
Dezembro, 2008

Universidade do Minho
Escola de Engenharia

Nuno Alexandre Ramos de Carvalho

OML
Ontology Manipulation Language

Tese de Mestrado em Informática

Trabalho efectuado sob a orientação do
Professor José João Almeida

Dezembro, 2008

Universidade do Minho
Escola de Engenharia

Nuno Alexandre Ramos de Carvalho

OML
Ontology Manipulation Language

De acordo com a legislação em vigor, nao é permitida a consulta ou reprodução desta tese

O M L
Ontology Manipulation Language

Nuno Alexandre Ramos de Carvalho
(smash@cpan.org)

Dissertação submetida à Universidade do Minho para obtenção do grau de Mestre
em Informática, elaborada sob a orientação de

José João Almeida

Departamento de Informática
Escola de Engenharia

Universidade do Minho

Braga, 2008

Abstract

Ontologies are a common approach used in nowadays for formal representa-
tion of concepts in a structured way. Natural language processing, translation
tasks, or building blocks for the new web 2.0 (social networks for example)
are instances of areas where the adoption of this approach is emerging and
quickly growing.

Ontologies are easy to store and can be easily build from other data
structures. Due to their structural nature, data processing can be automated
into simple operations. Also new knowledge can be quickly infered, many
times based on simple mathematics properties. All these qualities brought
together make ontologies a strong candidate for knowledge representation.
To perform all of these tasks over ontologies most of the times custom made
tools are developed, that can be hard to adapt for future uses.

The purpose of the work presented in this dissertation is to study and
implement tools that can be used to manipulate and maintain ontologies in a
abstract and intuitive way. We specify a expressive and powerful, yet simple,
domain specific language created to perform actions on ontologies. We will
use this actions to manipulate knowledge in ontologies, infer new relations
or concepts and also maintain the existing ones valid. We developed a set of
tools and engines to implement this language in order to be able to use it.
We illustrate the use of this technology with some simple case studies.

Resumo

Ontologias são uma opção muito utilizada hoje em dia para representar for-
malmente conceitos de uma forma estruturada. Processamento de linguagem
natural, tarefas de tradução, ou componentes associados à web 2.0 (redes so-
ciais por exemplo) são instâncias de áreas onde a adopção desta aproximação
está a emergir e a crescer rapidamente.

Ontologias são fáceis de armazenar e podem ser facilmente constrúıdas a
partir de outras estruturas de dados. Devido à sua natureza estruturada, o
processamento de dados pode ser automatizado em operações simples. Além
disso pode ser inferido novo conhecimento rapidamente, muitas vezes baseado
em propriedades matemáticas simples. Todas estas qualidades em conjunto
fazem das ontologias fortes candidatas para a representação de conhecimento.
Na maior parte dos casos, para executar este tipo de operações, são desen-
volvidas ferramentas costumizadas à medida que podem ser dif́ıceis de adap-
tar para uso futuro.

O objectivo do trabalho apresentado nesta dissertação é estudar e im-
plementar ferramentas que podem ser utilizadas para manipular e manter
ontologias de uma forma abstracta e intuitiva. Especificamos uma linguagem
de domı́nio espećıfico simples, no entanto expressiva e poderosa para efec-
tuar operações sobre ontologias. Vamos usar estas operações para manipular
o conhecimento em ontologias, inferir novas relações ou conceitos e tam-
bém para manter os existentes válidos. Foram desenvolvidas um conjunto
de ferramentas e motores que implementam esta linguagem de modo a que
possamos utilizá-la. Ilustramos o uso desta tecnologia com alguns casos de
estudo simples.

Acknowledgments

I would like to thank to the following people that in many ways contributed
for this work:

• My special thanks to my teacher and supervisor José João Almeida, for
all the ideias, discussion and time spare.

• Many, many thanks to Alberto Simões for all the reading, discussion,
inputs and help with everything.

• Thanks to José Almeida and Alberto Simões again, for all the tools and
modules that were already available and were used in this work.

Preface

This document is a master thesis in Computer Science (area of Natural Lan-
guage Processing) submitted to University of Minho, Braga, Portugal.

Document structure

Chapter 1 introduces the subject, defining the basic concepts and ideas
used in the remaining document.

Chapter 2 presents some background on the concepts and approaches cur-
rently used and a brief overview of the state of the art concerning these
subjects.

Chapter 3 describes the specification of the domain specific language that
will be implemented to perform actions on ontologies.

Chapter 4 describes the tools and engines developed in order to implement
the language specified, in Chapter 3.

Chapter 5 illustrates the use of the domain specific language with the tools
developed and described in Chapter 4.

Chapter 6 concludes this dissertation, discussion and analysis of the work
done. Explores some new tracks we can explore in future works.

Some complementary information is presented on the appendixes:

Appendix A shows the domain specific language grammar.

Appendix B presents a brief introduction to Camila notation.

vii

viii

Contents

1 Introduction 1
1.1 Introducing Ontologies . 2
1.2 Motivation . 3
1.3 Methodology . 4
1.4 Outline . 4

2 Background 7
2.1 Ontologies . 7
2.2 The Art of Representation . 8

2.2.1 OWL . 9
2.2.2 SKOS . 10
2.2.3 Topic Maps . 11
2.2.4 Biblio::Thesaurus . 12
2.2.5 RDF . 13
2.2.6 CycL . 13

2.3 Converting Representations 14
2.3.1 Generating RDF Models from LDAP directories . . . 14
2.3.2 Thesauri to SKOS . 14
2.3.3 Biblio::Thesaurus . 14

2.4 Manipulation Approaches . 15
2.4.1 Protégé . 15
2.4.2 Jena Framework . 16
2.4.3 SWOOP . 16
2.4.4 ThManager . 17
2.4.5 OWL Visual Editor 17
2.4.6 Biblio::Thesaurus . 18
2.4.7 SquishQL . 19

2.5 Interesting Case Studies . 20

ix

x Contents

3 OML Specification 23
3.1 Design Goals . 23
3.2 Specification . 24

3.2.1 Data Types . 25
3.2.2 Programs . 25
3.2.3 Patterns . 26
3.2.4 Actions . 31

3.3 The Grammar . 32

4 OML Implementation 35
4.1 Design Principles . 37
4.2 Architecture . 38

4.2.1 Internals . 38
4.2.2 The Parser . 39
4.2.3 Tree Transformation Engine 44
4.2.4 Reaction Engine . 50

4.3 Package . 53
4.4 Distribution . 55

5 OML by Example 57
5.1 Geography Ontology . 57

6 Final Notes 63
6.1 Conclusion . 63
6.2 Future Work . 67

A The Grammar 73

B Simple Camila Notation 75

List of Figures

2.1 Protégé OWL editor. 15
2.2 SWOOP ontology editor. 17
2.3 ThManager thesaurus concept editor. 18
2.4 OWL Visual Editor. 19

4.1 Architecture overview. 36
4.2 Parser overview. 39
4.3 Parsing tree example for rule $city ’city-of ’ Portugal => add

($city ’city-of ’ Europe).. 43
4.4 Condition block for condition $city city-of $country. 49
4.5 A condBlock example. 53

5.1 Geography ontology. 57
5.2 Simple example. 58
5.3 Container example. 59
5.4 Container example. 60
5.5 Container example. 60
5.6 Relation for the same term. 61

xi

xii List of Figures

List of Tables

2.1 Summary of ontologies editing tools. 20

3.1 Summary of basic patterns. 28

4.1 Summary of pre defined operations. 52

xiii

xiv List of Tables

Chapter 1

Introduction

Knowledge is power.

Sir Francis Bacon

Knowledge representation has always been a challenge for science. From
ancient philosophers to the most recent software engineers different ways were
found to approach this problem, and several ways to represent knowledge
over different domains emerged. From the 1970’s neural networks or more
heuristic question-answering systems to the later, more formal, computer
language representation, different solutions have been adopted. Although
they can all be very interesting and have their specific advantages, we are
more interested here in the ones adopted by computer science.

Naturally more than one solution exists in nowadays to address the prob-
lem of knowledge representation. Several different areas use techniques suited
to the specific problems they study. For example natural language processing
tools for linguists do not represent knowledge in the same way that NASA
satellites store information gathered by deep space observation. In other
words, different goals usually demand different representations.

Today we have a wide variety of approaches to represent knowledge. And
for each of this approaches we traditionally have a wide variety of solutions.
Meaning that for different, well defined sets of domains, different represen-
tations can be used. It does not mean that there are good of wrong ways to
represent things, it just means that there are representations more suitable
to perform some kind of tasks than others. Another problem that naturally
emerges here is when we start sharing knowledge. The continuous need to in-
tegrate heterogeneous systems in today’s globalizing Internet aggravates the

1

2 1. Introduction

need of an easier interoperability between systems. This means that differ-
ent systems need to understand, or at least understand the rules, that other
systems use to represent information.

If we want to share our knowledge among others in the community, we
must make sure that we are representing knowledge using the same rules,
and in the same context. A couple of standards and drafts exist today, but
there is not a general understanding in the community about which standard
or language to use. What happens most of the times is that methods for
representing knowledge and methods for maintaining and manipulate that
knowledge, are custom made for most solutions. Although there is a clear
interest in the community for the adoption of more standards and related
technologies.

With the growing of these standards use, not only the standards achieve
a more mature development stage, but also there is more motivation to work
in other tools and solutions that use them. With better standards, and
related tools, we hope that more developers will be adopting them on their
solutions. This is also a clever way to work together for better and quicker
interoperability between systems. Talking the same language is the first step
for understanding between systems.

1.1 Introducing Ontologies

Ontologies is one of the many solutions that science uses to try to represent
knowledge. Although, this study has started with Greek philosophers, to-
day’s ontology is a burgeoning field, involving researchers from the computer
science, philosophy, data and software engineering, logic, linguistics, and ter-
minology domains[28], transversely to many sciences. But there’s no doubt
that the term is one very important key word in today’s computer science.

An ontology can be defined has an explicit specification of a conceptu-
alization [10]. This definition can bring up a couple of more philosophical
discussions, mainly because of the definition of conceptualization itself, so let
us try to narrow this down to something more suitable to our needs. Let us
assume that an ontology is an engineering artifact constituted by a specific
vocabulary used to describe a certain reality, plus a set of explicit assump-
tions regarding the intended meaning of the vocabulary words. Therefore, in
the simplest case, an ontology describes a hierarchy of concepts related by
relationships[11]. Now, this is nearer to the reality we are aiming for.

Since, ontology is a comprehending concept and it is used among many
sciences it can be hard to find an accurate definition, but by now we should

1.2. Motivation 3

have a clear idea of what we are talking about. We will continue this discus-
sion and the benefits of using them in Chapter 2.

1.2 Motivation

There’s an odd misconception in the computing world that
writing compilers is hard. This view is fueled by the fact that
we don’t write compilers very often. People used to think
writing CGI code was hard. Well, it is hard, if you do it in
C without any tools.

Allison Randal

Our main goal during this work is contributing to the use of systems fea-
turing ontologies or associated technologies. By studying and using existing
solutions, and also creating new ones. Our intention is to deploy a complete
system to work with ontologies. Where we could easily be able to accomplish
the following tasks:

• Create new ontologies from other sources.

• Perform operations over ontologies.

• Maintain ontologies valid.

• Easily share and reuse ontologies.

Creating new ontologies can be a more or less trivial operation depending
on the language we are using to write the ontology itself. The main problem
here is being able to convert ontologies between formats. Most of the times
the data is already in some kind of specific format, or some kind of markup
language. So, the process of building an ontology from these data sources
is always the same. If it is always the same then it can be automatically
processed. This means that we can have a set of tools prepared and ready,
to shift information from these data sources into out structured ontologies.

The second thing we are looking for, is a simple way to manipulate on-
tologies, by manipulating we understand execute some pre defined actions
whenever we found a specific pattern in a ontology. Since ontologies are
mainly build with concepts and relationships, they can grow very fast, thus
the need to be able to maintain the ontology valid. Traditionally there are a
set of rules that need to be enforced for each ontology so that the knowledge

4 1. Introduction

in that domain is still true. This maintenance task can be hard, we are sure
that this manipulation approach can help in building more practical solutions
for this family of problems.

Once we spent effort on creating ontologies and finding ways to maintain
them valid, we want to share them between systems as often as possible. Or
maybe reuse them across a different set of applications. There is no need to
go through all that hard work again. We want to always consider the use of
an ontology a valuable asset, not another source for extra work.

This complete system is our ”carrot on a stick”, and we definitively be-
lieve that this system can be useful for everyone working with this kind of
technology. And a valuable asset to gain new enthusiasts for this approach
to data representation.

Ontologies are already being used today in some interesting areas, which
helps us prove their valuable contribution. Natural language processing is
one, more traditional, example of these areas. A more modern example can
be the new semantics web for the web 2.0. Social networks are a good example
of system that more often relies on the use of structured knowledge. Whatever
the problem is, this system can help to minimize the implementation burden
of such complex solutions.

1.3 Methodology

This work intends to focus more on the maintaining and manipulation part of
the system described in the previous section. In order to deploy the necessary
tools for these tasks we will follow this methodology:

1. Create a domain specific language to describe operations.

2. Create engines and programs that would be able to calculate operations
described in the specific language.

3. Create tools that can apply the results described in a program.

4. Use the created tools in a couple of case studies.

1.4 Outline

A brief outline of the remaining of this document, which is divided in five
more chapters:

1.4. Outline 5

Chapter 2

In this chapter we try to discuss the needed concepts for correctly under-
standing this work. We also present other solutions to some of the problems
talked about.

Chapter 3

In this chapter we describe the complete specification of the language created
to manipulate ontologies.

Chapter 4

In this chapter we describe the tools and programs created to compile and
execute programs written used the language described in Chapter 3.

Chapter 5

In this chapter we illustrate the use of the domain specific language in some
concrete operations over some simple ontologies.

Chapter 6

In this final chapter we discuss the work done and results. We also enumerate
some tasks to improve this work.

Appendix

The appendix shows us the complete grammar in BNF format for the lan-
guage described in Chapter 2, and a paper with an introduction to Camila
notation.

6 1. Introduction

Chapter 2

Background

As we have seen in the previous chapter, some concepts we are going to
discuss in this work can be hard to define. The aim of this chapter is to
review most of the necessary concepts and definitions that are needed for a
better understanding of this work. We also do a brief analysis of the current
technology being used around this subject and related tools.

2.1 Ontologies

The term ontology has it’s origin in the field of philosophy. Ontologies are
one of the solutions found in computer science to represent knowledge about a
well defined domain in a structured way. Ontologies can be used to represent
knowledge about any kind of domain or area of interest. The use of the term
ontology in computer science was first introduced in the area of artificial
intelligence reasoning[18]. An ontology was used to represent the things that
existed in a given domain. Actually, in a very abstract way, the idea still
persists today. We use an ontology to represent our domain, and we do that
by representing everything that exists in that domain.

Another important term that we have been using but have not yet defined
is domain. An ontology is always an artifact on a given domain. Again,
this term is used in a wide range of sciences which can make it harder to
define. But, we can say that a domain is a way of refereeing a particular well
defined area of knowledge. Sometimes this knowledge can may not be clearly
bounded[14]. From the Oxford English Dictionary: ”A sphere of thought or
action; field, province, scope of a department of knowledge, etc.”[1]

During this work we will assume the following definition: a domain ontol-

7

8 2. Background

ogy is an engineered artifact that informally defines concepts from a specific
domain, representing and organizing them as conceptualizations which a set
of systems working cooperatively with each other agree to share[14].

Sometimes we used other structures that can belong to the ontology fam-
ily, but most of the cases they are quite distant cousins. Nevertheless they
can still be very useful, when we need some kind of conceptualization, but
not that rigid. Some examples of these structures are[17]:

• Glossaries are basically a list of terms and definitions.

• Thesaurus are networks of well defined interrelations, or associations,
between terms. Given a particular term, a thesaurus will indicate which
other terms mean the same, which terms denote a broader category of
the same kind of thing, which denote a narrower category, and which
are related in some other way.

• Taxonomies are traditionally structures that arrange terms into groups
and subgroups based on predetermined rules.

When using this broad family of structures, most of the times, we can
take advantage of tools that were designed to work with ontologies.

These are all very interesting structures conceptually, now we need to
find ways to represent this structures in our traditional computer systems.
Of course we could think on several ways to represent this, but that is not the
idea. Since one goal and advantage of the use of this structures is to share
knowledge, we must agree on rules to represent these ontologies. So that
other systems can know how to make use of the stored information. We could
always choose a specific representation for our ontology and distribute the
structure used to represent the knowledge along with the ontology itself. This
approach would result on thousands of heterogeneous representations, and
still had the problem of sharing knowledge between different representations.

In the next chapter we will address this problem and illustrate some
common ways to solve it.

2.2 The Art of Representation

Formal symbolic representation of qualitative entities is
doomed to its rightful place of minor significance in a world
where flowers and beautiful women abound.

Albert Einstein

2.2. The Art of Representation 9

There are several ways to represent and therefore be able to store, for later
use, ontologies. Some of them are more suitable to some kind of particular
tasks, other are well defined published standards. There are quite some
publications trying to emerge a standard representation for ontologies. These
are some examples of families of languages that can be used to describe
ontologies or some well defined subsets. These are also the standards actually
more used and well known.

You can also note that most of them use some kind of XML notation.
This is mainly a portability issue, it makes information exchange between
different systems easier.

2.2.1 OWL

The Web Ontology Language (OWL) is a family of languages for publishing
and sharing ontologies on the World Wide Web[13]. This language is mainly
developed and maintained by World Wide Web Consortium (W3C). The
OWL specification includes the definition of three variants:

• OWL Lite, supports basic needs of a classification hierarchy and simple
constrains.

• OWL DL (Description Logic), supports maximum expressiveness.

• OWL Full, meat for maximum expressiveness and syntactic freedom of
RDF.

OWL is intended to provide a language that can be used to describe the
classes and relations between them that are inherent in Web documents and
applications[19].

A small example of something expressed in OWL using abstract syntax:

Ontology(
Class(pp:animal partial restriction(pp:eats someValuesFrom(owl:Thing)))
Class(pp:duck partial pp:animal)
Class(pp:cat partial pp:animal)
)

Another example, now written in RDF/XML syntax:

10 2. Background

<rdf:Description rdf:about="#Huey">
<rdfs:comment><![CDATA[]]></rdfs:comment>
<rdfs:label>Huey</rdfs:label>
<rdf:type>

<owl:Class rdf:about="#duck"/>
</rdf:type>

</rdf:Description

Remember that the examples illustrated here are not complete. OWL
is a very complex language to use, and representations can quickly become
complicated and confused. Of course this complexity translates in a much
more accurate representation. Ontologies are use among many sciences, OWL
might be hard to use for someone that is not trained in computer science. This
could became an obstacle for the spread of the language between different
communities. This complexity should not be considered as a disadvantage, it
allows to implement complex data structures that can smoothly be exchanged
between heterogeneous systems.

Just recently the OWL working group published the OWL 2 Web On-
tology Language. A extension of the previous version adding even more
features.

2.2.2 SKOS

SKOS or Simple Knowledge Organization Systems is another family of lan-
guages that can be used for expressing the basic structure and content of
concept schemes. It is is published and maintained by the W3C Semantic
Web Best Practices and Deployment Working Group. SKOS can be used
to easily create a very familiar subset of ontologies, some examples are the-
saurus, taxonomies and terminologies[21].

A simple example of this language representation, also in RDF/XML:

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:skos="http://www.w3.org/2004/02/skos/core#">

<skos:Concept rdf:about="http://www.my.com/#canals">
<skos:definition>A feature type category for places

such as the Erie Canal</skos:definition>
<skos:prefLabel>canals</skos:prefLabel>
<skos:altLabel>canal bends</skos:altLabel>

2.2. The Art of Representation 11

<skos:altLabel>canalized streams</skos:altLabel>
<skos:altLabel>ditch mouths</skos:altLabel>
<skos:altLabel>ditches</skos:altLabel>
<skos:altLabel>drainage canals</skos:altLabel>
<skos:altLabel>drainage ditches</skos:altLabel>
<skos:broader rdf:resource="http://www.my.com/#hydrographic%20structures"/>
<skos:related rdf:resource="http://www.my.com/#channels"/>
<skos:related rdf:resource="http://www.my.com/#locks"/>
<skos:related rdf:resource="http://www.my.com/#transportation%20features"/>
<skos:related rdf:resource="http://www.my.com/#tunnels"/>
<skos:scopeNote>Manmade waterway used by watercraft
or for drainage, irrigation, mining, or water

power</skos:scopeNote>
</skos:Concept>

</rdf:RDF>

SKOS creates very extensive and overwhelming representations. It pro-
vides a framework for expressing knowledge structures in a machine under-
standable way. SKOS is a very powerful vehicle already being used in many
situations instead of OWL. A good example is the new directory environment
being developed in the UK: SWED1. Which uses SKOS to represent some
thesauri. In fact, this site also uses OWL to publish some ontologies which
can show that both language can be used together[20].

2.2.3 Topic Maps

Topic Maps is a specification that provides a grammar and a model for repre-
senting the structure of information resources[24]. A simple example of this
representation:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE topicMap SYSTEM "xtm1.dtd">
<topicMap xmlns="http://www.topicmaps.org/xtm/1.0/" xmlns:xlink="http://www.w3.org/1999/xlink">

<topic id="st-music">
<baseName>

<baseNameString>Music</baseNameString>
</baseName>

</topic>
</topicMap>

1http://www.swed.org.uk

12 2. Background

This approach represents information using topics, a topic can represent
any fact or concept (for example, cities, countries, etc.). Besides topics asso-
ciations and occurrences are also used to represent information. Associations,
as the name points out, are used to represent relations between topics. Every
one of this constructors can have types.

2.2.4 Biblio::Thesaurus

This module was initially created to provide a set of tools to maintain the-
saurus files. We already discussed how a thesaurus can be defined as a sub
set of an ontology. But this module has grown and now is prepared to work
with more abstract and complex structures, like ontologies for example. It
still maintains the name, but that is bound to change in the future.

The internal representation for the ontology follows a subset from ISO
2788. Which means that can interact with other sources that follow the
same standard. Note that the module was changed to work with more com-
plex structures, and the standard defines standard features to be found on
thesaurus files. Which means that things may not work right from the start.
An example of the ISO representation looks like:

Animal
NT cat, dog, cow

fish, ant
NT camel
BT Life being

This module has already been successfully used to translate other re-
sources into ontologies. The same module can already be used to manipulate
information, but we will see that in the next section. [27]

A well defined API allows the manipulation and access to various infor-
mation in a very simple way. Adding or deleting information can be as simple
as:

$ontology->addTerm(’term’);
$ontology->addRelation(’term’,’relation’,’term1’,...,’termn’);

Clearly is a very different approach form the other representations dis-
cussed before, which has advantages and disadvantages. We will choose this
representation to query and access ontologies when running programs in our
domain specific language. We will explain this choice in Chapter 4.

2.2. The Art of Representation 13

2.2.5 RDF

RDF is World Wide Web Consortium data model that most often is used
with XML [3]. Being a model means it needs a transport language. XML
is the most common choice because is a flexible, portable and expandable
language. An example of RDF/XML notation:

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:dc="http://purl.org/dc/elements/1.1/">

<rdf:Description rdf:about="http://en.wikipedia.org/wiki/Tony_Benn">
<dc:title>Tony Benn</dc:title>
<dc:publisher>Wikipedia</dc:publisher>

<foaf:primaryTopic>
<foaf:Person>

<foaf:name>Tony Benn</foaf:name>
</foaf:Person>

</foaf:primaryTopic>
</rdf:Description>
</rdf:RDF>

The idea is to use this pair as an general-purpose language for represent-
ing information in the Web. This is mainly used in current semantic web
applications.

2.2.6 CycL

One of the firsts, if not the first, language to aim for knowledge representation
was CycL. This formal language is mainly used by the Cyc knowledge based.
Cyc is a project to create a comprehensive ontology and knowledge base of
everyday common sense knowledge. The language itself is very peculiar, for
example, the predicate:

(#$genls #$Tree-ThePlant #$Plant)

states that ”All trees are plants”. The applications for a common sense
database are unimaginable, since user behavior models to simulations.[16]

14 2. Background

2.3 Converting Representations

Another interesting problem that naturally emerges among so many different
representation possibilities, is the tools that implement conversions between
representations. In this section we briefly introduce some of these tools.

2.3.1 Generating RDF Models from LDAP directories

LDAP2 is a common database technology for storing information on a direc-
tory system. This paper[6] presents a methodology for creating RDF models
form LDAP directories. The semantic web world being able to pull informa-
tion from LDAP directory resources is a big motivation for this kind of work.
Although the author does not give a conclusion on the conversion results, it
clearly states how easy it was to implement a small proof of concept. We
might assume that the converting results were, at least, satisfactory.

2.3.2 Thesauri to SKOS

Mos of the conversion research and tools belong to this family: given a sim-
pler structure like a thesauri, XML or database, for example, build a more
complex representation. This work[31] is one of these examples, it tries to
convert thesauri into a SKOS representation. Although, some lacks of the
SKOS’s model, according to the authors, most case studies went very well,
which helps to prove that such conversions can be done.

2.3.3 Biblio::Thesaurus

This module can be used to to some simple conversions. For example, very
often such things like taxonomies are stored in plain text file and use inden-
tation to subclass terms. This simple text notation is very simple to parse
and is possible to automatically create a more complex structure, an ontology
for example, to store the same data. These family of tools can be quickly
implemented with this module. Of course it is also possible to parse more
complicated structures, or even a thesauri and convert it to an ontology.[2]

2Lightweight Directory Access Protocol

2.4. Manipulation Approaches 15

2.4 Manipulation Approaches

Since there are several ways to represent ontologies, there are also different
approaches to manipulate them. Several software packages offer methods to
change and manipulate information in a ontology. Once we achieve agreement
on which representation to use for our ontology, we immediately have the
benefit of using previously developed tools. This is a clear advantage over
having to develop from scratch, all the actions and changes that we need to
perform on our specific ontology.

We now give some examples of this manipulation tools.

2.4.1 Protégé

Protégé3 is an open-source platform that provides a suit of tools for building
knowledge driven applications based on ontologies. It has a specific extension
to work with OWL. This extension allows for a visual editing of information.
Figure 2.1 illustrates the this visual OWL editor.

Figure 2.1: Protégé OWL editor.

3http://protege.stanford.edu/

16 2. Background

Currently stable version of Protégé is version 3.3.1. The OWL editor is
very complete and the user interface is rich and filled with options. There
are a lot of very interesting features. Browsing the ontology in a graphical
interface, and a lot of validations and OWL specific operations and class
creation are some examples[12]. This editor is actually very user friendly and
has prove it can be very useful. Of course it can be hard to use this software
if you are aiming for computer generated operations. There is also a project
in Google Code for a plugin for Protége to edit and create some artifacts
represented in SKOS. This plugin is only available for version 4.

This project is quite settled and has a quite large community of users,
which shows that new releases are to be expected in the near future, with new
features. In can prove to be a go bet for a OWL editor for humans to use.
Also runs on all the most common platforms including Linux based systems.

2.4.2 Jena Framework

Jena4 is a framework for Java for building semantic web applications. This
framework include a wide set of classes for using in Java development. Among
many things, this framework has an interface called OntModel that can be
used with other tools in the framework as interfaces to underlying models,
written in OWL for example. Although, we did not use this framework for
any development yet. The documentation promises very interesting features
that can be really useful.

There are quite a lot of examples of research works using this technology.
For example, ontology reusability[30] is a good example of a good use for this
framework.

2.4.3 SWOOP

SWOOP5 is another tool for creating and editing OWL ontologies. This
project is also hosted on Google Code. This tool has a nice look and feel and it
is very intuitive. Simple interface with concise operations over ontologies and
a plug-in option for quick development of new features. Figure 2.2 illustrates
this tool.

Unfortunately the current release is still in beta version.

4http://jena.sourceforge.net/
5http://code.google.com/p/swoop/

2.4. Manipulation Approaches 17

Figure 2.2: SWOOP ontology editor.

2.4.4 ThManager

ThManager6 is an open source tool that is able to manage thesauri stored in
SKOS, allowing their visualization and edition[15]. Figure 2.4 illustrates the
ThManager thesaurus concept editor

This is an open source projected, developed in Java for Windows or Unix.
It has multilingual support. It allows to browse the different terms in hierar-
chical or alphabetical order, there is also a searching tool. Although it is not
what we might call eye candy editor it sure implements the basic features
needed for many operations. Also, it is very simple to use.

2.4.5 OWL Visual Editor

OWL Visual Editor7 is, as the name clearly shows, a visual editor for OWL.
Unfortunately we were not able to start this editor to take a look. A

problem with Java, so we will have to settle with the screen shoot.

6http://thmanager.sourceforge.net/
7http://owlve.sourceforge.net/

18 2. Background

Figure 2.3: ThManager thesaurus concept editor.

2.4.6 Biblio::Thesaurus

We are also introducing this module as a manipulation tool. In the same way
that we talked earlier, about using Java classes to deploy interfaces for OWL
models access, we can also use this module to access an ontology. We can
only access ontologies in a representation that the module understands. But
the module has a very rich API8 that can be used to do many elaborated
operations over ontologies. Another plus for these approaches, in opposition
to the graphical tools, is that operations can be automatically created and
executed without human intervention.

An example of some of this module skill to manipulate ontologies is
demonstrated during this work, since this is the module used by our domain
specific language to perform actions over ontologies.

8Application Public Interface

2.4. Manipulation Approaches 19

Figure 2.4: OWL Visual Editor.

2.4.7 SquishQL

We are not sure this language qualifies as a manipulation tool but sure is
interesting enough to be mentioned here. SquishQL is a language, modeled
after SQL, that can be used to query RDF providers[22].

An query example written in SquishQL:

SELECT ?title, ?description, ?name
WHERE
(?libby, <foaf:mbox>,
<mailto:libby.miller@bristol.ac.uk>) ,
(?paper, <dc:contributor>, ?libby),
(?paper, <dc:title>, ?title) ,
(?paper, <dc:description>, ?description) ,
(?paper, <dc:contributor>, ?someone) ,
(?someone, <foaf:name>, ?name)
USING foaf for <http://xmlns.com/foaf/0.1/>

20 2. Background

Regarding the graphical editors we could go on illustrating more editors
but it would be hard to find any feature that would not exist in the ones
already visited. With more or less features or tools, they are all very alike.
Table 2.1 summarizes the tools described for easier reference.

Tool Version Description Platforms Formats
Protége 3.3.1 graphical editor All OWL+SKOS

Jena 2.5.6 Java classes All (w/ Java) -
SWOOP beta graphical editor All OWL

ThManagaer 2.0 graphical editor All (w/ Java) SKOS/RDF
OWL VE 1.1.0 graphical editor Linux/Source OWL
SquishQL - SQL-ish language - RDF

Table 2.1: Summary of ontologies editing tools.

2.5 Interesting Case Studies

This section aims to present some successful and interesting research topics
or work, around the use of ontologies or related technologies. This helps us
see how far the use of ontologies can go, and that this artifact knows no
science boundaries. Of course, it all ends up to computer related sciences to
actually implement them, but the use of them is vast.

A methodology for the creation of entailment-base question answering
system can easily take advantage of ontologies. In this particular work ”An
user-centred ontology-and entailment-based Question Answering system” [9]
an domain ontology was created and populated with cinema information.
The data was stored in OWL/RDF format. Then random users were asked
to query the ontology data base and questions were grouped based on similar
information requests. These groups are then added to the information data
base and a textual implication model uses this information and grammatical
deductions to answer new queries.

Now to get a bit away from the linguistic examples, let us analyze a very
interesting use of ontologies. ”The Asgaard project: a task-specific framework
for the application and critiquing of time-oriented clinical guidelines” is a
project to develop clinical guidelines. The domain ontology for this case
specifies concepts, such as drugs, diseases, patient findings, tests, and clinic
visit types. A special purpose language was created for physicians to query
the data base. Protégé, which we talked about a bit earlier, was used to
create intuitive tools that health care operators can use[26].

2.5. Interesting Case Studies 21

One of ontologie’s valuable asset is the ease of information share. On-
tolingua takes this serious, it is a distributed collaborative environment to
browse, create, edit, modify, and use ontologies[8]. This system allows for
the achieving consensus on common shared ontologies between geographi-
cally distributed groups. Creating big ontologies, big because of complex
domains that can be represented, can be a time-consuming process, this fam-
ily of services can help share this work load between many users and to benefit
everyone involved in the process.

Not only within the research scope ontologies are used. it’s notorious
benefits already reached the commercial world. Lists of wine properties are
already available from commercial Web sites such as http://www.wines.com
that customers can use to browse wine characteristics. Another fancy com-
mercial ontology can be seen at http://www.unspsc.org/, which is used to
classify products or services [23].

Our final case study shifts the subject again, the human genome is one of
the 21st century technologies. The Gene Ontology Consortium9 is a collabo-
rative effort to create several ontologies representing various biological related
information. Although this specific case works in representing roles of the
gene products within an organism, there are several resources for biologists
that are using ontologies or related artifacts. The Schulze-Kremer ontology
for molecular biology or The TAMBIS Ontology10 are other examples. Bi-
ology research rarely starts from scratch, previous knowledge is always used
before starting new investigations. Ontology based systems are being used
within the community to provide knowledge input to databases and appli-
cations. Also, the kind of data we are talking about is very complicated
and complex, ontologies make it easy to provide services that information
sharing[29].

There are a lot more examples out there of successfully ontologies use,
either still in development or already at at commercial level. This situation
only motivates even more the study and research around these artifacts. In
the next chapter we start describing a language that was created in the scope
of this work to help express ontology manipulation operations.

9http://www.geneontology.org/
10http://www.cs.man.ac.uk/ stevensr/tambis/

22 2. Background

Chapter 3

OML Specification

The goal was to specify a language that will be able to act on ontologies. For
now we are not interested in implementation details, we are more concerned
on the language specification which we can use to manipulate and maintain
ontologies. We will call this language OML1. The main idea here is that we
want to look for a specific pattern on the ontology, and then execute some
action. We will call a pair consisting of a pattern and an action a rule. The
patterns can be very simple, but can quickly grow and became less intuitive.
Actions are simply operations we want to execute over terms or relations,
maybe add or remove a specific relation. Or, in a more complicated rule,
execute some arbitrary code that can do produce an arbitrary side effect.

Please note, that the remaining of this chapter aims to be the complete
spec for the language but it is presented in a very illustrative way, with lots
of examples. This is done with the intent to present a wide range of language
statements that can be used, and make it easier to read. Also during this
chapter we will be using a simple ontology with knowledge in the domain
of geography for these examples. For a more detailed description of the
information in this ontology refer to Chapter 5.

3.1 Design Goals

Some design goals were taking into consideration when crafting the grammar
and when language signals were chosen:

• The language needs to be simple: simple to use, not to complicated
expressions or statements, simple to understand.

1Ontology Manipulation Language

23

24 3. OML Specification

• It needs to have a clear and well defined syntax, no need to overwhelm
the user with lots of complicated symbols or signals, just the essential
ones.

• It needs to be powerful enough to express complicated patterns. Al-
though, the language should be simple it must allow the representation
of complicated patterns which often need to be found.

• The statements need to be expressive, we should be able to write state-
ments that are close to natural language and are easy to understand by
themselves.

• Easy to understand, finally we did not want to complicate the lan-
guage in such a way that it would be more complicated to learn the
specification itself than the patterns we need to describe.

Since this kind of technology is transverse to many sciences, we must keep
in mind that many people outside the computer science scope might be using
this language.

Other fact that led to the choice of some of the design goals enumerated
was the analysis of some of the representations discussed in chapter 2. Some of
them can be very syntax obfuscating, there are many syntax details that nned
more effort to write than the information we want to store itself. Although
these details often enrich the language and allow for interesting features, they
can easily become overkill and obfuscate the information outside the syntax
scope, that should be the center point of view for the end user. Hence force,
the continued struggle for a clean, simple and yet, expressive syntax.

3.2 Specification

First of all our language needs to have some basic simple notations. The
most basic building block for ontologies are terms. We can then represent
relations between terms. We can use this relations to build patterns. Patterns
that can exist in a given ontology. Sometimes it is possible to have more
than one instance for a given pattern, but we will get back to this later.
After patterns are found we want to execute actions. We group patterns and
actions to describe a set of operations to be executed. We can put together
an arbitrary number of related patterns and actions to create a program. The
following subsections describe every one of this components in detail. But
before that, a brief description on data types regarding OML.

3.2. Specification 25

3.2.1 Data Types

Before starting describing statements or expressions let us take a brief look
on OML’s data types. There is no need to complicate things regarding this
issue when defining the language. All terms, relations containers, etc. syntax
nneds to follow two rules:

• Named variables or relations are described using strings, a sequence
of alphanumeric characters, if there is the need to include any white
spaces single or double quotes need to be used. For example:

name
’another name’
"yet another name"

• Terms or relations containers, variables, always have names that do not
have any white spaces, and are strings.

$container
$variable3

The only restriction to this situation is when you use a sub { ... }
block in the action section of a rule. The use of this block will be explained
later. But if this block is used the standard rules for data types apply inside
the block. Since the language that can be used inside the sub statement is
Perl, Perl’s language syntax needs to be used.

3.2.2 Programs

A program is a block that can be executed, which means a program is a list
of rules. Programs are written in plain text files. Every rule is executed in
order but the results of each rule will only be visible at the end of the program
execution. The rules are executed in the same order that they were written
in the program. A rule consists of four elements in the following order:

1. A pattern section, this section of the rule describes the pattern that we
will be looking for in the ontology.

2. The special sign =>, which is a equals sign (=) followed by a greater
than sign (>).

26 3. OML Specification

3. An action section, this section describes the actions to be performed
when the rule’s pattern is found.

4. A rule is always finished with a single dot (.).

To the left of the special signal (=>) we can find the pattern and the action
to the right. A rule looks like:

<pattern> => <action> .

We can have any number of rules in a program. And can also use the
sign # in the begging of the line to mark lines as comments. Lines marked as
comments are not processed.

this line is not processed

Next we will be describing how to write patterns in detail.

3.2.3 Patterns

Patterns represent one or more relations, or terms, or any combination of both
that can be found in the ontology. First things first, we can be searching the
ontology for a single term:

term(<term>)

Which means that this pattern will be considered found if exists at least
one term named <term>. For example, in our geography ontology we could
use the following pattern:

term(Braga)

To verify the existence of a term called Braga.
We could also be looking for a single relation:

rel(<relation>)

Which means that this pattern will be considered found if exists at least
one relation name <relation>. For example, in our ontology we could use
the following pattern:

3.2. Specification 27

rel(city-of)

To verify if a relation name city-of existed. As most ontologies relate
terms using relations we can search patterns that look like:

<term1> <relation> <term2>

The pattern represented here will be considered found if there is a relation
named <relation> that relates the terms named <term1> and <term2>. For
example:

Braga city-of Portugal

is a pattern that evaluates true if the term Portugal is related to Braga
by a relation named city-of.

In the examples used so far, we always gave names to things, a relation
named <relation> or a term named Braga. But we can use containers
instead of named terms to specify patterns. A container term, which basically
is a variable that can take any term value, is distinguished by a named term,
by starting with the dollar signal ($). Named term:

Braga

Named container:

$city

Using named containers we can specify patterns that can match more
than once in the ontology. For example we can write patterns like this:

$city city-of Portugal

This patterns represents all the relations in which the term named Portugal
is related to any term by a relation named city-of. In a more natural lan-
guage this pattern represents all the cities in Portugal.

More than one named container can be used at the same time. The
following pattern for example:

$city city-of $country

28 3. OML Specification

represents all the relations that exist between the list of terms in named
containers $city and $country that are related by a relation name city-of.
It is the list between all possible combinations of cities for each country that
exists in the ontology.

Besides using containers for terms, we can also use named containers for
relations. This means we can write something like this:

Braga $relation Portugal

This represents all relations that exists between the named terms Portugal
and Braga. And even more dangerous, you can mix terms containers with
relation containers, this way you can end up with patterns that look like this:

$term1 $relation $term2

This represents all the possible relations, in this ontology, between all
possible terms.

Remember that we are still talking about patterns, which means that we
only looked at ways of matching subsets of the ontology to take some action.
Before looking at what we can do in the action block, let us look at some
operators that can be used to combine terms, relations or both.

Entities Named Containers
terms term(<term>) term($term)

relations rel(<relation>) rel($relation)
facts <term> <relation> <term> $term1 $relation $term2

Table 3.1: Summary of basic patterns.

Binary Operators

There are two binary operators: AND and OR. Both operators can be used
between any of the three different type of patterns talked before.

The AND operator can be used to collect a list of named terms that all
need to exist to find a pattern:

term(<term1>) AND term(<term2>) [AND term(<term3>) ...]

For example, the pattern:

3.2. Specification 29

term(Braga) AND term(Guimaraes)

is evaluated has found only when terms named Braga and Guimaraes
exist. This operator can be used for relations:

rel(<relation1>) AND rel(<relation2>) [AND rel(<relation3>) ...]

The AND operator can also be used for a list of relations between terms.

t1 r1 t2 AND t3 r2 t4 [AND]

This means that the pattern is only considered as found if the list of
relations is found. In the following example:

Braga city-of Portugal AND Guimaraes city-of Portugal

the illustrated pattern will only be found if the ontology relates the term
Braga with the term Portugal by a relation named city-of, and the term
Guimaraes with the term Portugal by a relation named city-of.

The OR operator can be used to join a list of terms, relations or relations
between terms using the same syntax as the AND operator. The only difference
is that for the given list only one of the elements needs to be found for the
entire pattern to be considered found. For example:

Braga city-of Portugal OR Guimaraes city-of Portugal

is a pattern found if the term Braga is related with the term Portugal
by a relation named city-of or the term Guimaraes is related with the term
Portugal by a relation named city-of. This same principle applies to a
specific term or relation.

Both binary operators can be used between named containers. Which
means that we can write patterns that look like:

$city1 city-of Portugal AND $city2 city-of Spain

This pattern represents all the patterns that have a term related with the
term Portugal by a relation named city-of, and are related with the term
Spain by a relation named city-of.

30 3. OML Specification

Unary Operators

The only unary operator that exists is the not operator. This operator can
be used before any of the three already discussed instructions. The following
pattern represents all the terms that are not the term named term.

not(term(<term>))

For example, the pattern:

not(term(Braga))

represents all the terms that are not named Braga. The same behavior
for name relations:

not(rel(<relation>))

This pattern represents all the relations that are not named <relation>.
Finally, we can use this operation to negate a relation between two terms:

not (<term1> <relation> <term2>)

This pattern represents all the relations that do not relate the named
terms <term1> and <term2> by a relation named <relation>.

This operator can also be used before expressions using any of the binary
operator. This means that we can write a pattern like:

not(<term> <relation> <term> AND <term> <relation> <term>)

or

not(<term> <relation> <term> OR <term> <relation> <term>)

For a better understanding of this patterns use the following transforma-
tions:

NOT (x AND y) ==> (NOT x) OR (NOT y)
NOT (x OR y) ==> (NOT x) AND (NOT y)

With this simple transformation we end up with patterns that were al-
ready illustrated and work exactly in the same way as before.

3.2. Specification 31

3.2.4 Actions

After being able to specify the patterns we are looking for in the ontology
we need to describe the actions that are going to be executed if the pattern
is actually found. The actions section of the rule is everything between the
special sign => and the terminating dot. This section is a list of operations
that are going to be executed:

(operation1|sub1) [(operation2|sub2) ...]

You can notice that we are distinctly saying that any of my actions can
be an operation or a sub. This is because there can be two exclusive types
of operations:

• We choose to execute an operation from the list of operations that are
already available. In this particular case the syntax to use is:

<operation> (<list of arguments>)

This feature will be explained in more detail later, in chapeter 4.

• Or we choose to define our own operation, writing the complete code
of the operation to be performed. In this case the syntax to use is:

sub { <code> }

<code> must be written in Perl. For anyone familiar with this language,
what we are actually doing here is defining a new function that will be
called later if the pattern did match.

A simple example of an action adding an operation from the defined table
could look like:

add(Portugal official-lang-is Portuguese)

One example of an action using code to produce any side effects:

sub { print "I found a relation.\n"; }

This action would simple print a message informing that a relation was
found. But we could get really complicated here, and start producing all
kinds of side effects, for example:

32 3. OML Specification

sub {
use DBI;

my $dhb = connect(...);

$dbh->do("INSERT INTO relations(...) VALUES(...)";
}

In this example, and remember the code here is not complete, it is for
illustration purpose only, would connect to a data base and insert some data
in a table regarding a relation that was found. Remember that our sub
actions are actually Perl code, meaning that you can do whatever Perl allows
you to do, which is pretty much about everything. You can even call another
OML program as an action, and execute another set of rules on the same or
new ontology, or change the existing ontology in execution time. Basically
almost everything is possible here, one can always argue about the advantages
or disadvantages of such freedom, but that is how it works, at least for now.

Another important aspect is that, when named containers are used those
variables and names and instances are propagated to the action block. This
means that a rule like this can be written:

$city city-of Portugal => add($city official-lang-is Portuguese).

In this rule we are looking for a pattern that represents all the terms
that are related with the term Portugal by a relation named city-of. The
container $city which contains this list of terms propagates to the action
block were it can be used. This way, in the action block, we are execut-
ing an operation that adds a new relation to the ontology, that relates the
term Portuguese with every term found by the pattern by a relation named
official-lang-is This rule is self explanatory, we are adding information
about the official language in every city found in Portugal.

We will illustrate more actions and analyze more actions examples in
chapter 5.

3.3 The Grammar

We created a grammar that formally defines the syntax described through out
all this chapter. The complete grammar for OML can be found in Appendix
A in, BFN notation. The BNF notations can be used to define free context

3.3. The Grammar 33

grammars where entities are defined in terms of other entities. Entities can be
defined by combination of other entities, either by alternation or sequences of
entities. The non-terminal symbols are all written in lower case, and terminal
symbols are written in upper case. The axiom for our grammar is pTree.

34 3. OML Specification

Chapter 4

OML Implementation

We now have the domain specific language which we can use to specify op-
erations we want to execute in a given ontology. In this next chapter, we
will discuss the development of tools that allow the execution of programs
written in this language.

So, first things first. In the optic of this work we created a package that
used together with other packages, blindly to the user, can execute programs.
A package is bundled with a great deal of many different things, some of
these things are more important than others, so we will focus on each one at
different stages.

Please note, that there were tools and modules that were started before
the scope of this dissertation. Sometimes, those tools or modules were use
to fill in gaps. And even improved, or features were added because of some
specific needs.

Thesaurus::ModRewrite is the package responsible for running programs
written in OML which was described in the previous chapter. The modules
in this package were written in Perl, and follow the traditional object ori-
ented paradigm. We will call it simply ModRewrite for the remaining of this
document. Also, do not let the prefix Thesaurus deceive you, this module is
to use in ontologies, not only thesaurus.

We choose to write these modules in Perl because of several reasons:

• There were already some tools and other modules that we will used to
build our system, and these tools were already written in Perl. Writ-
ing all of them in the same language gives a clean, simple and free
integration among every tool.

• Perl is a natural language, with great tools already implemented to cre-

35

36 4. OML Implementation

ate new languages (a version of yapp for example). Yapp is a powerful
tool for creating new compilers.

• Is widely available in most common operating systems with out out-
of-the-box installations. Support for new modules installation is a core
feature of the language, so you can’t immediately installing new mod-
ules.

• It has a good support for modules, and related tools, like distribution.

For our ontology representation and manipulation we choose to use the
module Biblio::Thesaurus, because of the following reasons:

• Is developed in Perl, as stated before, integration with other tools is
easier.

• This module can be used to store ontologies, manipulate and even con-
vert between some formats.

• The module has a rich API, that provides a set of useful functions that
are going to be needed to solve some of the implementation problems.

• This module is very flexible, so we would be able to tweak some features,
if needed, to implement some specific functionality.

• This would also be a good opportunity to test this module and see
if there were any implementation flaws that were compromising the
knowledge representation.

Figure 4.1 illustrates a very brief overview of this package architecture.
We feed a program and an ontology to our module and after some compiling
stages a final result is produced.

Ontology

��
Program // ModRewrite // Result

Figure 4.1: Architecture overview.

We will formally define it as:

4.1. Design Principles 37

ModRewrite : program× ontology −→ result (4.1)

Our module, given an ontology and a program written in OML, will be
able to execute it and produce a final result.

4.1 Design Principles

Before describing the architecture of the implementation in detail, we would
like to review some of the design principles that were kept in mind during
development.

• The solution itself needs to be very modular, every consisting part
needs to be well defined by itself. This is useful because, we can later
change the way one of this modular components works without having
to change other modules. This allows for easy mechanics manipula-
tion in core modules, and makes easier the job for third parties code
contributions.

• Keep it simple, do not complicate tasks more than needed. Break big
tasks in small tasks always as possible. This also helps to maintain a
modular package as described in the previous point.

• Sometimes development was test driven. The package contains a well
defined test suit, which can be used at all times if any of the compo-
nents is broken or misbehaving. Sometimes tests were written before
implementation, this was also a good indicator to measure feature de-
velopment.

• A sense of abstraction is in order, we don’t want to simply have a tool
that runs and execute code, we want to have a serious of modules and
engines that can be brought together to accomplish different tasks. In
other words, we are not trying to build a compiler, we are trying to
put together a set of pieces that can be easily used together to compile
programs.

And of course we try to follow the most know common best practices as
often as possible[4].

38 4. OML Implementation

4.2 Architecture

The main module in the package is responsible for the most complex task:
using all the other components together to execute a program written in
OML. This core problem was divided in smaller tasks:

1. Parse the program and calculate a parsing tree. The parsing tree con-
tains a set of patterns to look for, and actions to take if patterns are
found.

2. Analyze the parsing tree rule by rule, and calculate the sets of patterns
that are found. If a pattern is found and specifies more than one solu-
tion, calculate all the possible solutions. Build a new tree, that contains
the possible solutions for the patterns found, and the actions to run.

3. Analyze the new tree, for each rule found, iterate every possible solution
and run the appropriate actions.

In any case we can tell the module to output the corresponding tree, by
setting the corresponding switches before program compilation.

We can say that our main module given a program and an ontology cal-
culates a final result. The final result can be an ontology by itself, but since
arbitrary side effects can be produced by the program, different types of re-
sults can be calculated.

ModRewrite : program× ontology −→ result

ModRewrite = reactor ◦ expander ◦ parser (4.2)

This way the final result of our main module ModRewrite is the result
of calling the reactor function after the expander, and the expander after
the parser function. In the following sections we will describe the different
components responsible for each task. We will also define the parser, expander
and reactor functions.

4.2.1 Internals

So, how does it works internally? The core of this solution is divided in mod-
ules or specific sets of functions, responsible to compute the different stages
described in the architecture section. Internally we have divided everything
into well defined sections depending on which task is being resolved:

4.2. Architecture 39

• A parser, which is responsible for executing task number one described
in the architecture section. This is an independent module that can be
re-factored if needed as often as possible.

• A set of well defined functions that are responsible for converting a
parse tree into a new tree that can be used to execute actions. We will
call this new tree a diTree.

• A reaction engine, which is mostly responsible for actually executing
the actions defined in the program.

• A set of tools that use the functionality provided by the previous items
to run programs.

As stated in the last item, everything is combined together in a couple of
high order tools that allows us to run programs from a single invocation.

4.2.2 The Parser

The parser is one of the core modules and is responsible for parsing the
program source. It behaves as most of the parsers do, it takes the source
code in and creates a parsing tree. This task is described in figure 4.2.

program // Parser // pTree

Figure 4.2: Parser overview.

This module, given a program builds a parsing tree, we will call the parsing
tree build by the parser a pTree. We define this pTree as a list of statements:

pTree = statement?

statement = condBlock × actionBlock
condBlock = nil + condition+ binOp+ unaryOp+ term+ relation

binOp = condBlock × op× condBlock
op = AND +OR

unaryOp = NOT × condBlock
condition = term× relation× term
term = STRING+ V AR

relation = STRING+ V AR

40 4. OML Implementation

actionBlock = action?

action = operation+ SUB

A pTree is a list of statements. Each statement can be several things:

• Nothing, a statement can be empty.

• A condition, in this case the pattern we are looking for is a simple fact.
A condition is a three elements list: a term, a relation and another
term.

• A binOp, which is a three elements list: a condBlock, followed by a
binary operator (which can be an AND or an OR, followed by another
condBlock.

• A unaryOp, is a NOT followed by a condBlock.

• A term, a statement can be a single term.

• A relation, a statement can be a single relation.

A term, as well as a relation can be one of two things:

• A STRING, in this case this string of characters represents the actual
name of the term (or relation).

• A VAR, in this case we have a container (a variable) that can represent
a set of term (or relations) and the string of characters represents the
name of the container.

An actionBlock represents the set of operations to be executed and is a
list of actions. An action can be one of two things:

• An operation, in this case we are going to execute an operation from
the pre defined operations table.

• A SUB, in this case the operation to execute is defined in a function
supplied by the user who wrote the program.

In both these cases, arguments need to be passed to the functions that
run the operation. We do not need to go into that the detail, just imagine the
arguments are stored in the tree as children of the corresponding operations.

4.2. Architecture 41

We have defined the necessary types to represent the structure which we
need to build our pTree.

To build the parser we used the Parse::Yapp[5] module for Perl. This
module is the Perl implementation of the traditional Bison1 (also known as
yacc in some architectures). Bison is used to build parsers from grammars.
We have our grammar defined, we have our data structure, so the only thing
we need now is to define the function that will run for each rule in the
grammar. Our parser function given a program builds a pTree:

parser : program −→ pTree

The parser also uses a separated component, a function called lexer,

lexer : programText −→ symbol

The lexer is responsible for tokenizing the source fed to the parser. Given
a piece of programText this function returns the next symbol found. When
called, the lexer reads the code until it matches a previously defined regular
expression and returns the token found. The program is being consumed
during the process, so every time the lexer is called it continues the match
from the last point that it returned. This function is called until the program
ends.

Our parser function uses the lexer to know the sequence of symbols found
in the program. While building the derivation tree. This derivation tree is
build using the rules defined in the grammar.

Now we need to implement the parser for the grammar that is going
to use the lexer function and the data types defined earlier. To undergo
this complex, yet completely automated task, we will use Parse::Yapp. This
module will build a new module that can be used to parse programs in our
specific language. This is not near complete, our parser can only calculate
if for a given program is there one and only one possible tree that can be
built by deriving the non-terminal rules. The lexer is called by this module
to return the next token found in the program source. By now our parser
is not much more than a state machine. As we have discussed earlier, the
goal of the parser is to build a parsingTree. To do this we add code to our
grammar to be executed whenever a rule is used, this way we can build our
tree during tree derivation. This way every time the state machine chooses
a rule based on the next token returned by the lexer we execute some code.
Most of the times this code is used to create a new node in the resulting tree,

1http://www.gnu.org/software/bison/

42 4. OML Implementation

and also add some needed information to the newly create node. Let us look
at a little example to bring some more light into the subject. Our grammar
clearly states that a term, which is a non-terminal rule, can derived into two
terminal symbols: a string or a container. This is described in BNF notation
in our grammar as:

term : STRING | VAR

In our grammar module we started by defining this rule as:

term : STRING
| VAR
;

This is correctly defined. Also anyone can state that the notation is a
very similar to BNF, just to make the task of writing parsers easy. But this
it is not a solution for the problem because we still need to return a parsing
tree for everything to work. So, we will add some code to create those specific
nodes, the term nodes:

term : STRING { +{’term’=>$_[1]} }
| VAR { +{’var’=>$_[1]} }
;

The code that is going to be executed when each rule is reduced is written
between { and } for each rule. Also, the last evaluated expression is returned.
Therefore we just need to create an internal representation for this node and
return it’s reference so it can be added to the tree.

Finally our top rules return the whole parsing tree which is internally
represented with and hash table with an element, the key for this element is
the keyword pTree and the value of this element is the rest of the tree. This
is done in our top rule program:

program : statement_list { +{ pTree=>$_[1] } }
;

The new hash table is the last evaluated expression, and program is the
top rule, so this tree is the returned result after calling the parser. This tree
is then used by the next module to continue computation.

The following example illustrates the building of the parsing tree. The
next program, which consists in only one rule, adds to the ontology a relation

4.2. Architecture 43

named city-of between a container name $city and the term Europe, for
each $city that is related with the term Portugal by a relation named
city-of.

$city ’city-of’ Portugal => add ($city ’city-of’ Europe).

In figure 4.3 we can see a simplified version of the parsing tree that is
build when running this program. The square boxes are all the non-terminal
symbols that we need to follow before getting to the terminal symbols, which
are represented here by the round corner boxes. The double line square box
represents the starting symbol.

pTree

��
statement∗

��
statement

vvnnnnnnnnnnnn

�� ((QQQQQQQQQQQQQ

condBlock

��

76 5401 23′ =>′ actionBlock

��
condition

xxqqqqqqqqqqq

�� ((PPPPPPPPPPPP action

��

var

��

relation

��

term

��?> =<89 :;′city′ ?> =<89 :;′city − of ′ ?> =<89 :;′Portugal′ add

vvnnnnnnnnnnnnnn

�� ''OOOOOOOOOOOOO

var

��

relation

��

term

��?> =<89 :;′city′ ?> =<89 :;′city − of ′ ?> =<89 :;′Europe′

Figure 4.3: Parsing tree example for rule $city ’city-of ’ Portugal => add
($city ’city-of ’ Europe)..

44 4. OML Implementation

So, from figure 4.3 we can see that from the non terminal symbol pTree
we can build the tree that represents

Of course we now need an internal representation for this tree. This is
illustrated next. This is the actual internal representation of our parsing
tree, where the { } represent anonymous feature sets and the () represent
anonymous sets. This is a simplified version, some information concerning
the order of the rules for example was removed in order to be easier to read.

’pTree’ => {
’cond’ => [
{ ’var’ => ’city’ },
{ ’relation’ => ’city-of’ },
{ ’term’ => ’Portugal’ }

],
’action’ => {
’add’ => [
{ ’var’ => ’city’ },
{ ’relation’ => ’city-of’ },
{ ’term’ => ’Europe’ }

]
}

}

4.2.3 Tree Transformation Engine

The next module is responsible for converting the parsing tree in a tree with
more information. Since in this case we are looking for patterns this engine
calculates, for each pattern, two things:

• If the pattern was found in the ontology or not.

• If the pattern was found, calculate the list of solutions for the given
pattern. This is needed because if named containers are used in the
pattern, there can be more than one solution.

This module final result will be a new tree that we will can domain in-
stantiated tree (diTree). In this tree all the patterns defined in program are
replaced with the possible solutions that we found for those patterns. There-
fore we define the function that does this transformation expander, that given
a pTree returned by the parser module and an ontology builds a new diTree.

4.2. Architecture 45

expander :pTree × ontology −→ diTree

In the new diTree the patterns will be replaced for sets of instances that
represent the solutions for that pattern. We define this new tree as:

diTree = distatement?

distatement = instBlock × actionBlock
instBlock = instance?

instance = V AR ↪→ STRING

A diTree is a list of distatements. Each distatement is a pair that consists
of a instBlock which represents the instances of the patterns we were looking
for, and an actionBlock which is kept unchanged during this transformation.
Although. for the actionBlock we still use the definition presented in the last
section, we need to define the instBlock. An instBlock is a list of instances. If
the pattern was found in the ontology this list represents the list of instances
that matched for the given pattern. Later we will illustrate this with an
example.

We also need to define an ontology. Although much was discussed in
chapter 2 we will for now adopt a rather simple formal definition:

ontology = fact?

fact = term× relation× term
An ontology is a simple list of facts. Each fact is a three list element: a

term, a relation and another term. Although this is far from the definitions
discussed in earlier chapter, it is enough for the model we are illustrating
here.

The expander module will iterate over all the rules in the pTree examining
all the patterns. For each rule’s pattern it creates a new node in the diTree
that contains the instBlock which represents the solutions for the condBlock
in the pTree. The diTree also stores the actionBlock from the pTree, this
block is stored unchanged.

We define the expander function as:
expander : pTree× ontology −→ diTree

expander(P,O) def=
<distatement(setCalc(condBlock(p), O), actionBlock(p)) | p ∈ P>

The expander function creates a new diTree. To do this it creates a new
distatement for each statement in the pTree. To create a new distatement the
condBlock needs to be converted to a new instBlock. Which means that the

46 4. OML Implementation

pattern in the rule is going to be replaced with the instances for the pattern
in the ontology. This calculation is made by the setCalc function:

setCalc : condBlock × ontology −→ instBlock

setCalc(C,O) def=

is-nil(C) ⇒ <>
is-term(C) ⇒ handleTerm(C,O)

is-relation(C) ⇒ handleRel(C,O)
is-condition(C) ⇒ handleCond(C,O)

is-binOp(C) ⇒ handleBinOp(C,O)
is-unaryOp(C) ⇒ handleUnaryOp(C,O)

The setCalc function creates a new instBlock, this is done based on the
argument condBlock. Actually this function does only the dispatch to the
correct function to do the calculation based on which alternative is the cond-
Block. If the pattern only contained a single term then the handleTerm is
called, for a single relation then the handleRel and so one for each of the
possible alternatives for condBlock.

handleTerm : term× ontology −→ instBlock

handleTerm(T,O) def=
is-string(T) ⇒

 T ∈ O ⇒ <

((
"term"
T

))
>

T /∈ O ⇒ <>

is-var(T) ⇒ <

((
T

π1(f)

))
| f ∈ O>

The handleTerm function calculates an instBlock for a given term and an
ontology. The pattern we are looking for only contains a term, which means
that there are only two possible solutions for the new instBlock :

• The term is a named term, this means that the final block will include
the term if the term exists in the ontology.

• The term is a container, which means that the pattern represents all the
terms for the ontology. This list is put together to return the instance
block.

4.2. Architecture 47

handleRel : relation× ontology −→ instBlock

handleRel(R,O) def=
is-string(R) ⇒

 R ∈ O ⇒ <

((
"rel"
R

))
>

R /∈ O ⇒ <>

is-var(R) ⇒ <

((
R

π2(f)

))
| f ∈ O>

The handleRel function works the same way that the handleTerm func-
tion, but instead oh handling terms handles relations.

handleCond : condition× ontology −→ instBlock

handleCond(C,O) def=
at least one is VAR ⇒ select(π1(C), π2(C), π3(C), O)

are all strings ⇒
{
C ∈ O ⇒ <C>
C /∈ O ⇒ <>

The hangleCond function follows the same principle, the different here is
that we have a three list elements of terms and a relation and any of these
three elements can be a STRING, which means that the we know the name
of this term (or relation). Or, it can be a VAR, which means that we have
a container for this term (or relation). If all the elements are strings the
resulting instBlock contains that condition, if the fact exists in the ontology,
otherwise the resulting instBlock is an empty list. If any of the elements is a
VAR we need to do a SQL style query to the ontology and select the relations
that instantiate the pattern, this is handle by the select function.

select : term× relation× term× ontology −→ instBlock

select(T1, R, T2, O) def=
select the list of instances in the ontology for this relation

Think of the select function as an actual SELECT from a database, where
the terms and relations are columns, and the names that are containers are
replaced by a *. The function is not defined here because it would complicate
and extend more this description than would help to define the implementa-
tion. Also, to make the model easier to illustrate and explain, some details
were omitted, without which this function definition would be rather difficult.

handleBinOp : condition× ontology −→ instBlock

handleBinOp(C,O) def={
is-and(op(C)) ⇒ cartesian(condBlock(C,O), condBlock(C,O))
is-or (op(C)) ⇒ union(condBlock(C,O), condBlock(C,O))

48 4. OML Implementation

The handleBinOp function calculates a new instBlock, when the cond-
Block contains a binary operator. There are two possible situations here:

• The binary operator is an AND, in this case we need to intersect the
two condBlocks. This is a particular join and is defined in the cartesian
function.

• The binary operator is an OR, is this case we need to unite the two
condBlocks. This is a traditional union and is defined in the union
function.

union : instBlock × instBlock −→ instBlock

union(A,B) def=
A ∪B

The union function simply joins two instBlocks using the traditional union
set.

cartesian : instBlock × instBlock −→ instBlock

cartesian(A,B) def=
{cartAux(a, b) | a ∈ A, b ∈ B}

cartAux : instance× instance −→ instBlock

cartAux(A,B) def=
dom(A) ∩ dom(B) = ∅ ⇒ A †B
dom(A) ∩ dom(B) 6= ∅ ⇒ let K = dom(A) ∩ dom(B)

in

{ ∀x ∈ K ∧A(x) = B(x) ⇒ A †B
∀x ∈ K ∧A(x) 6= B(x) ⇒ ∅

The cartesian joins two instBlocks. For a given list of instances it cal-
culates all the possible instance combinations, this way it returns a new
instBlock with all the possible solutions for the pattern provided in the rule.
The cartAux is just an auxiliary function for the cartesian function.

As described in the design principles the component that is used to cal-
culate this tree is independent so it can be easily replaced. One thing that
needs to be noted here is that this component needs to ask questions to the
ontology. To do this we used the API functions provided by the module
Biblio::Thesaurus. Examples of these queries are mostly the existence of
a given relation or term in the ontology. We can change the ontology source
that is being used as long as we are able to query the new source with the
questions needed to implement the functions described in this chapter.

4.2. Architecture 49

Let us now illustrate this calculation with a small example. A program
that has only one rule which as the following pattern:

$city city-of $country => ...

can be used to calculate the container $city that is related with the
container $country by a relation named city-of. In a more natural language
this program will execute something, that we are not interesting in (...), for
every city named $city that is a city on any $country. The figure 4.4
illustrates only the condition block that would be created for this pattern in
the parsing tree.

vvmmmmmmmmmmmmm

condBlock

��
condition

xxqqqqqqqqqqq

�� ''OOOOOOOOOOOO

var

��

relation

��

var

��?> =<89 :;′city′ ?> =<89 :;′city − of ′ ?> =<89 :;′country′

Figure 4.4: Condition block for condition $city city-of $country.

The tree returned by the parser will represent this information as:

...
’cond’ => [
{ ’var’ => ’city’ },
{ ’relation’ => ’city-of’ },
{ ’var’ => ’country’ }

],
...

We can see that the relation name is well defined ’city-of’. But there
are two variable containers named $city and $country. This is also indicated
in the feature set show by the use of the keyword var, used as key. This engine
is responsible for replacing this particular node with a new node that actually

50 4. OML Implementation

represents the instances for this pattern. The node that would represent that
list of instances looks like:

...
’inst’ => [
{ ’city’ => ’Braga’, ’country’ => ’Portugal’ },
{ ’city’ => ’Guimaraes’, ’country’ => ’Portugal’ },
{ ’city’ => ’Lisboa’, ’country’ => ’Portugal’ },
{ ’city’ => ’Porto’, ’country’ => ’Portugal’ }
...

],
...

A list of all the possible solutions for each named container. In this
particular example there are two containers: $city and $country. The
condBlock that represented the pattern was replaced in the new diTree by a
instBlock. This block represents the list solutions for the containers in the
pattern. Each of this solution is a feature sets with the instances for all the
containers found in the pattern.

After going through all the nodes in the parsing tree and for each one
of them create the corresponding node in the domain instantiated tree, this
engine returns this newly created tree. Our main module then handles control
to the next engine which is responsible for actually executing the actions
defined in the program for each rule. This engine is described in the next
section.

4.2.4 Reaction Engine

In this stage we will use the diTree created during the transformation de-
scribed in the previous section. This engine iterates through the tree and for
each rule executes the actions defined. For each rule we can now have two
possible options in the pattern section:

• An empty list which means that the pattern described in the rule was
not found in the given ontology.

• The other option is to have a set. This indicates that the pattern was
found and could have originated more that one solution, and so the
action block needs to be executed once for each possible instance for
the variables in the pattern.

4.2. Architecture 51

The main function that implements this reaction engine (reactor) is de-
fined as:

reactor : diTree× ontology −→ result

reactor(T,O) def=
is-nil(T) ⇒ nil

else ⇒ let <h : t> = T
h1 = runAction(instBlock(h), actionBlock(h), O)

in reactor(t, O)

The reactor function given a diTree and an ontology, for each rule in the
diTree executes the actionBlock.

runAction : instBlock × actionBlock × ontology −→ result

runAction(I, A,O) def=
is-nil(I) ⇒ nil

else ⇒ let <h : t> = I
h1 = execute(h,A,O)

in runAction(t, A,O)

The runAction function, for a given instBlock, an actionBlock and an
ontology executes the actionBlock for each instance of the pattern found in
the instBlock.

execute : instance× actionBlock × ontology −→ result

execute(I, A,O) def=
let args = I

<h : t> = A
h1 = runCode(h, args,O)

in runCode(t, args,O)

runCode : action× args× ontology −→ result

runCode(A,L,O) def=
execute action A passing L as arguments

The execute function runs each action in the actionBlock for an instance.
This function is also responsible for fetching the needed variables from the
instance to be used as arguments to the action being run.

The runCode function is the function responsible for actually executing
the necessary code to perform the describe action. The only thing to note is
that before executing the code we need to remember that have pre defined
functions and user defined functions in the program. In either case it executes
the code passing along the necessary parameters. The actions are always

52 4. OML Implementation

executed in the order they were written in the program. So, each of these
actions can be any of two distinct types:

• A pre defined operation was specified, this means that the action chosen
is from the table 4.1. For example, to add or delete a relation. There is a
callback table defined in the package that is used to call the function for
each operation. In this callback table the code that implements each
function, can be changed according to any specific needs or another
callback table can be used. This code can even be change in runtime.

• As described in the previous chapter, the other option is to have a
standalone subroutine. This means that variables are set as needed,
specially the ones concerning the iterated solution and the code written
in the program is executed as normal code.

Operation Target Arg. Number Arg. List
add ontology 3 term,relation,term
del ontology 3 term,relation,term

Table 4.1: Summary of pre defined operations.

Picking up in the example we have been using figure 4.5 illustrates the
condBlock for an example rule.

We can see that the rule represented in this parsing tree used the pre
defined operation add. We can also verify that the correct number of argu-
ments were parsed. The add operation needs three arguments as we can see
in table 4.1. So for this actionBlock we would run the add operation for each
instance in the instBlock.

Using the last instBlock we have calculated:

’inst’ => [
{ ’city’ => ’Braga’, ’country’ => ’Portugal’ },
{ ’city’ => ’Guimaraes’, ’country’ => ’Portugal’ },
...

],

as an example, we can see that the actionBlock will run as many times
as instances exists. The first time it runs the arguments passed to the action
will be a feature set like:

{ ’city’ => ’Braga’, ’country’ => ’Portugal’ }

4.3. Package 53

''PPPPPPPPPPPP

actionBlock

��
action

��
add

wwpppppppppppp

�� ((PPPPPPPPPPPPP

var

��

relation

��

term

��?> =<89 :;′city′ ?> =<89 :;′city − of ′ ?> =<89 :;′Europe′

Figure 4.5: A condBlock example.

The second time it runs the arguments will be the feature set:

{ ’city’ => ’Braga’, ’country’ => ’Portugal’ }

The functions illustrated in this chapter were written in Camila. These
functions aim to build a model to illustrate the current implementation of the
OML interepreter, but remember it is simplified. Some details were omitted
in order to keep it simple for a better and easier understanding. Regarding
the notation used, there is a artile in Appendix B Simple Camila Notation
that may help to undestand functions definitions.

4.3 Package

The package contains many things that were talked about earlier. In sum-
mary:

• A module written for yapp which implements the parser.

• A set of functions that are used to transform the tree as described in
the architecture section.

• A set of function that are used to execute actions over the ontologies
or arbitrary side effects.

54 4. OML Implementation

• Some scripts that use all the engines together to execute programs and
manipulate ontologies.

• An examples directory with a couple of examples.

• The test suite that can be used to validate that everything still works
as expected.

• And finally every file has it’s own documentation in POD format.

The package can be freely downloaded from CPAN2, the main archive
for Perl modules available today. The module can be installed using CPAN
specific utilities, like cpan for example:

$ cpan Biblio::Thesaurus

Or, the package can be installed manually on any system that runs a Perl
interpreter:

Download and unzip the package file:

$ wgetBiblio-Thesaurus.tgz
$ tar zxvf Biblio-Thesaurus.tgz

Configure for building:

$ perl Makefile.PL

Do the building:

$ make

Run the test suit to make sure everything build correctly:

$ make test

Install the package:

$ make install

Note that in any of these two cases, there are some modules dependencies
that need to be installed. If you use the CPAN tools to install the module
this dependencies can be automatically handled for you, in the second case
they need to be manually installed.

2http://www.cpan.org

4.4. Distribution 55

4.4 Distribution

Some people tend to extrapolate that code produced during investigation
projects in universities, often stays in universities and it is never released
to the public. In this case, all the code and documentation included in the
package can be freely downloaded under GPL (GNU General Public Licence)3

from CPAN (Comprehensive Perl Archive Network)4.
Keep in mind that this implementation is still in development and should

not be used at production level. The direct link to the package page can
always be found in:

http://search.cpan.org/~smash/.

3http://www.gnu.org/copyleft/gpl.html
4http://www.cpan.org

56 4. OML Implementation

Chapter 5

OML by Example

5.1 Geography Ontology

To illustrate our OML implementation we created a very simple ontology.
The knowledge stored in this ontology identifies a small set of information
about geography, European geography mostly. Information about cities and
some of their properties was more than enough to build some easy to read
examples. A very small subset of the information in this ontology is illus-
trated in figure 5.1, just to give an idea of the kind of things we are talking
about.

Figure 5.1: Geography ontology.

Although the reader of this work by now should already have a fairly
accurate idea on how to use OML, there is nothing like a set of examples to
consolidate how everything works.

Starting with simple things, for example, imagine you have a simple re-
lation like described in figure 5.2(a). Which states that the term Guimaraes

57

58 5. OML by Example

is related to the term Portugal by a relation named city-of.

(a) Existing relation.

(b) New relation.

Figure 5.2: Simple example.

In a more natural scope we would read that as Guimaraes is a city of
Portugal. Given this we can also say that Guimaraes is a city of Europe,
since Portugal is a country in Europe. We can write a small program in
OML to add the new relation shown in figure 5.2(b), as shown in program 1.

Program 1 Add a simple relation.

Guimaraes ’city-of’ Portugal => add(Guimaraes ’city-of’ Europe).

Program 1 will add the new relation described in figure 5.2(b) if the rela-
tion described in figure 5.2(a) exists. We can also execute this operation for
any number of cities, for example, in a single program we could do something
like, take a loot at program 2.

Program 2 Add more simple relations.

Guimaraes ’city-of’ Portugal => add(Guimaraes ’city-of’ Europe).
Braga ’city-of’ Portugal => add(Braga ’city-of’ Europe).
Porto ’city-of’ Portugal => add(Porto ’city-of’ Europe).

Although this is very simple it can be very overwhelming. The work
involved in this approach would be the same as adding all the needed, or
wanted, relations by hand. So, let us try something a little bit more elabo-
rated. If Portugal is a country in Europe, then we can infer that all the cities
that are in Portugal are also in Europe. Basically what we are looking for
are relations that look like the relation show in figure 5.3(a).

The shaded circle means represents a term container, which means that
we will be looking for every term that is related to the term Portugal by

5.1. Geography Ontology 59

(a) Matching relations. (b) New relations.

(c) Added relations.

Figure 5.3: Container example.

the relation city-of. We will call this term container $city. Now, the idea
is for each $city that matches this pattern we will add a new relation that
states that every city found is also a city of Europe, as shown in figure 5.3(c).
Program 3 illustrates how do define this operation.

Program 3 Add a relation with a container.

$city ’city-of’ Portugal => add($city ’city-of’ Europe).

Program 3 is much more interesting that the earlier one, program 1. Since
we do not care how many cities exist in our ontology, if that city exists and
is in Portugal, then it is in Europe also. Also, we can run this program later
just to make sure if new cities were added, they also have this relation.

This is a more sophisticated method of adding relations. But we can
still improve our program. There are more countries besides Portugal in
the ontology, and for each country there can be many cities. We can create
a program to add relations for every of this cities. The pattern we will be
looking is illustrated in figure 5.4(a). In a more natural language this pattern
says that for every city in every country. And for every pattern like this
that we found we want to add a new relation for that city, something like

60 5. OML by Example

shown in figure 5.4(b).

(a) Matching relations. (b) New relations.

Figure 5.4: Container example.

Program 4 shows how to write this operation in OML. We will add a
relation that states that $city is in Europe for each $city for every $country
in our ontology.

Program 4 Add a relation for every city in every country.

$city ’city-of’ $country => add($city ’city-of’ Europe).

This program can make our life easier, because we can add the new in-
formation to the ontology in an automatic way. This is lees prone to human
errors and also easier to maintain, since i can run the program every time a
new country or city is added. We could have a problem if we started adding
countries that not belong in Europe. In this case we would need to narrow
down our solution range in our pattern. So, if someone was to add other con-
tinent for example the pattern we would be searching for would be something
like the one described in figure 5.5(a).

(a) Matching relations.

(b) New relations.

Figure 5.5: Container example.

Which means that we would be looking for every $city that belongs to
every $country but with a restriction. That this $country is related with
the term Europe by a relation named country-of, which naturally means
that this $country is in Europe. And, for every $city add a new relation

5.1. Geography Ontology 61

as shown in figure 5.5(b), which means that $city is in Europe. Program 5
shows how to implement this.

Program 5 Add a relation for every city in every country in Europe.

$city ’city-of’ $country AND $country ’country-of’ Europe
=>
add($city ’city-of’ Europe).

There a lot of tricky operations that could be executed. We could loose
fate in our information integrity, or maybe if new data was inserted by humans
there could be mistakes. We could implement simple operations to do various
tests. For example, a city can not be city of itself, which means that we could
never have a $city related with itself by a relation named city-of’. For
each case that we found with this pattern we could print a warning, or remove
the relation on the fly. This pattern is shown in figure 5.6(a).

(a) Matching relations.

Figure 5.6: Relation for the same term.

This way we can search the ontology for invalid relations, we can run this
program every day for example to verify the ontology.

Program 6 Check for invalid relations.

$city ’city-of’ $city
=>
sub{ print "$city has an invalid relation"; }.

Program 6 shows how to implement this.
We hope that this set of illustrated examples has given you a clear idea

on how to write programs in OML. In the next chapter we will discuss some
conclusions and future work possibilities.

62 5. OML by Example

Chapter 6

Final Notes

6.1 Conclusion

If we knew what it was we were doing, it would not be called
research, would it?

Albert Einstein

During this dissertation, work was done in order to achieve a complete
system to manipulate ontologies. A new domain specific language called
OML was created. The tools required to run programs written in OML were
also implemented. The results of using programs written in OML were very
satisfactory. Although it is a very simple language, programs tend to be
very expressive and can be used to implement a wide range of heterogeneous
operations.

Regarding the new domain specific language OML and related tools sev-
eral achievements were accomplished. Some conclusions that can be taken:

• We successfully specified a domain specific language that can be used
to describe patterns that can be matched against an ontology. These
patterns can represent more than one solution, because variables can
be used in the pattern to serve as containers for any term or relation.
Patterns can be very expressive and can go from very simple facts
representation to complicated relations between many facts or terms.

• OML also allows the representation of actions that can be performed
on ontologies. There can be a a range of pre defined operations, or

63

64 6. Final Notes

arbitrary user code can be executed for each operation. Pre defined
tables are interesting because they solve most of the traditional prob-
lems. But being able to produce any kind of side effect, by writing user
code broader a lot the applications of the technology.

• Grouping patterns and actions allows us to form rules. Rules allows
us to manipulate information in an ontology. These rules can be used
to add the new information, by adding new facts or relations. New
information can be used to enrich our ontology and can be simply cal-
culated from existing data. OML programs allow for this kind of op-
eration to be executed. Rules can also be used to write programs that
check if some list of proprieties is valid in the ontology. This is also a
very important point. Most ontologies represent a domain, the domain
information needs to be validated most of the times against a set of
proprieties. Rules can be created to automatically enforce this proper-
ties regularly, even without any kind of human effort. This lessens the
effort of maintaining ontologies a lot.

• The programs created are very easy to understand, there is not much
overhead in learning the language. Syntax is very simple. Not much
previous programming knowledge should be required to use it. This
technology can be quickly dominated by anyone without any computer
science specific training. This is very important because the continuous
growth of ontology adoption among many different sciences, and not
necessarily all computers science related.

• An independent module was created to parse this new language. This
module is responsible for creating a parsing tree for a given program.
The parser module is easy to understand and extend. No rigid or strict
rules were enforced. Also, it can be entirely replaced with any other
parser as long as s parsing tree as described in chapter 4 is created.
The implementation of this module was very interesting because of all
the traditional grammar based language parsers typical problems.

• We wrote a module that can build domain instantiated trees. These
trees represent the instances found in an ontology for a given pattern.
Besides using the parsing tree, this module also uses the ontology to
calculate this tree. This was by far the most time and effort expensive
module to build. It starts by a couple of simple cases but the use of
containers for names and relations quickly raises the complexity of the
code. Again, this module can be re-factored or replaced by another

6.1. Conclusion 65

approach as long as Ir can calculate a domain instantiated tree given a
parsing tree and an ontology.

• We implemented an engine capable of executing operations in an on-
tology, or producing any arbitrary side effects. This engine uses the
domain instantiated trees and the ontology to execute the described
operations. Alongside, dispatch tables were created, this allows for the
use of pre defined operations in a program. Dispatch tables contain
operations that can be directly called from the language. This is a very
interesting asset because allows the creation of dispatch tables with
most common operations for a given area or subject. You can also cre-
ate a new function to run in real time. This is also interesting because
allows actions that do anything you might need. Perl is used to write
these user defined functions.

• Finally, we put everything together to execute programs written in
OML in a simple set of example tools. Since everything is modular
and can be used separately we can now build high order functions that
use these ones as building blocks. We put together some interesting
tools, but we are sure that there are still ways that the modules can
be used that we have not yet think off, we are guessing that this will
happen when the right problem comes along. This is the beauty of
it, we can keep crafting more complex and complex applications as
problems need them, not the other way around. Meaning we start with
the simple things and grow in complexity from there. We do not start
with complex tools and languages to tinker simple applications to solve
simple problems.

The study and analysis of current technologies in this area contributed
for some of the decisions made during the language specification and imple-
mentation. From this study some conclusions were taken:

• There are actually a wide range of means for ontologies computer rep-
resentation. OWL, SKOS, Topic Maps and Biblio::Thesaurus are in-
stances of solutions that can be used to represent knowledge in ontolo-
gies, or even some close subset of structures (thesauri or taxonomies
for example).

• OWL, SKOS and Topic Maps can create very complex representations.
Although this complexity allows for many things to be accomplished it
can be overwhelmed for the end user. Biblio::Thesaurus allows a much

66 6. Final Notes

simpler representation, of course it does not allow for some things to be
accomplished so easily but it is much more simple to get started with.

• Converting between different representations is doable. There are some
approaches for solving this problem, and there is a clear effort in re-
search within this family of problems. Conversion may not be easy
because of the complexity notation for most of the syntax.

• We felt there was a lack of solutions for manipulating technologies.
There are a few software around, with interesting and intuitive GUIs,1.
These solutions are powerful, but they all share the same problem,
they lack expressiveness. And, most of the times, they lack a certain
Independence of human intervention. Some operations could be easily
completely automatic. Even more, some operations themselves should
be automatically constructed from other sources. This king of autom-
atizing it hard with visual clients, we need something that works on a
lower level.

During the entire work we were in close contact with this technologies
and we were able to take some more conclusions:

• The use of structures from the ontology family tree is growing. The
requirements for today’s state of the art solutions requires the use of
structured information. This fact is most of the times stated by persons
with any computer science skill.

• Many people today using ontologies do not have any computer science
skills. Linguists are a good example of this set of people. Biologists are
another community were the use of this technologies is growing.

• Ontologies can contribute for a unified set of communication services.
Ontologies can take information share between different systems, their
strong structured nature, and flexibility at the same time allow for
complex data exchange.

We were very pleased with the final result and are hoping to adopt this
approach in some real case scenarios in a near future. We are also hoping to
have contributed to increase to the use of ontologies in the future. There is
no doubt that this knowledge representation approach will play an important
part in the journey we are taking into the semantic world of the web2.0.

1Graphic User Interface

6.2. Future Work 67

6.2 Future Work

Some tasks that can be done in the future to improve this work:

• Use more case studies to further test the domain specific language.
Mainly to verify that the current state of the language allows to describe
the patterns required to solve problems.

• In case we find patterns that can not be described with the current lan-
guage, add the operators necessary to write these patterns. If necessary,
extend the language grammar.

• Finish the implementation of the unary operator (not) which is still not
mature, and needs some more testing. Specially in some edge cases.

• Also, it may be possible that the operations defined in the callback
table, and that are used to execute actions, are not enough. Different
sets of problems may require different operations. Maybe design a
couple of domain sets of callback tables. So, if you are working in
some specific area, you should be using one of these specific callback
tables.

• Take performance into consideration. Do some tests with really big
ontologoies, and very complicated expressions, in order to measure per-
formance. Improve code in order to improve performance.

68 6. Final Notes

Bibliography

[1] Oxford English Dictionary, Second Edition. 1989.

[2] José João Almeida and Alberto Simões. T2O — recycling thesauri into
a multilingual ontology. In Fifth international conference on Language
Resources and Evaluation, LREC 2006, Genova, Italy, May 2006.

[3] D. Beckett and B. McBride. RDF/XML Syntax Specification (Revised).
W3C Recommendation, 10, 2004.

[4] D. Conway. Perl Best Practices. O’Reilly Media, Inc., 2005.

[5] Francois Desarmenien. Parse::yapp.
http://search.cpan.org/perldoc?Parse::Yapp.

[6] S. Dietzold. Generating RDF Models from LDAP Directories. In Pro-
ceedings of the SFSW, volume 5.

[7] M.J. Dominus and ScienceDirect (Online service). Higher-order Perl:
Transforming Programs with Programs. Morgan Kaufmann Publishers,
2005.

[8] A. Farquhar, R. Fikes, and J. Rice. The Ontolingua Server: a tool for
collaborative ontology construction. International Journal of Human-
Computers Studies, 46(6):707–727, 1997.

[9] Ó. Ferrández Escamez, R. Izquierdo Beviá, S. Ferrández Escamez,
V. González, and J. Luis. An user-centred ontology-and entailment-
based Question Answering system. 2008.

[10] T.R. Gruber. A translation approach to portable ontology specifications.
KNOWLEDGE ACQUISITION, 5:199–199, 1993.

[11] N. Guarino and Istituto (Roma) Consiglio nazionale delle ricerc. Formal
ontology in information systems. IOS Press, 1998.

69

70 Bibliography

[12] M. Horridge, H. Knublauch, A. Rector, R. Stevens, and C. Wroe. A
Practical Guide To Building OWL Ontologies Using The Protege-OWL
Plugin and CO-ODE Tools Edition 1.0. University Of Manchester, 2004.

[13] I. Horrocks, P.F. Patel-Schneider, and F. van Harmelen. From SHIQ and
RDF to OWL: the making of a Web Ontology Language. Web Semantics:
Science, Services and Agents on the World Wide Web, 1(1):7–26, 2003.

[14] D. Jin. Ontological Adaptive Integration OF Reverse Engineering Tools.
PhD thesis, Queen’s University, 2004.

[15] J. Lacasta, J. Nogueras-Iso, F.J. Lopez-Pellicer, P.R. Muro-Medrano,
and F.J. Zarazaga-Soria. ThManager: An Open Source Tool for Cre-
ating and Visualizing SKOS. INFORMATION TECHNOLOGY AND
LIBRARIES, 26(3):39, 2007.

[16] D.B. Lenat. CYC: a large-scale investment in knowledge infrastructure.
Communications of the ACM, 38(11):33–38, 1995.

[17] A. Maratheftis and N.I.T. Consulting. Knowledge Management.

[18] J. McCarthy, Computer Science Dept, Stanford University, and Stan-
ford Artificial Intelligence Laboratory. Circumscription-A Form of Non-
Monotonic Reasoning. 1980.

[19] D.L. McGuinness, F. van Harmelen, et al. OWL Web Ontology Language
Overview. W3C Recommendation, 10:2004–03, 2004.

[20] A. Miles, B. Matthews, D. Beckett, D. Brickley, M. Wilson, and
N. Rogers. SKOS: A language to describe simple knowledge structures
for the web. In XTech 2005 Conference Proceedings, 2005.

[21] A. Miles, B. Matthews, M. Wilson, and D. Brickley. SKOS Core: Simple
Knowledge Organisation for the Web. In Proceedings of the International
Conference on Dublin Core and Metadata Applications, pages 12–15,
2005.

[22] L. Miller, A. Seaborne, and A. Reggiori. Three Implementations of
SquishQL, a Simple RDF Query Language. LECTURE NOTES IN
COMPUTER SCIENCE, pages 423–435, 2002.

[23] N.F. Noy and D.L. McGuinness. Ontology Development 101: AGuide to
Creating Your First Ontology. Disponible en http://www. Ksl. stanford.
edu/people/dim/papers/ontology-tutorial-noy-mcguinessabstract. html
[consulta: diciembre de 2005].

Bibliography 71

[24] S. Pepper. The TAO of Topic Maps: Finding the Way in the Age of
Infoglut. In Proceedings of XML Europe 2000 Conférence.

[25] A. Randal, D. Sugalski, and L. Tötsch. Perl 6 and Parrot Essentials.
O’Reilly, 2004.

[26] Y. Shahar, S. Miksch, and P. Johnson. The Asgaard project: a task-
specific framework for the application and critiquing of time-oriented
clinical guidelines. Artificial Intelligence In Medicine, 14(1-2):29–51,
1998.

[27] Alberto Manuel Simões and José João Almeida. Library::* — a toolkit
for digital libraries. In ElPub 2002 - Technology Interactions, 2002.

[28] B. Smith, W. Kusnierczyk, D. Schober, and W. Ceusters. Towards a
Reference Terminology for Ontology Research and Development in the
Biomedical Domain. In Proceedings of KR-MED, pages 57–66, 2006.

[29] R. Stevens, C.A. Goble, and S. Bechhofer. Ontology-based knowledge
representation for bioinformatics. Briefings in Bioinformatics, 1(4):398–
414, 2000.

[30] M. Szymczak, M. Gawinecki, M. Vukmirovic, and M. Paprzycki. Onto-
logical reusability in state-of-the-art semantic languages. Proceedings of
the XVIII Summer School of PIPS (to appear).

[31] M. van Assem, V. Malaise, A. Miles, and G. Schreiber. A Method
to Convert Thesauri to SKOS. LECTURE NOTES IN COMPUTER
SCIENCE, 4011:95, 2006.

72 Bibliography

Appendix A

The Grammar

In this appendix we present the complete grammar for OML, the language
specified in Chapter 2, in BNF notation.

pTree : statement_list

statement_list : statement_list statement DOT
|

statement : cond_block ARROW action_block
| action_list

cond_block : condition
| condition oper cond_block
| NOT OPEN cond_block CLOSE

condition : term relation term
| TERM OPEN term CLOSE
| REL OPEN relation CLOSE

term : STRING | VAR

relation : STRING | VAR

oper : AND | OR

action_block : action_list

73

74 A. The Grammar

action_list : action_list action
|

action : ACTION OPEN condition CLOSE
| SUB CODE

Appendix B

Simple Camila Notation

75

Simple camila Notation

José João Dias de Almeida

November 27, 2008

1 Type Constructors

Most frequent notation for type construction:

set(A) set of A
A ⇀ B mapping, A to B correspondence
A∗ sequence of A

A→ B function from A to B
A×B products

field1 : A× field2 : B product with field names
A+B alternatives
any universal type
1 singleton type

A new type definition can include a predicate about its values in order to
restrict the set holder — invariant. If we want to define a type date, even in
it’s most simplified version, it is easier to define a set holder (a three integer
product, for example) and constrain the values with an invariant function that
validates the triple values.

date = day : int ×
month : int ×
year : int

inv(d) def= day(d) > 0 ∧ day(d) ≤ 31 ∧month(d) > 0 ∧month(d) ≤ 12 ∧ ...
Some functions associated with types:

Description Notation
expression type . type(e)
expression compatible with type t . is-t(e)

2 Functions — A→ B

The camila language allows several ways for functions definition. These defi-
nitions may include arguments, the result type, a pre condition definition or a
state definition. Also, it is possible to define anonymous functions.

1

Description Notation
compact function definition . f(x) def= y

anonymous function definition . λ(x)f(x)

compact function with types signature
f : t1× t2 −→ t

f(x1, x2) def= g(x1, x2)

function with pre-condition .

f : t1× t2 −→ t

f(x1, x2) def=
pre p(x1, x2)
in g(x1, x2)

display functions with state .

f : t1× t2 −→ t

f(x1, x2) def=
post s′ = h(x1, x2, s)
in g(x1, x2)

(1)

It is possible to define higher-order functions.

3 Generic expression constructors

The camila language offers some of the usual mechanisms in specification lan-
guages, like let and conditional expressions (with partial pattern matching) and
natural language or.

Description Notation

conditional expression .

 c1 ⇒ v1
c2 ⇒ v2

else ⇒ vn

conditional with pattern matching

v1 is−< h : t > ⇒ f(h, t)

v2 is−<> ⇒ g
v3 is−{e : s} ⇒ h(e, s)

v4 is−{} ⇒ i
else ⇒ j

let expression .
let a = e1

b = e2
in f(a, b)

let with pattern matching .
let <a, b> = e
in f(a, b)

natural language or . a or b

The or operator is not common in specification languages so it requires a
little explanation. This operator (close to the natural language or) gives as

2

result the first argument except if it is empty or undefined. It is used as an
binary infix operator.

Or(exp1, exp2) def=
exp1 = ∅ ⇒ exp2
exp1 = () ⇒ exp2

exp1 = <> ⇒ exp2
undefined(exp1) ⇒ exp2

else ⇒ exp1

4 Booleans

Booleans common logic functions and quantifiers exist in camila.

Description Notation
negation . ¬a
conjunction . a ∧ b
disjunction . a ∨ b
implication . a⇒ b
universal quantification . ∀x ∈ setexp ∧ p(x)
existential quantification . ∃x ∈ setexp : p(x)
unary existential quantification . ∃1x ∈ setexp ∧ p(x)

5 Mappings — A ⇀ B

Uniform mappings can use the following predefined functions:

Description Notation

mappings by enumeration .
((

a1
b1

)(
a2
b2

))
mappings by comprehension .

(
f(a)
g(a)

)
a∈setexp(

f(a)
g(a)

)
a∈setexp∧p(a)

domain . dom(f)
range . rng(f)
application . f(x)
domain constrain . f | s
domain subtraction . f \ s
rewrite, rewriting f with g . f † g

6 Sequences — A∗

Sequences of type A can use the following base functions:

3

Description Notation
sequences by enumeration . <a1, a2, ... >
sequences by comprehension . <f(a) | a ∈ setexp>

<f(a) | a ∈ setexp ∧ p(a)>
head . head(s)
tail . tail(s)
element in position i . s(i)
first element . π1(x)
second element . π2(x)
soncatenation . s _ r
append element . <x>_ s

<x : s>
s1_ s2_ ... _ sn

distributed concatenation . _(<<... >, ... >)
elements set . {x | x ∈ s}

elems(x)
existing indexes . inds(s)
inverse . reverse(s)
length . length(s)
sorted sequence . sort(s)
custom sorted sequence . sort2(f, s)

Sequences can be heterogeneous (Example S = any∗).

7 Sets — set(A)

Sets can use the following functions:

Description Notation
sets by enumeration . {a1, a2, ... }
sets by comprehension . {f(a) | a ∈ setexp}

{f(a) | a ∈ setexp ∧ p(a)}
non-deterministic choice . choice(c)
union . c1 ∪ c2
interception . c1 ∩ c2
sets difference . c1− c2
belonging to a set . e ∈ c
not belonging to a set . e /∈ c
number of elements . card c
distributed union .

⋃
({{... }, ... })

sorted set . sort(s)
custom sorted set . sort2(f, s)

Sets can be heterogeneous (Example S = set(any)).

4

	Nuno Alexandre Ramos de Carvalho.pdf
	Página 1
	Página 2
	Página 3

	tese.pdf

