
November 2009

Universidade do Minho
Escola de Engenharia

Edgar Manuel Fernandes da Mota Sousa

Incrementally Gridifying Scientific
Applications

Dissertation for MSc degree in Informatics

Supervisor:
João Luis Ferreira Sobral

November 2009

Universidade do Minho
Escola de Engenharia

Edgar Manuel Fernandes da Mota Sousa

Incrementally Gridifying Scientific
Applications

i

Acknowledgements

First, i must thank to my supervisor, João Sobral by all the time he spent
with me discussing innumerable subjects, by the freedom he gave me to
pursue the lines of work that I considered more interesting.

My acknowledgement also goes to Rui Gonçalves, Diogo Neves and Jorge
Pinho, my fellow project members for their support to my work.

And last but not the least, I want to thank João Barbosa for sharing with
me its experience.

This work was supported by the project AspectGrid (GRID/GRI/81880/2006)
funded by Portuguese FCT (POSI) and by European funds (FEDER).

ii

Abstract

Nowadays, with the ever increasing computing power, science is often done
in front of a computer instead of a laboratory. Scientists from biology, chem-
istry, physics, math, engineering and social sciences are using computer anal-
ysis and simulation as their first working tool.

However, with increasing power comes more difficulties, mainly when
dealing with recent multicore systems, computing clusters and grid envi-
ronments.

This work devises a stepwise evolution of scientific applications using
Aspect Oriented Programming techniques that starts with applications sci-
entists already wrote. An annotation-based aspect library for multicore pro-
gramming and a framework for supercomputer environments were developed
to implement this vision.

Results from applying these techniques to benchmarks from Java Grande
benchmarks suite show that this approach is feasible. The drawback is that
this approach is targeted at Java.

iv

Resumo

Nos tempos actuais, com o cada vez maior poder de computação, a ciência
é feita muitas vezes à frente de um computador ao invés de um laboratório.
Cientistas da biologia, química, física, matemática, engenharia e ciências
sociais usam análise por computador e simulação como as suas principais
ferramentas de trabalho.

No entanto, com maior poder de computação vêm mais dificuldades, prin-
cipalmente quando se trata dos recentes sistemas multicore, clusters com-
putacionais e ambientes grid.

Este trabalho apresenta um processo incremental para a evolução de apli-
cações científicas usando técnicas de Programação Orientadas ao Aspecto
partindo de aplicações que os cientistas já escreveram. Uma biblioteca de
aspectos baseada em anotações para programação em sistemas multicore e
uma framework para ambientes de supercomputador foram desenvolvidas
para implementar esta visão.

Os resultados da aplicação destas técnicas a casos de estudo da suite Java
Grande mostram que esta abordagem é possível. A principal limitação desta
abordagem é o seu foco em Java.

vi

Contents

1 Introduction 1

2 Background Concepts 3
2.1 Aspect Oriented Programming 3

2.1.1 Key Concepts . 3
2.1.2 Example: Observer Design Pattern 5
2.1.3 AOP on Parallel Computing 7

2.2 Grid Programming . 7
2.2.1 Frameworks for Gridifying Legacy Applications 8

3 JPPAL 9
3.1 Introduction . 9
3.2 Library Overview . 10

3.2.1 Mechanism use . 10
3.2.2 Design decisions . 11

3.2.2.1 Refactoring 11
3.2.2.2 Technology 15

3.3 Mechanisms . 15
3.3.1 Parallel . 15

3.3.1.1 Aspect Implementation 15
3.3.2 For . 18
3.3.3 Other Mechanisms . 19
3.3.4 Implementation Limitations 19

3.3.4.1 ParallelMethod 19
3.3.4.2 ParallelFor 19

vii

viii CONTENTS

3.3.4.3 Single . 20
3.4 Performance Results . 20
3.5 Conclusion . 22

4 The AspectGrid Framework 25
4.1 Introduction . 25
4.2 The framework . 26
4.3 Global Architecture . 28

4.3.1 ITask . 28
4.3.2 IService . 30
4.3.3 AbstractDispatcher . 31

4.4 Creating Tasks . 31
4.4.1 Manual Creation . 32
4.4.2 FrameworkAdapter . 32

4.5 Pluggable Services . 33
4.5.1 Monitor . 33
4.5.2 Parallellization . 33
4.5.3 Load Distribution . 34
4.5.4 Fault Recovery . 34
4.5.5 Remote Executor . 34

4.6 Grid . 34

5 Conclusions 37
5.1 Limitations . 37
5.2 Future Work . 38

Chapter 1

Introduction

With the advent of the ENIAC [37], the first general purpose electronic com-
puter built to compute artillery firing tables for the U.S. Army, a new era in
science begun. Since then, scientists from all fields heavily rely on computers
on their research.

The first massive utilization was seen with mainframes in the fifties, where
programs were executed in batches. The evolution of hardware and its low-
ering cost, and the massification of the personal computer in the nineties
opened the possibility of scientific computing on desktop machines.

The decreasing hardware prices and increasing demand for processing
power led to a new class of supercomputers. The most popular class became
the computer clusters, named Beowulf, after the cluster built by Thomas
Sterling and Donald Becker in 1994, with that name, using off the shelf
components [45].

With the rising popularity of computer clusters, computer scientists be-
gun to envision supercomputers using connected by the internet, i.e. the
grid. An important landmark was the publication of the book “The Grid:
Blueprint for a New Computing Infrastructure” [13].

The grid true growing was met with the development of EGEE by CERN,
an European Commission funded project started in 2004 to develop software
and prepare infrastructures for handling the massive amount of data to be
generated by the Large Hadron Collider [23, 31].

1

2 CHAPTER 1. INTRODUCTION

While these developments enable scientists to use more computational
power than ever, the complexity of the systems is also greater than ever. An
application designed to run on a cluster (and take advantage of it) is more
complex than one designed for desktop computers and one designed to run
on a grid environment is more complex than the cluster one. One last piece
of complexity is added with the rise of new processors architecture, namely
the multicore processors and Cell architecture, making the effort needed to
leverage all the processing power available unbearable for a non-computer
scientist. For example, the Roadrunner supercomputer, the fastest as of July
20091, uses in each TriBlade two dual core Opteron and four PowerXCell 8i
(multicore) processors. [28].

This work has two main goals: to devise a process of incrementally adapt
existing scientific applications designed for single core desktop machines into
applications suitable to run multicore machines, on clusters and then on grid
environments being able to explore the computational power available; and
study the possibility of Aspect Oriented Programming to develop production
libraries for this purpose.

The rest of this document is as follows: chapter 2 presents the key con-
cepts and related work. Chapters 3 and 4 presents the developed work: a
OpenMP-like annotation language, a framework for cluster adaptation of ap-
plications and its grid version. Chapter 5 concludes, summing the results of
applying the proposed methodology to several example codes.

1http://top500.org/list/2009/06/100

http://top500.org/list/2009/06/100

Chapter 2

Background Concepts

This chapter presents the key concepts that led the development and presents
a survey of related, previous work.

2.1 Aspect Oriented Programming

The concept of Aspect Oriented Programming (AOP) was first introduced
by Kiczales and his team at Xerox Palo Alto Research Center. In their
paper presented on ECOOP’97 [26], they argue that many design decisions
that the program must implement are not properly modularized on object-
oriented designs. The result of these crosscutting concerns is scattered code
on implementation, most of the times tangled with other functionality code.
Their work led to the development of AspectJ [25], the most well-known
AOP language. AspectJ implements the quantification and obliviousness
traits that identify an AOP language [11].

2.1.1 Key Concepts

For this work purpose, here is presented the main AOP concepts as imple-
mented by AspectJ.

3

4 CHAPTER 2. BACKGROUND CONCEPTS

Aspects

The modular units composed of pointcuts, advice, inter-type declarations
and ordinary auxiliary Java code are called aspects.

Join Points

The join point model provides the frame of reference that enables the dynamic
(i.e., runtime/control flow) existence of aspects. It specifies the possible
different places where aspects can introduce their behavior. In AspectJ, join
points are “well-defined points in the execution of the program” [25, p. 3],
including events like calling or executing a method, reading or writing a field
and creating objects.

Pointcuts

Pointcuts are the language which the programmer uses to refer to a collection
of join points and captures values at those join points.

Advice

Advice are constructs similar to methods used to define the additional be-
havior to compose at the join points referred by the pointcut.

Inter-type declarations

Not all crosscutting concerns are dynamic in its nature. Sometimes, static
crosscutting is present. Inter-type declarations enable the definition of new
operations on existing types, changing the static type signature of the pro-
gram.

Weaving

Weaving is the compilation process of an aspect. At this stage, the compiled
classes and the compiled aspects are woven into a new class where the advice
code and inter-type declarations are merged with the base class. This can
occur when compiling a project, or alternatively, using an AspectJ provided

2.1. ASPECT ORIENTED PROGRAMMING 5

class loader, doing only when the class is being loaded by the Java Virtual
Machine (JVM). This latter form is known as Load Time Weaving 1

The next subsection shows how the AspectJ language implements these
concepts using a simple example.

2.1.2 Example: Observer Design Pattern

The software design patterns are one of the most used examples to evaluate
new AOP languages and techniques [18, 34, 44] and also to show its benefits.

Consider the traditional definition of a two-dimensional point with x and
y fields and its correspondent getters and setters. If there is a screen which
should have its state updated when the point changes, the observer pattern
offers an alternative to the screen object using a timer or a loop to check the
point state. The point object will have a reference to the screen and notify
it on each modification of its state. Figure 2.1 shows the class definition for
this approach.

Figure 2.1: Applied observer pattern.

The field screen and the method setScreen are not part of the Point
specification. More, both setX and setY methods would have the line
this.screen.update() on its body to inform the screen of the possible need

1It is enabled by passing the option -javaagent:aspectjweaver.jar to the JVM.

6 CHAPTER 2. BACKGROUND CONCEPTS

to update itself. This illustrates scattering : the functionality is scattered
among different places; and tangling : the code is mixed with non-related
functionality code.

An aspect-oriented design would leave in its own module the concern of
updating the screen state. Algorithm 2.1 shows a possible AspectJ imple-
mentation of the observer pattern in this case.

On lines 2 to 5 is shown how the static part of the pattern, new fields
and methods (inter-type declarations), could be imposed on the base class
without modifying its source code.

Lines 6-8 implement the behavioral part of the pattern. The pointcut
in line 6 specifies “every call to void methods whose name starts with set
belonging to the class Point, with any number and types of parameters, and
bind the variable p to object targeted by the call” (quantification). The
advice body says that after each event specified by the mentioned pointcut,
the method update() of the related screen object should be called.

The Point implementation is not conscious of these extra fields, methods
and behavior specifically related to the pattern implementation (oblivious-
ness).

Algorithm 2.1 Observer pattern implementation.

1 public aspect ObservedPoint {
2 private Screen Point.screen;
3 public void Point.setScreen(Screen s){
4 this.screen = s;
5 }
6 after(Point p):call(void Point.set *(..))

&& target(p) {
7 p.screen.update ();
8 }
9 }

2.2. GRID PROGRAMMING 7

2.1.3 AOP on Parallel Computing

Since its inception, AOP has spawned across different areas: software security
[4, 20], logging and security for critical systems [12], debugging [22], wireless
sensor networks [30], real time operating systems [36], among many others.

The recent rise of multicore systems is demanding a shift on application
development. While popular languages like Java have support for multi-
threading programming, doing so by hand is error-prone and causes tan-
gling between threading and application code, making parallel programming
a good candidate for aspect-oriented programming.

The first article on using AOP for parallel programming was presented
on AOSD’04[19]. Their premise was that it should be possible to use aspect-
oriented design to separate mathematical model code from performance code
in scientific applications. This line of work influenced several researchers, on
work like aspects-enabled Java virtual machines[24], step-wise development
of parallel applications[39], mixing component and AOP approaches [3] and
(un)pluggable aspects for parallelization [15, 41, 40, 42].

2.2 Grid Programming

Gridification is defined as “the process of writing/modifying an application
to utilize the various services provided by a specific Grid middleware” [33,
p. 528]. The process includes parallelizing the application code, resource
discovery and scheduling applications on available resources.

How simple the process may seem, grid environments impose several is-
sues that the gridification process must address:

• Resource heterogeneity;

• Dynamic changing resources or applications;

• Unknown behavior of the platform deriving from the partial knowledge
of the system;

• Security: resources are shared on different administrative domains

8 CHAPTER 2. BACKGROUND CONCEPTS

2.2.1 Frameworks for Gridifying Legacy Applications

Several frameworks have been proposed to ease the gridification of existing
applications. Mateos et al propose a taxonomy for classifying such frame-
works [33, pp. 542-550], being invasiveness and granularity the most note-
worthy because of its impact on program development. The following survey
is made accordingly to this classification.

The Java GAT [1] is a grid API that aims to provide a simple interface
to multiple grid middleware. Ibis [35], ProActive [2] and HOCs [16] provide
middleware to develop parallel applications that can take advantage of grid
systems. Gridgain [17] is an commercially supported open source framework
designed specifically to support the development of grid applications. Grid-
enabling applications in these approaches require invasive and non-reversible
source code changes. In these approaches grid-enabled scientific applications
become dependent of the Grid middleware.

GEMLCA [9] and GRASG [21] are two frameworks supporting non-
invasive gridification of scientific codes. These approaches perform a coarse
grain gridification, by deploying scientific codes as grid services. These ap-
proaches lack support for fine-grained decomposition of the application func-
tionality to take advantage of the power of computational grids.

Non-invasive fine-grained gridification has been previously applied to ap-
plications that adhere to specific coding conventions. The Pagis system [46]
explores the use reflection techniques to gridify applications structured ac-
cording the paradigm of process networks. AOP techniques have been pre-
viously applied to abstract the process of remote execution of Java Thread-
based applications [32] and to implement the adaptation of a skeleton frame-
work [10] to cluster and grid environments [38]. These approaches still require
coding conventions, but their use of AOP avoids using reflection techniques
or preprocessing tools.

Chapter 3

JPPAL - Java Parallel
Programming Annotation Library

3.1 Introduction

The very first step in our gridification process is to explore the parallelism
possibly available on the application. Despite that in the last twenty years
parallel programming was the target of a large number of software engineering
works with the goal to simplify development process, this process is still
perceived as complex and issues as under utilization of resources and race
conditions are still problematic even for skilled programmers.

This complexity is the reason why there is a lot of effort to develop parallel
programming aids for languages that already support natively parallel pro-
gramming, namely Java. However, the most well know approach for shared
memory parallel programming, OpenMP, has not made its way on the Java
language.

This chapter describes the created OpenMP-like programming interface
for Java, in library form made of reusable aspects. Similarly to OpenMP,
this library, implemented using AspectJ, provides annotations for use in an
object-oriented way in Java programs.

The following sections describe the library rationale (3.2), its implemen-
tation (3.3.4) and findings (3.5).

9

10 CHAPTER 3. JPPAL

3.2 Library Overview

The main previous work motivating the work presented on this chapter was
done by Carlos Cunha and presented on AOSD’06 [7]. Cunha implemented
common concurrency patterns like one-way, futures, active objects, barriers
and guards. The novelty in his work was that all patterns were implemented
as a library of reusable aspects. The only extra code needed was the specific
pointcut or a Java annotation on the base code to apply the intended pattern.

However, the goal of making OpenMP available to Java programmers
is not new. Bull et al. [6] presented an implementation of the OpenMP
specification as close as possible using an extension to JavaCC to insert new
behavior based on comments, which could be seen as a form of source code
transformation, and Klemm et al. [27] extended their approach with new
mechanisms to cope with object-orientation and Java specifics. Both works
try to mimic the OpenMP behavior as seen on popular C/Fortran compilers,
even the memory model.

Different from these works, this library follows the same approach as the
concurrency patterns library aforementioned, using annotations instead of
comments to apply the parallelization mechanisms and being a library instead
of a source code transformation tool. The use of annotations has three main
reasons: programming with annotations is natural to Java programmers,
removes the need to be knowledgeable about aspect-oriented programming,
AspectJ and the internal working of the library, and avoids pointcut fragility
[29].

The library implements some of the most used mechanisms found in
OpenMP: parallel, single/master, critical, barrier and for. Each of those
mechanisms gave origin to one annotation (except two for barrier). For each
of those mechanisms, aspects were created that look for annotation presence
to apply the advice.

3.2.1 Mechanism use

Each construct is applied to code by tagging a method with the intended
annotation. The simplest example, to execute a method by several threads,

3.2. LIBRARY OVERVIEW 11

is shown on algorithm 3.1. The @Parallel annotation specifies that the
method will be executed in this case by 4 threads.

Algorithm 3.1 Example of annotation use.
public class Foo {

@Parallel(n=4)
public void someMethod(){

...
}
...

}

3.2.2 Design decisions

OpenMP is a specification targeted only at C/C++ and Fortran. So, we
decided not to mimic the programming constructs as defined by OpenMP
because the differences between those languages and Java.

First, mechanisms apply only to methods, as they are the fundamental
part of the application interface. Doing so, one can write a subclass and use
the same annotations on the overriding methods to keep the parallelization.

Second, we follow the language spirit when dealing with thread access to
variables. Class members are shared and not guaranteed to be up to date
unless declared volatile; method arguments and local variables are private.

Third, we impose refactoring to expose the right context. This results in
more explicit API’s as opportunities of parallelism became part of it.

3.2.2.1 Refactoring

The library was tested against the Java Grande benchmark suite [5]. Sim-
ilarly to Harbulot [19, section 4] we found that refactoring was needed in
order to expose the needed pointcuts for parallelization. Since methods are
the smaller unit that annotations can apply to, the main code transformation
was to replace a block of code with a method, or as we call it, to give it a
name. The programmer can do this easily with a tool like Netbeans1

1See http://wiki.netbeans.org/Refactoring.

http://wiki.netbeans.org/Refactoring

12 CHAPTER 3. JPPAL

Algorithms 3.2 and 3.3 show the code before and after applying this
refactoring technique to Series benchmark of Java Grande.

By moving the computation loop to a method of its own that exposes the
variables controlling the loop (start, end, step), an annotation can be applied
to it and the advice can get the proper context information.

3.2. LIBRARY OVERVIEW 13

Algorithm 3.2 Main Loop of Series before refactoring.

1 void Do()
2 {
3 double omega; // Fundamental frequency.
4
5 // Calculate the fourier series.
6 // Begin by calculating A[0].
7 TestArray [0][0]= TrapezoidIntegrate(
8 (double)0.0,
9 (double)2.0,
10 1000,
11 (double)0.0,
12 0) / (double)2.0;
13
14 omega = (double) 3.1415926535897932;
15
16 for (int i = 1; i < array_rows; i++)
17 {
18 TestArray [0][i] = TrapezoidIntegrate(
19 (double)0.0,
20 (double)2.0,
21 1000,
22 omega * (double)i,
23 1);
24
25 // Calculate the B[i] terms.
26 TestArray [1][i] = TrapezoidIntegrate(
27 (double)0.0,
28 (double)2.0,
29 1000,
30 omega * (double)i,
31 2);
32 }
33 }

14 CHAPTER 3. JPPAL

Algorithm 3.3 Series after refactoring.

1 void Do()
2 {
3 double omega; // Fundamental frequency.
4
5 // Calculate the fourier series.
6 // Begin by calculating A[0].
7 TestArray [0][0]= TrapezoidIntegrate(
8 (double)0.0,
9 (double)2.0,
10 1000,
11 (double)0.0,
12 0) / (double)2.0;
13
14 omega = (double) 3.1415926535897932;
15 this.execFor(1,array_rows ,1,omega);
16 }
17
18 private void execFor(int start , int end ,
19 int step , double omega) {
20
21 for (int i = start; i < end; i+=step) {
22 TestArray [0][i] = TrapezoidIntegrate(
23 (double)0.0,
24 (double)2.0,
25 1000,
26 omega * (double)i,
27 1);
28
29 // Calculate the B[i] terms.
30 TestArray [1][i] = TrapezoidIntegrate(
31 (double)0.0,
32 (double)2.0,
33 1000,
34 omega * (double)i,
35 2);
36 }
37 }

3.3. MECHANISMS 15

3.2.2.2 Technology

Being implemented using AspectJ brings, in this particular case, three imme-
diate advantages. First, the library itself could be distributed in binary form,
and using Load Time Weaving, the same binary package can be used on all
the applications without recompiling it (akin to shared libraries); second, one
can write new aspects for new concerns applied to the same pointcuts speci-
fied by the annotations to improve certain functionality; and third, if needed,
anyone can change the library and specify pointcuts instead of annotations
in case where the access to the application source code is not possible2.

Other important fact is that by using AspectJ, we don’t need to use
other more complex tools to introduce the extra behavior. The alternative
to AspectJ would be parsing and transforming the source code.

3.3 Mechanisms

3.3.1 Parallel

The Parallel annotation declares the start of a region to be executed by sev-
eral threads simultaneously. It has one mandatory argument, n, the number
of threads (in case that n < 1, it will use the number of available processors).

Method parameters are private to each thread, including object typed
ones. Java semantics apply in this case: the variable is a private reference
for a object that is shared by all threads. On the other side, object fields are
shared among threads.

3.3.1.1 Aspect Implementation

Algorithm 3.4 shows the base implementation of this aspect that is active
when a method tagged @Parallel is called (pointcut parallelMethod), creat-
ing n threads (lines 16-18).

2This approach relies on the assumption that code is already exposing the needed
joinpoints for parallelization.

16 CHAPTER 3. JPPAL

For method to run in parallel, (n−1) Runnable objects are created3. Each
one will execute the special proceed AspectJ statement when the ThreadPool
Executor runs it (lines 20-28). After proceeding with the method call (line
29), the main thread will join with the other threads (lines 30-38).

The aspect also provides for the threads’ use, a shared storage area, vari-
ous information about the parallel zone (master id, group size, etc.), a barrier
and a lock.

3There is no missing thread. The working (main) thread will execute the same code as
the others.

3.3. MECHANISMS 17

Algorithm 3.4 ParallelMethod aspect implementation.

1 import java.util .*;
2 import java.util.concurrent .*;
3
4 public aspect ParallelMethod {
5 public ExecutorService exec=null;
6 public ReentrantLock groupLock;
7 public TournamentBarrier groupBarrier;
8 /* Other parallel region state variables */
9 pointcut parallelMethod () :

10 call(@Parallel * *.*(..)) ;
11
12 Object around(final Parallel pm) :
13 parallelMethod () && @annotation(pm) {
14 groupSize = pm.n() >0 ? pm.n():
15 Runtime.getRuntime ().availableProcessors ();
16 if(exec == null && groupSize >1)
17 exec = Executors
18 .newFixedThreadPool(groupSize -1);
19 /* Other initializations */
20 for(int i=1;i<pm.n();i++)
21 Runnable r = new Runnable () {
22 public void run() {
23 myid.get();
24 proceed(pm);
25 }
26 };
27 futures.add(exec.submit(r));
28 }
29 proceed(pm);
30 if(groupSize >1) {
31 try {
32 for(Future <?> f : futs)
33 futures.get();
34 } catch (Exception e) {
35 e.printStackTrace ();
36 }
37 futs.clear ();
38 }
39 return null;
40 }
41 }

18 CHAPTER 3. JPPAL

3.3.2 For

This is the only supported work sharing construct. At this time is mandatory
that the method it applies has a subclass of Number as return type.

To be able to use the @For annotation, the method must have as its
first three parameters three ints, meaning (in order): the loop iterator initial
value, end value and step; also the method muss be called from inside a
parallel region.

When a thread executing a parallel region finds a call to an annotated
method with @For, it will modify the aforementioned parameters based on
their values and its own id in order to share the work, proceeding with n

calls to the method.

The annotation itself has one argument, reduction, that can be NONE, AVG,
MAX, MIN, SUM or PROD, specifying how to combine the individual results from
each method call into one.

Algorithm 3.5 shows this annotation applied to Crypt benchmark.

Algorithm 3.5 Using the @For annotation.

1 @Parallel(n=4)
2 private void cipher_idea(byte[] text1 , byte[] text2 ,
3 int[] key){
4 //...
5 this.execFor(0,text1.length ,8,text1 , text2 , key);
6 //...
7 }
8
9 @For(reduction=Reduction.NONE)
10 private Number execFor(int st , int en , int step ,
11 byte[] text1 ,byte[] text2 , int[] key) {
12
13 for (int i = st; i < en; i += step) {
14 //...
15 }
16 return null;
17 }

3.3. MECHANISMS 19

3.3.3 Other Mechanisms

BeforeBarrier & AfterBarrier

These annotations have no arguments and causes the threads to synchronize
before (after) entering (leaving) the annotated method.

Master & Single

Causes a method to be executed only by one thread. With Single, the first
thread entering the method executes it. All threads synchronize at the end
of the method.

Critical

This annotations marks a section of the code that can be executed only by
one thread at a time. No order between threads is guaranteed.

3.3.4 Implementation Limitations

3.3.4.1 ParallelMethod

AspectJ supports the multiple instances of an aspect. To achieve it one can
write public aspect X percflow(somepointcut()) { and have a differ-
ent instance in each join point matched by the pointcut. That instance is
accessed using X.aspectOf() method. However, if one thread is created a that
point, a call to X.aspectOf() will return a null object. For this reason, it is
not possible to have nested parallel zones, because only a per VM aspect can
exist.

3.3.4.2 ParallelFor

The method signature is imposed by the mechanism and does not allow for
other return types than Number. Also, there is no load balancing at all (a
workaround is to specify a number higher than the number of processors on
@Parallel annotation.

20 CHAPTER 3. JPPAL

3.3.4.3 Single

Its impossible with AspectJ based tools to implement a non-blocking version
of Single. Algorithm 3.6 shows an example why it is impossible. When a
thread encounters the call to doIO(), its impossible without maintaining a
complex flow analysis if it should proceed to the call or skip it.

Algorithm 3.6 Single example.

1 @Single
2 public void doIO(){
3 /*...*/
4 }
5
6 @Parallel (0)
7 public void method (){
8 for(i=0;i<n;i++){
9 /*...*/
10 doIO();
11 }
12 }

3.4 Performance Results

When we wrote this library, someone raised the question that such a library
would impose significant overhead.

The results obtained with the some of the benchmarks from Java Grande
suite show the library does not cause significant performance loss.

Values were gathered on a 2 x Intel Xeon E5420 @ 2.50GHz (QuadCore)
machine, with 7GB RAM, running CentOS 3.4 kernel 2.6.9-42.0.2.ELsmp
x86_64, Sun Java SE 1.6.0_u11 and AspectJ 1.6.3. Time is in seconds. The
first tables show the values obtained with the original multithreaded versions
and the second ones the values obtained with the library.

3.4. PERFORMANCE RESULTS 21

Threads 1 2 4 8
SizeA 0,658 0,308 0,184 0,112
SizeB 3,652 2,151 1,028 0,478
SizeC 8,929 4,389 2,691 1,135

Threads 1 2 4 8
SizeA 0,694 0,381 0,221 0,159
SizeB 3,990 2,192 1,133 0,610
SizeC 10,332 5,385 2,728 1,409

Table 3.1: Crypt execution times.

Threads 2 4 8
SizeA 2,14 3,58 5,88
SizeB 1,7 3,55 7,64
SizeC 2,03 3,32 7,87

Threads 2 4 8
SizeA 1,82 3,14 4,63
SizeB 1,82 3,52 6,54
SizeC 1,92 3,79 7,33

Table 3.2: Crypt speedups.

Threads 1 2 4 8
SizeA 9,061 4,811 2,599 1,195
SizeB 85,836 43,408 21,541 10,825
SizeC 1307,229 808,388 420,502 220,324

Threads 1 2 4 8
SizeA 9,112 5,104 2,605 1,359
SizeB 83,487 48,471 23,583 11,095
SizeC 1307,005 809,516 419,377 226,306

Table 3.3: Series execution times.

22 CHAPTER 3. JPPAL

Threads 2 4 8
SizeA 1,88 3,49 7,58
SizeB 1,98 3,98 7,93
SizeC 1,62 3,11 5,93

Threads 2 4 8
SizeA 1,79 3,5 6,7
SizeB 1,72 3,54 7,52
SizeC 1,61 3,12 5,78

Table 3.4: Series speedups.

3.5 Conclusion

This work presents a simple way to express parallelization, by using Java
annotations to express the parallelization points. The library does not hinder
program gains from parallelization.

On the negative side, we have the lack of AspectJ’s ability to target loops.
Thus, the base code needs to expose in its interface the suitable points of
parallelization. At this time, the only way to accomplish that is to move
the loop to a method of is own where this parameters are arguments to the
method enabling AspectJ advice to capture and change them (applying the
refactoring approach shown on subsection 3.2.2.1).

To overcome this limitation when using either pointcut or annotation
approach, Java could be extended with true named blocks4 and then AspectJ
could target them. Algorithm 3.7 proposes a syntax for this that is able to
expose local context.

4Java supports named blocks at source level. However, those names are not available
in the generated bytecodes.

3.5. CONCLUSION 23

Algorithm 3.7 Named blocks example.
int foo(){

//statements
fooLoopName(int start, int max):{

for(int i=start;i<max;i++){

//loop body

}
//after loop statements

}
//statements
return value;

}

With those facilities, it would be possible to apply annotations directly
without refactorings. The code expressed on algorithm. 3.8 could be a reality.

Algorithm 3.8 Inline annotations on named blocks example.
int foo(){

//some statements
//more statements
@Parallel(n =DEFAULT)
@For(reduction =Reduction .NONE)
fooLoopName(int start, int max):{

for(int i=start;i<max;i++){

//loop body

}
//after loop statements

}
//statements
return value;

}

24 CHAPTER 3. JPPAL

Chapter 4

The AspectGrid Framework

4.1 Introduction

One of the mandatory steps in gridifying an application is transforming it
to use a supercomputer (cluster) environment. The traditional approach
is to rewrite from scratch all the structure, keeping only the functionality
that is modularized. Most of the times this conversion results in parameter
sweep applications, where some “kernel” code is executed many times with a
different parameter on each execution.

Applications that do not rely on parameter sweep require an additional
burden to be decomposed into a set of independent tasks that can be exe-
cuted on multiple computing nodes. Moreover, parameter sweep may not be
affordable for some kind of applications as some run(s) may be dependent on
another(s).

To help this gridification step, it was developed an aspect based frame-
work 1 to declare, in a non-invasive manner, the different tasks composing
the application. The framework provides an easy way to execute the tasks on
a supercomputer without manually introducing code for distributed memory.
To achieve this we use the concept of pluggable grid services [42] that can be
composed to meet the requirements of the application and/or platform. This
is similar to the concept of component binding described by Dangelmayr [8].

1This work is an evolution of the embryonic work presented at Ibergrid’08 [43]

25

26 CHAPTER 4. THE ASPECTGRID FRAMEWORK

4.2 The framework

The foremost requirements for the framework were that the gridification
would be non-invasive, the framework itself would be lightweight and the
application programming interface would be minimalist. This goal is accom-
plished by relying on a well defined workflow that provides the adequate
join points to plug additional services. Figure 4.1 shows this workflow. The
framework adapter serves as an entry point to the framework domain that
non-invasively converts domain computations into framework tasks. Each of
the eight steps are subject to be intercepted by any new module. The core
service, aided by execution services and a “Task API” compose the frame-
work. The non-invasiveness is achieved by creating adapters to the user code,
using AspectJ.

4.2. THE FRAMEWORK 27

ExecutorExecutionCore

Framework Adapter
Application

1: task start

8: task result

7: tasks results
6: complete

5: complete

4: run

3: execute task

2: run one or more tasks

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 4.1: Framework conceptual architecture.

28 CHAPTER 4. THE ASPECTGRID FRAMEWORK

4.3 Global Architecture

The class diagram in figure 4.2 shows the main and essential parts of the
framework that materialize the generic concepts from the previous subsec-
tion. Using a program for computing the Mandelbrot set, the subsections
present in detail the role of each one.

Figure 4.2: AspectGrid class diagram.

4.3.1 ITask

This datatype serves to encapsulate every task submitted to the framework.
The abstract method compute should comprise the needed steps to perform
the computation having the object data of parametric type I as input and
storing the result of type R in result.

Applications using the framework (see section 4.4) should define the re-
quired subclass and instantiate it as needed. Algorithms 4.1 and 4.2 shows
how this can be accomplished on the Mandelbrot set example from Java

4.3. GLOBAL ARCHITECTURE 29

Grande benchmark suite [5].
The class MandServer is where the computation of the Mandelbrot set is

implemented (method mandelBrot). Algorithm 4.1 shows the implementa-
tion of ITask interface where the compute method just redirects the compu-
tation to a MandServer object. The referred class MandData encapsulates
computation parameters.

Algorithm 4.2 is a snippet from a Framework Adapter.

Algorithm 4.1 ITask use.

1 public class MandelbrotTask extends
2 ITask <MandData , Short [][]> {
3
4 public MandelbrotTask(MandData initialData) {
5 super(initialData);
6 }
7
8 @Override
9 public void compute () {
10 MandServer m = new MandServer ();
11 this.result=m.mandelBrot(this.data.c0 ,
12 /*...*/);
13 }
14 }

Algorithm 4.2 Creating ITask objects.

1 Short [][] around(Complex c0 , double gap , /*...*/):
2 call(* mandelbrot.MandServer.mandelBrot (..) &&

/*...*/ {
3
4 /* other statements */
5
6 MandData md = new MandData(c0 , gap , /*...*/);
7 MandTask mt = new MandTask(md);
8
9 /* submitting tasks and returning values */
10 }

30 CHAPTER 4. THE ASPECTGRID FRAMEWORK

4.3.2 IService

Each different execution service for the framework must implement the in-
terface IService. This interface exposes the method run, to accept one task
for execution and the method done with which the dispatcher signals the
end of the submissions for this set of tasks. The core implementation of the
framework provides sequential, Java ThreadPool and Remote Method Invo-
cation (RMI) based implementations. Algorithms 4.3 and 4.4 shows how the
framework components interact with IService interface. Algorithm 4.5 shows
an actual implementation of a such service.

Algorithm 4.3 Creating and registering IService instances.

1 before () : execution(public static void *.main (..)){
2 IService s = new MultiThread ();
3 dispatcher.registerService(s);
4 }

Algorithm 4.4 Using IService to run tasks.

1 public class FIFODispatcher extends
AbstractDispatcher {

2 /* ... */
3 public void runTasks (){
4 for(ITask <?,?> t : this.tasks){
5 /* housekeeping */
6 this.getAvailableService ().run(t);
7 }
8 }
9 }

4.4. CREATING TASKS 31

Algorithm 4.5 Multithread IService running a task.

1 public class MultiThread implements IService {
2
3 public void run(ITask <?,?> task) {
4 Runnable r = new Runnable () {
5 public void run() {
6 task.state = TaskStateEnum.Running;
7 task.compute ();
8 if(task.state == TaskStateEnum.Running)
9 task.state = TaskStateEnum.Complete;
10 }
11 };
12 futures.add(executor.submit(r));
13 }
14 }

4.3.3 AbstractDispatcher

The Dispatcher is the core service responsible for accepting new tasks, sched-
ule them for execution and gather the results. The abstract class does not
impose any complexity. Management of available resources, like seen on al-
gorithm 4.4 is optional (a naive implementation can send all the tasks to the
first registered service).

The application entry point (or an aspect managing it) needs to create the
appropriate dispatcher, perform the initial discovery of services and register
them.

4.4 Creating Tasks

As stated on introduction of this chapter, the framework was intended to
declare, in a non-invasive manner, the different tasks composing the applica-
tion.

The basic steps are:

• Create a class to encapsulate all the input data

32 CHAPTER 4. THE ASPECTGRID FRAMEWORK

• Create a class extending ITask where the compute() method imple-
ments the computation code

• Instantiate data and task objects to submit to the dispatcher.

The following subsections describe alternatives to create such tasks.

4.4.1 Manual Creation

The manual approach is invasive but offers complete control on the creation
of tasks, specially useful when dependencies between tasks are complex or
the parallelization model does not follow a usual pattern.

On the Mandelbrot set example, the method mandelBrot belonging to the
class MandServer would need to encapsulate its arguments on several objects
(according to the data partitioning strategy) and create objects, initialized
with those data objects, from a class extending ITask that implemented the
old method body. The execution of the tasks should be accomplished by
normal framework services.

4.4.2 FrameworkAdapter

The FrameworkAdapter follows the same concept as the adapter software
design pattern [14, p. 139]. The requirement for the wanted non-invasiveness
of the framework is only achieved if all the changes needed for the framework
be able to compose with the application are done on its separate module.
The FrameworkAdapter

This aspect can be divided in three parts:

• Framework initialization, by creating the dispatcher and registering
services (as seen on algorithm 4.3);

• Definition of ITask subclass and data encapsulation class;

• Intercepting the normal control flow and binding the framework to
it. In the Mandelbrot set example, it would be a pointcut capturing
method MandServer.mandelBrot calls and its arguments, create the

4.5. PLUGGABLE SERVICES 33

required objects and submitting them to dispatcher service and waiting
for results (see algorithm 4.2).

4.5 Pluggable Services

The framework services are loosely coupled. This enables that new aspects
can be used to bind new services. This section discusses available and pro-
posed plugins.

4.5.1 Monitor

The monitoring service allows to see the progress of the application. It counts
how many tasks were created, how many are actively running as well how
many faulty tasks were.

For this purpose, the monitor intercepts calls to task object constructors
(call(ITask+.new(..)), task execution (call(* IService.run(..))) to
build its statistics.

4.5.2 Parallellization

Parallelization is a family of services that can apply more complex paral-
lelization patterns using an approach similar to the skeletons paradigm [10].

A parallelization service intercepts task creation events and splits the
task into smaller ones according to the pattern it implements. For example,
ScatterGather intercepts task creation and creates several tasks using a user
provided scatter function to split data accordingly. When all tasks return
their results, another user provided function, gather, combines the results into
a final one that is returned transparently as the result of the first task. Other
skeletons, like Pipeline or Farm are also available. To manage dependencies,
this skeletons can be extended to implement the specific rules.

34 CHAPTER 4. THE ASPECTGRID FRAMEWORK

4.5.3 Load Distribution

On previous versions of the framework, the Load Distribution service changed
the default round-robin scheduling strategy to a demand-driven one, sending
new tasks to resources on demand.

On the last version, AbstractDispatcher was introduced, giving more free-
dom to concrete dispatchers to manage resources and implement any desired
scheduling strategies. For example, FIFODispatcher chooses one of the re-
sources that has it marked as free.

4.5.4 Fault Recovery

Sometimes computing elements fail. To minimize the impact, the fault re-
covery service implements a timeout mechanism (based on the average time
needed per task so far) and removes services from the services list and submit
the task it was computing again for execution.

It monitors the same join points as the monitor service (4.5.1). In fact,
both services are implemented jointly (they can still be used separately).

4.5.5 Remote Executor

To explore multiple computers, essential if the application is to leverage
the supercomputer environment, exists a small agent that executes on each
machine and using RMI receives ITask objects, executes their compute()
method locally and returns their result.

4.6 Grid

It is possible to execute a framework-enabled application on EGEE without
further modifications. The traditional job submission methods can be used
to start the application.

However, using the AspectGrid framework brings some immediate advan-
tages:

• The plugins mentioned on section 4.5 are available;

4.6. GRID 35

• Having the code parallelized with JPPAL enables taking immediate
advantage of possible multicore systems available on the grid-assigned
cluster;

• Existing services can be used and custom ones can be easily written and
added to the framework. Example: saving files to a storage element
while the computation is running can be achieved by an aspect instead
of modifying the application code.

36 CHAPTER 4. THE ASPECTGRID FRAMEWORK

Chapter 5

Conclusions

Because of its nature, Aspect Oriented Programming is a good paradigm to
encapsulate some kinds of functionality. The methodology presented on this
thesis exploits that for progressive evolution of scientific applications, namely
by developing new ways to express parallelization concerns when adapting
existing scientific applications to multicore and supercomputer systems.

The JPPAL library does not require previous knowledge of AOP or As-
pectJ to be able to use it, making a better choice than Java Threads for
parallelization.

The AspectGrid framework is able to non-invasively, i.e., without changing
the program flow, adapt a program to supercomputer environments. It is a
lightweight design with minimalist base components and small interfaces,
and its implementation is open making possible to create, enable and remove
services as needed.

5.1 Limitations

While AspectJ is the tool that made this work possible, it imposed some
limitations itself. As mentioned on sections 3.2.2.1 and 3.5, refactoring is
needed in order to expose loops and its control variables to AspectJ pointcuts.
While this in our opinion is a good thing (forces the parallelization to be
present in the API), the scientist will perceive the refactoring as a burden.

37

38 CHAPTER 5. CONCLUSIONS

Other limitation lies with the AspectGrid framework where the program-
mer must know how to interact with the cluster/grid job submission systems,
namely, the startup script must request the needed resources and to ensure
that the remote execution agents are started prior to the application.

The biggest limitation of this work is the Java-only approach. Appli-
cations written in C or Fortran do not benefit from this approach mainly
because there is no AOP tool for Fortran, and the ones for C/C++ are not
supported and mature as AspectJ is.

One mechanism that from our experience is useful to help parallelize
legacy code is ThreadLocal. However, such mechanism is very difficult to
implement due to several reasons. The first one is that we could not agree
on what must be its behavior: assuming that a object field was annotated as
being ThreadLocal, when should the thread local copies be created? Should
the mechanism force the field type implement Cloneable? After leaving the
parallel zone, how to reduce the value?

The second reason was AspectJ related. The only way to make the copies
at the start of a Paralell zone is to use reflection and iterate over all fields and
check if the annotation was applied. That is not acceptable if performance
is a goal.

5.2 Future Work

The JPPAL library can be expanded to implement more mechanisms, in-
cluding new ones introduced by OpenMP 3.0. The AspectGrid framework
will benefit from more services in its portfolio, mainly grid-related ones and
job submission interfaces.

Other line of research would be do fill the gap between Aspect Oriented
Programming and other languages than Java, should it be by new AOP
tools (language independent AOP would be a possibility), tools for auto-
matic conversion from that languages to Java or doing a major refactoring
to the C/Fortran code, creating a shared library implementing the needed
algorithms while rewriting the application control flow in Java and calling
the library functions using Java Native Interface (JNI).

Bibliography

[1] G. Allen, K. Davis, T. Goodale, A. Hutanu, H. Kaiser, T. Kielmann,
A. Merzky, R. van Nieuwpoort, A. Reinefeld, F. Schintke, T. Schott,
E. Seidel, and B. Ullmer, “The grid application toolkit: Toward generic
and easy application programming interfaces for the grid,” Proceedings
of the IEEE, vol. 93, no. 3, pp. 534–550, March 2005.

[2] L. Baduel, F. Baude, D. Caromel, A. Contes, F. Huet, M. Morel,
and R. Quilici, Grid Computing: Software Environments and Tools.
Springer-Verlag, January 2006, ch. Programming, Deploying, Compos-
ing, for the Grid.

[3] P. V. Bangalore, “Generating parallel applications for distributed mem-
ory systems using aspects, components, and patterns,” in ACP4IS ’07:
Proceedings of the 6th workshop on Aspects, components, and patterns
for infrastructure software. New York, NY, USA: ACM, 2007, p. 3.

[4] N. Belblidia, M. Debbabi, A. Hanna, and Z. Yang, “AOP extension for
security testing of programs,” in Proc. Canadian Conference on Electri-
cal and Computer Engineering CCECE ’06, 2006, pp. 647–650.

[5] J. M. Bull, L. A. Smith, M. D. Westhead, D. S. Henty, and R. A.
Davey. Java grande. [Online]. Available: http://www.epcc.ed.ac.uk/
projects/archive/java-grande

[6] J. Bull, M. Westhead, M. Kambites, and J. Obdrvzalek, “Towards
OpenMP for Java,” in European Workshop on OpenMP (EWOMP 2000),
2000.

39

http://www.epcc.ed.ac.uk/projects/archive/java-grande
http://www.epcc.ed.ac.uk/projects/archive/java-grande

40 BIBLIOGRAPHY

[7] C. Cunha, J. Sobral, and M. Monteiro, “Reusable aspect-oriented im-
plementations of concurrency patterns and mechanisms,” in Proceedings
of the 5th international conference on Aspect-oriented software develop-
ment. ACM New York, NY, USA, 2006, pp. 134–145.

[8] C. Dangelmayr and W. Blochinger, “Aspect-oriented component assem-
bly - a case study in parallel software,” Software: Practice and Experi-
ence, vol. 39, pp. 807–832, 2009.

[9] T. Delaitre, T. Kiss, A. Goyeneche, G. Terstyanszky, S. Winter, and
P. Kacsuk, “Gemlca: Running legacy code applications as grid services,”
Journal of Grid Computing, vol. 3, no. 1, pp. 75–90, 2005.

[10] J. F. Ferreira, J. L. Sobral, and A. J. Proenca, “Jaskel: A java skeleton-
based framework for structured cluster and grid computing,” in CC-
GRID ’06: Proceedings of the Sixth IEEE International Symposium on
Cluster Computing and the Grid. Washington, DC, USA: IEEE Com-
puter Society, 2006, pp. 301–304.

[11] R. E. Filman and D. P. Friedman, “Aspect-oriented programming is
quantification and obliviousness,” in Workshop on Advanced Separation
of Concerns, OOPSLA 2000, October, Minneapolis, 2000.

[12] D. P. Fletcher, F. Akkawi, D. P. Duncavage, and R. Alena, “From re-
search to operations: integrating components with an aspect-oriented
framework and ontology,” in Proc. IEEE Aerospace Conference, vol. 5,
2004, pp. –3078 Vol.5.

[13] I. Foster and C. Kesselman, Eds., The Grid: blueprint for a new com-
puting infrastructure. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1999.

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns: ele-
ments of reusable object-oriented software. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 1995.

BIBLIOGRAPHY 41

[15] R. C. Gonçalves and J. L. Sobral, “Pluggable parallelisation,” in HPDC
’09: Proceedings of the 18th ACM international symposium on High
performance distributed computing. New York, NY, USA: ACM, 2009,
pp. 11–20.

[16] S. Gorlatch and J. Dünnweber, Future Generation Grids. Springer-
Verlag, 2006, ch. From Grid Middleware to Grid Applications: Bridging
the Gap with Hocs, pp. 241–261.

[17] GridGain Technologies. [Online]. Available: http://www.gridgain.com

[18] J. Hannemann and G. Kiczales, “Design pattern implementation in Java
and AspectJ,” in OOPSLA ’02: Proceedings of the 17th ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and ap-
plications. New York, NY, USA: ACM, 2002, pp. 161–173.

[19] B. Harbulot and J. R. Gurd, “Using aspectj to separate concerns in
parallel scientific java code,” in AOSD ’04: Proceedings of the 3rd in-
ternational conference on Aspect-oriented software development. New
York, NY, USA: ACM, 2004, pp. 122–131.

[20] G. Hermosillo, R. Gomez, L. Seinturier, and L. Duchien, “Aprosec: an
aspect for programming secure web applications,” in Proc. Second In-
ternational Conference on Availability, Reliability and Security ARES
2007, 2007, pp. 1026–1033.

[21] Q.-T. Ho, T. Hung, W. Jie, H.-M. Chan, E. Sindhu, G. Subramaniam,
T. Zang, and X. Li, “Grasg - a framework for "gridifying" and run-
ning applications on service-oriented grids,” in Cluster Computing and
the Grid, 2006. CCGRID 06. Sixth IEEE International Symposium on,
vol. 1, May 2006, pp. 4 pp.–.

[22] T. Ishio, S. Kusumoto, and K. Inoue, “Program slicing tool for effec-
tive software evolution using aspect-oriented technique,” in Proc. Sixth
International Workshop on Principles of Software Evolution, 2003, pp.
3–12.

http://www.gridgain.com

42 BIBLIOGRAPHY

[23] B. Jones, “An overview of the egee project,” Lecture Notes in Computer
Science, vol. 3664, pp. 1–8, 2005.

[24] C. Kaewkasi and J. R. Gurd, “A distributed dynamic aspect machine
for scientific software development,” in VMIL ’07: Proceedings of the 1st
workshop on Virtual machines and intermediate languages for emerging
modularization mechanisms. New York, NY, USA: ACM, 2007, p. 3.

[25] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Gris-
wold, “An overview of aspectj,” in Proceedings of ECOOP, Springer Ver-
lag. LNCS, vol. 2072, 2001.

[26] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. Lo-
ingtier, and J. Irwin, “Aspect-oriented programming,” in ECOOP’97–
11th European Conference on Object-Oriented Programming, Finland,
June 9-13, 1997.

[27] M. Klemm, R. Veldema, M. Bezold, and M. Philippsen, “A proposal for
openmp for java,” Lecture Notes in Computer Science, vol. 4315, p. 409,
2008.

[28] K. Koch. Roadrunner platform overview. Los Alamos National
Laboratory. Retrieved on July 2, 2009. [Online]. Available: http:
//www.lanl.gov/orgs/hpc/roadrunner/

[29] C. Koppen and M. Störzer, “Pcdiff: Attacking the fragile pointcut prob-
lem,” in First European interactive workshop on aspects in software (EI-
WAS), 2004.

[30] E. Lakshika, C. Keppitiyagama, and D. Wathugala, “AOnesC: An
Aspect-Oriented Extension to nesC,” in Proc. NTMS ’08. New Tech-
nologies, Mobility and Security, 2008, pp. 1–5.

[31] M. Lamanna, “The lhc computing grid project at cern,” Nuclear Instru-
ments and Methods in Physics Research Section A: Accelerators, Spec-
trometers, Detectors and Associated Equipment, vol. 534, no. 1-2, pp. 1

http://www.lanl.gov/orgs/hpc/roadrunner/
http://www.lanl.gov/orgs/hpc/roadrunner/

BIBLIOGRAPHY 43

– 6, 2004, proceedings of the IXth International Workshop on Advanced
Computing and Analysis Techniques in Physics Research.

[32] P. H. M. Maia, N. C. Mendonça, V. Furtado, W. Cirne, and K. Saikoski,
“A process for separation of crosscutting grid concerns,” in SAC ’06:
Proceedings of the 2006 ACM symposium on Applied computing. New
York, NY, USA: ACM, 2006, pp. 1569–1574.

[33] C. Mateos, A. Zunino, and M. Campo, “A survey on approaches to
gridification,” Software: Practice and Experience, vol. 38, pp. 523–556,
2008.

[34] M. P. Monteiro and J. M. Fernandes, “Towards a catalog of aspect-
oriented refactorings,” in AOSD ’05: Proceedings of the 4th international
conference on Aspect-oriented software development. New York, NY,
USA: ACM, 2005, pp. 111–122.

[35] R. V. V. Nieuwpoort, J. Maassen, G. Wrzesinska, R. Hofman, C. Jacobs,
T. Kielmann, and H. E. Bal, “Ibis: a flexible and efficient java-based
grid programming environment. concurrency & computation: Practice
& experience,” in Concurrency & Computation: Practice & Experience,
2005, pp. 7–8.

[36] J. Park, S. Kim, and S. Hong, “Weaving aspects into real-time oper-
ating system design using object-oriented model transformation,” in
Proc. Ninth IEEE International Workshop on WORDS 2003 Fall Object-
Oriented Real-Time Dependable Systems, 2003, pp. 292–298.

[37] K. Richey. (1997, February) The eniac. Retrieved on June 25, 2009.
[Online]. Available: http://ei.cs.vt.edu/~history/ENIAC.Richey.HTML

[38] J. L. Sobral and A. J. Proenca, “Enabling jaskel skeletons for clusters
and computational grids,” in CLUSTER ’07: Proceedings of the 2007
IEEE International Conference on Cluster Computing. Washington,
DC, USA: IEEE Computer Society, 2007, pp. 365–371.

http://ei.cs.vt.edu/~history/ENIAC.Richey.HTML

44 BIBLIOGRAPHY

[39] J. Sobral, “Incrementally developing parallel applications with aspectj,”
in Parallel and Distributed Processing Symposium, 2006. IPDPS 2006.
20th International, 2006, p. 10.

[40] J. L. Sobral, C. A. Cunha, and M. P. Monteiro, “Aspect oriented plug-
gable support for parallel computing,” in High Performance Computing
for Computational Science - VECPAR 2006.

[41] J. L. Sobral and M. P. Monteiro, “A domain-specific language for paral-
lel and grid computing,” in DSAL ’08: Proceedings of the 2008 AOSD
workshop on Domain-specific aspect languages. New York, NY, USA:
ACM, 2008, pp. 1–4.

[42] J. L. Sobral, “Pluggable grid services,” in GRID ’07: Proceedings of the
8th IEEE/ACM International Conference on Grid Computing. Wash-
ington, DC, USA: IEEE Computer Society, 2007, pp. 113–120.

[43] E. Sousa, R. Gonçalves, D. Neves, and J. Sobral, “Non-invasive gridi-
fication through an aspect-oriented approach,” in 2nd Iberian Grid In-
frastrucutre Conference (Ibergrid 2008), Porto, Portugal, 2008.

[44] E. Sousa and M. P. Monteiro, “Implementing design patterns in caesarj:
an exploratory study,” in SPLAT ’08: Proceedings of the 2008 AOSD
workshop on Software engineering properties of languages and aspect
technologies. New York, NY, USA: ACM, 2008, pp. 1–6.

[45] T. Sterling, D. Becker, D. Savarese, J. Dorband, U. Ranawake, and
C. Packer, “Beowulf: A parallel workstation for scientific computation,”
in In Proceedings of the 24th International Conference on Parallel Pro-
cessing, 1995.

[46] D. Webb and A. L. Wendelborn, Computational Science - ICCS 2003,
2003, ch. The PAGIS Grid Application Environment, pp. 692–693.

	Introduction
	Background Concepts
	Aspect Oriented Programming
	Key Concepts
	Example: Observer Design Pattern
	AOP on Parallel Computing

	Grid Programming
	Frameworks for Gridifying Legacy Applications

	JPPAL
	Introduction
	Library Overview
	Mechanism use
	Design decisions
	Refactoring
	Technology

	Mechanisms
	Parallel
	Aspect Implementation

	For
	Other Mechanisms
	Implementation Limitations
	ParallelMethod
	ParallelFor
	Single

	Performance Results
	Conclusion

	The AspectGrid Framework
	Introduction
	The framework
	Global Architecture
	ITask
	IService
	AbstractDispatcher

	Creating Tasks
	Manual Creation
	FrameworkAdapter

	Pluggable Services
	Monitor
	Parallellization
	Load Distribution
	Fault Recovery
	Remote Executor

	Grid

	Conclusions
	Limitations
	Future Work

	Edgar Manuel Fernandes da Mota Sousa.pdf
	Página 1
	Página 2
	Página 3

