
Nuno Gil Correia Veloso da Veiga

Generating Automatically Test Cases Based on Models

Tese de Mestrado
Mestrado em Informática
Trabalho efectuado sob a orientação de
Prof. Dr. João Alexandre Saraiva

Abril 2012

2

This work is funded by the ERDF through the Programme COMPETE and by the Por-
tuguese Government through FCT - Foundation for Science and Technology, project ref.
PTDC/EIA-CCO/108995/2008.

Acknowledgements

I would like to thank the following people for their help and support over the course of the
completion of this thesis.
To João Saraiva, my supervisor, for his continued support and encouragement.
To Luís Anjos and Nuno Vieira, my co-workers, that helped in everything I needed during
my research time in Primavera.
To my parents, Carlos and Isabel, that, even though in my life I may have not done everything
the way they wanted and wished, were always there for my best interest, caring for me, my
life and my future. I feel eternal gratitude for the two of you.
To my lovely sister, Catarina, for giving me company even when I didn’t want it, for loving
me unconditionally and for bringing a new cat into our household. Life with kittens is
always better than life without kittens!
To my aunts, Nocas, Sissi and Patrícia, that I am sure have always believed in me.
To my grandfather, that age only made of him a more interesting, funny and reliable
company. To my grandma, for all the love and food filled of love that fed me during all
these years.
To my girlfriend Ana, for all the love, patience and understanding, and for staying by my
side.
To all my friends, who make my life outside of research so enjoyable. Particularly, to my
friends Ricardo, Renato, Miguel, Pedro Nuno, Bruno and Sebastião, whose company has
been a constant for many years. To Zé and João Nuno, for the great time we have when we
are together.

i

ii

Abstracts

PRIMAVERA Business Software Solutions has dedicated a lot of time and effort in the last
years in the development of a framework that allows a programmer to model an application
and its respective services. This framework will then generate a big part of, not only the
application source code, but also its database and the User Interface. The objective of
this dissertation project is to add a new feature to this framework - the test automation
component. By using such a component, the framework will be able to generate test cases
to validate the applications requirements. Since trying all possible combinations would be
unpractical, one of the main objectives of this project is to generate a smaller set of test
cases only that can assure that the system is being properly tested.

iii

iv

Resumo

PRIMAVERA Business Software Solution dedicou muito tempo e esforço nos últimos
anos no desenvolvimento de uma framework que permite a um programador modelar
uma applicação e respectivos serviços. Esta framework irá então gerar grande parte do
código fonte, assim como a base de dados e o User Interface. O objectivo deste projecto
de dissertação é de adicionar uma nova função a esta framework - uma componente de
automação de testes. Desta forma, a framework será capaz de gerar casos de teste para validar
os requisitos da aplicação. Como gerar todas as possiveis combinações seria impraticável,
um dos principais objetivos deste projetoé gerar um conjunto de casos de teste mais pequeno
que possa garantir que o sistema está a ser a ser bem testado.

v

vi

Contents

Contents . ix

List of Figures . xii

List of Tables . xiii

1 Introduction 1
1.1 Overview . 1

1.2 Document Structure . 3

2 Automated Software Testing 5
2.1 Overview . 5

2.2 Test Case Definition . 6

2.3 Techniques for Software Testing . 6

2.4 Black Box Testing Techniques . 7

2.4.1 Equivalence Partitioning . 7

2.4.2 Boundary Values . 8

2.4.3 Pairwise Testing . 8

2.4.4 Dynamic Analysis . 9

2.4.5 Error Guessing . 9

2.5 White Box Techniques . 10

2.6 Using a Framework to Automate Software Testing 10

2.6.1 Data-Driven . 11

2.6.2 Keyword-Driven . 12

2.7 Model-Based Testing . 13

2.7.1 Model-Based Testing Phases . 14

2.7.2 Advantages of Model-Based Testing 14

2.7.3 Behavior Modeling Techniques 15

vii

viii CONTENTS

3 The Athena Framework 17
3.1 Main Goals and Design Principles . 17

3.2 Architecture . 18

3.3 Athena Designers . 18

3.4 Modeling Applications in Athena . 20

3.5 Developed Test Module . 23

4 Automatic Test Case Generation Component 25
4.1 Overview . 25

4.2 Developed Classes . 26

4.2.1 Test Rules . 26

4.2.2 Test Data . 27

4.2.3 Qict . 30

4.2.4 Attribute and Entity . 41

4.3 Process . 42

4.3.1 Read Rules File . 43

4.3.2 Generate Default TestData . 43

4.3.3 Generate Values . 43

4.3.4 Pairwise Structure Creation . 46

4.3.5 Create Spreadhseets . 50

4.4 Running Tests . 51

4.4.1 Open Application . 54

4.4.2 Login . 54

4.4.3 Selecting Task . 56

4.4.4 Insert Values . 56

4.4.5 Close Application . 58

5 Concluding Remarks 59
5.1 Conclusion . 59

5.2 Future Work . 60

Bibliography 61

A API 63
A.1 Attribute . 63

CONTENTS ix

A.1.1 Members . 63

A.1.2 Properties . 63

A.1.3 Public Methods . 64

A.1.4 Private Methods . 65

A.2 Entity . 66

A.2.1 Members . 66

A.2.2 Properties . 66

A.2.3 Public Methods . 67

A.2.4 Private Methods . 68

A.3 TestRule . 69

A.3.1 Members . 69

A.3.2 Properties . 69

A.4 TestData . 70

A.4.1 Members . 70

A.4.2 Properties . 70

A.5 UserInterfaceTestHelper . 71

A.5.1 Public Methods . 71

A.5.2 Private Methods . 72

A.6 Generate . 73

A.6.1 Public Methods . 73

B Spreadsheet Example 75

x CONTENTS

List of Figures

2.1 Keyword-drive Table sample . 12

2.2 Model Based Testing . 13

3.1 Athena Framework Architecture . 19

3.2 Athena Framework Module Development 20

3.3 Toolbox . 21

3.4 Entities Designer . 21

3.5 Services Designer . 22

3.6 Generated Test Scripts . 23

3.7 TestModule . 24

4.1 XML file containing TestRules . 28

4.2 Qict input file example . 31

4.3 Process Diagram . 43

4.4 Deserialize Test Rules from XML file . 44

4.5 Generate Default Test Data . 45

4.6 Generate TestData . 46

4.7 Generate Values . 47

4.8 Generate . 48

4.9 Generate data for Qict . 49

4.10 Queries Creation . 52

4.11 Schema for the example . 53

4.12 Login Screen . 55

4.13 Selecting Workspace . 56

4.14 Selecting Task . 57

4.15 Inserting values . 58

xi

xii LIST OF FIGURES

B.1 Spreadsheet example for Entity Supplier 76

List of Tables

2.1 Deriving ’Name’ into Classes . 7

2.2 Possible set of Test Cases . 8

2.3 Pairwise Test Configuration . 9

4.1 Athena Framework Type Ranges . 27

4.2 TestRule Examples . 29

4.3 TestData Examples . 30

4.4 Mapping of allPairsDisplay to the actual pairs 32

4.5 Pairwise Result . 41

A.1 Attribute Members . 63

A.2 Attribute Properties . 63

A.3 Attribute Public Methods . 64

A.4 Attribute Private Methods . 65

A.5 Entity Members . 66

A.6 Entity Properties . 66

A.7 Entity Public Methods . 67

A.8 Entity Private Methods . 68

A.9 TestRule Members . 69

A.10 TestRule Properties . 69

A.11 TestData Members . 70

A.12 TestData Properties . 70

A.13 UserInterfaceTestHelper Public Methods 71

A.14 UserInterfaceTestHelper Private Methods 72

A.15 Generate Public Methods . 73

xiii

xiv LIST OF TABLES

Chapter 1

Introduction

This chapter presents the background about PRIMAVERA and the motivation for the
development of this project. It will also describe the structure of this document.

1.1 Overview

Due to the high competitive era we live in software industry any bug in the application has
high impact in the image brand of a company. Studies show that finding and fixing defects
during the early requirements phase has a much lower cost than if left undetected after
production. Hence, it is crucial for organizations to adhere to structured testing processes
and thereby deliver higher quality systems in less time and with fewer resources. Even
though with manual testing we can find many defects in a software application, it is a
very time consuming process which leads to the attempt to automate testing. Automated
Software Testing (AST) is an important and active area of reasearch and it can be described
as the application and implementation of software technology throughout the entire software
testing life-cycle (STL) with the goal to improve STL efficiency and effectiveness. Many
of the unsuccessful AST attempts and myths related to AST implementation, plus lack of
sufficient AST knowledge, lead to the question "Why should I automate?".

Over the last few years, PRIMAVERA BSS has dedicated a big investment in the
development of a framework that allows the development of their management software

with state-of-the-art technologies and with an architecture service-oriented. One of the
main objectives of this framework is the ability to generate a large amount of the software

source code, allowing an improvement on the development process. The development of

1

2 CHAPTER 1. INTRODUCTION

this framework consisted in the integration of a set of Domain Specific Languages (DSL)
that can be found in the Microsoft Visual Studio. These DSLs combined and interacting
with each other made it possible to model a large part of an application, such as entities and
their relations, the usability model, and set of operations over those entities.

With the objective to make their products better, PRIMAVERA wanted a module for
their framework that could:

• Generate test cases in an automatic way

• Execute User Interface tests automatically

• Reuse the generated test cases for the new software versions

During my research time at PRIMAVERA, I was responsible for the development of the
automatic test case generation module. I also provided help in fixing errors in the previously
generated test scripts and added new features to those test cases. Since that extra work was
outside the scope of the project it is not described in this document.

PRIMAVERA Business Software Solutions is a multinational company that develops
and commercializes management solutions and platforms for business process integration in
a global market, providing solutions for small, medium and large Organizations, as well
as the public administration sector. About 40 thousand companies resort to PRIMAVERA
BSS solutions everyday to optimize their business processes. PRIMAVERA BSS is present
in many countries across the world, being market leader in many of them.

PRIMAVERA’s commitment, since its establishment in 1993, has focused towards
the development of avant-garde solutions that respond in advance to the future needs
of companies. This effort has contributed much to its successful path, which is why
PRIMAVERA is included in the 500 largest European companies with greatest growth
potential, a ranking promoted by Growth Plus.

Above all, PRIMAVERA BSS is a brand that invests in the constant evolution of its
competences and accomplishments, anticipating the needs and expectations of customers,
companies, market and its surrounding universe. Motivated by a desire to exceed itself, in
search of excellence in all activity sectors, PRIMAVERA BSS inspires itself in the future
to innovate. Success is the result of the passion with which the company faces today’s
challenges.

1.2. DOCUMENT STRUCTURE 3

1.2 Document Structure

The main body of this document is divided as follows.

• Chapter 2 contains a small studie about software testing techniques used in the current
days, such as black-box, white-box and model-based testing.

• Chapter 3 introduces the Athena Framework, describing how it works aswell as its
design principles and goals.

• Chapter 4 represents the main objective of this work, describing the steps for the
development and the strategy used.

• Chapter 5 summarizes what has been achieved and what can be done in order to
enhance the module.

• Appedix A contains the API for the developed source code.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Automated Software Testing

2.1 Overview

The term automated software testing can have multiple meanings for members of the
software development and testing community. To some the term may mean test driven
development and/or unit testing; to others it may mean using a capture & record tool
to automate testing. Or can even mean custom-developing test scripts using a scripting
language such as Pearl, Python or Ruby. Generally, all tests that are currently run as part
of a manual testing program - functional, performance, concurrency, stress, and more -
can be automated. How is manual software testing different from AST? First of all, it
enhances manual testing efforts by focusing on automating tests that manual testing can
hardly accomplish. It doesn’t replace the need for manual testers analytical skills, test
strategy know- how, and understanding of testing techniques. This manual tester expertise
serves as the blueprint for AST. It also can’t be separated from the manual testing; instead
both AST and manual testing are inter-winded and complement each other. AST refers
to automation efforts across the entire STL, with a focus on automating the integration
and system testing efforts. The overall objective of AST is to design, develop, and deliver
an automated test and retest capability that increases testings efficiencies; if implemented
successfully, it can result in a substantial reduction in the cost, time and recourses associated
with traditional test and evaluation methods and processes for software-intensive systems.

5

6 CHAPTER 2. AUTOMATED SOFTWARE TESTING

2.2 Test Case Definition

We can find several definitions for what a test case is. As a matter of fact, it seems that
each author has his own definition of what a test case is. Cem Kaner in his paper "What is a
Good Test Case?" [Kan03] quotes definitions from several authors:

• IEEE Standard 610 (1990) defines a Test Case as:

1. "A set of test inputs, execution conditions, and expected results developed for a
particular objective, such as to exercise a particular program path or to verify
compliance with a specific requirement"

2. "(IEEE Std 829 - 1983) Documentation specifying inputs, predicted results , and
a set of execution for a test item."

• For Ron Patton, test cases are the specific inputs that you’ll try and the procedures
that you’ll follow when you test the software.

• Boris Beizer defines a test as "A Sequence of one or more subtests executed as a
sequence because the outcome and/or final state of one subtest is the input and/or
initial stat of the next. The word ’test’ is used to include subtests, testes proper, and
test suites".

• According to Bob Binder "A test specifies the pretest state of the implementation
under testing (IUT) and its environment, the test inputs or conditions, and the expected
result. The expected result specifies what the IUT should produce from the test inputs.
This specification includes messages generated by the IUT, exceptions, return values,
and resultant state of the IUT and its environment, Test cases may also specify initial
and resulting conditions for other object that constitute the IUT and its environment."

• For the author of the paper, Cem Kaner, a test case is a question that we ask to the
program. It doesn’t matter if the test fails or passes, what matter is information gain.

2.3 Techniques for Software Testing

According to [W.H87], testing can be classified as black box testing (specification-based)
or white box testing (program-based). In the case of black box testing, the objective is to

2.4. BLACK BOX TESTING TECHNIQUES 7

reveal defects that are related to the external functionality, to the communication interfaces
between modules, constrains like pre- and post-conditions and the behavior of the software
itself. It has the name of "black box" because the software is handled like a black box from
which we can’t see what’s inside, i.e., the content is unknown to us. This way, testers use
the specification to obtain the test data without any concert about how the program that
was implemented. On the other hand, program-based testing requires code handling and
selection of test sets that exercise specific pieces of the code, not its specialization. The
main objective is to identify faults in the program’s internal structure.

2.4 Black Box Testing Techniques

2.4.1 Equivalence Partitioning

Somehow, this is the "mother of all testing" [Han08]. The objective in equivalence partition-
ing is to partition any set of possible values into sets that you think at are equivalent. For
instance, we can have a field "Name". Being name a text input and assuming that according
to the specification a valid name has a length between 5 and 20 and all characters have to
be alphabetical, we can derive the following classes displayed on 2.1. The idea behind this
is that all "Name" that have between 5 and 20 characters and are alphabetical should, in
principle, be treated the same way. Following this, we can create tests that will cover all
classes without the need to try out every possible value. An example on test cases that can
be created for this case can be viewed on Table 2.2.

Class Result
1 Name is alphabetical Valid
2 Name is not alphabetical Invalid
3 Name length between 5 and 20 Valid
4 Name length is less than 5 Invalid
5 Name length is greater than 20 Invalid

Table 2.1: Deriving ’Name’ into Classes

8 CHAPTER 2. AUTOMATED SOFTWARE TESTING

Input Result Classes Covered
1 abc4 Fail 2
2 abc Pass 4
3 Charles Pass 1,3
4 Thequickbrownfoxjumpsoverthelazydog Fail 5

Table 2.2: Possible set of Test Cases

2.4.2 Boundary Values

The boundary value technique is used along side with the equivalence partitioning. The
objective of this technique is to test the border values of an equivalence partition since
these boundaries are most of the times where errors that result in software faults occur.
For example, if we have an input that will accept, according to the requirements, natural
numbers that between [40..100] . The border values we will want to test are obviously
39,40,100,101.

2.4.3 Pairwise Testing

Pairwise testing has become a popular approach to software quality assurance because it
often provides effective error detection at low cost [KKL08]. Pairwise is an algorithm
that uses specially constructed test sets that guarantee every parameter value interact with
each other at least one time. An example described in the next lines makes it easier to
comprehend how pairwise works. Let’s suppose our system is a Car comprised with the
following components:

1. Transmission: Automatic, Manual

2. Engine: Electric, Gasoline

3. Horse Power : LowPower, MediumPower, HighPower

4. Airbag: Yes, No

5. Color: Black, Red, Yellow

If we sum this up will get a total of 2 x 2 x 3 x 2 x 3 = 72 possible combinations. Table
2.3 shows the 9 tests where each parameter interacts with each other at least once. The

2.4. BLACK BOX TESTING TECHNIQUES 9

effectiveness of pairwise testing is based on the observation that software faults often involve
interaction between parameters. While some bugs can be easily detected using, for instance,
boundary alues or using a "divide by zero" but some others can only be detected when we
have multiple conditions at one time. According to [KKL08], pairwise testing could detect
70% for more than 90% of software faults for the application studied in [Kuh04].

Test Transmission Engine Horse Power Airbag Color
1 Automatic Gasoline HighPower Yes Blac
2 Manuel Electric HighPower No Yellow
3 Automatic Electric LowPower Yes Red
4 Automatic Gasoline LowPower No Yellow
5 Manual Electric LowPower No Black
6 Manual Gasoline MediumPower No Red
7 Automatic Electric MediumPower Yes Yellow
8 Manual Electric HighPower Yes Red
9 Automatic Electric MediumPower Yes Black

Table 2.3: Pairwise Test Configuration

2.4.4 Dynamic Analysis

Dynamic analysis is the process of evaluating behavior of a system or component during
execution. The most common analysis are the memory performance and CPU usage.

2.4.5 Error Guessing

As the name implies, error guessing is a technique where the tester simply based on past
experience tries to guess errors in the system. There are some metrics that can be used as
basis for error guessing like initializing data and repeat the process to check if the previous
data was properly removed or try out some wrong type of data (e.g. negative number or
inserting a string were a numeric value is expected).

10 CHAPTER 2. AUTOMATED SOFTWARE TESTING

2.5 White Box Techniques

First of all, we need to point out what Unit Testing is. Unit testing is a method by which
individual units of source code, sets of one or more computer program modules together
with associated control data, usage procedures, and operating procedures, are tested to
determine if they are fit for use [DH07]. One of the main techniques for white-box testing is
code coverage. Code coverage can be defined as metric used to measure the testing effort
applied to the software application [BBA75]. The process to capture the metrics of Code
Coverage involves Instrumentation of the program and execution of the tests. This way the
code which has or hasn’t been executed can be identified. We can see that unit Testing and
code coverage are complementary to each other. Unit testing confirms the compliance of
program performance with respect to the requirements, whereas code coverage reveals the
areas left out of the testing [BBA75]. The method used to apply code coverage is done by
creating a control-flow graph, where the nodes are statements of the program and the edges
the control flows from one node to another. Code Coverage can have different types:

• Statement Coverage: its major benefit is that it is greatly able to isolate the portion

of the code which will not be executed. This method tends to be expensive if we aim
for 100% coverage.

• Branch Coverage: is defined as a metric for measurement of the outcomes of the
decisions subjected to testing [BBA75].

2.6 Using a Framework to Automate Software Testing

A test automation framework is a set of concepts and tools that all together provide a basis
for AST and simplifies its process. The use of a framework allows us to reduce cost with
maintenance since it reuses scripts even if the test has any changes. This way the only file
that suffers any changes is the test file case. The framework has function libraries , test data
sources, object details and various reusable modules [Eli10].

1. defining the format to express if tests passed or failed.

2. creating a mechanism to connect to the application under test.

3. executing the tests.

2.6. USING A FRAMEWORK TO AUTOMATE SOFTWARE TESTING 11

4. reporting results.

The following sections will described the more common frameworks for testing automa-
tion, pointing out some of the benefits and disadvantages of their usage.

2.6.1 Data-Driven

Data-driven testing is a term used in the testing of computer software to describe testing
done using a table of conditions directly as test inputs and verifiable outputs as well as the
process where test environment settings and control are not hard-coded. In the simplest
form the tester supplies the inputs from a row in the table and expects the outputs which
occur in the same row. The table typically contains values which correspond to boundary or
partition input spaces. 1

In order to use Data-Driven we can use a tool that generates scripts by recording user
actions. The "hard-coded" data is removed from the scripts and placed in external data
files. These data files can be Excel spreadsheets, CVS or XML files, or even a database can
serve as source for data. The generated scripts can be executed using this datasets from the
data source. This approach can be used with unit (NUnit, JUnit, DUnit and MSTest tests) ,
functional (or GUI Testing) and load testing. Data-driven is especially useful in scenarios
when an application needs to be quickly supplied a large amount of input values [Gup09].
Using Data-Driven provides us with the following benefits:

• We can have multiple datasets at one time

• Provides separation between the data and the scripts

• Increases test coverage by using lots of different data sets.

• Information like data inputs or outputs and expected results are stored in the form of a
convenient managed text records

• As said before, having the possibility to store data in different data sources is an
advantage.

And can have some concerns:
1http://en.wikipedia.org/wiki/Data-driven_testing

http://en.wikipedia.org/wiki/Data-driven_testing

12 CHAPTER 2. AUTOMATED SOFTWARE TESTING

• Multiple scripts to maintain.

• Requires great expertise of the scripting language used by the automation tool.

2.6.2 Keyword-Driven

This framework requires the development of data tables and keywords, independent of
the test automation tool used to execute them and the test script code that "drives" the
software under testing and the data. In data-driven only the test data is included in the test
data files, in Keyword-Driven the entire functionality of the application gets captured as
step-by-step instructions for every test in a table. Once creating the test tables, a driver
script (or a set of scripts) is written which executes each step executes the step based on
the keyword contained the action field, performs error checking, and logs any relevant
information [Gup09]. The main difference between data-driven and keyword-driven testing
is that each line of data in a keyword script includes a keyword that tells the framework
what to do with the test data on that line.

An example of a Keyword-driven testing table is displayed in Figure 2.1. The image is
only displaying an extract of the file because the information that is needed can be seen in
the first columns of each line.

Figure 2.1: Keyword-drive Table sample

This small example is executing the following steps:

1. Creates and checks if the entity is created.

2. Check if the edited data is the expected one.

3. Update the entity and checks if it went well.

2.7. MODEL-BASED TESTING 13

2.7 Model-Based Testing

Model-Based Testing is a break-throught innovation in software testing because it completly
automates the validation testing process [Utt05]. The main reasons for its success,according
to [Pre05] are:

1. the need for quality assurance for increasingly complex systems

2. model-centric paradigms like UML with its connection to testing being more used

3. the arrival of the more test-oriented developtment methodologies

In a general term, Model-Based Testing is software testing in which test cases are generated
in whole or in part from a model that describes some aspects of the system under test,such
as the system’s accepted input sequences, actions, conditions and output logic, or the flow
of data through the application’s modules and routines. [Puo] [EFW01]. The test cases
generated from the model are executable and include an oracle component which assings a
pass/fail verdict to each test [Utt05].

Model based testing helps to ensure a repeatable and scientific basis for product testing,
gives good test coverage for the behavior of the products and allows tests to be directly
linked to the system requirements [Utt05].

Figure 2.2: Model Based Testing

14 CHAPTER 2. AUTOMATED SOFTWARE TESTING

2.7.1 Model-Based Testing Phases

According to [Utt05], Model-Based Testing usually envolves four phases:

1. building an abstract model of the system under test. This is similar to the process
of formally specifying the system, but the kind of specification/model needed for test
generation may be a little different to that needed for other purposes, such as proving
correctness, or clarifying requirements.

2. validating the model (typically via animation). This is done to detect gross errors
in the model.With model-based testing, if some errors remain in the model, they are
very likely to be detected when the generated tests are run against the system under
test.

3. generating abstract tests from the model. This step is usually automatic, but the
test engineer can control various parameters to determine which parts of the system
are tested, how many tests are generated, which model coverage criteria are used etc.

4. refining those abstract tests into concrete executable tests. This is a classic refne-
ment step, which adds concrete details missing from the abstract model. It is usually
performed automatically, after the test engineer specifies a refinement function from
the abstract values to some concrete values, and a concrete code template for each
abstract operation.

After performing these steps, the real tests can be executed in order to detect in which
tests the output is not the expected one. Model Based Testing provides useful feedback and
error detection for the requirements and the model, as well as the system under test.

2.7.2 Advantages of Model-Based Testing

Using Model-Based Testing can result in the following benefits, regarding this project:

• Shorter schedules, lower cost, and better quality

• A model of user behavior

• Capability to automatically generate many non-repetitive and useful tests

2.7. MODEL-BASED TESTING 15

• Test harness to automatically run generated tests

• Eases the updating of test suites for changed requirements

• Capability to assess software quality

2.7.3 Behavior Modeling Techniques

A variety of techniques/methods exist for expressing models of user/system behavior. These
include, but are not limited to:

• Decision Tables: Tables used to represent sets of conditions and actions.

• Finite State Machines: Consists on a model with a finite number of states and
transitions between those states, with their respective actions

• Grammars: describe the syntax of programming languages

• Markov Chains (Markov process): A stochastic process in which the probability
that the process is in a given state at a certain time depends only on the value of the
immediately preceding state

• Statecharts: Behavior diagrams specified as part of the Unified Modeling Language
(UML).

16 CHAPTER 2. AUTOMATED SOFTWARE TESTING

Chapter 3

The Athena Framework

This chapter describes the Athena Framework. It points the main goals of its development
and shows a small example on how to model an application using it.

The Athena project is a long-term project started by Primavera some years ago and it
aims the development of a framework that can be used to model applications and generate
automatically code for it, such as the User Interface, CRUD (Creat, Remove, Update, Delete)
Operations and even the SQL scripts that create the Data Base. All these applications are
under the concept of Software as a Service (SaaS). This means that the application and its
associated data are hosted centrally, in this case in the Internet Cloud and will be accessed
by used using a web browser over the internet. Recently, SaaS became a common delivery
model for most business applications, such as accounting, enterprise resource planning
(ERP), invoicing and human resource management (HRM).

3.1 Main Goals and Design Principles

The Athena project main objective is to provide a first version of the framework, usable
outside the project team, to develop new solutions aswell as providing the features required
to develop a full product.

The main design principles for this framework are the following:

• Design Patterns - the architecture implements known design patterns and uses best
practices.

17

18 CHAPTER 3. THE ATHENA FRAMEWORK

• Code reuse - the reutilization of third-party libraries to implement some parts of the
architecture design is an important requirement since it can help the development
productivity.

• Service Orientation - the Athena Framework follows a service-oriented design. This
design principle guides the development of the framework interfaces (API), promoting
independence between different component.

• Extensibility - all parts of the framework are designed with the goal of being easily
extended and customized.

• Declarative Programming - most aspects of the framework behavior can be configured,
customized and modified through XML-based configuration files. This approach
allows that the change the behavior of the framework without having to recompile
any software components.

3.2 Architecture

The Athena Framework is divided according to the logic layers shown on Figure 3.1

• Presentation Layer: this layer deals with the User Interface and User Experience.

• Service Layer: this layer includes all services that the client (presentation) uses to
communicate with the server (lower layers).

• Business Logic Layer: this layer handles the business logic of the application, includ-
ing the business processes that compose it.

• Data Layer: this layer is responsible for the data representation, persistence and
extraction.

3.3 Athena Designers

The framework includes several designers, which one responsible to create a part of the
application model.

3.3. ATHENA DESIGNERS 19

Figure 3.1: Athena Framework Architecture

• Entities Designer
This designer will be used to model the data managed by the module: entities and
their relations.

• Services Designer
This designer will be used to model the behavior and the services provides by the
module. It uses the entities model to obtain the entities available in each module.

• User Interface Designer
This designer will be used to model the module’s user interface. This model will
contain the parts of the first version of the Entities Model that are concerned with UI.

• Reporting Designer
This designer will be used to model the module’s business intelligence, from the
Query Builder data model to the BI OLAP cubes.

• Common Features
These are the set of features that are common between all designers:

– Serialization.

– Import/Export.

– Models cross-references.

– Validation.

– Code Generators.

– Unit tests.

– Design elements.

20 CHAPTER 3. THE ATHENA FRAMEWORK

3.4 Modeling Applications in Athena

The applications developed using the Athena Framework are divided by modules that can be
independent or dependent of each other. Those modules are then glued all together by what
we call a ’Product’. This way, we can use developed modules for more than one solution.
The figure 3.2 illustrates how the the products and modules can be related.

Figure 3.2: Athena Framework Module Development

In order to understand how we can develop a module using the Athena Framework, I
made a brief description of the steps required to it:

• Step 1 - Create Entities

Using the toolbox (Figure 3.3) and the Entities Designer we can create the Entities
and their respective attributes as well as their relations. Figure 3.4 shows the graphical
interface for creating entities.

In order to create an Entity all we need is to drag and drop from the toolbox into the
workspace. After that we can start to add attributes into that entity and the relations
between entities using the "association" button from the toolbox. When an association
is added, it is automatically created the foreign key attribute in the entity. Each
attribute can have its own type. They following types are considered:

– Text, ShortText, LongText, Memo for text type attributes. The length of the
desired attribute determines which type to use.

– Date, DateTime for dates.

– Number, AutoNumber, Percentage, Decimal for numeric attributes.

– Views for foreign keys.

3.4. MODELING APPLICATIONS IN ATHENA 21

– ValueList for enumerates.

– List for 1-n relations.

Figure 3.3: Toolbox

Figure 3.4: Entities Designer

• Step 2 - Generate Services

22 CHAPTER 3. THE ATHENA FRAMEWORK

After we have created the Entities we can automatically generate all of the Insert,
Update, Delete services for each Entity using the Services Designed. In case we don’t
want an entity to have one of more of those, for motives such as having an entity that
is read only, we can deactivate them in Entities Designed. Figure 3.5 shows how the
services interface looks like.

Figure 3.5: Services Designer

• Step 3 - Transform All

Once those steps are done and we have no errors we can begin with the code generation
using the Guidance Package. For this step all we need to do is press Transform All
using the framework guidance package. When the Transform All ran and there were
no errors, the test scripts that run using Visual Studio are also generated. Figure
3.6 shows the tests that are generating. For the ambit of this project only the ones
highlighted, i.e., view tests are important.

After doing this, and if everything went well, we can compile and run the application.
Note that only the logic layer, database and user interface is generated - all other custom
code has to be added by the user so it can be a "real" application. There are also generated
some elements for testing that will be described in the next section.

3.5. DEVELOPED TEST MODULE 23

Figure 3.6: Generated Test Scripts

3.5 Developed Test Module

In order to develop the testing module, was mandatory to develop an application for testing.
The Figure 3.7 shows the main module for the application, including the entitites and
attributes, that was developed. By looking once again to Figure 3.71 we see that we have
diferent elements in different colors. They representation is the following:

• Pink - represent the Modules used by the Module. Other modules can be imported to
the module we are developing to import External Entities (see below).

• Green - are the External Entities, i.e., entities that are imported from other modules.
In the case, are being imported External Entities from three other Modules.

• Grey - represents the Entities added to the Module we are developing.

• Brown - represents the ValueLists from the Entities.

1this document is better viewed when printed in color or in its electronic document

24 CHAPTER 3. THE ATHENA FRAMEWORK

Figure 3.7: TestModule

Chapter 4

Automatic Test Case Generation
Component

This chapter will consist on the steps and decisions taken in the development of the test
automation component for the Athena Framework, aswell as the strategy used for the success
of the project.

4.1 Overview

While modelling a module using the Athena Framework, we can create Entities and their
respective Attributes and relations. Internally, they are just C# objects and, in case of the
Attributes, there is a mapping between their Athena types and C# types. There is also a
structure named Model which is a Graph, that contains all the model information. It is
also important to mention that the framework uses T4 Text Templates to generate code.
So, in this project was necessary to edit one of those template files in order to generate the
Keyword-Driven files for testing automation.

The framework is divided into several DSLs, each one responsible for a specific part in
the code generation. Since the goal is to test the UserInterface, it was on the UserInterface
DSL that the developed classes were added. It was also necessary to edit one of those T4
Text Template files to use the developed methods.

25

26 CHAPTER 4. AUTOMATIC TEST CASE GENERATION COMPONENT

4.2 Developed Classes

4.2.1 Test Rules

As the name suggests, a Test Rule is used to define rules about an attribute in order to
generate data for testing. These rules are simple types of rules like "the attribute A has
values between 13 and 30" or "the attribute B text has to have at least 10 characters".Test
Rules are composed by the following fields:

• TestRule Types

– Minimum/Maximum Value:
A Minimum or Maximum rule can be defined to point out what’s the minimum
or maximum values that an attribute can have according to the requirements. If
the attribute that has a rule of this type is numeric, it corresponds to its minimum
or maximum value. If its text then corresponds to the minimum or maximum
string length.

– Range:
This type is composed by both minimum and maximum value, and its used to
define upper and lower range values for a the attribute. For example, if we have
a text attribute that according to the requirements can only have a length between
10 and 20, a Range Rule can be defined for it.

– Multiple Ranges:
A Multiple Range Rule is defined when an attribute has valid values contained
in more than one range. For example, if we have a numeric attribute which
has valid values contained in [3,10] and [30,40] this type of rule can be used to
define it. Note that this type of rules is not implemented for all attribute types,
this is a feature related with future work.

– Allowed Values:
The Allowed Values rule type is used for attributes that can only have a set of
values, p.e, a numeric attribute that can only have the values ’1,3,7’.

• Rule Result

Before pointing out the kinds of rule results it is important to provide a briefly
explanation about Intervals and their classification. An interval is said to be left-

4.2. DEVELOPED CLASSES 27

bounded or right-bounded if there is some real number that is, respectively, smaller
than or larger than all its elements. An interval is said to be bounded if it is both left-
and right-bounded; and is said to be unbounded otherwise. Intervals that are bounded
at only one end are said to be half-bounded. The empty set is bounded, and the set
of all reals is the only interval that is unbounded at both ends. Bounded intervals are
also commonly known as finite intervals.1 Give this, the Rule Result can be seen as a
way to define whether or not if the interval is bounded (Pass) or unbounded (Fail).
There is also an ’non-conclusive’ Test Result which is used for Range or Multiple
Range rules since they are dependent of the upper and lower border value.

Test Rules Creation

Test Rules can be added to the model by providing a XML file containing test rules. In case
there is no XML file provided, a set of default test rules is automatically generated. The
automatically generated rules will be RangeRules, according to Table 4.1.The same thing
happens if the XML file lacks test rules for an attribute. The xml file containing the test
rules needs to have the format shown on Figure 4.1

Athena Type Values Range
ShortText Length:[1,30]
LongText Length:[1,100]

Text Length:[1,50]
Memo Length:[1,400]

Number [-999999999,999999999]
AutoNumber [0,999999999]

Decimal [-999999999.0000,999999999.0000]
Percentage [-999999999.0000,999999999.0000]

Table 4.1: Athena Framework Type Ranges

4.2.2 Test Data

After Test Rules are created either based on a XML file containing the Rules, it is time to
generate the data itself for each attribute in the model, according to their test rules. The test
data will contain the actual data values that will be used for testing.

1http://en.wikipedia.org/wiki/Interval_mathematics

http://en.wikipedia.org/wiki/Interval_mathematics

28 CHAPTER 4. AUTOMATIC TEST CASE GENERATION COMPONENT

<Entities>
<Entity
Name="InvoiceType">

<Attribute
Name="Attribute"
Type="ShortText">

<Rule
Name="Range"
RuleType="Range"
Value="1,Pass|20,Fail">

</Attribute>
<Attribute
Name="Description"
Type="LongText">

<Rule
Name="Range"
RuleType="Range"
Value="1,Pass|100,Pass">

</Attribute>
(...)

</Entity>
(...)

</Entities>

Figure 4.1: XML file containing TestRules

4.2. DEVELOPED CLASSES 29

The TestData classed is composed by:

• object data
Contains the value of the data for testing. It is declared as a generic object since its
type depends on the attribute type (Date, double, int, string , etc).

• bool expectedResult
This member has the result of test of the associated data. If, for examples, the
generated value falls under the ’Fail’ of the TestRule it will be marked as false

Filling this structure requires the help from a developed class named Generate. The
Generate class contains the following methods to properly generate data:

• int RandomNumber(int min, int max)
Generates a number between min and max.

• double RandomDouble(int min, int max)
Generates a decimal number between min and max.

• string RandomString(int size)
Generates a string with the length equal to size.

• DateTime RandomDate(DateTime a, DateTime b)
Generates a date between date a and b.

With the help of these methods, it is possible to generate values to test border values. By
using the rules shown on Table 4.2 we will get the test data displayed on Table 4.3, in the
case where the attribute used is a number. The same process is used for generating dates
and text, the only things that change are the methods that are used.

Rule Type Value/Result
1 Min 30/Fail
2 Max 40/Pass

3
Range Min: 10/Pass

Max: 25/Fail

Table 4.2: TestRule Examples

30 CHAPTER 4. AUTOMATIC TEST CASE GENERATION COMPONENT

Rule Used Value ExpectedResult

1
29 Fail
30 Fail
31 Pass

RandomInt(31,999999999) Pass

2
39 Pass
40 Pass
41 Fail

RandomInt(-999999999,40) Pass

3

10 Pass
9 Fail

11 Pass
25 Fail
26 Fail
24 Pass

RandomInt(11,24) Pass

Table 4.3: TestData Examples

4.2.3 Qict

Qict2 is a Library that performs pairwise. As stated before, creating all the possible com-
binations would result, in some cases, in a very large of test cases. This happens because
one of the objectives is to test border values for each attribute in an entity. By default, Qict
gets a file with a proper syntax in order to perform pairwise. The syntax for the input is
displayed in Figure 4.2. Parameters must follow some rules:

1. They have to be unique, i.e, there can not be more than one parameter with the same
name.

2. Parameter name are follows by a colon character and delimited by commas.

Initialization

In the step, the structure that provides support for the algorithm is initialized. The members
that are used are the following [McC09]:

2http://msdn.microsoft.com/en-us/magazine/ee819137.aspx

http://msdn.microsoft.com/en-us/magazine/ee819137.aspx

4.2. DEVELOPED CLASSES 31

Param0: a, b
Param1: c, d, e, f
Param2: g, h, i

Figure 4.2: Qict input file example

• int numberParameters

• int numberParameterValues Holds the total number of values of the parameters.
For the example shown on Figure 4.2 it has the value of 9.

• int numberPairs Holds the all possible pairs between parameters. For the example
shown on Figure 4.2 it has the value of 26.

• int poolSize The poolSize variable stores the number of candidate test sets to generate
for each test set. It was set by default to 20 and was the value used for this project.

• int[][] legalValues It is a jagged array where each cell in turn holds an array of int
values. The legalValues array holds an in-memory representation of the input file,
so cell 0 of legal values holds an array that in turn holds the values 0 (to represent
parameter value “a”) and 1 (to represent “b”). According to [McC09] working with
string values is rather inefficient and that representing parameter values as integers
yields significantly faster performance, reason why this strategy was used.

• string[] parameterValues It holds the actual parameter values and is used at the end
of QICT to display results as strings rather than ints. In the example show on Figure
4.2, cell 0 holds “a”, cell 1 holds “b” and so on through cell 8, which holds “i”.

• int[,] allPairsDisplay

The allPairsDisplay object is a two-dimensional array of ints. It is populated by all
possible pairs. In this example, cell [0,0] holds 0 (for “a”) and cell [0,1] holds 2 (for
“c”)—the first possible pair. Cell [1,0] holds 0 and cell [1,1] holds 3 to represent the
second pair, (a,d). Table 4.4 clarifies how it works.

• List<int[]> unusedPairs The unusedPairs object is a generic List of int arrays. A
List collection is used for unusedPairs rather than an array because each time a new
test set is added to the test sets collection, he pairs generated are removed by the new

32 CHAPTER 4. AUTOMATIC TEST CASE GENERATION COMPONENT

i allPairsDisplay[i,0] allPairsDisplay[i,1] Matching Pair
0 0 2 (a, c)
1 0 3 (a, d)
2 0 4 (a, e)
3 0 5 (a, f)
4 1 2 (b, c)
5 1 3 (b, d)
6 1 4 (b, e)
7 1 5 (b, f)
8 0 6 (a, g)
9 0 7 (a, h)

10 0 8 (a, i)
11 1 6 (b, g)
12 1 7 (b, h)
13 1 8 (b, i)
14 2 6 (c, g)
15 2 7 (c, h)
16 2 8 (c, i)
17 3 6 (d, g)
18 3 7 (d, h)
19 3 8 (d, i)
20 4 6 (e, g)
21 4 7 (e, h)
22 4 8 (e, i)
23 5 6 (f, i)
24 5 7 (f, h)
25 5 8 (f, i)

Table 4.4: Mapping of allPairsDisplay to the actual pairs

4.2. DEVELOPED CLASSES 33

test set from unusedPairs. Additionally, it serves as a convenient stopping condition
that will occur when unusedPairs.Count reaches 0.

• int[,] unusedPairsSearch It is a square array with size numberParameterValues by
numberParameterValues, where each cell holds a 1 if the corresponding pair has not
been used, and a 0 if the corresponding pair has been used or is not a valid pair. For
the example in Figure 4.2 it is:

0 0 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

So row one means pairs (0,0) and (0,1), that is, (a,a) and (a,b) are not valid. On the
other hand, pairs (0,2), (0,3),etc, have not yet been used by a test set.

• int[] parameterPositions The parameterPositions array holds the location within a
test set of a specified parameter value. After initialization, and for the same example
as before, this array contains the values:

0 0 1 1 1 1 2 2 2

The parameterPositions index represents the parameter values(a, b, c, etc) and the
cell value the respective parameters (Param0, Param1, Param2)

• int[] unusedCounts

The unusedCounts object is a one-dimensional array that holds the number of times a
particular parameter value appears in the unusedPairs array. Initially unusedCounts
holds:

7 7 5 5 5 5 6 6 6

34 CHAPTER 4. AUTOMATIC TEST CASE GENERATION COMPONENT

The index represents a parameter value, and the corresponding cell value is the unused
count. This means that we have 7 occurences of 0 (a) and 1 (b) in unusedPairs

• List<int[]> testSets The testSets object holds the pairwise test set results. It is
initially empty but grows every time a new test set is generated. Each test set is
represented by an int array.

With the key data structures in place, QICT reads the input file to determine values
for numberParameters and numberParameterValues, and to populate the legalValues and
parameterValues arrays. In order to avoid writing text files for Qict, the method that
runs Qict was slightly changed so its input is a Collection of strings in which each string
corresponds to a line as it would be in the file. During the transformation process, based on
the attribute’s test data, this Collection is stored in a member inside the entity and will be
called by Qict to perform pairwise.

Once legalValues is populated, it is scanned to determine the number of pairs for the
input:

for (int i = 0; i <= legalValues.Length - 2; ++i) {
for (int j = i + 1; j <= legalValues.Length - 1; ++j) {
numberPairs += (legalValues[i].Length * legalValues[j].Length);

}
}

After initialization, the first row of legalValues holds {0,1} and the second row holds
{2,3,4,5}. Notice that the pairs determined by these two rows are (0,2), (0,3), (0,4), (0,5),
(1,2), (1,3), (1,4), and (1,5), and that in general the number of pairs determined by any two
rows in legalValues is the product of the number of values in the two rows, which equals
the row Length property of the rows. The next part of QICT code populates the unusedPairs

List:

4.2. DEVELOPED CLASSES 35

unusedPairs = new List<int[]>();
for (int i = 0; i <= legalValues.Length - 2; ++i) {
for (int j = i + 1; j <= legalValues.Length - 1; ++j) {
int[] firstRow = legalValues[i];
int[] secondRow = legalValues[j];
for (int x = 0; x < firstRow.Length; ++x) {
for (int y = 0; y < secondRow.Length; ++y) {
int[] aPair = new int[2];
aPair[0] = firstRow[x];
aPair[1] = secondRow[y];
unusedPairs.Add(aPair);

}
}

}
}

Here It is grabbed each pair of rows from legalValues using indexes i and j. Next,
we walk through the values in each row pair using indexes x and y. Extensive use of
multiple nested for loops like this is a hallmark of combinatorial code. After populating the
unusedPairs List, It is used the same nested loop structure to populate the allPairsDisplay

and unusedPairsSearch arrays. The initialization code next populates the parameterPositions
array by iterating through legalValues:

parameterPositions = new int[numberParameterValues];
int k = 0;
for (int i = 0; i < legalValues.Length; ++i) {
int[] curr = legalValues[i];
for (int j = 0; j < curr.Length; ++j) {
parameterPositions[k++] = i;

}
}

The initialization code concludes by populating the unusedCounts array:

36 CHAPTER 4. AUTOMATIC TEST CASE GENERATION COMPONENT

unusedCounts = new int[numberParameterValues];
for (int i = 0; i < allPairsDisplay.GetLength(0); ++i) {
++unusedCounts[allPairsDisplay[i, 0]];
++unusedCounts[allPairsDisplay[i, 1]];

}

Here, as in many of the QICT routines, th author takes advantage of the fact that C#
automatically initializes all cells in int arrays to 0.The main processing loop begins:

testSets = new List<int[]>();
while (unusedPairs.Count > 0) {
int[][] candidateSets = new int[poolSize][];
for (int candidate = 0; candidate < poolSize; ++candidate) {
int[] testSet = new int[numberParameters];

}
}

Because the number of candidate test sets is known to be poolSize, we can instantiate an
array rather than use a dynamic-sized List object. Notice that the size of the unusedPairs

collection controls the main processing loop exit. Now it’s time to pick the “best” unused
pair:

int bestWeight = 0;
int indexOfBestPair = 0;
for (int i = 0; i < unusedPairs.Count; ++i) {
int[] curr = unusedPairs[i];
int weight = unusedCounts[curr[0]] + unusedCounts[curr[1]];
if (weight > bestWeight) {
bestWeight = weight;
indexOfBestPair = i;

}
}

Here It is defined best to mean the unused pair that has the highest sum of unused
individual parameter values. For example, if “a” appears one time in the current list of
unused pairs, “b” appears two times, “c” three times and “d” four times, then pair (a,c) has

4.2. DEVELOPED CLASSES 37

weight 1 + 3 = 4, and pair (b,d) has weight (b,d) 2 + 4 = 6, so pair (b,d) would be selected
over (a,c).

Once the best unused pair has been determined, It is created a two-cell array to hold the
pair values and determine the positions within a test set where each value belongs:

int[] best = new int[2];
unusedPairs[indexOfBestPair].CopyTo(best, 0);
int firstPos = parameterPositions[best[0]];
int secondPos = parameterPositions[best[1]];

At this point we have an empty test set and a pair of values to place in the test set, and we
know the location within the test set where the values belong. The next step is to generate
parameter values for the remaining positions in the test set. Now, rather than fill the test set
positions in some fixed order (from low index to high), it turns out that it is much better
to fill the test set in random order. First, It is generated an array that holds the parameter
positions in sequential order:

int[] ordering = new int[numberParameters];
for (int i = 0; i < numberParameters; ++i)
ordering[i] = i;

Next, It is rearranged the order by placing the known locations of the first two values
from the best pair into the first two cells of the ordering array:

ordering[0] = firstPos;
ordering[firstPos] = 0;
int t = ordering[1];
ordering[1] = secondPos;
ordering[secondPos] = t;

And now we shuffle the remaining positions (from cell 2 and up) using the Knuth shuffle
algorithm. This is why It was created a Random object at the beginning of the QICT code.
The number of test sets produced by QICT is surprisingly sensitive to the value of the
pseudo-random number generator seed value.

38 CHAPTER 4. AUTOMATIC TEST CASE GENERATION COMPONENT

for (int i = 2; i < ordering.Length; i++) {
int j = r.Next(i, ordering.Length);
int temp = ordering[j];
ordering[j] = ordering[i];
ordering[i] = temp;

}

After shuffling, we place the two values from the best pair into the candidate test set:

testSet[firstPos] = best[0];
testSet[secondPos] = best[1];

Now we must determine the best parameter values to place in each of the empty test set
positions. For each parameter position, It is tested each possible legal value at that position,
by counting how many unused pairs in the test value, when combined with the other values
already in the test set capture. Then It is selected the parameter value that captures the most
unused pairs. The code to do this is the trickiest part of QICT and is listed below:

for (int i = 2; i < numberParameters; ++i) {
int currPos = ordering[i];
int[] possibleValues = legalValues[currPos];
int currentCount = 0; int highestCount = 0; int bestJ = 0;
for (int j = 0; j < possibleValues.Length; ++j) {
currentCount = 0;
for (int p = 0; p < i; ++p) {
int[] candidatePair = new int[] { possibleValues[j], testSet[ordering[p]] };
if (unusedPairsSearch[candidatePair[0], candidatePair[1]] == 1 ||
unusedPairsSearch[candidatePair[1], candidatePair[0]] == 1)
++currentCount;

}
if (currentCount > highestCount) {
highestCount = currentCount;
bestJ = j;

}
}
testSet[currPos] = possibleValues[bestJ];

}

4.2. DEVELOPED CLASSES 39

The outermost loop abbove is a count of the total number of test set positions (given by
numberParameters), less two (because two spots are used by the best pair). Inside that loop
we fetch the position of the current spot to fill by looking into the ordering array I created
earlier. The currentCount variable holds the number of unused pairs captured by the test
parameter value. Notice that because we are filling test set positions in random order, the
candidate pair of values can be out of order, so It needed to check two possibilities when
we do a lookup into the unusedPairsSearch array. At the end of the this code, we will
have a candidate test set that has values in every position that were selected using greedy
algorithms. Now we simply add this candidate test set into the collection of candidates:

candidateSets[candidate] = testSet;

At this point we have n = poolSize candidate test sets and It is needed to select the best
of these to add into the primary testSet result collection. The author states that he could
assume that the first candidate test set captures the most unused pairs and could simply
iterate through each candidate starting at position 0, but introducing some randomness
produces better results. We pick a random spot within the candidates and assume it is the
best candidate:

int indexOfBestCandidate = r.Next(candidateSets.Length);
int mostPairsCaptured =
NumberPairsCaptured(candidateSets[indexOfBestCandidate],
unusedPairsSearch);

Here It is used a little helper function named NumberPairsCaptured() to determine how
many unused pairs are captured by a given test set. The helper function is:

40 CHAPTER 4. AUTOMATIC TEST CASE GENERATION COMPONENT

static int NumberPairsCaptured(int[] ts, int[,] unusedPairsSearch)
{
int ans = 0;
for (int i = 0; i <= ts.Length - 2; ++i) {
for (int j = i + 1; j <= ts.Length - 1; ++j) {
if (unusedPairsSearch[ts[i], ts[j]] == 1)
++ans;

}
}
return ans;

}

Now we walk through each candidate test set, keeping track of the location of the one
that captures the most unused pairs:

for (int i = 0; i < candidateSets.Length; ++i) {
int pairsCaptured = NumberPairsCaptured(candidateSets[i],
unusedPairsSearch);

if (pairsCaptured > mostPairsCaptured) {
mostPairsCaptured = pairsCaptured;
indexOfBestCandidate = i;

}
}

And now we copy the best candidate test set into the main result testSets List object:

int[] bestTestSet = new int[numberParameters];
candidateSets[indexOfBestCandidate].CopyTo(bestTestSet, 0);
testSets.Add(bestTestSet);

At this point, we have generated and added a new test set, so we must update all the
data structures that are affected, namely, the unusedPairs List (by removing all pairs that
are generated by the new test set), the unusedCounts array (by decrementing the count for
each parameter value in the new test set), and the unusedPairsSearch matrix (by flipping
the values associated with each pair generated by the new test set from 1 to 0).

We continue generating candidates, selecting the best candidate, adding the best candi-
date to testSets and updating data structures operations. The processing will end when the

4.2. DEVELOPED CLASSES 41

number of unused pairs reaches 0.

Then the final results are displayed:

Console.WriteLine("Result testsets: ");
for (int i = 0; i < testSets.Count; ++i) {
Console.Write(i.ToString().PadLeft(3) + ": ");
int[] curr = testSets[i];
for (int j = 0; j < numberParameters; ++j) {
Console.Write(parameterValues[curr[j]] + " ");

}
Console.WriteLine("");

}
Console.WriteLine("");

}

Running QICT qith the parameters shown on Figure 4.2 will result in the displayed on
Table 4.5.

Result
0 a c g
1 b c h
2 a d i
3 b e g
4 a f h
5 b f i
6 b d g
7 a e h
8 a c i
9 a d h

10 a e i
11 a f g

Table 4.5: Pairwise Result

4.2.4 Attribute and Entity

Since the framework already had the Entity and Attribute classes, the strategy used was to
extend those classes and add them members and properties needed for generate data.

42 CHAPTER 4. AUTOMATIC TEST CASE GENERATION COMPONENT

Entity

• Collection<string> qictData containing the data to be used as input by Qict

• Collection<string> qictGridData same as above but for lists.

Attribute

• Collection <TestData> testData containing the Test Data set for the Attribute.

• Collection <TestRules> testRules containing the Test Rules set for the Attribute.

4.3 Process

For the sake of clarity, it was created a diagram shown on figure 4.3 with all the required
steps for data generation. Also, the following simplified algorithm of the process can aid
the understanding of the strategy can be seen on Algorithm 1. All these steps will be fully
described in the following subsections.

model⇐ readmodel
if testRules exist then

rules⇐ serializeTestRules(model)
end if
for all entity ∈ model do

attributesList ⇐ getAttributes(entity)
for all attribute ∈ entity do

rules⇐ read(testRules)
numberO f Rules⇐ Count(rules)
if numberO f Rules = 0 then

generate default test data for attribute
end if

end for
generate TestData
run pairwise
create spreadsheet for entity
generate test cases for entity
insert test cases in spreadsheet

end for
Algorithm 1: Simplified Process Algorithm

4.3. PROCESS 43

Figure 4.3: Process Diagram

4.3.1 Read Rules File

Using a XML file containing rules, with syntax like shown on Figure 4.1 and using the C#
XML library made the reading file process much easier. The strategy used to deserialize
rules is displayed on Figure 4.4

4.3.2 Generate Default TestData

By looking again at the Algorithm 1 we can see that when there is no TestRule associated to
an attribute a set of TestData is generated, according to the attribute type. This process is
shown on Figure 4.5

4.3.3 Generate Values

Now that the TestRules are created, data can be generated based on them. Since we have
some special types - List, View, ValueList - they needed to be treated in a different way
since their meaning on the User Interface is different from other types. So, they are treated

44 CHAPTER 4. AUTOMATIC TEST CASE GENERATION COMPONENT

Input: model, filepath

XmlDocument doc = load(filepath)

XmlNodeList entitiesList = get xml elements by tag "Name"
for each (Xml node in entitiesList)
{

Entity entity = get entity by node "Name" tag
XmlNodeList attributesXmlList = get xml elements by tag "Attribute"

for each (XmlNode attributeXml in atributesXmlList)
{

Attribute attribute = get Attribute by attributeXml "Name" tag

XmlNodeList rulesXml leftarrow get Xml elements by tag "Rule"

for each (XmlNode ruleXml in rulesXml)
{

RuleType type = get RuleType by ruleXml tag "Type"

switch(type)
{

case Range:
Parse RangeRule from ruleXml

case AllowedValues
Parse TestRule from ruleXml

default:
Parse TestRule from ruleXml

}
}

}
}

Figure 4.4: Deserialize Test Rules from XML file

4.3. PROCESS 45

Input: model, attribute

switch(attribute type)
{

case Boolean:
add "true"
add "false"

case ValueList:
get ValueList from model with same name as the attribute
create TestData with that ValueList as value.

case DomainType.Datetime:
case DomainType.Date:
case DomainType.Time:

create TestData with minimum and maximum
possible dates and a random date

case DomainType.Percentage:
case DomainType.Decimal:

create TestData like it was a RangeRule with min = -999999999.0000
and max = 999999999.0000

case DomainType.ShortText:
create TestData like it was a RangeRule with min length = 1

and max length = 20
case DomainType.Text:

create TestData like it was a RangeRule with min length = 1
and max length = 50

case DomainType.Memo:
create TestData like it was a RangeRule with min length = 1

and max length = 400
case DomainType.LongText:

create TestData like it was a RangeRule with min length = 1
and max length = 100

case DomainType.AutoNumber:
create TestData like it was a RangeRule with min length = 0

and max length = 999999999
case DomainType.Number:
case DomainType.Money:

create TestData like it was a RangeRule with min = -999999999
and max = 999999999

}

Figure 4.5: Generate Default Test Data

46 CHAPTER 4. AUTOMATIC TEST CASE GENERATION COMPONENT

as follows:

• List - the only TestData this type of Attribute will have is the name of the sheet that it
will be related with inside the spreadsheet. Those sheets for lists will be generated in
a similar process as the entities spreadsheets.

• ValueList - the TestData for the ValueList will only be the values that that ValueList
has.

• View - they are the last ones that are generated. Since they refer to Foreign Keys it is
needed to generate their target entitues first.

Input: entity

for each (Attribute attribute in entity)
{

switch(attribute type)
{

case ValueList:
for each item in ValueList add that value to the TestData

case List:
add TestData with the name plural name of the target entity

default:
GenerateGenericValues(attribute)

}
}

Figure 4.6: Generate TestData

4.3.4 Pairwise Structure Creation

At this point, we have all the structure set to perform pairwise. Like said on section 4.2.3 the
strategy used was to create an Array in which each line has a line according to the syntax
used by Qict and store it in the QictData structure, inside an Entity. This method requires a
string value that contais all the automation ids for the attributes in the entity.The process
for this is shown on Figure 4.9. After this structure is created it is just needed to pass it as
argument for Qict and pairwise will be performed.

4.3. PROCESS 47

Input: attribute

for each (TestRule testRule in attribute)
{

switch(attribute type)
{

case Boolean:
GenerateBoolean(testRule)

case AutoNumber:
case Number:
case Money:

GenerateNumber(testRule)
case Decimal
case Percentage:

GenrateDecimal(testRule)
case Date:
case DateTime:
case Time:

GenerateDate(testRule)
case Memo:
case Text:
case ShortText:
case LongText:

GenerateText(testRule)
}

}

Figure 4.7: Generate Values

48 CHAPTER 4. AUTOMATIC TEST CASE GENERATION COMPONENT

Input: testRule

switch (testRule type)
{

case Range:
Add random Number/Text/Date with value between min and max
Add min value
Add min value + 1
Add min value - 1
Add max value
Add max value - 1
Add max value +1

case MaxValue:
Add max value
Add max value + 1
Add max value - 1
Add min possible value according to attribute type
Add min possible value -1 according to attribute type
Add min possible value +1 according to attribute type
Add random Numer/Text/Date with value

between "value" and mininum possible value according
to attribute type

case MinValue:
Add value
Add value + 1
Add value - 1
Add max possible value according to attribute type
Add max possible value -1 according to attribute type
Add max possible value +1 according to attribute type
Add random Number/Text/Date with value

between "value" and maximum possible value according
to attribute type

case AllowedValue:
Add values from the list
Add random value that doesn’t exist in list

}

Figure 4.8: Generate

4.3. PROCESS 49

input: atribute, value

string[] automationIdArray = Split(value, ’,’)

for each (automationId in automationIdArray)
{

string s = empty string;
Attribute attribute = GetAttributeByAutomationId(automationId)

s = s + " : "

for each (TestData testData in attribute.GetTestData)
{

s = s + testData.ToString
}

entity.QictData.Add(s)
}

Figure 4.9: Generate data for Qict

50 CHAPTER 4. AUTOMATIC TEST CASE GENERATION COMPONENT

4.3.5 Create Spreadhseets

After performing Pairwise, the environment is set to create the test cases. First, since it is
used a Keyword-Driven approach and all the test cases will be stored in a spreadsheet, those
files have to be created. That spreadsheet contains the following fields:

• Enabled
It can be true or false. It is used to mark the test for running or not.

• TestType
It refers to the type of test that line will run. It can be Insert, Update, Delete, Compare,
Exists, NotExists, OpenApplication, CloseApplication.

• TaskFriendlyName
It is used to point the task name for the test. It can be, for example, ’Create Entity-
Name’.

• TaskId
It contains the automation id of the task.

• ListForEdition
It has to be true in case of the Entity having a List attribute. Otherwise it is set to
false.

• FileName
Name of the application executable.

• Arguments
URL of the application.

• Name
Name of the window that is running the application

• Type
Type of application. For the case of this project, it is Silverlight.

• BrowerType
The brower used to run the application

4.4. RUNNING TESTS 51

• Username
Username for login

• Password
Password for login

• NewPassword
Used in case it is the first time running the application and a new password has to be
set.

• AuthenticationFieldTextBlock Can be true or false. Is used in case is the first time
running and a new password has to be set.

• WorkspaceItem
Name of the workspace that is used.

• RememberCredentials
Used to mark or not the check box to remember the username and password.

• RememberWorkspace
Used to mark or not the check box to remember the workspace name.

Other than this fields, the sheet will also have the automation ids of each attribute so it
knows where to click or fill data. An example of a generated spreadsheet for Entity Supplier
contained in the Module developed for testing, can be seen on Figure B.1.

The way to create these spreadsheets is to create and treat them like they are a Database
using the Oledb C# library and inserting the Test Cases using SQL queries. So, it is needed
to created SQL queries using the data from performing pairwise. This process is illustrated
by Figure 4.10

4.4 Running Tests

This section describes an example on how to run a simple test using the generated scripts
and the data. The module used to show this example is the one presented on Section 3.5

During the template transformation process the test scripts, that are generated will be run
in Visual Studio, are created. As previously said, the ones that are important for this project

52 CHAPTER 4. AUTOMATIC TEST CASE GENERATION COMPONENT

input: Entity entity
Graph model
string operation
string task
string url

string[] pairwiseData = Qict.RunQict(entity.QictData)

string tableName = entity.Name + "TestData"
Collection<string> queries = new Collection()
string taskFriendlyName = task + "Entity" + entity.Name
task = task + entity.Name
bool listForEdition = entity.HasListAttribute

for(int i=1; i < pairwiseData.Length; i++)
{

string s = new string

s = "INSERT INTO ["+tableName +"$]"+
"VALUES (’FALSE’, ’" + operation + " ’,’ " + task +
" ’,’ " + taskFriendlyName + " ’,’" +
’iexplore.exe’ + " ’, ’ " + url +
" ’, ’Athena Framework’, ’Silverlight’, ’admin’, ’aa’,
’False’, ’False’, ’False’, ’False’, + transform(pairwiseData)

queries.Add(s)
}

if(listForEdition)
{

Entity targetEntity = getTargetEntity(model,entity)

for each (string query in entity.GenerateGridInserts(targetEntity)
{

queries.Add(query)
}

}

Figure 4.10: Queries Creation

4.4. RUNNING TESTS 53

are the View Tests. The goal of these tests is to test the User Interface of the application
by inserting, creating, updating, comparing or deleting a record. Since this scripts required
the capture of the automatin ids and controls from the brower in order to know the which
fields to fill or which buttons to click, they require the help of a library named White Tools3.
These tests will use the spreadsheets previously generated to run. It was also added to these
scripts some methods from an internally developed library named TestExecutions. This
library allows to store in a database the execution results from the tests aswell as some other
important information like the time the test took to run and operative system version.

This example will be based on the first three lines of the spreadsheet shown in Figure
B.1 on Appendix B. To run a test we simply need to right-cick on the test on the test viewer
window of the Visual Studio and press Run. Figure 4.11 shows a small example of how this
test will run.

Figure 4.11: Schema for the example

For better understanding, the following shows the values of the fields and their respective
values of the third line of the spreadsheet displayed on Figure B.1 which will be used for
the example.

3http://white.codeplex.com/

http://white.codeplex.com/

54 CHAPTER 4. AUTOMATIC TEST CASE GENERATION COMPONENT

4.4.1 Open Application

The first step for running a test will be to open the application. Looking once again at B.1
at the TestType field, on the first row is OpenApplication. The other fields relevant for
openning the application, and their respective values are the following:

• Filename set as iexplore.exe since is the name of the executable for running the
Internet Explorer

• Arguments set as http://localhost:52244/Default.aspx because it is the URL of the
application for testing.

Other than that, the Name field is used to know which window on the operative system is
used to run the test. In this case, he detects the Internet Explorer window with name Athena

Framework.

4.4.2 Login

The login process is divided in two parts, the login into the application and the selection of
the workspace. The relevant fields for this step are:

• Username

• Password

• RememberCredentials

Login

This step consists on filling the username and password fields in the application’s user
interface. Figure 4.12 displays how the cells and fields on the spreadsheet act on the user
interface.

Select Workspace

The next step will be to select the workspace. Figure 4.13 displays, like before, how the
cells and fields on the spreadsheet act on the user interface. The relevant fields for this step
are:

4.4. RUNNING TESTS 55

Figure 4.12: Login Screen

56 CHAPTER 4. AUTOMATIC TEST CASE GENERATION COMPONENT

• Workspace

• RememberWorkspace

Figure 4.13: Selecting Workspace

4.4.3 Selecting Task

The selecting task step consists in reading the fields TaskId and TaskFriendlyName. The
first one is just a search string while the latter holds the automation id of the operation in the
user interface. Figure 4.14 illustrates this.

4.4.4 Insert Values

This step is where the values are inserted in the application. It requires the automation ids
of the attributes, which are held by the field name, in this case, SupplierKeyTextFieldId ,
NameTextFieldId and PriceHourNumberFieldId. Figure 4.15 shows the user interface in

4.4. RUNNING TESTS 57

Figure 4.14: Selecting Task

58 CHAPTER 4. AUTOMATIC TEST CASE GENERATION COMPONENT

this step. After filling the values the button Create, if everything went well, the values are
inserted in the application’s database. Otherwise, it will pop an error message wich is the
trigger for the script to know that something went wrong.

Figure 4.15: Inserting values

4.4.5 Close Application

The last line of the spreadsheet should have a test with type Close Application. This signals
the script that all the tests are done executing and closes the application and generates a
Visual Studio report for the executed tests.

Chapter 5

Concluding Remarks

5.1 Conclusion

This thesis presents the method we defined to add to the Athena Framework a module to
automatically generate test cases. Overall, we think the project was a success since the main
goals of the proposed project are totally achieved. Indeed we are convinced that a major
step was given which will save a lot of the testers time and will created a good ammount of
test cases that will prevent flaws in the developed applications.

Regarding the difficulties, we can point out that the understanding of the code generation
process by the framework was complex. By not having and API or some sort of docu-
mentation explaining this process made it very time consuming. Another problem was the
framework was still in development and having constant changes on its models and structure
which had impact in the testing module. At some point, all the testing related module was
not working at all and we were asked to fixed it. One of the things we came up at the end of
the development is the huge ammount of negative test cases generated, i.e., the generated
test cases are tests that are supposed to fail. It iss easy to understand why this happens.
When the border values are generated for an attribute, the set of values which are supposed
to fail is bigger than the valid ones. One way to avoid this would be to add a parameter
which would add a percentage of test cases that are supposed to pass. One of the project
objectives was to build a designer for testing in which the user could define the testrules for
the attributes, inside the entities designer. This could not be done since the framework was
still in development and it could have too much impact in its development.

59

60 CHAPTER 5. CONCLUDING REMARKS

5.2 Future Work

While I was developing the project, I thought of some features that could be added in the
future in order to enhance the module.

• Add the test designer to the Entities Designer. This would make tester’s life, because
this way the XML file with the rules would be automatically generated.

• Define a paramenter to create tests that are supposed to pass. This way we could
generate more positive tests.

• Add a colum to the spreadsheets which predicts the outcome of the test. This would
enhance the test reports on Visual Studio.

• Add the MultipleRanges rule for all Attribute Types.

Bibliography

[AD97] Larry Apfelbaum and John Doyle. Model based testing. Software Quality

Week Conference, May 1997.

[Ala01] M. Alam. Software test automation myths and facts. June 2001.

[Bac90] James Bach. Test automation snake oil. 1990.

[BBA75] Mahesh Gupta B. B. Agarwal, S. P. Tayal. Software engineering and testing:
An introduction. 1975.

[DH07] Adam Kolawa Dorota Huizinga. Automated Defect Prevention: Best Practices

in Software Management. October 2007.

[EFW01] Ibrahim K. El-Far and James A. Whittaker. Model-based software testing.
Encyclopedia on Software Engineering, 2001.

[Eli10] Elisabeth. Selenium meet-up. 2010.

[Exp08] Testing Experience. Test automation - does it make sense? 2008.

[GdHN+08] Patrice Godefroid, Peli de Halleux, Aditya Nori, Sriram Parajmani, Wolfram
Schulte, and Nikolai Tillmann. Automating software testing using program
analysis. pages 29--37, 2008.

[Gup09] Yogindernath Gupta. Pros and cons of data driven vs keyword driven automa-
tion frameworks. July 2009.

[Han08] Hans. Are test design techniques useful or not? September 2008.

[Hin09] Jeff Hinz. Fifth generation scriptless and advanced test automation technolo-
gies. pages 1--18, December 2009.

61

62 BIBLIOGRAPHY

[Kan03] Cem Kaner. What is a good test case? 2003.

[KKL08] Richard Kuhn, Raghu Kacker, and Yu Lei. Automated combinatorial test
methods - beyond pairwise testing. Problems of Information Transmission,
2008.

[Kor90] Bogdan Korel. Automated software test data generation. 1990.

[Kuh04] Richard Kuhn. Software fault interactions and implications for software testing.
IEEE Transations on Software Engineering, 30:418--421, 2004.

[McC09] James McCaffrey. Pairwise testing with qict. MSDN Magazine, December
2009.

[Pre05] Alexander Pretschner. Model-based testing. May 2005.

[Puo] Olli-Pekka Puolitavail. Model-based testing tools.

[Tec] Questcon Technologies. Test automation: The promise vs. the reality.

[Utt05] Mark Utting. Position paper: Model-based testing. August 2005.

[vDK04] Arie van Deursen and Paul Klint. Domain-specific language design requires
feature descriptions. Journal of Computing and Information Technology, pages
1--17, 2004.

[vDPJ00] A. van DeurSen, P.Klint, and J.Visser. Domain-specific languages: An anno-
tated bibliography. 2000.

[W.H87] W.Howden. Software engineering and techonology: Functional program

testing and analysis. 1987.

Appendix A

API

A.1 Attribute

A.1.1 Members

Name Type Description
rules Collection<TestRule> Contains the attribute’s TestRules
automationId string Contains the AutomationId of the Attribute
testData Collection<TestData> Contains the TestData of the Attribute

Table A.1: Attribute Members

A.1.2 Properties

Name Description
TestRules Gets the TestRules
AutomationId Gets or Sets the AutomationId
TestData Gets or Sets the TestData

Table A.2: Attribute Properties

63

64 APPENDIX A. API

A.1.3 Public Methods

Name Arguments Description
AddTestRule TestRule rule Adds the rule to the attribute
AddTestData TestData testData Adds the TestData to the attribute
SetDefaultTestData Model model, Sets the default TestData

Entity entity
SetNumberTestData int min, Sets the default TestData for Number attribute

int max
SetListTestData Model model Sets the default TestData for List attribute
SetDecimalTestData double min Sets the default TestData for Decimal attribute

double max
SetBooleanTestData Sets the default TestData for Boolean attribute
SetDateTestData DateTime min Sets the default TestData for Date attribute

DateTime max
SetTextTestData int minLength Sets the default TestData for Text Attribute

int maxLength
GenerateViewTestData Model model Generate default TestData for View attribute
GenerateBoolean TestRule testRule Generate TestData for Boolean attribute based on testRule
GenerateNumber TestRule testRule Generate TestData for Number attribute based on testRule
GenerateDecimal TestRule testRule Generate TestData for Decimal attribute based on testRule
GenerateDate TestRule testRule Generate TestData for Date attribute based on testRule
GenerateGridValue TestRule testRule Generate TestData for List attribute based on testRule
GenerateBoolean TestRule testRule Generate TestData for Boolean attribute based on testRule
ParseValue string value Parses the value

Table A.3: Attribute Public Methods

A.1. ATTRIBUTE 65

A.1.4 Private Methods

Name Arguments Description
GenerateDateRangeRule RangeRule rangeRule Generate TestData for Date attribute

based on rangeRule
GenerateDecimalTestData double min Generate TestData for Decimal attribute

double max based on rangeRule
GenerateTextRangeRule RangeRule rangeRule Generate TestData for Text attribute

based on rangeRule
GenerateNumberTestData int min Generate TestData for Number attribute

int max based on rangeRule
GenerateEmbeddedViewRule Model model Creates TestRule for Embedded View

Attribute att attribute
GenerateValueListRule Model model Creates TestRule for ValueList attribute

Attribute att

Table A.4: Attribute Private Methods

66 APPENDIX A. API

A.2 Entity

A.2.1 Members

Name Type Description
qictData Collection<string> Holds the qict data
qictGridData Collection<string> Holds the qict data for grids

Table A.5: Entity Members

A.2.2 Properties

Name Description
QictData Gets or sets the qictData
QictGridData Gets or sets the qictGridData

Table A.6: Entity Properties

A.2. ENTITY 67

A.2.3 Public Methods

Name Arguments Description
GeneratePairwiseDataForGrid Entity target Generates the Qict syntax structure for Grid

string value
GeneratePairwiseData string value Generates the Qict syntax structure
SetAutomationIds Sets the automation ids for the attributes
GenerateDefaultTestData Model model Generates the default TestData
ReturnRuleValue RuleType ruleType Returns the rule with the ruleType

IList<TestRule>
GetChildEntityByAttribute Model model Gets the entity based on the

Attribute att foreign key attribute
GetAttribute string name Get attribute by its name
GenrateValue Generates the values for the entity
GetTargetChildEntities Gets the child entities of an entity
GetListAttribute Returns the List type attributes of an entity
HasListAttribute Returns true if the entity has a

List type attribute
GenerateTestCases string output Generates the test cases

string task
string application
string signin
string outputFilePath

Table A.7: Entity Public Methods

68 APPENDIX A. API

A.2.4 Private Methods

Name Arguments Description
EmbeddedViewQictHelper TestData td Qict Helper for the EmbeddedView

Attribute att attribute type
string automationId

DateTimeQictHelper TestData td Qict Helper for the Date attribute type
Attribute att
string automationId

GenericQictHelper TestData td Qict Helper for the other types
Attribute att

TransformArray string rawInput Transforms the array to create Qict syntax
TransformArrayHeader string[] data Transforms the array with the headers

to create Qict Syntax
GenerateGridInserts string filePath Generates queries for Grids

Entity target
GenerateValueListValues Attribute att Generates values for ValueList attribute type
GenerateEmbeddedViewValues Attribute att Generates for EmbeddedView attribute type
GenerateListValues Attribute att Generates values for List attribute type
GenerateViewValues Attribute att Generates values for View attribute type
GenerateGenericValues Attribute att Generates values forValueList attribute
GetAttributeByAutomationId string automationId Get attribute by automation id
PluralToSingular string name Transforms singular to plural

Table A.8: Entity Private Methods

A.3. TESTRULE 69

A.3 TestRule

A.3.1 Members

Name Type Description
ruleType RuleType> Holds the type of the rule
data object The rule value
name string The name of the rule
result RuleResult If the value should Pass or Fail

Table A.9: TestRule Members

A.3.2 Properties

Name Description
Name Gets or sets the name
RuleType Gets or sets the rule type
Data Gets or sets the data
Result Gets or sets the result
DefineRule Creates a rule

Table A.10: TestRule Properties

70 APPENDIX A. API

A.4 TestData

A.4.1 Members

Name Type Description
data object Holds the value for testing
expectedResult bool Holds the expected result

Table A.11: TestData Members

A.4.2 Properties

Name Description
Data Gets or sets the data
Result Gets or sets the result

Table A.12: TestData Properties

A.5. USERINTERFACETESTHELPER 71

A.5 UserInterfaceTestHelper

A.5.1 Public Methods

Name Arguments Description
GetEntityByName Model model Gets Entity by its name

string entityName
GetEntityByPluralName Model model Gets Entity by its plural name

string entityName
SerializeTestRules Model mode Serializes the test rules to a XML file

string filePath
DeserializeTestRules Model model Deserializes the XML file containing the test rules

strin filePath

Table A.13: UserInterfaceTestHelper Public Methods

72 APPENDIX A. API

A.5.2 Private Methods

Name Arguments Description
SerializeRule XmlWriter writer Serializes a rule

Attribute att
TestRule rule

SerializeAllowedValuesRules Attribute att Serializes an AllowedValues rule
TestRule rule

SerializeDefaultRule Attribute att Serializes a rule of the other types
TestRule rule

SerializeRangeRule Attribute att Serializes a RangeRule rule
RangeRule rule

DeserializeRule XmlNodeList rulesXml Deserializes a rule
Attribute att

Table A.14: UserInterfaceTestHelper Private Methods

A.6. GENERATE 73

A.6 Generate

A.6.1 Public Methods

Name Arguments Description
RandomNumber int valueA Generates an int between valueA and valueeB

int valueB
RandomDouble double valueA Generates a double between valueA and valueB

double valueB
RandomString int maxSize Generates a string with maxSize length
RandomDate DateTime a Generates a date between a and b

DateTime b

Table A.15: Generate Public Methods

74 APPENDIX A. API

Appendix B

Spreadsheet Example

Figure B.1 shows an example of a generated spreadsheet.

75

76 APPENDIX B. SPREADSHEET EXAMPLE

Figure B.1: Spreadsheet example for Entity Supplier

	Contents
	List of Figures
	List of Tables
	Introduction
	Overview
	Document Structure

	Automated Software Testing
	Overview
	Test Case Definition
	Techniques for Software Testing
	Black Box Testing Techniques
	Equivalence Partitioning
	Boundary Values
	Pairwise Testing
	Dynamic Analysis
	Error Guessing

	White Box Techniques
	Using a Framework to Automate Software Testing
	Data-Driven
	Keyword-Driven

	Model-Based Testing
	Model-Based Testing Phases
	Advantages of Model-Based Testing
	Behavior Modeling Techniques

	The Athena Framework
	Main Goals and Design Principles
	Architecture
	Athena Designers
	Modeling Applications in Athena
	Developed Test Module

	Automatic Test Case Generation Component
	Overview
	Developed Classes
	Test Rules
	Test Data
	Qict
	Attribute and Entity

	Process
	Read Rules File
	Generate Default TestData
	Generate Values
	Pairwise Structure Creation
	Create Spreadhseets

	Running Tests
	Open Application
	Login
	Selecting Task
	Insert Values
	Close Application

	Concluding Remarks
	Conclusion
	Future Work

	Bibliography
	API
	Attribute
	Members
	Properties
	Public Methods
	Private Methods

	Entity
	Members
	Properties
	Public Methods
	Private Methods

	TestRule
	Members
	Properties

	TestData
	Members
	Properties

	UserInterfaceTestHelper
	Public Methods
	Private Methods

	Generate
	Public Methods

	Spreadsheet Example

