
Universidade do Minho
Conselho de Cursos de Engenharia
Mestrado em Informática

Master Thesis
2007/2008

An Extension to the Eclipse IDE for
Cryptographic Software Development

Miguel Ângelo Pinto Marques

Supervisores:

Manuel Bernardo Barbosa - Dept. de Informática da Universidade do Minho

Acknowledgments

First of all I would like to thank my supervisor Manuel Bernardo Barbosa for all oppor-
tunities, guidance and comprehension that he has provided to me.

I would also like to thank my friends, André, Pedro and Ronnie for the support given to
me during this difficult year.

To Ana the kindest person in the world, who is always there for me.

And finally, to my mother to whom I dedicate this thesis.

Thank you all,

Miguel

“Prediction is very difficult, especially about the future.”

Niels Bohr

ii

Abstract

Modern software is becoming more and more, and the need for security and trust is de-
terminant issue. Despite the need for sophisticated cryptographic techniques, the current
development tools do not provide support for this specific domain. The CACE project
aims to develop a toolbox that will provide support on the specific domain of cryptography.
Several partners will focus their expertise in specific domains of cryptography providing
tools or new languages for each domain. Thus, the use of a tool integration platform has
become an obvious path to follow, the Eclipse Platform is defined as such. Eclipse has
proven to be successfully used as an Integrated Development Environment. The adoption
of this platform is becoming widely used due to the popular IDE for Java Development
(Java Development Tools).

In this thesis we analyze the Eclipse platform as an integration platform for crypto-
graphic software and provide a proof of concept editor for the CAO language using Eclipse.

Application Areas: Cryptography

Keywords: Eclipse, IDE, Integration Platform

iii

iv

Resumo

A evolução do software atingiu um ńıvel de progresso em que a confiança e segurança
se tornaram factores determinantes a ter em conta. Apesar de a maioria das aplicações
depender de técnicas criptográficas avançadas, as actuais ferramentas de desenvolvimento
não fornecem suporte para este domı́nio em concreto. O projecto CACE visa colmatar
esta lacuna através do desenvolvimento de um conjunto de ferramentas que irá supor-
tar o domı́nio especifico da criptografia. Vários parceiros irão focar o seu conhecimento
em domı́nios espećıficos da criptografia e fornecer novas ferramentas e linguagens de pro-
gramação. Dadas as várias contribuições em ferramentas e linguagens torna-se óbvia a
necessidade de usar uma plataforma de integração de ferramentas como é o caso da Eclipse
Platform. O Eclipse já demonstrou ser utilizado com sucesso na criação de um ambiente
de desenvolvimento através das Java Development Tools.

Nesta tese é feita uma análise ao Eclipse como uma plataforma de integração de soft-
ware criptográfico e é fornecido um proof-of-concept através do desenvolvimento de um
plugin que implementa um editor para a linguagem CAO.

Áreas de Aplicação: Criptografia

Palavras Chave: Eclipse, Ambiente Integrado de Desenvolvimento, Plataforma de
Integração de Software

v

vi

Acronyms

AWT Abstract Window Toolkit

CACE Computer Aided Cryptography Engineering Project

DSL Domain Specific Language

WP Workpackage

AST Abstract Syntax Tree

API Application Program Interface

SWT Standard Widget Toolkit

DSL Domain Specific Language

JDT Java Development Tools

IDE Integrated Development Environment

UI User Interface

JAR Java Archive

CVS Concurrent Version Support

DSL Domain Specific Language

EBNF Extended Backus-Naur Form

XML Extended Markup Language

PDE Plugin Development Environment

vii

Contents

Acronyms vi

List of Figures iv

List of Tables v

1 Introduction 1

1.1 Contextualization . 1

1.2 Motivation . 1

1.3 Aims and Contributions . 3

1.4 Document Structure . 3

2 What is the Eclipse Platform? 5

2.1 JDT: Java Development Tools . 5

2.1.1 Eclipse Main Features . 6

2.1.2 Debugger . 9

2.2 JDT Editor . 9

2.3 Language and Feature Support . 12

2.4 Compiler Support . 13

3 Eclipse Overview 15

3.1 Eclipse Architecture . 15

3.1.1 Plug-ins . 15

3.1.2 Architecture . 18

3.2 Eclipse IDE Platform . 19

3.2.1 IDE Workbench . 19

3.2.2 Help and Team . 21

3.2.3 Update Manager . 21

3.2.4 Debug . 21

3.2.5 Workspace API . 21

3.2.6 Text Framework . 22

i

4 CAO Language 27

4.1 Introducing the CAO Language . 27
4.2 ANTLR Parser Generator . 28

4.2.1 Parser Generation . 28
4.2.2 Abstract Syntax Trees . 29
4.2.3 ANTLR Grammars . 31

4.3 Parsing the CAO Language . 35
4.3.1 Parser Implementation . 35
4.3.2 Building the AST . 36

4.4 Implementation issues . 38

5 CAO Editor 41

5.1 CAO Editor Plugin . 41
5.1.1 Wizards . 42
5.1.2 Editor . 43
5.1.3 Update Site . 45

6 Plugin Implementation 47

6.1 Core Plugin . 47
6.1.1 Builder . 47
6.1.2 CAO Nature . 50
6.1.3 Code Assistant . 51

6.2 UI Plugin . 51
6.2.1 Wizards . 51
6.2.2 Text Editor . 52
6.2.3 Content Outline . 55

7 Conclusions and Further Work 59

7.1 Conclusions . 59
7.2 Further Work . 60

Bibliography 62

ii

List of Figures

1.1 Typical architecture of a system using advanced cryptographic techniques . 2

2.1 Eclipse Workbench . 6

2.2 New Java Project Wizard . 8

2.3 Choosing Perspectives . 8

2.4 Different Markers . 9

2.5 Overview of the Debug Perspective . 10

2.6 Syntax highlight in an eclipse editor . 10

2.7 Programming error marker. 11

2.8 Content Assist . 12

2.9 Quick Assist . 12

2.10 Quick Fix . 12

3.1 Manifest and plugin.xml files . 16

3.2 Eclipse Mechanism for Extensibility . 17

3.3 Layered Platform . 17

3.4 Eclipse Initial Architecture . 18

3.5 Rich Client Platform . 19

3.6 Eclipse Platform Architecture . 20

3.7 Integrated Development Environment . 20

3.8 Java Project Nature Icon . 22

3.9 TextEditor class diagram . 24

3.10 TextEditor Common Architecture . 25

4.1 Parsing Tree of Listing 4.2 . 29

4.2 Example of one possible AST for Listing 4.2 30

4.3 AST Class Diagram (stripped-down version). 38

4.4 AST representing the maximum function from code listing 4.15. 39

5.1 Wizard Selection . 42

5.2 New CAO Project Wizard . 42

5.3 New CAO Source File Wizard . 43

iii

5.4 Text Editor and Outline View . 44
5.5 Code completion . 44
5.6 Problems . 45
5.7 Update Site for the CAO Editor . 46
5.8 Installing the CAO Editor . 46

6.1 Class Diagram for the CAO project wizard 52
6.2 Class Diagram for the CAO Editor . 53

iv

List of Tables

4.1 Token Predefined Attributes . 33
4.2 Rule Predefined Attributes . 35

v

Chapter 1

Introduction

1.1 Contextualization

This dissertation results from a collaboration with the Cryptography and Information
Security group at Computer Science and Technology Center (CCTC) from the University
of Minho in the FP7 European Project titled Computer Aided Cryptography Engineering
(CACE).

1.2 Motivation

Software development typically follows a design flow and uses a common set of tools (e.g.,
compilers, debuggers) that automate the tasks performed by developers. Although these
tools are always evolving and becoming very complex they usually do not provide support
for any specific domain. The CACE project aims at providing a toolbox that supports the
production of high quality cryptographic software. Quoting [1]:

“To enable verifiable secure cryptographic software engineering to non-experts by de-
veloping a toolbox which automatically produces high-performance solutions from natural
specifications”

The project is separated into five workpackages/partners (WP) where each of them
will develop different tools from specific cryptographic domains. Figure 1.1 represents a
typical architecture of a system using advanced cryptographic techniques as well as the
fields where each workpackage (WP) will focus on.

WP1 (CAO): WP1 will focus on the development of a language, named CAO, that allows
to specify efficient and secure implementations of low-level cryptographic primitives (such
as encryption schemes and digital signatures, including symmetric cryptographic primi-

1

1.2 Motivation 1. Introduction

Figure 1.1: Typical architecture of a system using advanced cryptographic techniques

tives) which are then transformed into executable code by an optimizing, security-aware
compiler.

WP2 (NaCl): Accelerating Secure Networking will provide all of the core operations
needed to build high-level cryptographic tools such as zero-knowledge compilers (WP3)
and systems based on multiparty computation (WP4). It will contain a new easy-to-use
high-speed software library for network communication and basic cryptographic primitives
such as encryption, signatures, etc.

WP3 (ZKC): WP3 will develop a compiler that, given a high-level specification of the
goals of a Zero Knowledge Proof, automatically finds and generates a protocol that meets
specification along with code that implements the protocol.

WP4 (SDMI): Securing Distributed Management of Information focuses on facilitating
the practical use of secure multiparty computation protocols in real-world applications.
To this end, WP4 will develop a language that allows software engineers to specify secure
multiparty computations and a compiler which transforms these specifications into exe-
cutable code.

WP5 (VERIF): Formal Verification and Validation aims to globally address both func-
tional and security requirements in resulting cryptographic software implementations, ana-
lyzing the transformations between different levels of abstraction, and resorting to previous
scientific results in the formal validation, verification and certification of secure software.

2

1. Introduction 1.3 Aims and Contributions

The resulting tools will be combined into a toolbox that will allow non-experts to de-
velop high-level cryptographic applications and business models.

All of the languages, compilers and tools mentioned will have a vast set of different
technologies and their integration into one toolbox can be very difficult. Thus, the use of
a tool integration platform has become an obvious path to follow, the Eclipse Platform
is defined as such. Eclipse has proven to be successfully used as an Integrated Develop-
ment Environment. The adoption of this platform is becoming widely used due to the
popular IDE for Java Development (Java Development Tools). In fact, there are several
recently developed tools based on Eclipse, such as the Bioclipse, an Eclipse distribution
for biochemists and bioinformatics [6]. This dissertation will focus on the integration of
the CACE tools into the Eclipse Platform.

1.3 Aims and Contributions

The main objectives of this dissertation are:

• To explore the Eclipse architecture and plugin development process.

• To perform the requirements analysis for an Eclipse plugin to support the CAO
domain specific language (based on the outputs of the initial discussion stages in the
CACE project). Features to look at should include:

– syntax highlighting;

– code-completion;

– compilation support;

• To design and implement the above referred plugin.

1.4 Document Structure

This document is organized as it follows:

Chapter 1 contains the introduction: motivation, objectives and document structure.
Chapter 2 provides a general introduction to the Eclipse Platform, more specifically the
Java Development tools (JDT). Chapter 3 introduces the Eclipse architecture, plugins and
the facilities it provides for IDE development. Chapter 4 refers to the CAO language and
focuses on parsing and abstract syntax tree generation. Chapter 5 explains the developed
plugin. Chapter 6 is devoted to the implementation details of the mentioned plugin. The
final chapter 7 provides conclusions and presents a small introduction to future work in
the field.

3

1.4 Document Structure 1. Introduction

4

Chapter 2

What is the Eclipse Platform?

“Eclipse is a platform that has been designed from the ground up for building integrated
web and application development tooling. By design, the platform does not provide a great
deal of end user functionality by itself. The value of the platform is what it encourages:
rapid development of integrated features based on a plugin model” [2].

Eclipse development began in the late 90’s when IBM had in mind the establishment
of a common platform for all IBM developed products. The main idea was to avoid the
duplication of the most common elements of the products infrastructure and to allow
customers to have a more integrated experience while switching from one product to
another. The result was an extensible tools integration platform which was later named
Eclipse. This platform had a common user interface model for all tools and was fully
compatible with all operating systems (OS). Not only did it become compatible with
many OS’s but it was also optimized to make the most of their native user interface (UI)
application development interfaces (API) in order to provide the same look and feel as
that of the OS. Extensibility was achieved through an adopted plugin architecture that
allowed the deployment of any plugin/tool in all of the platforms without the need for
any customization. Eclipse began mainly as a Java IDE and it evolved into a set of
tools and runtime libraries for building applications from plugin components. The most
widespread uses of Eclipse are still programming IDE’s for languages such as Java and
C++; nevertheless there are others such as NASA’s Mars rover mission planning software,
or even the bit-torrent client Azureus.

behavior behaviour

2.1 JDT: Java Development Tools

A typical Eclipse IDE is built to provide to programmers comprehensive facilities for
software development. Usually they consist of several components - a source code editor,

5

2.1 JDT: Java Development Tools 2. What is the Eclipse Platform?

compiler/interpreter support, build tools, a debugger, etc. Each component functionality
is usually connected through a main window/core interface that provides all the between
components. The most popular Eclipse distribution contains the Java Development Tools
(JDT) IDE. The JDT is a set of plugins that provides tools to help in the development
life-cycle of a Java software product, from the creation of the project to its deployment.

2.1.1 Eclipse Main Features

The JDT uses several of the main Eclipse infrastructures for building IDE’s: workspaces,
wizards, editors and markers. The main window is named the workbench (Figure 2.1).

Figure 2.1: Eclipse Workbench

Projects and Workspaces

Eclipse projects help structuring a software project. They serve as a container where all
the project resources are stored (packages, images, source code files, etc.) and provide
support for specific project preferences (for instance the version of the compiler to use).
Workspace is the name that Eclipse gives to the directory hierarchy that contains all of
the existing projects and plugin preferences.

6

2. What is the Eclipse Platform? 2.1 JDT: Java Development Tools

Typically, workspaces are used to group several projects that somehow relate with to
each other. For instance, it is common to have two separate workspaces, one for C projects
and one for Java.

Editors

Editors are one of the most important and more frequently used components in Eclipse.
An Eclipse editor provides all the basic operations performed when editing a document,
such as opening, saving, undoing. By extending a basic editor one can produce a full-
blown editor such as the Java editor. Eclipse contains several editors that sometimes
are not interpreted as one, such as the XML, HTML, simple text, etc. One common
misconception is to associate the Java editor as the plugin for Java development, but in
reality the JDT is made of several plugins and one of them is the editor.

Wizards

Wizards are a main part of the JDT, and they are used to guide the user through a
sequenced set of tasks. The most common one is the new java project wizard (2.2) that
helps setting up a new java project (java runtime, classpath, etc).

Views and Perspectives

Views provides information about one object in the workbench. For example, content
outlines normally show the information about the content of the editor in a structured
way (Figure 2.1). Eclipse provides many standard views; others such as content outline
for specific languages are provided by plugins.

The workbench can have many different perspectives. Each perspective can contain
different editors and viewers at the same time, but only one opened perspective visible at
a time. Perspectives are always associated with the domain of the task one is performing
on Eclipse. While on language development such as Java it is convenient to have the
content outline on a view, Java documentation on another, notes, etc., when committing
the code to a version control system such as CVS a new perspective is needed containing
appropriate viewers to this task. Figure 2.3 shows the selection of different perspectives.
Perspectives are also fully configurable, which leaves space space for a full customization
by the user.

7

2.1 JDT: Java Development Tools 2. What is the Eclipse Platform?

Figure 2.2: New Java Project Wizard

Figure 2.3: Choosing Perspectives

8

2. What is the Eclipse Platform? 2.2 JDT Editor

Markers

Markers are used to provide annotations on a specific resource: compiler error messages,
to-do items, debugger breakpoints, etc. Eclipse allows to extend the base marker to create
markers for each different situation. The most common markers are present in the majority
of editors and provide information about compilation errors. In figure 2.4 one can see at
least two types of markers.

Figure 2.4: Different Markers

2.1.2 Debugger

The JDT features a built-in Java debugger that provides all standard debugging function-
ality. Figure 2.5 shows the overall debug perspective. The debugger includes the ability
to perform step by step execution, to set breakpoints and values, to inspect variables and
values, and to suspend and resume threads.

2.2 JDT Editor

There is a common misconception that an editor plugin for Eclipse contains all the well-
known functionalities provided by the JDT. The Java editor is only a small part of the
whole set of plugins that form the JDT. In Eclipse’s terminology an editor is the compo-
nent that is used to edit documents (see chapter 2.1.1), other concepts such as projects,
natures, wizards, builders and debuggers are not part of an editor. In general, many fea-
tures of an editor can be classified according to their behavior ([19]) :

Simple or Text-based Features

Simple features rely neither on any underlying model nor on the current input of the editor
are classified as simple or text model-based features. Such features include line numbering,
quick differences, block commenting, lexical (keyword based) syntax highlighting (Figure
2.6), etc.

9

2.2 JDT Editor 2. What is the Eclipse Platform?

Figure 2.5: Overview of the Debug Perspective

Figure 2.6: Syntax highlight in an eclipse editor

10

2. What is the Eclipse Platform? 2.2 JDT Editor

Advanced AST-based Features

There are there are two common types of programming errors: syntactic and semantic.
Sometimes while programming one makes naive syntax errors such as forgetting to close a
parenthesis or a curly bracket, in other situations uses non-declared variables, etc. Know-
ing the current state of the program in the text editor in almost real-time reduces these
common mistakes that can be time-consuming, specially when changing between program-
ming languages. With the support of the compiler, the advanced Abstract Syntax Tree
(AST) based features perform syntactic and semantic analysis using a parser-generated
AST and provide the developer with a notion of the current state of the program in the
text editor. Figure 2.7 shows an error generated due to the re-declaration of a variable.

Figure 2.7: Programming error marker.

Coding Assists

Coding assists infers actions from a developer’s current context of interaction with the
source code. Eclipse distinguishes three types of coding assists: content assist, quick as-
sist, and quick fix.

Content assist is responsible for code completion. Depending on the implementation
it, can provide static content completion based on templates or dynamic content comple-
tion based on the current status of the code (using AST and parser) - figure 2.8 shows
content assist in action.

Quick assists suggests and performs local code transformations based on the content
of the text editor. There can be several suggestion engines and each one provides sugges-
tions regarding one specific domain. For instance, one engine may suggest alterations in
a compilable that but it can be further improved. In Figure 2.9 content assist’s engine
suggests a change on the HashMap declaration to include type parameters, a new feature

11

2.3 Language and Feature Support 2. What is the Eclipse Platform?

Figure 2.8: Content Assist

in Java 6.

Figure 2.9: Quick Assist

Finally, quick fixes shows syntactic and semantic errors found while editing (Figure
2.10) and offers suggestions for corrections.

Figure 2.10: Quick Fix

2.3 Language and Feature Support

Providing a language support can be either an easy or daunting task, which always depends
on the required features. The simplest editor may have only one purpose, recognizing file
extension and supporting all the basic document editing operations - this is very easy to
implement as Eclipse provides all the facilities for it. Adding a simple feature, such as
syntax highlighting can make the editor more user friendly. This simple improvement,
fosters the need to know the whole language syntax and provides means and mechanisms
to distinguish between all the different language elements that can be found. With the
help of lexical patterns and rules a simple syntax highlighter can be developed. However,
if the language supports user defined data types, the lexical rules wont suffice.

12

2. What is the Eclipse Platform? 2.4 Compiler Support

Regarding coding assists only content assist can be provided without a having support
from a more complex model due to the possibility of providing code completion based
on templates. Other features such as quick fix or quick assist (Figure 2.2), that provide
assistance based on the current status of the program, need parser and AST support.

Quoting [19]: “Features that are based on AST support dominate the feature space.
Overall, 21 out of 35 features require AST support. There include three coding assists and
18 advanced features...”. It becomes obvious that a parser based AST is the pillar needed
in order to provide a state of the art editor for a given programming language.

2.4 Compiler Support

To provide compiler integration into Eclipse, two different approaches can be pursued.
The first one, is taken by the JDT [3]: implementing an incremental1 compiler in Java
as an Eclipse builder; the second is to add the existing compiler as an external tool builder.

The first one is very difficult to achieve as it has two problematic issues: implementing
a new compiler in Java and making it work incrementally. Compilers are very complex
programs and the question arises: Is it possible to implement a new compiler for the lan-
guage in Java, and is it worth it? This is the one of the main reasons that makes the
JDT the most complete set of language development tools integrated into Eclipse. They
have available an incremental compiler that is the most of a powerful core that an Eclipse
plugin can have.

The second alternative, despite being of easy achievement, also has its setbacks. If a
compiler is added as an external tool there will be no access its own internal data structures
and therefore, there will be no way to report the errors generated by the compiler to
Eclipse. The same happens for the AST-based features, without an AST implemented
in Java the is no way to obtain advanced features. A possible solution to this problem
would be having the parser and an AST implemented in Java working together with a
compiler as an external builder. The AST and parser could be used to generate on the
fly assistance and the builder for the final compilation step. A more challenging solution
would be to implement a custom middleware that would extend the compiler and allow it
to communicate with Eclipse.

1Incremental compilers are used for systems that allow modifications or additions to a to a program by
extending the previously compiled programs or replacing some parts of the program. [14]

13

2.4 Compiler Support 2. What is the Eclipse Platform?

14

Chapter 3

Eclipse Overview

In this chapter we present an overview of the Eclipse architecture, its evolution and the
frameworks that it provides for IDE development.

3.1 Eclipse Architecture

Eclipse’s history is an important part of the explanation for how the architecture structure
was chosen, and why. Eclipse’s history began in the late 1990’s when the internet boom
occurred. This boom affected the way companies thought about their products making
them aware that online applications were part of the future. With this, the structure
of applications started to change, leaving the concept of core standalone applications and
opening way to more heterogeneous applications composed by several different technologies
- Java, Php, Perl, Asp, Web services. With each of these different technologies came the
need for new client tools that supported their development and maintenance, fact that
contributed to the appearance of several new IDE’s. Although there were several IDE’s
and support for all the different technologies, one problem appeared, the interoperability
between them was not so good. Also, at the same time, the open source community
gained more credibility with the appearance of emacs, mozilla browser, apache web server
which companies started to use and more importantly, provide support and even extend.
Within this panorama IBM decided to create a set of application development tools that
worked together with the possibility to extend and integrate new tools. Initially the Eclipse
architecture was designed to provide support for integration of development tools and it
has later evolved into a platform that can host any kind of client application: the Rich
Client Platform.

3.1.1 Plug-ins

“A plugin is the smallest unit of Eclipse Platform function that can be developed and de-
livered separately” [5].

15

3.1 Eclipse Architecture 3. Eclipse Overview

Eclipse is made of a massive set of plugins that interconnect with each other through
the use of extensions and extension points. Everything in Eclipse is a plugin, there are
plugins on top of plugins that use other plugins. Plugins are developed with the Plugin
Development Environment (PDE).

Plug-in Anatomy

A plugin consists of a Java Archive (JAR) containing all the source code and resources
it relies on - images, code libraries, icons, etc. Along with the resources there are two
important files: manifest.mf and plugin.xml (Figure 3.1). The first one describes the
plugin to the eclipse runtime, it contains the plugin identifier, version, name, code location,
dependencies and exports. The second one contains all existing plugins extensions and
the extension points it declares.

Figure 3.1: Manifest and plugin.xml files
retrieved from [8].

Extensions and Extension Points

Plugins interconnect with other plugins through the use of extension points and extensions.
They are best described by the electrical socket and plug analogy: an extension point is
a socket and an extension the plug that connects. As with electrical outlets, extension
points, may have many shapes and sizes, and will only work with the appropriate extension.
Each extension point defines a contract, typically a combination of XML schema and Java
interfaces, that extensions must comply to. This way, the extended plugin needs to know
nothing about implementation of the extending plugin. If a plugin B extends a plugin
A, A doesn’t know anything about B, only that B complies with the declared extension
point ’s schema.

16

3. Eclipse Overview 3.1 Eclipse Architecture

Figure 3.2: Eclipse Mechanism for Extensibility
retrieved from [8].

Figure 3.3: Layered Platform

Listing 3.1 shows an extension point and listing 3.2 shows one possible corresponding
extension 1.

Listing 3.1: Extension Point

<plugin >

<extension -point id="cace.example.languages" name="CACE Languages"

schema="schema/languages.exsd"/>

</plugin >

Listing 3.2: Extension

<extension point="cace.example.languages" >

<extension="cao" name="Cryptography Aware Language and Compiler"/>

<compiler name="cao compiler" class="cace.org.parser" />

</extension >

17

3.1 Eclipse Architecture 3. Eclipse Overview

3.1.2 Architecture

The main idea behind Eclipse was the creation of an IDE-related tool integration plat-
form while maintaining the same operating paradigm between tools that is, an extensible
platform for development tools. Eclipse architecture was designed with extensibility and
component reuse in mind, resulting in a layered platform extensible through plugins (Fig-
ure 3.3) with a runtime core. This platform, know as the Eclipse Platform, provides a set
of common services and frameworks required to support a tool integration platform. Each
of these services and frameworks represent common facilities required by any IDE related
tool. This includes support for user interface, widgets, project model, resource manage-
ment, compilers, builders, language independent debug model, version support manage-
ment, etc. Figure 3.4 shows the overall first Eclipse architecture, as described in [5], it
includes the frameworks for the referred facilities: platform runtime, workbench (contains
JFace and Standard Widget Toolkit (SWT)), Help, Team and Workspace. Adding new
features is always done by extending some existent framework or plugin. For example, if
one wants to provide SVN support it will extend the Team framework or in case of an
editor, the workspace framework.

Figure 3.4: Eclipse Initial Architecture

This architecture proved to be very useful, making developers and contributers realize
that the core of the Eclipse technology was powerful enough to support non-IDE oriented
applications, due to the fact that many components where not particularly specific to IDE’s
- plugins, workbench, help system, etc. With the adoption of the OSGi [18] architecture
came the Eclipse Rich Client Platform that is defined as: “The minimal set of plugins
needed to build a rich client application (...) ” [2]. With it, non-IDE applications can be
developed using a chosen subset of the platform, thus, maintaining the same plugin based
philosophy. The common components were separated from the initial IDE oriented frame-
works resulting, in new frameworks or abstractions of the existing ones. Subsequently,

1This example assumes that the language schema contains the information for the extension and name

elements.

18

3. Eclipse Overview 3.2 Eclipse IDE Platform

Figure 3.5: Rich Client Platform
retrieved from [15].

frameworks comprising this new architecture where classified into three groups/layers:
Platform Runtime, Rich Client Platform and Workbench IDE or Eclipse IDE Platform
(Figure 3.1.2). Each layers extends the functionality of the previous one.

3.2 Eclipse IDE Platform

Eclipse provides a powerful platform for IDE development. It can be used for development
of all the key components in an IDE such as (Figure 3.7): resource management, text
editor framework, language independent debug model, builder integration, version control
repository integration, help system and update manager.

3.2.1 IDE Workbench

“The Eclipse User Interface (UI) is built around a workbench that provides the overall
structure and presents and extensible UI to the user” [5].

The workbench API and implementation is built with the help of two toolkits: SWT
and JFace. SWT is responsible for the native look and feel on each operating system and
it’s a known alternative to the Java Abstract Window Toolkit (AWT) and Java Swing
toolkits. The native look and feel is accomplished by using the Java Native Interface
(JNI) to access the native GUI libraries of the operating system. JFace is a UI toolkit
that provides helper classes for developing monotonous programming tasks. It provides
components, images, dialogs, preferences, wizard frameworks, progress reporting, and,
most importantly views and editors.

19

3.2 Eclipse IDE Platform 3. Eclipse Overview

Figure 3.6: Eclipse Platform Architecture
retrieved from [15].

Figure 3.7: Integrated Development Environment

20

3. Eclipse Overview 3.2 Eclipse IDE Platform

3.2.2 Help and Team

The help mechanism allows to define tools to integrate help facilities such as the Java
documentation that is available while developing Java programs. Eclipse also allows all
projects in the workspace to be stored under Concurrent Versioning System (CVS), and
it supplies extension points for new providers that allow new kinds of team repositories to
be plugged in such as the Subclipse plugin that adds support for Subversion (SVN).

3.2.3 Update Manager

The update manager provides a convenient way to add new features into the Eclipse IDE.
These features are automatically installed and when possible, updated. Since plugins are
too small for distribution they are grouped into features. For instance, instead of installing
all of the plugins that form the JDT, Eclipse installs the JDT feature that contains all of
those plugins.

3.2.4 Debug

Eclipse provides a framework for building and integrating debuggers known as the debug
platform. The debug platform defines a set of Java interfaces modeling a set of common
actions and artifacts to many debuggers, known as the debug model. Artifacts are threads,
stack frames, variables, and breakpoints; and actions are suspending, stepping, resuming,
and terminating. The platform does not provide an implementation of a debugger, but
only the model. However, it does provide a basic debugger user interface/perspective
that can be extended with features specific to a particular debugger. The debug platform
also provides a framework for launching applications from within the Eclipse IDE and a
framework to perform source lookup.

3.2.5 Workspace API

The most important features workspace API provides are: resource management, project
natures and markers2.

Resource Management

The workspace API allows to manipulate resources in any project using resource handles.
A resource handle is a pointer to any folder, file or project that exists in the workspace.
It allows to create, delete or move resources.

2For markers refer to: 2.1.1

21

3.2 Eclipse IDE Platform 3. Eclipse Overview

Project Natures and Builders

Project natures are responsible for the association between a project and specific plugin
or tool, they give projects their “personality”. When a project is associated/tagged with
a nature, it means that the plugin is configured to use with that project. For example, the
Java nature tags a project that contains source code for a Java program and configures
the builder3. Each project can always have as many natures as required. Natures are
often used to associate a builder and an image/icon to a project (Figure 3.8).

Figure 3.8: Java Project Nature Icon

Builders are very important components associated to the project that are invoked
periodically. Although builders are typically used to integrate compilers, they can perform
any kind of processing. A project can have as many builders as it needs. Each project
has the notion of a resource delta that knows the variation of all of the current opened
resources (e.g, source files). When a builder is called it has access to the resource delta
and builds all or only the new/changed resources, according with its own implementation.

3.2.6 Text Framework

Eclipse includes a text framework that is the foundation for text related tools. This
framework provides a model (IDocument) for text manipulation and all the convenient
manipulation methods; it also provides a text editor framework which contains a basic
text editor that can be extended to implement new editors.

The text framework includes several components for editor development thus only the
fundamental ones will be mentioned:

• Document Infrastructure

• Source Viewers

• Text Editor Framework
3In fact, there is no such thing as a Java Project, Eclipse provides a “new java project” wizard that

creates a new project and loads the Java nature.

22

3. Eclipse Overview 3.2 Eclipse IDE Platform

Document Infrastructure

All of the editor input is managed through a document model. The document model
(IDocument) provides text content manipulation, text position management, document
partitioning, searching and change notifications.

Each editor window is connected to a DocumentProvider class. A document provider
class is a translator between the editor text input and the corresponding IDocument.
Given an editor input, the document provider returns the corresponding IDocument. It
also communicates changes that were made in the IDocument to the text editor. The
document provider also manages the current state (checks if the document has changed)
and manages character encodings.

The text editing framework also provides support for partitioning a document. Parti-
tioning a document divides it into non-overlapping partitions that have a specific content
type. In text editors, partitioning is typically used to separate language comments from
the rest of the source code. Features such as syntax highlighting and code completion are
implemented regarding a partition type. For instance, a partition of comments will have
different syntax highlight than a partition with source code.

In the class diagram on Figure 3.10 its possible to see how the documents, providers
and partitioners partitioners relate with each other.

Source Viewers

Each editor contains a reference to a source viewer. A source viewer is directly connected
to a text viewer that provides the default behavior of a text editor such as undo, redo,
copy/paste; features that are common in all text editors and are very hard to implement.
A source viewer extends a text viewer introducing more capabilities such as syntax high-
lighting, error markers, amongst others.

Eclipse provides a default Source Viewer implementation. Nevertheless it needs to
be configured in order to add custom implemented syntax highlighters and content assist
processors to the editor. This is done by extending the SourceViewerConfiguration

class.

Text Editor Framework

Adding a text editor for a plugin can be done by using the existing basic text editor or by
extending it. To provide specific domain features such as syntax highlight, reformatting,
code assist one just needs to customize the new extended editor. Text editor framework

23

3.2 Eclipse IDE Platform 3. Eclipse Overview

contains a hierarchy of classes for editor development (Figure 3.9) where each class is
responsible for specific editor features:

• AbstractTextEditor - Abstract base implementation of a text editor;

• AbstractDecoratedTextEditor - An intermediate editor that contains functional-
ity not present in the leaner AbstractTextEditor class but used in many editors
(especially source editing), such as line numbers, change ruler, overview ruler, print
margins, current line highlighting, etc;

• TextEditor - The standard text editor for file resources. This is the common text
editor that Eclipse uses when the file extension isn’t associated to a custom editor;

Figure 3.9: TextEditor class diagram

When implementing a new text editor it is common to extend the TextEditor and
inherit all the functionalities and only in very rare situations extend one of parent classes.

Figure 3.10 shows how all of the previously referred components interact with each
other within an editor. A text editor implementation is always dependent on a document
provider, the source viewer and its respective configuration.

24

3. Eclipse Overview 3.2 Eclipse IDE Platform

Figure 3.10: TextEditor Common Architecture
retrieved from [15].

25

3.2 Eclipse IDE Platform 3. Eclipse Overview

26

Chapter 4

CAO Language

This chapter introduces the CAO Language and focuses on the parsing tools and AST
construction considerations.

4.1 Introducing the CAO Language

CAO is a Domain Specific Language (DSL) for describing cryptographic software. The
CAO language allows to specify efficient and secure implementations of low-level crypto-
graphic primitives (such as encryption schemes and digital signatures, including symmetric
cryptographic primitives) which are then transformed into executable code by an optimiz-
ing, security-aware compiler. CAO can be described as a mix of small features of C, Ocaml
and Haskell where the first two are the most present. Listing 4.1 shows a snippet of CAO
source code to provide a quick look into the language syntax.

Listing 4.1: CAO Example

def x : matrix [10][10] of int;

def y : vector [20] of int;

def point := struct[

x : int;

y : int;

z : int;

];

def max(x : int , y : int) : int {

def t : int;

if(x > y)

t := x;

else

t := y;

return t;

27

4.2 ANTLR Parser Generator 4. CAO Language

}

def min(x : int , y : int) : int {

def t : int;

if(x > y)

t := y;

else

t := x;

return t;

}

key_public : int : { public };

key_secret : int : { secret };

modulus : int : { public };

rsa_enc(x : int) : int : { encrypt } {

return (x ** key_public) \% modulus;

}

rsa_dec(x : int) : int : { decrypt } {

return (x ** key_secret) \% modulus;

}

4.2 ANTLR Parser Generator

ANother Tool for Language Recognition (ANTLR), is a LL(*) parser generator. It can
generate lexers, parsers, recognizers and source to source translations from grammatical
descriptions using the standard Extended Backus-Naur Form (EBNF) format to write the
parsing rules. ANTLR supports parser generation into several languages such as Java, C,
C++, Ruby, Python, etc. It is most commonly used to build translators and interpreters
for Domain Specific Languages (DSL) and in particular it is used in the prototype CAO
compiler developed at the University of Bristol.

4.2.1 Parser Generation

ANTLR generates parsers in several languages, however in this case only the Java gener-
ated parsers will be addressed. From a grammar file Grammar.g, ANTLR generates a java
parser and lexer, GrammarParser.java and GramarLexer.java. ANTLR also supports
embedding custom code inside the grammar rules in the target language. These actions
will be executed when the parser is matching input thus providing means to build more
powerful parsers or even translators and interpreters.

28

4. CAO Language 4.2 ANTLR Parser Generator

4.2.2 Abstract Syntax Trees

An abstract syntax tree, or syntax tree, captures the essential structure of a language
source code. They are more abstract than parse trees, that represent the full syntax of
the language according to a grammar specification by leaving out unnecessary syntactic
details such as: commas, used to separate variable declarations or semi-colons to terminate
a declaration. As opposed to parse trees, ASTs represent the structure of the language,
not the grammar [22]. Typically referred as intermediate representations of programs [9]
[7], they are often build by parsers while compiling source code.

Figure 4.1 shows a parse tree while Figure 4.2 shows one possible AST representation
of code Listing 4.2. Is is noticeable the difference between them, mainly in the presence
of syntactic tokens on the parse tree and the lack of them on the AST. These tree are
typically traversed using a Visitor pattern.

Listing 4.2: Code Example for AST
1 def x : int;

Figure 4.1: Parsing Tree of Listing 4.2

Visitor Pattern

The Visitor pattern allows to perform an operation on elements of a data structure without
changing the classes of the elements where it will operate. It is typically used to add new
operations on data structures that weren’t thought of in the design process. The Visitor
pattern is also recommended when there is the need to perform an operation on the data
contained in a number of objects that have different interfaces [13].

Implementing a visitor consists of three steps:

• Adding an accept method to each class that will be visited;

29

4.2 ANTLR Parser Generator 4. CAO Language

Figure 4.2: Example of one possible AST for Listing 4.2

• Creating a Visitor interface or abstract class;

• Implementing the Visitor interface;

The first step is the most simple, adding an accept method to each class that will be
visited. Listing 4.3 shows the typical structure of an accept method. This method has
one argument: the instance of a Visitor. When invoked, it calls the visit method and
passes the class object as the argument.

Listing 4.3: Visitor Accept Method

1 public void accept(Visitor v){

2 v.visit(this);

3 }

The Visitor interface will contain all of the visit methods for each class element that
will be visited (Listing 4.4).

Listing 4.4: Visitor Interface

1 public interface Visitor {

2 public void visit(Dtor_Variable dtor);

3 public void visit(Type t);

30

4. CAO Language 4.2 ANTLR Parser Generator

4 public void visit(Ident_List idList);

5 public void visit(TypeSpec tSpec);

6 }

And finally, implementing the Visitor interface will implement the operations that
are needed to do at each element. Listing 4.4 shows an example implementation that
prints to standard output information of each class.

Listing 4.5: Visitor Interface Implementation

1 public class PrintVisitor implements Visitor {

2 public void visit(Dtor_Variable dtor){

3 System.out.println(dtor.toString ());

4 }

5
6 public void visit(Type t){

7 System.out.println(t.getType.toString ());

8 }

9
10 public void visit(Ident_List idList){ ... }

11 public void visit(TypeSpec tSpec){ ... };

12 }

Listing 4.6 shows how to use the visitor supposing that the Dtor Variable, Type

,Ident List and TypeSpec all implement the same interface ASTMembers. The behavior
is as it follows:

• Perform a loop on a list of ASTMembers;

• The Visitor calls each ASTMember accept method.

• That instance of the ASTMember class calls the Visitor’s visit method;

• The Visitor prints to the standard output the information of the ASTMember;

Listing 4.6: Using the Visitor Patter

1
2 Visitor v = new PrintVisitor ();

3 for(int i=0; i< list.length; i++){

4 list[i]. accept(v); // list of ASTMembers

5 }

4.2.3 ANTLR Grammars

An ANTLR grammar is a common text that combines both the parser and lexer rules.
These rules specify the grammatical and lexical structure (tokens) of a custom text. For

31

4.2 ANTLR Parser Generator 4. CAO Language

example, a small language subset that only supports variable declarations such as Listing
4.7 would be defined as Listing 4.8.

Listing 4.7: Language Example
1 def x,y,z : int;

2 def h : bool;

Listing 4.8: ANTLR Grammar Example
1 prog : decl_variable_name *;

2 decl_variable_name : ’def’ ident_list ’:’ type ’;’;

3 ident_list : ident (’,’ ident)*;

4 type : ’int’,

5 | ’bool’

6 ;

7 ident : IDENT;

8 // TOKENS

9 IDENT : (’0’..’9’ | ’a’..’f’ | ’A’..’F’);

A grammar rule is a named list with one or more alternatives such as prog, decl variable,
ident list, type, and ident. The prog rule is the starting matching point for an ANTLR
grammar. The second line reads as: start with the token def, followed by the rule
(ident list), followed by the token ’:’, followed by the rule type and finally the to-
ken ’;’. The list of identifiers (line 3) is defined as a regular expression and reads as:
follow rule ident one time, read the token ’,’ and expect another ident zero or more
times. A type (line 4) can be either a token int or bool. Finally the last line represents
an identifier defined as a regular expression.

Grammar Actions

From a standard grammar, ANTLR generates a parser and lexer or a recognizer that can
only validate the input. To build an interpreter or a translator, grammars can be extended
with actions coded in the target language. Actions allow to execute computations on input
symbols or emit new output symbols. Using actions it is possible to execute code besides
recognizing the language. Listing 4.9 exemplifies a grammar with embedded actions.

Listing 4.9: Grammar with actions
1 decl: type ID ’;’

2 {System.out.println (+$ID.text +":"+ $type.text +";");}
3 | t=ID id=ID ’;’

4 {System.out.println (+$id.text +":"+ $t.text +";");}

32

4. CAO Language 4.2 ANTLR Parser Generator

5 ;

Variable Scoping

Using actions ANTLR also allows to perform variable scoping when parsing programming
languages. Since it is a complex mechanism, it won’t be detailed in this document, and
we refer to [23] for more information.

Token Attributes

Tokens matched by the parser and lexer have a set of read-only attributes that can be
accessed through $label.attribute or $rule.attribute. For example, these properties provide
useful token information regarding the text that was matched such as the line number,
column number, etc. Table 4.2.3 represents the most relevant attributes. ANTLR also
allows to define new attributes by extending the CommonToken class.

Table 4.1: Token Predefined Attributes
adapted from [23].

Attribute Type Description
text String The text matched for the token;

translates to a call to getText().
type int The token type (nonzero positive in-

teger) of the token such as INT;
translates to a call to getType().

line int The line number on which the token
occurs, counting from 1; translates
to a call to getLine().

pos int The character position within the
line at which the token’s first char-
acter occurs counting from zero;
translates to a call to getCharPosi-
tionInLine().

index int The overall index of this token in the
token stream, counting from zero;
translates to a call to getTokenIn-
dex().

tree Object When building trees, this attribute
points to the tree node created for
the token;

33

4.2 ANTLR Parser Generator 4. CAO Language

Rule Attributes

Rules also have similar types of attributes. Whenever the recognizer matches a rule it
set up several attributes such as the text matched for the whole rule, the first matched
symbol, the last symbol recognized by the rule, etc. More attributes can be defined by
using parameters (Listing 4.10 line 1) and return values on grammar rules (Listing 4.11
line 1). Table 4.2.3 shows the most relevant rule attributes.

Listing 4.10: ANTLR Grammar Example - Rule with parameters

1 decl: type declarator [\$type.text] ’;’ ;

2 declarator[String typeText]

3 : ’*’ ID {System.out.println($ID.text +":^"+ $typeText +";");}
4 | ID {System.out.println($ID.text +":"+ $typeText +";");}
5 ;

Listing 4.11: ANTLR Grammar Example - Rule with return values

1 decl returns [String type , List vars]

2 : t=type ids+=ID (’,’ ids+=ID)* {\ $type = \$t.text; \$vars = \$ids;}
3 ;

Abstract Syntax Trees and Rewrite Rules

ANTLR can automatically generate AST’s with a list structure or rewrite rules can be
added to the grammar to have more customization power. Rewrite rules allow to specify
the structure of the tree that one wants to build, based on the input tokens. It provides
support for node reordering, node omission and tree manipulation for root and child
elements.

Listing 4.12: ANTLR Grammar Example - Rewrite Rules

1

2 dtor_function : ident_function ’(’ dtor_list? ’)’ ’:’ R2=type_list

3 -> ^(TOKN_DTOR_FUNCTION ident_function dtor_list? type_list)

4 ;

Listing 4.12 shows all of the mentioned properties. After matching the input with the
dtor function rule a new node of the AST will be built (line 3). This new tree will have
the virtual1 token TOKN DTOR FUNCTION as root with three child nodes (resulting trees
from the other rules). The literal tokens were omitted as they are useless on an AST.

1A Token only used in the AST that doesn’t belong to the input tokens of the lexer.

34

4. CAO Language 4.3 Parsing the CAO Language

Table 4.2: Rule Predefined Attributes
adapted from [23].

Attribute Type Description
text String The text matched from the start of

the rule up until the point of the
$text expression evaluation;

start Token The first token to be potentially
matched by the rule;

stop Token The last non-hidden channel token
to be matched by the rule;

tree Object The AST computed for this rule,
normally the result of a -¿ rewrite
rule;

text String The text matched thus far from the
start of the token at the outer most
rule nesting level;

type int The token type of the surrounding
rule;

line int The line number, counting from 1,
of this rule’s first character;

pos int The character position in the line,
counting from 0 of this rule’s first
character;

4.3 Parsing the CAO Language

Having in mind the goal of integrating the parser with an Eclipse plugin there was an obvi-
ous need to build an AST for the CAO language. Although the AST is the foundation for
advanced Eclipse features, having a good syntax checker is probably the most important
one. The implemented parsed provides AST generation, syntax checking and a variable
scope checker.

The first step was to implement a recognizer, followed by extending the grammar with
actions to perform scope checking. From there the grammar was extended with rewrite
rules to build an AST for the language.

4.3.1 Parser Implementation

The prototype CAO compiler developed by the University of Bristol uses ANTLR for the
internal parser generation. The initial idea was to try and re-use as many infrastructures
from the compiler as possible, being the most important the AST. Since the compiler is

35

4.3 Parsing the CAO Language 4. CAO Language

written in Python programming language, none of the infrastructures could be re-used,
only the grammar.

Although the provided grammar contained rewrite rules and actions to build the AST
(Listing 4.13 shows the grammar actions and rewrite rules for building the AST of a type
declaration), reusing these rewrite rules was not possible due to the fact that they are
written in an unconventional way: there are embedded actions inside the rewrite rules,
written in Python, (Listing 4.13 line 7) that alter the default behavior of ANTLR tree
building process.

Listing 4.13: Original CAO Grammar Excerpt

1 decl_typename : T0=TOKN_DEF R0=dtor_typename

2 {

3 for symbol in R0.dtor.unwind_symbs(symb.SCOPE_LOCAL) :

4 self.get_scope (). def_symb(symbol)

5 }

6 -> ^(

7 {self.ASTify(decl_factory.TYPENAME(), TOKN_DECL_TYPENAME ,T0)} \$R0
8)

9 ;

That being said, only the grammar was used to generate a simple parser/recognizer
for the language. This grammar was then provided with rewrite rules to create the AST
and finally extended with actions to provide variable scoping while parsing. The variable
scoping was introduced as an option to provide further functionality when integrating with
Eclipse.

4.3.2 Building the AST

The CAO AST was built by extending the grammar with rewrite rules (listing 4.14).
Through rewrite rules one may choose the actual structure of the tree, but not how it is
implemented in Java. ANTLR allows two different approaches: generating an homoge-
nous tree or an heterogenous one. The first one is fully automatic and there is no need to
implement the classes for the AST: it generates a tree using only one class (CommonTree)
from ANTLR standard libraries. The second approach is the exact opposite of the first
one, each node of the AST has a custom type and thus a different Java class that needs
to be manually implemented.

Listing 4.14: ANTLR Grammar Example - Rewrite Rules

1

2 decl_function :

3 TOKN_DEF R0=dtor_function R1=stmt_block_basic

36

4. CAO Language 4.3 Parsing the CAO Language

4 -> ^(TOKN_DECL_FUNCTION <Decl_Function > $R0 $R1)
5 ;

6

7 dtor_function :

8 R3=function_qual? R0=ident_function ’(’R1=dtor_list?’)’ ’:’ R2=type_list

9 -> ^(TOKN_DTOR_FUNCTION <Dtor_Function > $R3? $R0 $R1 $R2)
10 ;

11

12 stmt_block_basic :

13 T3=’{’ R3=stmt_list T4=’}’

14 -> ^(TOKN_SEQ <STMT_BLOCK_SEQ >[STMT_BLOCK_SEQ.OPER_LIST] \$R3)
15 ;

An homogenous tree isn’t useful for Eclipse integration. To provide the any advanced
language feature there is a need to have a rich tree with information of each node type.2

AST implementation

Extending the CAO grammar with rewrite rules to build the AST proved to be one of
the most time consuming tasks of the whole work. The rewrite rules system that ANTLR
provides are very simple and practical to use when using them the way that the ANTLR
developer thinks it is the most appropriate form to do so. In ANTLR’s philosophy the
AST tree generated should be parsed again by a tree grammar that ultimately feeds any
other computations. This way the tree grammar recognizes all of the nodes accordingly
to some specific logic and to do so, the Java generated AST is built using only one class
(CommonTree), resulting in an homogenous tree. A CommonTree is a tree structure that in
each node contains a Token object, or in other words, the node contains all the information
described in table 4.2.3.

To implement heterogeneous AST’s ANTLR introduces new syntax to the grammars
that allows define how the each node will be built. The CAO AST was implemented as
an heterogenous tree by extending the CommonTree class that ANTLR provides meaning
that all of tree infrastructure is inherited. Figure 4.3 shows a subset of the tree class
diagram. Note that for each node in the tree there is an implemented class and a Visitor
implementation, all written by hand.

The chosen tree structure captures the majority of the language syntax removing non-
relevant literals such as commas and parenthesis. Since the whole tree structure is very
large, only a part of it will be presented by means of a small example. Listing 4.15 shows
the maximum function coded in CAO and figure 4.4 the respective generated AST.

2This will become clearer in chapter 6.

37

4.4 Implementation issues 4. CAO Language

Figure 4.3: AST Class Diagram (stripped-down version).

Listing 4.15: Maximum number function coded in CAO

def max(x:int , y:int): int{

if(x>y)

return x;

else

return y;

}

Each node on the tree is directly related to the grammar rule that was used to parse
the input. Having a look at figure 4.4, grammar listing 4.14 and code listing 4.15 one
may notice that when parsing a function the decl function rule is chosen which reflects
on the AST structure with a node that belongs to the Decl Function class. Following
the grammar, a function is composed of two parts, the header dtor function and the
body stmt block basic, which in their turn will generate sub-trees that are appended to
Decl Function node.

4.4 Implementation issues

Implementing an AST representation in any programming language is not a simple task
and it becomes harder if the language is still in development stage and constantly changing.
The AST construction complexity depends essentially on the size of the parsed language,
the more complex the language, the more classes or modules (depending on the language

38

4. CAO Language 4.4 Implementation issues

Figure 4.4: AST representing the maximum function from code listing 4.15.

39

4.4 Implementation issues 4. CAO Language

in which the AST is being implemented) will be needed. Also, when introducing any new
features to the language, the AST structure will also change and thus its implementation.
The related Visitor classes would also need changes. This workflow, changing the gram-
mar, generating the parser with AST, implementing AST classes and changing visitors is
very error prone.

Choosing the right structure for an AST a somewhat difficult process. Literature typi-
cally refers to AST’s as “intermediate structures between the parsing tree and the compiler”
that represent the whole language. In this specific case, having the AST as an auxiliary
tool for an Eclipse plugin, perhaps there isn’t the need to have such a rich AST, similar
to the one the compiler will have. Nevertheless it is important to notice that the more
complex features the Eclipse plugin will have the richer the AST will need to be.

40

Chapter 5

CAO Editor

In this chapter the developed plugin will be presented.

5.1 CAO Editor Plugin

The CACE project will provide several tools and languages from each workpackage. Since
all of these tools are still in early development stages, there still isn’t a good notion on how
they will function. Their functionality will tell how all them will interact with each other
and how they depend between them. It is important to know how they will work to be
able to integrate them in Eclipse. Knowing that, the result can be a single CACE eclipse
distribution, a plugin providing all of the CACE tools into the Eclipse IDE that can work
together, or a set of independent plugins compatible with non-CACE plugins. The last
two options are not exclusive, plugins can be configured to work together or separate. For
example, in the JDT one can edit XML files without the need of being in a XML project.

The developed plugin provides support for the CAO language and provides the most
common features in any editor: syntax highlight, integration with the CAO parser for
syntax error checking, static code completion, content outline, wizards for new project
and files. There is also an online update site that allows to install and update the plu-
gin automatically. Independently on how the CACE tools will integrate with each other,
similar features for the other tools will also need to developed making the CAO Plugin a
proof of concept for other tools.

Due to the early stage of the CACE project, the development of the language and tools
is still suffering from many crucial changes that do not allow the evolution of the plugin.
This plugin can evolve by introducing richer features such as a debug model, compilation
support, compilation problem solving suggestions. However, this should be postponed to
a stage where the language and compiler development is more stable.

41

5.1 CAO Editor Plugin 5. CAO Editor

5.1.1 Wizards

Figure 5.1: Wizard Selection

The plugin provides wizards, one for new projects and another for new source code
files (Figure 5.1). The new project wizard creates a new project in Eclipse’s workspace for
CAO. Figure 5.2 shows the actual wizard menu. Currently, there are only two available
options: project name and the location of the project in the workspace; the same happens
for the new source code file wizard (Figure 5.3). Both of them can be further extended
to support new parameters (once the CAO language development becomes more stable)
such as imports, templates, compiler configuration, etc.

Figure 5.2: New CAO Project Wizard

42

5. CAO Editor 5.1 CAO Editor Plugin

Figure 5.3: New CAO Source File Wizard

5.1.2 Editor

The most noticeable feature of the editor is the syntax highlight capability. It displays
the source code in different colors, according to their category. The content outline viewer
shows a tree-like structure based on the contents of the editor, with clickable behavior.
That is, clicking on an element from content outline will automatically select the corre-
sponding element in the text editor. Figure 5.4 shows the CAO editor and the outline
view.

Content Assist

The available content assist provides code completion based on the input of the text editor.
When requesting for code completion the editor proposes completions based on the first
characters of the input. For instance, typing “i” and requesting for code completion will
result in two proposals: “int” and “if”. Although it is based on static keywords, the code
completion (Figure 5.5), proves to be very useful for fast programming. Again, in the
future, this feature can take benefits from the AST and provide dynamic content assist,
or even the definition of templates for cycles, function declarations, etc.

43

5.1 CAO Editor Plugin 5. CAO Editor

Figure 5.4: Text Editor and Outline View

Figure 5.5: Code completion

44

5. CAO Editor 5.1 CAO Editor Plugin

Problems

While programming there are common errors that appear often, such as forting to close
a parenthesis, missing a semi-colon or using an non declared variable. The provided
plugin detects common errors like those on-the-fly and reports them in the problems view.
Simultaneously the line where those errors appear is marked in the text editor. Figure 5.6
shows the text editor window and the problems view to exemplify these features.

Figure 5.6: Problems

5.1.3 Update Site

There is also an update site where the plugin can be automatically installed (Figure 5.8)
and updated (Figure 5.7).

45

5.1 CAO Editor Plugin 5. CAO Editor

Figure 5.7: Update Site for the CAO Editor

Figure 5.8: Installing the CAO Editor

46

Chapter 6

Plugin Implementation

The CAO Editor is separated into two different plugins, the core plugin and the user
interface plugin (UI).

6.1 Core Plugin

This plugin contains the core components of any plugin that are fully independent from
other plugins. It contains the CAO builder, nature, code assistant and parser/AST sup-
port.

6.1.1 Builder

The builder was implemented by extending the org.eclipse.core.resources.builders.
To implement builders Eclipse, provides the following classes and interfaces:

• IncrementalProjectBuilder - This class must be extended by any custom builder.
It provides the framework for implementing builders;

• IResourceDelta - A resource delta represents changes in the state of a resource tree
between two points in time. It can be processed using the Visitor pattern;

• IResourceDeltaVisitor - Any resource delta processor must to implement this
interface. The visitor pattern will be used to process each entry in the delta;

• IResourceVisitor - Same as above for all resources;

Builders are directly invoked by Eclipse or by the user. When requesting a build
Eclipse provides a resource delta (an object containing all the changes) for the project.
There are four types of builds defined in the IncrementalProjectBuilder class:

• FULL BUILD - is processed by request and forces a new build of all resources;

47

6.1 Core Plugin 6. Plugin Implementation

• AUTO BUILD - is automatically triggered by Eclipse based on the preferences;

• INCREMENTAL BUILD - is triggered by request when auto-build is off;

• CLEAN BUILD - is triggered by request, clears all the current build state information
and is followed by a full build;

Listing 6.1 shows build methods from the CAO builder. The main build method is
executed by Eclipse when a build is triggered. Accordingly with the type of build it calls
fullBuild or incrementalBuild.

Listing 6.1: Builders

1 protected IProject [] build(int kind , Map args , IProgressMonitor

monitor)

2 throws CoreException {

3 if (kind == FULL_BUILD) {

4 fullBuild(monitor);

5 } else {

6 IResourceDelta delta = getDelta(getProject ());

7 if (delta == null) {

8 fullBuild(monitor);

9 } else {

10 incrementalBuild(delta , monitor);

11 }

12 }

13 return null;

14 }

15
16 protected void fullBuild(final IProgressMonitor monitor)

17 throws CoreException {

18 try {

19 getProject ().accept(new CAOResourceVisitor ());

20 } catch (CoreException e) {

21 }

22 }

23
24 protected void incrementalBuild(IResourceDelta delta ,

25 IProgressMonitor monitor) throws CoreException {

26 // the visitor does the work.

27 delta.accept(new CAODeltaVisitor ());

28 }

48

6. Plugin Implementation 6.1 Core Plugin

Full Build

A full build as the name says results in building all of the resources in the workspace. To
do so IResourceVisitor interface was implemented as listing 6.2 shows.

Listing 6.2: CAO Resource Visitor

1 class CAOResourceVisitor implements IResourceVisitor {

2 public boolean visit(IResource resource) {

3 checkCAO(resource); // building logic function

4 // return true to continue visiting children.

5 return true;

6 }

7 }

Incremental Build

As an opposite to a full build incremental builds have notion the notion of resource deltas.
Three types of deltas are defined in the IResourceDelta:

• ADDED - this resource is new;

• REMOVED - this resource was removed;

• CHANGED - this resource was changed;

To walk through the resource delta IResourceVisitor interface was implemented as
listing 6.3 shows. When a resource is added or changed, it should be built; when it is
removed there is no need to build.

Listing 6.3: CAO Delta Resource Visitor

1 class CAODeltaVisitor implements IResourceDeltaVisitor {

2
3 public boolean visit(IResourceDelta delta) throws

CoreException {

4 IResource resource = delta.getResource ();

5 switch (delta.getKind ()) {

6 case IResourceDelta.ADDED:

7 // handle added resource

8 checkCAO(resource); // call the builder

9 break;

10 case IResourceDelta.REMOVED:

11 // handle removed resource

12 break;

13 case IResourceDelta.CHANGED:

14 // handle changed resource

49

6.1 Core Plugin 6. Plugin Implementation

15 checkCAO(resource); // call the builder

16 break;

17 }

18 // return true to continue visiting children.

19 return true;

20 }

21 }

Builder Behavior

Until now, only the building infrastructure was detailed but not the actual builder behav-
ior. The implemented builder is responsible for generating the error listing in the problems
window and the problem markers in the text editor window. The builder calls the parser
with an error handler that reports all the errors to Eclipse through the addMarker method
(listing 6.4).

Listing 6.4: CAO Error reporting

1 public void reportError(RecognitionException e, String [] tokenNames

) {

2 String hdr = getErrorHeader(e); // retrieve error

header;

3 String msg = getErrorMessage(e, tokenNames); // retrieve

error message;

4 CAOBuilder.this.addMarker(file , hdr+" "+msg , e.line ,2);

// add a new marker to the text editor window;

5 }

6.1.2 CAO Nature

The nature implementation is responsible for informing the Eclipse platform of the CAO
Nature. And also, associated with it nature is the CAO builder. Whenever a new CAO
project is created this nature is automatically loaded and thus, the builder. It was imple-
mented by extending the org.eclipse.core.resources.natures extension point (List-
ing 6.5) and implementing the IProjectNature.

Listing 6.5: CAO Project Nature Extension Declaration

1 <extension

2 id="caoNature"

3 name="CAO Project Nature"

4 point="org.eclipse.core.resources.natures" >

5 <runtime >

6 <run

50

6. Plugin Implementation 6.2 UI Plugin

7 class="eu.cace.core.cao.nature.CAONature" > <!-- class that implements

IProjectNature -->

8 </run>

9 </runtime >

10 <builder

11 id="eu.cace.core.cao.CAOBuilder" >

12 </builder >

13 </extension >

6.1.3 Code Assistant

The CAOCompletionProcessor is very simple. It only proposes keywords as completion
candidates. The keywords are defined in a field, allWords. When requesting for assistance
the CAOCompletionProcessor implementation checks if the first characters of the input
word match any of the keywords and proposes them as a suggestion.

6.2 UI Plugin

The UI plugin only contains components that extend the Eclipse UI, thus the selected
package namespace always starts with eu.cace.ui. All the wizard classes are within the
eu.cace.ui.wizards namespace and the all the editor’s related classes and packages start
with the eu.cace.ui.editors.cao.

6.2.1 Wizards

As it was previously mentioned Eclipse wizards typically guide the user through a set of
steps. Wizards in Eclipse consist of one wizard class and several wizard page classes. A
wizard page class represents a step in the wizard or in other terms each menu that appears
between clicking on the next button. The wizard class manages the page set and provides
user interface controls that enable page navigation and task invocations.

Wizards are implemented by extending the Eclipse’s Wizard and implementing the
suited interface for the wizard. There are three specific interfaces for wizards:

• INewWizard - support for wizards that create new resources (projects, files, etc.);

• IImportWizard - support for wizards that import resources to the workspace;

• IExportWizards - support for wizards that export resources to the filesystem;

Wizard page are implemented by extending the WizardPage class and overriding the
createControl method that controls the page interface. Eclipse also provides reusable
page classes for common wizards such as a new project (WizardNewProjectCreation) or

51

6.2 UI Plugin 6. Plugin Implementation

new file (WizardNewFileCreationPage).

Figure 6.1: Class Diagram for the CAO project wizard

The UI plugin provides two wizards: new CAO project and new CAO source file.
Figure 6.1 shows the class diagram of the new project wizard. The CAONewProjectWizard
class implements INewWizard interface and extends the Wizard class. This wizard uses the
CAONewProjectCreationPage that extends the WizardNewProjectCreationPage class.
The same principle applies to the new source file wizard whereas it implements the same
INewWizard interface and extends a different page class, WizardNewFileCreationPage.

6.2.2 Text Editor

CAO text editor was implemented accordingly with the architecture mentioned in chapter
3.2.6, Figure 3.10. The overall class diagram of the editor can be seen in Figure 6.2.

The CAOEditor extends the TextEditor class from the text framework thus inheriting
all the key features of a text editor. To provide syntax highlight and code completion the
inherited TextEditor SourceViewConfiguration was overridden using the convenience
method setSourceViewerConfiguration with the CAOSourceViewerConfiguration, list-
ing 6.6 line 4. The same procedure was used to set the up the document provider, listing
6.6 line 6.

52

6. Plugin Implementation 6.2 UI Plugin

Figure 6.2: Class Diagram for the CAO Editor

Listing 6.6: CAO Example

1 public CAOEditor () {

2 ...

3 caoEditorSourceViewerConfiguration = new

CAOEditorSourceViewerConfiguration(colorManager);

4 setSourceViewerConfiguration(caoEditorSourceViewerConfiguration

);

5
6 caoDocumentProvider= new CAODocumentProvider ();

7 setDocumentProvider(caoDocumentProvider);

8
9 ...

10 }

Document Provider

Since all of the editing within the CAO editor is based on files located in the local filesys-
tem, the CAODocumentProvider class extends the Eclipse based FileDocumentProvider

to defined a document partitioner for the CAO language.

Listing 6.7: CAODocumentProvider

53

6.2 UI Plugin 6. Plugin Implementation

1 public class CAODocumentProvider extends FileDocumentProvider {

2
3 protected IDocument createDocument(Object element) throws

CoreException {

4 IDocument document = super.createDocument(element);

5 if (document != null) {

6 IDocumentPartitioner partitioner =

7 new FastPartitioner(

8 new CAOPartitionScanner (),

9 new String [] {

10 CAOPartitionScanner.CAO_COMMENT });

11 partitioner.connect(document);

12 document.setDocumentPartitioner(partitioner);

13 }

14 return document;

15 }

16 }

Partitioning and Scanners

The CAO source code is partitioned into two different sections: source code and comments.
Partitioning is implemented with scanners. The implementation focuses on rule based
scanners that Eclipse provides, it is straightforward to implement so it wont be detailed
here.

Two different scanners were implemented: CAOPartitionScanner for text partitioning,
CAOCodeScanner for finding CAO keywords and giving them attributes such as colors.

Syntax Highlight

To provide syntax highlight Eclipse uses a computational model of damage, repair and
reconciling. When the text in an editor is modified, parts of the editor must be redisplayed
to show the changes. With syntax highlight a simple char can change the whole text (e.g.
a comment).

Damagers determine the region of a document’s presentation which must be rebuilt
due to a change and return a damage region that serves as input for a repairer. A repairer
processes all the damage region and generates descriptions of the repairs that are need to
be made. Finally the reconciler controls the overall process. It monitors changes in the
editor and notifies the damager to compute the damaged region and then passes it to the
repairer to perform the needed repairs. Typically there is one repairer and damager for
each partition type.

54

6. Plugin Implementation 6.2 UI Plugin

Eclipse provides a default damage repairer implementation (DefaultDamagerRepairer)
that is configured with scanners. These scanners are the ones responsible for the highlight-
ing since they scan the code into regions and then provides them with colored attributes.
In listing 6.8 the reconciler is configured with two damagers/repairers, one for each content
type.

Listing 6.8: Presentation Reconciler Configuration

1
2 public IPresentationReconciler getPresentationReconciler(

ISourceViewer sourceViewer) {

3 PresentationReconciler reconciler = new

PresentationReconciler ();

4
5 // DamagerRepairer configured with the CAOCodeScanner for

non -comment content (DEFAULT_CONTENT_TYPE)

6 DefaultDamagerRepairer dr = new DefaultDamagerRepairer(

getCAOCodeScanner ());

7 reconciler.setDamager(dr, IDocument.DEFAULT_CONTENT_TYPE);

8 reconciler.setRepairer(dr, IDocument.DEFAULT_CONTENT_TYPE);

9
10 // DamagerRepairer configured with a single token scanner

for comment content (CAO_COMMENT)

11 dr = new DefaultDamagerRepairer(

12 new SingleTokenScanner(

13 new TextAttribute(

14 colorManager.getColor(CAOColorConstants

.CAO_COMMENT))));

15 reconciler.setDamager(dr, CAOPartitionScanner.CAO_COMMENT);

16 reconciler.setRepairer(dr, CAOPartitionScanner.CAO_COMMENT)

;

17
18 return reconciler;

19 }

6.2.3 Content Outline

Implementing a content outline consists of implementing three interfaces:

• ITreeContentProvider;

• ILabelProvider;

• ContentOutlinePage;

55

6.2 UI Plugin 6. Plugin Implementation

Content Provider

Eclipse provides an abstract implementation for content outlines. Internally content out-
lines are managed as tree structures and all the means to traverse them, such as a hi-
erarchical visitor pattern, are already implemented. Content outlines are based on a
hierarchical model that represents the information inside an editor, typically an AST.
Since the AST implementation may vary from language to language there is the need to
adapt models to the internal eclipse tree representation. This is done by implementing the
ITreeContentProvider that consists in implementing common tree navigation methods
(see 6.9)

Listing 6.9: ITreeContentProvider implementation

1 public class CaoContentProvider implements ITreeContentProvider{

2
3 public Object [] getChildren(Object parentElement) {

4 ASTNode a;

5 if(parentElement instanceof ASTNode){

6 a = (ASTNode) parentElement;

7 if (a.getChildCount () >0)

8 return a.getChildren ().toArray ();

9 }

10
11 return new Object [0];

12 }

13
14 public Object getParent(Object element) {

15 if(element instanceof ASTNode)

16 return ((ASTNode) element).parent;

17
18 return null;

19 }

20
21 public boolean hasChildren(Object element) {

22
23 if(element instanceof ASTNode)

24 return (((ASTNode) element).getChildCount () > 0);

25
26 return false;

27 }

28 }

56

6. Plugin Implementation 6.2 UI Plugin

Label Provider

Having the content provider Eclipse needs to know how to handle the tree contents to
retrieve information. The label provider is responsible for the text labels and icons that
will appear on the outline. Listing 6.10 a small part of the implementation.

Listing 6.10: ILabel implementation

1 public class CaoLabelProvider implements ILabelProvider{

2
3 public String getText(Object element) {

4 ...

5 if(element instanceof StructElement){

6 StructElement var = (StructElement) element;

7 return var.getText ();

8 }

9 }

10
11 public Image getImage(Object element) {

12 ImageDescriptor descriptor = null;

13 Image image = null;

14 if (element instanceof StructElement) {

15 URL installUrl = Activator.getDefault ().getBundle ()

.getEntry("/icons/field_public_obj.gif");

16 descriptor = ImageDescriptor.createFromURL(

installUrl);

17 }

18 ...

19 }

20 }

Content Outline Page

The content outline class controls the content outline life-cycle. It is responsible for con-
figuring the label provider, content provider and the clickable behavior.

57

6.2 UI Plugin 6. Plugin Implementation

58

Chapter 7

Conclusions and Further Work

In this chapter, the conclusions of this work are presented, as well the suggestions for
further work.

7.1 Conclusions

Despite having powerful frameworks for IDE related tools provided by Eclipse, imple-
menting an editor for the CAO language turned out to be a very difficult task. When
integrating languages into Eclipse there are two main issues that need to be addressed:
understanding how the frameworks that Eclipse provides work, and more importantly how
they interact with each other; since in Eclipse Java is the lingua franca, there is always the
need to provide a model for the language to be integrated implemented in Java (if there
is interest on features more advanced than syntax highlighting).

On one hand, Eclipse is a state of the art technological monster and has a very steep
learning curve. The available documentation is poor and example oriented. Sometimes
in order to explain a feature or how a framework works, the documentation forwards to
JDT source code, which is very complicated to understand. On the other hand, after
overcoming the technological challenge, features that Eclipse provides for creating editors
are easy to use, but the majority of them still relies on a model for that language. These
models that Eclipse relies on are usually AST’s implemented in Java.

The typical AST’s structure contains all the information from the parsed input, ex-
cept for some syntactic tokens. An AST developed for Eclipse doesn’t need have the same
structure as of compiler generated AST’s; they can be trimmed down depending on what
kind of features the plugin will have. Implementing the AST is a time consuming process
as it involves creating a new parser and implementing the tree classes and visitors. If
possible, an automatic mechanism of generation of the AST should be used.

59

7.2 Further Work 7. Conclusions and Further Work

That being said, Eclipse has proven that it provides all the required facilities to inte-
grate new language editors for the CACE project.

Overall, a proof-of-concept editor was implemented with features such as: wizards,
syntax highlighting, code completion, syntax check and content outline;

7.2 Further Work

The next big step would be to integrate the prototype compiler, not only has an external
tool but also by trying to use its facilities to retrieve more information for the plugin.
For instance, using the compiler to retrieve semantic errors that are not provided by the
parser. To do so there would be the need for a communication platform between the
compiler and the Eclipse plugin. One possibility would be trough the use of XML files or
by the exploration of the Jython platform [4] that allows to run Python code on the Java
Platform.

The implemented plugin is just the basis for what is possible to do with Eclipse thus,
as future work, several new functionalities can be implemented:

• Debugger integration;

• Provide quick fixes for syntax errors;

• Use the Eclipse template engine for source code templates;

• Dynamic Content Assist (based on the current state of the whole source code using
the AST);

• Code refactoring support;

The AST model can also be target of further improvements:

• Automatic generation of the tree;

• Automatic generation of visitors;

• Automatic generation of Test Units;

60

Bibliography

[1] CACE Project Home Page - http://www.cace-project.eu. [Online; accessed 1-
May-2008].

[2] Eclipse FAQ - http://www.eclipse.org/home/newcomers.php. [Online; accessed
23-May-2008].

[3] JDT Core Component - http://www.eclipse.org/jdt/core/index.php. [Online;
accessed 29-October-2008].

[4] The Jython Project - http://www.jython.org/Project/. [Online; accessed 1-
February-2008].

[5] Eclipse platform technical overview. Technical report, Object Technology Interna-
tional, February 2003.

[6] Bioclipse: An open source workbench for chemo- and bioinformatics. BMC Bioinfor-
matics, 8(1), 2007.

[7] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques,
and Tools (2nd Edition). Addison Wesley, August 2006.

[8] C. Aniszczyk, B. Bauman, W. Melhem, and M. Pawlowski. Fundamentals of plugin
and rcp development. Eclipse Con 2007, March 2007.

[9] A. W. Appel. Modern Compiler Implementation in Java. Cambridge University Press,
December 1997.

[10] J. Arthorne. Project builders and natures. Eclipse Corner Articles, November 2004.

[11] M. Barbosa, R. Noad, D. Page, and N. Smart. First steps toward a cryptography-
aware language and compiler. Cryptology ePrint Archive, Report 2005/160, 2005.
http://eprint.iacr.org/.

[12] E. Clayberg and D. Rubel. Eclipse: Building Commercial-Quality Plug-Ins. Pearson
Higher Education, 2004.

61

http://www.cace-project.eu
http://www.eclipse.org/home/newcomers.php
http://www.eclipse.org/jdt/core/index.php
http://www.jython.org/Project/
http://eprint.iacr.org/

BIBLIOGRAPHY BIBLIOGRAPHY

[13] J. W. Cooper. Java design patterns: a tutorial. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2000.

[14] M. K. Crowe. An incremental compiler. SIGPLAN Not., 17(10):13–22, 1982.

[15] J. D’Anjou, S. Fairbrother, D. Kehn, J. Kellerman, and P. McCarthy. Java(TM)
Developer’s Guide to Eclipse, The (2nd Edition). Addison-Wesley Professional, 2004.

[16] T. Eicher. Text editor recipes. Eclipse Con 2006, 2006.

[17] M. Grand. Patterns in Java, volume 1: a catalog of reusable design patterns illustrated
with UML. John Wiley & Sons, Inc., New York, NY, USA, 1998.

[18] O. Gruber, B. J. Hargrave, J. McAffer, P. Rapicault, and T. Watson. The eclipse 3.0
platform: adopting osgi technology. IBM Syst. J., 44(2):289–299, 2005.

[19] D. Hou. Studying the evolution of the eclipse java editor. In eclipse ’07: Proceedings
of the 2007 OOPSLA workshop on eclipse technology eXchange, pages 65–69, New
York, NY, USA, 2007. ACM.

[20] W. Melhem and D. Glozic. Pde does plugins. Eclipse Corner Article, September
2003.

[21] D. Page. CAO: A Cryptography Aware Language and Compiler. University of Bristol,
2008.

[22] T. Parr. What’s the difference between a parse tree and an abstract syntax tree (AST)?
- http://www.jguru.com/faq/view.jsp?EID=814505.

[23] T. Parr. The Definitive ANTLR Reference: Building Domain-Specific Languages.
Pragmatic Programmers. Pragmatic Bookshelf, first edition, May 2007.

62

http://www.jguru.com/faq/view.jsp?EID=814505

	Acronyms
	List of Figures
	List of Tables
	Introduction
	Contextualization
	Motivation
	Aims and Contributions
	Document Structure

	What is the Eclipse Platform?
	JDT: Java Development Tools
	Eclipse Main Features
	Debugger

	JDT Editor
	Language and Feature Support
	Compiler Support

	Eclipse Overview
	Eclipse Architecture
	Plug-ins
	Architecture

	Eclipse IDE Platform
	IDE Workbench
	Help and Team
	Update Manager
	Debug
	Workspace API
	Text Framework

	CAO Language
	Introducing the CAO Language
	ANTLR Parser Generator
	Parser Generation
	Abstract Syntax Trees
	ANTLR Grammars

	Parsing the CAO Language
	Parser Implementation
	Building the AST

	Implementation issues

	CAO Editor
	CAO Editor Plugin
	Wizards
	Editor
	Update Site

	Plugin Implementation
	Core Plugin
	Builder
	CAO Nature
	Code Assistant

	UI Plugin
	Wizards
	Text Editor
	Content Outline

	Conclusions and Further Work
	Conclusions
	Further Work

	Bibliography

