
Dezembro de 2008

Universidade do Minho
Escola de Engenharia

Miguel Alexandre Lopes Oliveira da Costa Ferreira

Verifying Intel Flash File System Core

M
in

ho
 2

00
8

U
M

ig
ue

l A
le

xa
nd

re
 L

op
es

 O
liv

ei
ra

 d
a

C
os

ta
 F

er
re

ira
V

e
ri

fy
in

g
 I

n
te

l
F

la
sh

 F
il

e
 S

ys
te

m
 C

o
re

Tese de Mestrado em Informática

Trabalho efectuado sob a orientação do
Professor Doutor José Nuno Oliveira

Dezembro de 2008

Universidade do Minho
Escola de Engenharia

Miguel Alexandre Lopes Oliveira da Costa Ferreira

Verifying Intel Flash File System Core

Verifying Intel® Flash File System

Abstract

The present thesis pretends to be a contribution to the Grand Challenge in verified software inter-

national initiative, specifically in the Verifiable File System case study. The main discipline behind

this project is Formal Methods for software development and in particular formal specifications, in

addition to the verification of such specifications. The author proposes different approaches to verify

a VDM++ model, using Alloy Analyzer for model checking and HOL4 for theorem proving, as light

and heavy weight approaches, respectively. The different methods require different languages and

tools, and the feasibility of the integration of these methods is the key research goal of this work.

The base for the file system specifications is the Intel® Flash File System Core Reference

Guide, that defines the architecture and API of a file system that is POSIX aware and specialized

for flash memory devices. Requirements for the file system are captured in a VDM++ specification,

together with two basic operations to create and remove files. Test cases are developed at this

initial stage to validate the requirements. The proof obligations from the VDM++ specification are

generated and translated to Alloy, to be model checked. The highest level of confidence is achieved

by discharging the proof obligations through a mathematical proof. For that purpose the Overture

Automatic Proof System translates VDM++ models, and the respective proof obligations, to HOL

models that can be automatically verified by the Automatic Proof System using the HOL4 theorem

prover.

The outcome of this project is the design of a VDM++ verification tool chain, that integrates

language native tools, with tools for other languages, in order to automate extended static checking.

Full automation has not been achieved, although some steps towards it have been taken.

Verifying Intel® Flash File System

Resumo

A presente tese pretende contribuir para uma iniciativa internacional denominada Grandes Desafios

em Computação, com o objectivo de consolidar a área de verificação de software, especificamente

no caso de estudo Sistema de Ficheiros Fiável. O trabalho aqui apresentado tem como base

teórica Métodos Formais para o desenvolvimento de software, em particular especificação e verifi-

cação formal de correcção. O autor propõem diferentes abordagens à verificação de especificações

VDM++, usando o Alloy Analyzer para verificação usando técnicas automáticas de exploração de

estados e, o HOL4 para descarregar provas de correcção. Pretendendo com isto promover difer-

entes níveis de confiança, associados a diferentes níveis de complexidade do método. A utilização

dos diferentes métodos sobre a mesma especificação, requerem uma adequada integração de

linguagens e ferramentas, sendo que esse é também um dos propósitos deste projecto.

A especificação formal do sistema é construída com base no documento "Intel® Flash File

System Core Reference Guide", onde se define a arquitectura e API de um sistema de ficheiros que

respeita a norma POSIX, além de ser orientado para utilização em dispositivos de memória flash.

Os requisitos do sistema de ficheiros são capturados em uma especificação VDM++, incluindo

duas operações para criar e remover ficheiros. A especificação é inicialmente validada através

de casos de teste também especificados em VDM++. Com o intuito de aumentar a confiança

na especificação, obrigações de prova são geradas e traduzidas para Alloy por forma a serem

automaticamente verificadas dentro de um espaço de estados finito. Um último nível de verificação,

de onde se pretende obter o nível mais elevado de confiança, é a prova matemática de correcção.

Este nível pode ser atingido com a utilização de uma ferramenta construída no âmbito do projecto

Overture denominada Sistema Automático de Prova, capaz de traduzir especificações VDM++, e as

respectivas obrigações de prova, para a linguagem do provador de teoremas HOL4. Com recurso

ao HOL4 as obrigações de prova da especificação VDM++ podem ser descarregadas, sem que

seja necessário conduzir a construção das provas.

Como resultado deste projecto o autor apresenta um processo de verificação de especificações

VDM++ que integra diferentes ferramentas, tanto nativas como externas, com o intuito de automa-

tizar o processo de verificação estática estendida. A automatização completa de processos não foi

atingida, contudo regista-se já algum progresso nesse sentido.

Acknowledgments

To José Nuno Oliveira the most sincere acknowledgment for both the inspiration and opportunity

to pursue an education in Formal Methods for Computer Science, under his close supervision.

He provided the opportunities, and financial support that enabled me to participate in international

conferences and benefit from the contact with other computer science researchers. With out his

valuable guidance and motivation this project would not have been possible.

Many thanks Samuel Silva, colleague and co-participant in the Verifiable File System project,

for his contribution in the initial file system specifications, the translation of VDM++ specifications to

Alloy, and help re-constructing specifications that were lost along the way.

Many thanks to Peter Gorm Larsen for showing so much interest in the Verifiable File System

project, and providing the opportunity to present it at the Fourth VDM-Overture Workshop held in

Finland, during the FM’2008 international symposium. Also for his contribution with reviews of this

thesis, and valuable advice.

Many thanks to Sander Vermolen for his extensive support on the Overture Automated Proof

System, and HOL4 theorem prover. He showed great interest in the problems we faced in the Ver-

ified File System project proofs, and contributed with valuable insight to mechanically discharging

them.

Many thanks to both Rajeev Joshi and the SRI International for their interest in the Verifiable File

System project, and financial support that enabled me to present the project at the VS-Experiments

Workshop held in Canada, during the VSTTE’2008 conference.

Finally, many thanks to the CSK Group for providing access to the full fledged VDMTools, and

to Intel Corporation for the permission to reproduce parts of the Intel® Flash File System Core

Reference Guide.

v

Contents

1 Introduction 1

1.1 Formal Methods . 4

1.2 Grand Challenge . 6

1.2.1 Verifiable File System . 7

1.3 Software Verification . 8

1.3.1 Testing . 10

1.3.2 Model Checking . 11

1.3.3 Mathematical Proof . 12

1.4 Objectives . 12

1.5 Document Structure . 13

2 Tool Background 15

2.1 VDM . 15

2.1.1 VDM++ Language . 15

2.1.2 VDMTools . 16

2.1.3 Overture . 18

2.2 Alloy . 19

2.2.1 Alloy Language . 19

2.2.2 Alloy Analyzer . 20

2.3 HOL . 21

3 Development Process 25

3.1 Abstract Modeling . 25

3.2 Model Translation . 26

3.2.1 VDM++ to Alloy Translation: Hand Guide . 26

3.2.2 VDM++ to HOL Translation: Preparation . 31

3.3 Verification . 34

3.3.1 Testing . 35

3.3.2 Model Checking . 36

3.3.3 Proof of Correction . 36

3.3.4 Tool Chain . 36

3.4 Summary . 38

vii

CONTENTS

4 Intel® Flash File System Core 39

4.1 FS_DeleteFileDir . 40

4.1.1 Requirements Analysis . 40

4.1.2 VDM++ Model . 42

4.1.3 Unit Testing the VDM++ model . 48

4.1.4 Alloy Model . 50

4.1.5 Model Checking the Operation with the Alloy Analyzer 55

4.1.6 Model Checking VDM Proof Obligations with the Alloy Analyser 57

4.1.7 VDM++ Adapted for the VdmHolTranslator Tool 62

4.1.8 Correcting the Translated HOL4 Model . 64

4.1.9 Discharging VDM Proof Obligations with HOL4 66

4.2 FS_OpenFileDir . 67

4.2.1 Requirements Analysis . 67

4.2.2 VDM++ Model . 70

4.2.3 Unit Testing the VDM++ Model . 75

4.2.4 Alloy Model . 80

4.2.5 Model checking the operation with the Alloy Analyzer 87

4.2.6 Model Checking VDM Proof Obligations with the Alloy Analyser 90

4.2.7 VDM++ Adapted for the VdmHolTranslator Tool 101

4.2.8 Correcting the Translated HOL4 Model . 103

4.2.9 Discharging VDM Proof Obligations with HOL4 104

4.3 Summary . 105

5 Related Work and Conclusions 107

5.1 Related Work . 107

5.1.1 Verified File System . 107

5.1.2 Using Alloy as a Complement for Other Methods 108

5.2 Conclusions . 108

5.2.1 Contributions . 108

5.2.2 Difficulties . 109

5.2.3 Future Work . 111

A Libraries 121

A.1 Alloy Relational Calculus Library . 121

B Models 125

B.1 VDM++ Model . 125

B.1.1 Flash File System Core . 125

B.2 Unit tests . 133

B.2.1 FS_DeleteFileDir . 133

B.2.2 FS_OpenFileDir . 137

B.3 Alloy Model . 144

viii

CONTENTS

B.3.1 Flash File System Core . 144

B.4 Model Checking . 158

B.4.1 FS_DeleteFileDir . 158

B.4.2 FS_OpenFileDir . 160

B.4.3 Proof Obligations . 166

ix

List of Figures

1.1 Flash File System Core Components. 9

1.2 Basic Allocation Layer Components. 10

2.1 VDMTools Workbench. 16

2.2 Alloy Analyzer Workbench. 21

2.3 Alloy Model Instance. 22

2.4 HOL4 Interpreter. 24

3.1 Preparation of VDM++ Models for the VdmHolTranslator 33

3.2 VDM — Alloy — HOL Tool Chain . 37

4.1 FS_DeleteFileDir Operation. 40

4.2 FS_OpenFileDir Operation . 68

5.1 Alloy — VDM — HOL Tool Chain . 110

xi

List of Tables

4.1 Abstracted fields from structure FS_FileDirInfo . 44

4.2 Abstracted fields from structure FS_OpenFileDir . 45

4.4 Test Coverage for Functional FS_DeleteFileDir . 49

4.6 Test Coverage for Objectified FS_DeleteFileDir . 49

4.8 Test Coverage for Functional FS_OpenFileDir . 77

4.10 Test Coverage for Objectified FS_OpenFileDir . 77

xiii

Acronyms

API Application Programming Interface . 7

APS Automatic Proof System . 18

AST Abstract Syntax Tree . 18

BAL Basic Allocation Layer . 8

BDD Binary Decision Diagram. 11

CICS Customer Information Control System . 4

CORBA Common Object Request Broker Architecture . 16

CPO Complete Partial Order. .23

CPU Central Processing Unit .110

CSP Communicating Sequential Processes . 25

DOL Data Object Layer . 8

FIFO First In First Out . 40

FIL Flash Interface Layer . 8

FSL File System Layer . 8

FTL Flash Translation Layer .7

GC Grand Challenge . 6

HOL High Order Logic. .12

IFFSCRG Intel® Flash File System Core Reference Guide . 8

ISO International Organization for Standardization . 15

JFFS Journalling Flash File System . 7

LCF Logic for Computable Functions . 21

LL Low-Level . 8

LSM Logic of Sequential Machines . 23

MIT Massachusetts Institute of Technology . 107

ML Meta Language . 21

NASA National Aeronautics and Space Administration. .5

xv

LIST OF TABLES

ONFI Open NAND Flash Interface . 8

PO Proof Obligation. .17

POSIX Portable Operating System Interface . 6

PSBC Pseudo Single Bit per Cell . 42

PVS Specification and Verification System. .12

RAM Random-Access Memory . 8

RM Reclaim Module . 8

SAT propositional satisfiability .11

UML Unified Modeling Language . 4

VDM Vienna Development Method . 4

VDM-SL Vienna Development Method — Specification Language. .4

VDM++ Vienna Development Method — Object Oriented Language. .4

VFS Verifiable File System . 7

VICE VDM++ In Constrained Environments . 4

VSR Verified Software Repository . 6

VSTTE Verified Software: Theories, Tools, Experiments . 6

YAFFS Yet Another Flash File System. .7

xvi

Chapter 1

Introduction

Computing machines have taken control of most aspects of current life. In the beginning they were

mechanical and created to replace people who performed calculations by hand. The mechanical

components of the machines evolved to electric components which became smaller, performed

better and consumed less power. The evolution continued with the digital era, were electronic

components brought the same kind of benefits, although in a much greater scale.

With the goal of automating calculation, the first computers were single purpose, or single pro-

gram, machines completely built in hardware. Charles Babbage, an English mathematician, philoso-

pher and mechanical engineer, started to work on a mechanical calculating machine to compute

polynomials in 1822 [94, 11], that he called Difference Engine. Although his first attempt to build

such machine lasted more than 10 years, he failed to completely deliver it. Before his death Bab-

bage would develop two other models for computing machines, one called Differences Engine No.

2 (successor to his first machine), and another called Analytical Engine capable of calculating any

function. The later was a fully programable model for a machine powered by a steam engine. Bab-

bage had the idea of allowing user programs to run in the Analytical Engine through a mechanism

to access strings of paper cards that would contain the operations or the variables necessary for

the execution. At this time he had already the idea of separating instructions from data, based on

his background on algebraic notation and in his conviction that there should be a clear separation

between operation and quantity symbols. The instruction set Babbage devised included operations

to move card strings back and fourth, allowing for loops in the programs.

In 1936 Alan Turing presented an abstract computation model [87], later called Turing machine,

capable of describing the logic behind any computational algorithm. Turing proposed in this model

that the machine could execute any arbitrary sequence of well formed instructions. The Turing

machine was never built, although the study of its abstract properties added to the knowledge on

computing science. Scientists have always relied on abstraction to clear irrelevant details, hence

decreasing complexity of the observed phenomena. Later on (1945), another mathematician and

computer scientist, John von Neumann, wrote an incomplete document [93] (published in 1993)

describing a computing machine architecture, that complied with the ideas and principles of the

Turing machine. The von Neumann architecture is the ancestor of the computing machines we

have today, it was the first specification of a concrete machine that would fit the current notion of

1

CHAPTER 1. INTRODUCTION

computer. Since then, hardware has evolved in a sound and sustained manner, where by increased

complexity has brought huge performance benefits, instead of dramatically increasing design flaws.

The fact that the machines we call computers have evolved from research made by mathematicians,

using tools such as abstract models based on mathematical logic, in the author’s perspective, is no

coincidence. An incident such as the famous FDIV bug in Intel® Pentium® [64], with a quantified

cost of over $400 million [29], was enough for hardware industry to look for better validation strate-

gies, especially those able to find design flaws. Increased success of formal verification of hardware

components has convinced engineers that using rigorous mathematical based approaches can in

fact be cost and time effective. In 1992 Edmund Clarke et al published a paper [19] reporting on the

verification of the Futurebus+ cache coherence protocol, where they discuss the results of formaliz-

ing the protocol, and point out some errors found in some possible configurations. Errors were also

found in the Scalable Coherence Interface protocol [85].

The advent of calculation automation and general purpose programable machines, opened up

new domains where computers could be used. Programmers could now use the same machine to

execute different code, thus increasing the overall utility of computers. However, ten years ago, it

would be difficult to imagine that computing machines would be so widely spread, hidden from your

eyes, controlling almost everything, from the most vital sectors of society, to the tiniest device we

use to hear music. Software related technologies have expanded very fast, although their influence

and importance has expanded even faster. As hardware became more stable and mature, software

became unreliable and messy. The common practice among programmers is to write code to do

some task, and then write some test code in order to see if it produces the desired output by means

of simulation. When it does, then it’s considered to be working! This testing approach has two major

fallbacks, (1) as complexity increases the domain space of inputs to test increases dramatically, (2)

sometimes the domain space of inputs tends to infinite, it often stops only at the physical limitations

of the machine. The point is that, although systematic testing is very important, it simply is not

enough.

The need for a different approach to software development and verification, producing better

results than traditional validation is consensual among software engineers in areas where systems

are considered to be life-critical or mission-critical. In these areas, such as avionics, nuclear reactor

controllers, human medical care, and transportation management systems, unpredicted software

failures can be disastrous, sometimes at the cost of human lives. There are some good examples

illustrating how software failure leads to disastrous results [13]:

ARIANE 5 rocket launcher exploded on June 4 1996, with a total loss over $850 million.

Therac-25 a computer-controlled radiation therapy machine, between June 1985 and January

1987, massively overdosed six people, killing two.

Denver Airport’s computerized baggage handling system delayed opening of the airport by 16

months, and the overall cost was $3200 million over budget.

2

As Ricky W. Butler et al so well put it in article [14]:

Unlike physical systems that are subject to physical failure, in

software, there’s nothing to go wrong but the design.

Why is it so difficult do develop correct software? Why is software so different from other systems

that have been built in the past with great success? In comparison with the hardware industry, David

Dill et al [29] suggest that the application of formal technics by this industry have been cost-effective,

thus the acceptance it has gained among hardware engineers. Furthermore, formal hardware verifi-

cation has become attractive because of methods and tools aimed at finding bugs, instead of trying

to assure perfection. In the article the authors make the case that, although hardware is quite so-

phisticated and complex, it does not deal with pointers, possibly infinite loops and recursion, or even

dynamically created processes. So, in their perspective, software is a bit more laborious to formalize

and verify although the same principles could apply, as in many other engineering disciplines.

The difficulty in applying traditional engineering validation technics, such as predicting behavior

and values through calculation, lies in the characteristics of discrete systems. Traditional engineer-

ing deals with continuos systems, where a small change in the input value usually produces a small

change in the output value. Software engineering has to deal with discrete systems, where a small

change in the input can yield great changes on the output. Furthermore traditional engineering

is conservative and rigorous in the application of science, in opposition to software engineering

which is opportunistically ruled by ever changing tendencies. Because a software program can

easily present many millions of discrete state transitions, about which designers must reason in

a way that allows the prediction of the behavior without having to test every single transition, rig-

orous development base theories, methods and tool must be mature enough to elegantly handle

such complexity. Testing is a common practice in software development, although as complexity in-

creases the amount of time necessary to conveniently test software turns it an unfeasible approach.

A good example is found in the avionics area: "to measure a 10-9 probability of failure for a 1-hour

mission one must test for more than 109 hours (that is to say, 114,000 years)" [14]. Another way that

industry uses to deal with design flaws is design-diversity, where different implementations from the

same specification are used in parallel, and hopefully erroneous outputs will be discarded through

voting processes. This practice is based on the assumption of independent faults, which is rejected

for low reliability systems, and difficult to validate for high reliability systems. Because testing is

unfeasible, and design-diversity cannot provide the necessary reliability the alternative is to avoid

design flaws in the first place. The differences between classic continuous systems and discrete

software systems, and the different ways to reduce software faults are discussed in detail in [15].

3

CHAPTER 1. INTRODUCTION

1.1 Formal Methods

"Formal Methods" refers to mathematically rigorous techniques

and tools for the specification, design and verification of software

and hardware systems. The phrase "mathematically rigorous"

means that the specifications used in formal methods are well-

formed statements in a mathematical logic and that the formal ver-

ifications are rigorous deductions in that logic (. . .) The value of

formal methods is that they provide a means to symbolically exam-

ine the entire state space of a digital design (whether hardware or

software) and establish a correctness or safety property that is true

for all possible inputs. [13]

Formal Methods in computer science are the applied mathematics of software, based on the

same mathematical logic as other more mature engineering disciplines. However, because other

areas of science already have a greater body of knowledge, scientist and engineers do not need to

express their problems and solutions directly on simple logic notation. Even though software engi-

neers can resort to reusable libraries, generic operating systems routines, and software modules,

building an application is always building something new and in many cases with unique and implicit

properties, that need careful and rigorous analysis every time.

It is a fact that the vast majority of software engineers does not use mathematical logic based

reasoning to design their programs, even though mathematics is what sustains all true engineering

practices. Why so much resistance to engage in rigorous mathematical processes? Is rigorous a

bad thing when applying engineer concepts? Formal Methods critics usually point the complexity

and difficulty of the methods and techniques as the major drawback in its application. On other

hand, the success achieved by the use of Z [81] modeling language (ISO/IEC 13568:2002) in the

upgrade of the IBM Customer Information Control System (CICS) software to its version 3.1, is an

example of how much one can save in development, deployment, maintenance and upgrade of

software. In the case of CICS the authors claim that the user reported errors dropped down to half

the normal amount, and a 9% savings in the total development cost [31] ($13 million [15]). Another

negative claim about Formal Methods is that the formal development and verification processes

consume much more time than traditional methods. This claim has been argued against by people

that have successfully applied some formal methods together with other widely used informal meth-

ods. [89] presents such a success case, where Vienna Development Method — Object Oriented

Language (VDM++) and Unified Modeling Language (UML) were combined to specify and guide

the implementation of a distributed real-time auctioning system, while [88] provides an example

of a industrial fixed price, fixed date project where Vienna Development Method — Specification

Language (VDM-SL) was used, with success, in the development of a data centric application.

The state of the art of Formal Methods tools for software development is sometimes insuffi-

cient to accurately describe some complex systems’ behavior. There are advanced efforts in in-

troducing concurrency, synchronization and hardware capabilities and configurations in the Vienna

Development Method (VDM) community, with the VDM++ In Constrained Environments (VICE) ex-

4

1.1. FORMAL METHODS

tension [90, 61]. Extending modeling languages and tool sets is a valid option to cover more ground

on formal specifications. In this MSc project a different option was taken, consisting on using differ-

ent modeling languages to capture different aspects of the requirements, with different abstraction

levels and different expression power (as proposed in [21]). The use of different models of the same

system is widely used across multiple fields of engineering, such as building skyscrapers, bridges,

plaines, cars, computers and so on. It is not hard to understand the reason behind the use of

different models in the development of a car. For example, to test aerodynamics in a wind tunnel

engineers can abstract many if not all mechanical details, that would not be abstracted if testing

the car’s behavior on aquaplaning situations. With different kinds of models and abstractions come

different set of formal tools that can be used to reason about, verify and better develop software. In-

tegrating heterogeneous tools to achieve greater insight on the requirements, implementation, and

verification is one of the main lines of research of this project.

Holloway, from National Aeronautics and Space Administration (NASA) Langley Research Cen-

ter, presented a paper [17] more than ten years ago, where he analyses why software engineers do

not do follow the same mathematical approach as do engineers from other fields of science. In the

paper, Holloway questions if the problem in the poor acceptance of Formal Methods is related with

how its benefits are communicated to software engineers, and suggests an alternative argument,

that he shows to be simpler and stronger. His argument is based on very simple inference rules:

Software engineers strive to be true engineers (Q1); true engi-

neers use appropriate mathematics (Q2); therefore, software engi-

neers should use appropriate mathematics (Q3). Thus, given that

formal methods is the mathematics of software (Q4), software engi-

neers should use appropriate formal methods (Q5).

The term "appropriate formal methods" takes us back to the tool integration topic, because not every

formal method is appropriate for every situation, and sometimes only through the combination of

different methods the desired insight, confidence, and correction can be achieved. It also means

that formal specifications are useful whenever the abstraction level is just enough so that irrelevant

implementation details are overlooked, and all key aspects are taken in account. Choosing the

appropriate abstraction for each specification is not trivial, and has a great impact on the quality and

usefulness of a formal model.

Formal Methods have been associated with academic research for a long time. In academia

theories grow sounder, process and techniques have been developed and applied to case studies

as proofs of concept, and many tools have emerged. The current maturity of Formal Methods makes

it possible to aspire for knowledge transfer to industry applications. As long as scientific products

remain in research they will always be in development and continuous research cycles, although

whenever they slip to industry, tools tend to become stabler, more mature and specialized. It is

necessary to access if the available Formal Methods scale up to real size systems, integrate with

other methods used in software engineering, can be used in a cost effective way, and provide quality

tools. This leap to general industry applications is of great importance to the effectiveness of Formal

Methods. The NASA Langley’s Research and Technology-Transfer Program in Formal Methods [13]

5

CHAPTER 1. INTRODUCTION

aims for such a transfer of knowledge to industry. The Grand Challenge (GC) is another example of

effort to bring Formal Methods closer to application in real software, as explained bellow.

1.2 Grand Challenge

At the Verified Software: Theories, Tools, Experiments (VSTTE) conference in 2005, Hoare and

Misra [41] argued that it was time to embark on a international GC project to construct a program

verification tool that would increase the capabilities of today’s static checkers, based on mathemat-

ical logic, that would be able to automatically check the correctness of a program. The tool set

would have to be based on a sound and complete programming theory. The proposal is quite am-

bitious, being that the GC project would span over 15 to 20 years of scientific research, it should

be a major international research effort with specific measurable goals: one million lines of verified

code, together with specifications, design, assertions, etc. The proponents expected that the ini-

tiative would consume over one thousand person-years of skilled scientific effort, from all over the

international scientific community, in the sense that each researcher would give a contribution that

would be shared with all the community. The project would yield its results in three categories: the-

ory, tools and experiments. It expects to achieve a unified theory of programming, that would cover

the majority of paradigms and design patterns in real programs; an integrated tool set for design,

development, analysis, verification, testing, upgrading and automated generation of programs; a

repository of verified software to hold realistic case studies and tools. The GC experiments would

start with smaller pilot projects (1-5 years) that would gather evidence of viability of the long-term

goals, and would be a way to attract scientists to the project.

This visionary view of challenging the computer science community, in order to stimulate scien-

tific development, is proving to be a success as the number of researchers, and research groups,

that claim to be motivated by the GC initiative increases every year.

One example of organizational effort in increasing computer science research, in a GC alike

fashion, is the Grand Challenge in Computer Science [22] project, an enterprise of the United King-

dom Computer Research Committee. Of particular interest to this thesis is the "GC6: Dependable

Systems Evolution", in which the Verified Software Repository (VSR) [6] was created, a repository

for specifications and programs, to be used for development and testing of tools, that themselves

are being collected in the repository. Bicarregui et al [7] believe the VSR will, among other things,

contribute to the inter-working, and eventual integration, of formal tools.

Since the "idea" of GCs as a stimuli for research on Formal Methods was proposed, many

challenges, typically 1 to 5 years, have been produced by the scientific community. For example,

the Mondex case study [96], the Pacemaker challenge [51, 54], and the Portable Operating System

Interface (POSIX) File Store [33]. Accompanying this trend for challenges, Joshi and Holzmann [47]

proposed a mini-challenge, 2 to 3 years of work, for building a verifiable file system. This proposal

was motivated by a major fault in the Flash memory subsystem of the Mars Exploration Rovers [73].

NASA engineers successfully overcame this fault, although the affected robot lost a large portion of

its data storage capabilities, reducing its autonomy to perform science.

6

1.2. GRAND CHALLENGE

1.2.1 Verifiable File System

The Verifiable File System (VFS) "mini-challenge" [47] is a short-term version of a GC project. It is

an introductory step for a repository of formal models, tools, and software, as proposed in [41]. The

proponents consider that reducing the challenge complexity, hence the "mini-challenge", would be

a benefit to the agreement on common formats and forging the necessary collaborations to build

such a repository. Furthermore, they believe that a file system is a good candidate because there is

a clean and well-defined interface, known as POSIX [82, 83, 84], the data structures and algorithms

for a file system are well understood, in addition to the fact that a file system is complex enough

so that its formal modeling and verification are not trivial. The target hardware for the file system

are Flash memory devices, which have many design and behavior differences from spinning disc

block devices. The main goal is to build a formal specification of a POSIX compliant file system

that would enable the use of automatic verification techniques, in order to assure its correction.

The formal specification could also be used to verify existing and future implementations. It should

include:

• a formal behavioral specification of the functionality provided by the file system;

• a formal elaboration of the assumptions made of the underlying hardware; and

• a set of invariants, assertions, and properties concerning key data structures and algorithms.

The specification should provide ways to ensure reliability regarding concurrent access, unexpected

power loss, and hardware failure.

Before the POSIX standard was even published, Morgan and Sufrin [60] wrote a Z specification

of the UNIX filing system, capturing the behavior at system call level, and abstracting from data rep-

resentation details. It was later used by Patrick Place in the development of his Z specification of the

POSIX Application Programming Interface (API) [70, 74]. The actual informal POSIX specification

provided by Open Group used Place’s formal specification as a guideline. Formalizing the POSIX

in to a machine tractable language is probably the most common approach to the "mini-challenge".

Flash memory production is developing fast in terms of miniaturization, power consumption, and

storage capacity. It is very attractive for space exploration missions because it has no moving parts,

and is easily embedded in very small and mobile devices. As capacities enlarge it is now making its

path to portable and personal computers. There are two kinds of Flash memory, NOR and NAND,

the second dominating the market at the moment, obviously because it is cheaper, it has greater

density, and better overall performance [5, 52]. On the NAND down side it must be written one page

at a time, erased one block at a time, and it does not directly support execution of code in place.

Another significant characteristic of Flash memory is that its cells wear out along time, that is to say

that there is a maximum of erase-write cycles they can survive. There is also the problem of power

loss, or memory device removal from host bay, which should also be considered.

Journalling Flash File System (JFFS) [98] and Yet Another Flash File System (YAFFS) [67] are

two popular examples of file systems designed according to Flash specificities, although in many

cases, regular block device file systems are used with a Flash Translation Layer (FTL), that emu-

lates a block device on top of the Flash device. Furthermore, advances in the devices’ technology

7

CHAPTER 1. INTRODUCTION

have introduced a Block Abstracted mode [99], where all data are assessed by a logical block of

granularity of a sector.

Rather than model the POSIX interface, in this project the base file system informal specification

will be Intel® Flash File System Core Reference Guide (IFFSCRG) [24] document. This is an API

of a flash memory file system. During the project some inconsistencies on the operations return

status data type were found, contacts have been made with Intel Corporation, although with no

practical result because the document was discontinued. However, copies can be obtained through

the Intel Museum [23]. Regarding the necessary assumptions about the underlying flash hardware

behavior a good candidate for a specification is the Open NAND Flash Interface (ONFI) [99], that is

a standardization effort made by a consortium of device manufacturers. There is already an attempt

to formalize this specification done at Minho [28] during an undergraduate formal methods class,

where the memory organization, and device architecture was formalized in VDM++. More work on

the formalization of the ONFI specification can be found at [16, 48]. Building formal models of both

textual specifications would provide an adequate base for formal analysis, and proof of correction,

of the file system.

Intel® Flash File System Core

The IFFSCRG document defines a layered architecture (see Figure 1.1) where each layer perform

at different conceptual level, although they are related to each other as one monolithic file system.

Each layer’s API is defined, as well as a few examples of the work flow involved in a top level API

call. The top layers, File System Layer (FSL) and Random-Access Memory (RAM) Buffer, interface

with the operating systems while the lowest layer, Flash Interface, interacts with the device driver.

Within the architecture, each layer should provide functionality to the next upper layer, and delegate

work on the next lower layer. The Reclaim Module (RM) is the exception, interfacing bidirectionally

with the Basic Allocation Layer (BAL), that stands at the same conceptual level.

The FSL exposes, to the operating system, the basic operations of the file system, so that appli-

cations can manipulate files. It depends on the Data Object Layer (DOL) to provide an abstraction

of file system data as data objects. The DOL maps data objects in logical units, that are managed

by the BAL. BAL is defined as a sub-architecture (see Figure 1.2) whose job is to manage logical

units and map them into physical units. The RM is used by BAL to recycle dirty space produced

during the system’s operation. In order to perform the cleaning tasks it depends on BAL to manage

logical units. The Flash Interface Layer (FIL) interfaces with the platform specific Low-Level (LL)

driver, translating the system volume operations into driver calls.

1.3 Software Verification

Mathematical verification is the only feasible way to assure that any given property holds for every

given input, or that some kind of undesired situation never occurs, whenever dealing with input

spaces whose size tends to infinite. The main differences to the simulation or testing techniques are

the ability of verifying each and every input without the need to actually compute every possibility,

8

1.3. SOFTWARE VERIFICATION

12 Intel® Flash File System Core Reference Guide

Architecture

2.2 Theory of Operation

The Flash File System Core uses a single, concise interface that is POSIX-aware. The Operating
System Layer uses the File System Layer to implement all file and directory operations per the
POSIX standard. Variances are documented and called out. The Flash File System Core can
determine whether to use open file structures. Certain operating systems have already implemented
the tracking of these objects.

The Flash File System Core components uses a layered approach, providing a consistent interface,
independent of hardware and operating system cbanges.Details of this layered approach are given
in Section 2.3 through Section 2.3.3.

Figure 1. Intel® Flash File System Core Components

O
S

 E
xt

er
na

l L
ib

ra
ri

es

O
S

 R
es

ou
rc

es
 T

ra
n

sl
at

io
n

 L
ay

er

OS File System API

Real-time Operating System
(RTOS) Wrapper Interface

Basic Allocation Layer

Data Objects Layer

RAM FIFO Buffer File System Layer

Flash File System Core

Reclaim Module

Flash Interface Layer

OS Specific Layer

Translation Layer

Flash Hardware

Low-Level

Figure 1.1: Flash File System Core components (Permission to reproduce this excerpt is kindly granted by

Intel Corporation).

and the degree of confidence each provides, being that the highest level of confidence possible

can only be achieved by a mathematical proof of correction. The software industry, or at least

the companies that are more committed to quality, spend a great amount of money in certifying

development processes. However it is not assured that correct, or reliable, software will be produced

with such processes. It is reasonable to think that a better development process, should produce a

better product. However, to establish the quality of a product direct analysis of the product should

also be considered. So, only software verification can ensure quality. The greater lesson that the

Formal Methods community can learn from the hardware industry [29], is that reaching perfection in

terms of correction and reliability is not the goal for the average software development company. It is

not what they strive for, because in many cases there would not be a consequence to the company if

their software malfunctions. In fact it is very common, and profitable, to release defective software,

and then, spend years releasing updates and patches and earning money out of maintenance

contracts. Assuming that whatever Formal Methods can do for software engineers, it has to be

cost-effective. Fact is that almost every piece of software has bugs, and that great amounts of

money are spent in testing, updating, and correcting bugs, so it seems reasonable that if Formal

Methods can find bugs, it will lead to greater acceptance by industry.

There are different levels of confidence that can be established, it can be that we assure a

correct behavior for specific inputs, for a specific space / scope of inputs, or for the entire set of

state input spaces.

9

CHAPTER 1. INTRODUCTION

Intel® Flash File System Core Reference Guide 91

Basic Allocation Layer

• Logical Volume (BA_LV): The Logical Volume component contains the information and
functionality needed to manage a logical volume.

• Logical Block (BA_LB): The Logical Block component manages logical to physical block
mappings and the amount of unallocated and dirty (invalid) space within each block.

• Physical Block (BA_PB: The Physical Block component manages the block format, status,
and other information, which is written within each physical erase block.

• Logical Unit (BA_LU): The Logical Unit component provides the basic functionality
necessary to read and write a logical unit's type, status, and data.

• Flash Interface (BA_FI): The Flash Interface component writes data to and reads data from
flash device according to the device's capabilities and limitations.

• EDAC (BA_EDAC): The EDAC component contains the algorithms needed to expand data
being written to or compress data being read from a flash device that supports error detection
and correction.

Basic Allocation provides the following functionality:

• Maintains a logical block table (LBT) in RAM that monitors free and dirty space in each block
and the physical to logical block mapping. It also monitors the location of empty or available
units in each block by a next unallocated index within the LBT, which gets moved to the next
unallocated each time a unit gets allocated. The next unallocated unit is found by a simple
incremental search through the logical unit headers.

• Allocates logical units on request from the Data Objects Layer.

Figure 8. Basic Allocation Components

Reclaim

Basic Allocation API
(BA_API)

Logical Volume
(BA_LV)

Logical Block (BA_LB)

Physical Block
(BA_PB)

Flash Interface (BA_FI) EDAC
(BA_EDAC)

Flash Interface Layer

Logical Unit (BA_LU)

Data Objects Layer

Figure 1.2: Basic Allocation Layer components (Permission to reproduce this excerpt is kindly granted by Intel

Corporation).

1.3.1 Testing

Software testing is the most widespread technique to validate software, and to demonstrate to

stakeholders that the results are within the expected. It is essential to software engineers, allowing

them to observe the behavior of the software they produce and assert if it is performing as expected,

then identifying possible malfunctions. Testing has ben targeted by numerous researchers [44, 3,

57, 35, 77] to make it more effective, reliable, and increase its scope of application. It is common

practice for software development companies to hire people specialized in testing, and quite often

even assemble testing teams separate form the development teams. There are even companies

in which the main commercial activity is to test software developed by others. So it seems fair to

say that software testing is already a discipline on its own. The field as evolved deeply, from simple

ad hoc test code to systematic test and input generation, different criteria have been identified

according to both the software under test, and the objectives of the tests. The diversity brought

the possibility to conjugate different kinds of tests in different stages of the development process,

starting at early stages to gain confidence in specifications and to discuss requirements with domain

experts.

Tool support for testing is mature enough to be seemingly integrated in the cutting edge de-

velopment tools used in industry. There are complete frameworks for large scale software testing,

focusing on diverse aspects of programs: structure, data, functionality, integration, communication,

scalability, robustness, and security. A current extreme programming practice Test Driven Develop-

ment advocates automated test should be written before writing a specification or implementation.

The analysis of test runs is another area of tool specialization where graphical displays of execution

10

1.3. SOFTWARE VERIFICATION

traces plays a major role.

Within the scope of this project, testing will take place after the formal modeling of requirements,

with the objective of assessing that the specification expresses what is meant. This is possible only

through the use of executable formal models, and the choice here is VDM++ modelling which allows

for both implicit and explicit behavior definition, being that the later can be executed in the VDMTools

interpreter. The VDMTools are particularly attractive as a test bench due to their test coverage

and pretty printing features, and especially to the Dynamic Type Checker that can continuously

check for pre- and post-conditions, correct partial function applications, invariant preservation, valid

variable bindings, satisfiability, and more. Tests will be written for specific functions as unit tests and

automated through the VDMUnit [32] framework.

1.3.2 Model Checking

Model checking consists of exhaustively verifying that an asserted property holds for a defined input

space. This technique can establish mathematical correction within the scope of operations, that is

to say it can assure that for the checked input space the software always behaves correctly. Model

checking is based on temporal logic, where as time goes by the value of a formula can change. This

makes model checking very suited for checking properties over transitional systems [18, 20]. Such

as many other software verification techniques, it started to be applied to hardware verification, with

great success. However in the case of software even the a very simple artifact often has an infinite

set of states, and to make model checking feasible it is necessary to have both optimization and

abstraction techniques to reduce the input state space. Binary Decision Diagrams (BDDs) were a

major breakthrough in reducing the number of states that it is necessary to check. Symbolic model

checking [12, 95] appeared as another attempt to reduce the state space, by representing states

symbolically instead of explicitly. Both BDDs and symbolic model checking can be used together

with propositional satisfiability (SAT) [49, 56] solvers, to obtain even better results. SAT solvers are

particularly interesting because they easily provide counter-examples, that can be mapped from

boolean formulas to a particular state in the specification, or program.

Due to its exhaustive search nature, model checkers are very useful for detecting subtle design

flaws, that are often overlooked by testing. Whenever an assertion fails, the model checker precisely

identifies (sometimes graphically) the inputs that originated the failure. These inputs are often con-

verted to test cases that can detect such situations during test time. This formal method can be very

useful, allowing to uncover bugs, as well as the causes and the consequences of the bugs. It is the

most wide spread formal method in the hardware industry, and responsible for discovering some of

the greater bugs found so far. However model checking can only assure correction of software in

very special cases, where the state space is finite and computationally tractable. In most cases,

model checking can not assure the correction of a software artifact, because the large input states

space would require huge amounts of computational resources or time to process a graph with all

states. This is the well known state explosion problem.

Examples of model checkers are SPIN [42] for distributed and asynchronous software systems,

CHESS [62] for the verification of multithreaded software, and Alloy [43] as a formal specification

11

CHAPTER 1. INTRODUCTION

language that can be automatically checked by the Alloy Analyzer.

1.3.3 Mathematical Proof

Because of the state space explosion problem, none of the above mentioned formal methods, test-

ing and model checking, can verify that a software artifact is 100% correct. A way to overcome this

difficulty is through a mathematical proof, that establishes beyond doubt that the desired propriety

holds for any given input. This is the strongest formal technique in terms of correction, because it

achieves the topmost level of confidence that there can be. It is also the most complex, and the one

that requires more expertise.

Proofs can be built by hand [59, 45], using mathematical theory as a base to develop a specific

theory related to the software artifact that is being targeted by the proof. The trend in software cor-

rection proof has been the semi automated proof, using interactive theorem provers, where the user

chooses the theorems the machine must use, step by step. This semi automated method is also

used to confirm the correctness of the hand made proofs, because it is less error prone. The ideal

situation would be such that theorem provers could use all mathematical knowledge and exhaus-

tively search proofs for properties, although this would also lead to break the time and resource

constraints that software development faces these days. None the less, completely automated

proofs are possible, and can be efficient. In order to completely delegate the proof to a theorem

prover that can effectively discharge the proof, it is necessary to supply an adequate strategy for the

theorem prover to follow. Strategy consist of restricting theories, defining domain specific theorems,

and specifying the paths that the theorem prover should follow to discharge the proof, that is to say,

if it should try rewriting followed by simplification and then induction steps, or if that fails it should try

a different path.

Mathematical correction proof usually requires greater knowledge of the proof theories, either to

manually build the proof, guide a semi automated theorem prover, or write a proof tactic for a fully

automated theorem prover. This technique can also give feedback on the targeted properties by

deriving the boolean value False from them, or just stopping on an intermediate goal that can give

some insight on the property. Building a theory of software and automating the proofs is one of the

main research areas on Formal Methods. Examples of theorem provers that are commonly used to

verify software are Z/Eves [76], Specification and Verification System (PVS) [69], Coq [4], and High

Order Logic (HOL) [36, 80, 65].

1.4 Objectives

Out project has focus set on integration of different formal methods for verification of software to

different degrees of confidence. Based on the correction by construction principle, software imple-

mentation should be a result of previous abstract formalization followed by gradual reification. The

present thesis tries to contribute to the development and automated verification of VDM++ models

through the integration of different tools and languages. We aim at the integration of a test frame-

work, a model checker, and a theorem prover, resorting to language translations between VDM++,

12

1.5. DOCUMENT STRUCTURE

Alloy, and HOL to assemble a verification tool chain.

We are also interested in the VFS "mini-challenge" as a case study whereto experiment with the

verification tool chain. The specification effort has focus set on the FSL, presented in the IFFSCRG

document, and consists in writing a formal specification of its data structures, invariants, operations,

and ensuring extended static checking of such operations. The IFFSCRG document defines power

loss recovery techniques at the reclaim, logical and physical units, and file system levels. These

reliability aspects are not covered in the scope of this project, although can incrementally be added.

1.5 Document Structure

The next Chapter introduces the formal tools involved in this project, and should be completely, or

partially, skipped if the reader is familiar with VDM, Alloy and HOL. Chapter 3 defines the proposed

development process, which is amenable to formal verification. It starts with abstract modeling,

continues with the different kinds of models and abstracted details, and a structuring approach to

handle complexity. Reification techniques to incrementally increase details towards implementation

should also be considered, although will not be covered. It also covers verification with different

degrees of confidence, obtained by the integration of multiple tools in a tool chain. The models

of the Intel® Flash File System are explained in Chapter 4, and the VDM++ to Alloy translation

is exemplified. Finally Chapter 5 ends the document with an analysis and comparison to related

work on both the VFS "mini-challenge", the use of Alloy as a third party model checker, and the

concluding topics, respectively.

13

Chapter 2

Tool Background

This chapter introduces the languages (VDM, Alloy and HOL) and tools adopted in this project.

VDM and Alloy for formal modeling, VDM for testing and prototyping, Alloy for model checking, and

HOL for mathematical proof. Some of the tools presented in the sequel are not mature enough to

be considered ready for production, although already display satisfying capabilities for an exercise

on tool integration.

2.1 VDM

The Vienna Development Method (VDM) is a formal method for designing software systems, devel-

oped in the 1970s at the IBM’s Vienna Laboratory [8, 45, 46]. VDM relies on a formal specification

language (VDM-SL [71]) that is very close to pure mathematical notation, with design by contract

constructs, allowing for other techniques such as refinement or proof of properties. VDM-SL is

an International Organization for Standardization (ISO) standard (ISO/IEC 13817-1:1996) that was

extended to the VDM++ object-oriented specification language [32]. Furthermore, VDM++ was

also extended to the VDM++ VICE which supports timings, concurrency, and customizable system

architectures. Both VDM-SL and VDM++ support relational abstract modeling through pre- and

post-conditions, and behavioral modeling where algorithms can be specified and executed. VDM

tool support is provided by the commercial VDMTools [39], and by the Overture [68] open source

project.

2.1.1 VDM++ Language

The choice of the VDM++ language over its standard counterpart is closely related with the fact

that it has more tools for verification available. It supports classes, that can have instance variables,

which can reference objects or data type instances. Its typing systems allows for: records, enu-

merations, simple mappings, sequences, sets, alphanumerical types, optional type, a special token

data type, functions in the mathematical sense, and state manipulating operations. The operations

can be written in an imperative fashion with sequential instructions and loops.

15

CHAPTER 2. TOOL BACKGROUND

Figure 2.1: VDMTools workbench screenshot.

2.1.2 VDMTools

VDMTools (currently property of CSK Group [38]) provides both command line, graphical (see Fig-

ure 2.1 for a screenshot of the tool), and Common Object Request Broker Architecture (CORBA) in-

terfaces. Although graphical interfaces are very powerful, through the command line, and CORBA,

interfaces VDMTools expose their functionalities in a fashion that makes it easy to integrate with

other tools and scripts. The main reference on formal specifications in VDM++ is book [32], where

the authors extensively expose the capabilities of the language and the associated tools. It also

presents a simple unit testing framework named VDMUnit, that allows for systematic testing of

VDM++ specifications, much alike other unit testing frameworks. Testing specifications with the

VDMTools has a great advantage when compared with other formal specification languages, and

even programming languages, because together with static checkers it packs a dynamic type

checker. Once activated within the VDMTools, this tool enforces invariant, pre- and post-condition

checking during execution of the specification. This allows for automatic violation detection during

runtime, without the need of any extra input on the specification. The tool also packs other inter-

esting capabilities such as roundtrip code engineering, generating C++ or Java code directly from a

specification, and the other way around in the case of Java. This is also very handy when targeting

integration with other formal methods and tools, because it allows for VDM++ specifications to be

transformed into C++ or Java for later usage within other tools. The other way around is also possi-

ble, in the case of Java, classes can be transformed in to VDM++ classes that can be used in VDM

specifications.

Prototyping is another advanced feature of the VDMTools, because it provides means to execute

16

2.1. VDM

specifications, in addition to its CORBA interface, that allows to plug-in interfaces to the specifica-

tions. Another tool, in the package is the Integrity Checker, which generates VDM expressions,

denoted Proof Obligations (POs), from a given model. The model is considered consistent if all its

POs can be discharged.

POs can be of different categories:

Domain checking: POs regarding the application of functions and operators that have associated

pre-conditions. These can be of types:

• Function Applications

• Mapping Application

• Sequence Application

• Non-empty Sequence

• Sequence Modification

• Map Compatibility

• Map Enumeration

• Map Composition

• Map Iteration

• Function Composition

• Function Iteration

• Non-empty Set

• Non-zeroness

• Tuple Selection

Subtype checking: POs regarding the use of subtypes, in particular types that have invariants, or

are defined using the union of types. These can be of types:

• Subtype

• Invariants

• Post Condition

Satisfiability of implicit definitions: POs resulting from the use of implicit functions or operators,

which must be proven total. These can be of types:

• Satisfiability

• Exhaustive Matching in Cases Expression

• State Invariants

• Exhaustive Function Patterns

• Non-emptiness of Let be such Binding

17

CHAPTER 2. TOOL BACKGROUND

• Non-emptiness of Binding

• Unique Existence Binding

• Finiteness of Set

• Finiteness of Map

Termination: POs regarding the termination of recursive functions and loops. These can be of

type Terminating While Loop.

2.1.3 Overture

Overture is an open-source community based project, where students, teachers, and researches

work together at the different academic levels to develop a set of basic and advanced VDM tools.

The goal is to not only provide free versions of the commercial tools for VDM, but also to develop

new generation tools that take the VDM experience to the next level.

In this MSc project tools such as the Overture Parser[68] and the Automatic Proof Support [92]

were extensively used (to be introduced next).

Overture Parser

As with any other language, in order to process VDM models it is necessary to have a parser

that can generate an Abstract Syntax Tree (AST), here on referred as OmlAst, that can be used

by other tools. The Overture Parser is implemented with the JFLEX and BYACC/J tools, allowing

for integration with Java based Integrated Development Environments, such as Eclipse. The AST

specification is automatically generated by another Overture tool, called ASTGEN, that is written

in VDM. The actual ASTs produced by the parser, given a VDM model, can be represented as a

VDM-SL or a VDM++ value, so that other VDM based tools can use it natively. The parser is the

pillar that supports all other Overture tools, with it the community gained an open source AST that

can be used within VDM specifications, and also in C++ and Java programs. Although the parser is

a basic tool, it is of great importance and must be continuously updated to support new language

constructs.

Automatic Proof Support

The Automatic Proof System (APS) is one of the next generation tools for VDM, because it offers

possibilities that no other tool for VDM currently offers. It is capable of mechanically discharging

VDM++ models’ POs with the HOL4 [80, 65] theorem prover. To do so, it relies on the translation

of the OmlAst to an HOL AST specified in VDM++. The proof system also includes some useful

HOL theorems, and a set of HOL proof tactics designed to discharge VDM POs. This tool is quite

recent [92] and still does not support the complete VDM++ syntax, although the supported subset

of the language allows for the verification of many known VDM++ case studies, and, as it will be

explained in this thesis, with a careful selection of syntax constructions it is possible to overcome

many of the tool’s limitations.

18

2.2. ALLOY

The one thing is that the tool is not: is automated! It involves much user input to go through

the necessary steps that transform a VDM++ specification in a HOL specification, here on referred

as preparation. A great deal of the user input is copy and past work, although for some steps it is

necessary to select pieces and bits of OmlAst and copy them around, which can be very tricky. With

some practice of using the APS it became clear that to make it worthwhile it is necessary to speed

up preparation. The necessary steps of preparation will are explained in Chapter 3, together with

the developed tools that further automate the process.

2.2 Alloy

Alloy is a quite recent technology, at least when compared with other modeling languages such as

VDM or Z. As its authors put it [43]: "Alloy is a lightweight modeling language for software design".

Such as other formal modeling languages it provides a expressive mathematical notation, based

on a simple logic. The Alloy Analyzer tool offers both simulation, enabling the user to request for

samples of the modeled system, and checking capabilities, where it tries to find counter examples

for a set of given properties. Alloy is a quite expressive language, allowing for different flavors of

modeling: very abstract relational modeling (relations can even be written and composed in point

free notation); simple declarative modeling, using only logic operators to express properties and

behavior (much alike Z style); behavioral and temporal modeling, specifying state and transitions,

and expressing algorithms through flow control with conditional statements. One of the beauties of

Alloy is that all its expression power is drawn from the simplicity and elegance of the type system

where every thing is a relation, and with some basic concepts such as extension, abstract data

types, multiplicity and relational composition.

Alloy’s model finding capabilities have already been used in a quite significant number of ex-

amples, both on its own [48, 100, 86] and as complement to other formal [9, 55] and informal

methods [79].

2.2.1 Alloy Language

Alloy language is defined on very simple principles of first order logic and relational calculus. It

is a general purpose language with a very simply, yet powerful, syntax. Some of Alloy’s syntactic

constructions and their respective semantics will be very briefly summarized below (see [43] for

more details), to prepare the VDM++ to Alloy translation presented in Section 3.2.

Signatures

Types in Alloy are called signatures, although a signature can also represent a set of values. A type

signature is said to be top-level if it does not extend any other signature. On the other hand, signa-

tures that extend others are called sub-signatures. All the top-level signatures are mutually disjoint

sets, as well as are extensions to the same signature. A signature can be declared as abstract,

19

CHAPTER 2. TOOL BACKGROUND

which means that it will only contain the elements contained in its non abstract sub-signatures. Fur-

thermore, signatures can have multiplicity factors associated, constraining the elements that belong

to it. Signatures have fields that can be any n-ary relation, and are equivalent to having explicit facts

restricting the signature.

Declarations

Fields of signatures, arguments to functions and predicates, and quantified variables are declared

through the same syntax, that allows for constraining their value and type. It is possible to declare

a single variable, or multiple variables at once. For the case of multiple variable declarations, Alloy

allows for constraining them to be mutually disjoint or to form a partition of the relation expressed

by the declaration. The elements of the relation must comply with its declared data type. The

declaration of unary relations can also have multiplicity factors associated with it, and whenever

these multiplicity factors are omitted, the default multiplicity is used, which is a singleton set. Sets

can be declared as having an arbitrary number of elements; singleton or empty sets; or non empty

sets. For relations with arity superior to one, multiplicity may be defined for each signature involved

in the relation, and the same options of multiplicity apply.

Constraints

Alloy models can be further constrained using facts, predicates, functions and assertions. Facts

are expressed trough formulas that must hold at all times. Predicates and functions are parametric

constraints, that can have declaration of variables associated with them. Predicates have no explicit

output value, and can be enforced selectively, whenever they are needed. Functions are meant for

specification of computations as they can return values, although functions can not be recursive.

Assertions are properties that are expected to follow from the model, and they can be checked on

demand.

Commands

The Alloy Analyzer accepts commands to simulate functions, predicates or simply instantiate the

model. It can also check assertions solving its constraints. To avoid the "explosion problem", in both

commands there is the option to define a scope for the possible assigned values when simulating

or checking. The scope defines the bounds for the sets assigned to each and every signature.

2.2.2 Alloy Analyzer

Alloy Analyzer is both a development and verification environment, as shown in Figure 2.2. With

this tool it is possible to simulate and verify a specification as the same pace it is written. The

tool is completely automated in terms of model finding within a specified scope, that can be both

common to all signatures or individually set. Two commands are enough to verify an Alloy model,

run to simulate and retrieve possible model instantiations, and check to ask for a counter-example

20

2.3. HOL

Figure 2.2: Alloy Analyzer workbench screenshot.

to a given assertion. Whenever one of the commands is issued the Analyzer converts the Alloy

specification to a first order logic SAT model that is calculated by an external solver. The output of

the solver is then translated back to an instance of the Alloy model that can be graphically displayed

for inspection, as shown in Figure 2.3. The most significant limitation of the Alloy Analyzer is the

state explosion problem that can arise as one increases the scope of objects allowed in the model

instances. However it is likely that the majority if not all problems can be detected with a significantly

small scope.

2.3 HOL

The HOL system is a direct descendent of the Logic for Computable Functions (LCF), invented by

Dana Scott in 1969 [78] (only published in 1993), intended for reasoning about about recursive func-

tions as defined in denotational semantics. The LCF approach lead to three versions of automated

theorem provers Stanford, Edinburgh, and Cambridge LCF implementations by Robin Milner and

colleagues [37]. Milner also designed the Meta Language (ML) programing language to supply a

way for users of automated theorem provers to specify proof strategies, called tactics, and ways to

combine the strategies, called tacticals.

The first LCF called Stanford LCF was a proof checker developed around 1972, based on Scott’s

logic, designed for interactively building formal proofs about computable functions, as defined in

λ - · calculus, applied to a variety of domains. An year after Milner moved to Edinburgh University

and started to work on a new version of the automated theorem prover called Edinburgh LCF. Dur-

ing Milner’s stay at Edinburgh Mike Gordon, that would later create HOL, joined his team and got

21

CHAPTER 2. TOOL BACKGROUND

Figure 2.3: Alloy model instance screenshot.

22

2.3. HOL

to work in the LCF project. When Edinburgh LCF was published, in 1978, Milner had managed to

limit the amount of memory needed for building a proof, and to supply a programable interface to

the system through the use of the ML language. The language was made functional and supported

tactics as functions that compute proofs, and tactic operators as high order functions that manipu-

late tactics. The soundness of this new version of LCF was established by the fact that theorems

could only be added to the system by means of a formal proof. The LCF approach was followed

once again in a new project, this time from a cooperation between Cambridge and Edinburgh Uni-

versities, in the 1980s, to produce the Cambridge LCF theorem prover, that was greatly extended

and optimized by Gérard Huet and Larry Paulson with: improvements made to the ML language (in-

cluding a compiler); inclusion of a simplifier as a derived rule; a new way to deal with indexing sets

of equations used in rewriting; and the inclusion of all standard constructs of predicate calculus.

While Paulson was pushing the development of Cambridge LCF further, Mike Gordon was in-

vested in hardware verification. He developed a notation called Logic of Sequential Machines (LSM)

to express machine behavior, inspired in the css! (css!)’s Expansion Theorem. Gordon used the

Cambridge LCF to implement the LSM logic in what he called the LCF_LSM, that would later re-

sult in the first HOL system. Gordon Being interested in hardware verification established that

mathematical induction would be enough for the majority of the cases, removing the need for fixed-

point (Scott) induction. This simplification lead to the definition of types as sets in HOL, instead

of Complete Partial Orders (CPOs) as in LCF, although it still maintains much of Milner’s original

code. HOL is based on a well founded core logic, based on Church’s simple type theory, in which

terms are nothing more than variables, constants, function applications and λ - · abstractions. This

way the reasoning mechanisms only need to deal with four types of terms, and therefore become

simpler to specify and implement. All other complex syntactic constructions supported by HOL are

defined on top of λ - · calculus. HOL supports both forward proof and goal directed proof styles,

including several libraries offering different theories and proof procedures.

The HOL theorem prover has evolved deeply from its first release HOL88 from Cambridge Uni-

versity, through HOL90 from Cambridge University and Bell Labs, HOL98 from Cambridge, Glasgow

and Utah Universities; until now with the development of HOL4 as a open source project, partially

supported by the PROSPER project [27], using the Moscow ML [75] as the interface to the core

logic. HOL has been used for the verification of very simple processors, simple micro processors,

networking hardware, sophisticated hardware systems, and currently software. It is mainly inter-

faced thorough the command line as shown in Figure 2.4.

23

CHAPTER 2. TOOL BACKGROUND

Figure 2.4: HOL4 command line interface screenshot.

24

Chapter 3

Development Process

To design a system it is advised to start reasoning about key principles, so that non trivial or hidden

assumptions about properties and constraints of those systems can be uncovered. As the designed

system’s complexity increases it is necessary to deal with it in a elegantly structured fashion, so

that flaws can easily be detected, and both maintenance and updates can be done in an effective

way. The effort to apply these principles is considerable, so if the work done in the initial stages

of development can be latter on used to guide, and validate the resulting system, it should. The

current chapter proposes a formal development process, and illustrates the initial formal modeling of

the requirements, and two levels of verification obtained through model checking and mathematical

proof of correction.

The proposed development process starts with requirement analysis, where formal specifica-

tions are written to capture those requirements with a precise, unambiguous, and tractable nota-

tion. At this point the specification should include the key system’s data types with the respective

invariants, and some high level abstract functionalities. Because the requirements are captured in

a formal language, it is possible to, already at this stage, reason about the integrity of the system.

Depending on the chosen languages there are tools that can interpret the formal models, generate

instances of the modeled system, gather integrity properties concerning the model, or even verify its

mathematical correction. The verification effort should start almost alongside with the requirements

analysis. It all depends on the capabilities of the chosen technologies, that should have some char-

acteristics that suit the intended purpose. In this project the chosen technologies are: VDM++ for

behavioral modeling, testing, and prototyping; Alloy for declarative modeling, and model checking;

and HOL for mechanized proof discharge. Many other tools could apply such as Z, Communicating

Sequential Processes (CSP) [40], and Coq, for example.

3.1 Abstract Modeling

Abstracting mean simplifying in order to focus on what’s important, or overlooking some key aspect

of an object or system in order to obtain a simplistic view. In order to take advantage through

abstraction it is necessary to abstract just enough to clear all the redundant or insignificant details,

although not so much that key aspects of the system do not get to be taken in account. This is the

25

CHAPTER 3. DEVELOPMENT PROCESS

main difficulty in building an abstract model. Some times, when dealing with systems of considerable

size and complexity, it is better to produce different abstractions of the same system, that can relate

to each other in a sound way, each capturing different properties and functionalities. In these cases,

a clear architecture should be defined, relating the different concepts behind the models, so that the

complete system is covered.

During this project, models in VDM++, Alloy, and HOL of the same abstract file system were

written, and in the author’s perspective there is much to gain, not only in writing different models

for different parts of a system, but also for the same parts. It is particularly profitable to the un-

derstanding of underling properties, to express the same model in different modeling "paradigms",

much alike observing the same phenomena from different scientific perspectives.

3.2 Model Translation

Translations are a key aspect of integrating tools and methods. The only actual mechanized trans-

lation of models available in the beginning of the project was that from VDM++ to HOL, using the

Overture APS [92]. Aside from that the Alloy and VDM++ models are manually written in parallel,

which is not bad for gaining insight and confidence in the model. However, having a VDM++ to Al-

loy translator would make the whole process of verification of VDM++ models amenable to VDM++

users that do not "speak" Alloy. Furthermore, a tool for translating Alloy to VDM++ would also be

profitable to the Alloy community, that would gain the prototyping and automatic proof capabilities

from the VDMTools and Overture respectively.

3.2.1 VDM++ to Alloy Translation: Hand Guide

In order to translate a VDM++ model to an Alloy model it is necessary to translate the data types,

functions, operations, and proof obligations. If the operations are written just by articulation of

functions, the translation of the operations is not necessary.

One thing to avoid is over restriction, because the model finding technique may result in unsus-

pected false positives. Alloy allows for model restriction using facts and multiplicity factors, much

alike VDM invariants, although in this case the restriction automatically excludes invalid states from

the search scope. The case is that, considering a file system specification, if a fact is inserted

stating that all paths are well formed, it will not be possible to check if an operation yields a file sys-

tem with malformed paths, because there will be no instance of the specification that can have such

paths. This can lead to a situation where the Alloy Analyzer is asked to check an assertion and it will

respond with no counter-examples found, although in fact the search was made on an empty set of

examples, thus the inability to find any. To avoid this, it is possible to ask Alloy to show instances of

the model, and if it does show any, then the set of examples is not empty. Another way to deal with

over restriction is to declare restrictions as predicates instead of facts, or type multiplicity factors,

and to selectively enforce them when checking assertions. In the way restrictions can be turned on

or off for any checked property.

26

3.2. MODEL TRANSLATION

Some of the initial experiments with Alloy resulted in the development the RelCalc library (see

Appendix A), based on the relational algebra lemmas to implement many utility predicates to con-

straint relations. Whenever useful the predicates are written in point free notation.

Types

VDM’s type system semantics is quite complete, and allows for the declaration of explicit invariants

regarding data types, which themselves can contain implicit invariants. In oder to translate the

VDM explicit invariants, the corresponding logic expressions will be re-written in an Allow predicate,

named after the original VDM data type’s name, appended with the suffix Invariant. Two examples

of data types with implicit invariants are the mapping and the non empty sequence.

Mapping — whenever a mapping is declared in a VDM model, it represents a binary relation from

elements of a domain data type to elements of a range data type, that is simple and partially

defined on the domain.

Non empty sequence — as the name says, empty sequence do not belong to this data type.

It is possible to introduce implicit invariants in the Alloy type signatures, although the option was

not to do so. Instead, when translating a VDM data type, an Alloy predicate should be created

stating the implicit constraints, if any. Another consequence resulting from the same choice, is that

invariants on sub-types must be explicitly enforced. These extra type predicates will be named

with the original VDM data type name, and the suffix InvariantVDM. Each InvariantVDM suffixed

predicate also enforces the corresponding Invariant suffixed predicate.

Translating data types can be done in many ways, some of which will be presented next.

Record — can be translated using Alloy’s type signature fields to represent the record fields.

Record ::

a : A

b : B

c : C;

sig Record {

a : A,

b : B,

c : C

}

pred RecordInvariantVDM[r : Record] {

AInvariantVDM[r.a] and

BInvariantVDM[r.b] and

CInvariantVDM[r.c] and

RecordInvariant[r]

}

pred RecordInvariant[r : Record] {}

27

CHAPTER 3. DEVELOPMENT PROCESS

Mapping — is a partial and simple relation, which means that its domain set is restricted, and that

every element in the domain is mapped to at most one element of the range set. In Alloy this

can be expressed through a binary relation1 between two sets, which by definition in Alloy are

bounded to a scope whenever are instantiated.

Mapping = map A to B;

sig Mapping {

map : A -> B

}

Simplicity and partiality can be expressed through multiplicity factors of the relation.

sig Mapping ' {

map : A -> lone B

}

However, this would be constraining the model through facts. The preferred way to introduce

the simplicity constraint in the respective InvariantVDM predicate, using the RelCalc Simple

constraint.

pred MappingInvariantVDM[m : Mapping] {

Simple[m.map ,B] and

AInvariantVDM[dom[m.map]] and

BInvariantVDM[rng[m.map]] and

MappingInvariant[m]

}

Sequence — is a new feature of Alloy 4, which makes the translation from VDM almost direct.

Sequence = seq of A;

sig Sequence ' { contents : seq A }

The length of all sequences are set with the seq keyword for all sequences in the model.

Sequences in Alloy pack an extensive library providing the most common functionality, and

many more. An alternative approach to sequence translation is to abstract it as an acyclic

precedence relation between elements of the same type.

abstract sig Sequence {}

sig Element extends Sequence {

tail : Sequence

}

sig Empty extends Sequence {}

pred SequenceInvariantVDM[s : Sequence] {

Function[tail ,Element ,Sequence] and

1In fact the map relation as defined here is a ternary relation from Mapping to A to B.

28

3.2. MODEL TRANSLATION

Acyclic[(id[Element]).tail ,Element] and

SequenceInvariant[s]

}

pred SequenceInvariant[s : Sequence] {}

This way the declaration of a sequence is not made by instantiation of a parametric structure,

and it is possible to set different scopes for each abstracted sequence.

Set — is a unary relation in Alloy, and can be expressed by signatures, or explicitly using the

appropriate keyword.

Set = set of A;

sig Set { contents : set A }

Enumeration — can be achieved using the a combination of an abstract signature, denoting

the VDM enumeration type, and extensions to that signature denoting the VDM enumerated

values. There is a detail, that is not mandatory, although saves some memory in object

instantiation, which consists in using the multiplicity factor one for the extension signatures.

This assures that there will only be one instance of each enumerated value present in the

model, without the need to adjust the scope.

Enumeration =

<OneThing >

| <AnotherThing >

| <YetAnotherThing >;

abstract sig Enumeration {}

sig OneThing extends Enumeration {}

sig AnotherThing extends Enumeration {}

sig YetAnotherThing extends Enumeration {}

Optional — can be achieved similarly to the enumeration, by declaring an abstract signature,

denoting the original VDM type, and two extensions to that signature. One for the VDM nil

and another for the actual value.

Optional = [A];

abstract sig Optional {}

sig OptionalValue extends Optional {}

one sig OptionalNil extends Optional {}

29

CHAPTER 3. DEVELOPMENT PROCESS

Numeric — data types other than integers do not have a match in Alloy. Thus floating point num-

bers available in VDM can only be abstracted as objects, and maybe some of the properties

of those numbers can be modeled. Alloy integers have two forms, primitive integers and ob-

jects that carry the formers. The objectified integers can be atoms in relations, and quantified

over, while the primitive integers can be combined and compared using arithmetic operators.

The problem using integers is that to represent a number of a modest size such as 512 it is

necessary to use a scope of 11, and for a very simple model, checking an assertion can take

up to several minutes to perform on a regular laptop. This could be overcome using also the

negative numbers, although it would not be a benefit in terms of elegance and simplicity. So

whenever possible it is best to abstract numeric representation, and focus on the structural

modulation.

Token — is really easy to translate, because a simple type signature, that can have the one multi-

plicity key word for memory savings if there is no need to distinguish token type values, with

no fields or extensions whatsoever.

Token = token;

sig Token {}

Functions

VDM functions can have pre- and post-conditions, which the Alloy counterpart does not. These

can be introduced as predicates with the prefixes pre_ and post_ followed by the name of the VDM

function being translated.

suc : nat -> nat

suc(n) == n + 1

pre n > 0

post RESULT > n;

The translation can be done directly to Alloy function, by defining the input and output data types,

together with an expression denoting the body of the function.

fun suc '[n : Int] : Int {

n + 1

}

pred pre_suc[n : Int] {

n > 0

}

pred post_suc[n,n': Int] {

n' > n

}

Again, there is another possibility for the translation, which consists in abstracting the functions

has relations and use predicates instead. With this approach it is necessary to distinguish the input

30

3.2. MODEL TRANSLATION

parameters from the output parameters, remember that Alloy predicates do not have a return type.

The choice here is to follow a notational convention of Z syntax, where the output values of schemas

have the prime character appended to the end of the name.

pred suc[n,n': Int] {

n' = n + 1

}

Operations

Much in the same way as for VDM functions, VDM++ operations get translated to Alloy predicates,

together with the respective pre- and post-conditions.

Sum : nat ==> nat

Sum(n) ==

(s := s + n;

return s);

pred Sum[state ,state ',n,n' : Int] {

state ' = state + n and

n' = state

}

Proof Obligations

VDM++ POs are first order logic expressions, usually quantified over some set of variables. These

logical expressions can be almost directly translated to Alloy assertions, with the same quantified

variables. VDM++ input and output values to functions and operations are assumed to hold the

respective invariants, otherwise there would be a run time exception. The same thing happens with

quantified variables, sets, sequences, records, and mappings. However, in Alloy if there are facts

declared in the model, then all values that could violate those facts are left out of the equation, with-

out any warning whatsoever. Furthermore if we have avoided facts and have specified constraints

as predicates, it is mandatory to explicitly enforce the constraints whenever necessary.

There can be some scope adjustments recommended for memory optimization when checking

assertions. It is possible to enforce Alloy Analyzer to use just one instance of enumerated type

values, optional type nil value, and sequence termination values.

The typical PO translation starts with the quantification followed by the enforcement of the in-

variants on the quantified variables implying the rest of the PO expression. Many examples of PO

translations can be found in Chapter 4

3.2.2 VDM++ to HOL Translation: Preparation

To translate a VDM++ model and its POs to an HOL model, the APS provides the VdmHolTranslator

that will automatically generate the HOL model. However, the VdmHolTranslator does not ex-

pect a VDM++ model as input to the translation process. What it does expect is a (1) VDM++

31

CHAPTER 3. DEVELOPMENT PROCESS

OmlDocument2 (an OmlAst representation) of a VDM++ model, together with a (2) VDM++ value

containing a set of instances of the ProofObligation3 class. In order to automatically obtain (1)

and (2) from the VDM++ model two parsers, a bash script and a VDM++ class have been built dur-

ing this project. These tools were developed in a very ad hoc manner, mainly because the intention

was simply to speed up the preparation of the models used in this project. However the design of

the parsers can be greatly improved if built on proper grammars of their respective input, that in one

case is the PO file (with the extension ".pog") produced by the VDMTools4, and in the other is a

textual representation of an OmlDocument object. The complete process of pre-processing VDM++

models in to (1) and (2), illustrated by Figure 3.1, will be presented next, together with the developed

tools.

Step 1 — Type check, OmlAst and POs generation. Type checking and generation of the proof

obligations is done by the VDMTools using the following commands:

vppde -t model.vpp

vppde -g model.vpp

Should the model pass the type checker with no errors5, the POs can be generated to a file

(model.vpp.pog). To generate the OmlAst representation of the VDM++ model the Overture

Parser is invoked.

parser -pp model.vpp

The parse command is a bash script that invokes the Overture Parser.

Step 2 — Process the POs file. In order to construct ProofObligation objects out of the gener-

ated POs, it is necessary to supply both an OmlAst representation and a Classification6

(definition of the type), of each PO in the file. First file model.vpp.pog must be processed to

extract both the type and the expression, of every PO. This is done by the pog_extractor

parser that simply reads each line at a time identifying the beginning and end of each PO. The

parser is written in JFLEX [50], and the associated Java logic is responsible for identifying the

classification and expression of each PO.

pog_extractor model.vpp.pog

This will produce two files, one (model.vpp.pog.map) that holds a mapping of PO identifier

to Classification, and another (model.vpp.values.vpp) with new VDM++ class where

boolean values are declared, one for each PO, and defined by the respective PO’s expression.

2The OmlDocument class is defined in the OmlAst specification.
3The ProofObligation class is defined in the Automatic Proof System specification. To construct a

ProofObligation instance it is necessary to provide a OmlAst of the proof obligation expression and its classification.
4To generate a ".pog" file using the VDMTools in the command line interface, it is necessary to pass the option "-g"

that at the time of the writing of this thesis was not described in any of the tool’s usage descriptions.
5If instructed to type check a model in command line, the VDMTools will first scan the model with its syntactic checker,

and will only proceed if there are no syntactic errors.
6The Classification class is defined in the Automatic Proof System specification.

32

3.2. MODEL TRANSLATION

 PRE_PROCESS

Step 4

Step 5

Step 3

Step 2

Step 1

OmlAstPOG

PO
types

OmlAst
POs

OmlAst

POs OmlAst
&

Classification
Model OmlAst

PO
types OmlAst

Figure 3.1: Preparation of VDM++ models for the VdmHolTranslator

33

CHAPTER 3. DEVELOPMENT PROCESS

The new auxiliary VDM++ class will enable the Overture Parser to generate a OmlDocument

object containing all PO expressions as OmlValueShape7 objects.

Step 3 — Generate OmlAst for each PO. At this point it is necessary to obtain a OmlAst repre-

sentation for each PO, and this is done using the Overture Parser on the file generated in the

previous step (model.vpp.values.map).

parse -pp model.vpp.values.vpp

This yields a new file (model.vpp.values.vpp.app) containing another OmlDocument object

textual representation, from which the OmlValueShape objects still need to be extracted.

Step 4 — Extracting the OmlAst POs expressions. For this step another parser was developed,

much alike the previous, that identifies every OmlValueDefinition8 object, and extracts from

it the respective OmlValueShape object. Again, this parser is not based on any established

grammar for the input file, it simply parses it line by line and relies on observed properties of

the OmlDocument objects issued by the Overture Parser.

pog_ast_extractor model.vpp.values.vpp.app

This will result in a new file (model.vpp.vset) containing a VDM set of OmlValueShape ob-

jects.

Step 5 — Generate a set of ProofObligation objects. The final step takes place inside the VDM-

Tools execution environment, and it consists of merging the mapping of PO identifier to

Classification value with the set of OmlValueShape objects to produce a set of instances

of class ProofObligation. To achieve this a small VDM++ class, called Extractor, was

written that iterates on each element of the set of OmlValueShape to extract their names and

expressions, and builds a new set of ProofObligation objects, given that a correspond-

ing Classification is found in the appropriate mapping. An Extractor object should be

created within the VDMTools interpreter before invoking the VdmHolTranslator:

create extractor := new Extractor("model.vpp.vset", "model.vpp.pog.map")

print extractor.GetProofObligations()

The first four steps are integrated in the pre_process bash script, that provides the user the

option of supplying a custom ".pog" file, so that it is possible to choose which POs are to be included

in the final HOL model.

3.3 Verification

The development process explained in the former chapter, uses formal models in VDM++ and Alloy

to annotate the system’s requirements, test and model check the desired behavior. When the

7The OmlValueShape class is defined in the OmlAst specification.
8The OmlValueDefinition class is defined in the OmlAst specification.

34

3.3. VERIFICATION

system’s models are written and validated from a functional point of view, is time to make use of the

VDMTools’ Integrity Checker to generate a set of POs, regarding the VDM++ model’s integrity. The

POs must now be discharged in order to validate the model in terms of it’s integrity. The strategy

is to use testing, model checking and mathematical proof of correction to verify the formal models,

trying to uncover flaws using the "cheapest" method available, although stepping through all three

methods when necessary.

The objective of the "multiple tool single PO" approach is to increase confidence in that the POs

will hold, before an actual proof of correction is done. In many situations the stakeholders are only

interested in increasing the bugs found, instead of completely proved correction. Verifying the model

for satisfiability [45, 66], consists in: for every operation Op whose input is of type A and whose

output is of type B , PO

∀ a · a ∈ A ∧ pre-Op a ⇒∃ · b · b ∈ B ∧ post-Op(b, a) (3.1)

should be discharged, where a ∈ A and b ∈ B check for the invariants associated to A and B ,

respectively. Since all our operations are deterministic, the POs we have in hands are actually

simpler:

∀ a · a ∈ A ∧ pre-Op a ⇒Op(a) ∈ B (3.2)

The following situations can take place:

1. Op satisfies (3.2) although is semantically wrong — its does not behave according to the

requirements. This calls for manual tests, which may include running the model as a prototype

in an interpreter.

2. Op survives all tests compiled in the previous step (including dynamic type checking) and yet

it does not satisfy (3.2) and the testers are not aware of this. In this case, a model checker

able to automatically generate counter-examples to (3.2) which could suggest how to improve

Op is welcome.

3. The model checker of the step just above does not find any counter examples. In this case a

theorem prover is welcome to mechanically check (3.2).

4. PO (3.2) is too complex for the theorem prover we have available. In this situation, our ultimate

hope is a pen-and-paper manual proof, or some kind of exercise able to decompose the too

complex PO into smaller sub-proofs.

Satisfiability is evaluated for the entire system starting with testing, then model checking, and

possibly ending with the proof of correction.

3.3.1 Testing

Testing for a specific PO does not make much sense when compared with the greater coverage a

model checker can have, although because VDMTools as a dynamic checking system, whenever

35

CHAPTER 3. DEVELOPMENT PROCESS

a test suite is executed the dynamic checker looks for invariants, partial functions applications,

mapping applications, and more violations. Any of these violations would most certainly result in a

failed PO. Some specific tests can be written for each PO, although seems quite ineffective when

compared with model checking.

3.3.2 Model Checking

The VDM++ generated POs are boolean values that can easily be written as an Alloy assertion,

which can be checked with the Alloy Analyzer. Depending on the differences between the abstrac-

tion level of the VDM++ and Alloy models, some POs might not be representable in the Alloy model.

Alloy has another great advantage for this project, and it is the possibility of writing point free

expressions based on relations. This connects perfectly well with the point free style of proofs,

and the Alloy Analyzer can even be used to check conversions between point free and point wise

definitions.

The Alloy Analyzer represents a given model by a boolean formula that is evaluated in an exter-

nal SAT solver tool, that checks it for combinations of variables that evaluate it to false. If the SAT

solver finds any of these combinations, Alloy Analyzer translates it back to an instance of the model

to be inspected.

3.3.3 Proof of Correction

The ultimate degree of confidence given by this strategy of verification is the mathematical proof of

correction, that can assure that for any given input the PO will hold. In the VDM community there

is a long tradition of hand made proofs based on discrete maths to verify POs, although these take

much time and require much more knowledge from the software engineer. Automated proofs can

be done in HOL, directly from the VDM++ model, so that is the preferential option.

The translated HOL model is loaded in to HOL, together with the proof commands translated

from the POs. There are two tactics for proof defined in the Overture APS, the VDM_GENERIC_TAC

and the VDM_ADDITIONAL_TAC. The first tactic is mainly meant for domain-related POs, as the former

is intended for the remaining proofs. Some times the tool does not choose the correct tactic, so

whenever a PO is not discharged with one tactic, trying the other might solve the issue.

3.3.4 Tool Chain

The integration of methods and tools, for formal development and verification of software, proposed

in this thesis is illustrated in Figure 3.2. From a given problem it is possible to build an executable

specification in VDM++ that can rapidly be checked through unit testing, to validate if the ideas

and concepts were modeled as expected. Using the VDMTools’ Integrity Checker a set of proof

obligations, denoted in VDM++ syntax, is automatically generated from the VDM++ specification.

Provided an adequate translation of both VDM++ model and proof obligations to Alloy, the Alloy

Analyzer can be used, again automatically, to model check the proof obligations. If it finds counter

examples, then it means that the specification is not correct because there is an instance of the

36

3.3. VERIFICATION

Alloy model for which a proof obligation is invalid. Using Alloy Analyzer counter-examples it is easy

to understand the conditions that lead to it, and go back to the VDM++ model to fix it. Other-

wise, if the Alloy Analyzer does not find any counter-examples, the confidence in the integrity of

the specification increases, although there is still room for unchecked design flaws. At this point

many stakeholders would be more than satisfied with the gained confidence in the specification,

however if a proof of correction is required it is possible to use the Overture APS to translate the

VDM++ specification, together with the proof obligations, to HOL. If the theorem prover successfully

discharges the proof obligations, the cycle terminates. On the other hand, if it fails, then there is a

possibility that the proof can be simplified or even completed by hand.

Executable Model

Problem

VDM
Modeling & Animation

& Testing

Alloy
Model Checking

HOL
Theorem Proving

PF
Calculus

OK

OK

Proof Obligation

Possibly Valid Assertion

Proof Failed

Counter Example Found

Done

Done

Try Simplified Proof

Figure 3.2: VDM — Alloy — HOL Tool Chain

The major drawback to the tool chain presented in Figure 3.2 is the fact that two specifications,

VDM++ and Alloy, have to be hand written. Note that this is not necessarily a bad thing from the

specification quality point of view, because using different modeling paradigms is in fact useful to

get increased insight on the kernel of the problem at hand. However, it increases the required

knowledge one must have to master both languages and tools, the probability of typos in the speci-

37

CHAPTER 3. DEVELOPMENT PROCESS

fications, and makes it harder to manage updates and fixes across multiple specifications.

3.4 Summary

The present chapter proposes a development process using formal specification amenable to veri-

fication from the beginning, in an effort to detect as many design flaws as possible in early stages.

Using VDM++ as a specification language to capture the initial requirements of a given object or

system, it is easy to test, simulate and prototype in order to validate those requirements. However,

to model check or mechanically discharge proof obligations other tools must be used, provided the

adequate language translations.

Although automatic translation tools provide a sound integration between different languages,

they are not always available. Section 3.2 provides translation rules for a VDM++ to Alloy conver-

sion, and tools developed to speedup the preparation of VDM++ models to be used in the APS.

These two translation steps are part of a verification tool chain intended to verify VDM++ models.

Consistency of a VDM++ model can be established through discharging all POs generated from the

model. In this sense a tool chain is designed to use multiple tools to deal with each PO.

The tool chain here presented is intended to be a contribution on its own to the GC initiative,

whose mentors pointed tool integration as one of its main goals.

38

Chapter 4

Intel® Flash File System Core

The IFFSCRG document defines the architecture of a file system, some data structures, and the

API of each layer of the architecture. Although the API is clear, there is almost no information about

the internals of the file system, except for some sparse references to sequence tables.

Only the FSL was modeled, although studies have been made on how to model the complete

architecture. The development started with an abstract version of the FSL, and can follow two

possible paths: continue by writing abstract versions of the remaining layers; or the FSL model

could be refined an decomposed in to the remaining layers. This is possible because the FSL is just

the public API of the file system, and relies on the other layers to perform the actual management

of the system’s data.

Usually the formal modeling process starts by defining convenient data structures based on

requirements analysis, although in the case of modeling an established API, which provides infor-

mation on the operations of a given system, instead of its modus operandi, it is useful to model the

system backwards, from the front-end operations back to the core data structures. This way be-

comes clear what are the data requirements for each operation, as details are introduced incremen-

tally to support new ones. The intention is to model the file system internals in order to implement

the API described in the document, trying to use as much information from the documentation as

possible, whenever its relevancy so justifies.

For every operation described by the API there is a C alike function signature, identifying the

operation’s name, return value, and parameters. There is also a table describing the parameters,

and stating which perform input (IN), output (OUT), or both (IN/OUT). The provided information is

complete with a list of possible return values and a textual description of the operation. One common

flaw throughout the document is that the return values regarding error status are not mapped to

specific conditions of invocation nor file system state. So to use those status / error values it is

necessary to assume a great portion of the operations behavior. Some times there are references

to error situations in the parameters description, also in the operation description, although there is

no association with specific status values.

Some of the most complex aspects of the system will be ignored, or this would not be an abstract

enough model for structural verification purposes. POSIX defines different kinds of file in [82] (page

111 Section 3.163), although only regular files and directories will be modeled. Character special

39

CHAPTER 4. INTEL® FLASH FILE SYSTEM CORE

30 Intel® Flash File System Core Reference Guide

File System API Reference

4.6 FS_DeleteFileDir

Deletes a single file/directory from the media

Syntax

FFS_Status FS_DeleteFileDir (
mOS_char *full_path,
UINT8 static_info_type);

Parameters

Error Codes/Return Values

Description

The FS_DeleteFileDir function deletes a single file or directory from the media. If the file or
directory has any child objects associated with it (dynamic info, primary data, or auxiliary data),
the data will be deleted. This function returns with an error if there are any open file handles to the
file specified, or if there are any files or subdirectories in the directory specified. If there are any
open search handles for the directory to be deleted, this function first deletes the open search
handles, and then deletes the directory. This function does not return until the operation completes.

Parameter Description

*full_path (IN) This is the full path of the filename for the file or directory to be deleted.

static_info_type (IN) This tells whether this function is called to delete a file or a directory.

FFS_StatusSuccess Success

FFS_StatusNotInitialized Failure

FFS_StatusInvalidPath Failure

FFS_StatusInvalidTarget Failure

FFS_StatusFileStillOpen Failure

FFS_StatusDirectoryNotEmpty Failure

FFS_StatusSemLockFailed Failure

FFS_StatusSemReleaseFailed Failure

FFS_StatusFileNotFound Failure

FFS_StatusPathNotFound Failure

FFS_StatusInvalidFilename Failure

FFS_StatusOutOfMemory Failure

FFS_StatusInvalidParameter Failure

FFS_StatusFullFileNotReturned Failure

FFS_StatusEntryNotFound Failure

FFS_ErrorSystem Failure

Figure 4.1: FS_DeleteFileDir operation (Permission to reproduce this excerpt is kindly granted by Intel Cor-

poration).

file, block special file, First In First Out (FIFO) special file, symbolic links, and sockets, will be

abstracted. Other things such as: open search handles, semaphores, ram buffers, concurrency will

also be abstracted.

Two models have to be written for the FSL, one in VDM++ and another in Alloy. First the

requirements will be denoted and tested in VDM++, and afterwards written and model checked

in Alloy. The last step of the verification process will go through the translation of the VDM++

specification to HOL, and the discharge of POs in HOL. The complete specifications, test cases

and assertions can be found in Appendix B, in addition to the complete reference of all project files

in [53] (under the "Verified File Store" topic).

4.1 FS_DeleteFileDir

This operation deletes a single file or directory from the system, and is specified in page 30 of the

IFFSCRG document. The signature and parameters description are in Figure 4.1

4.1.1 Requirements Analysis

The operation signature defines two input parameters full_path and static_info_type, although

the later can be abstracted if it is possible to obtain that information by inspecting the type of the file

pointer by the first parameter.

40

4.1. FS_DELETEFILEDIR

In textual description of the operation states that it "deletes a single file or directory", along with

all data associated with it. It also states some error situations:

• there should be an error "if there are any open file handlers to the file specified";

• there should be an error "if there are any files or subdirectories in the directory specified"

Additional information is provided regarding open search handles and that the operation will not re-

turn until it is finished, although, because open search handles and concurrency will be abstracted,

these will not be part of the model. The focus of the formal modeling will be the requirements

denoted next.

In order to delete a file one must supply a path, which means that files are referenced through

paths.

R1 THERE SHOULD BE WAY TO STORE FILES, POINTED BY PATHS.

R2 THERE SHOULD BE WAY TO DELETE STORED FILES.

So far the document provided information on an important data type FFS_Status, that is defined in

page 53, Section 4.21 Error Codes, as an enumeration of possible error / status values. Although the

names of the codes are meaningful, there is no description associated. The names seem to follow

a prefix convention, although there is no explicit reference to it, neither it is consistent throughout

the document. The prefix FFS_ seems to mean that the values associated with it are used across

multiple layers of the architecture, as FS_ seems to mean that those values associated with it are

used only at the FSL level. In the same way the DO_ could be for status values used within the

DOL. There is another group of values with the prefix SEQ_, however these values are not used

any where in the document.

R3 THERE SHOULD BE WAY TO EXPRESS THE STATUS RETURN VALUES

FOR THE OPERATION.

The second error case, obtained from the description, reveals a fundamental concept of file sys-

tems, that directories have sub-files, which themselves can be regular files or directories. It also

reveals a constraint to the operation, that is the impossibility to remove directories that contain

sub-files.

R4 FILES CAN BE REGULAR FILES OF DIRECTORIES.

R5 DIRECTORIES HAVE SUB-FILES.

R6 IT IS NOT POSSIBLE TO DELETE DIRECTORIES THAT HAVE SUB-FILES.

One other thing that is made quite clear is the fact that open files can not be deleted, and in those

cases there should be an error. From this results a new requirement, that is to be able to keep

track of open files, which is also quite obvious to whom might ever have used a file system. Open

files are identified by open file handles, there is a definition for FS_FileHandle in page 260. A

FS_FileHandle is a pointer for a structure FS_OpenFileInfo, defined on page 258 Section 15.2.7

FS_OpenFileInfo, which is intended to cache "information about an open file".

41

CHAPTER 4. INTEL® FLASH FILE SYSTEM CORE

R7 THERE SHOULD BE WAY TO KEEP TRACK OF OPEN FILES.

R8 IT IS NOT POSSIBLE TO DELETE OPEN FILES.

Still in the textual description of the operation reference is made to a "dynamic info, primary data,

or auxiliary data" as child objects associated files and directories, from which the primary data and

the auxiliary data is easy to understand, on the contrary dynamic info is a much vaguer concept.

From the context it is assumed that dynamic info is what the file system stores on open files in

main memory, and that static info would be stored in the FLASH memory. Again, this is just an

assumption, because other assumptions could be made. There are references to dynamic data as

data that can be modified and written using the device mlc! (mlc!) [2] capabilities or in Pseudo

Single Bit per Cell (PSBC) [72].

R9 FILES HAVE DATA.

4.1.2 VDM++ Model

The requirements analysis found nine requirements for the FS_DeleteFileDir operation. Five of

them are related to the internal data structures of the FSL, namely R1, R4, R5, R7, and R9; other

three are related with the operation behavior, R2. R6, and R8; and a last one R3 about status

information returned by the operation (and all others for that matter).

The file system will manage files in general, although a file can be a regular file or a directory.

Directories can have sub-files, forming a tree shape. This would suggest for a recursive tree such

as structure, in fact many of the most common file systems are implemented that way. However

taking in account, the fact that the specification will have to be verified, it might be an advantage

no to use recursive structures, thus not having to perform inductive proofs. The nested structure of

directories and sub-directories can be represented through a path from the top most directory (the

root of the file system) to the file it references. This way the file store could be specified as a simple

mapping from Path to File, provided an adequate invariant.

FileStore = map Path to File

inv fileStore ==

forall path in set dom fileStore &

let parent = dirName(path) in

parent in set dom fileStore and

isDirectory(fileStore(parent).info);

Code 4.1: VDM++ model sliced at FS_DeleteFileDir — FileStore data type

The invariant of the FileStore data type states that all files have one parent file that is a

directory, see [82] page 69 Section 3.263. POSIX also defines dirname, in [84] page 256, as a

function that when given a path, returns the path of its containing directory (the parent file’s path).

In the case of the root directory, the parent may be the root itself, or simply not defined. When

dealing with symbolic links POSIX is clear to state that the system calls will have to result in the

error value [ELOOP] [84] page 24, if there are loops introduced by symbolic links in a given path.

With out symbolic links and only dealing with absolute paths, it is not possible to have loops in

42

4.1. FS_DELETEFILEDIR

paths. Hence, in mathematical therms, dirname, as defined here, is reflexive for the root directory,

and acyclic for all other paths.

dirName : Path -> Path

dirName(full_path) ==

cases full_path:

<Root > -> <Root >,

[-] -> <Root >,

others -> [full_path(i) | i in set inds full_path & i < len full_path]

end;

Code 4.2: VDM++ model sliced at FS_DeleteFileDir — dirName function

The function dirName assures that the parent of the root directory is always itself, as for paths not

having cycles, it is assured by the non recursive nature of FileStore.

Path = <Root > | seq1 of FileName;

Code 4.3: VDM++ model sliced at FS_DeleteFileDir — Path data type

In addition to the requirements gathered from the documentation, two new ones are introduced.

AR1 THERE MUST BE A UNIQUE ROOT DIRECTORY.

AR2 THE ROOT DIRECTORY IS ITS OWN PARENT DIRECTORY.

About files it is specified that there can be two types: regular files, and directories. That directo-

ries can have sub files, and that regular files have data contents.

File :: info : FS_FileDirInfo;

Code 4.4: VDM++ model sliced at FS_DeleteFileDir — File data type

The info field stores information about using the structure FS_FileDIrInfo, defined in page

257. Only file’s attributes are specified, because the remaining fields can be abstracted, as ex-

plained in Table4.1. The IFFSCRG document refers to auxiliary data contents of files, but also

states that they are optional 1, so all these will be abstracted.

FS_FileDirInfo :: attributes : Attributes;

Code 4.5: VDM++ model sliced at FS_DeleteFileDir — FS_FileDirInfo data type

Attributes :: fileType : FileType;

Code 4.6: VDM++ model sliced at FS_DeleteFileDir — Attributes data type

FileType = <RegularFile > | <Directory >;

Code 4.7: VDM++ model sliced at FS_DeleteFileDir — FileType data type

1See the use of FFS_AUXILIARY_FILE_DATA_ENABLED in page 157, Section 15.2.6 FS_FileDirInfo.

43

CHAPTER 4. INTEL® FLASH FILE SYSTEM CORE

Both Attributes and FS_FileDirInfo are records so that they can easily be expanded when

necessary. The FileType data type has the same properties, although because it is simply a flag,

it is defined as an enumerated type allowing for more kinds of files to be specified.

The fact that a file is open could be recorded in the File data type, although it is considered

that information about open files should be maintained in main memory, in opposition to the ac-

tual file that is stored in the flash memory. Following this principle, there is a clear separation of

the information about open files in a new data structure, where the information is referenced by a

handler.

OpenFilesTable = map FS_FileHandle to FS_OpenFileInfo;

Code 4.8: VDM++ model sliced at FS_DeleteFileDir — OpenFilesTable data type

As defined in page 260 of the IFFSCRG document, file handlers are pointers to the information on

open files.

FS_FileHandle = nat;

Code 4.9: VDM++ model sliced at FS_DeleteFileDir — FS_FileHandle data type

The information on open files is captured by the structure FS_OpenFileDir, defined in page 258.

Being abstraction a priority of the formal modeling done here, FS_FileHandle would be a perfect

candidate to be excluded from the specification, however the option here is to model it as a unique2

numerical identifier. The fact that file handles, or descriptors, are the external reference to open

files, which applications use to access their files, is the main reason behind the option not to abstract

them.

FS_OpenFileInfo :: path : Path;

Code 4.10: VDM++ model sliced at FS_DeleteFileDir — FS_OpenFileInfo data type

2The uniqueness of the FS_FileHandle is not a consequence of any invariant related to the data type. It is derived
from the simplicity of the mapping OpenFilesTable.

FileOffset Abstracted because the model manages open files through the
OpenFilesTable, it would only have to be persistent if the system should
set the offset of newly open files to the last known value. For the present
operation there is no requirement on open file’s offset.

DataSize Abstracted because contents size can be calculated on demand through the
len function.

AuxDataSize Abstracted because contents size can be calculated on demand through the
len function. Auxiliary data is optional.

CreationTime Time stamps are abstracted because they are not relevant to the operation.
LastWriteTime Time stamps are abstracted because they are not relevant to the operation.
LastAccessTime Time stamps are abstracted because they are not relevant to the operation.
*Filename Abstracted because it is redundant as the file’s full path is stored in the

file store.

Table 4.1: Abstracted fields from structure FS_FileDirInfo

44

4.1. FS_DELETEFILEDIR

This structure defines multiple fields of information, and all of them can be abstracted, as shown in

Table 4.2.

Next Abstracted because the model manages open files through the
OpenFilesTable.

StaticInfoLoc Abstracted because BAL Logical Unit is also abstracted.
ParentStaticInfoLoc Abstracted because BAL Logical Unit is also abstracted.

The parent’s path can always be obtained through the
dirName function.

PrimaryDataLoc Abstracted because BAL Logical Unit is also abstracted.
The data of an open file can be obtained using the file’s path through
the FileStore.

AuxDataLoc Abstracted because BAL Logical Unit is also abstracted.
The data of an open file can be obtained using the file’s path through
the FileStore. Auxiliary data is optional.

DataSize Size counters can be abstracted by size counting functions.
FileOffset Abstracted because it is only used by the operations for writing,

reading and offset shift.
AuxDataSize Size counters can be abstracted by size counting functions.

Auxiliary data is optional.
AuxDataOffset Abstracted because it is only used by the operations for writing,

reading and offset shift. Auxiliary data is optional.
OldDataSize Abstracted because transactions are also abstracted.
OldFileOffset Abstracted because transactions are also abstracted.
PhysicalDataSize Abstracted because transactions are also abstracted.
ShareMode Abstracted because transactions are also abstracted.
AccessMode Abstracted because it is not relevant for this operation.

Open files can not be deleted.
RamBufferMode Abstracted because ram buffers are also abstracted.
Modified Abstracted because it is not relevant for this operation.

The only changes produced by this operation are complete
removal of files.

TransOpStatus Abstracted because transactions are also abstracted.
SizeChanged Abstracted because it is not relevant for this operation.

The only changes produced by this operation are complete
removal of files.

DeleteStatusMode Abstracted because ram buffers are also abstracted.
PrimaryRootReplaced Abstracted because transactions are also abstracted.

Table 4.2: Abstracted fields from structure FS_OpenFileDir

The only filed in FS_OpenFileDir is the path to the open file. This is one option when correlating

FileStore with OpenFilesTable. Another way would be to have an indirection step, using an extra

data structure. The correlation between these two data structures will lead to an referential integrity

invariant, that will be discussed later on. So far the specification accounts for the requirements: R1,

R4, R5, R7, and R9; and the two new ones AR1 and AR2.

To meet requirement R3 regarding the return status values, it is necessary to introduce a new

45

CHAPTER 4. INTEL® FLASH FILE SYSTEM CORE

data type that enumerates the possible values. Not all will be considered, because some are not

meaningful enough so that its use can be assumed, and others because the underlying concepts,

such as file system initialization, concurrency, hardware errors, and memory limits, are being ab-

stracted.

FFS_Status =

<FFS_StatusSuccess >

| <FS_ErrorFileNotFound >

| <FS_ErrorFileStillOpen >

| <FS_ErrorDirectoryNonEmpty >

| <FFS_StatusUnknown >;

Code 4.11: VDM++ model sliced at FS_DeleteFileDir — FFS_Status data type

The system can now be modeled as a record containing the file store and the open files table.

System :: table : OpenFilesTable

fileStore : FileStore

inv sys ==

forall ofi in set rng sys.table &

isElemFileStore(ofi.path , sys.fileStore);

Code 4.12: VDM++ model sliced at FS_DeleteFileDir — System data type

The above mentioned referential integrity invariant, can only be expressed at the System level,

where both structures are available. It states that all open files present in the table, must exists as

files in the file store. The remaining requirements specify what the operation should R2, and should

not R6 R8 do. The FS_DeleteFileDir shall remove a file from the system’s file store.

FS_DeleteFileDir_FileStore: FileStore * set of Path -> FileStore

FS_DeleteFileDir_FileStore(fileStore , paths) ==

paths <-: fileStore

pre forall path in set dom fileStore &

dirName(path) in set paths => path in set paths;

Code 4.13: VDM++ model sliced at FS_DeleteFileDir — FS_DeleteFileDir_FileStore function

From R8 follows that the operation does not need to modify the open files table, hence no function

is needed to manipulate the OpenFilesTable data type. At the System level there is no need to

coordinate actions taken on the two sub-types, because only FileStore will play a role in this

operation.

FS_DeleteFileDir_System: System * Path -> System

FS_DeleteFileDir_System(sys , full_path) ==

mu(sys , fileStore |-> FS_DeleteFileDir_FileStore(sys.fileStore , {full_path }))

pre (forall ofi in set rng sys.table & ofi.path <> full_path) and

pre_FS_DeleteFileDir_FileStore(sys.fileStore , {full_path });

Code 4.14: VDM++ model sliced at FS_DeleteFileDir — FS_DeleteFileDir_System function

The FS_DeleteFileDir_System function just enforces the pre-condition of its FileStore counter

part. Above the System level the main function is total, and accounts for the error situations, relaying

the selection of the appropriate status code to the exception handler function.

46

4.1. FS_DELETEFILEDIR

FS_DeleteFileDir_Main: System * Path -> System * FFS_Status

FS_DeleteFileDir_Main(sys , full_path) ==

if full_path in set dom sys.fileStore and

pre_FS_DeleteFileDir_System(sys , full_path)

then mk_(FS_DeleteFileDir_System(sys , full_path), <FFS_StatusSuccess >)

else mk_(sys , FS_DeleteFileDir_Exception(sys , full_path));

Code 4.15: VDM++ model sliced at FS_DeleteFileDir — FS_DeleteFileDir_Main function

The main function of an operation will always check the pre conditions of the underlying functions,

so that their application is correct, although not all conditions to the invocation will be stated in

pre-conditions. Pre-conditions will only record the predicates that enable a correct behavior of a

function, at a specific data type level, although when composing the cascade of functions some

other predicates might need to be checked at the main function, before the operation continues.

This will not be the case with the FS_DeleteFileDir operation, although will happen with other

operations.

FS_DeleteFileDir_Exception: System * Path -> FFS_Status

FS_DeleteFileDir_Exception(sys , full_path) ==

if not isElemFileStore(full_path , sys.fileStore)

then <FS_ErrorFileNotFound >

elseif isElemTablePath(full_path , sys.table)

then <FS_ErrorFileStillOpen >

elseif isDirectory(sys.fileStore(full_path).info) and

hasSubFiles(sys.fileStore , full_path)

then <FS_ErrorDirectoryNonEmpty >

else <FFS_StatusUnknown >;

Code 4.16: VDM++ model sliced at FS_DeleteFileDir — FS_DeleteFileDir_Exception function

The operation specification is complete with the error handling function, which selects the appropri-

ate status code to be returned, and its objectified method FS_DeleteFileDir.

FS_DeleteFileDir : Path ==> FFS_Status

FS_DeleteFileDir(full_path) ==

def mk_(sys ',status) = FS_DeleteFileDir_Main(sys , full_path) in

(sys := sys '; return status);

Code 4.17: VDM++ model sliced at FS_OpenFileDir — FS_DeleteFileDir operation

Testing starts right now, by creating test values, of all defined types, so that unit test can be

performed. Just by writing the test values, and loading model in the VDMTools’ interpreter the

dynamic type checker automatically detects flaws in those values. In many cases this reveals flaws

in the data type’s definitions. The unit testing is done for both data types and operations. The data

type tests follow the white box philosophy, by invoking the functions that manipulate the respective

type and asserting the results. When testing the operations at top level, black box philosophy, the

test cases invoke the outmost main function of the operation. This way, functions are tested out

side of the context they were designed to work in, as well as part of the cascade that models an

operation. The unit test experience shows that many typos get caught at this stage, situations

where the modeler wants to express some thing although ends up writing another. Unit testing in

47

CHAPTER 4. INTEL® FLASH FILE SYSTEM CORE

the presence of a dynamic type checker is a very powerful tool, that can save much time in further

verification.

4.1.3 Unit Testing the VDM++ model

Testing the FS_DeleteFileDir operation is done following both the white box philosophy for the

involved data types: System and FileStore; and the black box philosophy at the API level. Test

cases are written for each and every level. Tests done at the data type levels will be asserting

properties regarding the respective data type. Test done at the API level will cover all possible

status values, as well as other possible return values.

The operation at hand removes files from the system’s file store, hence the resulting file store

shall not have the removed file, although all the other files should remain intact.

SimpleDeleteTest: set of Path ==> ()

SimpleDeleteTest(paths) ==

let fs ' = FS_DeleteFileDir_FileStore(fs,paths) in

(AssertTrue(paths inter dom fs' = {});

AssertTrue(paths union dom fs' = dom fs);

fs := fs ');

Code 4.18: Tests for VDM++ model sliced at FS_DeleteFileDir — SimpleDeleteTest at FileStore level

RunTest: () ==> ()

RunTest () ==

(dcl init : FileStore := fs;

SimpleDeleteTest ({[" etc", "hosts "]});

SimpleDeleteTest ({[" etc", "conf.d"]});

SimpleDeleteTest ({[" bin", "ls"]});

SimpleDeleteTest ({<Root >, ["etc"], ["etc", "resolv.conf"], ["bin"], ["bin","wc"]});

);

Code 4.19: Tests for VDM++ model sliced at FS_DeleteFileDir — Test case at FileStore level

At the System data type level, the operation calls the respective FileStore function, updates the

fileStore field with the result, and the table field is to be left just as it was.

SimpleDeleteTest: Path ==> ()

SimpleDeleteTest(path) ==

let sys ' = FS_DeleteFileDir_System(sys ,path) in

(AssertTrue(path not in set dom sys '. fileStore);

AssertTrue(dom sys.fileStore = dom sys '. fileStore union {path});

AssertTrue(sys.table = sys '.table);

sys := sys ');

Code 4.20: Tests for VDM++ model sliced at FS_DeleteFileDir — SimpleDeleteTest at System level

RunTest: () ==> ()

RunTest () ==

(SimpleDeleteTest (["etc","hosts "]);

SimpleDeleteTest (["etc","conf.d"]);

SimpleDeleteTest (["etc","resolv.conf "]);

SimpleDeleteTest (["bin","ls"]);

SimpleDeleteTest (["bin","wc"]);

48

4.1. FS_DELETEFILEDIR

SimpleDeleteTest (["etc "]);

SimpleDeleteTest (["bin "]);

SimpleDeleteTest(<Root >);

);

Code 4.21: Tests for VDM++ model sliced at FS_DeleteFileDir — Test case at System level

The test coverage is almost 100% for the four functions, as shown in Table 4.4, however no test

has triggered the FFS_StatusUnknown return value. This is according to the expected because

the intention was to specify every predictable error situation with an expressive status value. This

property will be checked in the next model checking step, to find out whether there is a combination

of input parameters capable of triggering the unknown status value.

Name #Calls Coverage

FileSystemLayerOperations‘FS-DeleteFileDir-Main 4
√

FileSystemLayerOperations‘FS-DeleteFileDir-System 9
√

FileSystemLayerOperations‘FS-DeleteFileDir-FileStore 13
√

FileSystemLayerOperations‘FS-DeleteFileDir-Exception 3 96%

Total Coverage 98%

Table 4.4: Test coverage for functional specification of FS_DeleteFileDir

At the API level the objectified operation is tested, and the assertions are focused on the possible

return values. Test coverage is presented in Table 4.6.

RunTest: () ==> ()

RunTest () ==

(dcl status : FFS_Status;

status := FS_DeleteFileDir (["etc","hosts "]);

AssertTrue(status = <FFS_StatusSuccess >);

status := FS_DeleteFileDir (["bin","cp"]);

AssertTrue(status = <FS_ErrorFileNotFound >);

status := FS_DeleteFileDir (["etc"]);

AssertTrue(status = <FS_ErrorFileStillOpen >);

status := FS_DeleteFileDir (["bin"]);

AssertTrue(status = <FS_ErrorDirectoryNonEmpty >);

);

Code 4.22: Tests for VDM++ model sliced at FS_DeleteFileDir — Test case at API level

Name #Calls Coverage

FileSystemLayerObj‘FS-DeleteFileDir 4
√

Total Coverage 100%

Table 4.6: Test coverage for objectified specification of FS_DeleteFileDir

49

CHAPTER 4. INTEL® FLASH FILE SYSTEM CORE

4.1.4 Alloy Model

Building a semantically equivalent Alloy model of the VDM++ model, will follow the directions pointed

in Section 3.2.1. Whenever more than one possible translation can be used, the option will be to

abstract as much as possible.

FileStore is translated to a signature that contains a map field, which is a relation from Path to

File3. The map relation must be constrained, through the FileStoreInvariantVDM predicate, so

that it has the same properties as the VDM++ FileStore mapping. How to build the InvariantVDM

predicates was also explained in Section 3.2.1.

3In fact the map relation defined in the FileStore signature is a ternary relation from FileStore to Path to File.

50

4.1. FS_DELETEFILEDIR

sig FileStore {

map: Path -> File

}

Code 4.23: Alloy model sliced at FS_DeleteFileDir — FileStore signature

pred FileStoreInvariantVDM[fs: FileStore]{

RelCalc/Simple[fs.map , File] and

PathInvariantVDM[RelCalc/dom[fs.map]] and

FileInvariantVDM[RelCalc/rng[fs.map]] and

FileStoreInvariant[fs]

}

Code 4.24: Alloy model sliced at FS_DeleteFileDir — FileStoreInvariantVDM predicate

Initially the FileStoreInvariantVDM predicate had an extra clause where it was stated that the

map relation had to be injective, and this fact was not derived from the semantics of the VDM++

mappings, nor from the fact that sub-type invariants must be explicitly enforced. It was based on

the fact that VDM records, in this case File, are created using the mk_ constructor, that for every

invocation always creates a new value of the desired type. In other words, even if files are created

with the same parameters, in the VDM++ model, they are still different files. Another thing that

supported this constraint is the fact that, for now, links are abstracted, and if two different paths in

the map relation would reference the same file, could lead to the interpretation that there would be

a link for the file. However, this would be adding a conceptual constraint related to an interpretation

issue, hence not absolutely necessary. For abstraction sake, the map relation does not have to

be injective, although whenever to paths map in the same file that should be interpreted as two

different files that are equal. In the next operation the case will be different, and the injectiveness of

the mapping relation will not be just a question of interpretation.

pred FileStoreInvariant[fs: FileStore]{

(fs.map).(File ->Directory) in dirName.(fs.map).info.attributes.fileType

}

Code 4.25: Alloy model sliced at FS_DeleteFileDir — FileStoreInvariant predicate

The actual FileStore invariant is written using the point free transform, where all variables were

removed and the predicate is purely relational. This is not easily done within an automatic translator,

although still it illustrates well the relational expressiveness of Alloy. Paths in the VDM++ model, are

disjoint unions of the type <Root> and non empty sequence of FileName. There is also a function

dirName that computes the path to the parent directory of a given path. In the Alloy model the Path

signature is more abstract, because it does not state that paths are constructed with sequences,

and that there is a function that computes the parent’s path.

abstract sig Path {

dirName: Path

}

Code 4.26: Alloy model sliced at FS_DeleteFileDir — Path signature

51

CHAPTER 4. INTEL® FLASH FILE SYSTEM CORE

Paths are modeled as an abstract signature containing a field named dirName, that relates a path

to its parent path. It is necessary to extend the Path signature, to express the disjoint union.

one sig Root extends Path {}

Code 4.27: Alloy model sliced at FS_DeleteFileDir — Root signature

sig FileNames extends Path {}

Code 4.28: Alloy model sliced at FS_DeleteFileDir — FileNames signature

The multiplicity factor one assigned to the Root signature means that there will be only one value

instantiated to this signature. This could be done in the InvariantVDM predicate, although this way

the objects scope for every command will automatically be adjusted. The PathInvariantVDM pred-

icate must assure that the relation dirName will show equivalent properties to the VDM++ function

that has the same designation.

pred PathInvariantVDM[path : Path]{

dirNameProperties

}

Code 4.29: Alloy model sliced at FS_DeleteFileDir — PathInvariantVDM predicate

The predicate dirNameProperties states that the relation is in fact a function, that it is reflexive on

the root directory, and that it is acyclic for every other path.

pred dirNameProperties {

RelCalc/Function[dirName ,Path ,Path] and

RelCalc/Reflexive[(RelCalc/id[Root]).dirName ,Root] and

RelCalc/Acyclic[(RelCalc/id[FileNames]).dirName ,FileNames]

}

Code 4.30: Alloy model sliced at FS_DeleteFileDir — dirNameProperties predicate

Files in the Alloy model are signatures containing only the information field. The FileInvariantVDM

predicate enforces the sub-type invariant of FS_FileDirInfo.

pred FileInvariantVDM[f: File]{

FS_FileDirInfoInvariantVDM[f.info]

}

Code 4.31: Alloy model sliced at FS_DeleteFileDir — FileInvariantVDM predicate

The FS_FileDirInfo and Attributes are records in the VDM++ model, and translated in the same

way as File.

sig FS_FileDirInfo {

attributes : Attributes

}

Code 4.32: Alloy model sliced at FS_DeleteFileDir — FS_FileDirInfo signature

pred FS_FileDirInfoInvariantVDM[info: FS_FileDirInfo] {

AttributesInvariantVDM[info.attributes]

}

Code 4.33: Alloy model sliced at FS_DeleteFileDir — FS_FileDirInfoInvariantVDM predicate

52

4.1. FS_DELETEFILEDIR

sig Attributes {

fileType: FileType

}

Code 4.34: Alloy model sliced at FS_DeleteFileDir — Attributes signature

pred AttributesInvariantVDM[attr: Attributes] {

FileTypeInvariantVDM[attr.fileType]

}

Code 4.35: Alloy model sliced at FS_DeleteFileDir — AttributesInvariantVDM predicate

Enumerations get translated as an abstract signature, that is extended by the different possible

values.

abstract sig FileType {}

Code 4.36: Alloy model sliced at FS_DeleteFileDir — FileType signature

one sig RegularFile extends FileType {}

Code 4.37: Alloy model sliced at FS_DeleteFileDir — RegularFile signature

one sig Directory extends FileType {}

Code 4.38: Alloy model sliced at FS_DeleteFileDir — Directory signature

Just such as with the Path signature, the option of including the one multiplicity factor in the above

signatures is simply to save resources in model finding. The OpenFilesTable mapping, and the

FS_OpenFileInfo record, are translated to Alloy in the same way as the FileStore, and File

respectively.

sig OpenFilesTable {

map: FS_FileHandle -> FS_OpenFileInfo ,

}

Code 4.39: Alloy model sliced at FS_DeleteFileDir — OpenFilesTable signature

pred OpenFilesTableInvariantVDM[table: OpenFilesTable] {

RelCalc/Simple[table.map ,FS_OpenFileInfo] and

FS_OpenFileInfoInvariantVDM[RelCalc/rng[table.map]]

}

Code 4.40: Alloy model sliced at FS_DeleteFileDir — OpenFilesTableInvariantVDM predicate

sig FS_OpenFileInfo {

path : Path

}

Code 4.41: Alloy model sliced at FS_DeleteFileDir — FS_OpenFileInfo signature

pred FS_OpenFileInfoInvariantVDM[ofi: FS_OpenFileInfo]{

PathInvariantVDM[ofi.path]

}

Code 4.42: Alloy model sliced at FS_DeleteFileDir — FS_OpenFileInfoInvariantVDM predicate

53

CHAPTER 4. INTEL® FLASH FILE SYSTEM CORE

Because FS_FileHandle is the external reference for open files, and it will not be used for any

arithmetic, there is no need to specify it as an Alloy integer.

sig FS_FileHandle {}

Code 4.43: Alloy model sliced at FS_DeleteFileDir — FS_FileHandle signature

The operation at the different levels is translated to the next six predicates.

pred FS_DeleteFileDir_Main[sys , sys ': System , full_path:Path , status: FFS_Status] {

(full_path in RelCalc/dom[sys.fileStore.map] and

pre_FS_DeleteFileDir_System[sys ,full_path])

=> (FS_DeleteFileDir_System[sys ,sys ',full_path] and

status = FFS_StatusSuccess)

else (FS_DeleteFileDir_Exception[sys ,full_path ,status] and

sys ' = sys)

}

Code 4.44: Alloy model sliced at FS_DeleteFileDir — FS_DeleteFileDir_Main predicate

pred FS_DeleteFileDir_System[sys , sys ': System , full_path: Path] {

FS_DeleteFileDir_FileStore[sys.fileStore ,sys '.fileStore ,{ full_path }] and

sys.table = sys '.table

}

Code 4.45: Alloy model sliced at FS_DeleteFileDir — FS_DeleteFileDir_System predicate

pred pre_FS_DeleteFileDir_System[sys: System , full_path: Path] {

full_path not in RelCalc/rng[sys.table.map].path and

pre_FS_DeleteFileDir_FileStore[sys.fileStore ,{ full_path }]

}

Code 4.46: Alloy model sliced at FS_DeleteFileDir — pre_FS_DeleteFileDir_System predicate

pred FS_DeleteFileDir_FileStore[fs ,fs ': FileStore , paths: set Path] {

fs '.map = fs.map - (paths -> (paths.(fs.map)))

}

Code 4.47: Alloy model sliced at FS_DeleteFileDir — FS_DeleteFileDir_FileStore predicate

pred pre_FS_DeleteFileDir_FileStore[fs: FileStore , paths: set Path] {

(((Path - paths)->Path) & iden).(fs.map) in dirName.((Path - paths)->File)

}

Code 4.48: Alloy model sliced at FS_DeleteFileDir — pre_FS_DeleteFileDir_FileStore predicate

pred FS_DeleteFileDir_Exception[sys: System , full_path: Path , status: FFS_Status]{

not isElemFileStore[full_path ,sys.fileStore]

=> status = FS_ErrorFileNotFound

else (isElemTablePath[full_path ,sys.table]

=> status = FS_ErrorFileStillOpen

else ((isDirectory[(sys.fileStore.map[full_path]).info] and

hasSubFiles[sys.fileStore ,full_path])

=> status = FS_ErrorDirectoryNonEmpty

else status = FFS_StatusUnknown))

}

Code 4.49: Alloy model sliced at FS_DeleteFileDir — FS_DeleteFileDir_Exception predicate

54

4.1. FS_DELETEFILEDIR

4.1.5 Model Checking the Operation with the Alloy Analyzer

Model checking usually reveals design flaws, where the specification expresses exactly what the

specifier intended, although it still allows for unpredicted behavior. These are usually the most

expensive to solve if not detected at an early stage of development. Operations are specified in

Alloy as a cascade of predicates, where there are predicates for each relevant type signature, a

_Main predicate that is the starting point of the cascade, and an error handling _Exception predi-

cate. To model check an operation, assertions are made about each separate predicate that takes

part in the cascade. The assertions made about the _Main predicate will check the success and

error cases generally, as the assertions made about the _Exception will extensively check the dif-

ferent error situations. The type signature related assertions will check the respective predicate for

satisfiability [66].

The FS_DeleteFileDir_FileStore predicate is checked for satisfiability by the following pair

of assert and check commands.

assert Delete_FileStore {

all fs ,fs ': FileStore , paths: set Path {

FileStoreInvariantVDM[fs] and

PathInvariantVDM[paths] and

pre_FS_DeleteFileDir_FileStore[fs,paths] and

FS_DeleteFileDir_FileStore[fs,fs ',paths]

=> RelCalc/dom[fs '.map] = RelCalc/dom[fs.map] - paths and

FileStoreInvariantVDM[fs ']

}

}

Check_Delete_FileStore: check Delete_FileStore

Code 4.50: Alloy model sliced at FS_DeleteFileDir — Check FS_DeleteFileDir_FileStore

The same check is done at the System level, just in the same way.

assert Delete_System {

all sys , sys ': System , full_path: Path {

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path] and

pre_FS_DeleteFileDir_System[sys ,full_path] and

FS_DeleteFileDir_System[sys ,sys ',full_path]

=> full_path not in RelCalc/dom[sys '. fileStore.map] and

sys.table = sys '.table and

SystemInvariantVDM[sys '] and

RelCalc/dom[sys '. fileStore.map] = RelCalc/dom[sys.fileStore.map] - full_path

}

}

Check_Delete_System: check Delete_System

Code 4.51: Alloy model sliced at FS_DeleteFileDir — Check FS_DeleteFileDir_System

The FS_DeleteFileDir_Exception predicate analyses the inputs to generate four possible sta-

tus values, from which the FFS_StatusUnknown should never be returned, provided the conditions

necessary for the _Exception predicate to be called.

assert Delete_Exception_StatusUnknown {

all sys: System , full_path: Path , status: FFS_StatusUnknown {

55

CHAPTER 4. INTEL® FLASH FILE SYSTEM CORE

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path] and

not (full_path in RelCalc/dom[sys.fileStore.map] and

pre_FS_DeleteFileDir_System[sys ,full_path]) and

FS_DeleteFileDir_Exception[sys ,full_path ,status]

=> not status = FFS_StatusUnknown

}

}

Check_Delete_Exception_StatusUnknown: check Delete_Exception_StatusUnknown

Code 4.52: Alloy model sliced at FS_DeleteFileDir — Check FS_DeleteFileDir_Exception for

FFS_StatusUnknown

assert Delete_Exception_FileNotFound {

all sys: System , full_path: Path {

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path] and

not isElemFileStore[full_path ,sys.fileStore]

=> FS_DeleteFileDir_Exception[sys ,full_path ,FS_ErrorFileNotFound]

}

}

Check_Delete_Exception_FileNotFound: check Delete_Exception_FileNotFound

Code 4.53: Alloy model sliced at FS_DeleteFileDir — Check FS_DeleteFileDir_Exception for

FS_ErrorFileNotFound

assert Delete_Exception_FileStillOpen {

all sys: System , full_path: Path {

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path] and

isElemTablePath[full_path ,sys.table]

=> FS_DeleteFileDir_Exception[sys ,full_path ,FS_ErrorFileStillOpen]

}

}

Check_Delete_Exception_FileStillOpen: check Delete_Exception_FileStillOpen

Code 4.54: Alloy model sliced at FS_DeleteFileDir — Check FS_DeleteFileDir_Exception for

FS_ErrorFileStillOpen

assert Delete_Exception_DirectoryNonEmpty {

all sys: System , full_path: Path {

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path] and

isDirectory[(full_path.(sys.fileStore.map)).info] and

hasSubFiles[sys.fileStore ,full_path] and

not isElemTablePath[full_path ,sys.table]

=> FS_DeleteFileDir_Exception[sys ,full_path ,FS_ErrorDirectoryNonEmpty]

}

}

Check_Delete_Exception_DirectoryNonEmpty: check Delete_Exception_DirectoryNonEmpty

Code 4.55: Alloy model sliced at FS_DeleteFileDir — Check FS_DeleteFileDir_Exception for

FS_ErrorDirectoryNonEmpty

Finally the FS_DeleteFileDir_Main predicate is checked for both success and error cases.

56

4.1. FS_DELETEFILEDIR

assert Delete_Main_Success {

all sys ,sys ': System , full_path: Path , status: FFS_Status {

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path] and

full_path in RelCalc/dom[sys.fileStore.map] and

pre_FS_DeleteFileDir_System[sys ,full_path] and

FS_DeleteFileDir_Main[sys ,sys ',full_path ,status]

=> SystemInvariantVDM[sys '] and

status = FFS_StatusSuccess

}

}

Check_Delete_Main_Success: check Delete_Main_Success

Code 4.56: Alloy model sliced at FS_DeleteFileDir — Check FS_DeleteFileDir_Main success

assert Delete_Main_Error {

all sys ,sys ': System , full_path: Path , status: FFS_Status {

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path] and

not (full_path in RelCalc/dom[sys.fileStore.map] and

pre_FS_DeleteFileDir_System[sys ,full_path]) and

FS_DeleteFileDir_Main[sys ,sys ',full_path ,status]

=> SystemInvariantVDM[sys '] and

status not = FFS_StatusSuccess

}

}

Check_Delete_Main_Error: check Delete_Main_Error

Code 4.57: Alloy model sliced at FS_DeleteFileDir — Check FS_DeleteFileDir_Main fail

Alloy Analyzer does not find counter examples for any of the above presented assertions.

4.1.6 Model Checking VDM Proof Obligations with the Alloy Analyser

Model Checking POs is done through the translation of the .pog file generated by the VDMTools

using the -g option in command line environment. Translation a VDM PO to Alloy is usually an

exercise of translating some initial quantifier expression, enforcing the quantified values invariants,

and only then translate the quantified expression.

The VDMTools generated eleven POs for the current specification, from which the first three are

subtype POs, and become quite trivial when translated to Alloy.

Integrity property #1 :

In function FileSystemLayerBase dirName , file: FileSystemLayerBase.vpp l. 137 c. 46:

subtype

(forall full_path : Path &

not (full_path = (<Root >)) =>

not ((exists [xx_1] : Path &

full_path = [xx_1])) =>

is_(full_path ,seq of FileName))

Code 4.58: VDM++ model sliced at FS_DeleteFileDir — Proof Obligation 1

57

CHAPTER 4. INTEL® FLASH FILE SYSTEM CORE

assert po1 {

all full_path: Path {

PathInvariantVDM[full_path]

=> not (full_path = Root

=> not(some xx_1: Path {

PathInvariantVDM[xx_1]

=> full_path = xx_1

}))

=> PathInvariantVDM[full_path]

}

}

Check_PO1: check po1 for 5

Code 4.59: Alloy model sliced at FS_DeleteFileDir — Proof Obligation 1

PO2 and PO3 will be skipped, because they are as trivial as the first. PO4 states that the result of

the FS_DeleteFileDir_FileStore function should preserve the FileStore invariant.

Integrity property #1 :

In function FileSystemLayerOperations FS_DeleteFileDir_FileStore , file:

FileSystemLayerOperations.vpp l. 63 c. 9: invariants from FileStore

(forall fileStore : FileStore , paths : set of Path &

(forall path in set dom (fileStore) &

dirName(path) in set paths =>

path in set paths) =>

FileSystemLayerOperations `inv_FileStore(paths <-: fileStore))

Code 4.60: VDM++ model sliced at FS_DeleteFileDir — Proof Obligation 4

assert po4 {

all fs ,fs ': FileStore , paths: set Path {

FileStoreInvariantVDM[fs] and

PathInvariantVDM[paths]

=> ((((Path - paths)->Path) & iden).(fs.map) in dirName.((Path - paths)->File))

=> fs '.map = fs.map - (paths ->paths.(fs.map))

=> FileStoreInvariantVDM[fs ']

}

}

Check_PO4: check po4 for 5

Code 4.61: Alloy model sliced at FS_DeleteFileDir — Proof Obligation 4

PO5 is of type Map Application, and is generated at the FS_DeleteFileDir_Exception function

because of the application of the mapping sys.fileStore to the full_path parameter. The reason

behind this, and other POs of the same type, is the fact that the application of the simple partial

relation, the mapping, is only valid to elements of its domain.

Integrity property #1 :

In function FileSystemLayerOperations FS_DeleteFileDir_Exception , file:

FileSystemLayerOperations.vpp l. 87 c. 35: map application

58

4.1. FS_DELETEFILEDIR

(forall sys : System , full_path : Path &

not (not (isElemFileStore(full_path , sys.fileStore))) =>

not (isElemTablePath(full_path , sys.table)) =>

full_path in set dom (sys.fileStore))

Code 4.62: VDM++ model sliced at FS_DeleteFileDir — Proof Obligation 5

assert po5 {

all sys: System , full_path: Path {

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path]

=> not (not (isElemFileStore[full_path , sys.fileStore]))

=> not (isElemTablePath[full_path , sys.table])

=> full_path in RelCalc/dom[sys.fileStore.map]

}

}

Check_PO5: check po5 for 5

Code 4.63: Alloy model sliced at FS_DeleteFileDir — Proof Obligation 5

The next two POs are related to the preservation of the System and FileStore invariants by the

FS_DeleteFileDir_System and FS_DeleteFileDir_FileStore functions, respectively.

Integrity property #1 :

In function FileSystemLayerOperations FS_DeleteFileDir_System , file:

FileSystemLayerOperations.vpp l. 43 c. 3: invariants from System

(forall sys : System , full_path : Path &

((forall ofi in set rng (sys.table) &

ofi.path <> full_path)) and

pre_FS_DeleteFileDir_FileStore(sys.fileStore , {full_path }) =>

FileSystemLayerOperations `inv_System(mu(sys ,fileStore|->FS_DeleteFileDir_FileStore(sys.

fileStore , {full_path }))))

Code 4.64: VDM++ model sliced at FS_DeleteFileDir — Proof Obligation 6

assert po6 {

all sys ,sys ': System , full_path: Path {

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path]

=> full_path not in RelCalc/rng[sys.table.map].path and

pre_FS_DeleteFileDir_FileStore[sys.fileStore ,{ full_path }]

=> FS_DeleteFileDir_FileStore[sys.fileStore ,sys '.fileStore ,{ full_path }] and

sys '. table = sys.table

=> SystemInvariantVDM[sys ']

}

}

Check_PO6: check po6 for 5 but 2 System

Code 4.65: Alloy model sliced at FS_DeleteFileDir — Proof Obligation 6

Integrity property #2 :

59

CHAPTER 4. INTEL® FLASH FILE SYSTEM CORE

In function FileSystemLayerOperations FS_DeleteFileDir_System , file:

FileSystemLayerOperations.vpp l. 43 c. 51: invariants from FileSystemLayerBase `

FileStore

(forall sys : System , full_path : Path &

((forall ofi in set rng (sys.table) &

ofi.path <> full_path)) and

pre_FS_DeleteFileDir_FileStore(sys.fileStore , {full_path }) =>

FileSystemLayerBase `inv_FileStore(FS_DeleteFileDir_FileStore(sys.fileStore , {full_path

})))

Code 4.66: VDM++ model sliced at FS_DeleteFileDir — Proof Obligation 7

assert po7 {

all sys: System , full_path: Path , fs ': FileStore {

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path]

=> full_path not in RelCalc/rng[sys.table.map].path and

pre_FS_DeleteFileDir_FileStore[sys.fileStore ,{ full_path }]

=> FS_DeleteFileDir_FileStore[sys.fileStore ,fs ',{ full_path }]

=> FileStoreInvariantVDM[fs ']

}

}

Check_PO7: check po7 for 5

Code 4.67: Alloy model sliced at FS_DeleteFileDir — Proof Obligation 7

Still regarding invariants preservation, PO8 is the preservation of the FileStore invariant by the

record field selector operator (.) used in the FS_DeleteFileDir_System function. This PO’s ex-

pression is quite trivial to discharge, because the invariant is assured before the call to the referred

function, and the operator does not produce any changes in the respective value.

Integrity property #3 :

In function FileSystemLayerOperations FS_DeleteFileDir_System , file:

FileSystemLayerOperations.vpp l. 43 c. 55: invariants from FileStore

(forall sys : System , full_path : Path &

((forall ofi in set rng (sys.table) &

ofi.path <> full_path)) and

pre_FS_DeleteFileDir_FileStore(sys.fileStore , {full_path }) =>

FileSystemLayerOperations `inv_FileStore(sys.fileStore))

Code 4.68: VDM++ model sliced at FS_DeleteFileDir — Proof Obligation 8

assert po8 {

all sys: System , full_path: Path {

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path]

=> full_path not in RelCalc/rng[sys.table.map].path and

pre_FS_DeleteFileDir_FileStore[sys.fileStore ,{ full_path }]

=> FileStoreInvariantVDM[sys.fileStore]

}

}

Check_PO8: check po8 for 5

60

4.1. FS_DELETEFILEDIR

Code 4.69: Alloy model sliced at FS_DeleteFileDir — Proof Obligation 8

PO9 checks the correct application of the FS_DeleteFileDir_FileStore in its System counter

part, which is also trivial to discharge because the call to the function is protected by a condition

where its pre-condition is required to hold.

Integrity property #4 :

In function FileSystemLayerOperations FS_DeleteFileDir_System , file:

FileSystemLayerOperations.vpp l. 43 c. 51: function application from

FS_DeleteFileDir_FileStore

(forall sys : System , full_path : Path &

((forall ofi in set rng (sys.table) &

ofi.path <> full_path)) and

pre_FS_DeleteFileDir_FileStore(sys.fileStore , {full_path }) =>

FileSystemLayerOperations `pre_FS_DeleteFileDir_FileStore(sys.fileStore , {full_path }))

Code 4.70: VDM++ model sliced at FS_DeleteFileDir — Proof Obligation 9

assert po9 {

all sys: System , full_path: Path {

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path]

=> full_path not in RelCalc/rng[sys.table.map].path and

pre_FS_DeleteFileDir_FileStore[sys.fileStore ,{ full_path }]

=> pre_FS_DeleteFileDir_FileStore[sys.fileStore ,{ full_path }]

}

}

Check_PO9: check po9 for 5

Code 4.71: Alloy model sliced at FS_DeleteFileDir — Proof Obligation 9

PO10 is the same as PO8 although the use of the record fields selector is done in the pre-condition

of the FS_DeleteFileDir_System function.

Integrity property #5 :

In function FileSystemLayerOperations FS_DeleteFileDir_System , file:

FileSystemLayerOperations.vpp l. 45 c. 39: invariants from FileStore

(forall sys : System , full_path : Path &

((forall ofi in set rng (sys.table) &

ofi.path <> full_path)) =>

FileSystemLayerOperations `inv_FileStore(sys.fileStore))

Code 4.72: VDM++ model sliced at FS_DeleteFileDir — Proof Obligation 10

assert po10 {

all sys: System , full_path: Path {

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path]

=> full_path not in RelCalc/rng[sys.table.map].path

61

CHAPTER 4. INTEL® FLASH FILE SYSTEM CORE

=> FileStoreInvariantVDM[sys.fileStore]

}

}

Check_PO10: check po10 for 5

Code 4.73: Alloy model sliced at FS_DeleteFileDir — Proof Obligation 10

PO11 is similar to PO9, although occurs in the FS_DeleteFileDir_Main and the involved invariant

belongs to the System data type.

Integrity property #1 :

In function FileSystemLayerOperations FS_DeleteFileDir_Main , file:

FileSystemLayerOperations.vpp l. 25 c. 35: function application from

FS_DeleteFileDir_System

(forall sys : System , full_path : Path &

full_path in set dom (sys.fileStore) and

pre_FS_DeleteFileDir_System(sys , full_path) =>

FileSystemLayerOperations `pre_FS_DeleteFileDir_System(sys , full_path))

Code 4.74: VDM++ model sliced at FS_DeleteFileDir — Proof Obligation 11

assert po11 {

all sys: System , full_path: Path {

full_path in RelCalc/dom[sys.fileStore.map] and

pre_FS_DeleteFileDir_System[sys , full_path]

=> pre_FS_DeleteFileDir_System[sys , full_path]

}

}

Check_PO11: check po11 for 5

Code 4.75: Alloy model sliced at FS_DeleteFileDir — Proof Obligation 11

4.1.7 VDM++ Adapted for the VdmHolTranslator Tool

The VdmHolTranslator supports only a subset of the VDM++ language syntax, so it is necessary

to keep the models within the supported syntax. The current VDM++ specification uses several

syntactic constructions that need to be rewritten before the translation. The syntactic limitations of

the VdmHolTranslator and the respective adaptations made to the original VDM++ model will be

described next.

Data type seq1 is not supported, although is used in the Path and FileName data types. The data

type declarations that use seq1 can be rewritten using the seq data type, and an invariant

enforcing the sequence not to be empty.

Path = <Root > | seq of FileName

inv path ==

path <> <Root > => path <> [];

Code 4.76: VDM++ model adapted to HOL translation, sliced at FS_DeleteFileDir — Path data type

62

4.1. FS_DELETEFILEDIR

FileName = seq of char

inv fname ==

fname <> [];

Code 4.77: VDM++ model adapted to HOL translation, sliced at FS_DeleteFileDir — FileName data type

Sequence comprehension is not supported and this is the way the dirName function is specified.

The definition of dirName can be rewritten using recursion.

dirName : Path -> Path

dirName(full_path) ==

if full_path = <Root > or len full_path = 1

then <Root >

else let S : seq of FileName = full_path in blast(S);

Code 4.78: VDM++ model adapted to HOL translation, sliced at FS_DeleteFileDir — dirName function

This definition of dirName could be better written using a cases expression, although in that

case the translator would have to support patter matching of enumerated type values, which

it does not.

blast : seq of FileName -> seq of FileName

blast(S) == reverseOrder(tl reverseOrder(S))

pre S <> [];

Code 4.79: VDM++ model adapted to HOL translation, sliced at FS_DeleteFileDir — blast function

reverseOrder : seq of FileName -> seq of FileName

reverseOrder(S) ==

if S = []

then []

else let h = hd S, t = tl S in

reverseOrder(t) ^ [h];

Code 4.80: VDM++ model adapted to HOL translation, sliced at FS_DeleteFileDir — reverseOrder function

Conditional elseif clause is used in the FS_DeleteFileDir_Exception function. It is equivalent

to have an if ... then ... else clause nested in the else branch of another similar

conditional expression.

FS_DeleteFileDir_Exception: System * Path -> FFS_Status

FS_DeleteFileDir_Exception(sys , full_path) ==

if not isElemFileStore(full_path , sys.fileStore)

then <FS_ErrorFileNotFound >

else if isElemTablePath(full_path , sys.table)

then <FS_ErrorFileStillOpen >

else if isDirectory(sys.fileStore(full_path).info) and

hasSubFiles(sys.fileStore , full_path)

then <FS_ErrorDirectoryNonEmpty >

else <FFS_StatusUnknown >;

Code 4.81: VDM++ model adapted to HOL translation, sliced at FS_DeleteFileDir —

FS_DeleteFileDir_Exception function

63

CHAPTER 4. INTEL® FLASH FILE SYSTEM CORE

Function is_ is used in three POs, to check for subtype constraints. A semantically equivalent

construction could be done using the type’s invariant predicate, whenever it exists. Whenever

the is_ function is used for a type that has no invariant, the PO will be discarded.

4.1.8 Correcting the Translated HOL4 Model

The output of the VdmHolTranslator is a HOL model with some errors. Some of those errors are

explained in the Open Issues section of the tool’s web site [91], which also provides solutions.

However, there are still errors for which solutions will be presented here.

Data type Path. HOL interpreter throws an exception because it does not recognize the type ((char

list) list). A type constructor can be used to make it accept the type. This alteration will

have to be enforced throughout the model whenever a Path us used.

Hol_datatype `Path = RootQuoteLiteral | ((char list) list) `;

Define `inv_Path (inv_Path_subj: RootQuoteLiteral | ((char list) list)) =

(let path = inv_Path_subj in

(((\x y . ~ (x = y)) path RootQuoteLiteral)

==> ((\x y . ~ (x = y)) path []))) `;

Code 4.82: Translated HOL model — data type Path

Hol_datatype `Path = RootQuoteLiteral | AList of ((char list) list) `;

Define `inv_Path (inv_Path_subj: Path) =

(let path = inv_Path_subj in

(\x y. ~(x = y)) path RootQuoteLiteral

==> (\x y. ~(x = y)) path (AList [])) `;

Code 4.83: Corrected HOL model — data type Path

Function reverseOrder. HOL interpreter throws an exception because it can not prove totality

of the recursive function reverseOrder. Redefining the function in two separate branches,

termination and recursive, is a possible workaround.

Define `reverseOrder (reverseOrder_parameter_1 :((char list) list)) =

(let S = reverseOrder_parameter_1 in

(if (S = [])

then []

else (let h = (HD S) and t = (TL S) in ((reverseOrder t) ++ [h])))) `;

Code 4.84: Translated HOL model — function reverseOrder

Define `(reverseOrder [] = []) /\

!h t. reverseOrder (h::t) = reverseOrder t ++ [h]`;

Code 4.85: Corrected HOL model — function reverseOrder

Function dirName. There are multiple problems in the translated definition of dirName. The in-

terpreter detects right away the type error in the application of LENGTH to a value of type

Path, and there is also the issue of the new type constructor included in the Path data type

definition.

64

4.1. FS_DELETEFILEDIR

Define `dirName (dirName_parameter_1:Path) =

(let full_path = dirName_parameter_1 in

(if ((full_path = RootQuoteLiteral) \/ ((LENGTH full_path) = 1))

then RootQuoteLiteral

else (let S = full_path in (blast S)))) `;

Code 4.86: Translated HOL model — function reverseOrder

Define `dirName (path:Path) =

case path of

RootQuoteLiteral -> RootQuoteLiteral

|| AList fileNames -> (if (TL fileNames) = []

then RootQuoteLiteral

else AList (blast fileNames))`;

Code 4.87: Corrected HOL model — function reverseOrder

A sequence having size one is semantically equivalent to the tail of the same sequence being

the empty sequence, although it seems better for the proof not to use the LENGTH opera-

tor. This is based on the fact that during some experiences with HOL it did not assume the

equivalence between the two predicates.

Function inv_FileStore. This is one of the errors that is covered in the Open Issues of the trans-

lator’s web site. It is related with the translation of mappings application, which in HOL requires

the operator FAPPLY, or its infix equivalent (').

Define `inv_FileStore (inv_FileStore_subj :((Path , File) fmap)) =

(let fileStore = inv_FileStore_subj in

(! uni_1_var_1 .((((uni_1_var_1 IN (FDOM fileStore)) /\ (? path.(path =

uni_1_var_1))) /\ T) ==> (let path = uni_1_var_1 in

(let parent = (dirName path) in

((parent IN (FDOM fileStore)) /\ (isDirectory (fileStore parent).info)))

))))`;

Code 4.88: Translated HOL model — function inv_FileStore

Define `inv_FileStore (inv_FileStore_subj :((Path , File) fmap)) =

(let fileStore = inv_FileStore_subj in

!uni_1_var_1.

(uni_1_var_1 IN FDOM fileStore /\ ?path. path = uni_1_var_1) /\ T

==> (let path = uni_1_var_1 in

let parent = dirName path in

parent IN FDOM fileStore /\ isDirectory (fileStore ' parent).info))`;

Code 4.89: Corrected HOL model — function inv_FileStore

Function FS_DeleteFileDir_Exception. Just such as in the previous situation, a correct defini-

tion can be obtained using the FAPPLY operator.

Define `FS_DeleteFileDir_Exception (FS_DeleteFileDir_Exception_parameter_1:System)

(FS_DeleteFileDir_Exception_parameter_2:Path) =

(let sys = FS_DeleteFileDir_Exception_parameter_1 and

65

CHAPTER 4. INTEL® FLASH FILE SYSTEM CORE

full_path = FS_DeleteFileDir_Exception_parameter_2 in

(if (~ (isElemFileStore full_path sys.fileStore))

then FS_ErrorFileNotFoundQuoteLiteral

else (if (isElemTablePath full_path sys.table)

then FS_ErrorFileStillOpenQuoteLiteral

else (if ((isDirectory (sys.fileStore full_path).info) /\

(hasSubFiles sys.fileStore full_path))

then FS_ErrorDirectoryNonEmptyQuoteLiteral

else FFS_StatusUnknownQuoteLiteral))))`;

Code 4.90: Translated HOL model — function FS_DeleteFileDir_Exception

Define `FS_DeleteFileDir_Exception (FS_DeleteFileDir_Exception_parameter_1:System)

(FS_DeleteFileDir_Exception_parameter_2:Path)

=

(let sys = FS_DeleteFileDir_Exception_parameter_1 and full_path =

FS_DeleteFileDir_Exception_parameter_2 in

(if ~(isElemFileStore full_path sys.fileStore)

then FS_ErrorFileNotFoundQuoteLiteral

else (if isElemTablePath full_path sys.table

then FS_ErrorFileStillOpenQuoteLiteral

else (if (isDirectory (sys.fileStore ' full_path).info) /\

(hasSubFiles sys.fileStore full_path)

then FS_ErrorDirectoryNonEmptyQuoteLiteral

else FFS_StatusUnknownQuoteLiteral))))`;

Code 4.91: Corrected HOL model — function FS_DeleteFileDir_Exception

4.1.9 Discharging VDM Proof Obligations with HOL4

With a correct HOL model is possible to execute the proof commands generated by the VdmHolTrans-

lator. Due to the adaptations made on the VDM++ model, the POs that got translated to HOL proof

commands, are not exactly the same as the POs presented earlier, in Section 4.1.4. The adapted

VDM++ model yields even more POs, mainly because of the redefinition of dirName, introducing two

new functions. The equivalence between the initial POs and the POs that can now be discharged in

HOL, is assured by the equivalence of the two VDM++ models. However, no proof of equivalence

between models have been made, the assumption relies on the knowledge of the semantics of both

VDM++ and Alloy, and the conviction that they are in fact equivalent. There are some other POs of

the initial VDM++ model that have no meaning in the adapted model. This is the case of PO1, PO2

and PO3, that are for subtype checking related with the use of seq1 data type, that is no longer

used in the adapted model.

Proof Obligation 4: mapped to a PO in the adapted model, and discharged with HOL.

Proof Obligation 5: mapped to a PO in the adapted model, and discharged with HOL.

Proof Obligation 6: mapped to a PO in the adapted model, and discharged with HOL.

Proof Obligation 7: there is no match for PO7 in the adapted model, although PO7 is equivalent

to PO4, since in the latter the body of the FS_DeleteFileDir_FileStore function is used,

and in the first the body is replaced by the function call.

66

4.2. FS_OPENFILEDIR

Proof Obligation 8: is almost equal to PO7, differing only in the class that is analyzed by the in-

tegrity checked. This is the result of specifying the base data types in the FileSystemLayerBase

class, and the behavior in the FileSystemLayerOperations class.

Proof Obligation 9: mapped to a PO in the adapted model, and discharged with HOL.

Proof Obligation 10: is not generated in the adapted model, although is quite trivial to discharge

given that it consists of an implication where the consequent is included in the hypothesis.

Proof Obligation 11: mapped to a PO in the adapted model, and discharged with HOL.

All original POs are considered discharged, and the corresponding VDM++ model verified to be

correct.

4.2 FS_OpenFileDir

This operation creates a file or directory, or opens existing files. It is specified in page 39 of the

IFFSCRG document. Figure 4.2 reveals that it is much more complex than the previous operation,

note that it requires an entire page just for the signature and parameters description.

4.2.1 Requirements Analysis

Some of the operation’s parameters will be part of the specifications and other will be abstracted

either because they deal with features that are not part of the specification, or because their values

can be calculated from the specification. The parameters share_mode, ram_buffer_mode, and

trans_flag will be abstracted because concurrency, RAM buffers and transactions, respectively,

are not part of the specification. As for the static_info_type it will also be abstracted because

the file types can be obtained by inspection of the respective files.

The operation will create and/or open files, or create a directory depending on the open mode.

Its result will be the status and possibly a handler to reference a file.

R1 THE OPERATION CREATES FILES AND DIRECTORIES.

R2 THE OPERATION OPENS FILES.

R3 WHENEVER A FILE IS OPENED THE OPERATION SHALL RETURN AN

HANDLE TO THAT FILE.

R4 THE RETURNED HANDLERS SHALL REFERENCE AN OPEN FILE.

The open mode will specify the kind of action to be taken, and the kind of access that will be granted

to the returned file handle.

R5 THERE SHOULD BE A WAY TO SPECIFY THE OPEN MODE.

R6 THERE SHOULD BE A WAY TO RESTRICT THE ACCESS ON OPEN FILES.

67

CHAPTER 4. INTEL® FLASH FILE SYSTEM CORE

Intel® Flash File System Core Reference Guide 39

File System API Reference

4.14 FS_OpenFileDir

Creates a directory, or creates and opens a file, or opens existing file

Syntax

FFS_Status FS_OpenFileDir (
mOS_char *full_path,
FS_FileHandlePtr file_handle_ptr,
UINT32 attributes,
FS_OpenMode open_mode,
FS_ShareMode share_mode,
FS_RamBufferMode ram_buffer_mode,
UINT8 trans_flag,
UINT8 static_info_type);

Parameters

Parameter Description

*full_path (IN) The fullpath of the filename for the file or directory. This function fails with an
error if this input is NULL.

file_handle_ptr (OUT) Pointer to an open file handle (FS_FileHandle) that is owned by the
calling function. Upon exit from this function, the variable pointed to by this input
is assigned a unique file handle. This handle is used in subsequent calls to File
System functions to reference the file that was opened or created. This function
returns with an error if this input is NULL. (See Section 15.2.7,
“FS_OpenFileInfo” on page 258.)

attributes (IN) File or directory attributes to be set. No effort is made to interpret these.

open_mode (IN) Specifies whether the file is to be opened or created, and what kind of
access will be granted by the resulting file handle. This input must be one of the
following FS_OpenMode constants (See Section 15.2.8, “FS_FindMode
#Defines” on page 261):

• FS_CreateNew: Attempts to create a new file with the given name in the
specified path. Returns with an error if the file already exists. If successful,
the file is opened for read/write access.

• FS_CreateAlways: Creates the file with the given name in the specified
path. If a file with the same name already exists, it is deleted and replaced
by the new file. If successful, the file is opened for read/write access.

• FS_OpenRead: Attempts to open an existing file for read-only access.
Returns with an error if the file does not exist. Any attempts to write to a file
opened in this mode will fail with an error.

• FS_OpenWrite: Attempts to open an existing file for read/write access.
Returns with an error if the file does not exist.

• FS_OpenAlways: Attempts to open an existing file for read/write access. If
the file does not exist, it is created.

share_mode (IN) File sharing mode, FS_ShareMode. This parameter is ignored when the
static_info_type is for a directory.
The share_mode parameter of type FS_ShareMode defines all allowable modes
in which a file can be shared when using the FS_OpenFileDir function. See
Section 15.2.15, “FS_ShareMode #Defines” on page 263.

Figure 4.2: FS_OpenFileDir operation (Permission to reproduce this excerpt is kindly granted by Intel Corpora-

tion).

68

4.2. FS_OPENFILEDIR

R7 THERE SHOULD BE A WAY TO MAP OPEN MODES TO ACCESS MODES.

Detail information about each open mode is given at the omode parameter description, and will be

denoted in the next requirements:

FS_CreateNew has the requirements:

R8 ATTEMPTS TO CREATE A FILE POINTED BY full_path.

R9 RETURNS AN ERROR IF THE FILE ALREADY EXISTS.

R10 WHEN SUCCESSFUL THE FILE IS OPENED WITH READ AND WRITE AC-

CESS GRANTED.

FS_CreateAlways has the requirements:

R11 ATTEMPTS TO CREATE A FILE POINTED BY full_path, IF A FILE AL-

READY EXISTS IT IS DELETED FIRST.

R12 IF SUCCESSFUL THE FILE IS OPENED WITH READ AND WRITE ACCESS

GRANTED.

FS_OpenRead has the requirements:

R13 ATTEMPTS TO OPEN AN EXISTING FILE POINTED BY full_path.

R14 RETURNS AN ERROR IF THE FILE DOES NOT EXIST.

R15 IF SUCCESSFUL THE FILE IS OPENED WITH READ ONLY ACCESS

GRANTED.

FS_OpenWrite has the requirements:

R16 ATTEMPTS TO OPEN AN EXISTING FILE POINTED BY full_path.

R17 RETURNS AN ERROR IF THE FILE DOES NOT EXIST.

R18 IF SUCCESSFUL THE FILE IS OPENED WITH READ AND WRITE ACCESS

GRANTED.

FS_OpenAlways has the requirements:

R19 ATTEMPTS TO CREATE A FILE POINTED BY full_path, IF A FILE AL-

READY EXISTS IT IS DELETED FIRST.

R20 IF SUCCESSFUL THE FILE IS OPENED WITH READ AND WRITE ACCESS

GRANTED.

There is another possible value for the open mode parameter that is not covered in the parameter

description, which is FS_CreateAlwaysReadOnly. The behavior for this possible value is extrapo-

lated from its designation.

AR1 ATTEMPTS TO CREATE A FILE POINTED BY full_path, IF A FILE AL-

READY EXISTS IT IS DELETED FIRST.

69

CHAPTER 4. INTEL® FLASH FILE SYSTEM CORE

AR2 IF SUCCESSFUL THE FILE IS OPENED WITH READ ACCESS GRANTED.

From the omode parameter analysis there is one other requirement regarding access violations.

R21 IF THE GRANTED ACCESS IS READ ONLY, SUBSEQUENT ATTEMPTS TO

WRITE TO THE FILE WILL FAIL WITH AN ERROR.

When opening a file a new structure FS_OpenFileInfo is created, and the fileOffset fields as

to be set according to the kind of access that is being made on the file. It is said in the operation

description that a new file should have an offset of zero.

R22 FOR READ ACCESS THE FILE OFFSET SHALL BE SET TO THE BEGIN-

NING OF THE FILE.

R23 FOR WRITE ACCESS THE FILE OFFSET SHALL BE SET TO THE END OF

THE FILE.

R24 FOR NEWLY CREATED FILES THE OFFSET SHALL BE ZERO.

There are more additional requirements regarding the open modes. As mentioned before, the

operation shall open files although not directories, there are open modes specific for both creating

and opening, so what should happen when the operation is called on a directory with a opening

mode specified? To answer the question it is necessary to impose more requirements regarding the

issue.

AR3 CALLS ON DIRECTORIES WITH OPEN SPECIFIC MODES SHALL RESULT

IN AN ERROR.

4.2.2 VDM++ Model

The requirements analysis found twenty seven requirements for the FS_OpenFileDir operation,

form which six are only related with data structures: R5, R6, R21, R22, R23, and R24; nineteen

are only related with the behavior of the operation: R1, R2, R3, R8, R9, R10, R11, R12, R13, R14,

R15, R16, R17, R18, R19, R20, AR1, AR2, and AR3; twoR4 and R7 that are related to both data

structures and behavior of the operation.

Starting with the data structures requirements, R5 and R6 are covered with the introduction of

two new structures specified in the IFFSCRG document, namely FS_OpenMode (page 261 section

15.2.9 FS_OpenMode #Defines) and FS_AccessMode (page 262 Section 15.2.10 FS_AccessMode

#Defines).

FS_OpenMode =

<FS_CreateNew >

| <FS_CreateAlways >

| <FS_OpenRead >

| <FS_OpenWrite >

| <FS_OpenAlways >

| <FS_OpenWriteOnly >

| <FS_CreateAlwaysReadOnly >

| <FS_CreateNewReadOnly >;

70

4.2. FS_OPENFILEDIR

Code 4.92: VDM++ model sliced at FS_OpenFileDir — FS_OpenMode data type

FS_AccessMode =

<FS_AccessReadOnly >

| <FS_AccessWriteOnly >

| <FS_AccessReadWrite >;

Code 4.93: VDM++ model sliced at FS_OpenFileDir — FS_AccessMode data type

Requirement R7 states the need to map the supplied open modes to the respective access mode.

This could be accomplished through a function, although the mapping data type suits the purpose

better.

fs_open2access_mode_map: map FS_OpenMode to FS_AccessMode =

{

<FS_CreateNew > |-> <FS_AccessReadWrite >,

<FS_CreateAlways > |-> <FS_AccessReadWrite >,

<FS_OpenRead > |-> <FS_AccessReadOnly >,

<FS_OpenWrite > |-> <FS_AccessReadWrite >,

<FS_OpenAlways > |-> <FS_AccessReadWrite >,

<FS_OpenWriteOnly > |-> <FS_AccessWriteOnly >,

<FS_CreateAlwaysReadOnly > |-> <FS_AccessReadOnly >,

<FS_CreateNewReadOnly > |-> <FS_AccessReadOnly >

};

Code 4.94: VDM++ model sliced at FS_OpenFileDir — fs_open2access_mode_map mapping

The mapping is constructed by inspecting the requirements regarding the open mode parameter,

and extrapolating the values which are not specified. As for requirements R22, R23, and R24 they

are met by introducing a new data type FileContents,

FileContents = seq of token;

Code 4.95: VDM++ model sliced at FS_OpenFileDir — FileContents data type

and new fields in existing record data types. It is necessary to introduce data contents in files

to calculate the appropriate offset when opening a file. The fact that files now have contents

introduces the need for an invariant stating that regular files have contents, and directories do not.

This does not follow form POSIX nor from the IFFSCRG documentation, it is a conceptual constraint

derived from the mapping between paths and files. If the file store was represented through a tree

shape structure, then contents of directories would be their sub-files’ names.

File ::

info : FS_FileDirInfo

contents : [FileContents]

inv file ==

(isDirectory(file.info) and file.contents = nil) or

(isRegularFile(file.info) and file.contents <> nil);

Code 4.96: VDM++ model sliced at FS_OpenFileDir — File data type

There is also the need to store more information on open files, and to do that the fields fileOffset

and accessMode are introduced in the FS_OpenFileInfo record. It is considered that keeping track

71

CHAPTER 4. INTEL® FLASH FILE SYSTEM CORE

of the file offset is needed just for open files, hence not including this field in the FS_FileDirInfo

record. However this can be done if it becomes necessary.

FS_OpenFileInfo ::

fileOffset : nat1

accessMode : FS_AccessMode

path : Path;

Code 4.97: VDM++ model sliced at FS_OpenFileDir — FS_OpenFileInfo data type

The one requirement that will not be completely expressed in the specification at this point is R21,

and this is because it needs to be enforced in the write related operations. Even though the re-

quirement can be accomplished through data structures, things can only be prepared for future

operations to have a way to query the system about granted access to files. This query is done by

inspecting the respective FS_OpenFileInfo accessMode field.

As for requirement R4 it is already covered by the previous System definition, which has an invariant

assuring referential integrity over fileStore and table. However to assure requirement R2, that

states that only files can be opened, and extra clause is added.

System :: table : OpenFilesTable

fileStore : FileStore

inv sys ==

forall ofi in set rng sys.table &

isElemFileStore(ofi.path , sys.fileStore) and

isRegularFile(sys.fileStore(ofi.path).info);

Code 4.98: VDM++ model sliced at FS_OpenFileDir — System data type

The operation will span over the main three data types System, FileStore and OpenFilesTable,

so it will have three functions regarding the respective data types manipulation, a top level _Main

total function and the error handling _Exception function. The main function will have to check if the

necessary conditions to call the _System function hold, and the possible error conditions regarding

the open mode parameter. This covers requirements R9, R14, R17 and AR3.

checkOpenMode: System * Path * FS_OpenMode -> bool

checkOpenMode(sys , path , omode) ==

not (isCreateNew(omode) and isElemFileStore(path , sys.fileStore)) and

not (isCreateAlways(omode) and isElemTablePath(path , sys.table)) and

not (isOpen(omode) and not isElemFileStore(path , sys.fileStore)) and

not ((isOpen(omode) or omode = <FS_OpenAlways >) and

isElemFileStore(path , sys.fileStore) and

not isRegularFile(sys.fileStore(path).info));

Code 4.99: VDM++ model sliced at FS_OpenFileDir — checkOpenMode function

If the pre-condition of the FS_DeletefileDir_System and the conditions on open mode parameter

hold, then the _Main function will have to check if it is necessary to remove the file prior to its creation

according requirements R11 and AR1, and consequently call the FS_DeleteFileDir operation to

remove the specified file.

mustDeleteFirst: FileStore * Path * FS_OpenMode -> bool

mustDeleteFirst(fs, path , omode) ==

isCreateAlways(omode) and isElemFileStore(path , fs);

72

4.2. FS_OPENFILEDIR

Code 4.100: VDM++ model sliced at FS_OpenFileDir — mustDeleteFirst function

There is a detail in the delete condition, that is related with the root directory. The problem is that

whenever the operation is invoked with the set of parameters that will lead to the deletion of the root

directory and its consequent creation, it is necessary to enforce that the attributes used to create

the root directory specify it to be a directory. This is the result of model checking in Alloy, which

provided a counter example where the FileStore invariant was violated by the open operation.

Even though the pre-condition of the FS_OpenFileDir_FileStore already enforces the necessary

requirements to create the root directory, it does not protect against the case when it is deleted and

recreated, because in this scenario when the pre-condition is tested the root directory exists in the

fileStore, hence the pre-condition will hold.

FS_OpenFileDir_Main: System * Path * Attributes * FS_OpenMode

-> System * [FS_FileHandle] * FFS_Status

FS_OpenFileDir_Main(sys , full_path , attributes , omode) ==

if pre_FS_OpenFileDir_System(sys , full_path , attributes , omode) and

checkOpenMode(sys , full_path , omode)

then if mustDeleteFirst(sys.fileStore , full_path , omode) and

(full_path = <Root > => attributes.fileType = <Directory >)

then let mk_(sys ',status) = FS_DeleteFileDir_Main(sys , full_path) in

if status <> <FFS_StatusSuccess >

then mk_(sys ', nil , status)

else let result = FS_OpenFileDir_System(sys ', full_path , attributes , omode)

in

mk_(result .#1, result .#2, <FFS_StatusSuccess >)

else let mk_(sys '',handle) = FS_OpenFileDir_System(sys , full_path , attributes ,

omode) in

mk_(sys '', handle , <FFS_StatusSuccess >)

else mk_(sys , nil , FS_OpenFileDir_Exception(sys , full_path , omode));

Code 4.101: VDM++ model sliced at FS_OpenFileDir — FS_OpenFileDir_Main function

The flow inside the _Main function continues to the call of the next function in the cascade, that might

be the _Exception function if an error is to be returned, or the _System function if the operation is

to be carried out.

FS_OpenFileDir_System: System * Path * Attributes * FS_OpenMode

-> System * [FS_FileHandle]

FS_OpenFileDir_System(sys , full_path , attr , omode) ==

let fileStore ' = FS_OpenFileDir_FileStore(sys.fileStore , full_path , attr),

mk_(table ,handle) = FS_OpenFileDir_Table(sys.table , full_path , omode , attr.

fileType),

offset = getOpenOffset(fileStore '(full_path), omode),

table ' = table ++ if handle <> nil and isElemTableHandle(handle ,

table)

then {handle |-> mu(table(handle), fileOffset |->

offset)}

else {|->} in

mk_(mk_System(table ', fileStore '), handle)

pre pre_FS_OpenFileDir_FileStore(sys.fileStore , full_path , attr);

Code 4.102: VDM++ model sliced at FS_OpenFileDir — FS_OpenFileDir_System function

73

CHAPTER 4. INTEL® FLASH FILE SYSTEM CORE

The FS_OpenFileDir_System function has a pre-condition enforcing the necessary conditions to

call the subsequent functions _FileStore and _Table, that will modify the fileStore and table

attributes respectively. However, due to requirements R22 and R23 it is necessary to update the

FS_OpenFileInfo value that the _Table function might create. This is done at the System level so

that file storage and open files keep logically separated. Still regarding file offset, the document

states that new files should have an offset set to zero, and this is interpreted as having the file offset

pointing to the element that will be written next, because it is an empty file. The zero value is often

the first index of an array, although in VDM (both SL and ++) the first index of a sequence is one, so

the requirement R24 is accomplished using the value one instead of zero.

getOpenOffset: File * FS_OpenMode -> [nat1]

getOpenOffset(file , omode) ==

if file.contents <> nil

then cases omode:

<FS_OpenWrite > -> (len file.contents) + 1,

<FS_OpenAlways > -> (len file.contents) + 1,

others -> 1

end

else nil;

Code 4.103: VDM++ model sliced at FS_OpenFileDir — getOpenOffset function

The _FileStore function will just have to create new files, covering requirements R1, R8, R11, R13,

R16, R19, and AR1. The pre-condition allows two types of invocations: create the root directory

with the correct attributes, or create any kind of file and directory which has a valid parent directory.

FS_OpenFileDir_FileStore: FileStore * Path * Attributes -> FileStore

FS_OpenFileDir_FileStore(fileStore , full_path , attributes) ==

if not isElemFileStore(full_path , fileStore)

then let content = emptyFileContents(attributes.fileType),

newFile = mk_File(newFileDirInfo(attributes), content) in

fileStore munion { full_path |-> newFile }

else fileStore

pre (full_path = <Root > and attributes.fileType = <Directory >) or

(let parent = dirName(full_path) in

isElemFileStore(parent ,fileStore) and isDirectory(fileStore(parent).info));

Code 4.104: VDM++ model sliced at FS_OpenFileDir — FS_OpenFileDir_FileStore function

Opening files is something that occurs at the OpenFilesTable level, and the respective function

covers the requirements R2, R3 and R4.

FS_OpenFileDir_Table: OpenFilesTable * Path * FS_OpenMode * FileType -> OpenFilesTable *

[FS_FileHandle]

FS_OpenFileDir_Table(table , full_path , omode , fileType) ==

if fileType = <Directory >

then mk_(table , nil)

else let amode = fs_open2access_mode_map(omode),

ofi = mk_FS_OpenFileInfo (1, amode , full_path),

handle = newFileHandle(dom table) in

mk_(table munion { handle |-> ofi }, handle);

Code 4.105: VDM++ model sliced at FS_OpenFileDir — FS_OpenFileDir_Table function

74

4.2. FS_OPENFILEDIR

The error handling function takes in account the remaining requirements that are captured in in the

FS_OpenFileDir_Excepetion.

FS_OpenFileDir_Exception: System * Path * FS_OpenMode -> FFS_Status

FS_OpenFileDir_Exception(sys , full_path , omode) ==

if isCreateNew(omode) and isElemFileStore(full_path , sys.fileStore)

then <FS_ErrorFileAlreadyExists >

elseif isCreateAlways(omode) and isElemTablePath(full_path , sys.table)

then <FS_ErrorFileStillOpen >

elseif isOpen(omode) and not isElemFileStore(full_path , sys.fileStore)

then <FS_ErrorFileNotFound >

elseif isOpen(omode) and isElemFileStore(full_path , sys.fileStore) and

not isRegularFile(sys.fileStore(full_path).info)

then <FFS_StatusInvalidParameter >

elseif full_path <> <Root > and not isElemFileStore(dirName(full_path), sys.fileStore)

then <FS_ErrorInvalidPath >

elseif full_path <> <Root > and not isDirectory(sys.fileStore(dirName(full_path)).info)

then <FS_ErrorInvalidPath >

else <FFS_StatusUnknown >;

Code 4.106: VDM++ model sliced at FS_OpenFileDir — FS_OpenFileDir_Exception function

FFS_Status =

<FFS_StatusSuccess >

| <FS_ErrorFileNotFound >

| <FS_ErrorFileStillOpen >

| <FS_ErrorDirectoryNonEmpty >

| <FS_ErrorFileAlreadyExists >

| <FS_ErrorInvalidPath >

| <FFS_StatusInvalidParameter >

| <FFS_StatusUnknown >;

Code 4.107: VDM++ model sliced at FS_OpenFileDir — FFS_Status data type

The objectified operation is specified as FS_OpenFileDir.

FS_OpenFileDir : Path * Attributes * FS_OpenMode

==> [FS_FileHandle] * FFS_Status

FS_OpenFileDir(full_path , attributes , omode) ==

def mk_(sys ',handle ,status)

= FS_OpenFileDir_Main(sys , full_path , attributes , omode) in

(sys := sys '; return mk_(handle , status));

Code 4.108: VDM++ model sliced at FS_OpenFileDir — FS_OpenFileDir operation

4.2.3 Unit Testing the VDM++ Model

Just such as it was done for the FS_DeleteFileDir operation, testing will be done at the dif-

ferent data types levels and at the outmost level. In the specification of FS_OpenFileDir the

OpenFilesTable data type also takes part of the operation, and shall be included in the test cases.

At the FileStore data type level one of two things can happen (1) the file pointed by path

does not exist and must be created, or (2) the file does exist and the file store must remain as

it was. This makes it useful to specify two different test methods CreateOpenTest for (1) and

DoNothingOpenTest for (2).

75

CHAPTER 4. INTEL® FLASH FILE SYSTEM CORE

CreateOpenTest: Path * Attributes ==> ()

CreateOpenTest(path ,attr) ==

let fs ' = FS_OpenFileDir_FileStore(fs ,path ,attr) in

(AssertTrue(path in set dom fs ');

AssertTrue(fs '(path).info.attributes = attr);

fs := fs ');

Code 4.109: Tests for VDM++ model sliced at FS_OpenFileDir — CreateOpenTest at FileStore level

For the case where files are created assertions are made to check if the respective file was in fact

created, with the supplied attributes.

DoNothingOpenTest: Path * Attributes ==> ()

DoNothingOpenTest(path ,attr) ==

let fs ' = FS_OpenFileDir_FileStore(fs ,path ,attr) in

(AssertTrue(fs = fs ');

fs := fs ');

Code 4.110: Tests for VDM++ model sliced at FS_OpenFileDir — DoNothingOpenTest at FileStore level

For the case where no action is performed the assertions must ensure exactly that. The overall test

case is as follows.

RunTest: () ==> ()

RunTest () ==

(CreateOpenTest(<Root >, vals.dirAttr);

CreateOpenTest ([" etc"], vals.dirAttr);

CreateOpenTest ([" bin"], vals.dirAttr);

CreateOpenTest ([" etc", "hosts"], vals.fileAttr);

CreateOpenTest ([" etc", "conf.d"], vals.fileAttr);

CreateOpenTest ([" etc", "resolv.conf"], vals.fileAttr);

CreateOpenTest ([" bin", "ls"], vals.fileAttr);

CreateOpenTest ([" bin", "wc"], vals.fileAttr);

DoNothingOpenTest(<Root >, vals.dirAttr);

DoNothingOpenTest (["etc"], vals.dirAttr);

DoNothingOpenTest (["bin"], vals.dirAttr);

DoNothingOpenTest (["etc", "hosts"], vals.fileAttr);

DoNothingOpenTest (["etc", "conf.d"], vals.fileAttr);

DoNothingOpenTest (["etc", "resolv.conf"], vals.fileAttr);

DoNothingOpenTest (["bin", "ls"], vals.fileAttr);

DoNothingOpenTest (["bin", "wc"], vals.fileAttr));

Code 4.111: Tests for VDM++ model sliced at FS_OpenFileDir — Test case at FileStore level

Testing the FS_OpenFileDir_Table function is done in one test method that asserts the dif-

ferent behavior of the function when dealing with files or directories. In the case of files the re-

turned handler must not be nil, there must be an FS_OpenFileInfo value which has the specified

full_path in the path field; the resulting table’s domain must be equal to the original table’s domain

unified with the singleton set containing the new handler; the cardinality of the resulting table should

be equal to the cardinality of the original table plus one, hence assuring a new handler was created;

the path to file referenced by the returned handler must be the same specified in the full_path

parameter of the function; and the access mode for the opened file should be according to the

mapping between open modes and access modes.

76

4.2. FS_OPENFILEDIR

Name #Calls Coverage

FileSystemLayerOperations‘FS-DeleteFileDir-Main 2
√

FileSystemLayerOperations‘FS-DeleteFileDir-System 1
√

FileSystemLayerOperations‘FS-DeleteFileDir-FileStore 1
√

FileSystemLayerOperations‘FS-DeleteFileDir-Exception 1 89%
FileSystemLayerOperations‘FS-OpenFileDir-Main 11

√

FileSystemLayerOperations‘FS-OpenFileDir-System 12
√

FileSystemLayerOperations‘FS-OpenFileDir-FileStore 28
√

FileSystemLayerOperations‘FS-OpenFileDir-Table 18
√

FileSystemLayerOperations‘FS-OpenFileDir-Exception 7 98%
FileSystemLayerOperations‘getOpenOffset 20

√

FileSystemLayerOperations‘mustDeleteFirst 4
√

FileSystemLayerOperations‘checkOpenMode 9
√

Total Coverage 99%

Table 4.8: Test coverage for functional specification of FS_OpenFileDir

Name #Calls Coverage

FileSystemLayerObj‘FS-OpenFileDir 8
√

Total Coverage 58%

Table 4.10: Test coverage for objectified specification of FS_OpenFileDir

SimpleOpenTest: Path * FS_OpenMode * FileType ==> ()

SimpleOpenTest(path ,omode , fileType) ==

let mk_(table ',handle) = FS_OpenFileDir_Table(table , path , omode , fileType) in

(if fileType = <RegularFile >

then (AssertTrue(handle <> nil);

AssertTrue(path in set { ofi.path | ofi in set rng table ' });

AssertTrue(dom table ' = dom table union {handle });

AssertTrue(card dom table ' = card dom table + 1);

AssertTrue(path = table '(handle).path);

AssertTrue(table '(handle).accessMode = fs_open2access_mode_map(omode));

)

else AssertTrue(handle = nil);

Code 4.112: Tests for VDM++ model sliced at FS_OpenFileDir — SimpleOpenTest at OpenFilesTable level

For directories the test method simply asserts that the resulting handler is nil. The test case is as

follows.

RunTest: () ==> ()

RunTest () ==

(dcl init : OpenFilesTable := table;

SimpleOpenTest ([" bin"], <FS_CreateNew >, <Directory >);

SimpleOpenTest ([" etc","hosts"], <FS_CreateNew >, <RegularFile >);

SimpleOpenTest ([" etc","conf.d"], <FS_CreateNew >, <Directory >);

SimpleOpenTest(<Root >, <FS_OpenRead >, <Directory >);

77

CHAPTER 4. INTEL® FLASH FILE SYSTEM CORE

SimpleOpenTest ([" etc"], <FS_OpenRead >, <Directory >);

SimpleOpenTest ([" bin","ls"], <FS_CreateNew >, <RegularFile >);

AssertTrue(card dom table = card dom init + 2));

Code 4.113: Tests for VDM++ model sliced at FS_OpenFileDir — Test case at Table level

At the System level the test method checks for the same properties as its equivalent in FileStore

and OpenFilesTable, in addition it checks if the fileOffest filed is assigned correctly by the

Fs_OpenFileDir_System function.

SimpleOpenTest: Path * Attributes * FS_OpenMode ==> ()

SimpleOpenTest(path , attr , omode) ==

let mk_(sys ', handle) = FS_OpenFileDir_System(sys , path , attr , omode) in

(AssertTrue(path in set dom sys '. fileStore);

AssertTrue(sys '. fileStore(path).info.attributes = attr);

if attr.fileType = <RegularFile >

then (AssertTrue(handle <> nil);

AssertTrue(path in set { ofi.path | ofi in set rng sys '.table });

AssertTrue(dom sys '. table = dom sys.table union {handle });

AssertTrue(card dom sys '.table = card dom sys.table + 1);

AssertTrue(path = sys '. table(handle).path);

AssertTrue(sys '.table(handle).accessMode = fs_open2access_mode_map(omode));

AssertTrue(path in set dom sys '. fileStore);

AssertTrue(sys '. fileStore(path).info.attributes = attr);

AssertTrue(sys '.table(handle).fileOffset = getOpenOffset(sys '. fileStore(path),

omode))

)

else AssertTrue(handle = nil);

h := handle;

sys := sys ');

Code 4.114: Tests for VDM++ model sliced at FS_OpenFileDir — SimpleOpenTest at System level

The overall test case is as follows.

RunTest: () ==> ()

RunTest () ==

(SimpleOpenTest(<Root >, vals.dirAttr , <FS_CreateAlways >);

SimpleOpenTest(<Root >, vals.dirAttr , <FS_OpenAlways >);

SimpleOpenTest ([" etc"], vals.dirAttr , <FS_CreateNew >);

SimpleOpenTest ([" bin"], vals.dirAttr , <FS_CreateAlways >);

SimpleOpenTest ([" etc","hosts"], vals.fileAttr , <FS_OpenWrite >);

SimpleOpenTest ([" etc","conf.d"], vals.fileAttr , <FS_OpenRead >);

SimpleOpenTest ([" bin","ls"], vals.fileAttr , <FS_OpenWriteOnly >);

SimpleOpenTest ([" bin","wc"], vals.fileAttr , <FS_OpenWrite >);

SimpleOpenTest ([" etc", "resolv.conf"], vals.fileAttr , <FS_OpenWrite >));

Code 4.115: Tests for VDM++ model sliced at FS_OpenFileDir — Test case at System level

Such as the test at the API level done for the FS_DeleteFileDir operation, for this operation

all possible returned status values are tested. However the result of this operation is not simply a

status value, it can also return a handle to a file. This makes it handy to write a test method that

based on the file type can check if the resulting handler is nil or not.

SimpleOpenTest(path , attr , omode) ==

let mk_(handle ,status) = FS_OpenFileDir(path , attr , omode) in

78

4.2. FS_OPENFILEDIR

(if (attr.fileType = <RegularFile > and status = <FFS_StatusSuccess >)

then (AssertTrue(handle <> nil);

AssertTrue(sys.table(handle).fileOffset = getOpenOffset(sys.fileStore(path),

omode))

)

else AssertTrue(handle = nil);

return status);

Code 4.116: Tests for VDM++ model sliced at FS_OpenFileDir — SimpleOpenTest at the API level

In the test case the return status values are checked according with the expected conditions.

RunTest: () ==> ()

RunTest () ==

(dcl status : FFS_Status;

status := SimpleOpenTest (["etc","hosts"], vals.fileAttr , <FS_OpenAlways >);

AssertTrue(status = <FFS_StatusSuccess >);

status := SimpleOpenTest(<Root >, vals.dirAttr , <FS_CreateAlways >);

AssertTrue(status = <FS_ErrorDirectoryNonEmpty >);

status := SimpleOpenTest (["bin","ls"], vals.fileAttr , <FS_CreateAlways >);

AssertTrue(status = <FFS_StatusSuccess >);

status := SimpleOpenTest (["bin","wc"], vals.fileAttr , <FS_OpenRead >);

AssertTrue(status = <FFS_StatusSuccess >);

status := SimpleOpenTest (["bin"], vals.dirAttr , <FS_OpenRead >);

AssertTrue(status = <FFS_StatusInvalidParameter >);

status := SimpleOpenTest (["bin"], vals.dirAttr , <FS_CreateNew >);

AssertTrue(status = <FS_ErrorFileAlreadyExists >);

status := SimpleOpenTest (["etc","resolv.conf"], vals.fileAttr , <FS_CreateAlways >);

AssertTrue(status = <FS_ErrorFileStillOpen >);

status := SimpleOpenTest (["usr"], vals.dirAttr , <FS_OpenRead >);

AssertTrue(status = <FS_ErrorFileNotFound >);

status := SimpleOpenTest (["usr"], vals.dirAttr , <FS_OpenWrite >);

AssertTrue(status = <FS_ErrorFileNotFound >);

status := SimpleOpenTest (["usr","share"], vals.dirAttr , <FS_CreateNew >);

AssertTrue(status = <FS_ErrorInvalidPath >);

status := SimpleOpenTest (["bin","ls","somefile"], vals.fileAttr , <FS_CreateNew >);

AssertTrue(status = <FS_ErrorInvalidPath >));

Code 4.117: Tests for VDM++ model sliced at FS_OpenFileDir — Test case at the API level

79

CHAPTER 4. INTEL® FLASH FILE SYSTEM CORE

4.2.4 Alloy Model

As the VDM++ specification grows in detail also must do its Alloy counter part, so that model check-

ing can be performed. The new enumerated types FS_OpenMode and FS_AccessMode get translated

to Alloy in the same way as FileType.

abstract sig FS_OpenMode {} -- new for open

one sig FS_CreateNew extends FS_OpenMode {}-- new for open

one sig FS_CreateAlways extends FS_OpenMode {}-- new for open

one sig FS_OpenRead extends FS_OpenMode {}-- new for open

one sig FS_OpenWrite extends FS_OpenMode {}-- new for open

one sig FS_OpenAlways extends FS_OpenMode {}-- new for open

one sig FS_OpenWriteOnly extends FS_OpenMode {}-- new for open

one sig FS_CreateAlwaysReadOnly extends FS_OpenMode {}-- new for open

one sig FS_CreateNewReadOnly extends FS_OpenMode {}-- new for open

Code 4.118: Alloy model sliced at FS_OpenFileDir — FS_OpenMode signature

abstract sig FS_AccessMode {} -- new for open

one sig FS_AccessReadOnly extends FS_AccessMode {} -- new for open

one sig FS_AccessWriteOnly extends FS_AccessMode {} -- new for open

one sig FS_AccessReadWrite extends FS_AccessMode {} -- new for open

Code 4.119: Alloy model sliced at FS_OpenFileDir — FS_AccessMode signature

The mapping between open and access modes gets translated to Alloy as a predicate with the

appropriate logic, so that only valid mode pairs match. This could also be translated by a simple

relation in Alloy, although the static nature of this mapping that is equivalent to its original version in

VDM++ allows for it to be specified as a predicate.

pred fs_open2access_mode_map[omode: FS_OpenMode , amode: FS_AccessMode] { -- new for open

(omode = FS_CreateNew and amode = FS_AccessReadWrite) or

(omode = FS_CreateAlways and amode = FS_AccessReadWrite) or

(omode = FS_OpenRead and amode = FS_AccessReadOnly) or

(omode = FS_OpenWrite and amode = FS_AccessReadWrite) or

(omode = FS_OpenAlways and amode = FS_AccessReadWrite) or

(omode = FS_OpenWriteOnly and amode = FS_AccessWriteOnly) or

(omode = FS_CreateAlwaysReadOnly and amode = FS_AccessReadOnly) or

(omode = FS_CreateNewReadOnly and amode = FS_AccessReadOnly)

}

Code 4.120: Alloy model sliced at FS_OpenFileDir — fs_open2access_mode_map predicate

Files now have contents and in VDM++ these are modeled as a sequence of token values. The

translation of FileContents to Alloy could be done using sequences although, as in the case

of Path, the option was to abstract the sequence and establish a relation between elements. The

actual FileContents signature is declared as abstract, so that no objects of tat type can be created.

abstract sig FileContents extends OptionalFileContents {} -- new for open

Code 4.121: Alloy model sliced at FS_OpenFileDir — FileContents signature

Two other signatures Chunk, representing some content, and Nothing, representing no content,

are declared to extend FileContents. Chunks of content are related to other FileContent el-

80

4.2. FS_OPENFILEDIR

ements through the relation nextChunk, which is constrained to be a function and acyclic by the

FileContensInvariantVDM predicate.

one sig Nothing extends FileContents {} -- new for open

Code 4.122: Alloy model sliced at FS_OpenFileDir — Nothing signature

sig Chunk extends FileContents { -- new for open

nextChunk: FileContents

} -- some contents

Code 4.123: Alloy model sliced at FS_OpenFileDir — Chunk signature

pred FileContentsInvariantVDM[cont: FileContents] { -- new for open

RelCalc/Function[nextChunk ,Chunk ,FileContents] and

RelCalc/Acyclic[(RelCalc/id[Chunk]).nextChunk ,Chunk]

}

Code 4.124: Alloy model sliced at FS_OpenFileDir — FileContentsInvariantVDM predicate

The translation of FileContens is very similar to the translation of Path, although with a slight

difference on the fact that the termination element of the nextChunk relation does not belong to the

relation’s domain. The signature File also need to be updated to include the respective contents,

and a new invariant. In the VDM++ model file contents are optional and this is declared using the

parametric optional type instantiated with the type FileContents.

sig File {

info : FS_FileDirInfo ,

contents : OptionalFileContents -- new for open

}

Code 4.125: Alloy model sliced at FS_OpenFileDir — File signature

pred FileInvariantVDM[f: File]{

FS_FileDirInfoInvariantVDM[f.info]

OptionalFileContentsInvariantVDM[f.contents] and -- new for open

all file: f {

file.contents not in NilFileContents

=> let fileContents = file.contents.(^nextChunk) |

no (fileContents & (File.contents.(^nextChunk) - fileContents))

} -- new for open

FileInvariant[f] -- new for open

}

Code 4.126: Alloy model sliced at FS_OpenFileDir — FileInvariantVDM predicate

pred FileInvariant[f: File] { --- new for open

all file: f {

(file.info.attributes.fileType in Directory and

file.contents in NilFileContents)

or

(file.info.attributes.fileType in RegularFile and

file.contents in FileContents)

}

}

Code 4.127: Alloy model sliced at FS_OpenFileDir — FileInvariant predicate

81

CHAPTER 4. INTEL® FLASH FILE SYSTEM CORE

Mathematically the sequence and optional types are expressed through the isomorphisms (4.1)

and (4.2),

X ∗ ∼= 1 + X ×X ∗ (4.1)

and

[X] ∼= 1 + X (4.2)

respectively. The fact that both data types are defined as a disjoint co-product of singleton value type

1 and something else, makes the translation to Alloy similar in its structure. So the Alloy signature

OptionalFileContents is declared abstract, just such as FileContents, and extended by two

other signatures: the NilFileContents denoting the mathematical type 1 (just such as Nothing);

and FileContents.

abstract sig OptionalFileContents {} -- new for open

Code 4.128: Alloy model sliced at FS_OpenFileDir — OptionalFileContents signature

one sig NilFileContents extends OptionalFileContents {} -- new for open

Code 4.129: Alloy model sliced at FS_OpenFileDir — NilFileContents signature

pred OptionalFileContentsInvariantVDM[ofc: OptionalFileContents] { -- new for open

FileContentsInvariantVDM[(ofc & FileContents)]

}

Code 4.130: Alloy model sliced at FS_OpenFileDir — OptionalFileContentsInvariantVDM predicate

The OptionalFileContentsInvariantVDM predicate enforces the subtype FileContents invari-

ant. Another updated structure is FS_OpenFileInfo, that for this operation needs to keeps track of

more information, namely the offset with the file and the granted access to the file. Due to the ab-

straction of file contents as a relation, to deal with the file offset is necessary to make an adaptation,

instead of simply using a number.

sig FS_OpenFileInfo {

fileOffset: FileContents , -- new for open

accessMode: FS_AccessMode , -- new for open

path : Path

}

Code 4.131: Alloy model sliced at FS_OpenFileDir — FS_OpenFileInfo signature

Instead of an index in a sequence, the fileOffset field in FS_OpenFileInfo is the actual refer-

enced content. The invariant for this data type just enforces subtype’s invariants.

pred FS_OpenFileInfoInvariantVDM[ofi: FS_OpenFileInfo]{

FileContentsInvariantVDM[ofi.fileOffset] and -- new for open

PathInvariantVDM[ofi.path]

}

Code 4.132: Alloy model sliced at FS_OpenFileDir — FS_OpenFileInfoInvariantVDM predicate

82

4.2. FS_OPENFILEDIR

The mappings of the two components of the system, namely FileStore and OpenFilestable,

have to be declared injective. Until now, any two files pointed by the same path were interpreted

as two different files, although with the same value. The option was taken to reduce the amount of

objects that the solver would need to instantiate, although it was known that changes to one file’s

info could lead to side effects on other files. With the inclusion of file contents in the specification it

becomes harder to sustain such option, as file contents tent do change allot. The dynamic nature of

file contents makes the injectiveness of the file store mapping a question of consistency, because

changes made to some file’s content should not affect other files.

pred FileStoreInvariantVDM[fs: FileStore] {

RelCalc/Simple[fs.map , File] and

RelCalc/Injective[fs.map , Path] and -- new for open

PathInvariantVDM[RelCalc/dom[fs.map]] and

FileInvariantVDM[RelCalc/rng[fs.map]] and

FileStoreInvariant[fs]

}

Code 4.133: Alloy model sliced at FS_OpenFileDir — FS_FileStoreInvariantVDM predicate

The same happens with the OpneFilesTable signature, because FS_OpenFileInfo now can point

to some content of a file.

pred OpenFilesTableInvariantVDM[table: OpenFilesTable] {

RelCalc/Simple[table.map ,FS_OpenFileInfo] and

RelCalc/Injective[table.map , FS_FileHandle] and

FS_OpenFileInfoInvariantVDM[RelCalc/rng[table.map]]

}

Code 4.134: Alloy model sliced at FS_OpenFileDir — FS_OpenFilesTableInvariantVDM predicate

The system structure remained the same, although its invariant has an extra clause stating that

there can only be files referenced in the open files table.

pred OpenFilesTableInvariantVDM[table: OpenFilesTable] {

Code 4.135: Alloy model sliced at FS_OpenFileDir — SystemInvariant predicate

The boolean functions checkOpenMode and mustDeleteFirst are translated to predicates with

the same name, and logic respectively.

pred checkOpenMode[sys : System ,

path : Path ,

omode: FS_OpenMode] { -- new for open

not (isCreateNew[omode] and isElemFileStore[path ,sys.fileStore]) and

not (isCreateAlways[omode] and isElemTablePath[path ,sys.table]) and

not (isOpen[omode] and not isElemFileStore[path ,sys.fileStore])

}

Code 4.136: Alloy model sliced at FS_OpenFileDir — checkOpenMode predicate

pred mustDeleteFirst[fs: FileStore , path: Path , omode: FS_OpenMode] { -- new for open

isCreateAlways[omode] and isElemFileStore[path ,fs]

}

Code 4.137: Alloy model sliced at FS_OpenFileDir — mustDeleteFirst predicate

83

CHAPTER 4. INTEL® FLASH FILE SYSTEM CORE

The FS_OpenFileDir_Main function is translated to a predicate, using the same kind of conditional

logic as in FS_DeleteFileDir_Main.

pred FS_OpenFileDir_Main[sys ,sys ' : System ,

full_path : Path ,

attributes: Attributes ,

omode : FS_OpenMode ,

handle : OptionalFileHandle ,

status : FFS_Status] { -- new for open

(pre_FS_OpenFileDir_System[sys ,full_path ,attributes ,omode] and

checkOpenMode[sys ,full_path ,omode])

=> (mustDeleteFirst[sys.fileStore ,full_path ,omode] and

(full_path = Root => attributes.fileType = Directory))

=> (some dstatus: FFS_Status , dsys: System {

FS_DeleteFileDir_Main[sys ,dsys ,full_path ,dstatus] and

dstatus = FFS_StatusSuccess

=> (FS_OpenFileDir_System[dsys ,sys ',full_path ,attributes ,omode ,handle]

and

status = FFS_StatusSuccess)

else (sys ' = sys and

handle = NilFileHandle and

status = dstatus)

})

else (FS_OpenFileDir_System[sys ,sys ',full_path ,attributes ,omode ,handle] and

status = FFS_StatusSuccess)

else (sys ' = sys and

handle = NilFileHandle and

FS_OpenFileDir_Exception[sys ,full_path ,omode ,status])

}

Code 4.138: Alloy model sliced at FS_OpenFileDir — FS_OpenFileDir_Main predicate

However, the predicate introduces an existential quantifier to pipe the result of removing a file on

the original system in to the call to the FS_OpenFileDir_System, which opens and/or creates files.

The quantification is done using the some multiplicity factor, that allows for one or more elements of

a relation to match the given criteria. If the multiplicity factor used was one this would mean that the

relation would have one and only one possible element, thus constraining more than needed.

pred FS_OpenFileDir_System[sys ,sys ' : System ,

full_path: Path ,

attr : Attributes ,

omode : FS_OpenMode ,

handle : OptionalFileHandle] { -- new for open

FS_OpenFileDir_FileStore[sys.fileStore ,sys '.fileStore ,full_path ,attr] and

let fileType = full_path.(sys '. fileStore.map).info.attributes.fileType {

FS_OpenFileDir_Table[sys.table ,sys '.table ,full_path ,omode ,fileType ,handle]

}

}

Code 4.139: Alloy model sliced at FS_OpenFileDir — FS_OpenFileDir_System predicate

pred pre_FS_OpenFileDir_System[sys : System ,

full_path: Path ,

attr : Attributes ,

omode : FS_OpenMode] { -- new for open

pre_FS_OpenFileDir_FileStore[sys.fileStore ,full_path ,attr]

84

4.2. FS_OPENFILEDIR

}

Code 4.140: Alloy model sliced at FS_OpenFileDir — pre_FS_OpenFileDir_System predicate

The getOpenOffset original function in the VDM++ model was to return a index to a position in

a sequence of contents within a file, although, as mentioned above, that particular string was ab-

stracted through different signatures and a binary relation, and referencing bits of content is done

by including the desired object in the relation fileOffset. So the predicate getOpenOffset will

logically specify just that.

pred getOpenOffset[file: File , omode: FS_OpenMode , contents: FileContents] { -- new for

open

(omode in FS_OpenWrite + FS_OpenAlways and contents = getLastChunk[file]) or

(contents = Nothing)

}

Code 4.141: Alloy model sliced at FS_OpenFileDir — getOpenOffset predicate

In the above predicate definition there is a call to an Alloy function that given a file returns the last

chunk of that file’s contents. This function could be abstracted as a predicate, with input and output

parameters, as done so far with other functions. In this case the purpose is to illustrate a translation

of a VDM++ function to an Alloy function.

fun getLastChunk[file: File] : FileContents { -- new for open

file.contents in Nothing

=> Nothing

else RelCalc/dom[(file.contents.(*nextChunk)->Nothing) & nextChunk]

}

Code 4.142: Alloy model sliced at FS_OpenFileDir — getLastChunk function

The FS_OpenFileDir_FileStore predicate is the translation of the VDM++ function that has the

same name. This translation introduces another existential quantifier, although more restrictive than

the last. Here the goal is to create just one new connection between path and file.

pred FS_OpenFileDir_FileStore[fs,fs ' : FileStore ,

full_path: Path ,

attr : Attributes] { -- new for open

not isElemFileStore[full_path ,fs]

=> (one file: File {

fs '.map = fs.map + (full_path -> file) and

file.info.attributes = attr and

(attr.fileType in Directory => file.contents in NilFileContents) and

(attr.fileType in RegularFile => file.contents in FileContents) and

not isElemFileStore[file ,fs ']

})

else fs '.map = fs.map

}

Code 4.143: Alloy model sliced at FS_OpenFileDir — FS_OpenFileDir_FileStore predicate

pred pre_FS_OpenFileDir_FileStore[fs : FileStore ,

full_path: Path ,

attr : Attributes] { -- new for open

(full_path = Root and

85

CHAPTER 4. INTEL® FLASH FILE SYSTEM CORE

attr.fileType = Directory)

or

(isElemFileStore[full_path.dirName ,fs] and

isDirectory[(fs.map[full_path.dirName]).info])

}

Code 4.144: Alloy model sliced at FS_OpenFileDir — pre_FS_OpenFileDir_FileStore predicate

The FS_OpenFileDir_Table function of the VDM++ model gets translated to an Alloy predicate,

that in the case of a regular file creates just one new element in the binary relation between file

handlers and open file info called OpenFilesTable.map.

pred FS_OpenFileDir_Table[table ,table ': OpenFilesTable ,

full_path : Path ,

omode : FS_OpenMode ,

fileType : FileType ,

handle : OptionalFileHandle] { -- new for open

fileType in Directory

=> (table '.map = table.map and

handle = NilFileHandle)

else one ofi: FS_OpenFileInfo {

not isElemTableHandle[handle ,table] and

not isElemTable[ofi ,table] and

ofi.fileOffset = Nothing and

ofi.path = full_path and

fs_open2access_mode_map[omode ,ofi.accessMode] and

table '.map = table.map + (handle -> ofi)

}

}

Code 4.145: Alloy model sliced at FS_OpenFileDir — FS_OpenFileDir_Table predicate

For last comes the translation of both the function FS_OpenFileDir_Exception.

pred FS_OpenFileDir_Exception[sys : System ,

full_path: Path ,

omode : FS_OpenMode ,

status : FFS_Status] { -- new for open

(isCreateNew[omode] and isElemFileStore[full_path ,sys.fileStore])

=> status = FS_ErrorFileAlreadyExists

else (isCreateAlways[omode] and isElemTablePath[full_path ,sys.table])

=> status = FS_ErrorFileStillOpen

else (isOpen[omode] and not isElemFileStore[full_path ,sys.fileStore])

=> status = FS_ErrorFileNotFound

else (isOpen[omode] and isElemFileStore[full_path , sys.fileStore]

and not isRegularFile[sys.fileStore.map[full_path].info

])

=> status = FFS_StatusInvalidParameter

else not (full_path in Root or

isElemFileStore[full_path.dirName ,sys.fileStore])

=> status = FS_ErrorInvalidPath

else not (full_path in Root or

isDirectory[(sys.fileStore.map[full_path.dirName]).info

])

=> status = FS_ErrorInvalidPath

Code 4.146: Alloy model sliced at FS_OpenFileDir — FS_OpenFileDir_Exception predicate

86

4.2. FS_OPENFILEDIR

4.2.5 Model checking the operation with the Alloy Analyzer

Model checking the FS_OpenFileDir operation is much alike model checking the previous opera-

tion. Assertions are made about the predicates that compose the operation. Predicates _FileStore,

_Table and _System are checked for satisfiability.

assert Open_FileStore {

all fs ,fs ': FileStore , full_path: Path , attr: Attributes {

FileStoreInvariantVDM[fs] and

PathInvariantVDM[full_path] and

pre_FS_OpenFileDir_FileStore[fs,full_path ,attr] and

FS_OpenFileDir_FileStore[fs,fs ',full_path ,attr]

=> FileStoreInvariantVDM[fs '] and

full_path in RelCalc/dom[fs '.map] and

(not isElemFileStore[full_path ,fs]

=> full_path.(fs '.map).info.attributes = attr)

}

}

Check_Open_FileStore: check Open_FileStore

for 7 but 0 System ,

0 OpenFilesTable

Code 4.147: Alloy model sliced at FS_OpenFileDir — Check FS_OpenFileDir_FileStore

assert Open_Table {

all table ,table ': OpenFilesTable , full_path: Path , omode: FS_OpenMode ,

handle: OptionalFileHandle , ft: FileType {

OpenFilesTableInvariantVDM[table] and

PathInvariantVDM[full_path] and

FS_OpenFileDir_Table[table ,table ',full_path ,omode ,ft,handle]

=> ft in RegularFile

=> full_path = handle.(table '.map).path and

RelCalc/dom[table '.map] = RelCalc/dom[table.map] + handle and

OpenFilesTableInvariantVDM[table '] and

fs_open2access_mode_map[omode ,handle.(table '.map).accessMode]

else table '.map = table.map

}

}

Check_Open_Table: check Open_Table

for 7 but 0 System ,

0 FileStore ,

2 OpenFilesTable

Code 4.148: Alloy model sliced at FS_OpenFileDir — Check FS_OpenFileDir_Table

assert Open_System {

all sys ,sys ': System , full_path: Path , attr: Attributes ,

omode: FS_OpenMode , amode: FS_AccessMode , handle: OptionalFileHandle {

fs_open2access_mode_map[omode ,amode] and

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path] and

pre_FS_OpenFileDir_System[sys ,full_path ,attr ,omode] and

FS_OpenFileDir_System[sys ,sys ',full_path ,attr ,omode ,handle]

=> SystemInvariantVDM[sys '] and

full_path in RelCalc/dom[sys '. fileStore.map] and

(not isElemFileStore[full_path ,sys.fileStore]

=> full_path.(sys '. fileStore.map).info.attributes = attr) and

87

CHAPTER 4. INTEL® FLASH FILE SYSTEM CORE

(isDirectory[full_path.(sys '. fileStore.map).info]

=> (full_path not in FS_FileHandle.(sys '.table.map).path and

handle in NilFileHandle)

else (full_path = handle.(sys '. table.map).path) and

handle.(sys '.table.map).accessMode = amode)

}

}

Check_Open_System: check Open_System

for 7 but 2 System

Code 4.149: Alloy model sliced at FS_OpenFileDir — Check FS_OpenFileDir_System

The _Table predicate is also checked for directory opening, and although at the System level the

same property can be checked it is not needed, because the property is part of the SystemInvariant

predicate.

assert Open_Table_Directories {

all table ,table ': OpenFilesTable , full_path: Path ,

omode: FS_OpenMode , handle: OptionalFileHandle , ft: FileType {

ft = Directory and

OpenFilesTableInvariantVDM[table] and

PathInvariantVDM[full_path] and

FS_OpenFileDir_Table[table ,table ',full_path ,omode ,ft,handle]

=> full_path not in handle.(table '.map).path

}

}

Check_Open_Table_Directories: check Open_Table_Directories

for 7 but 0 System ,

0 FileStore ,

2 OpenFilesTable

Code 4.150: Alloy model sliced at FS_OpenFileDir — Check FS_OpenFileDir_Table for directory opening

The _Exception predicate is checked both to provide the adequate status values for each expected

condition, and that the unknown status is not a valid result outside the condition for the call for error

handling in the _Main predicate. The operation informal specification dictates the error conditions

for some possible open modes. Although the model checking of this _Exception predicate is done

according to specific error status all the open modes related error situations are covered.

assert Open_Exception_FileAlreadyExists {

all sys: System , path: Path , omode: FS_OpenMode , status: FFS_Status {

SystemInvariantVDM[sys] and

PathInvariantVDM[path] and

isElemFileStore[path ,sys.fileStore] and

isCreateNew[omode] and

FS_OpenFileDir_Exception[sys ,path ,omode ,status]

=> status = FS_ErrorFileAlreadyExists

}

}

Check_Open_Exception_FileAlreadyExists: check Open_Exception_FileAlreadyExists

for 7

Code 4.151: Alloy model sliced at FS_OpenFileDir — Check FS_OpenFileDir_Exception for

FS_FileAlreadyExists

88

4.2. FS_OPENFILEDIR

all sys: System , path: Path , omode: FS_OpenMode , status: FFS_Status {

SystemInvariantVDM[sys] and

PathInvariantVDM[path] and

isElemTablePath[path ,sys.table] and

isCreateAlways[omode] and

FS_OpenFileDir_Exception[sys ,path ,omode ,status]

=> status = FS_ErrorFileStillOpen

}

}

Check_Open_Exception_FileStillOpen: check Open_Exception_FileStillOpen

for 7 but 1 System

Code 4.152: Alloy model sliced at FS_OpenFileDir — Check FS_OpenFileDir_Exception for

FS_ErrorFileStillOpen

SystemInvariantVDM[sys] and

PathInvariantVDM[path] and

not isElemFileStore[path ,sys.fileStore] and

isOpen[omode] and

FS_OpenFileDir_Exception[sys ,path ,omode ,status]

=> status = FS_ErrorFileNotFound

}

}

Check_Open_Exception_FileNotFound: check Open_Exception_FileNotFound

for 7

Code 4.153: Alloy model sliced at FS_OpenFileDir — Check FS_OpenFileDir_Exception for

FS_ErrorFileNotFound

PathInvariantVDM[path] and

isOpen[omode] and

isElemFileStore[path , sys.fileStore] and

not isRegularFile[sys.fileStore.map[path].info] and

FS_OpenFileDir_Exception[sys ,path ,omode ,status]

=> status = FFS_StatusInvalidParameter

}

}

Check_Open_Exception_InvalidParameter: check Open_Exception_InvalidParameter

for 7

Code 4.154: Alloy model sliced at FS_OpenFileDir — Check FS_OpenFileDir_Exception for

FS_StatusInvalidParameter

(not path in Root and

(not isElemFileStore[path.dirName ,sys.fileStore] or

not isDirectory[(sys.fileStore.map[path.dirName]).info])) and

FS_OpenFileDir_Exception[sys ,path ,omode ,status]

=> status = FS_ErrorInvalidPath

}

}

Check_Open_Exception_InvalidPath: check Open_Exception_InvalidPath

for 7

Code 4.155: Alloy model sliced at FS_OpenFileDir — Check FS_OpenFileDir_Exception for

FS_ErrorInvalidPath

89

CHAPTER 4. INTEL® FLASH FILE SYSTEM CORE

assert Open_Exception_StatusUnknown {

all sys: System , path: Path , omode: FS_OpenMode ,

attr: Attributes , status: FFS_Status {

SystemInvariantVDM[sys] and

PathInvariantVDM[path] and

not (pre_FS_OpenFileDir_System[sys ,path ,attr ,omode] and

checkOpenMode[sys ,path ,omode]) and

FS_OpenFileDir_Exception[sys ,path ,omode ,status]

=> not status in FFS_StatusUnknown

}

}

Check_Open_Exception_StatusUnknown: check Open_Exception_StatusUnknown

Code 4.156: Alloy model sliced at FS_OpenFileDir — Check FS_OpenFileDir_Exception for

FFS_StatusUnknown

At the top most _Main predicate the model is checked for the success and error cases generally.

checkOpenMode[sys ,full_path ,omode] and

pre_FS_OpenFileDir_System[sys ,full_path ,attr ,omode] and

FS_OpenFileDir_Main[sys ,sys ',full_path ,attr ,omode ,handle ,status]

=> SystemInvariantVDM[sys '] and

status = FFS_StatusSuccess

}

}

Check_Open_Main_Success: check Open_Main_Success

for 7

Code 4.157: Alloy model sliced at FS_OpenFileDir — Check FS_OpenFileDir_Main success cases

PathInvariantVDM[full_path] and

not(pre_FS_OpenFileDir_System[sys ,full_path ,attr ,omode] and

checkOpenMode[sys ,full_path ,omode]) and

FS_OpenFileDir_Main[sys ,sys ',full_path ,attr ,omode ,handle ,status]

=> SystemInvariantVDM[sys '] and

status not = FFS_StatusSuccess

}

}

Check_Open_Main_Error: check Open_Main_Error

for 7

Code 4.158: Alloy model sliced at FS_OpenFileDir — Check FS_OpenFileDir_Main error cases

4.2.6 Model Checking VDM Proof Obligations with the Alloy Analyser

The current VDM++ specification generates much more POs than the previous, in this case there

are forty POs to model check. Some of the POs generated for this operation were already checked

in the previous operation and, although they are checked again, will be omitted.

Integrity property #1 :

In function FileSystemLayerBase newFileHandle , file: FileSystemLayerBase.vpp l. 323 c.

38: function application from max

(forall handles : set of FS_FileHandle &

90

4.2. FS_OPENFILEDIR

not (card (handles) = 0) =>

FileSystemLayerBase `pre_max(handles))

Code 4.159: VDM++ model sliced at FS_OpenFileDir — Proof Obligation 2

assert po2 {

all handles: set FS_FileHandle {

not (#handles = 0) => #handles > 0

}

}

CheckPO2: check po2 for 7

Code 4.160: Alloy model sliced at FS_OpenFileDir — Proof Obligation 2

PO2 is generated from function newFileHandler because it uses the partial function max, and it

should do it within the boundaries set by max’s pre-condition. Although max was not needed in the

Alloy model, because file handles are more abstract than their VDM++ counterpart, it is possible

to model check the previous PO since pre_max is known and quite simple. However the option of

not modeling the max relation in Alloy makes it impossible to check POs that use the max function.

Specifying the max relation would not be any different that specifying the dirName relation, which is

a partial order on paths. Some other POs related with paths and file names and the is_ operator

for data types with no invariant will be also skipped.

Integrity property #1 :

In function FileSystemLayerOperations FS_OpenFileDir_FileStore , file:

FileSystemLayerOperations.vpp l. 213 c. 3: invariants from FileStore

(forall fileStore : FileStore , full_path : Path , attributes : Attributes &

(full_path = <Root > and

attributes.fileType = <Directory >) or

((let parent = dirName(full_path)

in

isElemFileStore(parent , fileStore) and

isDirectory(fileStore(parent).info))) =>

FileSystemLayerOperations `inv_FileStore ((if not (isElemFileStore(full_path , fileStore))

then

(let content = emptyFileContents(attributes.fileType),

newFile = mk_File(newFileDirInfo(attributes),content)

in

fileStore munion {full_path |-> newFile })

else

fileStore)))

Code 4.161: VDM++ model sliced at FS_OpenFileDir — Proof Obligation 10

assert po10 {

all fileStore , fileStore ': FileStore ,

full_path: Path , attr: Attributes {

FileStoreInvariantVDM[fileStore] and

PathInvariantVDM[full_path]

=> (full_path in Root and attr.fileType in Directory) or

(let parent = full_path.dirName |

isElemFileStore[parent , fileStore] and

91

CHAPTER 4. INTEL® FLASH FILE SYSTEM CORE

isDirectory[fileStore.map[parent].info])

=> (not isElemFileStore[full_path , fileStore]

=> (one newFile: File {

fileStore '.map = fileStore.map + (full_path -> newFile) and

newFile.info.attributes = attr and

(attr.fileType in Directory => newFile.contents in NilFileContents)

and

(attr.fileType in RegularFile => newFile.contents in FileContents)

and

not isElemFileStore[newFile ,fileStore ']

})

=> FileStoreInvariantVDM[fileStore ']

else FileStoreInvariantVDM[fileStore])

}

}

CheckPO10: check po10 for 7

Code 4.162: Alloy model sliced at FS_OpenFileDir — Proof Obligation 10

PO10 is generated from function FS_OpenFileDir_FileStore because it returns a FileStore,

and the resulting value should preserve the data type invariant.

Integrity property #2 :

In function FileSystemLayerOperations FS_OpenFileDir_FileStore , file:

FileSystemLayerOperations.vpp l. 216 c. 18: compatible maps

(forall fileStore : FileStore , full_path : Path , attributes : Attributes &

(full_path = <Root > and

attributes.fileType = <Directory >) or

((let parent = dirName(full_path)

in

isElemFileStore(parent , fileStore) and

isDirectory(fileStore(parent).info))) =>

not (isElemFileStore(full_path , fileStore)) =>

(let content = emptyFileContents(attributes.fileType),

newFile = mk_File(newFileDirInfo(attributes),content)

in

(forall id_9 in set dom (fileStore), id_10 in set dom ({ full_path |-> newFile }) &

id_9 = id_10 =>

fileStore(id_9) = {full_path |-> newFile }(id_10))))

Code 4.163: VDM++ model sliced at FS_OpenFileDir — Proof Obligation 11

assert po11 {

all fileStore: FileStore ,

full_path: Path , attr: Attributes {

FileStoreInvariantVDM[fileStore] and

PathInvariantVDM[full_path]

=> (full_path in Root and attr.fileType in Directory) or

(let parent = full_path.dirName |

isElemFileStore[parent , fileStore] and

isDirectory[fileStore.map[parent].info])

=> not isElemFileStore[full_path , fileStore]

=> (some newFile: File {

newFile.info.attributes = attr and

(attr.fileType in Directory => newFile.contents in NilFileContents) and

92

4.2. FS_OPENFILEDIR

(attr.fileType in RegularFile => newFile.contents in FileContents)

=> all id_9 ,id_10: Path {

PathInvariantVDM[id_9] and

PathInvariantVDM[id_10]

=> id_9 in RelCalc/dom[fileStore.map] and

id_10 in RelCalc/dom[(full_path ->newFile)]

=> id_9 = id_10

=> fileStore.map[id_9] = (full_path ->newFile)[id_10]

}

})

}

}

CheckPO11: check po11 for 7

Code 4.164: Alloy model sliced at FS_OpenFileDir — Proof Obligation 11

PO11 is generated from function FS_OpenFileDir_FileStore, and it states that every file store,

resulting from the function, should preserve the simplicity property after adding a new entry to the

mapping.

Integrity property #3 :

In function FileSystemLayerOperations FS_OpenFileDir_FileStore , file:

FileSystemLayerOperations.vpp l. 220 c. 65: map application

(forall fileStore : FileStore , full_path : Path , attributes : Attributes &

not ((full_path = <Root > and

attributes.fileType = <Directory >)) =>

(let parent = dirName(full_path)

in

isElemFileStore(parent , fileStore) =>

parent in set dom (fileStore)))

Code 4.165: VDM++ model sliced at FS_OpenFileDir — Proof Obligation 12

assert po12 {

all fileStore: FileStore , full_path: Path , attributes: Attributes {

FileStoreInvariantVDM[fileStore] and

PathInvariantVDM[full_path]

=> not (full_path in Root and attributes.fileType in Directory)

=> let parent = full_path.dirName {

isElemFileStore[parent , fileStore]

=> parent in RelCalc/dom[fileStore.map]

}

}

}

CheckPO12: check po12 for 7

Code 4.166: Alloy model sliced at FS_OpenFileDir — Proof Obligation 12

PO12 targets the same function as the previous, although in this case the focus is on the application

of the file store parameter to a the parent path of the full path parameter. PO13 and PO14 are

generated form the FS_OpenFileDir_Exception and also target partial mapping applications.

93

CHAPTER 4. INTEL® FLASH FILE SYSTEM CORE

Integrity property #1 :

In function FileSystemLayerOperations FS_OpenFileDir_Exception , file:

FileSystemLayerOperations.vpp l. 260 c. 41: map application

(forall sys : System , full_path : Path , omode : FS_OpenMode &

not (isCreateNew(omode) and

isElemFileStore(full_path , sys.fileStore)) =>

not (isCreateAlways(omode) and

isElemTablePath(full_path , sys.table)) =>

not (isOpen(omode) and

not (isElemFileStore(full_path , sys.fileStore))) =>

isOpen(omode) and

isElemFileStore(full_path , sys.fileStore) =>

full_path in set dom (sys.fileStore))

Code 4.167: VDM++ model sliced at FS_OpenFileDir — Proof Obligation 13

assert po13 {

all sys: System , full_path: Path , omode: FS_OpenMode {

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path]

=> not (isCreateNew[omode] and isElemFileStore[full_path , sys.fileStore])

=> not (isCreateAlways[omode] and isElemTablePath[full_path , sys.table])

=> not (isOpen[omode] and not isElemFileStore[full_path , sys.fileStore])

=> isOpen[omode] and isElemFileStore[full_path , sys.fileStore]

=> full_path in RelCalc/dom[sys.fileStore.map]

}

}

CheckPO13: check po13 for 7

Code 4.168: Alloy model sliced at FS_OpenFileDir — Proof Obligation 13

PO14 was omitted as it is very similar to PO13. PO20 and PO22 are generated from function

FS_OpenFileDir_System as are all POs until PO30. The first states that the System instance

resulting from the function must preserve the data type’s invariant.

Integrity property #1 :

In function FileSystemLayerOperations FS_OpenFileDir_System , file:

FileSystemLayerOperations.vpp l. 164 c. 3e: invariants from System

(forall sys : System , full_path : Path , attr : Attributes , omode : FS_OpenMode &

pre_FS_OpenFileDir_FileStore(sys.fileStore , full_path , attr) =>

FileSystemLayerOperations `inv_System ((let fileStore ' = FS_OpenFileDir_FileStore(sys.

fileStore , full_path , attr), mk_(table ,handle) = FS_OpenFileDir_Table(sys.table ,

full_path , omode , attr.fileType), offset = getOpenOffset(fileStore '(full_path),

omode), table ' = table ++ (if handle <> nil and

isElemTableHandle(handle , table) then

{handle |-> mu(table(handle),fileOffset|->offset)}

else

{|->})

in

mk_(mk_System(table ',fileStore '),handle)).#1))

Code 4.169: VDM++ model sliced at FS_OpenFileDir — Proof Obligation 20

94

4.2. FS_OPENFILEDIR

assert po20 {

all sys: System , full_path: Path , attr: Attributes , omode: FS_OpenMode {

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path]

=> pre_FS_OpenFileDir_FileStore[sys.fileStore , full_path , attr]

=> all fileStore ': FileStore , t: OpenFilesTable ,

handle: OptionalFileHandle , offset: FileContents ,

table ',t': OpenFilesTable , ofi: FS_OpenFileInfo {

FS_OpenFileDir_FileStore[sys.fileStore , fileStore ', full_path , attr] and

FS_OpenFileDir_Table[sys.table , t, full_path , omode , attr.fileType , handle]

and

getOpenOffset[fileStore '.map[full_path], omode , offset] and

(handle not in NilFileHandle and isElemTableHandle[handle , t]

=> (ofi.accessMode = t.map[handle]. accessMode and

ofi.path = t.map[handle].path and

ofi.fileOffset = offset

=> t'.map = (handle ->ofi))

else no t'.map)

table '.map = (t.map - (RelCalc/dom[t'.map]->FS_OpenFileInfo)) + t'.map

=> all sys ': System {

sys '. table = table ' and

sys '. fileStore = fileStore '

=> SystemInvariantVDM[sys ']

}

}

}

}

CheckPO20: check po20 for 7

Code 4.170: Alloy model sliced at FS_OpenFileDir — Proof Obligation 20

The latter targets the partial function FS_OpenFileDir_FileStore application, stating that is must

be done within the boundaries defined in its precondition.

Integrity property #3 :

In function FileSystemLayerOperations FS_OpenFileDir_System , file:

FileSystemLayerOperations.vpp l. 164 c. 51: function application from

FS_OpenFileDir_FileStore

(forall sys : System , full_path : Path , attr : Attributes , omode : FS_OpenMode &

pre_FS_OpenFileDir_FileStore(sys.fileStore , full_path , attr) =>

FileSystemLayerOperations `pre_FS_OpenFileDir_FileStore(sys.fileStore , full_path , attr))

Code 4.171: VDM++ model sliced at FS_OpenFileDir — Proof Obligation 22

assert po22 {

all sys: System , full_path: Path , attr: Attributes , omode: FS_OpenMode {

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path]

=> pre_FS_OpenFileDir_FileStore[sys.fileStore , full_path , attr]

=> pre_FS_OpenFileDir_FileStore[sys.fileStore , full_path , attr]

}

}

CheckPO22: check po22 for 7

95

CHAPTER 4. INTEL® FLASH FILE SYSTEM CORE

Code 4.172: Alloy model sliced at FS_OpenFileDir — Proof Obligation 22

PO23 states that the newly created file should preserve the File data type invariant.

Integrity property #4 :

In function FileSystemLayerOperations FS_OpenFileDir_System , file:

FileSystemLayerOperations.vpp l. 166 c. 48: invariants from File

(forall sys : System , full_path : Path , attr : Attributes , omode : FS_OpenMode &

pre_FS_OpenFileDir_FileStore(sys.fileStore , full_path , attr) =>

(let fileStore ' = FS_OpenFileDir_FileStore(sys.fileStore , full_path , attr),

mk_(table ,handle) = FS_OpenFileDir_Table(sys.table , full_path , omode , attr.

fileType)

in

FileSystemLayerOperations `inv_File(fileStore '(full_path))))

Code 4.173: VDM++ model sliced at FS_OpenFileDir — Proof Obligation 23

assert po23 {

all sys: System , full_path: Path , attr: Attributes , omode: FS_OpenMode {

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path]

=> pre_FS_OpenFileDir_FileStore[sys.fileStore , full_path , attr]

=> all fileStore ': FileStore , t: OpenFilesTable ,

handle: OptionalFileHandle {

FS_OpenFileDir_FileStore[sys.fileStore , fileStore ', full_path , attr] and

FS_OpenFileDir_Table[sys.table , t, full_path , omode , attr.fileType , handle]

=> FileInvariantVDM[fileStore '.map[full_path]]

}

}

}

CheckPO23: check po23 for 7

Code 4.174: Alloy model sliced at FS_OpenFileDir — Proof Obligation 23

When opening a file, FS_OpenFileDir_System must call the getOpenOffset function to calculate

the appropriate file offset to be set in the open file info stored in the open files table. To do so,

it needs to access the newly create file store to obtain the file. PO24 targets the partial mapping

application of the newly created file store to the full path parameter.

Integrity property #5 :

In function FileSystemLayerOperations FS_OpenFileDir_System , file:

FileSystemLayerOperations.vpp l. 166 c. 48: map application

(forall sys : System , full_path : Path , attr : Attributes , omode : FS_OpenMode &

pre_FS_OpenFileDir_FileStore(sys.fileStore , full_path , attr) =>

(let fileStore ' = FS_OpenFileDir_FileStore(sys.fileStore , full_path , attr),

mk_(table ,handle) = FS_OpenFileDir_Table(sys.table , full_path , omode , attr.

fileType)

in

full_path in set dom (fileStore ')))

96

4.2. FS_OPENFILEDIR

Code 4.175: VDM++ model sliced at FS_OpenFileDir — Proof Obligation 24

assert po24 {

all sys: System , full_path: Path , attr: Attributes , omode: FS_OpenMode {

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path]

=> pre_FS_OpenFileDir_FileStore[sys.fileStore , full_path , attr]

=> all fileStore ': FileStore , t: OpenFilesTable ,

handle: OptionalFileHandle {

FS_OpenFileDir_FileStore[sys.fileStore , fileStore ', full_path , attr] and

FS_OpenFileDir_Table[sys.table , t, full_path , omode , attr.fileType , handle]

=> full_path in RelCalc/dom[fileStore '.map]

}

}

}

CheckPO24: check po24 for 7

Code 4.176: Alloy model sliced at FS_OpenFileDir — Proof Obligation 24

PO28 follows from the same reason as PO24, and targets the partial mapping application of the

open files table to the newly created file handler.

Integrity property #9 :

In function FileSystemLayerOperations FS_OpenFileDir_System , file:

FileSystemLayerOperations.vpp l. 168 c. 58: map application

(forall sys : System , full_path : Path , attr : Attributes , omode : FS_OpenMode &

pre_FS_OpenFileDir_FileStore(sys.fileStore , full_path , attr) =>

(let fileStore ' = FS_OpenFileDir_FileStore(sys.fileStore , full_path , attr),

mk_(table ,handle) = FS_OpenFileDir_Table(sys.table , full_path , omode , attr.

fileType),

offset = getOpenOffset(fileStore '(full_path), omode)

in

handle <> nil and

isElemTableHandle(handle , table) =>

handle in set dom (table)))

Code 4.177: VDM++ model sliced at FS_OpenFileDir — Proof Obligation 28

assert po28 {

all sys: System , full_path: Path , attr: Attributes , omode: FS_OpenMode {

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path]

=> pre_FS_OpenFileDir_FileStore[sys.fileStore , full_path , attr]

=> all fileStore ': FileStore , t: OpenFilesTable ,

handle: OptionalFileHandle {

FS_OpenFileDir_FileStore[sys.fileStore , fileStore ', full_path , attr] and

FS_OpenFileDir_Table[sys.table , t, full_path , omode , attr.fileType , handle]

=> handle not in NilFileHandle and isElemTableHandle[handle , t]

=> handle in RelCalc/dom[t.map]

}

}

}

CheckPO28: check po28 for 7

97

CHAPTER 4. INTEL® FLASH FILE SYSTEM CORE

Code 4.178: Alloy model sliced at FS_OpenFileDir — Proof Obligation 28

PO30 states that the file store resulting from the application of FS_OpenFileDir_FileStore must

preserve its type invariant.

Integrity property #11 :

In function FileSystemLayerOperations FS_OpenFileDir_System , file:

FileSystemLayerOperations.vpp l. 170 c. 25: invariants from FileSystemLayerBase `

FileStore

(forall sys : System , full_path : Path , attr : Attributes , omode : FS_OpenMode &

pre_FS_OpenFileDir_FileStore(sys.fileStore , full_path , attr) =>

(let fileStore ' = FS_OpenFileDir_FileStore(sys.fileStore , full_path , attr),

mk_(table ,handle) = FS_OpenFileDir_Table(sys.table , full_path , omode , attr.

fileType),

offset = getOpenOffset(fileStore '(full_path), omode),

table ' = table ++ (if handle <> nil and isElemTableHandle(handle , table)

then {handle |-> mu(table(handle),fileOffset|->offset)}

else {|->})

in

FileSystemLayerBase `inv_FileStore(fileStore ')))

Code 4.179: VDM++ model sliced at FS_OpenFileDir — Proof Obligation 30

assert po30 {

all sys: System , full_path: Path , attr: Attributes , omode: FS_OpenMode {

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path]

=> pre_FS_OpenFileDir_FileStore[sys.fileStore , full_path , attr]

=> all fileStore ': FileStore , t: OpenFilesTable ,

handle: OptionalFileHandle , offset: FileContents ,

table ',t': OpenFilesTable , ofi: FS_OpenFileInfo {

FS_OpenFileDir_FileStore[sys.fileStore , fileStore ', full_path , attr] and

FS_OpenFileDir_Table[sys.table , t, full_path , omode , attr.fileType , handle]

and

getOpenOffset[fileStore '.map[full_path], omode , offset] and

(handle not in NilFileHandle and isElemTableHandle[handle , t]

=> (ofi.accessMode = t.map[handle]. accessMode and

ofi.path = t.map[handle].path and

ofi.fileOffset = offset

=> t'.map = (handle ->ofi))

else no t'.map)

table '.map = (t.map - (RelCalc/dom[t'.map]->FS_OpenFileInfo)) + t'.map

=> FileStoreInvariantVDM[fileStore ']

}

}

}

CheckPO30: check po30 for 7

Code 4.180: Alloy model sliced at FS_OpenFileDir — Proof Obligation 30

PO33 is generated from FS_OpenFileDir_Table function, due to the application of the fs_open2

98

4.2. FS_OPENFILEDIR

Integrity property #1 :

In function FileSystemLayerOperations FS_OpenFileDir_Table , file:

FileSystemLayerOperations.vpp l. 235 c. 44: map application

(forall table : OpenFilesTable , full_path : Path , omode : FS_OpenMode , fileType :

FileType &

not (fileType = <Directory >) =>

omode in set dom (fs_open2access_mode_map))

Code 4.181: VDM++ model sliced at FS_OpenFileDir — Proof Obligation 33

assert po33 {

all omode: FS_OpenMode , fileType: FileType {

not (fileType in Directory)

=> some amode: FS_AccessMode {

fs_open2access_mode_map[omode ,amode]

}

}

}

CheckPO33: check po33 for 7

// removed table and full_path because are not used

Code 4.182: Alloy model sliced at FS_OpenFileDir — Proof Obligation 33

In the above PO the two universally quantified free variables table and full_path were removed

from the Alloy assertion. PO34 is also generated from FS_OpenFileDir_Table, because of the

preservation of the mapping simplicity in the resulting open files table.

Integrity property #2 :

In function FileSystemLayerOperations FS_OpenFileDir_Table , file:

FileSystemLayerOperations.vpp l. 238 c. 18: compatible maps

(forall table : OpenFilesTable , full_path : Path , omode : FS_OpenMode , fileType :

FileType &

not (fileType = <Directory >) =>

(let amode = fs_open2access_mode_map(omode),

ofi = mk_FS_OpenFileInfo (1,amode ,full_path),

handle = newFileHandle(dom (table))

in

(forall id_11 in set dom (table), id_12 in set dom ({ handle |-> ofi}) &

id_11 = id_12 => table(id_11) = {handle |-> ofi}(id_12))))

Code 4.183: VDM++ model sliced at FS_OpenFileDir — Proof Obligation 34

assert po34 {

all table: OpenFilesTable , full_path: Path , omode: FS_OpenMode , fileType: FileType {

not (fileType in Directory)

=> all amode: FS_AccessMode , ofi: FS_OpenFileInfo ,

handle: FS_FileHandle {

FS_OpenFileInfoInvariantVDM[ofi]

=> fs_open2access_mode_map[omode ,amode] and

ofi.accessMode = amode and

ofi.path = full_path and

handle not in RelCalc/dom[table.map]

99

CHAPTER 4. INTEL® FLASH FILE SYSTEM CORE

=> all id_11 , id_12: FS_FileHandle {

id_11 in RelCalc/dom[table.map] and

id_12 in RelCalc/dom[(handle ->ofi)]

=> id_11 = id_12 => table.map[id_11] = (handle ->ofi)[id_12]

}

}

}

}

CheckPO34: check po34 for 7

Code 4.184: Alloy model sliced at FS_OpenFileDir — Proof Obligation 34

PO36 is generated from the FS_OpenFileDir_Main, and states that the FS_OpenFileDir_System

partial function should only be applied within the boundaries defined by the corresponding pre-

condition.

Integrity property #2 :

In function FileSystemLayerOperations FS_OpenFileDir_Main , file:

FileSystemLayerOperations.vpp l. 111 c. 52: function application from

FS_OpenFileDir_System

(forall sys : System , full_path : Path , attributes : Attributes , omode : FS_OpenMode &

pre_FS_OpenFileDir_System(sys , full_path , attributes , omode) and

checkOpenMode(sys , full_path , omode) =>

mustDeleteFirst(sys.fileStore , full_path , omode) and

(full_path = <Root > =>

attributes.fileType = <Directory >) =>

(let mk_(sys ',status) = FS_DeleteFileDir_Main(sys , full_path)

in

not (status <> <FFS_StatusSuccess >) =>

FileSystemLayerOperations `pre_FS_OpenFileDir_System(sys ', full_path , attributes , omode)

))

Code 4.185: VDM++ model sliced at FS_OpenFileDir — Proof Obligation 36

assert po36 {

all sys: System , full_path: Path , attributes: Attributes ,

omode: FS_OpenMode {

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path]

=> pre_FS_OpenFileDir_System[sys , full_path , attributes , omode] and

checkOpenMode[sys , full_path , omode]

=> mustDeleteFirst[sys.fileStore , full_path , omode] and

(full_path in Root => attributes.fileType in Directory)

=> all sys ': System , status: FFS_Status {

status not in FFS_StatusSuccess

=> pre_FS_OpenFileDir_System[sys ', full_path , attributes , omode]

}

}

}

CheckPO36: check po36 for 7

Code 4.186: Alloy model sliced at FS_OpenFileDir — Proof Obligation 36

100

4.2. FS_OPENFILEDIR

PO40 is generated from the checkOpenMode function, because in its definition there is an application

of a path to the a file store, and this application should only be performed if the path is in the file

store mapping.

Integrity property #1 :

In function FileSystemLayerOperations checkOpenMode , file: FileSystemLayerOperations.vpp

l. 148 c. 36: map application

(forall sys : System , path : Path , omode : FS_OpenMode &

not ((isCreateNew(omode) and

isElemFileStore(path , sys.fileStore))) and

not ((isCreateAlways(omode) and

isElemTablePath(path , sys.table))) and

not ((isOpen(omode) and

not (isElemFileStore(path , sys.fileStore)))) =>

(isOpen(omode) or

omode = <FS_OpenAlways >) and

isElemFileStore(path , sys.fileStore) =>

path in set dom (sys.fileStore))

Code 4.187: VDM++ model sliced at FS_OpenFileDir — Proof Obligation 40

assert po40 {

all sys: System , path: Path , omode: FS_OpenMode {

SystemInvariantVDM[sys] and

PathInvariantVDM[path]

=> not (isCreateNew[omode] and isElemFileStore[path , sys.fileStore]) and

not (isCreateAlways[omode] and isElemTablePath[path , sys.table]) and

not (isOpen[omode] and not isElemFileStore[path , sys.fileStore])

=> (isOpen[omode] or omode in FS_OpenAlways) and

isElemFileStore[path , sys.fileStore]

=> path in RelCalc/dom[sys.fileStore.map]

}

}

CheckPO40: check po40 for 7

Code 4.188: Alloy model sliced at FS_OpenFileDir — Proof Obligation 40

All the POs were model checked with success, that is to say that no counter-examples were

found.

4.2.7 VDM++ Adapted for the VdmHolTranslator Tool

This operation introduces more VDM++ constructs that the VdmHolTranslator does not support, so

adequate adaptations must be found. However, there are some limitations that can not be overcome

through adaptation and some constructs will have to be removed and hand written in HOL syntax

later.

Optional data type is the mathematical parametric type

[X] ∼= 1 + X (4.3)

101

CHAPTER 4. INTEL® FLASH FILE SYSTEM CORE

where in VDM the value of type 1 is the literal nil. This data type can be rewritten using the

sequence type,

Y ∗ ∼= 1 + Y ×Y ∗ (4.4)

where the empty sequence represents the nil literal, and the only element of a singleton

sequence represents the actual value.

Data type nat1 when used in type declarations, can be adapted using the same strategy as for the

seq1 data type. The type gets rewritten with the nat type and an invariant assuring the value

to be greater than zero. Functions where the nat1 type is used for parameters or results, can

be rewritten using pre- and post-conditions, respectively, that assure the desired property of

the values.

Tuple pattern is also not supported by the translator tool, and of all unsupported constructs this

is the only that was not adapted. The tuple patterns, in this specification, are used to pat-

tern match the result of functions that return several values. A possibly equivalent way to

rewrite tuples would be to represent them as sequences of values, although this would make

the specification prone to errors related with the size of the sequences, that would not be

detected by the type checker. It would also lead to the introduction of post-conditions, and

stronger pre-conditions. Another option would be to eradicate the functions that return tuples

by splitting them in more functions that separately return each element of the tuple. Splitting

every function that returns a tuple would lead to an explosion of functions. Due to the pre-

sented difficulties the functions that use tuple patterns to match values obtained from another

function are removed from the VDM++ model prior to the translation, and hand written in HOL

afterwards.

Binary operator # that selects an element from a tuple given its position, could be a way to avoid

tuple patterns, although it is also not supported. It would be very easy to add support for

this operator to the VdmHolTranslator, however there is no equivalent operator in HOL. The

translator follows a clever strategy to produce in HOL functions that do field selection on record

values, and a similar approach for tuples might also work although it would involve tampering

with the translator specification structure and the tool’s HOL AST specification.

Set enumeration pattern is used in the max function to match a nat value inside a set. Using

the let ...be st construction it is possible to instantiate a value in the give set, hence

overcoming the pattern matching limitation.

Symbolic literal pattern is used in the cases expression of the getOpenOffset function, to match

FS_OpenMode values. The cases expression can be rewritten using simple conditional logic

with and if ... then ... else ... expression.

102

4.2. FS_OPENFILEDIR

After translating the VDM++ OmlAST to the defined HOL AST4, here on referenced as Ho-

lAst, the VdmHolTranslator checks the produced AST to detect missing dependencies. In the

case of the VDM++ specification that we want to translate there is a piece of the specification

that is not being translated to HolAst, thus producing a dependency error. This is the case of the

fs_open2access_mode_map, which is a VDM++ value declaration, that the translator tool does not

support. The fs_open2access_mode_map can be rewritten using a function to apply the same map-

ping to its parameter. Neither the tool, nor HOL, support let ... in statements where variables

declared within the statement are used in the declaration of other variables declared within the same

statement. To deal with this dependency problem the original let ... in statements can be split

into statements declared within each other.

4.2.8 Correcting the Translated HOL4 Model

To enable the translation of the specification from VDM++ to HOL, it was necessary to remove

two functions: FS_OpenFileDir_Main and FS_OpenFileDir_System. These two function use tuple

patterns to bind local variables to the output of other functions, and tuple patterns are not supported

by the VdmHolTranslator. In order to enable a complete translation of the proof obligations they were

generated from the complete VDM++ specification, and prior to the translation the two functions

were substituted by two stubs with the same data types although no relevant body. Prior to the

translation the stubs must be substituted by the appropriate functions in HOL.

Define `FS_OpenFileDir_System (sys: System)

(full_path: Path)

(attr: Attributes)

(omode: FS_OpenMode) =

let fs ' = (FS_OpenFileDir_FileStore sys.fileStore full_path attr) and

(t',handle) = (FS_OpenFileDir_Table sys.table full_path omode attr.fileType) in

let offset = (getOpenOffset (FAPPLY fs' full_path) omode) in

let t'' = tableOverride t' (if (~(handle = []) /\ (isElemTableHandle (HD handle) t')

)

then (FEMPTY |+ ((HD handle), ((FAPPLY t' (HD handle))

with <|fileOffset := (HD offset)|>)))

else FEMPTY) in

((sys with <|table := t'; fileStore := fs '|>), (HD handle)) `;

Code 4.189: FS_OpenFileDir_System hand written in HOL

Define `FS_OpenFileDir_Main (sys: System)

(full_path: Path)

(attr: Attributes)

(omode: FS_OpenMode) =

if ((pre_FS_OpenFileDir_System sys full_path attr omode) /\

(checkOpenMode sys full_path omode))

then (if (mustDeleteFirst sys.fileStore full_path omode) /\

((full_path = RootQuoteLiteral) ==> (attr.fileType = DirectoryQuoteLiteral)

)

then (let (sys ',status) = FS_DeleteFileDir_Main sys full_path in

if ~(status = FFS_StatusSuccessQuoteLiteral)

then (sys ', [], status)

4Within the APS project its author defined an AST of HOL models using VDM++.

103

CHAPTER 4. INTEL® FLASH FILE SYSTEM CORE

else (let (sys '', handle) = FS_OpenFileDir_System sys ' full_path attr

omode in

(sys '', [handle], FFS_StatusSuccessQuoteLiteral)))

else (let (sys ''', handle ') = FS_OpenFileDir_System sys full_path attr omode in

(sys ''', [handle '], FFS_StatusSuccessQuoteLiteral)))

else (let status '' = (FS_OpenFileDir_Exception sys full_path omode) in

(sys , [], status ''))`;

Code 4.190: FS_OpenFileDir_Main hand written in HOL

Some of the POs also had to be hand written in the HOL model, because they use unsupported

syntactic constructions. Other corrections were performed although other similar corrections have

already been discussed in the FS_DeleteFileDir section.

4.2.9 Discharging VDM Proof Obligations with HOL4

Just such as it happened with the specification for the FS_DeleteFileDir operation, it was nec-

essary to adapt the VDM++ model syntax to comply with the subset of the language that the

VdmHolTranslator supports. For this reason some POs are slightly different, and some are not

generated for the adapted specification.

Proof Obligation 2: mapped to a PO in the adapted model, and discharged with HOL.

Proof Obligation 10: mapped to a PO in the adapted model, although was not discharged with

HOL.

Proof Obligation 11: mapped to a PO in the adapted model, and discharged with HOL.

Proof Obligation 12: mapped to a PO in the adapted model, and discharged with HOL.

Proof Obligation 13: mapped to a PO in the adapted model, and discharged with HOL.

Proof Obligation 20: mapped to a PO in the adapted model, although was not discharged with

HOL.

Proof Obligation 22: mapped to a PO in the adapted model, and was discharged with HOL.

Proof Obligation 23: is not generated for the VDM++ specification, and had to be hand written in

he HOL model. HOL did not discharge it automatically.

Proof Obligation 24: mapped to a PO in the adapted model, and was discharged with HOL.

Proof Obligation 28: is not generated for the VDM++ specification, and had to be hand written in

he HOL model. It was discharged in HOL.

Proof Obligation 30: is not generated for the VDM++ specification, and had to be hand written in

he HOL model. HOL did not discharge it automatically.

Proof Obligation 33: mapped to a PO in the adapted model, although was not discharged with

HOL.

104

4.3. SUMMARY

Proof Obligation 34: mapped to a PO in the adapted model, although was not discharged with

HOL.

Proof Obligation 36: mapped to a PO in the adapted model, and was discharged with HOL.

Proof Obligation 40: mapped to a PO in the adapted model, and was discharged with HOL.

From a total of 38 POs, that were either generated from the adapted VDM++ model or hand

written in HOL, 24 of them were automatically discharged with HOL, for a full reference of POs and

HOL source code see [53].

4.3 Summary

This chapter proposes a VDM++ formal model of an abstract file system following the FSL API

from the IFFSCRG document. The model captures the main data structures, and two operations to

create and remove files. Two translations are produced in order to apply the verification tool chain,

proposed in Chapter 3, to the file system model: manually to Alloy enabling model checking; and

automatically to HOL enabling mathematica proof of correction.

Integrating Alloy and VDM++ raises some questions about the level of abstraction used in each

specification, because in the perspective of model checking a VDM++ model with and equivalent

Alloy model it would make sense to have both models at the same abstraction level. However, Alloy

is a declarative language and VDM++ is object-oriented with a functional subset, and this means

that usually Alloy models can be more abstract than VDM++ models and still capture the same key

aspects. This explains why the option was to have an Alloy model at a higher level of abstraction,

when comparing with the "original" VDM++ model.

Integrating HOL and VDM++ benefits from the APS that can automatically translate models from

VDM++ to HOL, and produce the adequate proof commands to discharge POs. However, there is

still the need to prepare a VDM++ model to be used by the APS translation. Tools to automate the

necessary preparation are discussed and presented in the present chapter.

The presented specifications (VDM++, Alloy, and HOL) are intended to be both a contribution

to the VFS "mini-challenge" within the GC initiative, and a case study for the verification tool chain

presented in the former chapter.

105

Chapter 5

Related Work and Conclusions

5.1 Related Work

Despite what would be expected there is little work carried out so far on the Verified File System

"mini-challenge". At least when compared to previous challenges such as the Mondex. There is

a group at the University of York, led by Professor Jim Woodcock, that has not only given a great

contribution to the "mini-challenge" by providing Z specifications of file systems at different levels,

but also has organized regular workshops and conferences on the subject. In fact it is due to their

efforts in studying the problem that made the author of this thesis aware of the IFFSCRG document.

The present thesis also relates to other work which, although not focused on the "mini-challenge",

uses the Alloy Analyzer as a model checker of specification that are originally written in other formal

languages, such as Z or Event B. Finally there can also be established a connection between this

thesis and projects that target tool integration in software specification and development.

5.1.1 Verified File System

Woodcock’s group at York has been responsible for pushing the "mini-challenge" forward by giving

many valuable contributions. They have compiled an extended set of documentation made available

both through scientific papers [34, 96] and the web [97]. Moreover, their contribution goes beyond

organizing conferences and compiling documentation, as they are currently working on the formal-

ization of file systems at all levels, from the POSIX API down to flash memory devices, following the

architecture proposed in [24].

Dr. Andrew Butterfield is both working with the York group and with his students at Dublin in the

formalization of the ONFI [99] specification [16]. Work has been done on the formalization of the

memory architecture of a flash device, and in the mechanization of proofs in the Z/Eves theorem

prover.

The Alloy community at Massachusetts Institute of Technology (MIT), led by Professor Daniel

Jackson, has contributed with an Alloy model of a flash file system’s basic operations, taking into

account the target hardware [48]. They have followed the ONFI [99] specification to model features

related with behavior and usability of NAND memories, such as wear leveling and power loss re-

107

CHAPTER 5. RELATED WORK AND CONCLUSIONS

covery. Taking advantage of the Alloy Analyzer the specification has been automatically verified

through model checking.

At Southampton, Professor Michael Butler is using the Event-B formal language to tackle the

verified file system "mini-challenge". His approach is based on small steps refinement from an

abstract tree specification to a file store, attempting to discharge all refinement proof obligations

[26].

5.1.2 Using Alloy as a Complement for Other Methods

Alloy is being used by many communities as a complement to their own tools, as it is a very straight

forward formal method that combines a powerful declarative language and a fully automated veri-

fication tool. This combination is probably what makes Alloy so attractive to users of other formal

methods. In the Z community Alloy has been used to verify refinement steps [9] of a simple specifi-

cation, and is now being used in an industrial-scale case study (see Discussion in [9]). The authors

of this work have shed some light on a new application of Alloy to find positive results, mainly be-

cause as any other model checker Alloy Analyzer is committed to find negative results such as

counter-examples.

The B method community has also considered Alloy as a good choice for model checking their

B and Event-B specifications. Work has ben done in the past on Alloy model checking of B specifi-

cations [58], and more recently of Event-B [55]. In the latter case, the authors propose an encoding

of a Event-B specification in Alloy, so that some invariants that the RODIN tool [1] could not auto-

matically discharge would be validated through model checking in the Alloy Analyzer. The encoding

they propose is in many cases similar to what has been proposed in this thesis regarding VDM++ to

Alloy translation. They have plans for incorporating a translator from Event-B to Alloy in the RODIN

tool set. The same kind of work has been done for the informal and graphical UML notation [79].

However, the results reported by the authors of such study have not been so positive as for other

notations.

5.2 Conclusions

5.2.1 Contributions

The specifications built in the scope of this project model a simplistic and abstract file system sup-

porting creation and removal of file system objects according to the requirements found in IFF-

SCRG. Following a strategy known as objectification [25], an object-oriented API specification in

VDM++ was built on top of a purely functional behavior specification. This structure allowed the

implementation of a state-based API that is amenable to functional verification by abstracting the

notion of state. Soundness properties were captured by data type invariants assuring overall con-

sistency of the model, and behavior by abstract relations in Alloy and explicit functions in VDM++,

equipped with adequate pre- and post-conditions in both cases.

The verification process presented in this thesis was devised to validate the abstract file system

108

5.2. CONCLUSIONS

specification as a proof of concept. The specification was first validated through unit testing using

the VDMUnit framework that tests all functions that are involved in the specification of the objectified

operations, as shown in Tables 4.4 and 4.8.

The specification continued to be verified by model checking through a translation of the VDM++

model to an Alloy model, which could be automatically verified in the Alloy Analyzer. The resulting

Alloy model is more abstract and in some cases purely relational, in the sense that VDM++ func-

tions are specified as relations among state, and both input and output parameters. Having an

Alloy model completely written in purely relational point free notation would be useful to integrate

with theorem proving tools that are being built around such mathematical abstractions [63]. Taking

advantage of the model finding features of the Alloy Analyzer, the specification was checked for

functional requirements and satisfiability. All proof obligations generated within the VDMTools from

the VDM++ model were encoded in Alloy, and model checked.

Furthermore, 24 out of 38 proof obligations were mechanically discharged in HOL with the

Overture APS. In order to increase the tool’s productivity two parsers were built: one to extract

the POs from a file generated by the VDMTools; and another to extract the PO expressions from

an OmlAst representation. The VDMTools, the Overture Parser and the two new parsers were

combined in a script that automatically performs all the preparation steps prior to the translation.

Regarding tool integration, it was shown that the translation of a functional VDM++ model to an

Alloy model can be straightforward if considering only data types and predicate skeletons. Although

Alloy is a declarative language and VDM++ is an object-oriented language, the construction of the

VDM++ model can be done in a way that allows for an easier translation to Alloy. Being that the

Overture project has already made the link to the HOL theorem prover available, and that a similar

tool could also be built to link VDM++ to Alloy, it seems fair to say that the integration of so different

formal methods such as VDM++, Alloy and HOL with the respective tools can be achievable.

The verification tool chain for VDM++ models, presented in Chapter 3, aims at gradually increas-

ing confidence in the consistency of such models, however it could be reorganized differently (see

Figure 5.1) with Alloy at the top, followed by VDM and HOL respectively. In this new configuration,

requirements would be captured in a purely relational Alloy model, abstracting away from any data

structures whatsoever. Requirements would be verified by model checking before, stepping through

from the Alloy to VDM++ model, that would be an exercise of refinement, instead of translation. At

this point the POs could be generated, and discharged in HOL4 using the APS.

5.2.2 Difficulties

Program slicing is a technique for decomposition or simplification of programs, where the intention

is to focus on specific parts of the program. It can be applied forwardly, backwardly and in both

ways for the smallest slice of the code, that accommodates a given semantical aspect. This project

would have greatly benefited from a slicing tool both for VDM++ and Alloy. Whenever doing verifi-

cation of elaborate models through the verification of individual properties, it is useful to work with

the smallest (sub)models that accommodate each property being checked. This allows for better

scalability of verification, by reducing the size of a specification to the minimum necessary, hence

109

CHAPTER 5. RELATED WORK AND CONCLUSIONS

Abstract Model

Problem

Alloy
Modeling & Model

Checking

VDM
Modeling & Animation

& Testing

HOL
Theorem Proving

PF
CalculusOK

Executable Model

Proof Obligation

Proof Failed

Done

Try Simplified Proof

OK
Done

Figure 5.1: Alloy — VDM — HOL Tool Chain

reducing memory and Central Processing Unit (CPU) time needed for verification. Throughout this

project, specifications have been sliced manually both for analysis and verification purposes, and

this has had a significant impact on their readability and verifiability. On the other hand, manually

slicing also had a negative impact to the overall productivity, because it consumed a quite significant

amount of time.

Formal specification languages are usually good to express abstract properties of systems,

however they are not pure mathematics and therefore each has its implementation details. Formally

specifying software in different languages is a good way to gain greater insight into its abstract

properties, because the implementation details of each language become easier to distinguish from

the kernel of the abstract specification. However, to achieve the integration of different languages

it is necessary to have tools for automatic synchronization among them, otherwise as size and

complexity increases, manual synchronization becomes unfeasible.

Tool maturity is also a fundamental aspect of software development. In this project, we found

110

5.2. CONCLUSIONS

the VDMTools and the Alloy Analyzer mature enough, contrary to the Overture APS which is still

unripe. The tools one chooses to achieve one’s results are decisive to obtain success, so tools not

mature enough to support development beyond stack and queue examples can condemn projects

to failure. Much time of this project was invested, after all, in mastering the Overture Automatic Proof

System. Thanks to a lot of help from its author it has become a key stone of the proposed verification

process. However, the learning curve associated with this tool requires a lot of investment, as it is

still necessary to adjust VDM++ models, correct HOL models, manually apply proof tactics to obtain

a true negative result from a failed proof. The main difficulty in using the system is related with the

preparation of a VDM++ model to be translated to HOL, together with the desired proof obligations.

Although this is not a complex task, it is quite laborious and not well documented. Furthermore, it is

a process that needs to be repeated as many times as the specifications changes and need to be

verified. This thesis contributed to further automate the preparation of VDM++ models for the APS.

The integration of these automations within the APS project was one of the goals of the The Fifth

Overture Workshop, recently held in Portugal.

Refinement of the top-level file system abstract specification was one of the initial goals of

the project which did not come through. Another was the verification in Alloy and HOL of such

refinement process, to see if the proposed verification process for satisfiability proof obligations

scales up to refinement proof obligations. Although the author has paid attention to the lower layers

in order to achieve the desired multi-layered architecture thorough refinement steps, completing the

exercise proved to be unfeasible within the project’s overall schedule and time-span.

5.2.3 Future Work

As future work on the verification of the flash file system specification, more operations should

be modeled and verified. The current VDM++ specification already includes the FS_WriteFile

and the FS_SetFileOffset [53] operations together with the respective unit tests. To complete

the verification cycle for these operations it is still necessary to model check them in Alloy, and

attempt mechanical proof of obligations in HOL. Regarding the operations already verified there

are still proof obligations that, despite having been model checked with success, still haven’t been

discharged through mathematical proof. So they call for the last ingredient of the overall life-cycle

proposed in this thesis and in [30], that of manually proving them using the PF-transform, as already

shown in [66].

Once a minimum working subset of top-level API operations is modeled and verified, the whole

multi-layered structure of IFFSCRG should be addressed from a data refinement point of view, as

already mentioned. In a bottom-up approach, one has to reverse engineer the lower levels and

show that they are valid refinements of the upper ones. In a top-down way, this means specifying

the complete architecture by refining the abstract file system model into more concrete models of

it, one sub layer being added at a time. Only after this (expectedly sizable) piece of work is carried

out can one offer Joshi and Holzmann what they have asked for when putting forward the VFS

"mini-challenge" [47].

111

Bibliography

[1] Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, and Laurent Voisin. A roadmap for

the rodin toolset. In Börger et al. [10], page 347.

[2] M. Bauer, R. Alexis, Greg Atwood, B. Baltar, Al Fazio, K. Frary, M. Hensel, M. Ishac, J. Javan-

ifard, M. Landgraf, D. Leak, K. Loe, Duane Mills, P. Ruby, R. Rozman, S. Sweha, S. Talreja,

and K. Wojciechowski. A Multilevel-Cell 32MB Flash Memory. In ISMVL, pages 367–, 2000.

[3] Antonia Bertolino. Software Testing Research: Achievements, Challenges, Dreams. In Li-

onel C. Briand and Alexander L. Wolf, editors, FOSE, pages 85–103, 2007.

[4] Yves Bertot and Pierre Casteran. Interactive Theorem Proving and Program Development.

SpringerVerlag, 2004.

[5] Roberto Bez, Emilio Camerlenghi, Alberto Modelli, and Angelo Visconti. Introduction to flash

memory. In Proceedings of the IEEE, volume 91, pages 489–502. Central Res. & Dev. Dept.,

STMicroclectronics, Agrate Brianza, Italy, IEEE, 2003.

[6] Juan Bicarregui. The Verified Software Repository. Website:

http://vsr.sourceforge.net/, August 2007.

[7] Juan Bicarregui, C. A. R. Hoare, and J. C. P. Woodcock. The verified software repository: a

step towards the verifying compiler. Formal Asp. Comput., 18(2):143–151, 2006.

[8] Dines Bjørner and Cliff B. Jones, editors. The Vienna Development Method: The Meta-

Language, volume 61 of Lecture Notes in Computer Science. Springer, 1978.

[9] Christie Bolton. Using the Alloy Analyzer to Verify Data Refinement in Z. Electr. Notes Theor.

Comput. Sci., 137(2):23–44, 2005.

[10] Egon Börger, Michael Butler, Jonathan P. Bowen, and Paul Boca, editors. Abstract State

Machines, B and Z, First International Conference, ABZ 2008, London, UK, September 16-

18, 2008. Proceedings, volume 5238 of Lecture Notes in Computer Science. Springer, 2008.

[11] Allan G. Bromley. The evolution of Babbage’s calculating engines. IEEE Ann. Hist. Comput.,

9(2):113–136, 1987.

[12] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill, and L. J. Hwang.

Symbolic Model Checking: 1020 States and Beyond. Inf. Comput., 98(2):142–170, 1992.

113

http://vsr.sourceforge.net/

BIBLIOGRAPHY

[13] Ricky W. Butler. NASA LaRC Formal Methods Program. Website:

http://shemesh.larc.nasa.gov/fm/, January 2008.

[14] Ricky W. Butler and George B. Finelli. The Infeasibility of Quantifying the Reliability of Life-

Critical Real-Time Software. IEEE Trans. Software Eng., 19(1):3–12, 1993.

[15] Ricky W. Butler and Sally C. Johnson. Formal Methods for Life-Critical Software. Technical

report, NASA Langley Research Center, 1993.

[16] Andrew Butterfield and Jim Woodcock. Formalising Flash Memory: First Steps. In ICECCS,

pages 251–260. IEEE Computer Society, 2007.

[17] Michael Holloway C. Why Engineers Should Consider Formal Methods. Technical report,

NASA Langley Research Center, 1997.

[18] Edmund Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT Press, 1999.

[19] Edmund M. Clarke, Orna Grumberg, Hiromi Hiraishi, Somesh Jha, David E. Long, Kenneth L.

McMillan, and Linda A. Ness. Verification of the Futurebus+ Cache Coherence Protocol.

Formal Methods in System Design, 6(2):217–232, 1995.

[20] Edmund M. Clarke, Orna Grumberg, and David E. Long. Model Checking and Abstraction.

ACM Trans. Program. Lang. Syst., 16(5):1512–1542, 1994.

[21] Edmund M. Clarke and Jeannette M. Wing. Formal Methods: State of the Art and Future

Directions. ACM Comput. Surv., 28(4):626–643, 1996.

[22] UK Computer Research Committee. Grand challenges in computing research - the iet. Web-

site:

http://www.ukcrc.org.uk/grand_challenges/.

[23] Intel Corporation. Intel museum. Website:

http://www.intel.com/museum/.

[24] Intel Corporation. Intel Flash File System Core Reference Guide, October 2004. Doc. Ref.

304436-001.

[25] A. Miguel Cruz, Luís Soares Barbosa, and José Nuno Oliveira. From algebras to objects:

Generation and composition. J. UCS, 11(10):1580–1612, 2005.

[26] Kriangsak Damchoom, Michael Butler, and Jean-Raymond Abrial. Modelling and proof of

a tree-structured file system in event-b and rodin. In Shaoying Liu, T. S. E. Maibaum, and

Keijiro Araki, editors, ICFEM, volume 5256 of Lecture Notes in Computer Science, pages

25–44. Springer, 2008.

[27] Louise A. Dennis, Graham Collins, Michael Norrish, Richard J. Boulton, Konrad Slind, Gra-

ham Robinson, Michael J. C. Gordon, and Thomas F. Melham. The PROSPER Toolkit. In

114

http://shemesh.larc.nasa.gov/fm/
http://www.ukcrc.org.uk/grand_challenges/
http://www.intel.com/museum/

BIBLIOGRAPHY

Susanne Graf and Michael I. Schwartzbach, editors, TACAS, volume 1785 of Lecture Notes

in Computer Science, pages 78–92. Springer, 2000.

[28] Bruno Dias and Miguel Ferreira. NAND Flash Interface Specification. Technical report, Uni-

versity of Minho, 2007.

[29] David L. Dill and John Rushby. Acceptance of Formal Methods: Lessons from Hardware

Design. IEEE Computer, 29(4):23–24, apr 1996.

[30] Miguel Ferreira, Samuel Silva, and José Nuno Oliveira. Verifying intel flash file system core

specification. Modelling and Analysis in VDM: Proceedings of the Fourth VDM/Overture

Workshop, May 2008.

[31] Kate Finney and Norman E. Fenton. Evaluating the Effectiveness of Z: The Claims Made

About CICS and Where We Go From Here. Journal of Systems and Software, 35(3):209–

216, 1996.

[32] John Fitzgerald, Peter Gorm Larsen, Paul Mukherjee, Nico Plat, and Marcel Verhoef. Vali-

dated Designs for Object-oriented Systems. Springer, New York, 2005.

[33] Leo Freitas, Zheng Fu, and Jim Woodcock. POSIX file store in Z/Eves: an experiment in the

verified software repository. In ICECCS ’07: Proceedings of the 12th IEEE International Con-

ference on Engineering Complex Computer Systems (ICECCS 2007), pages 3–14, Washing-

ton, DC, USA, 2007. IEEE Computer Society.

[34] Leo Freitas, Jim Woodcock, and Andrew Butterfield. POSIX and the Verification Grand Chal-

lenge: A Roadmap. In ICECCS ’08: Proceedings of the 13th IEEE International Conference

on Engineering of Complex Computer Systems (iceccs 2008), pages 153–162, Washington,

DC, USA, 2008. IEEE Computer Society.

[35] Patrice Godefroid, Peli de Halleux, Aditya V. Nori, Sriram K. Rajamani, Wolfram Schulte,

Nikolai Tillmann, and Michael Y. Levin. Automating Software Testing Using Program Analysis.

IEEE Softw., 25(5):30–37, 2008.

[36] Michael J. C. Gordon. Introduction to the HOL System. In Myla Archer, Jeffrey J. Joyce,

Karl N. Levitt, and Phillip J. Windley, editors, TPHOLs, pages 2–3. IEEE Computer Society,

1991.

[37] Mike Gordon. From LCF to HOL: a short history, pages 169–185. MIT Press, Cambridge,

MA, USA, 2000.

[38] CSK Group. Csk holdings. Website:

http://www.csk.com.

[39] CSK Group. Website:

http://www.vdmtools.jp/, 2008.

115

http://www.csk.com
http://www.vdmtools.jp/

BIBLIOGRAPHY

[40] C. A. R. Hoare. Communicating Sequential Processes. Commun. ACM, 21(8):666–677,

1978.

[41] Tony Hoare and Jay Misra. Verified Software: Theories, Tools, Experiments Vision of a Grand

Challenge Project, pages 1–18. Springer-Verlag, Berlin, Heidelberg, 2005.

[42] Gerard J. Holzmann. The Model Checker SPIN. IEEE Trans. Softw. Eng., 23(5):279–295,

1997.

[43] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. MIT Press, Heyward

Street, Cambridge, MA02142, USA, April 2006.

[44] David Janzen and Hossein Saiedian. Test-Driven Development: Concepts, Taxonomy, and

Future Direction. IEEE Computer, 38(9):43–50, 2005.

[45] Cliff B. Jones. Systematic Software Development Using VDM. Prentice-Hall International,

Englewood Cliffs, New Jersey, second edition, 1990. ISBN 0-13-880733-7.

[46] Cliff B. Jones. Scientific Decisions which Characterize VDM. In Jeannette M. Wing, Jim

Woodcock, and Jim Davies, editors, World Congress on Formal Methods, volume 1708 of

Lecture Notes in Computer Science, pages 28–47. Springer, 1999.

[47] Rajeev Joshi and Gerard J. Holzmann. A mini challenge: build a verifiable filesystem. Formal

Asp. Comput., 19(2):269–272, 2007.

[48] Eunsuk Kang and Daniel Jackson. Formal Modeling and Analysis of a Flash Filesystem in

Alloy. In Börger et al. [10], pages 294–308.

[49] Hyeong-Ju Kang and In-Cheol Park. SAT-based unbounded symbolic model checking. IEEE

Trans. on CAD of Integrated Circuits and Systems, 24(2):129–140, 2005.

[50] Gerwin Klein, Steve Rowe, and Régis Décamps. JFLEX - The Fast Scanner Generator for

Java. Website:

http://jflex.de/, May 2008.

[51] Software Quality Research Laboratory. Pacemaker Formal Methods Challenge. Website:

http://www.cas.mcmaster.ca/sqrl/pacemaker.htm, April 2007.

[52] Stefan K. Lai. Flash memories: Successes and challenges. IBM Journal of Research and

Development, 52(4/5):529–535, 2008.

[53] Peter Grom Larsen. VDM Portal. Website:

http://www.vdmportal.org.

[54] Hugo Daniel Macedo, Peter Gorm Larsen, and John S. Fitzgerald. Incremental Development

of a Distributed Real-Time Model of a Cardiac Pacing System Using VDM. In Jorge Cuéllar,

T. S. E. Maibaum, and Kaisa Sere, editors, FM, volume 5014 of Lecture Notes in Computer

Science, pages 181–197. Springer, 2008.

116

http://jflex.de/
http://www.cas.mcmaster.ca/sqrl/pacemaker.htm
http://www.vdmportal.org

BIBLIOGRAPHY

[55] Paulo J. Matos and João Marques-Silva. Model Checking Event-B by Encoding into Alloy.

CoRR, abs/0805.3256, 2008.

[56] Kenneth L. McMillan. Interpolation and SAT-Based Model Checking , volume 2725/2003 of

Lecture Notes in Computer Science, pages 1–13. Springer Berlin / Heidelberg, 2004.

[57] Bertrand Meyer. Seven Principles of Software Testing. Computer, 41(8):99–101, 2008.

[58] Leonid Mikhailov and Michael J. Butler. An Approach to Combining B and Alloy. In Didier

Bert, Jonathan P. Bowen, Martin C. Henson, and Ken Robinson, editors, ZB, volume 2272 of

Lecture Notes in Computer Science, pages 140–161. Springer, 2002.

[59] Robert Milne. Proof Rules for VDM Statements. In Robin E. Bloomfield, Lynn S. Marshall, and

Roger B. Jones, editors, VDM Europe, volume 328 of Lecture Notes in Computer Science,

pages 318–336. Springer, 1988.

[60] Carroll Morgan and Bernard Sufrin. Specification of the UNIX Filing System. IEEE Trans.

Software Eng., 10(2):128–142, 1984.

[61] Paul Mukherjee, Fabien Bousquet, Jerome Delabre, Stephen Paynter, and Peter Gorm

Larsen. Exploring Timing Properties Using VDM++ on an Industrial Application. In J.C. Bi-

carregui and J.S. Fitzgerald, editors, Proceedings of the Second VDM Workshop, September

2000. Available at www.vdmportal.org.

[62] Madan Musuvathi. Systematic concurrency testing using CHESS. In Shmuel Ur, editor,

PADTAD, page 10. ACM, 2008.

[63] C. Necco, J.N. Oliveira, and J. Visser. ESC/PF: Static checking of relational models by calcu-

lation, 2008. (Submitted).

[64] Thomas R. Nicely. Thomas R. Nicely’s Home Page. Website:

http://www.trnicely.net/, August 2008.

[65] Michael Norrish and Konrad Slind. Hol 4 kananaskis 4. Website:

http://hol.sourceforge.net.

[66] J.N. Oliveira. Extended static checking by calculation using the pointfree transform, 2008.

Tutorial paper (56 p.) accepted for publication by Springer-Verlag, LNCS series.

[67] Aleph One. Yaffs - a flash file sysem for embedded use. Website:

http://www.yaffs.net/.

[68] Overture-Core-Team. Overture web site. Website:

http://www.overturetool.org, 2007.

[69] Sam Owre, John M. Rushby, and Natarajan Shankar. PVS: A Prototype Verification System.

In Deepak Kapur, editor, CADE, volume 607 of Lecture Notes in Computer Science, pages

748–752. Springer, 1992.

117

http://www.trnicely.net/
http://hol.sourceforge.net
http://www.yaffs.net/
http://www.overturetool.org

BIBLIOGRAPHY

[70] Patrick R.H. Place. POSIX 1003.21—Real Time Distributed Systems Communication. Tech-

nical report, Software Engineering Institute, Carnegie Mellon University, August 1995.

[71] Nico Plat and Peter Gorm Larsen. An overview of the ISO/VDM-SL standard. SIGPLAN

Notices, 27(8):76–82, 1992.

[72] A Rahman, R Haque, and K Tedrow. Memory array with pseudo single bit memory cell and

method. US Patent 7272041, September 2007.

[73] Glenn E. Reeves and Tracy A. Neilson. The Mars Rover Spirit FLASH anomaly. In Aerospace

Conference, 2005 IEEE, pages 4186–4199, 2005.

[74] Neal R. Reizer, Gregory D. Abowd, B. Craig Meyers, and Patrick R.H. Place. Using formal

methods for requirements specification of a proposed POSIX standard. Proceedings of the

First International Conference on Requirements Engineering, pages 118–125, 1994.

[75] Sergei Romanenko, Claudio Russo, and Peter Sestoft. Moscow ML Language Overview.

Website:

http://www.itu.dk/~sestoft/mosml.html, June 2000.

[76] Mark Saaltink. The Z/EVES System. In Jonathan P. Bowen, Michael G. Hinchey, and

David Till, editors, ZUM, volume 1212 of Lecture Notes in Computer Science, pages 72–85.

Springer, 1997.

[77] Adriana Sucena Santos. VDM++ Test Automation Support. Master’s thesis, Minho University

with exchange to Engineering College of Arhus, July 2008.

[78] Dana S. Scott. A Type-Theoretical Alternative to ISWIM, CUCH, OWHY. Theor. Comput. Sci.,

121(1&2):411–440, 1993.

[79] Anthony J. H. Simons and Carlos Alberto Fernandez y Fernandez. Using Alloy to model-

check visual design notations. CoRR, abs/0802.2258, 2008.

[80] Konrad Slind and Michael Norrish. A Brief Overview of HOL4. In Otmane Aït Mohamed, César

Muñoz, and Sofiène Tahar, editors, TPHOLs, volume 5170 of Lecture Notes in Computer

Science, pages 28–32. Springer, 2008.

[81] J. M. Spivey. The Z notation: a reference manual. Prentice-Hall, Inc., Upper Saddle River,

NJ, USA, 1989.

[82] Open Group Technical Standard. Standard for information technology - Portable operating

system interface (POSIX). Base Definitions. IEEE Std 1003.1, 2004 Edition. The Open Group

Technical Standard. Base Specifications, Issue 6. Includes IEEE Std 1003.1-2001, IEEE Std

1003.1-2001/Cor 1-2002 and IEEE Std 1003.1-2001/Cor 2-2004. System Interfaces, 2004.

[83] Open Group Technical Standard. Standard for information technology - Portable operating

system interface (POSIX). Rationale (Informative). IEEE Std 1003.1, 2004 Edition. The Open

118

http://www.itu.dk/~sestoft/mosml.html

BIBLIOGRAPHY

Group Technical Standard. Base Specifications, Issue 6. Includes IEEE Std 1003.1-2001,

IEEE Std 1003.1-2001/Cor 1-2002 and IEEE Std 1003.1-2001/Cor 2-2004. System Inter-

faces, 2004.

[84] Open Group Technical Standard. Standard for information technology - Portable operating

system interface (POSIX). System Interfaces. IEEE Std 1003.1, 2004 Edition. The Open

Group Technical Standard. Base Specifications, Issue 6. Includes IEEE Std 1003.1-2001,

IEEE Std 1003.1-2001/Cor 1-2002 and IEEE Std 1003.1-2001/Cor 2-2004. System Inter-

faces, 2004.

[85] Ulrich Stern and David L. Dill. Automatic verification of the SCI cache coherence protocol.

In Paolo Camurati and Hans Eveking, editors, CHARME, volume 987 of Lecture Notes in

Computer Science, pages 21–34. Springer, 1995.

[86] Mana Taghdiri and Daniel Jackson. A Lightweight Formal Analysis of a Multicast Key Man-

agement Scheme. In Hartmut König, Monika Heiner, and Adam Wolisz, editors, FORTE,

volume 2767 of Lecture Notes in Computer Science, pages 240–256. Springer, 2003.

[87] Alan Turing. On computable numbers, with an application to the Entscheidungsproblem.

Proceedings of the London Mathematical Society, January 1936.

[88] Manuel van den Berg, Marcel Verhoef, and Mark Wigmans. Formal Specification and Devel-

opment of a Mission Critical Data Handling Subsystem – an Industrial Usage Report. In John

Fitzgerald and Peter Gorm Larsen, editors, VDM in Practice, pages 95–98, September 1999.

[89] Manuel van den Berg, Marcel Verhoef, and Mark Wigmans. Formal Specification of an Auc-

tioning System Using VDM++ and UML – an Industrial Usage Report. In John Fitzgerald and

Peter Gorm Larsen, editors, VDM in Practice, pages 85–93, September 1999.

[90] Marcel Verhoef, Peter Gorm Larsen, and Jozef Hooman. Modeling and Validating Distributed

Embedded Real-Time Systems with VDM++. In Jayadev Misra, Tobias Nipkow, and Emil

Sekerinski, editors, FM, volume 4085 of Lecture Notes in Computer Science, pages 147–

162. Springer, 2006.

[91] Sander Vermolen. Automated Proof Support. Website:

http://www.overturetool.org/twiki/bin/view/Main/AutomaticProof.

[92] Sander Vermolen. Automatically Discharging VDM Proof Obligations using HOL. Master’s

thesis, Radboud University Nijmegen, Computer Science Department, August 2007.

[93] John von Neumann. First Draft of a Report on the EDVAC. IEEE Ann. Hist. Comput.,

15(4):27–75, 1993.

[94] Maurice V. Wilkes. Babbage’s Expectations for his Engines. IEEE Ann. Hist. Comput.,

13(2):141–145, 1991.

119

http://www.overturetool.org/twiki/bin/view/Main/AutomaticProof

BIBLIOGRAPHY

[95] Poul Frederick Williams, Armin Biere, Edmund M. Clarke, and Anubhav Gupta. Combining

Decision Diagrams and SAT Procedures for Efficient Symbolic Model Checking. In E. Allen

Emerson and A. Prasad Sistla, editors, CAV, volume 1855 of Lecture Notes in Computer

Science, pages 124–138. Springer, 2000.

[96] Jim Woodcock. First Steps in the Verified Software Grand Challenge. IEEE Computer,

39(10):57–64, 2006.

[97] Jim Woodcock and Leonardo Freitas. ABZ Conference 2008 - ASM + B + Z. Website:

http://www.cs.york.ac.uk/circus/mc/abz, 2008.

[98] David Woodhouse. JFFS: The Journalling Flash File System. Technical report, Red Hat, Inc,

2001.

[99] ONFI Workgroup. Open NAND Flash Interface Specification. Technical Report 2.0, Hynix

Semiconductor and Intel Corporation and Micron Technology, Inc. and Phison Electronics

Corp. and Sony Corporation and Spansion and STMicroelectronics, February 2008.

[100] Pamela Zave. A Formal Model of Addressing for Interoperating Networks. In John Fitzgerald,

Ian J. Hayes, and Andrzej Tarlecki, editors, FM, volume 3582 of Lecture Notes in Computer

Science, pages 318–333. Springer, 2005.

120

http://www.cs.york.ac.uk/circus/mc/abz

Appendix A

Libraries

A.1 Alloy Relational Calculus Library

module RelCalc

/*

* Authors:

* Miguel Ferreira <miguel@di.uminho.pt>

* Samuel Silva <silva.samuel@gmail.com >

* Description:

* Relational calculus library.

* Conventions:

* - all relations begin with a capital letter;

* - all functions begin with a regular letter.

*/

/* *** */

fun id[S: univ] : univ -> univ {

(S -> S) & iden

}

fun ker [R : univ -> univ] : univ -> univ {

R . (~R)

}

fun img [R : univ -> univ] : univ -> univ {

(~R) . R

}

fun dom [R: univ ->univ] : set (R.univ) {

R.univ

}

fun rng [R: univ ->univ] : set (univ.R) {

univ.R

}

/* *** */

pred Reflexive [R : univ -> univ , S: set univ] { id[S] in R }

pred Correflexive [R : univ -> univ , S: set univ] { R in id[S] }

121

CHAPTER A. LIBRARIES

pred Symmetric [R : univ -> univ] { R in ~R }

pred Transitive [R : univ -> univ] { R.R in R }

pred Cotransitive [R: univ -> univ] { R in R.R }

pred Antisymmetric [R: univ -> univ , S: univ] { R & ~R in id[S] }

pred Per [R: univ -> univ] {

Symmetric[R]

Transitive[R]

Cotransitive[R]

}

pred Preorder [R: univ -> univ , S: set univ] {

Transitive[R]

Reflexive[R,S]

}

pred Equivalence [R: univ -> univ , S: set univ] {

Per[R]

Preorder[R,S]

}

pred Partialorder [R: univ -> univ , S: set univ] {

Preorder[R,S]

Antisymmetric[R,S]

}

pred Id [R: univ -> univ , S: set univ] {

Correflexive[R,S]

Equivalence[R,S]

Partialorder[R,S]

}

pred Linearorder [R: univ -> univ , S: set univ] {

Partialorder[R,S]

Connected[R,S]

}

pred Connected [R : univ -> univ , S: set univ] {

(R + ~R) = (S -> S)

}

pred Simple [R: univ -> univ , S: set univ] { Correflexive[img[R],S] }

pred Entire [R: univ -> univ , S: set univ] { Reflexive[ker[R],S] }

pred Surjective [R: univ -> univ , S: set univ] { Reflexive[img[R],S] }

pred Injective [R: univ -> univ , S: set univ] { Correflexive[ker[R],S] }

pred Function [R: univ -> univ , A,B: set univ] {

Simple[R,B]

Entire[R,A]

}

pred Representation [R: univ -> univ , A: set univ] {

122

A.1. ALLOY RELATIONAL CALCULUS LIBRARY

Injective[R,A]

Entire[R,A]

}

pred Abstraction [R: univ -> univ , B: set univ] {

Simple[R,B]

Surjective[R,B]

}

pred Bijection [R: univ -> univ , A, B: set univ] {

Representation[R,A]

Abstraction[R,B]

}

/* *** */

pred Assymetric [R: univ -> univ] { ~R not in R }

pred Acyclic [R: univ -> univ , S: set univ] { no ^R & id[S] }

/* *** */

fun converse [R: univ -> univ] : univ -> univ { ~R }

/* *** */

run {}

123

Appendix B

Models

B.1 VDM++ Model

B.1.1 Flash File System Core

class FlashFileSystemCore

types

protected

FFS_Status =

<FFS_StatusSuccess >

| <FS_ErrorFileNotFound >

| <FS_ErrorFileStillOpen >

| <FS_ErrorDirectoryNonEmpty >

| <FS_ErrorFileAlreadyExists >

| <FS_ErrorInvalidPath >

| <FFS_StatusInvalidParameter >

| <FFS_StatusUnknown >;

end FlashFileSystemCore

File System Layer Base

class FileSystemLayerBase is subclass of FlashFileSystemCore

types

protected

System :: table : OpenFilesTable

fileStore : FileStore

inv sys ==

forall ofi in set rng sys.table &

isElemFileStore(ofi.path , sys.fileStore) and

isRegularFile(sys.fileStore(ofi.path).info);

protected

125

CHAPTER B. MODELS

FileStore = map Path to File

inv fileStore ==

forall path in set dom fileStore &

let parent = dirName(path) in

parent in set dom fileStore and

isDirectory(fileStore(parent).info);

protected

Path = <Root > | seq1 of FileName;

protected

FileName = seq1 of char;

protected

File ::

info : FS_FileDirInfo

contents : [FileContents]

inv file ==

(isDirectory(file.info) and file.contents = nil) or

(isRegularFile(file.info) and file.contents <> nil);

protected

FS_FileDirInfo :: attributes : Attributes;

protected

Attributes :: fileType : FileType;

protected

FileType = <RegularFile > | <Directory >;

protected

OpenFilesTable = map FS_FileHandle to FS_OpenFileInfo;

protected

FS_FileHandle = nat;

protected

FS_OpenFileInfo ::

fileOffset : nat1

accessMode : FS_AccessMode

path : Path;

protected

FS_OpenMode =

<FS_CreateNew >

| <FS_CreateAlways >

| <FS_OpenRead >

| <FS_OpenWrite >

| <FS_OpenAlways >

| <FS_OpenWriteOnly >

| <FS_CreateAlwaysReadOnly >

| <FS_CreateNewReadOnly >;

protected

FS_AccessMode =

<FS_AccessReadOnly >

| <FS_AccessWriteOnly >

| <FS_AccessReadWrite >;

126

B.1. VDM++ MODEL

protected

FileContents = seq of token;

functions

protected

dirName : Path -> Path

dirName(full_path) ==

cases full_path:

<Root > -> <Root >,

[-] -> <Root >,

others -> [full_path(i) | i in set inds full_path & i < len full_path]

end;

protected

isDirectory : FS_FileDirInfo -> bool

isDirectory(info) == info.attributes.fileType = <Directory >;

protected

isRegularFile : FS_FileDirInfo -> bool

isRegularFile(info) == info.attributes.fileType = <RegularFile >;

protected

hasSubFiles : FileStore * Path -> bool

hasSubFiles(fileStore , path) ==

exists subpath in set dom fileStore & path = dirName(subpath);

protected

isRoot : Path -> bool

isRoot(path) == path = <Root >;

protected

isElemFileStore : Path * FileStore -> bool

isElemFileStore(path , fileStore) == path in set dom fileStore;

protected

isElemTablePath: Path * OpenFilesTable -> bool

isElemTablePath(path , table) == exists ofd in set rng table & ofd.path = path;

protected

isElemTableHandle: FS_FileHandle * OpenFilesTable -> bool

isElemTableHandle(handle , table) == handle in set dom table;

protected

isDirName : Path * Path -> bool

isDirName(parent , path) == parent = dirName(path);

protected

newFileDirInfo: Attributes -> FS_FileDirInfo

newFileDirInfo(attributes) ==

mk_FS_FileDirInfo(attributes);

protected

emptyFileContents : FileType -> [FileContents]

emptyFileContents(fileType) ==

if fileType = <Directory > then nil else "";

127

CHAPTER B. MODELS

protected

newFileHandle : set of FS_FileHandle -> FS_FileHandle

newFileHandle(handles) ==

if card handles = 0 then 1 else max(handles) + 1

post RESULT not in set handles;

protected

max : set of nat -> nat

max(s) ==

let {result} = { x | x in set s & forall y in set s & x >= y } in

result

pre card s > 0;

values

protected

fs_open2access_mode_map: map FS_OpenMode to FS_AccessMode =

{

<FS_CreateNew > |-> <FS_AccessReadWrite >,

<FS_CreateAlways > |-> <FS_AccessReadWrite >,

<FS_OpenRead > |-> <FS_AccessReadOnly >,

<FS_OpenWrite > |-> <FS_AccessReadWrite >,

<FS_OpenAlways > |-> <FS_AccessReadWrite >,

<FS_OpenWriteOnly > |-> <FS_AccessWriteOnly >,

<FS_CreateAlwaysReadOnly > |-> <FS_AccessReadOnly >,

<FS_CreateNewReadOnly > |-> <FS_AccessReadOnly >

};

protected

initFileStore = {<Root > |-> mk_File(newFileDirInfo(mk_Attributes(<Directory >)), nil)};

protected

initOpenFilesTable = {|->};

protected

fileAttributes = mk_Attributes(<RegularFile >);

protected

dirAttributes = mk_Attributes(<Directory >);

end FileSystemLayerBase

File System Layer Operations

class FileSystemLayerOperations is subclass of FileSystemLayerBase

functions

protected

FS_DeleteFileDir_Main: System * Path -> System * FFS_Status

FS_DeleteFileDir_Main(sys , full_path) ==

if full_path in set dom sys.fileStore and

pre_FS_DeleteFileDir_System(sys , full_path)

128

B.1. VDM++ MODEL

then mk_(FS_DeleteFileDir_System(sys , full_path), <FFS_StatusSuccess >)

else mk_(sys , FS_DeleteFileDir_Exception(sys , full_path));

protected

FS_DeleteFileDir_System: System * Path -> System

FS_DeleteFileDir_System(sys , full_path) ==

mu(sys , fileStore |-> FS_DeleteFileDir_FileStore(sys.fileStore , {full_path }))

pre (forall ofi in set rng sys.table & ofi.path <> full_path) and

pre_FS_DeleteFileDir_FileStore(sys.fileStore , {full_path });

protected

FS_DeleteFileDir_FileStore: FileStore * set of Path -> FileStore

FS_DeleteFileDir_FileStore(fileStore , paths) ==

paths <-: fileStore

pre forall path in set dom fileStore &

dirName(path) in set paths => path in set paths;

protected

FS_DeleteFileDir_Exception: System * Path -> FFS_Status

FS_DeleteFileDir_Exception(sys , full_path) ==

if not isElemFileStore(full_path , sys.fileStore)

then <FS_ErrorFileNotFound >

elseif isElemTablePath(full_path , sys.table)

then <FS_ErrorFileStillOpen >

elseif isDirectory(sys.fileStore(full_path).info) and

hasSubFiles(sys.fileStore , full_path)

then <FS_ErrorDirectoryNonEmpty >

else <FFS_StatusUnknown >;

protected

FS_OpenFileDir_Main: System * Path * Attributes * FS_OpenMode

-> System * [FS_FileHandle] * FFS_Status

FS_OpenFileDir_Main(sys , full_path , attributes , omode) ==

if pre_FS_OpenFileDir_System(sys , full_path , attributes , omode) and

checkOpenMode(sys , full_path , omode)

then if mustDeleteFirst(sys.fileStore , full_path , omode) and

(full_path = <Root > => attributes.fileType = <Directory >)

then let mk_(sys ',status) = FS_DeleteFileDir_Main(sys , full_path) in

if status <> <FFS_StatusSuccess >

then mk_(sys ', nil , status)

else let result = FS_OpenFileDir_System(sys ', full_path , attributes , omode)

in

mk_(result .#1, result .#2, <FFS_StatusSuccess >)

else let mk_(sys '',handle) = FS_OpenFileDir_System(sys , full_path , attributes ,

omode) in

mk_(sys '', handle , <FFS_StatusSuccess >)

else mk_(sys , nil , FS_OpenFileDir_Exception(sys , full_path , omode));

protected

mustDeleteFirst: FileStore * Path * FS_OpenMode -> bool

mustDeleteFirst(fs, path , omode) ==

isCreateAlways(omode) and isElemFileStore(path , fs);

protected

checkOpenMode: System * Path * FS_OpenMode -> bool

checkOpenMode(sys , path , omode) ==

not (isCreateNew(omode) and isElemFileStore(path , sys.fileStore)) and

not (isCreateAlways(omode) and isElemTablePath(path , sys.table)) and

129

CHAPTER B. MODELS

not (isOpen(omode) and not isElemFileStore(path , sys.fileStore)) and

not ((isOpen(omode) or omode = <FS_OpenAlways >) and

isElemFileStore(path , sys.fileStore) and

not isRegularFile(sys.fileStore(path).info));

protected

FS_OpenFileDir_System: System * Path * Attributes * FS_OpenMode

-> System * [FS_FileHandle]

FS_OpenFileDir_System(sys , full_path , attr , omode) ==

let fileStore ' = FS_OpenFileDir_FileStore(sys.fileStore , full_path , attr),

mk_(table ,handle) = FS_OpenFileDir_Table(sys.table , full_path , omode , attr.

fileType),

offset = getOpenOffset(fileStore '(full_path), omode),

table ' = table ++ if handle <> nil and isElemTableHandle(handle ,

table)

then {handle |-> mu(table(handle), fileOffset |->

offset)}

else {|->} in

mk_(mk_System(table ', fileStore '), handle)

pre pre_FS_OpenFileDir_FileStore(sys.fileStore , full_path , attr);

protected

getOpenOffset: File * FS_OpenMode -> [nat1]

getOpenOffset(file , omode) ==

if file.contents <> nil

then cases omode:

<FS_OpenWrite > -> (len file.contents) + 1,

<FS_OpenAlways > -> (len file.contents) + 1,

others -> 1

end

else nil;

protected

FS_OpenFileDir_FileStore: FileStore * Path * Attributes -> FileStore

FS_OpenFileDir_FileStore(fileStore , full_path , attributes) ==

if not isElemFileStore(full_path , fileStore)

then let content = emptyFileContents(attributes.fileType),

newFile = mk_File(newFileDirInfo(attributes), content) in

fileStore munion { full_path |-> newFile }

else fileStore

pre (full_path = <Root > and attributes.fileType = <Directory >) or

(let parent = dirName(full_path) in

isElemFileStore(parent ,fileStore) and isDirectory(fileStore(parent).info));

protected

FS_OpenFileDir_Table: OpenFilesTable * Path * FS_OpenMode * FileType -> OpenFilesTable *

[FS_FileHandle]

FS_OpenFileDir_Table(table , full_path , omode , fileType) ==

if fileType = <Directory >

then mk_(table , nil)

else let amode = fs_open2access_mode_map(omode),

ofi = mk_FS_OpenFileInfo (1, amode , full_path),

handle = newFileHandle(dom table) in

mk_(table munion { handle |-> ofi }, handle);

protected

FS_OpenFileDir_Exception: System * Path * FS_OpenMode -> FFS_Status

FS_OpenFileDir_Exception(sys , full_path , omode) ==

130

B.1. VDM++ MODEL

if isCreateNew(omode) and isElemFileStore(full_path , sys.fileStore)

then <FS_ErrorFileAlreadyExists >

elseif isCreateAlways(omode) and isElemTablePath(full_path , sys.table)

then <FS_ErrorFileStillOpen >

elseif isOpen(omode) and not isElemFileStore(full_path , sys.fileStore)

then <FS_ErrorFileNotFound >

elseif isOpen(omode) and isElemFileStore(full_path , sys.fileStore) and

not isRegularFile(sys.fileStore(full_path).info)

then <FFS_StatusInvalidParameter >

elseif full_path <> <Root > and not isElemFileStore(dirName(full_path), sys.fileStore)

then <FS_ErrorInvalidPath >

elseif full_path <> <Root > and not isDirectory(sys.fileStore(dirName(full_path)).info)

then <FS_ErrorInvalidPath >

else <FFS_StatusUnknown >;

protected

isCreateNew: FS_OpenMode -> bool

isCreateNew(omode) ==

omode = <FS_CreateNew > or

omode = <FS_CreateNewReadOnly >;

protected

isCreateAlways: FS_OpenMode -> bool

isCreateAlways(omode) ==

omode = <FS_CreateAlways > or

omode = <FS_CreateAlwaysReadOnly >;

protected

isOpen: FS_OpenMode -> bool

isOpen(omode) ==

omode = <FS_OpenRead > or

omode = <FS_OpenWrite > or

omode = <FS_OpenWriteOnly >;

protected

FS_Init_Main : () -> System * FFS_Status

FS_Init_Main () == mk_(FS_Init_System (), <FFS_StatusSuccess >);

protected

FS_Init_System : () -> System

FS_Init_System () == mk_System(FS_Init_Table (), FS_Init_FileStore ());

protected

FS_Init_Table : () -> OpenFilesTable

FS_Init_Table () == {|->};

protected

FS_Init_FileStore : () -> FileStore

FS_Init_FileStore () ==

{<Root > |-> mk_File(mk_FS_FileDirInfo(mk_Attributes(<Directory >)), nil)};

end FileSystemLayerOperations

File System Layer Object

class FileSystemLayerObject is subclass of FileSystemLayerOperations

131

CHAPTER B. MODELS

instance variables

protected

sys : FileSystemLayerBase `System := FS_Init_Main ().#1;

operations

public

SetSystem: System ==> ()

SetSystem(sys ') ==

sys := sys ';

public

FS_DeleteFileDir : Path ==> FFS_Status

FS_DeleteFileDir(full_path) ==

def mk_(sys ',status) = FS_DeleteFileDir_Main(sys , full_path) in

(sys := sys '; return status);

public

FS_OpenFileDir : Path * Attributes * FS_OpenMode

==> [FS_FileHandle] * FFS_Status

FS_OpenFileDir(full_path , attributes , omode) ==

def mk_(sys ',handle ,status)

= FS_OpenFileDir_Main(sys , full_path , attributes , omode) in

(sys := sys '; return mk_(handle , status));

end FileSystemLayerObject

132

B.2. UNIT TESTS

B.2 Unit tests

B.2.1 FS_DeleteFileDir

Intel Test

class IntelTest

operations

public

Execute: () ==> ()

Execute () ==

(dcl ts : TestSuite := new TestSuite ();

ts.AddTest(new FileStoreTest (" FileStore Test"));

ts.AddTest(new SystemTest (" System Test"));

ts.AddTest(new DeleteFileDirTest (" FS_DeleteFileDir Test"));

ts.Run())

end IntelTest

System Test

class SystemTest is subclass of TestCase , FileSystemLayerOperations

instance variables

protected

vals : FileSystemLayerValues;

protected

sys : FileSystemLayerBase `System;

protected

io : IO;

operations

protected

SetUp: () ==> ()

SetUp() ==

(vals := new FileSystemLayerValues ();

sys := mk_System ({|->},vals.fs1);

io := new IO());

protected

RunTest: () ==> ()

RunTest () ==

(SimpleDeleteTest (["etc","hosts "]);

SimpleDeleteTest (["etc","conf.d"]);

SimpleDeleteTest (["etc","resolv.conf "]);

SimpleDeleteTest (["bin","ls"]);

133

CHAPTER B. MODELS

SimpleDeleteTest (["bin","wc"]);

SimpleDeleteTest (["etc "]);

SimpleDeleteTest (["bin "]);

SimpleDeleteTest(<Root >));

protected

TearDown: () ==> ()

TearDown () == skip;

protected

SimpleDeleteTest: Path ==> ()

SimpleDeleteTest(path) ==

let sys ' = FS_DeleteFileDir_System(sys ,path) in

(AssertTrue(path not in set dom sys '. fileStore);

AssertTrue(dom sys.fileStore = dom sys '. fileStore union {path});

AssertTrue(sys.table = sys '.table);

sys := sys ');

end SystemTest

File Store Test

class FileStoreTest is subclass of TestCase , FileSystemLayerOperations

instance variables

protected

vals : FileSystemLayerValues;

protected

fs : FileStore;

protected

io : IO;

operations

protected

SetUp: () ==> ()

SetUp() ==

(vals := new FileSystemLayerValues ();

fs := vals.fs1;

io := new IO());

protected

RunTest: () ==> ()

RunTest () ==

(dcl init : FileStore := fs;

SimpleDeleteTest ({[" etc", "hosts "]});

SimpleDeleteTest ({[" etc", "conf.d"]});

SimpleDeleteTest ({[" bin", "ls"]});

SimpleDeleteTest ({<Root >, ["etc"], ["etc", "resolv.conf"], ["bin"], ["bin","wc"]});

);

134

B.2. UNIT TESTS

protected

TearDown: () ==> ()

TearDown () == skip;

protected

SimpleDeleteTest: set of Path ==> ()

SimpleDeleteTest(paths) ==

let fs ' = FS_DeleteFileDir_FileStore(fs,paths) in

(AssertTrue(paths inter dom fs' = {});

AssertTrue(paths union dom fs' = dom fs);

fs := fs ');

end FileStoreTest

FS_DeleteFileDir Test

class DeleteFileDirTest is subclass of TestCase , FileSystemLayerObj

instance variables

protected

vals : FileSystemLayerValues;

protected

io : IO;

operations

protected

SetUp: () ==> ()

SetUp() ==

(vals := new FileSystemLayerValues ();

SetSystem(vals.sys1);

io := new IO());

protected

RunTest: () ==> ()

RunTest () ==

(dcl status : FFS_Status;

status := FS_DeleteFileDir (["etc","hosts "]);

AssertTrue(status = <FFS_StatusSuccess >);

status := FS_DeleteFileDir (["bin","cp"]);

AssertTrue(status = <FS_ErrorFileNotFound >);

status := FS_DeleteFileDir (["etc"]);

AssertTrue(status = <FS_ErrorFileStillOpen >);

status := FS_DeleteFileDir (["bin"]);

AssertTrue(status = <FS_ErrorDirectoryNonEmpty >);

);

protected

TearDown: () ==> ()

135

CHAPTER B. MODELS

TearDown () == skip;

end DeleteFileDirTest

Test Values

class FileSystemLayerValues is subclass of FileSystemLayerBase

instance variables

public

dirAttr : Attributes

:= mk_Attributes(<Directory >);

public

fileAttr : Attributes

:= mk_Attributes(<RegularFile >);

public

dirInfo : FS_FileDirInfo

:= mk_FS_FileDirInfo(dirAttr);

public

fileInfo : FS_FileDirInfo

:= mk_FS_FileDirInfo(fileAttr);

public

table1 : OpenFilesTable

:= { 1 |-> mk_FS_OpenFileInfo(<Root >),

2 |-> mk_FS_OpenFileInfo (["etc"]),

3 |-> mk_FS_OpenFileInfo (["etc","resolv.conf "]),

4 |-> mk_FS_OpenFileInfo (["etc","resolv.conf "]),

5 |-> mk_FS_OpenFileInfo (["bin","wc"]) };

public

fs1 : FileStore

:= { <Root > |-> mk_File(dirInfo),

["etc"] |-> mk_File(dirInfo),

["etc","conf.d"] |-> mk_File(dirInfo),

["etc","hosts"] |-> mk_File(fileInfo),

["etc","resolv.conf"] |-> mk_File(fileInfo),

["bin"] |-> mk_File(dirInfo),

["bin","ls"] |-> mk_File(fileInfo),

["bin","wc"] |-> mk_File(fileInfo) };

public

sys1 : System

:= mk_System(table1 ,fs1);

end FileSystemLayerValues

136

B.2. UNIT TESTS

B.2.2 FS_OpenFileDir

Intel Test

class IntelTest

operations

public

Execute: () ==> ()

Execute () ==

(dcl ts : TestSuite := new TestSuite ();

ts.AddTest(new FileStoreTest (" FileStore Test"));

ts.AddTest(new SystemTest (" System Test"));

ts.AddTest(new OpenFilesTableTest (" OpenFilesTable Test"));

ts.AddTest(new OpenFileDirTest (" OpenFileDir Test"));

ts.Run())

end IntelTest

System Test

class SystemTest is subclass of TestCase , FileSystemLayerOperations

instance variables

protected

vals : FileSystemLayerValues;

protected

sys : FileSystemLayerBase `System;

protected

io : IO;

protected

h : [FS_FileHandle];

operations

protected

SetUp: () ==> ()

SetUp() ==

(vals := new FileSystemLayerValues ();

sys := mk_System ({|->},{|->});

io := new IO());

protected

RunTest: () ==> ()

RunTest () ==

(SimpleOpenTest(<Root >, vals.dirAttr , <FS_CreateAlways >);

137

CHAPTER B. MODELS

SimpleOpenTest(<Root >, vals.dirAttr , <FS_OpenAlways >);

SimpleOpenTest ([" etc"], vals.dirAttr , <FS_CreateNew >);

SimpleOpenTest ([" bin"], vals.dirAttr , <FS_CreateAlways >);

SimpleOpenTest ([" etc","hosts"], vals.fileAttr , <FS_OpenWrite >);

SimpleOpenTest ([" etc","conf.d"], vals.fileAttr , <FS_OpenRead >);

SimpleOpenTest ([" bin","ls"], vals.fileAttr , <FS_OpenWriteOnly >);

SimpleOpenTest ([" bin","wc"], vals.fileAttr , <FS_OpenWrite >);

SimpleOpenTest ([" etc", "resolv.conf"], vals.fileAttr , <FS_OpenWrite >));

protected

TearDown: () ==> ()

TearDown () == skip;

protected

SimpleOpenTest: Path * Attributes * FS_OpenMode ==> ()

SimpleOpenTest(path , attr , omode) ==

let mk_(sys ', handle) = FS_OpenFileDir_System(sys , path , attr , omode) in

(AssertTrue(path in set dom sys '. fileStore);

AssertTrue(sys '. fileStore(path).info.attributes = attr);

if attr.fileType = <RegularFile >

then (AssertTrue(handle <> nil);

AssertTrue(path in set { ofi.path | ofi in set rng sys '.table });

AssertTrue(dom sys '. table = dom sys.table union {handle });

AssertTrue(card dom sys '.table = card dom sys.table + 1);

AssertTrue(path = sys '. table(handle).path);

AssertTrue(sys '.table(handle).accessMode = fs_open2access_mode_map(omode));

AssertTrue(path in set dom sys '. fileStore);

AssertTrue(sys '. fileStore(path).info.attributes = attr);

AssertTrue(sys '.table(handle).fileOffset = getOpenOffset(sys '. fileStore(path),

omode))

)

else AssertTrue(handle = nil);

h := handle;

sys := sys ');

end SystemTest

File Store Test

class FileStoreTest is subclass of TestCase , FileSystemLayerOperations

instance variables

protected

vals : FileSystemLayerValues;

protected

fs : FileStore;

protected

io : IO;

operations

138

B.2. UNIT TESTS

protected

SetUp: () ==> ()

SetUp() ==

(vals := new FileSystemLayerValues ();

fs := {|->};

io := new IO());

protected

RunTest: () ==> ()

RunTest () ==

(CreateOpenTest(<Root >, vals.dirAttr);

CreateOpenTest ([" etc"], vals.dirAttr);

CreateOpenTest ([" bin"], vals.dirAttr);

CreateOpenTest ([" etc", "hosts"], vals.fileAttr);

CreateOpenTest ([" etc", "conf.d"], vals.fileAttr);

CreateOpenTest ([" etc", "resolv.conf"], vals.fileAttr);

CreateOpenTest ([" bin", "ls"], vals.fileAttr);

CreateOpenTest ([" bin", "wc"], vals.fileAttr);

DoNothingOpenTest(<Root >, vals.dirAttr);

DoNothingOpenTest (["etc"], vals.dirAttr);

DoNothingOpenTest (["bin"], vals.dirAttr);

DoNothingOpenTest (["etc", "hosts"], vals.fileAttr);

DoNothingOpenTest (["etc", "conf.d"], vals.fileAttr);

DoNothingOpenTest (["etc", "resolv.conf"], vals.fileAttr);

DoNothingOpenTest (["bin", "ls"], vals.fileAttr);

DoNothingOpenTest (["bin", "wc"], vals.fileAttr));

protected

TearDown: () ==> ()

TearDown () == skip;

protected

CreateOpenTest: Path * Attributes ==> ()

CreateOpenTest(path ,attr) ==

let fs ' = FS_OpenFileDir_FileStore(fs ,path ,attr) in

(AssertTrue(path in set dom fs ');

AssertTrue(fs '(path).info.attributes = attr);

fs := fs ');

protected

DoNothingOpenTest: Path * Attributes ==> ()

DoNothingOpenTest(path ,attr) ==

let fs ' = FS_OpenFileDir_FileStore(fs ,path ,attr) in

(AssertTrue(fs = fs ');

fs := fs ');

end FileStoreTest

Open Files Table Test

class OpenFilesTableTest is subclass of TestCase , FileSystemLayerOperations

instance variables

139

CHAPTER B. MODELS

protected

vals : FileSystemLayerValues;

protected

table : OpenFilesTable;

protected

io : IO;

protected

h : [FS_FileHandle];

operations

protected

SetUp: () ==> ()

SetUp() ==

(vals := new FileSystemLayerValues ();

table := vals.table1;

io := new IO());

protected

RunTest: () ==> ()

RunTest () ==

(dcl init : OpenFilesTable := table;

SimpleOpenTest ([" bin"], <FS_CreateNew >, <Directory >);

SimpleOpenTest ([" etc","hosts"], <FS_CreateNew >, <RegularFile >);

SimpleOpenTest ([" etc","conf.d"], <FS_CreateNew >, <Directory >);

SimpleOpenTest(<Root >, <FS_OpenRead >, <Directory >);

SimpleOpenTest ([" etc"], <FS_OpenRead >, <Directory >);

SimpleOpenTest ([" bin","ls"], <FS_CreateNew >, <RegularFile >);

AssertTrue(card dom table = card dom init + 2));

protected

TearDown: () ==> ()

TearDown () == skip;

protected

SimpleOpenTest: Path * FS_OpenMode * FileType ==> ()

SimpleOpenTest(path ,omode , fileType) ==

let mk_(table ',handle) = FS_OpenFileDir_Table(table , path , omode , fileType) in

(if fileType = <RegularFile >

then (AssertTrue(handle <> nil);

AssertTrue(path in set { ofi.path | ofi in set rng table ' });

AssertTrue(dom table ' = dom table union {handle });

AssertTrue(card dom table ' = card dom table + 1);

AssertTrue(path = table '(handle).path);

AssertTrue(table '(handle).accessMode = fs_open2access_mode_map(omode)))

else AssertTrue(handle = nil);

table := table ';

h := handle);

end OpenFilesTableTest

140

B.2. UNIT TESTS

FS_OpenFileDir Test

class OpenFileDirTest is subclass of TestCase , FileSystemLayerObject

instance variables

protected

vals : FileSystemLayerValues;

protected

io : IO;

operations

protected

SetUp: () ==> ()

SetUp() ==

(vals := new FileSystemLayerValues ();

SetSystem(vals.sys1);

io := new IO());

protected

RunTest: () ==> ()

RunTest () ==

(dcl status : FFS_Status;

status := SimpleOpenTest (["etc","hosts"], vals.fileAttr , <FS_OpenAlways >);

AssertTrue(status = <FFS_StatusSuccess >);

status := SimpleOpenTest(<Root >, vals.dirAttr , <FS_CreateAlways >);

AssertTrue(status = <FS_ErrorDirectoryNonEmpty >);

status := SimpleOpenTest (["bin","ls"], vals.fileAttr , <FS_CreateAlways >);

AssertTrue(status = <FFS_StatusSuccess >);

status := SimpleOpenTest (["bin","wc"], vals.fileAttr , <FS_OpenRead >);

AssertTrue(status = <FFS_StatusSuccess >);

status := SimpleOpenTest (["bin"], vals.dirAttr , <FS_OpenRead >);

AssertTrue(status = <FFS_StatusInvalidParameter >);

status := SimpleOpenTest (["bin"], vals.dirAttr , <FS_CreateNew >);

AssertTrue(status = <FS_ErrorFileAlreadyExists >);

status := SimpleOpenTest (["etc","resolv.conf"], vals.fileAttr , <FS_CreateAlways >);

AssertTrue(status = <FS_ErrorFileStillOpen >);

status := SimpleOpenTest (["usr"], vals.dirAttr , <FS_OpenRead >);

AssertTrue(status = <FS_ErrorFileNotFound >);

status := SimpleOpenTest (["usr"], vals.dirAttr , <FS_OpenWrite >);

AssertTrue(status = <FS_ErrorFileNotFound >);

status := SimpleOpenTest (["usr","share"], vals.dirAttr , <FS_CreateNew >);

AssertTrue(status = <FS_ErrorInvalidPath >);

141

CHAPTER B. MODELS

status := SimpleOpenTest (["bin","ls","somefile"], vals.fileAttr , <FS_CreateNew >);

AssertTrue(status = <FS_ErrorInvalidPath >));

protected

TearDown: () ==> ()

TearDown () == skip;

protected

SimpleOpenTest: Path * Attributes * FS_OpenMode ==> FFS_Status

SimpleOpenTest(path , attr , omode) ==

let mk_(handle ,status) = FS_OpenFileDir(path , attr , omode) in

(if (attr.fileType = <RegularFile > and status = <FFS_StatusSuccess >)

then (AssertTrue(handle <> nil);

AssertTrue(sys.table(handle).fileOffset = getOpenOffset(sys.fileStore(path),

omode)))

else AssertTrue(handle = nil);

return status);

end OpenFileDirTest

Test Values

class FileSystemLayerValues is subclass of FileSystemLayerBase

instance variables

public

dirAttr : Attributes

:= mk_Attributes(<Directory >);

public

fileAttr : Attributes

:= mk_Attributes(<RegularFile >);

public

dirInfo : FS_FileDirInfo

:= mk_FS_FileDirInfo(dirAttr);

public

fileInfo : FS_FileDirInfo

:= mk_FS_FileDirInfo(fileAttr);

public

table1 : OpenFilesTable

:= { 3 |-> mk_FS_OpenFileInfo (1, <FS_AccessReadWrite >, ["etc","resolv.conf "]),

4 |-> mk_FS_OpenFileInfo (1, <FS_AccessReadOnly >, ["etc","resolv.conf "]),

5 |-> mk_FS_OpenFileInfo (1, <FS_AccessReadWrite >, ["bin","wc"]) };

public

fs1 : FileStore

:= { <Root > |-> mk_File(dirInfo , nil),

["etc"] |-> mk_File(dirInfo , nil),

["etc","conf.d"] |-> mk_File(dirInfo , nil),

["etc","hosts"] |-> mk_File(fileInfo , [mk_token (1),mk_token (2)]),

["etc","resolv.conf"] |-> mk_File(fileInfo , [mk_token (3)]),

142

B.2. UNIT TESTS

["bin"] |-> mk_File(dirInfo , nil),

["bin","ls"] |-> mk_File(fileInfo , [mk_token (4)]),

["bin","wc"] |-> mk_File(fileInfo , [mk_token (5)]) };

public

sys1 : System

:= mk_System(table1 ,fs1);

end FileSystemLayerValues

143

CHAPTER B. MODELS

B.3 Alloy Model

B.3.1 Flash File System Core

module FlashFileSystemCore

open util/integer

open util/boolean

abstract sig FFS_Status {}

one sig FFS_StatusSuccess extends FFS_Status {}

one sig FS_ErrorFileNotFound extends FFS_Status {}

one sig FS_ErrorFileStillOpen extends FFS_Status {}

one sig FS_ErrorDirectoryNonEmpty extends FFS_Status {}

one sig FS_ErrorFileAlreadyExists extends FFS_Status {}

one sig FS_ErrorInvalidPath extends FFS_Status {}

one sig FFS_StatusInvalidParameter extends FFS_Status {}

one sig FFS_StatusUnknown extends FFS_Status {}

File System Layer Base

module FileSystemLayerBase

open FlashFileSystemCore

open RelCalc

sig System {

table : OpenFilesTable ,

fileStore: FileStore

}

pred SystemInvariantVDM[sys: System] {

OpenFilesTableInvariantVDM[sys.table] and

FileStoreInvariantVDM[sys.fileStore] and

SystemInvariant[sys]

}

pred SystemInvariant[sys: System]{

let oft = sys.table.map ,

fs = sys.fileStore.map {

RelCalc/rng[oft.path] in RelCalc/dom[fs] and

(oft.path).(fs).(info.attributes.fileType) in (FS_FileHandle ->RegularFile)

}

}

sig FileStore {

map: Path -> File

}

pred FileStoreInvariantVDM[fs: FileStore] {

RelCalc/Simple[fs.map , File] and

RelCalc/Injective[fs.map , Path] and

PathInvariantVDM[RelCalc/dom[fs.map]] and

144

B.3. ALLOY MODEL

FileInvariantVDM[RelCalc/rng[fs.map]] and

FileStoreInvariant[fs]

}

pred FileStoreInvariant[fs: FileStore] {

(fs.map).(File ->Directory) in dirName.(fs.map).info.attributes.fileType

}

abstract sig Path {

dirName: Path

}

sig FileNames extends Path {}

one sig Root extends Path {}

pred PathInvariantVDM[path : Path]{

dirNameProperties

}

pred dirNameProperties {

RelCalc/Function[dirName ,Path ,Path] and

RelCalc/Reflexive[(RelCalc/id[Root]).dirName ,Root] and

RelCalc/Acyclic[(RelCalc/id[FileNames]).dirName ,FileNames]

}

sig File {

info : FS_FileDirInfo ,

contents : OptionalFileContents

}

pred FileInvariantVDM[f: File]{

OptionalFileContentsInvariantVDM[f.contents] and

all file: f {

file.contents not in NilFileContents

=> let fileContents = file.contents.(^nextChunk) |

no (fileContents & (File.contents.(^nextChunk) - fileContents))

}

FileInvariant[f]

}

pred FileInvariant[f: File] { -

all file: f {

(file.info.attributes.fileType in Directory and

file.contents in NilFileContents)

or

(file.info.attributes.fileType in RegularFile and

file.contents in FileContents)

}

}

sig FS_FileDirInfo {

attributes : Attributes

}

145

CHAPTER B. MODELS

sig Attributes {

fileType: FileType

}

abstract sig FileType {}

one sig RegularFile extends FileType {}

one sig Directory extends FileType {}

abstract sig OptionalFileContents {}

one sig NilFileContents extends OptionalFileContents {}

pred OptionalFileContentsInvariantVDM[ofc: OptionalFileContents] {

FileContentsInvariantVDM[(ofc & FileContents)]

}

abstract sig FileContents extends OptionalFileContents {}

sig Chunk extends FileContents {

nextChunk: FileContents

}

one sig Nothing extends FileContents {}

pred FileContentsInvariantVDM[cont: FileContents] {

RelCalc/Function[nextChunk ,Chunk ,FileContents] and

RelCalc/Acyclic[(RelCalc/id[Chunk]).nextChunk ,Chunk]

}

sig OpenFilesTable {

map: FS_FileHandle -> FS_OpenFileInfo ,

}

pred OpenFilesTableInvariantVDM[table: OpenFilesTable] {

RelCalc/Simple[table.map ,FS_OpenFileInfo] and

RelCalc/Injective[table.map , FS_FileHandle] and

FS_OpenFileInfoInvariantVDM[RelCalc/rng[table.map]]

}

sig FS_FileHandle extends OptionalFileHandle {}

abstract sig OptionalFileHandle {}

one sig NilFileHandle extends OptionalFileHandle {}

sig FS_OpenFileInfo {

fileOffset: FileContents ,

accessMode: FS_AccessMode ,

path : Path

}

pred FS_OpenFileInfoInvariantVDM[ofi: FS_OpenFileInfo]{

FileContentsInvariantVDM[ofi.fileOffset] and

146

B.3. ALLOY MODEL

PathInvariantVDM[ofi.path]

}

abstract sig FS_OpenMode {}

one sig FS_CreateNew extends FS_OpenMode {}

one sig FS_CreateAlways extends FS_OpenMode {}

one sig FS_OpenRead extends FS_OpenMode {}

one sig FS_OpenWrite extends FS_OpenMode {}

one sig FS_OpenAlways extends FS_OpenMode {}

one sig FS_OpenWriteOnly extends FS_OpenMode {}

one sig FS_CreateAlwaysReadOnly extends FS_OpenMode {}

one sig FS_CreateNewReadOnly extends FS_OpenMode {}

abstract sig FS_AccessMode {}

one sig FS_AccessReadOnly extends FS_AccessMode {}

one sig FS_AccessWriteOnly extends FS_AccessMode {}

one sig FS_AccessReadWrite extends FS_AccessMode {}

pred fs_open2access_mode_map[omode: FS_OpenMode , amode: FS_AccessMode] {

(omode = FS_CreateNew and amode = FS_AccessReadWrite) or

(omode = FS_CreateAlways and amode = FS_AccessReadWrite) or

(omode = FS_OpenRead and amode = FS_AccessReadOnly) or

(omode = FS_OpenWrite and amode = FS_AccessReadWrite) or

(omode = FS_OpenAlways and amode = FS_AccessReadWrite) or

(omode = FS_OpenWriteOnly and amode = FS_AccessWriteOnly) or

(omode = FS_CreateAlwaysReadOnly and amode = FS_AccessReadOnly) or

(omode = FS_CreateNewReadOnly and amode = FS_AccessReadOnly)

}

pred isDirectory[info: FS_FileDirInfo] {

info.attributes.fileType in Directory

}

pred isRegularFile[info: FS_FileDirInfo] {

info.attributes.fileType in RegularFile

}

pred hasSubFiles[fs: FileStore , path: Path] {

path in RelCalc/dom[fs.map]. dirName

}

pred isRoot[path: Path] {

path in Root

}

pred isElemFileStore[path: Path , fs: FileStore] {

path in RelCalc/dom[fs.map]

}

pred isElemFileStore[file: File , fs: FileStore] {

file in RelCalc/rng[fs.map]

}

147

CHAPTER B. MODELS

pred isElemTablePath[p: Path , table: OpenFilesTable] {

p in RelCalc/rng[table.map].path

}

pred isElemTableHandle[handle: FS_FileHandle , table: OpenFilesTable] {

handle in RelCalc/dom[table.map]

}

pred isElemTable[ofi: FS_OpenFileInfo , table: OpenFilesTable] {

ofi in RelCalc/rng[table.map]

}

pred isDirName[parent , path: Path] {

parent = path.dirName

}

pred ShowFileStore[fs: FileStore] {

some fs.map and

Path = RelCalc/dom[fs.map] and

File = RelCalc/rng[fs.map] and

FS_FileDirInfo = RelCalc/rng[fs.map].info and

Attributes = RelCalc/rng[fs.map].info.attributes and

FileType = RelCalc/rng[fs.map].info.attributes.fileType and

let fc = RelCalc/rng[fs.map]. contents - NilFileContents |

FileContents = fc.(*nextChunk) and

#(Nothing .~ nextChunk) > 2

#(File.contents - (Nothing + NilFileContents)) > 2

#RelCalc/rng[contents.nextChunk] > 2

#FileNames.dirName > 2

FileStoreInvariantVDM[fs]

}

run ShowFileStore for 7 but 1 FileStore ,

0 System ,

0 OpenFilesTable ,

0 FS_FileHandle ,

0 FS_OpenFileInfo

pred ShowOpenFilesTable[table: OpenFilesTable] {

some table.map and

FS_FileHandle = RelCalc/dom[table.map] and

FS_OpenFileInfo = RelCalc/rng[table.map] and

OpenFilesTableInvariantVDM[table]

}

run ShowOpenFilesTable for 3 but 1 OpenFilesTable ,

0 System ,

0 FileStore ,

0 File

pred SystemShowConstraints[sys: System] {

Path = RelCalc/dom[sys.fileStore.map] and

File = RelCalc/rng[sys.fileStore.map] and

FS_FileHandle = RelCalc/dom[sys.table.map] and

FS_OpenFileInfo = RelCalc/rng[sys.table.map]

}

148

B.3. ALLOY MODEL

assert DirectoryFileOffset {

all sys: System , ofi: RelCalc/rng[sys.table.map] {

SystemInvariantVDM[sys] =>

((ofi.path).(sys.fileStore.map).info.attributes.fileType = Directory =>

ofi.fileOffset = Nothing)

}

}

check DirectoryFileOffset for 8

pred ShowSystem[sys: System] {

ShowFileStore[sys.fileStore] and

ShowOpenFilesTable[sys.table] and

OpenFilesTable = sys.table and

FileStore = sys.fileStore and

SystemInvariantVDM[sys]

}

run ShowSystem for 7 but 1 System

File System Layer Operations

module FileSystemLayerOperations

open RelCalc

open FlashFileSystemCore

open FileSystemLayerBase

pred FS_DeleteFileDir_Main[sys , sys ': System , full_path:Path , status: FFS_Status] {

(isElemFileStore[full_path , sys.fileStore] and

pre_FS_DeleteFileDir_System[sys ,full_path])

=> (FS_DeleteFileDir_System[sys ,sys ',full_path] and

status = FFS_StatusSuccess)

else (FS_DeleteFileDir_Exception[sys ,full_path ,status] and

sys ' = sys)

}

pred FS_DeleteFileDir_System[sys , sys ': System , full_path: Path] {

FS_DeleteFileDir_FileStore[sys.fileStore ,sys '.fileStore ,{ full_path }] and

sys.table = sys '.table

}

pred pre_FS_DeleteFileDir_System[sys: System , full_path: Path] {

not isElemTablePath[full_path ,sys.table] and

pre_FS_DeleteFileDir_FileStore[sys.fileStore ,{ full_path }]

}

pred FS_DeleteFileDir_FileStore[fs ,fs ': FileStore , paths: set Path] {

fs '.map = fs.map - (paths -> (paths.(fs.map)))

}

pred pre_FS_DeleteFileDir_FileStore[fs: FileStore , paths: set Path] {

(((Path - paths)->Path) & iden).(fs.map) in dirName.((Path - paths)->File)

}

149

CHAPTER B. MODELS

pred FS_DeleteFileDir_Exception[sys: System , full_path: Path , status: FFS_Status] {

not isElemFileStore[full_path ,sys.fileStore]

=> status = FS_ErrorFileNotFound

else (isElemTablePath[full_path ,sys.table]

=> status = FS_ErrorFileStillOpen

else ((isDirectory[(sys.fileStore.map[full_path]).info] and

hasSubFiles[sys.fileStore ,full_path])

=> status = FS_ErrorDirectoryNonEmpty

else status = FFS_StatusUnknown))

}

pred FS_OpenFileDir_Main[sys ,sys ' : System ,

full_path : Path ,

attributes: Attributes ,

omode : FS_OpenMode ,

handle : OptionalFileHandle ,

status : FFS_Status] {

(pre_FS_OpenFileDir_System[sys ,full_path ,attributes ,omode] and

checkOpenMode[sys ,full_path ,omode])

=> (mustDeleteFirst[sys.fileStore ,full_path ,omode] and

(full_path = Root => attributes.fileType = Directory))

=> (some dstatus: FFS_Status , dsys: System {

FS_DeleteFileDir_Main[sys ,dsys ,full_path ,dstatus] and

dstatus = FFS_StatusSuccess

=> (FS_OpenFileDir_System[dsys ,sys ',full_path ,attributes ,omode ,handle]

and

status = FFS_StatusSuccess)

else (sys ' = sys and

handle = NilFileHandle and

status = dstatus)

})

else (FS_OpenFileDir_System[sys ,sys ',full_path ,attributes ,omode ,handle] and

status = FFS_StatusSuccess)

else (sys ' = sys and

handle = NilFileHandle and

FS_OpenFileDir_Exception[sys ,full_path ,omode ,status])

}

pred FS_OpenFileDir_System[sys ,sys ' : System ,

full_path: Path ,

attr : Attributes ,

omode : FS_OpenMode ,

handle : OptionalFileHandle] {

FS_OpenFileDir_FileStore[sys.fileStore ,sys '.fileStore ,full_path ,attr] and

let fileType = full_path.(sys '. fileStore.map).info.attributes.fileType {

FS_OpenFileDir_Table[sys.table ,sys '.table ,full_path ,omode ,fileType ,handle]

}

}

pred pre_FS_OpenFileDir_System[sys : System ,

full_path: Path ,

attr : Attributes ,

omode : FS_OpenMode] {

pre_FS_OpenFileDir_FileStore[sys.fileStore ,full_path ,attr]

}

150

B.3. ALLOY MODEL

pred FS_OpenFileDir_FileStore[fs,fs ' : FileStore ,

full_path: Path ,

attr : Attributes] {

not isElemFileStore[full_path ,fs]

=> (one file: File {

fs '.map = fs.map + (full_path -> file) and

file.info.attributes = attr and

(attr.fileType in Directory => file.contents in NilFileContents) and

(attr.fileType in RegularFile => file.contents in FileContents) and

not isElemFileStore[file ,fs ']

})

else fs '.map = fs.map

}

pred pre_FS_OpenFileDir_FileStore[fs : FileStore ,

full_path: Path ,

attr : Attributes] {

(full_path = Root and

attr.fileType = Directory)

or

(isElemFileStore[full_path.dirName ,fs] and

isDirectory[(fs.map[full_path.dirName]).info])

}

pred FS_OpenFileDir_Table[table ,table ': OpenFilesTable ,

full_path : Path ,

omode : FS_OpenMode ,

fileType : FileType ,

handle : OptionalFileHandle] {

fileType in Directory

=> (table '.map = table.map and

handle = NilFileHandle)

else one ofi: FS_OpenFileInfo {

not isElemTableHandle[handle ,table] and

not isElemTable[ofi ,table] and

ofi.fileOffset = Nothing and

ofi.path = full_path and

fs_open2access_mode_map[omode ,ofi.accessMode] and

table '.map = table.map + (handle -> ofi)

}

}

pred FS_OpenFileDir_Exception[sys : System ,

full_path: Path ,

omode : FS_OpenMode ,

status : FFS_Status] {

(isCreateNew[omode] and isElemFileStore[full_path ,sys.fileStore])

=> status = FS_ErrorFileAlreadyExists

else (isCreateAlways[omode] and isElemTablePath[full_path ,sys.table])

=> status = FS_ErrorFileStillOpen

else (isOpen[omode] and not isElemFileStore[full_path ,sys.fileStore])

=> status = FS_ErrorFileNotFound

else (isOpen[omode] and isElemFileStore[full_path , sys.fileStore]

and not isRegularFile[sys.fileStore.map[full_path].info

151

CHAPTER B. MODELS

])

=> status = FFS_StatusInvalidParameter

else not (full_path in Root or

isElemFileStore[full_path.dirName ,sys.fileStore])

=> status = FS_ErrorInvalidPath

else not (full_path in Root or

isDirectory[(sys.fileStore.map[full_path.dirName]).info

])

=> status = FS_ErrorInvalidPath

else status = FFS_StatusUnknown

}

pred mustDeleteFirst[fs: FileStore , path: Path , omode: FS_OpenMode] {

isCreateAlways[omode] and isElemFileStore[path ,fs]

}

pred checkOpenMode[sys : System ,

path : Path ,

omode: FS_OpenMode] {

not (isCreateNew[omode] and isElemFileStore[path ,sys.fileStore]) and

not (isCreateAlways[omode] and isElemTablePath[path ,sys.table]) and

not (isOpen[omode] and not isElemFileStore[path ,sys.fileStore])

}

pred isCreateAlways[omode: FS_OpenMode] {

omode in (FS_CreateAlways + FS_CreateNewReadOnly)

}

pred isCreateNew[omode: FS_OpenMode] {

omode in (FS_CreateNew + FS_CreateNewReadOnly)

}

pred isOpen[omode: FS_OpenMode] {

omode in (FS_OpenRead + FS_OpenWrite + FS_OpenWriteOnly)

}

pred getOpenOffset[file: File , omode: FS_OpenMode , contents: FileContents] {

(omode in FS_OpenWrite + FS_OpenAlways and contents = getLastChunk[file]) or

(contents = Nothing)

}

fun getLastChunk[file: File] : FileContents {

file.contents in Nothing

=> Nothing

else RelCalc/dom[(file.contents.(*nextChunk)->Nothing) & nextChunk]

}

pred FS_Init_Main[sys: System , status: FFS_Status] {

FS_Init_System[sys] and

status = FFS_StatusSuccess

}

pred FS_Init_System[sys: System] {

FS_Init_FileStore[sys.fileStore] and

FS_Init_Table[sys.table]

}

152

B.3. ALLOY MODEL

pred FS_Init_Table[table: OpenFilesTable] {

no table.map

}

pred FS_Init_FileStore[fs: FileStore] {

some file: File , fdi: FS_FileDirInfo , attr: Attributes {

PathInvariantVDM[Root] and

FileInvariantVDM[file]

=> attr.fileType = Directory and

fdi.attributes = attr and

file.info = fdi and

fs.map = Root -> file

}

}

pred ShowFS_DeleteFileDir_Main[sys ,sys ': System , full_path: Path , status: FFS_Status] {

OpenFilesTable = sys.table + sys '.table and

File = RelCalc/rng[sys.fileStore.map] + RelCalc/rng[sys '. fileStore.map] and

SystemInvariantVDM[sys] and

FS_DeleteFileDir_Main[sys ,sys ',full_path ,status] and

sys not = sys '

}

ShowDeleteFileDir_Main: run ShowFS_DeleteFileDir_Main

for 3 but 2 System ,

1 FFS_Status

pred ShowFS_DeleteFileDir_System[sys ,sys ': System , full_path: Path] {

OpenFilesTable = sys.table + sys '.table and

Path = RelCalc/dom[sys.fileStore.map] + RelCalc/dom[sys '. fileStore.map] and

File = RelCalc/rng[sys.fileStore.map] + RelCalc/rng[sys '. fileStore.map] and

SystemInvariantVDM[sys] and

pre_FS_DeleteFileDir_System[sys ,full_path] and

FS_DeleteFileDir_System[sys ,sys ',full_path] and

sys not = sys '

}

ShowDeleteFileDir_System: run ShowFS_DeleteFileDir_System

for 3 but 2 System

pred ShowFS_DeleteFileDir_FileStore[fs,fs ': FileStore ,

paths: set Path] {

Path = RelCalc/dom[fs.map] + RelCalc/dom[fs '.map] and

File = RelCalc/rng[fs.map] + RelCalc/rng[fs '.map] and

some paths and

some fs.map and

some fs '.map and

fs not = fs' and

FileStoreInvariantVDM[fs] and

PathInvariantVDM[Path] and

pre_FS_DeleteFileDir_FileStore[fs,paths] and

FS_DeleteFileDir_FileStore[fs,fs ',paths]

}

ShowDeleteFileDir_FileStore: run ShowFS_DeleteFileDir_FileStore

for 3 but 2 FileStore ,

0 System ,

153

CHAPTER B. MODELS

0 OpenFilesTable

pred ShowFS_DeleteFileDir_Exception[sys : System ,

full_path: Path ,

status : FFS_Status] {

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path] and

FS_DeleteFileDir_Exception[sys ,full_path ,status]

}

pred ShowFS_DeleteFileDir_ErrorFileNotFound[sys : System ,

full_path: Path ,

status : FFS_Status] {

ShowFS_DeleteFileDir_Exception[sys ,full_path ,status] and

status = FS_ErrorFileNotFound

}

Show_Delete_FileNotFound: run ShowFS_DeleteFileDir_ErrorFileNotFound

for 3 but 1 System ,

1 FFS_Status

pred ShowFS_DeleteFileDir_ErrorFileStillOpen[sys: System , full_path: Path ,status:

FFS_Status] {

ShowFS_DeleteFileDir_Exception[sys ,full_path ,status] and

status = FS_ErrorFileStillOpen

}

Show_Delete_FileStillOpen: run ShowFS_DeleteFileDir_ErrorFileStillOpen

for 3 but 1 System ,

1 FFS_Status

pred ShowFS_DeleteFileDir_ErrorDirectoryNonEmpty[sys: System , full_path: Path ,status:

FFS_Status] {

ShowFS_DeleteFileDir_Exception[sys ,full_path ,status] and

status = FS_ErrorDirectoryNonEmpty

}

Show_Delete_DirectoryNonEmpty: run ShowFS_DeleteFileDir_ErrorDirectoryNonEmpty

for 3 but 1 System ,

1 FFS_Status

pred Show_FS_Init_Main[sys: System] {

SystemInvariantVDM[sys] and

FS_Init_Main[sys , FFS_StatusSuccess]

}

Show_Init_Main: run Show_FS_Init_Main

for 3 but 1 System ,

1 FFS_Status

pred ShowFS_OpenFileDir_Main[sys : System ,

full_path: Path ,

attr : Attributes ,

omode : FS_OpenMode ,

sys ' : System ,

handle : OptionalFileHandle ,

status : FFS_Status] {

154

B.3. ALLOY MODEL

SystemInvariantVDM[sys] and

PathInvariantVDM[Path] and

some full_path and

some omode and

some sys.table.map and

some sys '. table.map and

sys.table not = sys '.table and

full_path not in RelCalc/rng[sys.table.map].path and

some attr and

some sys.fileStore.map and

some sys '. fileStore.map and

sys.fileStore not = sys '. fileStore and

FS_OpenFileDir_Main[sys ,sys ',full_path ,attr ,omode ,handle ,status]

}

ShowOpenFileDir_Main: run ShowFS_OpenFileDir_Main

for 3 but 2 System

pred ShowFS_OpenFileDir_System[sys : System ,

full_path: Path ,

attr : Attributes ,

omode : FS_OpenMode ,

sys ' : System ,

handle : OptionalFileHandle] {

SystemInvariantVDM[sys] and

PathInvariantVDM[Path] and

some full_path and

some omode and

some sys.table.map and

some sys '. table.map and

sys.table not = sys '.table and

full_path not in RelCalc/rng[sys.table.map].path and

some attr and

some sys.fileStore.map and

some sys '. fileStore.map and

sys.fileStore not = sys '. fileStore and

pre_FS_OpenFileDir_System[sys ,full_path ,attr ,omode] and

FS_OpenFileDir_System[sys ,sys ',full_path ,attr ,omode ,handle]

}

ShowOpenFileDir_System: run ShowFS_OpenFileDir_System

for 3 but 2 System

pred ShowFS_OpenFileDir_FileStore[fs : FileStore ,

full_path: Path ,

attr : Attributes ,

fs' : FileStore] {

Path = RelCalc/dom[fs.map] + RelCalc/dom[fs '.map] and

some full_path and

some attr and

some fs.map and

some fs '.map and

fs not = fs' and

FileStoreInvariantVDM[fs] and

PathInvariantVDM[Path] and

pre_FS_OpenFileDir_FileStore[fs,full_path ,attr] and

FS_OpenFileDir_FileStore[fs,fs ',full_path ,attr]

}

155

CHAPTER B. MODELS

ShowOpenFileDir_FileStore: run ShowFS_OpenFileDir_FileStore

for 3 but 2 FileStore ,

0 System ,

0 OpenFilesTable

pred ShowFS_OpenFileDir_Table[table : OpenFilesTable ,

full_path: Path ,

omode : FS_OpenMode ,

fileType : FileType ,

table ' : OpenFilesTable ,

handle : OptionalFileHandle] {

OpenFilesTableInvariantVDM[table] and

PathInvariantVDM[full_path] and

some full_path and

some omode and

some table.map and

some table '.map and

table not = table ' and

full_path not in RelCalc/rng[table.map].path and

FS_FileHandle = RelCalc/dom[table.map + table '.map] and

FS_OpenFileInfo = RelCalc/rng[table.map + table '.map] and

fileType = Directory and

handle = NilFileHandle and

FS_OpenFileDir_Table[table ,table ',full_path ,omode ,fileType ,handle]

}

ShowOpenFileDir_Table: run ShowFS_OpenFileDir_Table

for 5 but 0 FileStore ,

0 System ,

2 OpenFilesTable

pred ShowFS_OpenFileDir_Exception[sys : System ,

full_path: Path ,

omode : FS_OpenMode ,

status : FFS_Status] {

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path] and

FS_OpenFileDir_Exception[sys ,full_path ,omode ,status]

}

pred ShowFS_OpenFileDir_ErrorInvalidPath_1[sys : System ,

full_path: Path ,

omode : FS_OpenMode ,

status : FFS_Status] {

ShowFS_OpenFileDir_Exception[sys ,full_path ,omode ,status] and

not isElemFileStore[full_path.dirName ,sys.fileStore] and

status = FS_ErrorInvalidPath

}

Show_Open_InvalidPath1: run ShowFS_OpenFileDir_ErrorInvalidPath_1

for 3 but 1 System ,

1 FFS_Status

pred ShowFS_OpenFileDir_ErrorInvalidPath_2[sys : System ,

full_path: Path ,

omode : FS_OpenMode ,

status : FFS_Status] {

156

B.3. ALLOY MODEL

ShowFS_OpenFileDir_Exception[sys ,full_path ,omode ,status] and

not isDirectory[(sys.fileStore.map[full_path.dirName]).info] and

status = FS_ErrorInvalidPath

}

Show_Open_InvalidPath2: run ShowFS_OpenFileDir_ErrorInvalidPath_2

for 3 but 1 System ,

1 FileStore ,

1 OpenFilesTable ,

1 FFS_Status

pred ShowFS_OpenFileDir_ErrorFileStillOpen[sys : System ,

full_path: Path ,

omode : FS_OpenMode ,

status : FFS_Status] {

ShowFS_OpenFileDir_Exception[sys ,full_path ,omode ,status] and

isElemTablePath[full_path ,sys.table] and

status = FS_ErrorFileStillOpen

}

Show_Open_FileStillOpen: run ShowFS_OpenFileDir_ErrorFileStillOpen

for 3 but 1 System ,

1 FileStore ,

1 OpenFilesTable ,

1 FFS_Status

157

CHAPTER B. MODELS

B.4 Model Checking

B.4.1 FS_DeleteFileDir

module OperationsModelCheck

open RelCalc

open FileSystemLayerOperations

assert Delete_FileStore {

all fs ,fs ': FileStore , paths: set Path {

FileStoreInvariantVDM[fs] and

PathInvariantVDM[paths] and

pre_FS_DeleteFileDir_FileStore[fs,paths] and

FS_DeleteFileDir_FileStore[fs,fs ',paths]

=> RelCalc/dom[fs '.map] = RelCalc/dom[fs.map] - paths and

FileStoreInvariantVDM[fs ']

}

}

Check_Delete_FileStore: check Delete_FileStore

assert Delete_System {

all sys , sys ': System , full_path: Path {

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path] and

pre_FS_DeleteFileDir_System[sys ,full_path] and

FS_DeleteFileDir_System[sys ,sys ',full_path]

=> full_path not in RelCalc/dom[sys '. fileStore.map] and

sys.table = sys '.table and

SystemInvariantVDM[sys '] and

RelCalc/dom[sys '. fileStore.map] = RelCalc/dom[sys.fileStore.map] - full_path

}

}

Check_Delete_System: check Delete_System

assert Delete_Exception_StatusUnknown {

all sys: System , full_path: Path , status: FFS_StatusUnknown {

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path] and

not (full_path in RelCalc/dom[sys.fileStore.map] and

pre_FS_DeleteFileDir_System[sys ,full_path]) and

FS_DeleteFileDir_Exception[sys ,full_path ,status]

=> not status = FFS_StatusUnknown

}

}

Check_Delete_Exception_StatusUnknown: check Delete_Exception_StatusUnknown

assert Delete_Exception_FileNotFound {

all sys: System , full_path: Path {

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path] and

not isElemFileStore[full_path ,sys.fileStore]

=> FS_DeleteFileDir_Exception[sys ,full_path ,FS_ErrorFileNotFound]

}

158

B.4. MODEL CHECKING

}

Check_Delete_Exception_FileNotFound: check Delete_Exception_FileNotFound

assert Delete_Exception_FileStillOpen {

all sys: System , full_path: Path {

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path] and

isElemTablePath[full_path ,sys.table]

=> FS_DeleteFileDir_Exception[sys ,full_path ,FS_ErrorFileStillOpen]

}

}

Check_Delete_Exception_FileStillOpen: check Delete_Exception_FileStillOpen

assert Delete_Exception_DirectoryNonEmpty {

all sys: System , full_path: Path {

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path] and

isDirectory[(full_path.(sys.fileStore.map)).info] and

hasSubFiles[sys.fileStore ,full_path] and

not isElemTablePath[full_path ,sys.table]

=> FS_DeleteFileDir_Exception[sys ,full_path ,FS_ErrorDirectoryNonEmpty]

}

}

Check_Delete_Exception_DirectoryNonEmpty: check Delete_Exception_DirectoryNonEmpty

assert Delete_Main_Success {

all sys ,sys ': System , full_path: Path , status: FFS_Status {

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path] and

full_path in RelCalc/dom[sys.fileStore.map] and

pre_FS_DeleteFileDir_System[sys ,full_path] and

FS_DeleteFileDir_Main[sys ,sys ',full_path ,status]

=> SystemInvariantVDM[sys '] and

status = FFS_StatusSuccess

}

}

Check_Delete_Main_Success: check Delete_Main_Success

assert Delete_Main_Error {

all sys ,sys ': System , full_path: Path , status: FFS_Status {

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path] and

not (full_path in RelCalc/dom[sys.fileStore.map] and

pre_FS_DeleteFileDir_System[sys ,full_path]) and

FS_DeleteFileDir_Main[sys ,sys ',full_path ,status]

=> SystemInvariantVDM[sys '] and

status not = FFS_StatusSuccess

}

}

Check_Delete_Main_Error: check Delete_Main_Error

159

CHAPTER B. MODELS

B.4.2 FS_OpenFileDir

module OperationsModelCheck

open RelCalc

open FileSystemLayerOperations

assert Delete_FileStore {

all fs ,fs ': FileStore , paths: set Path {

FileStoreInvariantVDM[fs] and

PathInvariantVDM[paths] and

pre_FS_DeleteFileDir_FileStore[fs,paths] and

FS_DeleteFileDir_FileStore[fs,fs ',paths]

=> RelCalc/dom[fs '.map] = RelCalc/dom[fs.map] - paths and

FileStoreInvariantVDM[fs ']

}

}

Check_Delete_FileStore: check Delete_FileStore

assert Delete_System {

all sys , sys ': System , full_path: Path {

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path] and

pre_FS_DeleteFileDir_System[sys ,full_path] and

FS_DeleteFileDir_System[sys ,sys ',full_path]

=> full_path not in RelCalc/dom[sys '. fileStore.map] and

sys.table = sys '.table and

SystemInvariantVDM[sys '] and

RelCalc/dom[sys '. fileStore.map] = RelCalc/dom[sys.fileStore.map] - full_path

}

}

Check_Delete_System: check Delete_System

assert Delete_Exception_StatusUnknown {

all sys: System , full_path: Path , status: FFS_StatusUnknown {

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path] and

not (isElemFileStore[full_path , sys.fileStore] and

pre_FS_DeleteFileDir_System[sys ,full_path]) and

FS_DeleteFileDir_Exception[sys ,full_path ,status]

=> not status = FFS_StatusUnknown

}

}

Check_Delete_Exception_StatusUnknown: check Delete_Exception_StatusUnknown

assert Delete_Exception_FileNotFound {

all sys: System , full_path: Path {

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path] and

not isElemFileStore[full_path ,sys.fileStore]

=> FS_DeleteFileDir_Exception[sys ,full_path ,FS_ErrorFileNotFound]

}

}

Check_Delete_Exception_FileNotFound: check Delete_Exception_FileNotFound

160

B.4. MODEL CHECKING

assert Delete_Exception_FileStillOpen {

all sys: System , full_path: Path {

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path] and

isElemTablePath[full_path ,sys.table]

=> FS_DeleteFileDir_Exception[sys ,full_path ,FS_ErrorFileStillOpen]

}

}

Check_Delete_Exception_FileStillOpen: check Delete_Exception_FileStillOpen

assert Delete_Exception_DirectoryNonEmpty {

all sys: System , full_path: Path {

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path] and

isDirectory[(full_path.(sys.fileStore.map)).info] and

hasSubFiles[sys.fileStore ,full_path] and

not isElemTablePath[full_path ,sys.table]

=> FS_DeleteFileDir_Exception[sys ,full_path ,FS_ErrorDirectoryNonEmpty]

}

}

Check_Delete_Exception_DirectoryNonEmpty: check Delete_Exception_DirectoryNonEmpty

assert Delete_Main_Success {

all sys ,sys ': System , full_path: Path , status: FFS_Status {

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path] and

full_path in RelCalc/dom[sys.fileStore.map] and

pre_FS_DeleteFileDir_System[sys ,full_path] and

FS_DeleteFileDir_Main[sys ,sys ',full_path ,status]

=> SystemInvariantVDM[sys '] and

status = FFS_StatusSuccess

}

}

Check_Delete_Main_Success: check Delete_Main_Success

assert Delete_Main_Error {

all sys ,sys ': System , full_path: Path , status: FFS_Status {

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path] and

not (full_path in RelCalc/dom[sys.fileStore.map] and

pre_FS_DeleteFileDir_System[sys ,full_path]) and

FS_DeleteFileDir_Main[sys ,sys ',full_path ,status]

=> SystemInvariantVDM[sys '] and

status not = FFS_StatusSuccess

}

}

Check_Delete_Main_Error: check Delete_Main_Error

assert checkOpenMode_CreateNew {

all sys: System , path: Path {

SystemInvariantVDM[sys] and

PathInvariantVDM[path] and

161

CHAPTER B. MODELS

isElemFileStore[path ,sys.fileStore]

=> not checkOpenMode[sys ,path ,FS_CreateNew]

}

}

Check_checkOpenMode_CreateNew: check checkOpenMode_CreateNew

assert checkOpenMode_CreateAlways {

all sys: System , path: Path {

SystemInvariantVDM[sys] and

PathInvariantVDM[path] and

isElemTablePath[path ,sys.table]

=> not checkOpenMode[sys ,path ,FS_CreateAlways]

}

}

Check_checkOpenMode_CreateAlways: check checkOpenMode_CreateAlways

assert checkOpenMode_OpenRead {

all sys: System , path: Path {

SystemInvariantVDM[sys] and

PathInvariantVDM[path] and

not isElemFileStore[path ,sys.fileStore]

=> not checkOpenMode[sys ,path ,FS_OpenRead]

}

}

Check_checkOpenMode_OpenRead: check checkOpenMode_OpenRead

assert checkOpenMode_OpenWrite {

all sys: System , path: Path {

SystemInvariantVDM[sys] and

PathInvariantVDM[path] and

not isElemFileStore[path ,sys.fileStore]

=> not checkOpenMode[sys ,path ,FS_OpenWrite]

}

}

Check_checkOpenMode_CreateWrite: check checkOpenMode_OpenWrite

assert Open_Table {

all table ,table ': OpenFilesTable , full_path: Path , omode: FS_OpenMode ,

handle: OptionalFileHandle , ft: FileType {

OpenFilesTableInvariantVDM[table] and

PathInvariantVDM[full_path] and

FS_OpenFileDir_Table[table ,table ',full_path ,omode ,ft,handle]

=> ft in RegularFile

=> full_path = handle.(table '.map).path and

RelCalc/dom[table '.map] = RelCalc/dom[table.map] + handle and

OpenFilesTableInvariantVDM[table '] and

fs_open2access_mode_map[omode ,handle.(table '.map).accessMode]

else table '.map = table.map

}

}

Check_Open_Table: check Open_Table

for 7 but 0 System ,

0 FileStore ,

162

B.4. MODEL CHECKING

2 OpenFilesTable

assert Open_Table_Directories {

all table ,table ': OpenFilesTable , full_path: Path ,

omode: FS_OpenMode , handle: OptionalFileHandle , ft: FileType {

ft = Directory and

OpenFilesTableInvariantVDM[table] and

PathInvariantVDM[full_path] and

FS_OpenFileDir_Table[table ,table ',full_path ,omode ,ft,handle]

=> full_path not in handle.(table '.map).path

}

}

Check_Open_Table_Directories: check Open_Table_Directories

for 7 but 0 System ,

0 FileStore ,

2 OpenFilesTable

assert Open_FileStore {

all fs ,fs ': FileStore , full_path: Path , attr: Attributes {

FileStoreInvariantVDM[fs] and

PathInvariantVDM[full_path] and

pre_FS_OpenFileDir_FileStore[fs,full_path ,attr] and

FS_OpenFileDir_FileStore[fs,fs ',full_path ,attr]

=> FileStoreInvariantVDM[fs '] and

full_path in RelCalc/dom[fs '.map] and

(not isElemFileStore[full_path ,fs]

=> full_path.(fs '.map).info.attributes = attr)

}

}

Check_Open_FileStore: check Open_FileStore

for 7 but 0 System ,

0 OpenFilesTable

assert teste {

all fs ,fs ': FileStore , full_path: Path , attr: Attributes {

FileStoreInvariantVDM[fs] and

PathInvariantVDM[full_path] and

full_path.dirName not in RelCalc/dom[fs.map] and

full_path not = Root and

pre_FS_OpenFileDir_FileStore[fs,full_path ,attr] and

FS_OpenFileDir_FileStore[fs,fs ',full_path ,attr]

=> FileStoreInvariantVDM[fs ']

}

}

check teste

assert Open_System {

all sys ,sys ': System , full_path: Path , attr: Attributes ,

omode: FS_OpenMode , amode: FS_AccessMode , handle: OptionalFileHandle {

fs_open2access_mode_map[omode ,amode] and

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path] and

pre_FS_OpenFileDir_System[sys ,full_path ,attr ,omode] and

FS_OpenFileDir_System[sys ,sys ',full_path ,attr ,omode ,handle]

163

CHAPTER B. MODELS

=> SystemInvariantVDM[sys '] and

full_path in RelCalc/dom[sys '. fileStore.map] and

(not isElemFileStore[full_path ,sys.fileStore]

=> full_path.(sys '. fileStore.map).info.attributes = attr) and

(isDirectory[full_path.(sys '. fileStore.map).info]

=> (full_path not in FS_FileHandle.(sys '.table.map).path and

handle in NilFileHandle)

else (full_path = handle.(sys '. table.map).path) and

handle.(sys '.table.map).accessMode = amode)

}

}

Check_Open_System: check Open_System

for 7 but 2 System

assert Open_System_Directories {

all sys ,sys ': System , full_path: Path , attr: Attributes ,

omode: FS_OpenMode , amode: FS_AccessMode , handle: OptionalFileHandle {

full_path in RelCalc/dom[sys.fileStore.map] and

isDirectory[full_path.(sys.fileStore.map).info] and

fs_open2access_mode_map[omode ,amode] and

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path] and

pre_FS_OpenFileDir_System[sys ,full_path ,attr ,omode] and

FS_OpenFileDir_System[sys ,sys ',full_path ,attr ,omode ,handle]

=> full_path not in FS_FileHandle.(sys '.table.map).path

}

}

Check_Open_System_Directories: check Open_System_Directories

for 7 but 2 System

assert Open_Exception_StatusUnknown {

all sys: System , path: Path , omode: FS_OpenMode ,

attr: Attributes , status: FFS_Status {

SystemInvariantVDM[sys] and

PathInvariantVDM[path] and

not (pre_FS_OpenFileDir_System[sys ,path ,attr ,omode] and

checkOpenMode[sys ,path ,omode]) and

FS_OpenFileDir_Exception[sys ,path ,omode ,status]

=> not status in FFS_StatusUnknown

}

}

Check_Open_Exception_StatusUnknown: check Open_Exception_StatusUnknown

for 2 but 1 System ,

1 FileStore ,

1 OpenFilesTable

assert Open_Exception_FileAlreadyExists {

all sys: System , path: Path , omode: FS_OpenMode , status: FFS_Status {

SystemInvariantVDM[sys] and

PathInvariantVDM[path] and

isElemFileStore[path ,sys.fileStore] and

isCreateNew[omode] and

FS_OpenFileDir_Exception[sys ,path ,omode ,status]

=> status = FS_ErrorFileAlreadyExists

}

164

B.4. MODEL CHECKING

}

Check_Open_Exception_FileAlreadyExists: check Open_Exception_FileAlreadyExists

for 7

assert Open_Exception_FileStillOpen {

all sys: System , path: Path , omode: FS_OpenMode , status: FFS_Status {

SystemInvariantVDM[sys] and

PathInvariantVDM[path] and

isElemTablePath[path ,sys.table] and

isCreateAlways[omode] and

FS_OpenFileDir_Exception[sys ,path ,omode ,status]

=> status = FS_ErrorFileStillOpen

}

}

Check_Open_Exception_FileStillOpen: check Open_Exception_FileStillOpen

for 7 but 1 System

assert Open_Exception_FileNotFound {

all sys: System , path: Path , omode: FS_OpenMode , status: FFS_Status {

SystemInvariantVDM[sys] and

PathInvariantVDM[path] and

not isElemFileStore[path ,sys.fileStore] and

isOpen[omode] and

FS_OpenFileDir_Exception[sys ,path ,omode ,status]

=> status = FS_ErrorFileNotFound

}

}

Check_Open_Exception_FileNotFound: check Open_Exception_FileNotFound

for 7

assert Open_Exception_InvalidParameter {

all sys: System , path: Path , omode: FS_OpenMode , status: FFS_Status {

SystemInvariantVDM[sys] and

PathInvariantVDM[path] and

isOpen[omode] and

isElemFileStore[path , sys.fileStore] and

not isRegularFile[sys.fileStore.map[path].info] and

FS_OpenFileDir_Exception[sys ,path ,omode ,status]

=> status = FFS_StatusInvalidParameter

}

}

Check_Open_Exception_InvalidParameter: check Open_Exception_InvalidParameter

for 7

assert Open_Exception_InvalidPath {

all sys: System , path: Path , omode: FS_OpenMode , status: FFS_Status {

SystemInvariantVDM[sys] and

PathInvariantVDM[path] and

(not path in Root and

(not isElemFileStore[path.dirName ,sys.fileStore] or

not isDirectory[(sys.fileStore.map[path.dirName]).info])) and

FS_OpenFileDir_Exception[sys ,path ,omode ,status]

=> status = FS_ErrorInvalidPath

}

165

CHAPTER B. MODELS

}

Check_Open_Exception_InvalidPath: check Open_Exception_InvalidPath

for 7

assert Open_Main_Success {

all sys ,sys ': System , full_path: Path ,

attr: Attributes , omode: FS_OpenMode ,

handle: OptionalFileHandle , status: FFS_Status {

PathInvariantVDM[full_path] and

checkOpenMode[sys ,full_path ,omode] and

pre_FS_OpenFileDir_System[sys ,full_path ,attr ,omode] and

FS_OpenFileDir_Main[sys ,sys ',full_path ,attr ,omode ,handle ,status]

=> SystemInvariantVDM[sys '] and

status = FFS_StatusSuccess

}

}

Check_Open_Main_Success: check Open_Main_Success

for 7

assert Open_Main_Error {

all sys ,sys ': System , full_path: Path ,

attr: Attributes , omode: FS_OpenMode ,

handle: NilFileHandle , status: FFS_Status {

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path] and

not(pre_FS_OpenFileDir_System[sys ,full_path ,attr ,omode] and

checkOpenMode[sys ,full_path ,omode]) and

FS_OpenFileDir_Main[sys ,sys ',full_path ,attr ,omode ,handle ,status]

=> SystemInvariantVDM[sys '] and

status not = FFS_StatusSuccess

}

}

Check_Open_Main_Error: check Open_Main_Error

for 7

B.4.3 Proof Obligations

module ProofObligation

open RelCalc

open FlashFileSystemCore

open FileSystemLayerBase

open FileSystemLayerOperations

/*

Integrity property #1 :

In type FileSystemLayerBase System , file: FileSystemLayerBase.vpp l. 26 c. 32: map

application

(forall sys : System &

(forall ofi in set rng (sys.table) &

isElemFileStore(ofi.path , sys.fileStore) =>

ofi.path in set dom (sys.fileStore)))

*/

166

B.4. MODEL CHECKING

assert po1 {

all sys: System {

SystemInvariantVDM[sys]

=> all ofi: FS_OpenFileInfo {

FS_OpenFileInfoInvariantVDM[ofi]

=> isElemFileStore[ofi.path , sys.fileStore]

=> ofi.path in RelCalc/dom[sys.fileStore.map]

}

}

}

CheckPO1: check po1 for 7

/*

Integrity property #1 :

In function FileSystemLayerBase newFileHandle , file: FileSystemLayerBase.vpp l. 323 c.

38: function application from max

(forall handles : set of FS_FileHandle &

not (card (handles) = 0) =>

FileSystemLayerBase `pre_max(handles))

*/

assert po2 {

all handles: set FS_FileHandle {

not (#handles = 0) => #handles > 0

}

}

CheckPO2: check po2 for 7

/*

Integrity property #2 :

In function FileSystemLayerBase newFileHandle , file: FileSystemLayerBase.vpp l. 321 c.

1: post condition

(forall handles : set of FS_FileHandle &

FileSystemLayerBase `post_newFileHandle(handles , (if card (handles) = 0 then

1

else

max(handles) + 1)))

*/

--assert po3 {

--}

--CheckPO3: check po3 for 7

/*

Integrity property #1 :

In function FileSystemLayerBase dirName , file: FileSystemLayerBase.vpp l. 146 c. 46:

subtype

(forall full_path : Path &

not (full_path = (<Root >)) =>

not ((exists [xx_2] : Path &

full_path = [xx_2])) =>

is_(full_path ,seq of FileName))

*/

assert po4 {

167

CHAPTER B. MODELS

all full_path: Path {

PathInvariantVDM[full_path]

=> not (full_path in Root)

=> not(some xx_2: Path {

PathInvariantVDM[xx_2]

=> full_path = xx_2

})

=> full_path in FileNames

}

}

CheckPO4: check po4 for 7

/*

Integrity property #2 :

In function FileSystemLayerBase dirName , file: FileSystemLayerBase.vpp l. 146 c. 17:

subtype

(forall full_path : Path &

not (full_path = (<Root >)) =>

not ((exists [xx_2] : Path &

full_path = [xx_2])) =>

(forall i in set inds (full_path) &

i < len (full_path) =>

is_(full_path ,seq of FileName)))

*/

--assert po5 {

--}

--CheckPO5: check po5 for 7

/*

Integrity property #3 :

In function FileSystemLayerBase dirName , file: FileSystemLayerBase.vpp l. 146 c. 66:

subtype

(forall full_path : Path &

not (full_path = (<Root >)) =>

not ((exists [xx_2] : Path &

full_path = [xx_2])) =>

(forall i in set inds (full_path) &

is_(full_path ,seq of FileName)))

*/

--assert po6 {

--}

--CheckPO6: check po6 for 7

/*

*

Integrity property #1 :

In function FileSystemLayerBase max , file: FileSystemLayerBase.vpp l. 333 c. 14: non

emptiness of binding

(forall s : set of nat &

card (s) > 0 =>

(exists {result} : set of nat &

{result} = {x | x in set s & (forall y in set s &

168

B.4. MODEL CHECKING

x >= y)}))

*/

--assert po7 {

--}

--CheckPO6: check po6 for 7

/*

Integrity property #1 :

In function FileSystemLayerOperations FS_DeleteFileDir_FileStore , file:

FileSystemLayerOperations.vpp l. 63 c. 9: invariants from FileStore

(forall fileStore : FileStore , paths : set of Path &

(forall path in set dom (fileStore) &

dirName(path) in set paths =>

path in set paths) =>

FileSystemLayerOperations `inv_FileStore(paths <-: fileStore))

*/

assert po8 {

all fs ,fs ': FileStore , paths: set Path {

FileStoreInvariantVDM[fs] and

PathInvariantVDM[paths]

=> ((((Path - paths)->Path) & iden).(fs.map) in dirName.((Path - paths)->File))

=> fs '.map = fs.map - (paths ->paths.(fs.map))

=> FileStoreInvariantVDM[fs ']

}

}

CheckPO8: check po8 for 7

/*

Integrity property #1 :

In function FileSystemLayerOperations FS_DeleteFileDir_Exception , file:

FileSystemLayerOperations.vpp l. 87 c. 35: map application

(forall sys : System , full_path : Path &

not (not (isElemFileStore(full_path , sys.fileStore))) =>

not (isElemTablePath(full_path , sys.table)) =>

full_path in set dom (sys.fileStore))

*/

assert po9 {

all sys: System , full_path: Path {

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path]

=> not (not (isElemFileStore[full_path , sys.fileStore]))

=> not (isElemTablePath[full_path , sys.table])

=> full_path in RelCalc/dom[sys.fileStore.map]

}

}

CheckPO9: check po9 for 7

/*

Integrity property #1 :

In function FileSystemLayerOperations FS_OpenFileDir_FileStore , file:

FileSystemLayerOperations.vpp l. 213 c. 3: invariants from FileStore

(forall fileStore : FileStore , full_path : Path , attributes : Attributes &

169

CHAPTER B. MODELS

(full_path = <Root > and

attributes.fileType = <Directory >) or

((let parent = dirName(full_path)

in

isElemFileStore(parent , fileStore) and

isDirectory(fileStore(parent).info))) =>

FileSystemLayerOperations `inv_FileStore ((if not (isElemFileStore(full_path , fileStore))

then

(let content = emptyFileContents(attributes.fileType),

newFile = mk_File(newFileDirInfo(attributes),content)

in

fileStore munion {full_path |-> newFile })

else

fileStore)))

*/

assert po10 {

all fileStore , fileStore ': FileStore ,

full_path: Path , attr: Attributes {

FileStoreInvariantVDM[fileStore] and

PathInvariantVDM[full_path]

=> (full_path in Root and attr.fileType in Directory) or

(let parent = full_path.dirName |

isElemFileStore[parent , fileStore] and

isDirectory[fileStore.map[parent].info])

=> (not isElemFileStore[full_path , fileStore]

=> (one newFile: File {

fileStore '.map = fileStore.map + (full_path -> newFile) and

newFile.info.attributes = attr and

(attr.fileType in Directory => newFile.contents in NilFileContents)

and

(attr.fileType in RegularFile => newFile.contents in FileContents)

and

not isElemFileStore[newFile ,fileStore ']

})

=> FileStoreInvariantVDM[fileStore ']

else FileStoreInvariantVDM[fileStore])

}

}

CheckPO10: check po10 for 7

/*

Integrity property #2 :

In function FileSystemLayerOperations FS_OpenFileDir_FileStore , file:

FileSystemLayerOperations.vpp l. 216 c. 18: compatible maps

(forall fileStore : FileStore , full_path : Path , attributes : Attributes &

(full_path = <Root > and

attributes.fileType = <Directory >) or

((let parent = dirName(full_path)

in

isElemFileStore(parent , fileStore) and

isDirectory(fileStore(parent).info))) =>

not (isElemFileStore(full_path , fileStore)) =>

(let content = emptyFileContents(attributes.fileType),

newFile = mk_File(newFileDirInfo(attributes),content)

in

(forall id_9 in set dom (fileStore), id_10 in set dom ({ full_path |-> newFile }) &

170

B.4. MODEL CHECKING

id_9 = id_10 =>

fileStore(id_9) = {full_path |-> newFile }(id_10))))

*/

assert po11 {

all fileStore: FileStore ,

full_path: Path , attr: Attributes {

FileStoreInvariantVDM[fileStore] and

PathInvariantVDM[full_path]

=> (full_path in Root and attr.fileType in Directory) or

(let parent = full_path.dirName |

isElemFileStore[parent , fileStore] and

isDirectory[fileStore.map[parent].info])

=> not isElemFileStore[full_path , fileStore]

=> (some newFile: File {

newFile.info.attributes = attr and

(attr.fileType in Directory => newFile.contents in NilFileContents) and

(attr.fileType in RegularFile => newFile.contents in FileContents)

=> all id_9 ,id_10: Path {

PathInvariantVDM[id_9] and

PathInvariantVDM[id_10]

=> id_9 in RelCalc/dom[fileStore.map] and

id_10 in RelCalc/dom[(full_path ->newFile)]

=> id_9 = id_10

=> fileStore.map[id_9] = (full_path ->newFile)[id_10]

}

})

}

}

CheckPO11: check po11 for 7

/*

Integrity property #3 :

In function FileSystemLayerOperations FS_OpenFileDir_FileStore , file:

FileSystemLayerOperations.vpp l. 220 c. 65: map application

(forall fileStore : FileStore , full_path : Path , attributes : Attributes &

not ((full_path = <Root > and

attributes.fileType = <Directory >)) =>

(let parent = dirName(full_path)

in

isElemFileStore(parent , fileStore) =>

parent in set dom (fileStore)))

*/

assert po12 {

all fileStore: FileStore , full_path: Path , attributes: Attributes {

FileStoreInvariantVDM[fileStore] and

PathInvariantVDM[full_path]

=> not (full_path in Root and attributes.fileType in Directory)

=> let parent = full_path.dirName {

isElemFileStore[parent , fileStore]

=> parent in RelCalc/dom[fileStore.map]

}

}

}

CheckPO12: check po12 for 7

171

CHAPTER B. MODELS

/*

Integrity property #1 :

In function FileSystemLayerOperations FS_OpenFileDir_Exception , file:

FileSystemLayerOperations.vpp l. 260 c. 41: map application

(forall sys : System , full_path : Path , omode : FS_OpenMode &

not (isCreateNew(omode) and

isElemFileStore(full_path , sys.fileStore)) =>

not (isCreateAlways(omode) and

isElemTablePath(full_path , sys.table)) =>

not (isOpen(omode) and

not (isElemFileStore(full_path , sys.fileStore))) =>

isOpen(omode) and

isElemFileStore(full_path , sys.fileStore) =>

full_path in set dom (sys.fileStore))

*/

assert po13 {

all sys: System , full_path: Path , omode: FS_OpenMode {

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path]

=> not (isCreateNew[omode] and isElemFileStore[full_path , sys.fileStore])

=> not (isCreateAlways[omode] and isElemTablePath[full_path , sys.table])

=> not (isOpen[omode] and not isElemFileStore[full_path , sys.fileStore])

=> isOpen[omode] and isElemFileStore[full_path , sys.fileStore]

=> full_path in RelCalc/dom[sys.fileStore.map]

}

}

CheckPO13: check po13 for 7

/*

Integrity property #2 :

In function FileSystemLayerOperations FS_OpenFileDir_Exception , file:

FileSystemLayerOperations.vpp l. 264 c. 61: map application

(forall sys : System , full_path : Path , omode : FS_OpenMode &

not (isCreateNew(omode) and

isElemFileStore(full_path , sys.fileStore)) =>

not (isCreateAlways(omode) and

isElemTablePath(full_path , sys.table)) =>

not (isOpen(omode) and

not (isElemFileStore(full_path , sys.fileStore))) =>

not (isOpen(omode) and

isElemFileStore(full_path , sys.fileStore) and

not (isRegularFile(sys.fileStore(full_path).info))) =>

not (full_path <> <Root > and

not (isElemFileStore(dirName(full_path), sys.fileStore))) =>

full_path <> <Root > =>

dirName(full_path) in set dom (sys.fileStore))

*/

assert po14 {

all sys: System , full_path: Path , omode: FS_OpenMode {

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path]

=> not (isCreateNew[omode] and isElemFileStore[full_path , sys.fileStore])

=> not (isCreateAlways[omode] and isElemTablePath[full_path , sys.table])

=> not (isOpen[omode] and not isElemFileStore[full_path , sys.fileStore])

=> not (isOpen[omode] and isElemFileStore[full_path , sys.fileStore]

172

B.4. MODEL CHECKING

and not isRegularFile[full_path.(sys.fileStore.map).

info])

=> not (full_path in Root and not isElemFileStore[full_path.dirName , sys

.fileStore])

=> full_path not in Root

=> full_path.dirName in RelCalc/dom[sys.fileStore.map]

}

}

CheckPO14: check po14 for 7

/*

Integrity property #1 :

In function FileSystemLayerOperations FS_DeleteFileDir_System , file:

FileSystemLayerOperations.vpp l. 43 c. 3: invariants from System

(forall sys : System , full_path : Path &

((forall ofi in set rng (sys.table) &

ofi.path <> full_path)) and

pre_FS_DeleteFileDir_FileStore(sys.fileStore , {full_path }) =>

FileSystemLayerOperations `inv_System(mu(sys ,fileStore|->FS_DeleteFileDir_FileStore(sys.

fileStore , {full_path }))))

*/

assert po15 {

all sys ,sys ': System , full_path: Path {

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path]

=> full_path not in RelCalc/rng[sys.table.map].path and

pre_FS_DeleteFileDir_FileStore[sys.fileStore ,{ full_path }]

=> FS_DeleteFileDir_FileStore[sys.fileStore ,sys '.fileStore ,{ full_path }] and

sys '. table = sys.table

=> SystemInvariantVDM[sys ']

}

}

CheckPO15: check po15 for 7

/*

Integrity property #2 :

In function FileSystemLayerOperations FS_DeleteFileDir_System , file:

FileSystemLayerOperations.vpp l. 43 c. 51: invariants from FileSystemLayerBase `

FileStore

(forall sys : System , full_path : Path &

((forall ofi in set rng (sys.table) &

ofi.path <> full_path)) and

pre_FS_DeleteFileDir_FileStore(sys.fileStore , {full_path }) =>

FileSystemLayerBase `inv_FileStore(FS_DeleteFileDir_FileStore(sys.fileStore , {full_path

})))

*/

assert po16 {

all sys: System , full_path: Path , fs ': FileStore {

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path]

=> full_path not in RelCalc/rng[sys.table.map].path and

pre_FS_DeleteFileDir_FileStore[sys.fileStore ,{ full_path }]

=> FS_DeleteFileDir_FileStore[sys.fileStore ,fs ',{ full_path }]

=> FileStoreInvariantVDM[fs ']

173

CHAPTER B. MODELS

}

}

CheckPO16: check po16 for 7

/*

Integrity property #3 :

In function FileSystemLayerOperations FS_DeleteFileDir_System , file:

FileSystemLayerOperations.vpp l. 43 c. 55: invariants from FileStore

(forall sys : System , full_path : Path &

((forall ofi in set rng (sys.table) &

ofi.path <> full_path)) and

pre_FS_DeleteFileDir_FileStore(sys.fileStore , {full_path }) =>

FileSystemLayerOperations `inv_FileStore(sys.fileStore))

*/

assert po17 {

all sys: System , full_path: Path {

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path]

=> full_path not in RelCalc/rng[sys.table.map].path and

pre_FS_DeleteFileDir_FileStore[sys.fileStore ,{ full_path }]

=> FileStoreInvariantVDM[sys.fileStore]

}

}

CheckPO17: check po17 for 7

/*

Integrity property #4 :

In function FileSystemLayerOperations FS_DeleteFileDir_System , file:

FileSystemLayerOperations.vpp l. 43 c. 51: function application from

FS_DeleteFileDir_FileStore

(forall sys : System , full_path : Path &

((forall ofi in set rng (sys.table) &

ofi.path <> full_path)) and

pre_FS_DeleteFileDir_FileStore(sys.fileStore , {full_path }) =>

FileSystemLayerOperations `pre_FS_DeleteFileDir_FileStore(sys.fileStore , {full_path }))

*/

assert po18 {

all sys: System , full_path: Path {

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path]

=> full_path not in RelCalc/rng[sys.table.map].path and

pre_FS_DeleteFileDir_FileStore[sys.fileStore ,{ full_path }]

=> pre_FS_DeleteFileDir_FileStore[sys.fileStore ,{ full_path }]

}

}

CheckPO18: check po18 for 7

/*

Integrity property #5 :

In function FileSystemLayerOperations FS_DeleteFileDir_System , file:

FileSystemLayerOperations.vpp l. 45 c. 39: invariants from FileStore

(forall sys : System , full_path : Path &

174

B.4. MODEL CHECKING

((forall ofi in set rng (sys.table) &

ofi.path <> full_path)) =>

FileSystemLayerOperations `inv_FileStore(sys.fileStore))

*/

assert po19 {

all sys: System , full_path: Path {

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path]

=> full_path not in RelCalc/rng[sys.table.map].path

=> FileStoreInvariantVDM[sys.fileStore]

}

}

CheckPO19: check po19 for 7

/*

Integrity property #1 :

In function FileSystemLayerOperations FS_OpenFileDir_System , file:

FileSystemLayerOperations.vpp l. 164 c. 3e: invariants from System

(forall sys : System , full_path : Path , attr : Attributes , omode : FS_OpenMode &

pre_FS_OpenFileDir_FileStore(sys.fileStore , full_path , attr) =>

FileSystemLayerOperations `inv_System ((let fileStore ' = FS_OpenFileDir_FileStore(sys.

fileStore , full_path , attr), mk_(table ,handle) = FS_OpenFileDir_Table(sys.table ,

full_path , omode , attr.fileType), offset = getOpenOffset(fileStore '(full_path),

omode), table ' = table ++ (if handle <> nil and

isElemTableHandle(handle , table) then

{handle |-> mu(table(handle),fileOffset|->offset)}

else

{|->})

in

mk_(mk_System(table ',fileStore '),handle)).#1))

*/

assert po20 {

all sys: System , full_path: Path , attr: Attributes , omode: FS_OpenMode {

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path]

=> pre_FS_OpenFileDir_FileStore[sys.fileStore , full_path , attr]

=> all fileStore ': FileStore , t: OpenFilesTable ,

handle: OptionalFileHandle , offset: FileContents ,

table ',t': OpenFilesTable , ofi: FS_OpenFileInfo {

FS_OpenFileDir_FileStore[sys.fileStore , fileStore ', full_path , attr] and

FS_OpenFileDir_Table[sys.table , t, full_path , omode , attr.fileType , handle]

and

getOpenOffset[fileStore '.map[full_path], omode , offset] and

(handle not in NilFileHandle and isElemTableHandle[handle , t]

=> (ofi.accessMode = t.map[handle]. accessMode and

ofi.path = t.map[handle].path and

ofi.fileOffset = offset

=> t'.map = (handle ->ofi))

else no t'.map)

table '.map = (t.map - (RelCalc/dom[t'.map]->FS_OpenFileInfo)) + t'.map

=> all sys ': System {

sys '. table = table ' and

sys '. fileStore = fileStore '

=> SystemInvariantVDM[sys ']

}

}

175

CHAPTER B. MODELS

}

}

CheckPO20: check po20 for 7

/*

Integrity property #2 :

In function FileSystemLayerOperations FS_OpenFileDir_System , file:

FileSystemLayerOperations.vpp l. 164 c. 55: invariants from FileStore

(forall sys : System , full_path : Path , attr : Attributes , omode : FS_OpenMode &

pre_FS_OpenFileDir_FileStore(sys.fileStore , full_path , attr) =>

FileSystemLayerOperations `inv_FileStore(sys.fileStore))

*/

assert po21 {

all sys: System , full_path: Path , attr: Attributes , omode: FS_OpenMode {

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path]

=> pre_FS_OpenFileDir_FileStore[sys.fileStore , full_path , attr]

=> FileStoreInvariantVDM[sys.fileStore]

}

}

CheckPO21: check po21 for 7

/*

Integrity property #3 :

In function FileSystemLayerOperations FS_OpenFileDir_System , file:

FileSystemLayerOperations.vpp l. 164 c. 51: function application from

FS_OpenFileDir_FileStore

(forall sys : System , full_path : Path , attr : Attributes , omode : FS_OpenMode &

pre_FS_OpenFileDir_FileStore(sys.fileStore , full_path , attr) =>

FileSystemLayerOperations `pre_FS_OpenFileDir_FileStore(sys.fileStore , full_path , attr))

*/

assert po22 {

all sys: System , full_path: Path , attr: Attributes , omode: FS_OpenMode {

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path]

=> pre_FS_OpenFileDir_FileStore[sys.fileStore , full_path , attr]

=> pre_FS_OpenFileDir_FileStore[sys.fileStore , full_path , attr]

}

}

CheckPO22: check po22 for 7

/*

Integrity property #4 :

In function FileSystemLayerOperations FS_OpenFileDir_System , file:

FileSystemLayerOperations.vpp l. 166 c. 48: invariants from File

(forall sys : System , full_path : Path , attr : Attributes , omode : FS_OpenMode &

pre_FS_OpenFileDir_FileStore(sys.fileStore , full_path , attr) =>

(let fileStore ' = FS_OpenFileDir_FileStore(sys.fileStore , full_path , attr),

mk_(table ,handle) = FS_OpenFileDir_Table(sys.table , full_path , omode , attr.

fileType)

in

FileSystemLayerOperations `inv_File(fileStore '(full_path))))

176

B.4. MODEL CHECKING

*/

assert po23 {

all sys: System , full_path: Path , attr: Attributes , omode: FS_OpenMode {

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path]

=> pre_FS_OpenFileDir_FileStore[sys.fileStore , full_path , attr]

=> all fileStore ': FileStore , t: OpenFilesTable ,

handle: OptionalFileHandle {

FS_OpenFileDir_FileStore[sys.fileStore , fileStore ', full_path , attr] and

FS_OpenFileDir_Table[sys.table , t, full_path , omode , attr.fileType , handle]

=> FileInvariantVDM[fileStore '.map[full_path]]

}

}

}

CheckPO23: check po23 for 7

/*

Integrity property #5 :

In function FileSystemLayerOperations FS_OpenFileDir_System , file:

FileSystemLayerOperations.vpp l. 166 c. 48: map application

(forall sys : System , full_path : Path , attr : Attributes , omode : FS_OpenMode &

pre_FS_OpenFileDir_FileStore(sys.fileStore , full_path , attr) =>

(let fileStore ' = FS_OpenFileDir_FileStore(sys.fileStore , full_path , attr),

mk_(table ,handle) = FS_OpenFileDir_Table(sys.table , full_path , omode , attr.

fileType)

in

full_path in set dom (fileStore ')))

*/

assert po24 {

all sys: System , full_path: Path , attr: Attributes , omode: FS_OpenMode {

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path]

=> pre_FS_OpenFileDir_FileStore[sys.fileStore , full_path , attr]

=> all fileStore ': FileStore , t: OpenFilesTable ,

handle: OptionalFileHandle {

FS_OpenFileDir_FileStore[sys.fileStore , fileStore ', full_path , attr] and

FS_OpenFileDir_Table[sys.table , t, full_path , omode , attr.fileType , handle]

=> full_path in RelCalc/dom[fileStore '.map]

}

}

}

CheckPO24: check po24 for 7

/*

Integrity property #6 :

In function FileSystemLayerOperations FS_OpenFileDir_System , file:

FileSystemLayerOperations.vpp l. 167 c. 74: subtype

(forall sys : System , full_path : Path , attr : Attributes , omode : FS_OpenMode &

pre_FS_OpenFileDir_FileStore(sys.fileStore , full_path , attr) =>

(let fileStore ' = FS_OpenFileDir_FileStore(sys.fileStore , full_path , attr), mk_(table ,

handle) = FS_OpenFileDir_Table(sys.table , full_path , omode , attr.fileType), offset

= getOpenOffset(fileStore '(full_path), omode)

in

handle <> nil =>

177

CHAPTER B. MODELS

is_FileSystemLayerBase `FS_FileHandle(FileSystemLayerOperations `handle)))

*/

--assert po25 {

--}

--CheckPO25: check po25 for 7

/*

Integrity property #7 :

In function FileSystemLayerOperations FS_OpenFileDir_System , file:

FileSystemLayerOperations.vpp l. 168 c. 83: subtype

(forall sys : System , full_path : Path , attr : Attributes , omode : FS_OpenMode &

pre_FS_OpenFileDir_FileStore(sys.fileStore , full_path , attr) =>

(let fileStore ' = FS_OpenFileDir_FileStore(sys.fileStore , full_path , attr),

mk_(table ,handle) = FS_OpenFileDir_Table(sys.table , full_path , omode , attr.

fileType),

offset = getOpenOffset(fileStore '(full_path), omode)

in

handle <> nil and

isElemTableHandle(handle , table) =>

is_nat1(offset)))

*/

assert po26 {

all sys: System , full_path: Path , attr: Attributes , omode: FS_OpenMode {

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path]

=> pre_FS_OpenFileDir_FileStore[sys.fileStore , full_path , attr]

=> all fileStore ': FileStore , t: OpenFilesTable ,

handle: OptionalFileHandle {

FS_OpenFileDir_FileStore[sys.fileStore , fileStore ', full_path , attr] and

FS_OpenFileDir_Table[sys.table , t, full_path , omode , attr.fileType , handle]

=> handle not in NilFileHandle

=> isElemTableHandle[handle , t]

}

}

}

CheckPO26: check po26 for 7

/*

Integrity property #8 :

In function FileSystemLayerOperations FS_OpenFileDir_System , file:

FileSystemLayerOperations.vpp l. 168 c. 59: subtype

(forall sys : System , full_path : Path , attr : Attributes , omode : FS_OpenMode &

pre_FS_OpenFileDir_FileStore(sys.fileStore , full_path , attr) =>

(let fileStore ' = FS_OpenFileDir_FileStore(sys.fileStore , full_path , attr), mk_(table ,

handle) = FS_OpenFileDir_Table(sys.table , full_path , omode , attr.fileType), offset

= getOpenOffset(fileStore '(full_path), omode)

in

handle <> nil and

isElemTableHandle(handle , table) =>

is_FileSystemLayerBase `FS_FileHandle(FileSystemLayerOperations `handle)))

*/

assert po27 {

all sys: System , full_path: Path , attr: Attributes , omode: FS_OpenMode {

SystemInvariantVDM[sys] and

178

B.4. MODEL CHECKING

PathInvariantVDM[full_path]

=> pre_FS_OpenFileDir_FileStore[sys.fileStore , full_path , attr]

=> all fileStore ': FileStore , t: OpenFilesTable ,

handle: OptionalFileHandle {

FS_OpenFileDir_FileStore[sys.fileStore , fileStore ', full_path , attr] and

FS_OpenFileDir_Table[sys.table , t, full_path , omode , attr.fileType , handle]

=> handle not in NilFileHandle and isElemTableHandle[handle , t]

=> handle in FS_FileHandle

}

}

}

CheckPO27: check po27 for 7

/*

Integrity property #9 :

In function FileSystemLayerOperations FS_OpenFileDir_System , file:

FileSystemLayerOperations.vpp l. 168 c. 58: map application

(forall sys : System , full_path : Path , attr : Attributes , omode : FS_OpenMode &

pre_FS_OpenFileDir_FileStore(sys.fileStore , full_path , attr) =>

(let fileStore ' = FS_OpenFileDir_FileStore(sys.fileStore , full_path , attr),

mk_(table ,handle) = FS_OpenFileDir_Table(sys.table , full_path , omode , attr.

fileType),

offset = getOpenOffset(fileStore '(full_path), omode)

in

handle <> nil and

isElemTableHandle(handle , table) =>

handle in set dom (table)))

*/

assert po28 {

all sys: System , full_path: Path , attr: Attributes , omode: FS_OpenMode {

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path]

=> pre_FS_OpenFileDir_FileStore[sys.fileStore , full_path , attr]

=> all fileStore ': FileStore , t: OpenFilesTable ,

handle: OptionalFileHandle {

FS_OpenFileDir_FileStore[sys.fileStore , fileStore ', full_path , attr] and

FS_OpenFileDir_Table[sys.table , t, full_path , omode , attr.fileType , handle]

=> handle not in NilFileHandle and isElemTableHandle[handle , t]

=> handle in RelCalc/dom[t.map]

}

}

}

CheckPO28: check po28 for 7

/*

Integrity property #10 :

In function FileSystemLayerOperations FS_OpenFileDir_System , file:

FileSystemLayerOperations.vpp l. 170 c. 17: subtype

(forall sys : System , full_path : Path , attr : Attributes , omode : FS_OpenMode &

pre_FS_OpenFileDir_FileStore(sys.fileStore , full_path , attr) =>

(let fileStore ' = FS_OpenFileDir_FileStore(sys.fileStore , full_path , attr), mk_(table ,

handle) = FS_OpenFileDir_Table(sys.table , full_path , omode , attr.fileType), offset

= getOpenOffset(fileStore '(full_path), omode), table ' = table ++ (if handle <> nil

and

179

CHAPTER B. MODELS

isElemTableHandle(handle , table) then

{handle |-> mu(table(handle),fileOffset|->offset)}

else

{|->})

in

is_FileSystemLayerBase `OpenFilesTable(FileSystemLayerOperations `table ')))

*/

assert po29 {

all sys: System , full_path: Path , attr: Attributes , omode: FS_OpenMode {

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path]

=> pre_FS_OpenFileDir_FileStore[sys.fileStore , full_path , attr]

=> all fileStore ': FileStore , t: OpenFilesTable ,

handle: OptionalFileHandle , offset: FileContents ,

table ',t': OpenFilesTable , ofi: FS_OpenFileInfo {

FS_OpenFileDir_FileStore[sys.fileStore , fileStore ', full_path , attr] and

FS_OpenFileDir_Table[sys.table , t, full_path , omode , attr.fileType , handle]

and

getOpenOffset[fileStore '.map[full_path], omode , offset] and

(handle not in NilFileHandle and isElemTableHandle[handle , t]

=> (ofi.accessMode = t.map[handle]. accessMode and

ofi.path = t.map[handle].path and

ofi.fileOffset = offset

=> t'.map = (handle ->ofi))

else no t'.map)

table '.map = (t.map - (RelCalc/dom[t'.map]->FS_OpenFileInfo)) + t'.map

=> OpenFilesTableInvariantVDM[table ']

}

}

}

CheckPO29: check po29 for 7

/*

Integrity property #11 :

In function FileSystemLayerOperations FS_OpenFileDir_System , file:

FileSystemLayerOperations.vpp l. 170 c. 25: invariants from FileSystemLayerBase `

FileStore

(forall sys : System , full_path : Path , attr : Attributes , omode : FS_OpenMode &

pre_FS_OpenFileDir_FileStore(sys.fileStore , full_path , attr) =>

(let fileStore ' = FS_OpenFileDir_FileStore(sys.fileStore , full_path , attr),

mk_(table ,handle) = FS_OpenFileDir_Table(sys.table , full_path , omode , attr.

fileType),

offset = getOpenOffset(fileStore '(full_path), omode),

table ' = table ++ (if handle <> nil and isElemTableHandle(handle , table)

then {handle |-> mu(table(handle),fileOffset|->offset)}

else {|->})

in

FileSystemLayerBase `inv_FileStore(fileStore ')))

*/

assert po30 {

all sys: System , full_path: Path , attr: Attributes , omode: FS_OpenMode {

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path]

=> pre_FS_OpenFileDir_FileStore[sys.fileStore , full_path , attr]

=> all fileStore ': FileStore , t: OpenFilesTable ,

handle: OptionalFileHandle , offset: FileContents ,

180

B.4. MODEL CHECKING

table ',t': OpenFilesTable , ofi: FS_OpenFileInfo {

FS_OpenFileDir_FileStore[sys.fileStore , fileStore ', full_path , attr] and

FS_OpenFileDir_Table[sys.table , t, full_path , omode , attr.fileType , handle]

and

getOpenOffset[fileStore '.map[full_path], omode , offset] and

(handle not in NilFileHandle and isElemTableHandle[handle , t]

=> (ofi.accessMode = t.map[handle]. accessMode and

ofi.path = t.map[handle].path and

ofi.fileOffset = offset

=> t'.map = (handle ->ofi))

else no t'.map)

table '.map = (t.map - (RelCalc/dom[t'.map]->FS_OpenFileInfo)) + t'.map

=> FileStoreInvariantVDM[fileStore ']

}

}

}

CheckPO30: check po30 for 7

/*

Integrity property #12 :

In function FileSystemLayerOperations FS_OpenFileDir_System , file:

FileSystemLayerOperations.vpp l. 171 c. 37: invariants from FileStore

(forall sys : System , full_path : Path , attr : Attributes , omode : FS_OpenMode &

FileSystemLayerOperations `inv_FileStore(sys.fileStore))

*/

assert po31 {

all sys: System , full_path: Path , attr: Attributes , omode: FS_OpenMode {

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path]

=> FileStoreInvariantVDM[sys.fileStore]

}

}

CheckPO31: check po31 for 7

/*

Integrity property #1 :

In function FileSystemLayerOperations FS_DeleteFileDir_Main , file:

FileSystemLayerOperations.vpp l. 25 c. 35: function application from

FS_DeleteFileDir_System

(forall sys : System , full_path : Path &

full_path in set dom (sys.fileStore) and

pre_FS_DeleteFileDir_System(sys , full_path) =>

FileSystemLayerOperations `pre_FS_DeleteFileDir_System(sys , full_path))

*/

assert po32 {

all sys: System , full_path: Path {

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path]

=> full_path in RelCalc/dom[sys.fileStore.map] and

pre_FS_DeleteFileDir_System[sys , full_path]

=> pre_FS_DeleteFileDir_System[sys , full_path]

}

}

CheckPO32: check po32 for 7

181

CHAPTER B. MODELS

/*

Integrity property #1 :

In function FileSystemLayerOperations FS_OpenFileDir_Table , file:

FileSystemLayerOperations.vpp l. 235 c. 44: map application

(forall table : OpenFilesTable , full_path : Path , omode : FS_OpenMode , fileType :

FileType &

not (fileType = <Directory >) =>

omode in set dom (fs_open2access_mode_map))

*/

assert po33 {

all omode: FS_OpenMode , fileType: FileType {

not (fileType in Directory)

=> some amode: FS_AccessMode {

fs_open2access_mode_map[omode ,amode]

}

}

}

CheckPO33: check po33 for 7

// removed table and full_path because they are not used

/*

Integrity property #2 :

In function FileSystemLayerOperations FS_OpenFileDir_Table , file:

FileSystemLayerOperations.vpp l. 238 c. 18: compatible maps

(forall table : OpenFilesTable , full_path : Path , omode : FS_OpenMode , fileType :

FileType &

not (fileType = <Directory >) =>

(let amode = fs_open2access_mode_map(omode),

ofi = mk_FS_OpenFileInfo (1,amode ,full_path),

handle = newFileHandle(dom (table))

in

(forall id_11 in set dom (table), id_12 in set dom ({ handle |-> ofi}) &

id_11 = id_12 => table(id_11) = {handle |-> ofi}(id_12))))

*/

assert po34 {

all table: OpenFilesTable , full_path: Path , omode: FS_OpenMode , fileType: FileType {

not (fileType in Directory)

=> all amode: FS_AccessMode , ofi: FS_OpenFileInfo ,

handle: FS_FileHandle {

FS_OpenFileInfoInvariantVDM[ofi]

=> fs_open2access_mode_map[omode ,amode] and

ofi.accessMode = amode and

ofi.path = full_path and

handle not in RelCalc/dom[table.map]

=> all id_11 , id_12: FS_FileHandle {

id_11 in RelCalc/dom[table.map] and

id_12 in RelCalc/dom[(handle ->ofi)]

=> id_11 = id_12 => table.map[id_11] = (handle ->ofi)[id_12]

}

}

}

}

CheckPO34: check po34 for 7

182

B.4. MODEL CHECKING

/*

Integrity property #1 :

In function FileSystemLayerOperations FS_OpenFileDir_Main , file:

FileSystemLayerOperations.vpp l. 106 c. 32: invariants from FileStore

(forall sys : System , full_path : Path , attributes : Attributes , omode : FS_OpenMode &

pre_FS_OpenFileDir_System(sys , full_path , attributes , omode) and

checkOpenMode(sys , full_path , omode) =>

FileSystemLayerOperations `inv_FileStore(sys.fileStore))

*/

assert po35 {

all sys: System , full_path: Path , attr: Attributes ,

omode: FS_OpenMode {

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path]

=> pre_FS_OpenFileDir_System[sys , full_path , attr , omode] and

checkOpenMode[sys , full_path , omode]

=> FileStoreInvariantVDM[sys.fileStore]

}

}

CheckPO35: check po35 for 7

/*

Integrity property #2 :

In function FileSystemLayerOperations FS_OpenFileDir_Main , file:

FileSystemLayerOperations.vpp l. 111 c. 52: function application from

FS_OpenFileDir_System

(forall sys : System , full_path : Path , attributes : Attributes , omode : FS_OpenMode &

pre_FS_OpenFileDir_System(sys , full_path , attributes , omode) and

checkOpenMode(sys , full_path , omode) =>

mustDeleteFirst(sys.fileStore , full_path , omode) and

(full_path = <Root > =>

attributes.fileType = <Directory >) =>

(let mk_(sys ',status) = FS_DeleteFileDir_Main(sys , full_path)

in

not (status <> <FFS_StatusSuccess >) =>

FileSystemLayerOperations `pre_FS_OpenFileDir_System(sys ', full_path , attributes , omode)

))

*/

assert po36 {

all sys: System , full_path: Path , attributes: Attributes ,

omode: FS_OpenMode {

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path]

=> pre_FS_OpenFileDir_System[sys , full_path , attributes , omode] and

checkOpenMode[sys , full_path , omode]

=> mustDeleteFirst[sys.fileStore , full_path , omode] and

(full_path in Root => attributes.fileType in Directory)

=> all sys ': System , status: FFS_Status {

status not in FFS_StatusSuccess

=> pre_FS_OpenFileDir_System[sys ', full_path , attributes , omode]

}

}

}

183

CHAPTER B. MODELS

CheckPO36: check po36 for 7

/*

Integrity property #3 :

In function FileSystemLayerOperations FS_OpenFileDir_Main , file:

FileSystemLayerOperations.vpp l. 113 c. 58: function application from

FS_OpenFileDir_System

(forall sys : System , full_path : Path , attributes : Attributes , omode : FS_OpenMode &

pre_FS_OpenFileDir_System(sys , full_path , attributes , omode) and

checkOpenMode(sys , full_path , omode) =>

not (mustDeleteFirst(sys.fileStore , full_path , omode) and

(full_path = <Root > =>

attributes.fileType = <Directory >)) =>

FileSystemLayerOperations `pre_FS_OpenFileDir_System(sys , full_path , attributes , omode))

*/

assert po37 {

all sys: System , full_path: Path , attributes: Attributes ,

omode: FS_OpenMode {

SystemInvariantVDM[sys] and

PathInvariantVDM[full_path]

=> pre_FS_OpenFileDir_System[sys , full_path , attributes , omode] and

checkOpenMode[sys , full_path , omode]

=> not (mustDeleteFirst[sys.fileStore , full_path , omode] and

(full_path in Root => attributes.fileType in Directory))

=> pre_FS_OpenFileDir_System[sys , full_path , attributes , omode]

}

}

CheckPO37: check po37 for 7

/*

Integrity property #1 :

In function FileSystemLayerOperations FS_Init_FileStore , file: FileSystemLayerOperations

.vpp l. 392 c. 3: invariants from FileStore

FileSystemLayerOperations `inv_FileStore ({<Root > |-> mk_File(mk_FS_FileDirInfo(

mk_Attributes(<Directory >)),nil)})

*/

assert po38 {

all file: File , fs: FileStore {

FileInvariantVDM[file] and

PathInvariantVDM[Root]

=> file.info.attributes.fileType = Directory and

file.contents = NilFileContents and

fs.map = (Root ->file)

=> FileStoreInvariantVDM[fs]

}

}

CheckPO38: check po38 for 7

/*

Integrity property #1 :

In function FileSystemLayerOperations getOpenOffset , file: FileSystemLayerOperations.vpp

l. 185 c. 36: subtype

184

B.4. MODEL CHECKING

(forall file : File , omode : FS_OpenMode &

file.contents <> nil =>

omode = (<FS_OpenWrite >) =>

(let (<FS_OpenWrite >) = omode

in

is_(file.contents ,seq of token)))

*/

--assert po38 {

--}

--CheckPO38: check po38 for 7

/*

Integrity property #2 :

In function FileSystemLayerOperations getOpenOffset , file: FileSystemLayerOperations.vpp

l. 186 c. 33: subtype

(forall file : File , omode : FS_OpenMode &

file.contents <> nil =>

not (omode = (<FS_OpenWrite >)) =>

omode = (<FS_OpenAlways >) =>

(let (<FS_OpenAlways >) = omode

in

is_(file.contents ,seq of token)))

*/

--assert po39 {

--}

--CheckPO39: check po39 for 7

/*

Integrity property #1 :

In function FileSystemLayerOperations checkOpenMode , file: FileSystemLayerOperations.vpp

l. 148 c. 36: map application

(forall sys : System , path : Path , omode : FS_OpenMode &

not ((isCreateNew(omode) and

isElemFileStore(path , sys.fileStore))) and

not ((isCreateAlways(omode) and

isElemTablePath(path , sys.table))) and

not ((isOpen(omode) and

not (isElemFileStore(path , sys.fileStore)))) =>

(isOpen(omode) or

omode = <FS_OpenAlways >) and

isElemFileStore(path , sys.fileStore) =>

path in set dom (sys.fileStore))

*/

assert po40 {

all sys: System , path: Path , omode: FS_OpenMode {

SystemInvariantVDM[sys] and

PathInvariantVDM[path]

=> not (isCreateNew[omode] and isElemFileStore[path , sys.fileStore]) and

not (isCreateAlways[omode] and isElemTablePath[path , sys.table]) and

not (isOpen[omode] and not isElemFileStore[path , sys.fileStore])

=> (isOpen[omode] or omode in FS_OpenAlways) and

isElemFileStore[path , sys.fileStore]

=> path in RelCalc/dom[sys.fileStore.map]

}

185

CHAPTER B. MODELS

}

CheckPO40: check po40 for 7

186

	capa.pdf
	Página 1
	Página 2
	Página 3

	mi-pg10961-tese.pdf
	1 Introduction
	1.1 Formal Methods
	1.2 Grand Challenge
	1.2.1 Verifiable File System

	1.3 Software Verification
	1.3.1 Testing
	1.3.2 Model Checking
	1.3.3 Mathematical Proof

	1.4 Objectives
	1.5 Document Structure

	2 Tool Background
	2.1 VDM
	2.1.1 VDM++ Language
	2.1.2 VDMTools
	2.1.3 Overture

	2.2 Alloy
	2.2.1 Alloy Language
	2.2.2 Alloy Analyzer

	2.3 HOL

	3 Development Process
	3.1 Abstract Modeling
	3.2 Model Translation
	3.2.1 VDM++ to Alloy Translation: Hand Guide
	3.2.2 VDM++ to HOL Translation: Preparation

	3.3 Verification
	3.3.1 Testing
	3.3.2 Model Checking
	3.3.3 Proof of Correction
	3.3.4 Tool Chain

	3.4 Summary

	4 Intel® Flash File System Core
	4.1 FS_DeleteFileDir
	4.1.1 Requirements Analysis
	4.1.2 VDM++ Model
	4.1.3 Unit Testing the VDM++ model
	4.1.4 Alloy Model
	4.1.5 Model Checking the Operation with the Alloy Analyzer
	4.1.6 Model Checking VDM Proof Obligations with the Alloy Analyser
	4.1.7 VDM++ Adapted for the VdmHolTranslator Tool
	4.1.8 Correcting the Translated HOL4 Model
	4.1.9 Discharging VDM Proof Obligations with HOL4

	4.2 FS_OpenFileDir
	4.2.1 Requirements Analysis
	4.2.2 VDM++ Model
	4.2.3 Unit Testing the VDM++ Model
	4.2.4 Alloy Model
	4.2.5 Model checking the operation with the Alloy Analyzer
	4.2.6 Model Checking VDM Proof Obligations with the Alloy Analyser
	4.2.7 VDM++ Adapted for the VdmHolTranslator Tool
	4.2.8 Correcting the Translated HOL4 Model
	4.2.9 Discharging VDM Proof Obligations with HOL4

	4.3 Summary

	5 Related Work and Conclusions
	5.1 Related Work
	5.1.1 Verified File System
	5.1.2 Using Alloy as a Complement for Other Methods

	5.2 Conclusions
	5.2.1 Contributions
	5.2.2 Difficulties
	5.2.3 Future Work

	A Libraries
	A.1 Alloy Relational Calculus Library

	B Models
	B.1 VDM++ Model
	B.1.1 Flash File System Core

	B.2 Unit tests
	B.2.1 FS_DeleteFileDir
	B.2.2 FS_OpenFileDir

	B.3 Alloy Model
	B.3.1 Flash File System Core

	B.4 Model Checking
	B.4.1 FS_DeleteFileDir
	B.4.2 FS_OpenFileDir
	B.4.3 Proof Obligations

