is not acceptable. To sum up, in case of a partition,
the management system stops until a majority of nodes is achieved
again.

In a decentralized approach we can start to envision a scenario with
multiple location deployments. A simple migration of this archi-
tecture to multiple location deployments in which all nodes form a
group is not feasible as it would require enough bandwidth between
different locations, incurring the system with prohibitive costs.

In what refers to scalability, this architecture does not solve the
problems of the centralized approach, being even worse. An incre-
ment on the number of nodes on the system implies joining it to the
GCS and consequently raise the number of control messages needed
to maintain the group state consistent. This incurs in a penalty at
each node and also increases the network usage if a typical point-
to-point protocol is used. Achieving scalability on the numbers of
requests is also difficult in this architecture, namely the write ones.
For instance, for Create operation the coordinator needs to replicate
the information among all nodes.

Summarizing all the stated above, the decentralized solution adds de-
pendability to the management service, but still fail in terms of scal-
ability (requirement 7). With all the nodes making part of the man-

30 CHAPTER 4. ARCHITECTURES FOR THE CLOUD

agement service we do not need do deal with management service
failure (requirement 1) because in that case everything has failed.
The reinstantiation of virtual machines (requirement 2) is addressed
by the coordinator elected from the GCS, which transparently man-
ages the addition and removal of nodes (requirement 4). The unified
view of the system (requirement 4) can be obtained at any node as
the state is synchronized. On hardware failures (requirement 5), the
system behaves as expected, but catastrophic scenarios can lead to
partitions, halting the management service. While this architecture
could be deployed on multiple locations (requirement 6), that would
not be feasible due to high network usage.

4.4 Fixed-size Management Group

In this solution, we try to get the best of both worlds, having an
intermediate solution. We present an architecture in which there is
a fixed-size group of Management Servers, as Figure 4.5 illustrates.

In this architecture, we reduce the impact of having all the nodes
managing the system, reaching a fixed-size group of Management
Servers. Finding the right number of the group is not a trivial task
since this differs from number of overall nodes. One can state that
a small percentage of nodes (say 10 per cent) can be allocated to
the management service; however, in a pool of one hundred nodes
this number might make sense, but does not in a pool of millions
of nodes. The management service works in the same manner of
the previous approach, but in this situation there are Worker Nodes
being managed by a small number Management Servers.

To be able to accomplish this approach, special care needs to be
taken into account by the operations team. Thus, being the Man-
agement Servers fixed-size, they need to be replaced on hardware
failures to maintain the management service running.

In this approach, the service become inoperable when all the Man-
agement Servers Servers fail. In that case, already deployed resources
remain instantiated until a new Management Server arrives. On
bootstrap, the Management Server verifies if it is the only one on
the system: if it is, it checkpoints the instantiated resources with
the Hard-State; if it is not, it gets the state from one of the running
Management Server. In case of a Worker Node failure, the coor-
dinator has the responsibility of redeploying the resources in other
Worker Nodes.

4.4. FIXED-SIZE MANAGEMENT GROUP 31

=
Requests at a A ratio ilil

1

Load Balancer

§ g Front End
Management Server Group
-
Hard
State | <>
Management Layer
Worker Nodes Back End

Figure 4.5: Fixed-size group architecture.

The unified view of the system is provided at each Management
Server, as they have global knowledge similar to that of the decen-
tralized architecture.

The addition and removal of Worker Nodes to the system is handled
through updating the Soft-State at the Management Servers. These
life cycles update only the Soft-State of the system as they do not
interfere with the GCS.

The dependability of this solution is confined to the nodes that con-
stitutes the management layer. The reliability and availability of the
system tends to be lower than the previous solution, as less nodes
are involved in management. From one point of view, we could
distribute the Management Server along the data-center in differ-
ent racks, which raises the independence of failures, diminishing the
probability of service disruption. From another point of view, Man-
agement Servers can be placed at the same rack, within an easier
access location, and be clearly identified to the operations team as
critical to the system. This solution also suffers from partition prob-

32 CHAPTER 4. ARCHITECTURES FOR THE CLOUD

lems, specially in the former case.

This solution still requires enough bandwidth across datacenters.
When compared with the previous scenario, these requirements are
reduced, due to a lower number of Management Servers.

In terms of scalability of the system, this approach is better than the
previous one, as there are less nodes involved in management. This
means that a coordinator need to contact a lesser number of nodes
to fulfill a request. As in the centralized architecture, Management
Servers can be deployed in dedicated hardware to improve the scal-
ability. In spite of being a more scalable solution, this solution still
implies that the Soft-State is shared, and synchronization is needed.

In conclusion, this solution involves fewer nodes on the manage-
ment layer, without compromising the dependability of the service
(requirement 5). In light of the requirements stated at Chapter 3,
1, 2, 3 and 4 are satisfied in similar terms to the decentralized ap-
proach. This architecture brings improvements on multiple locations
(requirement 6), while not being perfect. The scalability (require-
ment 7), while better than decentralized approach, still relies on
synchronization, so it is limited.

4.5 Space-split Management Group

In this approach, we dedicated our effort in making the architecture
scalable. For this purpose, we aggregate the Worker Nodes in several
containers which we give the name of buckets, each one having a
Management Servers, as it is shown in Figure 4.6

This solution also comprises a fixed number of Management Servers,
but organized in a different way. We divide the nodes by buckets,
each one having a well defined Management Server. This distinction
can match the possible infrastructure of a data-center, using all the
nodes at a rack to form the bucket, or use a more dynamic mapping,
using several well-known hashing algorithms [30]. We can see the
solution proposed in Section 4.2 as a building block of this solution,
as each bucket comprises one Management Server and a number of
Worker Nodes. Moreover, all Management Servers still constitutes
a group, but in this case the Group Communication Service is only
used to maintain the group membership, because each Management
Server has a different set of Worker Node to manage. The group
membership is needed in case of failures a Management Server, that
will evolve the replacement of the Management Server with other

4.5. SPACE-SPLIT MANAGEMENT GROUP 33

-
Requests at a A ratio ilil

1

Load Balancer

§ g Front End

Management Layer

Management Servers

el < =

Hard <> I i 1 |

| : |) i |

| I I |

I | R | - f |
------- e e S

| | I~

/4' | | |I

_ - || | | I|

Bucket [| | | | |

| I I |

| I I |

| ~—_ ' .. |

Worker Nodes Back End

Figure 4.6: Space-split group architecture.

available. The improvement of this architecture derives from the fact
that Management Servers only need to exchange control messages
on membership changes, not in all the requests, as the previous
decentralized approaches.

This space-split architecture avoids maintaining the Soft-State syn-
chronized, as in a decentralized approach. This implies that on a
Management Server failure, the system cannot automatically rebal-
ance the Worker Nodes, but needs to recover from the Hard-State,
as only the Hard-State has all the information consolidated. In case
of a Management Server failure, the system cannot instantiate new
resources on the respective bucket, but the management service re-
mains operational. On all Management Server failures, the resources
are maintained deployed until the Management Servers are restored.

Following the same logic of the centralized approach, each Manage-
ment Server is able to re-instantiate virtual machines on Worker
Node failures. This re-instantiation can be assured by a Manage-
ment Server until its bucket has enough resources; otherwise the

34 CHAPTER 4. ARCHITECTURES FOR THE CLOUD

Management Server needs to contact another Management Server
to fulfill the request.

The price to pay for having this architecture is that we lose the
unified view of the system, as each Management Server only views
a portion of the Cloud infrastructure. While this a clear drawback,
it might not convey a real problem in large-scale deployments, in
which multiple operations teams exist, and each team manages an
independent bucket.

Addition and removal of physical nodes involves nothing more than
the previous approaches. An initial configuration setup is required
to bootstrap the Worker Node to join it to the correct Management
Server. To add and remove a Management Server from the manage-
ment layer we rely on the Group Communication Service.

This solution still gives the same guarantees as the previous solutions
in terms of dependability. As stated earlier on this section, the
Management Servers form a group in which there is not a shared
state, each one having a slice of the Soft-State. The Management
Servers account for failures and rebalancing the Worker Nodes as
needed. In case of failure, the Soft-State can be reconstructed from
the current state of the Worker Nodes, and the Hard-State can be
reconstructed from the database. It should also be pointed out that
a failure of a Management Server only provokes the disruption of
that manager, and it only remains until the failure is detected, and
the others Management Servers take over control.

As the group of Management Servers only maintains group member-
ship, multiple location deployment can be achieved, as the system
does not require a lot of bandwidth. This improves the previous so-
lution that requires synchronization not only on group membership,
but also on instance provisioning.

In terms of scalability, this solution improves the previous architec-
tures, as the management is splited through several Management
Servers, being more network-friendly. Instantiations can be decided
locally and do not need propagation to other Management Servers,
which is an improvement in relation to decentralized approaches.
For the first time in these architectures we are not limited to the
throughput of a single server or coordinator, so this solution scales
in number of Worker Nodes and on requests, as long as the group
membership scales.

Retaining all this information, requirements 1, 2 and 4 are addressed
by this architecture, as explained above. The unified view of the sys-
tem (requirement 3) can pose a problem in this architecture, while

4.6. HIERARCHICAL MANAGEMENT GROUP 35

not risking the usefulness of this approach. In relation to multi-
ple location deployment (requirement 6), this comprises the better
approach of all architectures analyzed before. The dependability (re-
quirement 5) and scalability (requirement 7) is fulfilled, surpassing
the previous architectures.

4.6 Hierarchical Management Group

While the previous solutions are reasonable for our scenario of thou-
sands of nodes at a data-center, this might not be a solution with
millions of nodes. Analyzing the previous solution, this solution can
grow in scale as long as we can maintain the group membership of
Management Servers. This only imposes a limit at a very large sce-
nario, that is not find on todays data-center. Thus, we can devote
some time to find a conceptual solution for this order of scale.

Being inspired by Astrolabe [46], we envision an architecture that
comprises an hierarchical approach, while having dependability in
mind. Buckets from the previous Section can be seen as the leaves
of a leaf-tree. When two or more buckets are joined, they elect a
coordinator to create an abstract group, which comprises the parent
layer. This is recursively from the leaves up to the root.

An example of the proposed architecture is depicted in Figure 4.7.
We have four Management Servers A, B , C and D, representative
of an arbitrary number of Worker Nodes, which forms the nodes. At
each level of the tree, a coordinator is elected as the parent node,
proceeding in the same manner until the root of the tree. Manage-
ment Server B has a full information relative of its Worker Nodes
and Worker Nodes at Management Server A, and only an aggre-
gated view of all resources that Management Server C represents.
Management Server C has a full knowledge of its Worker Nodes and
Worker Nodes at Management Server D, and an aggregated view
of all children of Management Server B. Management Server A and
Management Server D have information of its Worker Nodes and
Worker Node of Management Server B and Management Server C,
respectively.

Using this approach we achieve scalability through hierarchy (re-
quirement 7), keeping the system dependable (requirement 5). The
root of the tree does not provide a clear unified view of the system
(requirement 3). However, it permits multiple location deployment
in which the tree in distributed through different locations (require-
ment 6). Accounting other requirements, namely 1, 2 and 4 are

36 CHAPTER 4. ARCHITECTURES FOR THE CLOUD

. 4
Requests at a A ratio llil

—

Front End

Worker Nodes

Figure 4.7: Hierarchical architecture.

addressed in the same manner as previous architectures.

Chapter 5

Experimental Evaluation

This chapter has three main sections. The first Section presents the
different options that were considered in this evaluation, stating the
rationale behind the tests. Section 5.2 introduces the experimental
setup conceived to analyze the impact of the architectures. Finally,
Section 5.3 presents and discusses the results from the evaluation.

Having in mind the requirements discussed on Chapter 3, on this
Chapter we are attesting the usefulness of the architectures pro-
posed in Chapter 4. While some requirements are assured only by
reflecting them on the architecture design, while others need to be
confirmed evaluating an experimental scenario. As a consequence,
this experimental evaluation focus on the scalability on the architec-
tures proposed.

5.1 Approach

Evaluating large-scale algorithms is always a difficult task. The eval-
uation of realistic environments is very expensive, time-consuming
and difficult to reproduce. So, the natural approach to prove the
usefulness of these architectures is to conduct a simulation, using
the several toolkits available or build a customized simulator.

At a first sight, a customized simulator was seen as the right way
to evaluate these architectures. To this intent, we use a custom
made simulator using the Python programming language [40], which
was built in-house, that allows rapid prototyping. This simulator
allowed to quickly setup the experimental scenario, facilitating its
manipulation . However, it was soon realized that this simulator
only gives us insight on the correctness of the solution, rather than

37

38 CHAPTER 5. EXPERIMENTAL EVALUATION

pointing out performance issues. Consequently, we were not able to
evaluate the architectures in terms of scalability, which is the most
prominent aspect we want to evaluate.

For the reason stated above, we have to consider a real scenario,
to measure the impact of the architectures in terms of scalability.
To this intent, we studied available testbeds such as PlanetLab [15],
that provides us with an inexpensive scenario and a large-scale envi-
ronment. Nevertheless, PlanetLab does not account for the scenario
we were looking for, as in PlanetLab the conditions are very dif-
ferent from the ones available in a typical data-center deployment:
the resources provided in PlanetLab are shared among other tests;
other simultaneous experiments causes interference with the tests;
the network between nodes is WAN based, not reflecting a typical
LAN network between Management Servers and Worker Nodes; and
the nodes provided by the PlanetLab are not sufficient in number to
the scenario proposed. With all these restrictions, the derived so-
lution was to build an a real prototype for the Management Server
and simulate the customers requests and Worker Nodes. With this
prototype, we proceed to the evaluation of the scalability of the
Management Layer, as described in the next Section.

5.2 Experimental Setup

The system under test is an implementation of the centralized ar-
chitecture presented in Section 4.2. The implementation has three
different modules: the Server, the Worker and the Client.

All the implementations were done using the Java [25| programming
language. Java is a object-oriented language with a great adoption
on the enterprise market. It has built-in primitives for concurrent
programming, being a natural choice to achieve a scalable imple-
mentation. For these tests, we require a database, that constitutes
the Hard-State. We used the MySQL [36] relational Database Man-
agement System (DBMS), with the InnoDB storage engine, which
provides transactional guarantees. The MySQL stands for an ade-
quate DBMS as it is widely tested and used in IT community.

5.2.1 Server Module

The Server module is a complete implementation of the Management
Server, using the multithreading paradigm.

5.2. EXPERIMENTAL SETUP 39

At each operation, the Server consults its internal Soft-State and, if
needed, proceeds with a transaction on the Hard-State. To provide
a transparent layer between Java and the database, the Java Persis-
tence API (JPA) [51] framework was used. The implementation of
choice was the Apache OpenJPA [18], using the Apache DBCP [17]
for connection pooling.

The Server module also accounts for the state of the different Worker
Nodes it manages, exchanging heartbeats with them. This was im-
plemented using simple UDP messages between the Server module
and the Worker module. The heartbeat algorithm is the most trivial
one: the Server maintains a list of Worker Nodes that are currently
running and the correspondent last time they have been seen, de-
tecting failures on a certain pre-defined timeout. As a consequence,
a message lost or duplication does not compromise the algorithm.

5.2.2 Worker Module

The Worker module comprises an arbitrary number of Worker Nodes,
that contact the Server announcing its resources.

This module is implemented on top of the libvirt API |32]|, which
provides an abstraction to interact with different hypervisors. How-
ever, in this scenario, we were not focusing on the performance on
provisioning, so we used the libvirt fake hypervisor driver.

5.2.3 Client Module

The Client module is a simple class that stresses the Server with
operations, simulating multiple customers.

This module can be configured with arbitrary time length between
operations. For each operation, the module creates a thread that
contacts the Management Server to perform the operation.

5.2.4 Hardware

For this experimental setup, two hosts were used, each one as HP
Proliant with two AMD Opteron Processor 250 processors with 4GB

of RAM, connected in a LAN with 1Gbps of bandwidth, running a
Linux 2.6 kernel.

On one host, we deployed the Worker and the Client module, and the
other host, the Server module is running, coupled with the DBMS.

40 CHAPTER 5. EXPERIMENTAL EVALUATION

16000
14000 /./.
12000

10000 /

8000
4000

- N

0 T T T T T T T T
0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0

instances

“® predicted
== created

requests /s

Figure 5.1: Number of instances deployed on the Management
Server, at different request rates.

To be able to deal with a lot of active connections at each host, the
Linux kernel was tuned to accept an unlimited number of open files
and connections.

5.3 Management Service Evaluation

To evaluate the scalability of the centralized architecture, we con-
ducted an experiment using 1000 Worker Nodes, with heartbeat an-
nouncements every 30 seconds. The Client used different request
rates, ranging from 2 to 40 requests per second. The tests were done
in runs of 360 seconds, cutting the data from the first and to the last
5 seconds, this ignoring the warm-up and cool-down periods.

The Figure 5.1 show the number of instances deployed at different
request rates.

Analyzing the chart, we can observe that until the 20-25 requests
per second, the system follows the predicted behavior, instantiating
the same number of instances. Starting at that point, the number
of instantiations does not go along with the predicted, having a
declining behavior. Analyzing these results, some aspects can be
taken into discussion. The first comprises the fact that at higher
rates the system cannot scale on the number of request, starting
to decline in the number of successful operations. The second is

5.3. MANAGEMENT SERVICE EVALUATION 41

that we predict that when the system achieves an upper bound of
instantiations, it will proceed at that rate. However, the system
behaves worse due to the fact that multiple customer operation poses
to much stress on the Management Server and it cannot do its job.
The third conclusion is that the Management Server does not have
a predictable behavior during stress, which means that, in a system
near the scale limit, the risk of failure of the Management Layer is
high.

Thus, we can easily conclude that the centralized approach is not
scalable on the number of requests.

Bearing this in mind, the decentralized architecture described in
Section 4.3 can be shown to have the same or worse scalability than
the previous architecture.

In the decentralized architecture, each node is part of a GCS. On
create operations as the ones evaluated above, the operations must
be executed by the coordinator and later on, propagated to the other
nodes. Consequently, the scalability of this architecture is limited to
the coordinator, which comprises a single server as in the above eval-
uation. Furthermore, the coordinator needs to wait for the shared
state (Soft-State) to be synchronized among the nodes, so the per-
formance of the system is limited by the slowest node on the in-
frastructure. In addition to these, in the decentralized architecture,
each node play both roles of Management Server and Worker Node,
meaning that each node is not dedicated to management, but also
needs enough resources to provision customer virtual machines.

In relation to the fixed-sized management group architecture, de-
scribed in Section 4.4, the same reasoning as the decentralized ar-
chitecture can be done.

The fixed-size management group architecture has a group of Man-
agement Servers organized in a similar way of decentralized archi-
tecture. Though, the scalability is also limited to the slowest node
in the Management Layer. This solution is better than the previous
one, as the Management Servers are dedicated, so more load can be
imposed on these servers.

The space-split architecture comprises a scenario in which each bucket
is a single setup of the centralized architecture. So, this architecture
constitutes a scalable solution.

Each Management Server at this architecture has its scalability lim-
ited to the number of requests stated above. However, a discre-
tionary number of buckets can be added to the system, scaling out
the solution. The Management Servers only share information on

42 CHAPTER 5. EXPERIMENTAL EVALUATION

group membership, acting only upon failures, which means this ar-
chitecture can be scaled until the group membership is manageable.

Chapter 6

Conclusion

In this work we start by analyzing the requirements that a manage-
ment service should have in order to provide reliability, scalability
and resilience to a Cloud Computing environment. In order to pro-
mote the adoption of the Cloud, we carefully accounted for different
aspects on the management service, namely replication, synchro-
nization and coordination mechanisms, modeling the problem of a
dependable Cloud Computing management service.

Later on, we propose architectures to a dependable management
service. Using an iterative approach, we begin with a typical cen-
tralized approach, in which we have stated why that architecture
did not provide a dependable solution. Then, we envision a totally
decentralized architecture, which had failed on meeting scalability
targets. Next, we describe a management service that comprised a
fixed-size group that, while being more friendly on network require-
ments, still prevents the service to scale. The space-split approach,
was the solution to a scalable service, in which we obtained some
dependability. Finally, we present a conceptual view of an highly
scalable solution, using an hierarchical approach.

Evaluation conducted at Chapter 5 proves our firsts suspicions to-
wards the scalability of centralized architecture. Analyzing the re-
sults of our prototype implementation, we conclude that in order to
reach scalability in a management service, we need to partition the
management space between what we have called buckets. With this
architecture, we have achieved a solution that is scalable by design.

To summarize, the main contributions of this dissertation were to
provide architectures for the management service that avoid a single
point of failure, such as the centralized solutions. Then, building a
prototype, we were able to evaluate the rationale of these architec-

43

44 CHAPTER 6. CONCLUSION

tures.

6.1 Future Work

The research conducted in this thesis poses some other challenges
and open research towards new directions.

The architectures proposed, namely in Section 4.5 and 4.6, accom-
plishes great improvement in terms of scalability, providing solutions
in which management space is partitioned. This solution requires
group membership at the management layer, but its cost is reduced
due to fact that the number of managers is small. If the manage-
ment layer group goes beyond a certain scale, it will be reasonable
to search for new approaches. We envision some group membership
service that is scalable: instead of all managers having a complete
group membership knowledge, each one should have only a partial
view of the participants. As such, each manager will only account for
the state of a bounded number of managers. Upon failure, an agree-
ment is run between all members that were monitoring the failed
manager to decide which one will be responsible for re-provisioning
of the resources.

In the hierarchical approach presented in Section 4.6, the upper lay-
ers only needs an abstract view of the leaves to decide where to provi-
sion the virtual machines. This means that a request walks through
the tree finding the best place to satisfy the request. A more inter-
esting approach is to have some knowledge on the existent resources,
and make more accurate decisions, such as provisioning virtual ma-
chines of the same customer nearby. Having an unified view of the
system, it is relatively easy to apply these kind of policies. How-
ever, when there is no global knowledge on the Cloud infrastructure,
this poses some new questions on how this can done. We foresee
that by running some aggregation algorithms to exchange deploy-
ment information, we can achieve a scalable way of propagating the
necessary information to the management layer, so that it can take
more informed decisions.

Bibliography

[1] IEEE Standard 802.1Q-2003 Virtual Bridge Local Area Net-
works, May 2006.

[2] DC2MS: Dependable Cloud Computing Management Ser-
vices. http://gsd.di.uminho.pt/projects/projects/ DC2MS,
2008-2010.

[3] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, com-
modity data center network architecture. SIGCOMM Comput.
Commun. Rev., 38(4):63-74, 2008.

[4] Amazon Web Services. AWS Case Study: Washington Post.
http://aws.amazon.com /solutions/case-studies/washington-
post/, 2008.

[5] Amazon.com, Inc. Amazon Elastic Compute Cloud.
http://aws.amazon.com/ec2, 2009.

[6] Y. Amir and J. Stanton. The Spread Wide Area Group Commu-
nication System. Technical report, The Center for Networking
and Distributed Systems, May 1998.

[7] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz,
A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica,
and M. Zaharia. Above the Clouds: A Berkeley View of Cloud
Computing. Technical Report UCB/EECS-2009-28, EECS De-
partment, University of California, Berkeley, Feb 2009.

[8] B. Ban. JGroups: A Toolkit for Reliable Multicast Communi-
cation. http://www.jgroups.org, 2007.

[9] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art
of virtualization. In SOSP °03: Proceedings of the nineteenth

ACM symposium on Operating systems principles, pages 164—
177, New York, NY, USA, 2003. ACM.

45

46

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

21]

[22]

BIBLIOGRAPHY

K. Birman, G. Chockler, and R. van Renesse. Toward a cloud
computing research agenda. SIGACT News, 40(2):68-80, 2009.

N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg. The
primary-backup approach. ACM Press/Addison-Wesley Pub-
lishing Co., New York, NY, USA, 1993.

R. Buyya, C. S. Yeo, and S. Venugopal. Market-Oriented Cloud
Computing: Vision, Hype, and Reality for Delivering I'T" Ser-
vices as Computing Utilities. In HPCC' '08: Proceedings of the
2008 10th IEEE International Conference on High Performance

Computing and Communications, pages 5-13, Washington, DC,
USA, 2008. IEEE Computer Society.

K. A. Delic and M. A. Walker. Emergence of the Academic
Computing Clouds. Ubiquity, 2008(August):1-1.

A. Edwards, A. Fischer, and A. Lain. Diverter: a new approach
to networking within virtualized infrastructures. In WREN ’09:
Proceedings of the 1st ACM workshop on Research on enterprise
networking, pages 103—110, New York, NY, USA, 2009. ACM.

P. Europe. Planetlab. http://www.planet-lab.eu, 2010.

Flexiant. FlexiScale Public Cloud.
http://www.flexiant.com /products/flexiscale, 2010.

T. A. S. Foundation. Commons DBCP Component.
http://commons.apache.org/dbcp/, 2010.

T. A. S. Foundation. OpenJPA. http://openjpa.apache.org,
2010.

J. Geelan. Twenty-one experts define cloud computing.
http://virtualization.sys-con.com /node/612375, Aug 2008.

S. Gilbert and N. Lynch. Brewer’s conjecture and the feasi-
bility of consistent, available, partition-tolerant web services.
SIGACT News, 33(2):51-59, 2002.

GoGrid. Cloud Hosting. http://www.gogrid.com, 2010.

P. Goldsack, J. Guijarro, S. Loughran, A. Coles, A. Farrell,
A. Lain, P. Murray, and P. Toft. The SmartFrog configuration
management framework. SIGOPS Oper. Syst. Rev., 43(1):16—
25, 20009.

BIBLIOGRAPHY 47

[23] Google. App Engine. http://code.google.com/appengine, 2010.
[24] Google. Google Docs. http://docs.google.com/, 2010.

[25] J. Goslin and S. Microsystems. Java programming language.
http://www.java.com, 1995-2010.

[26] N. Jain, D. Kit, P. Mahajan, P. Yalag, M. Dahlin, and Y. Zhang.
PRISM: PRecision-Integrated Scalable Monitoring. Technical

report, Department of Computer Sciences, University of Texas
at Austin, May 2006.

[27] Joyent. Cloud Hosting Service. http://www.joyent.com, 2010.

[28] M. Kallahalla, M. Uysal, R. Swaminathan, D. E. Lowell,
M. Wray, T. Christian, N. Edwards, C. I. Dalton, and F. Gittler.
SoftUDC: A Software-Based Data Center for Utility Comput-
ing. Computer, 37(11):38-46, 2004.

[29] A. Kivity. kvm: the Linux virtual machine monitor. In OLS
07: The 2007 Ottawa Linux Symposium, pages 225-230, July
2007.

[30] D. Knuth. The Art of Computer Programming, volume 3, Sort-
ing and Searching, pages 506-542. Addison-Wesley, June 1973.

[31] H. A. Lagar-Cavilla, J. A. Whitney, A. M. Scannell, P. Patchin,
S. M. Rumble, E. de Lara, M. Brudno, and M. Satyanarayanan.
Snowflock: rapid virtual machine cloning for cloud computing.
In FuroSys ’09: Proceedings of the Jjth ACM FEuropean confer-
ence on Computer systems, pages 1-12, New York, NY, USA,
2009. ACM.

[32] libvirt.org. libvirt. http://www.libvirt.org, 2010.

[33] M. L. Massie, B. N. Chun, and D. E. Culler. The Ganglia
Distributed Monitoring System: Design, Implementation, and
Experience. Parallel Computing, 30(7), July 2004.

[34] Microsoft — Corporation. Azure services platform.
http://www.microsoft.com/azure/default.mspx, 2010.

[35] P. Murray. Enterprise grade cloud computing. In WDDM
'09: Proceedings of the Third Workshop on Dependable Dis-
tributed Data Management, pages 1-1, New York, NY, USA,
2009. ACM.

48

36]
37]

[38]

139]

[40]

[41]

42]
[43]

[44]

[45]

|46]

[47]

48]
[49]
[50]
[51]

BIBLIOGRAPHY

MySQL AB. MySQL. http://www.mysql.com, 2010.

D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman,
L. Youseff, and D. Zagorodnov. The Eucalyptus Open-Source
Cloud-Computing System. pages 124-131, Washington, DC,
USA. IEEE Computer Society.

Oracle. VM Virtual Box. http://www.virtualbox.org/, 2010.

K. Park and V. S. Pai. CoMon: a mostly-scalable monitoring
system for PlanetLab. SIGOPS Oper. Syst. Rev., 40(1):65-74,
2006.

Python Software Foundation. Python programming language.
http://python.org, 1990-2010.

Rackspace. Rackspace cloud. http://www.rackspacecloud.com,
2010.

G. Rosen. Anatomy of an Amazon EC2 Resource ID, Sep 2009.

salesforce.com. Force.com. http://www.salesforce.com /platform,
2010.

F. B. Schneider. Replication management using the state-
machine approach. ACM Press/Addison-Wesley Publishing Co.,
New York, NY, USA, 1993.

J. Staten, S. Yates, G. F., W. Saleh, and A. Dines. Is cloud
computing ready for the enterprise? Technical report, Forrester
Research, Inc, 2008.

R. Van Renesse, K. P. Birman, and W. Vogels. Astrolabe: A
robust and scalable technology for distributed system monitor-
ing, management, and data mining. ACM Trans. Comput. Syst.,
21(2):164-206, 2003.

L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner.
A break in the clouds: towards a cloud definition. SIGCOMM
Comput. Commun. Rev., 39(1):50-55, 2009.

VMware Inc. VMware Server. http://www.vmware.com/, 2010.
T. von Eicken. Amazon usage estimates, Oct 2009.

Yahoo! Inc. Yahoo! Mail. http://mail.yahoo.com, 2010.

D. Yang. Java Persistence with JPA. Outskirts Press, 2010.

	Página 1
	Página 2
	Página 3
	NOVA2__Dissertation_BrunoCosta.pdf
	Contents
	List of Figures
	List of Acronyms
	Introduction
	Motivation
	Objectives
	Dissertation Outline

	Related Work
	Background
	Cloud Computing Defined
	Cloud versus Grid
	Cloud on the Enterprise

	Cloud Computing Layers
	Infrastructure as a Service
	Platform as a Service
	Software as a Service
	Other Classification Criteria

	An Inside Perspective of the Cloud
	Server Virtualization
	Network Virtualization
	Storage Virtualization
	Services

	Open-Source Project
	Eucalyptus

	Problem Statement
	Architectures for The Cloud
	The Management System
	Key Roles
	Soft State versus Hard State
	Operations in the Cloud

	Centralized Management
	Decentralized Management
	Fixed-size Management Group
	Space-split Management Group
	Hierarchical Management Group

	Experimental Evaluation
	Approach
	Experimental Setup
	Server Module
	Worker Module
	Client Module
	Hardware

	Management Service Evaluation

	Conclusion
	Future Work

	References

