
Novembro 2009

Universidade do Minho
Escola de Engenharia

Francisco Miguel Carvalho Barros da Cruz

SocialSeer

Mestrado em Engenharia Informática

Trabalho efectuado sob a orientação do
Professor Doutor Rui Carlos Mendes de Oliveira

Novembro 2009

Universidade do Minho
Escola de Engenharia

Francisco Miguel Carvalho Barros da Cruz

SocialSeer

É AUTORIZADA A REPRODUÇÃO PARCIAL DESTA TESE APENAS PARA EFEITOS
DE INVESTIGAÇÃO, MEDIANTE DECLARAÇÃO ESCRITA DO INTERESSADO, QUE A TAL SE
COMPROMETE;

Universidade do Minho, ___/___/______

Assinatura: __

2

Acknowledgements

To my advisor Prof. Rui Carlos Oliveira, for his support and mo-
tivation skills over the months that this thesis has been gestation.
His good humour and careful attention to details greatly eased the
creation of this project.

To Prof. José Orlando Pereira for his help and enlightening conver-
sations.

I am in debt to Francisco Maia and João Paulo, who generously
stepped up to carefully follow all the course of this work.

I would like to thank all my fellow colleagues at the Grupo de Sis-
temas Distribuídos for the cosy environment and especially to Nuno
Carvalho, for his support and availability to all my, sometimes not
so bright doubts.

To João Granja, Nuno Oliveira, Carlos Pereira, Miguel Pires and
Fábio Lima for all the unwounded lunches.

I also want to thank my family for the patience and constant support
and encouragement during my involvement with this work.

ii

Resumo

A ubiquidade do actual acesso banda larga à Internet e o uso cres-
cente de diversos e diferentes terminais e tipos de acesso tais como,
o computador pessoal, o computador portátil e o telemóvel, signi-
fica que estamos expostos a uma enorme quantidade de informação
onde quer que estejamos e, portanto, precisamos de mecanismos que
ajudem a lidar com a sobrecarga de informação.

Metadados são, etilogicamente, dados sobre os dados, estes podem
ser extraídos dos conteúdos dos ficheiros, podendo ser utilizados
como base para a organização da informação, tornando-se assim pre-
mente que o utilizador possa catalogar os seus dados sobre uma pers-
pectiva pessoal, através de palavras-chave e mesmo, de uma apreci-
ação quantitativa. Com base nos metadados e no padrão de uso do
utilizador podemos criar formas de apresentar ao mesmo informação
concordante com as suas preferências pessoais.

Sendo que a componente humana social tem um papel preponderante
na vida quotidiana é inevitável a partilha de dados e opiniões entre
um círculo de amigos, que muito provavelmente têm um elevado
índice de sobreposição de preferências.

Assim torna-se clara a importância e necessidade de uma plataforma
baseada em metadados, que integre a web no nosso ambiente de
trabalho, permitindo a sua interconexão e ajudando o utilizador a
melhor lidar com a informação ao seu dispôr.

iv

Abstract

The current ubiquity of broadband access to the Internet and the in-
creasing use of several and different types of terminals of access such
as personal computer, laptop computer and mobile phone means
that we are exposed to an enormous amount of information wher-
ever we are, and therefore, we need mechanisms that help us to cope
with the information overload.

Metadata, literally data about data, can be extracted from the file
contents and can be used as a basis for organizing information. Fur-
thermore, metadata gives way to cataloguing our data on a personal
perspective, through keywords and even through a quantitative as-
sessment. Based on metadata and the usage pattern, we can create
ways of presenting information to the user according to her personal
preferences.

The human-social component has a central role in our everyday lives,
thus there is the need of sharing data and opinions within our circle
of friends, who probably have a high degree of overlap of preferences.

To ease this behavior we identified the need for a metadata-based
platform that blends the web into our working set of documents,
enabling the interconnection of the user’s desktop’s and at the same
time helping the user to better deal with the information available.
With this work we present our approach to implementing such a
platform.

vi

Contents

Contents . viii

List of Figures . ix

List of Tables . xi

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis contribution 5

1.3 Dissertation outline 6

2 Related work 7

2.1 Metadata . 7

2.1.1 Metadata in the Web 7

2.1.2 Desktop metadata indexing 8

2.2 Personal recommendation systems 10

2.3 Social networking . 12

2.4 Undergoing projects 13

2.4.1 Nepomuk . 14

2.4.2 Social desktop 15

2.4.3 Social desktop – Microsoft Research 15

3 SocialSeer 17

3.1 Architecture . 18

vii

viii CONTENTS

3.2 Prototype . 19

3.2.1 Bolt and SocialSeer 20

3.2.2 Metadata: gathering and manipulation 21

3.2.3 Personal metadata indexing 26

3.2.4 Dynamic user profile 30

3.2.5 Circle of friends 31

3.2.6 Sharing of document rates 33

3.2.7 Document recommendations 35

3.2.8 In-memory index holder 39

3.2.9 Photo album synchronization 40

3.2.10 Implementation considerations 41

4 Experimental evaluation 43

4.1 Experimental scenario description 44

4.2 Load test results . 46

4.3 Latency test results 48

5 Conclusion 51

5.1 Conclusions . 51

5.2 Contributions . 53

5.3 Future work . 54

References 56

List of Figures

3.1 Bolt’s isolation level 20

3.2 SocialSeer’s isolation level 21

3.3 Introduced modules in Bolt’s client application 22

3.4 Indexing process in SocialSeer’s server 27

3.5 KMDKind index . 29

3.6 Dynamic user profile 32

3.7 User’s social graph retrieving process in SocialSeer’s
server . 33

3.8 Example of a multimedia document rate sharing . . . 35

3.9 Automatic recommendations algorithm example, where
Stotal = 5 . 38

3.10 In-memory Index Holder and how it relates to other
modules . 41

4.1 CPU usage . 47

4.2 Total of memory used in MB 47

ix

x LIST OF FIGURES

List of Tables

4.1 Latency table . 49

xi

xii LIST OF TABLES

Chapter 1

Introduction

In this introductory chapter we present the motivation that led to
this dissertation. In addition, we try to describe its context and its
relevance towards the current IT scenario. Finally, we present the
dissertation outline.

1.1 Motivation

Nowadays, the Internet plays a very important role in our daily lives.
Every day we surf the web visiting our favourite websites, sending
and receiving emails, downloading and uploading files. As a result,
we are exposed to an enormous amount of information which flows
up and downstream but asymmetrically. Invariably, the amount of
downloaded information is much larger than the one that is uploaded
and, as a consequence, the data to be stored is growing rapidly and
most of the times in an unstructured fashion. In place, informed and
unobtrusive mechanisms to catalogue and organise, correlate, share
and filter incoming data are thus becoming a major necessity.

1

2 CHAPTER 1. INTRODUCTION

Cataloguing and organising

During our lifetime, there comes a time when we feel that our home
is too small for all our stuff, stuff that we consider essential. When
we finally move into the bigger house, after a while we found that
despite having more absolute space, we end up with roughly the
same relative space occupied. But this time with even more stuff.
The same phenomenon is happening with our computers. To meet
our growing need for storage space, physical devices with increasing
capacity emerged.

With more and more data stored, the process of finding what we
need becomes time-consuming. Local search engines try to overcome
this problem, but still we, as users, find it hard to remember file
attributes like the filename. Therefore, we need tools that allow
us to manually and automatically catalogue our data, which can
greatly improve our user experience and productivity. Cataloguing
is regarded as metadata [39], more specifically descriptive metadata
[35].

Cataloguing can be automatic or manual. On the one hand, the
main source of the information stored on our personal computers is
the Internet, hence it would make sense to automatically mark all
incoming data with their origin. This is an example of automatic
cataloguing.

On the other hand, manual cataloguing consists of all the attributes
that the user can add to a particular document: tags and ratings.
The usefulness of this form of cataloguing can be illustrated by the
following example: sometimes when we create or download a file, we
would like to add keywords that may not be directly related to the
contents of the document. This mechanism would be very useful for
non-text documents such as pictures or videos as we could classify
a picture as funny or add the names of people appearing in that
picture. So, if those tags were indexed by the local search engine it
would reduce search time.

1.1. MOTIVATION 3

It is not hard to imagine applications that can take advantage of
descriptive metadata in a more complex way, to further improve the
organisation of information. The current file system hierarchy is
based on the location of files and somewhat restricts our freedom
when comes to metadata. We can create a folder to group all the
documents that are related to same subject but, very often, one
document can be related to more than one subject. As a result, we
could create a virtual folder that would dynamically aggregate all
documents according to some criteria based on descriptive metadata.

When organising and cataloguing, we can draw patterns and rela-
tions between data - correlating - that can be used to provide a
better experience to the user.

Correlating

Personal computers have become our personal workbench storing a
great volume of personal and professional information. A closer look
allows us to conclude that on a daily basis we execute the same
kind of operations like: check the news of the day and our favourite
websites, send email, download/upload files, etc. In other words, the
personal use of computers tends to follow a pattern, which tends to
settle down and even become routinary - user pattern.

The information stored in our working set of documents tells much
about our interests. Providing the user with tools to add descriptive
metadata to documents not only allows to better manage informa-
tion, but also opens the doors to develop new applications to take
advantage of semantic information (i.e. metadata).

The working set of documents provides the main source of meta-
data as a means to infer correlations. However, other sources can
be considered namely, the searches both in the local and the web
search engine, the most visited websites or the personal social net-
work profile. By correlating the available metadata with the user

4 CHAPTER 1. INTRODUCTION

pattern we will be able to infer user’s interests and ultimately get
the user profile. This is useful when thinking of providing tailor
made utilities.

Sharing

At the present time we are living in a social paradox where we have
never been so physically apart from each other but at the same time
we have never been so virtually close. Therefore, ermeges the need of
staying connected through social networks, instant messaging, doc-
ument and email exchange. When we rate or append a comment to
a document, that document gets a personal dimension, because the
inserted metadata represents our personal opinion about it.

Our friends’ opinion is highly valued, thus whenever we need to
buy a book or a CD we enquire them about the rating they gave
to that book or CD. So, it would make sense to bring a similar
mechanism into our working set of documents. In other words, if
we have documents in common with our friends, we can spread the
rating or comments we appended to that documents to all of them.

Furthermore, we can think of other mechanism that could prove as
useful: whenever we come cross with an interesting document from
our working set, we should be able to simply and directly suggest
that document, which would end up in our friends’ working set of
documents.

Filtering

The human being when exposed to hearing stimulus, learns how to
ignore the sounds that are not of interest - the so called white noise.
We are exposed to overwhelming amounts of information and thus
we need automatic mechanisms to filter the adequate part of it.

Every day we use filters without even realising we are using them.
One of such filters, is the spam filter, which is embedded in most of

1.2. THESIS CONTRIBUTION 5

email providers. Recently, web search engines also provided embed-
ded filtering i.e. search results are filtered taking into account our
previous searches.

As a matter of fact, recommendation systems can be regarded as
filters, since they provide us information we may be interested in,
based on our profile and/or on people with similar interests.

Now, that our working set of documents is so close connected to
the web and thus exposed to huge amounts of information, similar
approaches have to be brought to our desktop. One possible useful
example of a desktop oriented filter, would be to recommend doc-
uments we may be fond of based on our inferred user profile and
friends’ network.

1.2 Thesis contribution

With this work, we undertake to meet the objectives of conceiving
and prototyping a set of mechanisms based on metadata, in order
to catalogue, organise, correlate, filter and share our working set of
documents. These set of mechanisms will form a conceptual and
experimental system called SocialSeer.

In order to catalogue and organise data, automatic and manual cat-
aloguing will be used. With regard to manual cataloguing, we will
devise a mechanism to allow an easy way of rating data and a simple
method for tagging data. With regard to automatic cataloguing, we
will make use of already existing methods.

Descriptive metadata extracted from our working set of documents
will be combined with the user pattern. The point of this correlation
is the user profile inference, which takes into account what we were
doing during the week but gives special relevance to our actions
within the current day.

Another important aspect of this work is the social component. We

6 CHAPTER 1. INTRODUCTION

will conceive two social-based features. The first one is the document
rate sharing, which aims to spread descriptive metadata among our
circle of friends. The second one, the user-driven document rec-
ommendation tries to mimic the habit of sharing one document by
sending an email to the mailing list. This mechanism can be achieved
by marking a document to be shared and push a copy to our friends’
working sets of documents.

Other goal of this project is to filter information, thus we will design a
mechanism to allow an automatic document recommendation system
based on our personal interests, the source of these suggestions is
our friends’ working set of documents, which increases the odds of
finding compatible data.

The set of devised mechanisms will be exposed in an already ex-
isting system. Bolt [32] is that system, which provides a working
set dissemination service. Therefore, Bolt will be extended to ac-
commodate the conceived mechanisms in order to give rise to the
SocialSeer.

With this dissertation we intend to prove our approach is valid and
is relevant to the current IT scenario. Furthermore, we expect that
relevant information can be presented and at the same time provide
a platform to share our lives and daily experiences with our friends.
Ultimately providing the user with useful data and a seamless social
experience fully integrated into the working set of documents.

1.3 Dissertation outline

The rest of this dissertation is structured as follows: Chapter 2
presents an overview of work; Chapter 3 presents the concepts de-
vised as well as the proposed architecture of the system and the
prototype description; the prototype evaluation and the main re-
sults are detailed in Chapter 4. Finally, Chapter 5 concludes this
work.

Chapter 2

Related work

In this chapter we overview some concepts that are key to the cur-
rent research. We address the management of metadata to describe
general sorts of documents, existing trends in personnal Recom-
mendation Systems and the concepts involved in Social Networks.
While these concepts separatelly are well known and their adoption
widespread, only very recently their integration has started being
implemented. We review some of these initiatives.

2.1 Metadata

2.1.1 Metadata in the Web

Metadata, literally data about data [34], has been growing in impor-
tance since the last decade. It has been used in libraries and muse-
ums to speed up books finding. But, the Internet and the use of Web
search engines to deal with the immense available information on-
line, acted as a true catalyst for the great and growing importance
of metadata in information retrieval [34]. Since a long time Web
search engines make effective use of crawling and metadata index-
ing in order to retrieve efficient and accurate results. The indexing
mechanism in Web search engines, like Google [30], is achieved by

7

8 CHAPTER 2. RELATED WORK

forward indexes and inverted indexes. A forward index [30] maps
documents to terms appearing in that document. Conversely, an
inverted index [30] maps terms to documents in which that term
appears. Both forward and inverted indexes can be built from one
another. However, webpage metadata indexing had some disadvan-
tages. Before, Google introduced its pagerank algorithm, web search
engines were grappling with websites’ intentional metadata manip-
ulation. For example, the title HTML tag can be a great source
of information as it can provide a summary of the page contents.
Nonetheless, if we change the title tag to match the terms of the top
search list we could increase our website’s visitors.

It was also online that the concept of social sharing of descriptive
metadata was successfully introduced. One example is the popular
online video sharing YouTube [23], which not only allows users to
rate and comment on videos, embedding those attributes in the video
format, but also to perform searches on metadata attributes such as
tags that the user assigned when she uploaded the video.

2.1.2 Desktop metadata indexing

Due to the growing volume of information stored in our personal
computers, similar approaches to the web have been brought to per-
sonal computers. For instance, stand-alone applications like PDF
Adobe’s Acrobat Reader that enabled comments in order to al-
low reviewing and collaborative work were created. Secondly, open
standards appeared, like OpenMeta [11] to allow applications to
take full advantage of the metadata attributes. Finally, complete
desktop search engines that rely on file-contents and metadata are
part of the most common operating systems (Windows, Mac OS X
and KDE/Linux). These systems provide a file system-level search,
which helps to organize, catalogue, find and access the information.
These systems are:

2.1. METADATA 9

• Spotlight Store [3, 18] on Mac OS X;

• Windows Search [21,38] on Windows;

• Nepomuk [9] on KDE/Linux.

All systems provide mechanisms to automatically extract metadata
from popular file formats as well as allowing the users to add de-
scriptive metadata to their documents. In addition, Mac OS X
Leopard automatically adds the metadata attribute wherefrom, with
the source website link, every time a file is downloaded from the
web. There are not many differences between the three information
retrieval systems since they all have followed similar approaches.
Nonetheless, we will try to pinpoint their main features and differ-
ences:

• All rely on both document’s metadata and document’s content
to provide the user with new ways of organizing and accessing
information. All the data is stored in a storage service that
holds all metadata attributes about a document and an index
to its contents;

• The first time they are enabled the indexing process can take
a while to complete, but then all the indexing is incremental;

• When performing a query the results can be filtered according
to one or more metadata attributes;

• Nepomuk and Spotlight both are aware of when files are up-
dated, created or deleted, thus the index is updated straight-
way. On Windows Search as files are updated, created or
deleted their file paths are inserted in a queue (the Gatherer)
and scheduled to update the index whenever is possible [38];

• Provide APIs for developers to create their own metadata im-
porters as well as already implemented importers for most of
the standard file formats (JPEG, RTF, PDF and MP3);

10 CHAPTER 2. RELATED WORK

• Windows Search allows natural language query (e.g. mail from
John).

In terms of architecture, Spotlight Store [18] is itself a file system-
level database that is divided into a Metadata Store (a database
specifically created to handle metadata), which has all file meta-
data attributes, and a Content Index (managed by Apple’s Search
Kit [14] and only used if the file is text based). The Metadata Store
stores each file has an MDItem object. This object comprises a dic-
tionary of all metadata attributes associated with that file. The
keys of that dictionary are a subset of pre-defined Mac OS X unique
keys (e.g. kMDItemAuthors, kMDItemContentType, kMDItemNum-
berOfPages, etc). Those unique keys are generic in order to suite
the entire file formats, but Spotlight allows us to create our own
personal metadata attributes Another example of these unique keys
is the kMDItemTextContent (populated if the file has text content),
which holds a reference to the Content Index. The Content Index
(Search Kit managed) holds an inverted index of the terms that
composes the document.

2.2 Personal recommendation systems

Due to the need to filter information, recommendation systems have
long been an important research area [25]. In fact, the problem of
recommending items to users can be reduced to the problem of esti-
mating the rate one user would give to an unseen object. According
to how recommendations are made, recommendation systems can be
grouped in three main categories [25] [26]:

• Content-based recommendations: these kind of systems try to
estimate the rating one user would give to an item, based on
the previous records of rates the user gave to similar items.
However, this approach raises some problems. The new user

2.2. PERSONAL RECOMMENDATION SYSTEMS 11

problem: at the beginning there is not enough information
about the user preferences because the user history is too short
to produce accurate recommendations. The limited content
analysis : this approach is based on the content of item i.e.
this approach works well with text based items but with not
multimedia items because content extraction is very difficult.
The last problem is the over-specialization meaning that the
system will only recommend items similar to the ones the user
has already rated.

• Collaborative filtering recommendations: these kind of systems
try to estimate the rating one user would give to an item, based
on the rating other users with similar profiles, gave to that
item. This approach also raises some problems. One of them
is also the new user problem. Other one, the new item problem
is similar to the new user problem because when a new item is
introduced in the system it first has to be rated by a significant
number of users. The last problem is sparsity : this problem
comes from items which are rarely rated (meaning they will
be rarely recommended) and from people whose preferences
are very different from the majority resulting in inaccurate
recommendations.

• Hybrid methods: these kind of systems combine collaborative
filtering with content-based to overcome the problems of both
methods. [25] proposes a classification to the different combi-
nations as follows:

– implementing collaborative and content-based methods
separately and combining their predictions;

– incorporating some content-based characteristics into a
collaborative approach;

– incorporating some collaborative characteristics into a content-
based approach;

12 CHAPTER 2. RELATED WORK

– constructing a general unifying model that incorporates
both content-based and collaborative characteristics.

There are a few examples of popular recommendation systems. These
systems are best known for its appliance in the industry of elec-
tronic commerce websites like Amazon.com [37]. Amazon has an
item-to-item collaborative filtering system (i.e. finds items people
tend to buy together), which makes suggestions about books, CDs,
etc. There also other examples: MovieLens [27] that is a movie rec-
ommending website; bX [28] a recommendation system for scientific
papers. One of the downsides of these web based recommendations
systems is that they do not rely on personal data, so profiling be-
comes limited to the actions of the user in the website. More recently,
recommendations systems based on the data we have stored in our
desktops appeared: AudioScrobbler [1], recommends music using a
collaborative filtering algorithm based on the metadata of music we
listen to. This system has plug-in for iTunes [4], winamp [20] and
xmms [22], etc. that extracts the metadata tags from the music we
are listening to and sends it to remote server of LastFM; CRES-
DUP [31] harvests personal data like schedules, favourite websites
and emails, in order to build a profile based on the collected data.
Then the profile is sent to their server to produce recommendations
based on the built profile.

2.3 Social networking

Social Networks are incredibly popular. They expose a fair amount
of our personal lives. One of the most valuable information available
on Social Networks is the social graph [33]. From it we can learn how
people are related to each other (friends, co-workers, family, etc.).
The OpenSocial [12] API is already implemented by almost every
Social Network and allows for social applications to take advantage
of features like the social graph. As we will be seeing later in this

2.4. UNDERGOING PROJECTS 13

work, the social graph plays an important role in order to achieve
the goals proposed.

The abstract concept of making suggestions has already been ex-
ploited by Social Networks. Facebook [29], the world leader social
network in terms of number of users, provides a mechanism of sug-
gestions. Namely, apps you may like and people you may know.
Nonetheless, these suggestions are not centred on the user’s inter-
ests (as the one presented in this work), but they are made based on
what her friends or other users with similar profiles enjoyed the most.
On the one hand, apps you may like inspects both her social graph
and similar profiles, to be aware of which were the applications they
gave highest rating and suggest them. On the other hand, people
you may know explores both social graph transitivity and similar
profiles in order to make the suggestions. Beyond Facebook, other
social networks have recommendation systems: Youtube has a meta-
data attribute Related Videos embedded in its video format. This
attribute may be regarded as suggestions on the same theme, since
it is built taking into account videos with identical tags; LastFM [5]
is other social network offering a recommendation system called Au-
dioScrobbler. As mentioned earlier this system makes recommenda-
tions of music based on the music we listen to and what people with
similar tastes enjoyed listening to.

2.4 Undergoing projects

For the time being, there are three projects in their initial stages,
which have identical goals to this dissertation: Nepomuk [10], Social
Desktop [16] and Social Desktop – Microsoft Research [17]. We
overview them next.

14 CHAPTER 2. RELATED WORK

2.4.1 Nepomuk

As a matter of fact, the Nepomuk project started in 2006 in the scope
of a European funded project. Its goals were to build an open-source
framework that defined a set of API’s and standards to build what
they call the Social Semantic Desktop. This Social Semantic Desk-
top shall aggregate: search for resources, profiling, data analysis,
social interaction and desktop sharing. By the end of the European
project in 2008, one practical outcome arose: Nepomuk-Java [8].
The Nepomuk-Java is a proof-of-concept of Nepomuk project. It
is a stand-alone Java application with a front-end called PSEW. It
integrates all the concepts derived from Nepomuk project . Next we
will describe the Nepomuk-Java.

Firstly, this project follows a peer-to-peer approach where there is no
client-server or centralized coordination. Both client and server run
in our desktop. Nepomuk is divided in several modules, there is one
module that crawls all the data from the working set of documents:
files, contacts, activities, etc. The resultant leveraged metadata is
indexed and stored in RDF [13] format. It provides a mechanism
to tag documents and automatically suggest suitable tags. Nepo-
muk also comes with a module to allow search based on content
and metadata attributes. This search is both local and distributed.
Meaning that, in a search procedure the desktops of users who sub-
scribed the same group are also searched for matching documents.
The social features comprise joining a group of interest or share doc-
uments within a group. We can create or join a group of people who
are interested in the same topic. It is provided as well, backup fea-
tures: we can backup photos from our flickr [2] account and backup
a document, through a web form, to another computer.

As it is stated before, Nepomuk-Java is only a proof-of-concept to
prove the validity of the concepts proposed. Therefore, another
project appeared Nepomuk-KDE [9]. The main goal of this project
is to blend Nepomuk in the desktop. A first version has been inte-

2.4. UNDERGOING PROJECTS 15

grated in the recently released KDE 4. It is yet a work in progress
and only provides a partial implementation of Nepomuk project.
Therefore, in KDE 4 we only have access to a metadata information
retrieval system, and a mechanism to associate metadata attributes
with documents. In KDE 4 the search and crawling are very heavy
and consumes too many resources. Although the Nepomuk project
and this dissertation share similar goals the approach taken is very
different.

2.4.2 Social desktop

There is another undergoing project that is studying ways to con-
nect our desktop to our peers. With this project they intend to ease
and to incite sharing and exchanging of knowledge between com-
munities. Having this in mind, they have implemented a plasmoid
(i.e. a desktop widget in KDE), which will be a first implementation
of the concept in KDE 4.3 version. Although their main goal is to
interconnect users’ desktops, they mainly focus on exchange of in-
formation between open-source communities. Moreover, this project
wants to incite and support the growth of the open-source software.
Considering this, the widget will provide a news channel for open
source information; provide Linux live support; support groups and
friend relationships; see what are the activities that our friends are
in and an events feed.

2.4.3 Social desktop – Microsoft Research

Recently, Microsoft Research made public its intentions of research-
ing on the Social Desktop subject. A visit to their website helps us
to understand what are the project intentions in the future. First,
they make it very clear the project will be a proof-of-concept and
it is in the initial stages. However, they give us some hints on the
architecture and the approach they will follow.

16 CHAPTER 2. RELATED WORK

Social desktop – Microsoft Research, wants to free data from the
limits imposed by the file-system concepts. In order to do so, they
intend to attribute a unique web URL to each data on our working
set. These URLs identifiers not only provide access to the file, but
also add a preview of the file as well as comments, tags and related
items. They call this set a social preview, which will be accessible
through a Silverlight [6] web page. With that social link our friends
will be able to directly download data and add comments or tags that
will be directly available in our Windows desktop. In what comes
to architecture, the social previews and documents will be stored in
their cloud service Windows Azure [7]. Social Desktop application
will be a local service running on our desktops. The local data will
be mapped into a .NET bus service, which will enable access through
firewalls. They also intend to provide a web service so RSS event
streams can be possible. As mentioned previously, this project is
taking its first steps and intends to research on how to connect the
desktop to the web.

Chapter 3

SocialSeer

With the increasing amount of information stored on our computers,
comes the need to organize, catalogue, correlate, filter and share in-
formation. Towards this necessity, we devised a platform integrated
with the user’s desktop that eases the organization and correlation
of documents and, at the same time, promotes the exchange of in-
formation through the social recommendation.

SocialSeer offers its functionality based on metadata found on the
user’s working set of documents. Locally, at the user’s machine,
the system collects metadata from the working set of documents.
Some metadata attributes are automatically assigned to each docu-
ment while others are explicitly assigned by the user, e.g. rates and
arbitrary tags.

All metadata collected locally is replicated remotely into SocialSeer’s
server. The server indexes all the available metadata to infer user
profiles and to feed an automatic document recommendation service.
To the networked users the output of SocialSeer’s server is twofold:
an enriched characterization and valorization of their documents and
the recommendation of new documents of interest from the users
community.

The current prototype of SocialSeer builds on the operating system
metadata management for the local features and on our own file

17

18 CHAPTER 3. SOCIALSEER

synchronization system Bolt. Bolt is a working set dissemination
service fully integrated into the desktop. It aims to synchronize a
user’s working set of documents across several machines. In Sec-
tion 3.2 we describe its basic features and the extensions made to
support SocialSeer.

3.1 Architecture

SocialSeer uses a client/server architecture. The client module runs
on the user machine, seamlessly integrated with operating system’s
user interface and offering the following functional modules:

Metadata Manager module is responsible for two main actions:

• collecting metadata information whenever a document is
created or modified.

• managing auxiliary metadata files, one per document,
containing the documents’ metadata attributes and unique
ids.

• updating auxiliary metadata files with incoming server
data.

Get Friends module looks for friend’s contacts in local applica-
tions, such as address books and social networking clients.

Tag and Rate module is embedded in the operative system and
allows the user to assign a arbitrary tags and rates to any
document in the file system.

On the server side, six main functional modules are available:

Index Manager module aggregates a set of indexes (both forward
and inverted indexes). There is a set of indexes for all metadata
attributes that map a key to a value.

3.2. PROTOTYPE 19

Metadata Parser module parses all the incoming auxiliary meta-
data files so the document’s metadata attributes can be in-
dexed.

Profiling module elaborates the profile of every user of the system.

Document Rate Sharing module provides the document rate shar-
ing feature.

Open Social module makes use of the Open Social API to interact
directly with the web social networks, in order to retrieve and
send relevant information.

Document Recommendations module provides documents rec-
ommendations. In conjunction with the profiling module, sup-
ports automatic document recommendations and the user-driven
recommendations feature.

3.2 Prototype

In the following we describe the implementation of SocialSeer’s pro-
totype. The whole system relies heavily on the Bolt [32] working set
dissemination service. Both the Bolt client and server software has
been extended to support SocialSeer. The current prototype client
software has been developed to integrate with Mac OS X.

We start by an overview of Bolt and how it has been extended in
this work. Then we define the set of considered metadata and its
management within SocialSeer. The establishement of social rela-
tionships, user profiling and their combination is detailed next.

A discussion of some implementation aspects related to the system’s
overall performance conclude the section.

20 CHAPTER 3. SOCIALSEER

3.2.1 Bolt and SocialSeer

The Bolt system is a working set dissemination service completely
integrated into the desktop. It monitors a given folder for content
updates and synchronises them across all of the user’s machines.

Bolt provides a basic platform with a set of mechanisms easing the
implementation of SocialSeer concepts. One of such mechanisms, is
the file system watcher that provides the monitoring of file system.
Another mechanism, is the transparent synchronization of updates
with a remote server.

However, as an ordinary working set dissemination service, Bolt iso-
lates each user’s set of documents from the remaining users, to pre-
serve their privacy, as depicted in Figure 3.1.

Figure 3.1: Bolt’s isolation level

With SocialSeer we try to expand Bolt by reducing its level of isola-
tion, in order to enable the sharing of information within communi-
ties of users. Nevertheless, we still take into account users’ privacy:
only the metadata and documents, the users determine to be pub-
lic or that are publicly available in the Internet are shared. This

3.2. PROTOTYPE 21

balance we reached between private and public, enables the con-
cepts presented in this work. Figure 3.1 and 3.2 depicts Bolt and
SocialSeer different approaches.

Figure 3.2: SocialSeer’s isolation level

3.2.2 Metadata: gathering and manipulation

Metadata plays a central role in this dissertation. From metadata,
we can improve our understanding of the documents’ contents, re-
sulting in better organization and search accuracy, inferring user
preferences, recommend documents, etc.

Bolt system does not provide any means to deal with the working
set of document’s metadata. As a result, in order to support the
presented concepts we have added some new modules to Bolt’s client
application. In fact, as showed in Figure 3.3 there were introduced
four new modules: Get Metadata, Set Metadata, Get Friends and
Star Rating Finder plugin. The purpose and the behaviour of these
modules will be held next.

22 CHAPTER 3. SOCIALSEER

Figure 3.3: Introduced modules in Bolt’s client application

Metadata subset

The Mac OS X operating system provides us a set of pre-defined
metadata attributes that are common to a lot of file formats. In fact,
this set is quite big, offering over one hundred of metadata attributes.
We chose a subset of these attributes that we believe are needed
to support the goals proposed for this work. This subset comprise
attributes, which are common to the majority of file formats:

• kMDItemKind depicts the type of a document according to

3.2. PROTOTYPE 23

the file type. For instance, if a PDF document this attribute
would contain: PDF (Portable Document Format);

• kMDItemAuthors contains the set of one or more elements of
the authors of the document. For example, if a music file it
may hold the name of the band;

• kMDItemTitle depicts the title of the document. For instance,
if it is a music file it may hold the song title.

and some descriptive attributes:

• kMDItemStarRating contains the score, zero to five, assigned
to a document;

• kMDItemFinderComment used to hold an arbitrary set of tags
assigned to the document.

• kMDItemWhereFroms if the document was downloaded from
the web, the download link is assigned to this attribute;

• kMDItemFriendStarRating attribute is not present in Mac OS
X and was created in the scope of this dissertation. This at-
tribute may contain the score that our friends have given to
the document;

Finally, this subset also consists of metadata attributes that are
specific to file formats:

• kMDItemKeywords holds the keywords defined in a PDF doc-
ument;

• kMDItemDescription holds a brief summary of PDF docu-
ment;

• kMDItemAlbum holds the name of the album of a music song
file;

• kMDItemComposer holds the name of the composer of a music
song file.

24 CHAPTER 3. SOCIALSEER

Metadata editing

Most of metadata is extracted from the documents. However, there
are some attributes that can be directly edited by the user. In this
subset we are interested in those attributes assigned by the user like
tags and ratings. There are not mechanisms embedded in the oper-
ating systems to easily edit these metadata attributes. For instance,
in order to edit the rating of a document in Mac OS X we would have
to use a stand-alone application like Tagit [19]. Moreover, there is no
mechanism to visualize the rating assigned to a document. There-
fore, we implemented a Finder plugin 3.3 fully integrated within the
operating system. This plugin allows the user to select one docu-
ment and with a context menu, to rate the document from none to
five stars. This action will set the kMDItemStarRating attribute to
the chosen star rating. Furthermore, the plugin also provides a new
way to simply visualize the rating of a document: when we assign a
rating to the document its icon changes; the plug-in overlaps a star
icon, corresponding to the star rating value, with the icon of the
document.

With regard to document tagging, even though there is no direct
method to simply add tags to documents, we decided to use the
kMDItemFinderComment as the tag holder. This attribute can be
edited by opening the file information dialog. It is a free form text
input, so in order to be used as a tag editor, the user is advised to
follow the syntax: “keyword, keyword. . . ”. The inserted text is then
parsed and transformed into tags.

Both the kMDItemStarRating and the kMDItemFinderComment are
indexed by the local search engine. Therefore, performing look-ups
on these attributes is possible. In addition, the Mac OS X smart
folders mechanism allows a new way of organizing documents. They
are dynamically populated according to some criteria. With the
mechanisms purposed we can create a smart folder that matches,
for instance, the following criteria: all image documents, which are

3.2. PROTOTYPE 25

tagged as funny and with a rating equal to five stars, thus aggre-
gating documents not by their location in the file system but by a
common attribute.

Metadata collecting

Mac OS X has a set of metadata importers to the most common file
types. These importers harvest our working set of documents. The
extracted metadata is then indexed by Spotlight and made available
for searching. Spotlight provides an API to retrieve metadata asso-
ciated with a document. When we move or copy a document within
the monitored folder, the Get Metadata 3.3 module prompts Spot-
light for the defined subset of metadata attributes, associated with
that document. If the document does not possess all the attributes
only the corresponding smaller part of the subset is returned. Get
Metadata also computes a hash key (SHA-1) of the document in
hexadecimal form.

Both the SHA-1 key and the retrieved metadata attributes are writ-
ten into an invisible auxiliary file with name: .metadata-filename.
The auxiliary metadata file is put in the same folder as the main
document and is synchronized to the server like all the others. In
addition, whenever a document is created, deleted or modified the
corresponding .metadata file is updated accordingly. The main doc-
ument and auxiliary file are treated as a single entity, thus when we
share or synchronize a document the auxiliary file is sent along with
the real document. This auxiliary file is key to the system proposed.

Descriptive metadata synchronization

Descriptive metadata attributes cannot be obtained from the doc-
ument contents. Therefore, when a document is synchronized or
shared between two machines those attributes are lost in the process.
The kMDItemStarRating, kMDItemFriendStarRating, kMDItemWhere-

26 CHAPTER 3. SOCIALSEER

Froms and kMDItemFinderComment attributes are stored as ex-
tended attributes [3] in the file system. The same happens to the
custom icon from a rated document, which is stored in the file’s
resource fork.

In order to maintain those attributes when we share or synchronize
documents we take advantage of the auxiliary metadata file . As
mentioned before, the auxiliary file is always sent along with the
main document and holds all the metadata belonging to it. As a
result, all incoming auxiliary metadata files are parsed by the Set
Metadata module 3.3 and the descriptive metadata attributes as-
signed to the respective main documents.

3.2.3 Personal metadata indexing

To enable a fast access to a document’s metadata from all the fea-
tures presented in this work, we needed to index the metadata at-
tributes. First of all, each user has its own set of indexes, thus
isolated from the other users.

Every synchronized document has its auxiliary metadata parsed by
the Metadata Parser module in the SocialSeer’s server. By parsing
we mean, reading the auxiliary file from the beginning to the end in
order to retrieve the metadata attributes. Then, according to the
kind of the attribute, the corresponding index is updated. Some
attributes have their own index while others are indexed combined.
Figure 3.4 illustrates the indexing process. We use two kinds of
indexes: forward and inverted indexes.

Forward indexes

A Forward index maps documents (key) to terms (value) appearing
in that document. In our case, key refers to the filename or the
SHA-1 key and value refers to the metadata attribute. This kind
of indexes are very useful when we need to find out the metadata

3.2. PROTOTYPE 27

Figure 3.4: Indexing process in SocialSeer’s server

attributes related to a specific document. Because descriptive meta-
data can not be extracted from the contents of the document, these
attributes are indexed in forward indexes:

• KMDWhereFroms index the metadata attribute kMDItemWhere-
Froms in relation to the filename key.

• KMDStarRatingFilename and KMDStarRatingSha1 index the
star rating of a document in relation to the filename and SHA-
1 key.

• KMDFinderComment index the metadata attribute kMDItemFind-
erComment, which key is the filename.

Inverted indexes

Conversely, an Inverted index maps terms (key) to documents (value),
in which those terms appear. In this work, key refers to the meta-
data attribute and value refers to the set of documents containing
the attribute.

When thinking of providing search based on terms, this sort of in-
dexes are a solution. As a result, we defined a few inverted indexes,
which we will be presented next. For a better understanding we have

28 CHAPTER 3. SOCIALSEER

grouped indexes with similar characteristics:

• KMDGenre, KMDAlbum, KMDComposer and KM-
DAuthors

As the names suggest, these indexes are associated with the
kMDItemGenre, kMDItemAlbum, kMDItemComposer and kMD-
ItemAuthors metadata attributes, respectively. Each maps the
corresponding attribute to the set of documents containing the
attribute.

• KMDKind

This index is related to the kMDItemKind metadata attribute.
However, it differs a little from the previous indexes in that,
the mapping between the attribute and the set of documents
is not direct. Due to the multitude of document types and
the document rate sharing problem, we decided to limit the
spectrum to four main document types: audio, video, image
and other. As a result, all the kMDItemKind attributes are
mapped into one of these four categories.

The main document types form the set of possible keys in the
index, but the values are yet another index i.e a sub-index. The
sub-index maps the filename without extension (key) to a set of
documents with the same names but with different extensions
(value). Figure 3.5 depicts this index.

• User Keywords

Every text-based metadata attributes i.e. all except for the
kMDItemStarRating, are also mapped by this index. The User
Keywords index groups all attributes into a single index, thus

3.2. PROTOTYPE 29

Figure 3.5: KMDKind index

aims to provide search based on terms independently of the
metadata attribute.

In this index it is introduced an intermediate building stage,
which is assured by the Stemmer [15] module. Briefly, for every
attribute being parsed, before being handed to the index, is
passed through the Stemmer, which will reduce the term to its
morphological root. Then, the stemmed attribute is inserted
into the index (key), along with the filename (value), in which
it appears.

Auxiliary structures

In addition to forward and inverted indexes, there are other useful
auxiliary structures:

• Tag Cloud is an index (can be also thought as a weight list)
that maps terms into the total number of occurences they ap-
pear in our data. It takes into account all the text-based meta-
data attributes and it shares the same building stages as the

30 CHAPTER 3. SOCIALSEER

User Keywords index;

• SocialIDToEmail index maps the users’ socialID1 to their email.

• Friends holds all friends contacts related to a user.

3.2.4 Dynamic user profile

There are two types of user profiles: the long-term profile and the
short-term one. The long-term profile covers the set of subjects
we are more interested in. For instance, everyday we usually listen
to the songs we like the most, we surf some of the same web sites,
because these are our personal preferences. However, there is a set of
subjects we are interested, which may vary from day to day. This is
the short-term profile and we call it daily user profile. For example,
when we need to buy a new phone, when we listen to a new band
or when we heard about a subject in the news and we want to know
more about it. In this section, we refer to a global user profile and
a daily user profile. Both will be described in the next paragraphs
but for better prior understanding the global user profile is a merge
of daily user profiles.

Generally, user profiling is very important in the context of automatic
document recommendations. Given the heterogeneity of the subjects
we are concerned over the days, we wanted the automatic document
recommendations to be made on a daily basis. Everyday we compute
a daily user profile, which follows a Tag Cloud approach. In other
words, it is a weight list based on the metadata term-frequency from
the documents we created or modified during the day. In terms
of implementation, it is built using the same parser code as the
User Keywords index. And for each parsed keyword or term: if the
weight list already contains that keyword the respective counter is
incremented; instead if the keyword does not exist in the weight list,

1The socialID is an unique personal identification number attributed by the
social networks to every user.

3.2. PROTOTYPE 31

then the keyword is appended to the list and its counter set to one
occurrence. The Tag cloud index holds the daily user profiles.

However, for a more accurate profiling, which could also cover the
long-term profiling, we decided to introduce a new factor. We call it
the aging factor. Basically, for each user we store their five newest
daily user profiles, from them we compute the global user profile.
In order to build it, we assign a weight to every daily user profile.
The newest daily user profile, corresponding to the current day, is
assigned the highest weight. Accordingly, to oldest one is assigned
the lowest weight. The distribution of weights is the following: five
to the newest daily user profile; four to the second newest; three to
the third newest; two to the fourth newest and one to the oldest.
Next, each frequency of the keyword is multiplied by the assigned
weight. In the next step, we merge all the five daily user profiles into
one, the global user profile. Finally, the global user profile is sorted
by descending frequency. This behaviour is depicted in Figure 3.6.

To sum up, the global user profile holds some interesting features.
Although it gives more importance to the contents we saw in the
current day, if we were interested in the same subject in the previous
days that subject would still be in the top of the list.

3.2.5 Circle of friends

Although not a regular social network, the system heavily depends
on social relationships and interactions. The system, itself, does not
provide the means to establish and maintain these relationships. In-
stead, the social relationships are obtained in an indirect way. There
are two main sources from where we extract the social information:
the local computer and the web social network account.

Our local computer provides one source of social information extrac-
tion. When we first register with the system, the running client - Get
Friends module 3.3 - searches our personal computer for contacts. It

32 CHAPTER 3. SOCIALSEER

Figure 3.6: Dynamic user profile

looks in the local Address Book application for our contacts’ emails.
Moreover, it also retrieves contacts from instant messaging account
such as Jabber, MSN, Yahoo, AIM and ICQ. Then, all the contacts
are sent to the server to be indexed as people we are related to.

Besides this local information, we on the system also try to get the
social graph from our social network account. When we first regis-
ter with the system we are provided with a name of the OpenSocial
gadget we need to install from our social network web site. These

3.2. PROTOTYPE 33

gadgets are XML applications, which grant access to our profile. We
had to implement one of these gadgets that has to be certified by the
social network in order to be publicly available in the applications
area. Our gadget grants access to our profile and displays our so-
cialID. With both the gadget and the socialID Open Social module
retrieves our social graph, which does not hold our friends’ emails
but their socialIDs. Then, the retrieved socialIDs are handed to be
indexed. The social graph retrieving process is depicted in Figure
3.7.

Figure 3.7: User’s social graph retrieving process in SocialSeer’s
server

3.2.6 Sharing of document rates

This mechanism allows the sharing of the rating that we give to the
data we have in common with our friends. Next, we describe in
detail the algorithm we devised to allow this sort of behaviour.

As explained before, whenever a document is synchronised its auxil-
iary metadata file is sent along with it. Then, the Metadata Parser
module parses the auxiliary file in order to update the user’s indexes.
On completion of the parsing process, the module verifies if the syn-
chronised document has been rated by the user, if not it signals the
Document Rate Sharing module to initiate the sharing process.

As a matter of fact, we wanted to distinguish between two major
documents types that we call multimedia documents (i.e. video,

34 CHAPTER 3. SOCIALSEER

audio and image) and the non-multimedia documents. Therefore, we
devised two versions of the algorithm, which are applied according
to the above categories.

For the non-multimedia documents, for every user’s friend we get
their KMDStarRatingSha1 index and we search for an identical SHA-
1 key. If there is a match, the respective rating is brought to the
Document Rate Sharing module.

However, for the multimedia documents we start by using the same
approach, but if there is not a SHA-1 key match, we get the user’s
friends KMDKind index, in order to check whether there is a docu-
ment of the same type and with the same name, as the synchronised
document. If there is a match the respective rating is brought to
Document Rate Sharing module. An example of this behaviour is
depicted in Figure 3.8.

The reason for this separation relates to the fact that the multimedia
documents represent a special case at the file level. In other words,
two users can, for example, have a video with the same filename but
with different extensions i.e. encodings. However both documents
represent the same video. As for text documents, it becomes less
likely that two text documents with different extensions represent
the same document.

From now on, both versions of the algorithm follow the same stages:
after all the ratings have been collected from all the user’s friends,
it is made an arithmetic mean and the resulting rating is sent to the
user.

On the client’s side, the Set Metadata module is responsible for cre-
ating the kMDItemFriendStarRating metadata attribute with the
received rating. Furthermore, to warn the user of the friend’s rating
we use the Star Rating Finder plug-in mechanism but with a slight
difference: the overlap icon displays different colours to distinguish
from the user assigned rating.

3.2. PROTOTYPE 35

Figure 3.8: Example of a multimedia document rate sharing

3.2.7 Document recommendations

In this dissertation we propose two document recommendations mech-
anisms: automatic document recommendations and user-driven rec-
ommendations. In terms of implementation, both share the same
principle: a folder called inbox is created inside the monitored folder

36 CHAPTER 3. SOCIALSEER

and recommended documents are pushed by the system into that
folder. Both mechanisms are described in detail in the following
subsections.

Automatic document recommendations algorithm

The automatic document recommendations are made on a daily basis
and are based on the global user profile. With this mechanism we
had to take into account the user’s privacy. So a fair balance between
total privacy and no privacy had to be reached. As a result, only
the documents we determine to be public will be pushed directly,
as recommended documents, to our friends. However, our private
documents, or better saying, non-public documents2 are still con-
sidered when recommending documents. There is a slight difference
though: instead of pushing a copy of the recommended document
into the inbox folder, we send a link, extracted from the wherefroms
metadata attribute of the document, where it can be downloaded.

Bearing in mind the classification of recommendation algorithms pre-
sented in Chapter 2, the proposed automatic document recommen-
dation algorithm can be categorized as a hybrid algorithm, because
it combines a content-based approach with a collaborative filtering
approach. In other words, documents from users with similar pref-
erences, the circle of friends, are chosen(collaborative filtering) based
on what the user liked in the short-term past (content-based). Next
we will present a detailed view of the algorithm.

The first step of the algorithm is to obtain the global user profile,
which is a list of keywords sorted by descending frequency. The
next step takes into account the relative frequency of each keyword
to determine how many document recommendations of that keyword
are to be made. More formally, this step follows the function:

2Documents that were not manually determined to be public, but by its
metadata attributes there are web links to download it.

3.2. PROTOTYPE 37

N(xi) = !(xi

Stotal−1∑

i=0

xi

) × Stotal# (3.1)

Where N(xi) is the number of recommendations for a given xi. xi is
in turn the frequency of a keyword in the position i from the global
user profile set. Stotal is the total number of document recommenda-
tions to make. Moreover, Stotal is a static parameter defined in the
system, however, in the future, we intend to give the user the pos-
sibility to determine the total number of recommended documents
she wants to receive.

The first factor, gives the relative frequency i.e. the approximated
probability, of a keyword appearing in the first Stotal positions of
the set. There are two reasons why we only take the sum of the
Stotal first positions: the first one is to cover the worst-case scenario
where the frequency of all keywords is equal. For instance, take an
ordered set of thirty elements with a frequency of one to all key-
words and Stotal of ten. The sum of all absolute frequencies would
be thirty. Consequently, the resultant number of recommendations
to each keyword would be near to zero; the second reason comes
from our observations that led us to conclude the distribution of
frequencies usually follows a common pattern. This pattern has a
lot of occurrences of some keywords but low occurrences of a lot of
keywords resulting in similar behaviour to the worst-case scenario.
The adaptation of the formula leads to better results and mitigates
the worst-case problem. Taking the example above, if we take only
the first ten positions of the set, the sum of all absolute frequen-
cies would be ten. Therefore, in the worst-case scenario we would
issue one recommendation for each of the first ten keywords. In fact,
since N(xi) is rounded to the nearest integer number, the maximum
possible number of recommendations is Stotal + 1.

In the third step, we create as many arrays as the number of different
keywords that were calculated to be recommended - the keyword

38 CHAPTER 3. SOCIALSEER

arrays. Then, for every one of our friends we search for each keyword
in their User Keywords index. If there is a match, the document is
added to the respective keyword array. Next, the resultant keyword
arrays are ordered by the document’s rating.

The final step, takes all ordered keyword arrays and for each it is
picked the N(xi) first positions of the array (i.e. the N(xi) most
rated documents) and handed to the user as a document recommen-
dation. However, if our friends have no documents matching some
keyword then no recommendation is made for that keyword. An
example of the algorithm behaviour can be seen in Figure 3.9.

Figure 3.9: Automatic recommendations algorithm example, where
Stotal = 5

3.2. PROTOTYPE 39

User-driven recommendations

Every day we send emails to our friends in order to collectively share
some data. This data can be text documents, images or videos.
Having in mind this behaviour, we decided to mimic it by allow-
ing user-driven recommendations. User-driven recommendations is
a mechanism that allow us to explicitly share data with our peers.
Next, we will describe the flow of such operation. First, we mark a
document inside the monitored folder as a to share document. Then,
the running client application becomes aware of that flag and in the
next synchronization period the server is told to share that docu-
ment. From now on, the procedure is similar to the rate sharing
algorithm: for each of our friends the document to be shared is put
in the updates list; in the next synchronization of our friends the
document is brought to a folder inside their inbox folder; this folder
is called username recommendations, where username can either be
our email or our name (if the email is available in the Address Book).

One of the problems we had to think about when devising this feature
was how to signal the user-driven recommendation. We came up
with a simple system of a dialog box over the icon of the application
alerting us to a new recommendation. The alert message would
follow the syntax: username has recommended you name of the
document. Nonetheless, the implementation of this signalling feature
will be left for future work.

3.2.8 In-memory index holder

The modules described along this chapter, imply an increased amount
of I/O operations. For instance, every time a document is synchro-
nized its auxiliary metadata file must be parsed and the indexes must
be updated, which leads to two I/O operations per index: one read
operation that brings the object from the storage to the server; then
the index is updated accordingly; finally it is wrote back to the stor-

40 CHAPTER 3. SOCIALSEER

age. As a result, in order to reduce the number of I/O operations,
which could lead to poor performance, we introduced a new mod-
ule: In-memory Index Holder. In a synchronisation period, we can
have a lot of documents to be synchronised and thus the respective
indexes need to be updated. Therefore, during a synchronisation pe-
riod, the needed to be updated indexes are brought from the storage
into memory and left in memory i.e in the In-memory Index Holder.
After the synchronisation is over, all the updated indexes are flushed
to the storage.

With this module we can save up to one read I/O operation i.e. the
stage of bringing an index from the storage into the server. Taking
the example above, for each index update, the index is read from the
In-memory Index Holder (if it is there), then it is updated accord-
ingly and by the end of the synchronisation period, is wrote back to
the storage. In Figure 3.10 it is depicted the role of the In-memory
Index Holder.

3.2.9 Photo album synchronization

This was an idea that emerged at a later stage of this work. And has
emerged has a proof-of-concept to demonstrate the possibilities of in-
tegrating the desktop with the web. As a result, taking advantage of
the recently released version 0.9 of the OpenSocial API that allows
to fetch and upload media items, we decided to create a photo album
synchronization mechanism. A folder called photo album is created
inside the monitored folder. Then, all images (and only images doc-
uments) are synchronized to our photo album in the social network.
In addition, the contents of the folder are synchronized as all the
others. Besides, along with the images is also sent the descriptive
metadata associated with each document (i.e. rating and tags). As
a result, in the photo album our friends can see the photos as well as
the tags or ratings we gave to them. This mechanism provides full
synchronization, which means that if we modify (delete, create or

3.2. PROTOTYPE 41

Figure 3.10: In-memory Index Holder and how it relates to other
modules

change) a picture locally, the picture is also modified in the remote
photo album. Moreover, the mechanism works in both ways i.e. if
we had a picture via web browser the picture will also end up in the
local photo album along with the tags and ratings.

3.2.10 Implementation considerations

In order to show the feasibility and more easily evaluate the concepts
proposed, we implemented a prototype of the system. With regard
to the programming languages decision, we chose Objective-C for
the Mac OS X’s client and the server was written in Java.

42 CHAPTER 3. SOCIALSEER

The reason we chose the Mac OS X environment for the prototype’s
client, relates to several factors. Firstly, it provides a search engine
based on metadata (Spotlight) with a simple API to easily access
document’s metadata. Secondly, it defines a comprehensive set of
metadata attributes to which we can add new attributes. In ad-
dition, Mac OS X also provides an easy integration with built-in
applications such as Address Book. Finally, Bolt client is fully inte-
grated into this operating system providing monitoring of file sys-
tem events. Consequently, Objective-C was the logical choice for the
client’s programming language, as it is the operating system’s native
language.

With regard to the programming language of the server, we chose
Java because, apart from being the language used by Bolt server, it
provides code portability as well as the necessary data structures.

Chapter 4

Experimental evaluation

Evaluation is always an important stage when developing new sys-
tems to prove the validity of the concepts devised. However, this
work has components that can only be evaluated by qualitative tests,
as a consequence it becomes difficult to evaluate. One example of
such a component, is the recommendation system. As [36] states it
is very hard to evaluate a recommendation system, because there is
no agreement on what metrics to use in order to assess the quality of
the recommendations. Nevertheless, during the development process
we have performed some empirical tests to verify that the algorithm
could produce relevant and accurate recommendations.

Therefore, we decided that the set of tests to be carried should be
more quantifiable, thus the tests we conducted focus on the impact
that the components added have in the performance of Bolt system.
The experimental scenario description will be held in Section 5.1.

In Section 5.2 and 5.3, we present the results obtained and in addi-
tion we draw some conclusions about them.

43

44 CHAPTER 4. EXPERIMENTAL EVALUATION

4.1 Experimental scenario description

In order to verify the impact that the components added have in Bolt
system performance, we conducted two different tests that establish
a direct comparison between our system’s behaviour and Bolt’s sys-
tem behaviour:

Load test

This test is mainly intended to verify the differences of performance
between the two servers, with the gradual increase of the load. To
this end, we used metrics as the percentage of CPU and the memory
used by the servers’ Java VM.

First, it should be noted that we used for each server i.e. our system’s
server and Bolt’s server, exactly the same test conditions. Moreover,
in order to better understand the behaviour of the systems with
the increase of the load level, we decided to gradually add clients,
thus every five minutes we introduced a new client into the system.
Clients were configured to initiate a synchronisation period from ten
to ten seconds, resulting in six connections per minute and per client,
to the server.

We have implemented a Python [24] script that would run every five
seconds, in order to create a text file or a folder with a probabil-
ity of 90% and 10% respectively. These were then moved into the
monitored folder. Both the contents and the size of the file were
generated randomly and the maximum file size was 1MB.

Regarding the test environment, for the client’s application we used
a total of nine iMac machines, with 2 GB of RAM and a 2.0 GHz
Intel Core 2 Duo CPU, which were connected to the server via LAN.
In turn, the server was running on our personal laptop that has 4
GB of RAM and a 2.2 GHz Intel Core 2 Duo CPU. For the storage
we used our local hard disk of 320GB.

4.1. EXPERIMENTAL SCENARIO DESCRIPTION 45

Latency test

We have also decided to measure and compare the latency in both
systems. By latency, we mean the time it takes to send a file from
one user’s machine until it gets to another machine belonging to the
same user.

The existence of an auxiliary file metadata 3.2.2 per main document
implies, that we increased to double, the number of files to upload1.
Therefore, we have measured the latency in two different scenarios:
for a single document being synchronised and for the case of multiple
documents.

For the single document scenario, we used a Adobe’s photoshop doc-
ument of 75 MB of size. With regard to the multiple documents
scenario, we have chosen a set of 287 documents totalling 75 MB.
The set was comprised of PDF, text, music, video and image docu-
ments.

We wanted this test to be conducted in close to real conditions, as a
consequence we have deployed both servers at one of our universities’
servers and simulated the use of an ordinary external ADSL connec-
tion. In addition, we used two different computers, one for each
client’s machine, which lead us to a clock synchronisation problem.
Therefore, we used the NTP2 protocol to synchronise both machines’
clocks and accurately measure the latency. There is yet other deci-
sion we made concerning the load on the servers: we opted to use just
one client so we were measuring the overhead the added components
have.

In what comes to the test environment, for the client’s application
we have used our personal laptops: the first one has 4 GB of RAM
and a 2.2 GHz Intel Core 2 Duo CPU; the other has 4 GB of RAM
and a 2.5 GHz Intel Core 2 Duo CPU. The servers were running

1However, the auxiliary file is a very small file, in average occupies 50 bytes.
2http://www.ntp.org/

46 CHAPTER 4. EXPERIMENTAL EVALUATION

on a two core 2.4 GHz AMD CPU with 4 GB of RAM. Regarding
the ADSL connection, it had 997 kbps upload bandwidth and a
download bandwidth of 12000 kbps.

4.2 Load test results

With this test, we wanted to verify what was the overhead our system
introduces relatively to Bolt system. Having this in mind, we used
the percentage of CPU usage and the memory used as metrics to
assess both systems, with gradually increasing load.

We started off with just one client, which is equivalent to six connec-
tions per minute and we went as far as the ninety six connections per
minute. We stopped introducing new clients at this level. because
it was when the LAN’s network reached its maximum throughput,
thus both servers could not attend any more requests. In addition,
during each test the volume of data synchronised reached the 40 GB.

Regarding the CPU usage, Figure 4.1 shows that both systems’ be-
have similarly. Moreover, as the number of connections per minute
increased, the percentage of CPU used also raised, and almost in a
linear way. Comparing both systems, we can observe that our sys-
tem consumes a little bit more of CPU, in average, one percent more
than Bolt system.

Figure 4.2 depicts the total of memory used as the number of connec-
tions increases. Once more, the behaviour of both systems is quite
similar. In fact, until the number of connections reaches the sixty six
connections, the performance of the two systems is identical. How-
ever, from this point our system begins to consume more memory,
but, in average, during our experiment our system consumed just 1
MB more than Bolt system.

To sum up, from the results of this experiment, we can infer that,
both our system and Bolt system demand the same amount of re-

4.2. LOAD TEST RESULTS 47

Figure 4.1: CPU usage

Figure 4.2: Total of memory used in MB

48 CHAPTER 4. EXPERIMENTAL EVALUATION

sources. Therefore, we conclude that, regarding the metrics used,
the components introduced do not have a significant impact on per-
formance, compared with Bolt system.

4.3 Latency test results

As it was mentioned before, this test aims to measure and compare
the latency in both systems. To this end, we measured the time a file
takes to be synchronised from one machine to another in two different
scenarios: one single document and a set of multiple documents.

In Table 4.1 is presented the latency measured for both systems
and for both scenarios. First of all, regardless of the system, the
table depicts a significant difference in the latency, between the two
scenarios. The reason for this difference relates to the fact that,
although both total 75 MB, the second scenario involves having to
send many small files, which leads to more computational resources
consumed in context switching. By context switching we mean that
for a single file the file path is handled and it is only one file transfer,
whereas for multiple files we have to initiate a transfer process for
each file.

Regarding the first scenario, we can note that the latency difference
between our system and Bolt system is small. Nevertheless, this
difference can be explained by two reasons: our system needs some
extra processing such as indexing; and our system involves sending
two files because of the auxiliary metadata file.

The same happens in the second scenario. In the table we can ob-
serve that for multiple documents the difference between the two
systems is greater than for the a single document. Once more, this
difference can be explained by the same reasons as above: our sys-
tem involves increasing to the double the number of files to send i.e
in the second scenario means sending more 287 of auxiliary files and
consequently indexing process.

4.3. LATENCY TEST RESULTS 49

The main conclusion we can draw from this test is that our system’s
added components do not imply a significant impact on the latency
comparing to Bolt system.

Table 4.1: Latency table
System Single document Multiple documents
Bolt 15min 05s 15min 53s

SocialSeer 15min 11s 16min 14s

50 CHAPTER 4. EXPERIMENTAL EVALUATION

Chapter 5

Conclusion

In this closing chapter, we present the main conclusions we can draw
from this work, as well as an overview of the major contributions
made and some work to be done in the future in this context.

5.1 Conclusions

This work attempts to address the objectives set forth in Chapter 3,
which focus on ways to help the user to deal with information that
is subject to by allowing the organisation, cataloguing, correlation,
filtering and sharing of information. We believe we have been able
to accomplish these objectives by devising some mechanisms based
on our working set of documents metadata.

As a proof of concept for the system proposed, we implemented a
prototype that comprehends all these concepts and, in addition, pro-
vides a platform fully integrated into our working environment. As
the main features of the prototype we can point out on the ability
to collect data and metadata from our working set of documents,
by the prior definition of a collectable set of metadata attributes.
Furthermore, it provides a mechanism that enable us to know what
is our friend’s opinion about data we have in common by simply dis-
seminating to our circle of friends, the rating we gave to those doc-

51

52 CHAPTER 5. CONCLUSION

uments. Finally, the prototype delivers sharing and filtering mech-
anisms offered by the two document recommendations mechanisms.
The first one, allow us to manually share documents with our friends
i.e the user-driven document recommendations. While the second
one, makes automatic document recommendations by picking doc-
uments from our friend’s public documents, based on our inferred
user profile.

There is yet another feature that does not make part of the prototype
but that is intrinsically connected with it. It is the star rating plug-
in, which offers a simple way of rating our documents within the
operating system.

The devised system is composed of some features that can not be
quantifiable. One of such features, is the automatic document rec-
ommendations. Objectively evaluating such a system is very hard,
as a consequence our tests were mainly focused on the quantifiable
aspects of our system.

Furthermore, the prototype was built on top of an already existing
system called Bolt, thus we decided to evaluate the impact that
the added components have on the performance of the Bolt system.
Comparing the results obtained, we can conclude that the added
components have little impact on performance, in comparison with
Bolt.

Finally, we strongly believe that our approach is valid and that such
systems are the way to go in the future in the sense of interconnecting
user’s desktops and to bring the web into the desktop, in order to
help the user to better deal with the information available. The set
of similar undergoing projects supports our opinion.

5.2. CONTRIBUTIONS 53

5.2 Contributions

There are some contributions that can be drawn from this disserta-
tion, which can be aggregated in three main contributions that we
will following describe.

Prototype

The prototype is in itself a contribution because, as it has been
stated in Chapter 2, there is still no system providing the same kind
of features and, so far we only have undergoing projects that share
similar goals.

The developed prototype delivers a platform, seamlessly integrated
into the desktop, based on four vertexes: organisation, correlation,
filtering and sharing of information.

In order to accomplish these four keywords, the prototype offers some
key features: metadata manipulation, document rate sharing, auto-
matic document recommendations and user-driven document recom-
mendations.

Set of the necessary metadata attributes

Metadata can be extracted from our documents and attempts to de-
fine a set of metadata attributes have already been made. However,
these sets are in fact quite large and are intended for use in oper-
ating system’s search engines, thus include attributes that are not
needed for the scope of this work. As a result, taking into account
the objectives set for this work, we picked those metadata attributes
we believe are the necessary to fulfil the goals proposed, giving rise
to the set of necessary attributes. In addition, we also defined a new
attribute that we think is necessary to support the features presented
in this work.

54 CHAPTER 5. CONCLUSION

Star rating plug-in

In the context of this dissertation, we verified that there was no sim-
ple way of rating documents within the diverse operating systems.
Consequently, we developed an operating system embedded plug-in,
which introduces a new way of simply rate documents as well as a
practical and user-friendly way of visualising it.

5.3 Future work

In this work, we presented our approach of how to integrate the
Web with the desktop and at the same help the user to cope with
the information overload. However, during this thesis, there were
some ideas that could not be included in this work, but definitely
are to be studied in the near future, such as those presented below.

When inferring the user interests and thus make data recommen-
dations, we only take into account the documents we have within
the monitored folder. However, we can think of other sources of in-
formation like the user most visited websites, the searches made in
the local and the web search engine or take one step further in the
Open Social to retrieve the profile of the users. Consequently, we
would get a more accurate user profile and thus issue more accurate
and relevant data recommendations. Another mechanism we believe
would be interesting, was whenever we wanted to add some tags to
a document, the system would automatically propose suitable tags
based on the contents of the document and on our previous inserted
tags.

Additionally, we would like to have a web interface, which allow us to
access our working set of documents from any device with a running
browser. Furthermore, the Web interface would make available a
search interface that would mimic the local search engine behaviour.
In fact, the prototype is already set for this add-on but due to time

5.3. FUTURE WORK 55

constraints it was not fully implemented.

Finally, due to the difficulty in assessing some components of the
prototype at the qualitative level, we wanted to set up a group of
available users, which could, for some time, try the prototype and
by the end of the experimental period, they could provide us with a
qualitative assessment about the relevance of the recommendations
and the other proposed mechanisms.

56 CHAPTER 5. CONCLUSION

Bibliography

[1] Audioscrobbler. http://www.audioscrobbler.net.

[2] Flickr. http://www.flickr.com/.

[3] Introduction to spotlight. http://developer.apple.

com/mac/library/documentation/Carbon/Conceptual/

MetadataIntro/MetadataIntro.html.

[4] itunes. http://www.apple.com/itunes/.

[5] last.fm. http://www.lastfm.com.

[6] Microsoft silverlight. http://silverlight.net/.

[7] Microsoft windows azure. http://www.microsoft.com/azure.

[8] Nepomuk-java. http://dev.nepomuk.semanticdesktop.

org/.

[9] Nepomuk-kde. http://nepomuk.kde.org/.

[10] Nepomuk project. http://nepomuk.semanticdesktop.org.

[11] Openmeta project. http://code.google.com/p/openmeta/.

[12] Opensocial. http://code.google.com/apis/opensocial/.

[13] Resource description framework. http://www.w3.org/RDF/.

[14] Searchkit. http://developer.apple.com/documentation/

UserExperience/Reference/SearchKit/Reference/

reference.html.

57

http://www.audioscrobbler.net
http://www.flickr.com/
http://developer.apple.com/mac/library/documentation/Carbon/Conceptual/MetadataIntro/MetadataIntro.html
http://developer.apple.com/mac/library/documentation/Carbon/Conceptual/MetadataIntro/MetadataIntro.html
http://developer.apple.com/mac/library/documentation/Carbon/Conceptual/MetadataIntro/MetadataIntro.html
http://www.apple.com/itunes/
http://www.lastfm.com
http://silverlight.net/
http://www.microsoft.com/azure
http://dev.nepomuk.semanticdesktop.org/
http://dev.nepomuk.semanticdesktop.org/
http://nepomuk.kde.org/
http://nepomuk.semanticdesktop.org
http://code.google.com/p/openmeta/
http://code.google.com/apis/opensocial/
http://www.w3.org/RDF/

58 BIBLIOGRAPHY

[15] Snowball stemmer. http://snowball.tartarus.org/.

[16] Social desktop. http://www.socialdesktop.org/.

[17] Social desktop - microsoft research. http://research.

microsoft.com/en-us/projects/SocialDesktop/.

[18] Spotlight overview. http://developer.apple.com/macosx/

spotlight.html.

[19] Tagit. http://www.ironicsoftware.com/tagit/index.html.

[20] Winamp. http://www.winamp.com/.

[21] Windows search. http://msdn.microsoft.com/en-us/

library/aa965362(VS.85).aspx.

[22] Xmms. http://www.xmms.org/.

[23] Youtube data api protocol:. http://code.google.com/intl/

pt-PT/apis/youtube/2.0/developersguideprotocol.html.

[24] Python software foundation. python programming language.
http://python.org, 1990-2009.

[25] G. Adomavicius and A. Tuzhilin. Toward the next generation
of recommender systems: A survey of the state-of-the-art and
possible extensions. IEEE Trans. on Knowl. and Data Eng.,
17(6):734–749, 2005.

[26] M. Balabanovic and Y. Shoham. Fab: Content-based, col-
laborative recommendation. Communications of the ACM,
40(3):66–72, 1997.

[27] B.Miller, I. Albert, S. Lam, J. Konstan, and J. Riedl. Movielens
unplugged: Experiences with an occasionally connected recom-
mender system. In Proceedings of the International Conference
on Intelligent User Interfaces, Miami, Florida, 2003.

http://python.org
http://snowball.tartarus.org/
http://www.socialdesktop.org/
http://research.microsoft.com/en-us/projects/SocialDesktop/
http://research.microsoft.com/en-us/projects/SocialDesktop/
http://developer.apple.com/macosx/spotlight.html
http://developer.apple.com/macosx/spotlight.html
http://www.ironicsoftware.com/tagit/index.html
http://www.winamp.com/
http://msdn.microsoft.com/en-us/library/aa965362(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa965362(VS.85).aspx
http://www.xmms.org/
http://code.google.com/intl/pt-PT/apis/youtube/2.0/developersguideprotocol.html
http://code.google.com/intl/pt-PT/apis/youtube/2.0/developersguideprotocol.html

BIBLIOGRAPHY 59

[28] J. Bollen and H. Van de Sompel. An architecture for the ag-
gregation and analysis of scholarly usage data. In JCDL ’06:
Proceedings of the 6th ACM/IEEE-CS joint conference on Dig-
ital libraries, pages 298–307, New York, NY, USA, 2006. ACM.

[29] D. Borthakur and D. Zhou. Hadoop and hive at facebook data
and applications. Hadoop Summit, 2009.

[30] S. Brin and L. Page. The anatomy of a large scale hypertextual
web search engine. In 7th WWW, 1998.

[31] T. Chen, W.-L. Han, Hai-Dong, Wang, Y.-X. Zhou, B. Xu,
and B.-Y. Zang. Content recommendation system based on
private dynamic user profile. In Internl. Conference on Machine
Learning and Cybernetics, pages 2112–2118, 2007.

[32] F. Cruz, F. Maia, J. Paulo, J. Pereira, and R. Oliveira. Bolt:
instant personal working set backup and synchronization (short
presentation). In INForum, Simpósio de Informática, Septem-
ber 2009.

[33] B. Fitzpatrick and D. Recordon. Thoughts on the social graph.
http://bradfitz.com/social-graph-problem/.

[34] T. Gil. Introduction to Metadata, volume Medata and the Web.
Getty Research Institute, Los Angeles, 2008.

[35] A. J. Gilliland. Introduction to Metadata, volume Setting the
Stage. Getty Research Institute, Los Angeles, 2008.

[36] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl.
Evaluating collaborative filtering recommender systems. ACM
Transactions on Information Systems, 22(1):5–53, 2004.

[37] G. Linden, B. Smith, and J. York. Amazon.com recommenda-
tions: Item-to-item collaborative filtering. IEEE Internet Com-
puting, 2003.

http://bradfitz.com/social-graph-problem/

60 BIBLIOGRAPHY

[38] C. McConnel and S. Sechrest. Good Citizenship When Devel-
oping Background Services That Run on Windows Vista. Mi-
crosoft Corporation, 2007.

[39] N. Press. Understanding metadata. 2004.

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Thesis contribution
	Dissertation outline

	Related work
	Metadata
	Metadata in the Web
	Desktop metadata indexing

	Personal recommendation systems
	Social networking
	Undergoing projects
	Nepomuk
	Social desktop
	Social desktop – Microsoft Research

	SocialSeer
	Architecture
	Prototype
	Bolt and SocialSeer
	Metadata: gathering and manipulation
	Personal metadata indexing
	Dynamic user profile
	Circle of friends
	Sharing of document rates
	Document recommendations
	In-memory index holder
	Photo album synchronization
	Implementation considerations

	Experimental evaluation
	Experimental scenario description
	Load test results
	Latency test results

	Conclusion
	Conclusions
	Contributions
	Future work

	References

