
Novembro 2009

Universidade do Minho
Escola de Engenharia

Francisco António Ferraz Martins de Almeida Maia

Bolt Cloud – A Working Set
Dissemination Service

Mestrado em Engenharia Informática

Trabalho efectuado sob a orientação do
Doutor Rui Carlos Mendes de Oliveira

Novembro 2009

Universidade do Minho
Escola de Engenharia

Francisco António Ferraz Martins de Almeida Maia

Bolt Cloud – A Working Set
Dissemination Service

É AUTORIZADA A REPRODUÇÃO PARCIAL DESTA TESE APENAS PARA EFEITOS
DE INVESTIGAÇÃO, MEDIANTE DECLARAÇÃO ESCRITA DO INTERESSADO, QUE A TAL SE
COMPROMETE;

Universidade do Minho, ___/___/______

Assinatura: __

Acknowledgements

To all of my family, which has always supported me along these years
and is always there whenever I need. Specially my parents António e
Rosalina, my brothers Luís and José and my little sister Margarida.
I also want to thank my cousins that always help me to look and
go forward: João, Madalena, Ana, Clara, Nuno, Maria, Maria M,
Paulo, António, João M, Dora, Francisca and Xavier.

To Professor Rui Oliveira for his guidance throughout the thesis and
for his capacity to inspire.

To Professor Francisco Moura for his help reviewing the thesis.

To Professor José Orlando Pereira, Professor António Luís Sousa
and Professor Carlos Baquero for their continuous help and patience
to answer every question.

To my uncle Professor José M. da Silva and my cousin João Maia
for their help reviewing the thesis.

To Francisco Cruz and João Paulo for all the help, critics and all the
non serious stuff.

To Nuno Carvalho, Ricardo Vilaça, Bruno Costa, Miguel Matos,
Paulo Jesus, Ana Nunes, Filipe Campos and Nuno Castro for their
help and for the outstanding working environment we have at the
Distributed Systems Lab. I want to thank specially to Nuno Car-
valho and Ricardo Vilaça for their precious help and Bruno Costa
for his constructive criticism.

To all of my friends who really help me be who I am.

Finally, I want to thank the lunch break fantastic discussions to my
friends: Fábio, Granja, Nuno, Miguel Pires, Carlos and Miguel.

ii

Resumo

Utilizando os diversos aparelhos computacionais actualmente ao nosso
dispor, constantemente consultamos, editamos e criamos ficheiros.
Com facilidade notamos que, de entre todos esses ficheiros, existe
um conjunto que consideramos mais importante e que mais utili-
zamos. Verificamos ainda que, ainda que desejável, é difícil manter
este conjunto de ficheiros acessível constante e coerentemente em vá-
rios aparelhos e sítios ao mesmo tempo. Para resolver este problema
têm surgido um conjunto de novos serviços. Chamamos-lhes neste
trabalho "Working Set Dissemination Services".

Nesta dissertação descreve-se uma estratégia de implementação de
"Working Set Dissemination Service". São analisados problemas de-
correntes da grande quantidade de possíveis utilizadores de um ser-
viço deste tipo e são propostas melhorias significativas dos serviços
já existentes.

iv

Abstract

When using all the different computing devices available to us nowa-
days we constantly access, edit and create files. We can easily notice
that we have a working set of files which are the most important and
most intensively used. Often, we want these files to be accessible in
different devices and places but it is difficult to keep the files syn-
chronized and up to date everywhere. To make synchronization of
files between different devices easier a new set of services has been
arising. We call these services Working Set Dissemination Services.
Throughout this work we are going to describe our approach to im-
plementing one of these services. We will be looking at the problems
raised by the large amount of prospective users of this kind of service
and at some improvements that can be made to existing solutions.

vi

Contents

Contents . viii

List of Figures . ix

List of Tables . xi

1 Introduction 1

1.1 Exploiting workspace collocation 3

1.2 Structure of the thesis 5

2 Related Work 7

2.1 Existing Applications 7

2.1.1 Sharing Applications 8

2.1.2 Backup Applications 8

2.1.3 Working Set Dissemination Applications . . . 9

2.2 Massive Scalable Storage Systems 11

3 Bolt Cloud 15

3.1 A Working Set Dissemination Service 15

3.1.1 Client . 18

3.1.2 Server . 21

3.1.3 The Storage 29

3.1.4 Synchronization Process 30

3.2 FlashSync . 31

vii

viii CONTENTS

3.2.1 FlashSync and Bolt Cloud 33

3.2.2 Personal FlashSync 35

3.2.3 Group FlashSync 37

3.3 Prototype Implementation Details 41

3.3.1 Programming Language Considerations 41

3.3.2 User Interface 42

3.3.3 File System Watcher 43

3.3.4 Distributed Coordination Service 45

3.3.5 Storage Implementation 45

4 Evaluation 47

4.1 Test scenario . 47

4.2 Results . 48

5 Conclusion 53

5.1 Future Work . 54

References 56

List of Figures

3.1 Bolt Cloud High Level Architecture. 17

3.2 Bolt Cloud Client Architecture. 19

3.3 Bolt Cloud Server Architecture. 22

3.4 Complete Bolt Cloud Server Architecture. 24

3.5 Synchronization Process. 32

3.6 Bolt Cloud client architecture including FlashSync . . 34

3.7 Bolt Cloud server architecture including FlashSync . 34

3.8 Personal FlashSync Process. 38

3.9 Group FlashSync Process. 40

3.10 Bolt Cloud Login Window. 43

3.11 Bolt Cloud Menu Bar Icon. 43

4.1 CPU usage, single server scenario. 49

4.2 Memory usage, single server scenario. 50

4.3 CPU usage, two servers scenario. 51

4.4 Memory usage, two servers scenario. 52

ix

x LIST OF FIGURES

List of Tables

2.1 Features of existing Working Set Dissemination appli-
cations. 12

3.1 Conflict handling strategy. 27

xi

xii LIST OF TABLES

Chapter 1

Introduction

One keyword we should emphasize when characterizing our society
is connectivity. Nowadays, staying connected is very important as
much for personal as for business relationships. The Internet enables
easy and instant interaction and new services are always emerging.
People see these services as an answer to their natural needs and
tend to massively adhere to them.

With the diversity of services offered and the different devices at our
disposal people tend to digitalize their lives. In addition, people’s
mobility creates the need to find ways to deal with all the data they
access, edit or produce. In fact, the same data is often replicated
through various locations. Immediate evidence of this can be found
in our personal computers. Typically, we have a set of files, that
compose our working set. These files are those we access most fre-
quently and the ones we tend to carry around. Moreover, we need
to have this set of files accessible in various locations or devices, for
example, in our home computer, our work station and our laptop.

Adding to the problem of having the files available in all of our com-
puters, is the problem of having them in a consistent state. Con-
sidering we have the files replicated through different computers, if
we edit a file in one computer and then access the same file in an
other one, without consistency guarantees, we may arrive at a point

1

2 CHAPTER 1. INTRODUCTION

where we have two different versions of the file and none of them is
really the version we expected. Thus, making these files available
in different under use computers is important but data consistency
guarantees must be provided.

We will call the problem of having this working set of files available
in our different computers in a consistent state the Working Set
Dissemination Problem. This problem has been addressed and some
of the approaches made to solve it represent a new set of services that
are being offered. These services, in general, offer the ability to have
our working set of files synchronized across our personal computers
as well as with some reliable storage remotely located. We will call
these services Working Set Dissemination Services.

One of the main challenges when trying to develop a Working Set
Dissemination Service is ensuring that the working set of files is repli-
cated consistently across all the user’s computers. One trivial way
to achieve data consistency, considering this type of problem, would
be to have the files in a single location and provide a remote access
to every computer. Being able to access the files everywhere is very
important and if the files were stored in a reliable manner we could
have guarantees against data loss. However, the files would not be
accessible without Internet connectivity and we would loose the abil-
ity to access the files arbitrarily in our normal working environment.
Therefore, Working Set Dissemination Services typically work over
actual replicas of the set of files distributed by our different com-
puters and the remote reliable storage. The challenge materializes
now in being able to efficiently synchronize the different replicas and
provide an adequate consistency model regarding the intended usage
of the system.

It is also important to notice that a Working Set Dissemination
Service, being an answer to an everyday life necessity has a very
large number of potential users and thus scalability issues will arise.
In fact, if we consider millions of users we must expect a very large

1.1. EXPLOITING WORKSPACE COLLOCATION 3

amount of data to manage.

With this work we propose a system architecture and a set of APIs
to implement a Working Set Dissemination Service. In Section 2 we
present some of the different existing approaches to the working set
dissemination problem and these will be used as a starting point to
our own approach. Our approach, besides trying to solve the work-
ing set dissemination problem, proposes improvements to existing
solutions meant to enhance the availability of the data.

1.1 Exploiting workspace collocation

When looking at present solutions to the working set dissemination
problem we can see that they obey to the client/server model. Nowa-
days, the client/server model is implemented over the Cloud Com-
puting model and examples of this are Amazon Web Services [3],
Google’s App Engine [9] and Microsoft’s Windows Azure [21].

Cloud Computing refers to an abstraction of infrastructure and soft-
ware, which are then seen as a service [24]. This service exports an
API to interact with it. The client knows nothing about the Cloud
and how the service is implemented but knows how to use it. As the
service is transparent to the client it is seen as an unlimited source
of resources (computational or storage).

Even though the Cloud Computing model helps the implementation
of a Working Set Dissemination Service by providing an infrastruc-
ture with elastic resources1, the data produced in one computer is
sent to the server or cloud and then from the server to the other
computers. Considering a very large number of users, this model
can be improved if we take into account some locality factors.

1The infrastructure is elastic as its capabilities grow on demand. Whenever
the application needs another server or storage is made available. This mecha-
nism gives the application the illusion of infinite resources and such infrastructure
can respond to virtually any load scenario.

4 CHAPTER 1. INTRODUCTION

These locality factors can be:

• Users that have more than one computer connected in the same
network.

• Different users behind the same IP address, users from the
same University or Institution.

We meant to explore these observations and try to optimize the syn-
chronization process between computers. In fact, even considering
a server with infinite resources we are still limited by data transfer
rates. Therefore, if we minimize data transference between server
and clients and are able to take advantage of local area network
transfer rates, we can provide a better service. Furthermore, today
personal computer capabilities can be used as a complement to the
server side computing effort.

The first locality factor we pointed out comes from the observation
that often the potential users of a working set dissemination ser-
vice have more than one computer connected in the same network,
typically at home. With the objective of synchronizing the working
set of files between those computers, the approach taken by current
Working Set Dissemination Services is to send changes made in one
computer to the server and then from the server to other computers.
With our work we propose that the step of downloading data from
the server is avoided by resorting to the local network.

Looking at the second locality factor, let us imagine we have a cer-
tain number of users of the Working Set Dissemination service in
the same university. In this case we can not synchronize the dif-
ferent computers on the network because they belong to different
users with different sets of files. We can however have a pro-active
approach relying on the different users collaboration. We can notice
that these users share most of their working time together. If each
user dedicates some disk space to the service we can disseminate the
working set of other users to that space. This way that space is

1.2. STRUCTURE OF THE THESIS 5

used as a cache of the remote storage the service provides. Suppose
a user is at home and uploads a file to the system. If the system
knows a colleague at the user’s university it can send the file to that
colleague’s computer. When the user arrives at the university and
connects the laptop the file will be downloaded directly from the
colleague’s computer saving time and reducing file requests to the
remote storage.

With this work we propose a system that takes these observations
into account to deliver an improved Working Set Dissemination Ser-
vice.

1.2 Structure of the thesis

This dissertation is organized as the following. In Chapter 2 we will
describe some existing work about the problem of working set dis-
semination by describing available solutions. Chapter 3 is dedicated
to the contributions of our work, namely, the architecture, protocols
and prototype. We evaluate our system in Chapter 4 and conclude
with Chapter 5.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Related Work

In this chapter current approaches and solutions to some of the prob-
lems and challenges pertaining to Working Set Dissemination Ser-
vices are reviewed. We first overview existing systems enabling file
backup, sharing and synchronization and then we conclude with the
analysis of emerging services for massive data storage particularly
suited to be deployed under the Cloud Computing model.

2.1 Existing Applications

Currently, several applications and services aimed at file sharing and
backup through the remote storage of files are available. Typically
these:

• Offer remote storage.

• Allow ubiquitous access to the data stored through web access.

• Synchronize files or folders across different devices.

• Offer a remote backup solution.

We divide these applications into categories. This will help to un-
derstand differences between them and also to position our own ap-
proach amongst them.

7

8 CHAPTER 2. RELATED WORK

2.1.1 Sharing Applications

In the first category we will place the applications that offer a way
to store files on a server and to share them with other users. This
process is done manually file by file. Examples of these are Rapid-
Share [15], MegaUpload [11] and MegaShares [10].

These applications are suitable to share files with everyone when
those files are bigger than email attachments constraints. However,
they do not represent a very good solution to the Working Set Dis-
semination problem, as the user must upload the files every time
she changes location and carry around links to those files for later
download. Moreover, the files are deleted by the service if the user
does not download them for a period of time.

2.1.2 Backup Applications

In this second category we place applications for which data backup
is the main focus. It is important to notice that the Working Set
Dissemination problem is quite different from the data backup prob-
lem. However, services from this category can be a building block
to other more complex services. The following are representative
examples of this category:

• Mozy [13] - Client/Server backup.

• OpenDrive [14] - Client/Server backup.

• Carbonite [6] - Client/Server backup.

• Box.net [5] - Client/Server backup.

• Pastiche [28] - Peer-to-Peer backup.

• Flashback [29] - Peer-to-Peer backup.

These applications differ on architecture and usage methods.

2.1. EXISTING APPLICATIONS 9

Mozy, OpenDrive and Box.net are examples of a set of applica-
tions that offer a certain amount of remote disk space where one
can backup our files. There is no concern of keeping files synchro-
nized between various locations. These services can be automatic:
Mozy, OpenDrive or Carbonite, or manual: as it is Box.net or iDisk
(MobileMe [12]).

Then we have Pastiche and Flashback. These two are intended to
work in Personal Area Networks. The idea is that in a set of peers,
each peer shares some amount of disk space with the others. This
space is used by the system to backup other peers’ data. This ap-
proach has the advantage of avoiding remote dedicated storage and
takes advantage of disk space that is often wasted.

2.1.3 Working Set Dissemination Applications

Considering now the last category we will group here the applications
that try to solve the Working Set Dissemination problem as a whole.
These applications, in general, offer a way to synchronize a folder or
a set of files across multiple devices. They also keep a copy of the
files and folders in remote storage. These applications differ on the
number of devices they support and in extra features like sharing
permissions or the way they deal with media files. Examples are:

• DropBox [7]

• SugarSync [17]

• LiveMesh [22]

• Syncplicity [19]

• SpiderOak [16]

• Ubuntu One [20]

10 CHAPTER 2. RELATED WORK

This last category is the one we will use as the basis for our work.
We extract from these applications the common features they offer
and then try to explore ideas from other applications such as those
from the second category. These common features are:

• To provide a remote storage to host a copy of our working set

• To synchronize our working set across different computers

• To provide access to the files everywhere

In order to better differentiate these applications we depict their
main features in Table 2.1. A more complete table can be found
in [18] . The table enumerates some features and then marks the
presence/absense of those features in each application. The features
considered are:

• File backup with recovery.
The application provides a way to backup files and a way to
recover those files in case local copies are lost.

• Real-time update.
The application synchronizes the system automatically and
right after any change is made. Applications that do not pro-
vide this feature rely on manual synchronization.

• Versioning with the ability to restore.
Besides backing up the current version of the files, the appli-
cations stores files’ old versions and allows the user to restore
any of those versions.

• Sync files on multiple computers.
Synchronization between different computers is automatic. Those
applications that do not present this feature must manually re-
trieve a copy of the files in each computer.

• Access files from a web browser.
The application provides a web interface to access stored files.

2.2. MASSIVE SCALABLE STORAGE SYSTEMS 11

• Share folders.
The user can share files with other people directly from the
system supporting the application.

• Share folders with permissions and password.
To the previous feature is added an access control mechanism.

• XP and Vista Support, Mac OS X Support, Linux Support.
The application supports the specified operating system.

2.2 Massive Scalable Storage Systems

With the emergence of Cloud Computing, service providers had to
find ways to deal with huge amounts of data. The traditional rela-
tional databases are not able to cope with such quantity of data and
new storage systems are being developed. With regard to the Work-
ing Set Dissemination problem, we also have to be concerned about
the massive data storage required to provide the service. Namely,
we need to know where to store the user’s files. The ideal solution
when implementing a Working Set Dissemination Service would be
to have an independent reliable and scalable system providing stor-
age related services.

From the existing massive storage services we identified Amazon’s
S3 [1] as the only one being an immediate answer to the Working Set
Dissemination Service needs. In fact, it is the only service capable
of storing arbitrarily large objects. Amazon’s Simple Storage Ser-
vice (S3) is an object store that provides a reliable, scalable and fast
service. In S3 one can store an unlimited number objects until 5 gi-
gabytes in size. Each object can have metadata associated. Objects
are created, deleted or retrieved through a SOAP or REST API and
are organized into buckets which are object containers. This ser-
vice is, as it was intended, very simple but can free developers from
scalability issues when dealing with large amounts of data.

12 CHAPTER 2. RELATED WORK

Caracteristic SugarSync DropBox MobileMe Carbonite

File backup
with recovery

3 3 3 3

Real time up-
load of changes

3 3 - -

Versioning with
the ability to
restore

3 3 - 3

Sync files
on multiple
computers

3 3 - -

Access files
from a web
browser

3 3 3 3

Share folders 3 3 - -

Share folders
with permis-
sions and
password

3 - - -

XP and Vista
Support

3 3 - 3

Mac OS X Sup-
port

3 3 3 3

Linux Support - 3 - -

Table 2.1: Features of existing Working Set Dissemination applica-
tions.

2.2. MASSIVE SCALABLE STORAGE SYSTEMS 13

We studied other massive scalable systems. Among these are Google’s
Bigtable [26], Amazon’s SimpleDB [2] and PNuts [27]. These stor-
age systems are not suitable to the implementation of Working Set
Dissemination Service because their intended to store small tuples.
However, it is important to notice that the abstraction level these
services provide and their APIs could be ported to a service where
storing large objects is a requisite. This would lead to a new set of
services competing with Amazon’s S3 and suitable to the Working
Set Dissemination requisites.

14 CHAPTER 2. RELATED WORK

Chapter 3

Bolt Cloud

Bolt Cloud, a novel approach to developing a scalable, efficient and
modular Working Set Dissemination Service, is described in this
chapter. Section 3.1 discusses Bolt Cloud ’s architecture and how
it solves the Working Set Dissemination Problem. In Section 3.2 we
describe the FlashSync system, an innovative solution combining the
client-server and peer-to-peer paradigms to improve the availability
and efficiency of the service. The description of our prototype closes
this chapter.

3.1 A Working Set Dissemination Service

As mentioned earlier, a Working Set Dissemination Service is a ser-
vice that allows a user to have a set of files, typically a folder, syn-
chronized across every computer the user owns. Additionally, the
service keeps a safe and reliable copy of the set of files.

Bolt Cloud addresses common features of Working Set Dissemination
Services, notably:

• Synchronization of a folder among the user’s computers.

• Keeping a copy of the user’s files in a dependable manner.

15

16 CHAPTER 3. BOLT CLOUD

• Providing a conflict detection system for concurrent changes
made to the files.

• Relying on a non-intrusive interface that minimizes the need
to have user interaction.

• Being a modular system.

• Designed for personal use only.

It is important to emphasize the last feature on the list. Bolt Cloud
is for personal use only. With personal use we mean that for each
account there is only one user. Each user can have more than one ma-
chine connected but changes to the working set of files are expected
to be made to only one machine at a time. Following this usage
model and admitting each machine to be always online, each change
made to the files would be disseminated to all machines within a
certain period of time. If that period of time was always smaller
than the time the user needs to switch machine, we would never
have to deal with conflicting versions of the files because the user
would always see and edit their last version. Therefore, it would not
be necessary to provide a conflict detection system. However, there
is the possibility of the user to switch to another machine before
the synchronization process between all the machines is concluded
and more important, the possibility of the user changing the work-
ing set of files while offline. In both cases, the user can accidently
change old versions of files or folders. The Bolt Cloud system con-
siders these scenarios and responds accordingly including a conflict
detection system detailed later.

The first decision to make when thinking about synchronizing a set
of files is the model of synchronization. The synchronization process
can be done between the different computers directly or through a
server. When designing Bolt Cloud we opted for including a server
in the process. Having a remote server coordinating the system eases
the synchronization process as well as allows the user to access the

3.1. A WORKING SET DISSEMINATION SERVICE 17

system from every location, provided there is enough connectivity.
This is very important to enable mobility, specially when the user
is using a laptop. Another positive aspect of having a server is
that we can build it to be reliable and scalable. Following the Cloud
Computing model we can expect the server to be deployed on a Cloud
with elastic resources and therefore relieve the clients of almost all
the computing effort.

Bolt Cloud is composed by three modules as depicted in Figure 3.1.
Along this section we describe the Bolt Cloud client, Bolt Cloud
server and the storage.

Bolt Cloud

StorageServer

Clients

Figure 3.1: Bolt Cloud High Level Architecture.

18 CHAPTER 3. BOLT CLOUD

3.1.1 Client

The Client is deployed in each of the user’s machines. The Client
monitors a folder chosen by the user and is responsible for detecting
changes made to that folder and its contents. Periodically, the Client
contacts the Server and sends the changes it has detected until then.
The server processes those changes, detecting possible conflicts and
publishing those changes to the other machines of the same user.
Afterwards, the server responds to the client by sending a set of
instructions that force the client to update its state and become
synchronized with the rest of the user’s machines.

The synchronization process is periodic: the system itself initiates
the process after a certain period of time. Nevertheless, the system
also contemplates the possibility of the process being initiated manu-
ally by the user. Having both the automatic and manual approaches
to how each client synchronizes is not common in the existing ser-
vices (described in Chapter 2) but it is a very useful feature notably
when the user knows he will disconnect from the network in the near
future. In fact, if we have a system solely based on an automatic
approach we don’t have control of when the synchronization is ac-
tually held. On the other hand, a system that always depends on
the user to initiate the synchronization process may become tedious
to use. Having the ability to provide both features allows the user
to rely on a periodic synchronization, which ensures that at least a
subset of the changes made to the watched folder are synchronized
and at the same time have the ability to initiate the synchronization
process. When the user initiates the synchronization process she
has direct control over the system, which is very important when
the user wants to make sure a certain file or set of files, are in fact,
synchronized, as would be the case of a deliberate backup.

The client has the architecture depicted in Figure 3.2. The Client is
composed of three modules. A Communication module, the Man-
ager and the File System Watcher. Designing the system to be

3.1. A WORKING SET DISSEMINATION SERVICE 19

Operating System

Bolt Cloud Client

File System Watcher

Manager

Communication

Figure 3.2: Bolt Cloud Client Architecture.

20 CHAPTER 3. BOLT CLOUD

modular and have simple APIs allows code reutilization and eases
changing or improving the system. If, for example, the system un-
derneath the file system monitoring suffers any modification, the File
System Watcher module can be rewritten and replaced easily. This
is valid for each module. We now describe each one of the client’s
modules detailing their responsibilities.

File System Watcher Module

The File System Watcher, as the name implies is responsible for
monitoring the file system. In particular, it is responsible for moni-
toring changes happening to the folder being watched by the system.
This module is intrinsically connected with the operating system to
be able to detect changes to the watched folder. On change de-
tection, this module identifies the change type, which can be a file
creation, modification or deletion or folder. These changes are then
noted and this module also has the ability to detect changes made
to the watched folder while the system is offline. When the Bolt
Cloud client starts, the File System Watcher module compares the
contents of the watched folder with information it stored previously,
determining if changes occurred while Bolt Cloud was not running.
These changes are also noted and the client continues to run nor-
mally. The module exports a method that enables other modules to
poll for changes.

The changes detected are stored as a list of changes with information
about the path and the type of change. In the particular event of
file modified change the system stores more information than just
its occurrence. The File System Watcher also stores information
about the file blocks changed. This information is used afterwards
to avoid sending the whole file to the server. The Bolt Cloud client
will only send the blocks that have changed when a file is modified
saving resources. This also enables faster synchronization times by
reducing the amount of data sent to the server.

3.1. A WORKING SET DISSEMINATION SERVICE 21

Manager Module

Synchronization may happen periodically or be manually started by
the user. In both cases, the Manager module calls the File System
Watcher to retrieve the changes detected and processes them. The
Manager module is therefore responsible for triggering periodic syn-
chronization process as well as controlling the whole process. The
changes retrieved consist of a list of paths and respective change
types as well as a data structure containing information about mod-
ified file blocks. The Manager module then sends the changes to
the Bolt Cloud server. The server processes the information sent by
the client and responds with a set of instructions the client must
follow in order to become synchronized with all the other clients.
These instructions are received and applied by the Manager module
terminating this round of synchronization.

Communication Module

The Communication module is responsible for managing the com-
munication between the Bolt Cloud client and the Bolt Cloud server.
In section 3.3.1 we will go into further detail about the technology
behind the communication module.

3.1.2 Server

The Bolt Cloud server is responsible for managing user accounts,
managing the storage and the conflict detection system. Following
the same approach we used previously to describe the Bolt Cloud
client we will consider the different server modules and explain their
roles. The Bolt Cloud server is composed by three modules as de-
picted in Figure 3.3. The Controller module is responsible for re-
ceiving the clients requests and process them. To accomplish this
task it has a connections to the Conflict Detection System and to the
storage through the Storage Driver, which isolates the Bolt Server

22 CHAPTER 3. BOLT CLOUD

from the underlying storage system.

Bolt Cloud Server

Storage Driver

Controller Conflict Detection
System

Figure 3.3: Bolt Cloud Server Architecture.

Controller Module

The Controller module handles all client requests. This module
needs authentication information and to access user’s profile. This
includes user credentials, information about the user’s machines and
the index to access the user’s files.

When a Bolt Cloud client connects to the server the user’s identity is
authenticated and the Controller loads all the information belonging
to that user. To the set of information related to a certain user we
will call the user’s state. The user’s state has information about the
user credentials, the name of the machines owned by the user and
a list of pending changes for each machine. During each synchro-
nization process the list of pending changes is updated so that each
machine receives the changes from all the other machines.

Even though Bolt Cloud is intended for personal use conflicting op-
erations can occur. The system answers these scenarios and always

3.1. A WORKING SET DISSEMINATION SERVICE 23

tries to preserve the user’s intentions and data. This is achieved by
a Conflict Detection System that will be discussed later. Besides de-
tecting usage related conflicts, it is important to have concurrency
control mechanisms to coordinate how the Controller module deals
with the user data. Since the Bolt Cloud client has an automatic
synchronization system, it is possible that more than one machine
from the same user tries to update the user’s state at the same time.
If nothing is done to prevent this, the system can easily loose updates
and evolve to an inconsistent state.

One motivation for this work was the large number of prospective
users. As a result, it is crucial that the system is designed to be able
to scale and handle thousands of requests simultaneously. To achieve
this goal it is desirable that the servers be stateless. Having stateless
servers eases horizontal scalability, i.e., if the demand for service
grows the system only has to start more server instances to answer all
the requests. However, the server has to access the user’s state and
to conform to a concurrency control mechanism. This could mean
that all the servers would have to share state and agree in all the
changes made to that state. Note that having an agreement protocol
to control the access to the state and avoid conflicting changes is
possible but it compromises scalability.

To avoid having shared state between the different instance of the
server, we use a distributed coordination service. This service itself
is distributed and fault tolerant. This service assigns each user a
lock. When a server instance manages a certain user data, it has
to acquire the lock and fetch the user state from the storage. This
ensures that the object is changed only by one server instance at
a time avoiding undesired conflicts. The coordination service used
and its properties will be described in Section 3.3.4.

The Server architecture including the Distributed Coordination Ser-
vice is depicted in Figure 3.4.

Having described how the user state is handled we will continue to

24 CHAPTER 3. BOLT CLOUD

describe the Controller module behaviour. After fetching the user’s
state the Controller reads the changes sent by the user’s machine
requesting the synchronization. Then, it asks the Conflict Detection
System to compare the changes read with the set of changes that
are pending for that machine. These pending changes are those
changes published by other machines since the last synchronization.
The Conflict Detection System module detects possible conflicts and
produces two sets of instructions. One of these instructions sets is
to be applied by the server in order to update the storage state
and the other to be sent back to the client machine. After these
instructions are followed both the storage and the client machine
become synchronized and the connection is closed. The Controller
is now free to serve another request.

Bolt Cloud Server

Storage
Driver

Controller

Conflict
Detection
System

Distributed
Coordination

Service

Storage

Figure 3.4: Complete Bolt Cloud Server Architecture.

3.1. A WORKING SET DISSEMINATION SERVICE 25

Conflict Detection System

When we defined the Working Set Dissemination Service and the
goals considered in this work, it was stated that the service would be
intended for personal use only. This means that changes are made
only in one computer at a time. Theoretically, this would mean
that no conflicts could ever occur. Whenever a change occurred, it
would be propagated to every computer and when another change
was made, it would be made to the last possible version of the file
or folder. However, we must introduce the possibility of having of-
fline computers at the time of change or synchronization and having
changes during synchronizations. These aspects open the possibility
to conflict occurrence. Conflict means that a file or folder is subject
to a change in at least two different computers and these changes
leave the file or folder in two different and valid states.

A conflict can occur for example when the user changes a file in one
computer and turns it off before synchronizing the file. If the user
edits the same file in another computer the file will diverge into two
valid versions. When the first computer starts and synchronizes with
the server it will receive the notification of a change made to the file.
As the computer also has a change over that file to publish we may
end up with a conflict.

In the design of the Conflict Detection System we considered as top
requirement the preservation of the user’s intentions. The system
was designed to detect and not to solve the conflict. The automatic
resolution of the conflicts is impossible in situations as the one just
described. When unable to track the order of changes any generic tie-
breaking policy would lead to undesired losses and a generic merging
policy is simply unattainable. Instead of actually solving the con-
flict by trying to automatically merge the two versions of the file or
folder, we devised a strategy to preserve both versions and signal
the user that a conflict occurred. This way the user never looses any
information and can choose one of the versions or even merge them.

26 CHAPTER 3. BOLT CLOUD

The conflicts that can occur are:

• File Add or Modify – File Remove

• File Add or Modify – File Add or Modify

• File Add or Modify – Folder containing the file Remove

• Folder Add – Folder Remove

• Folder Add – Folder Add

• Folder Remove – Folder Remove

• File Remove – File Remove

For each type of conflict the system will perform a set of steps to
address it. The actions performed for each situation are described
in Table 3.1.

3.1. A WORKING SET DISSEMINATION SERVICE 27

F
il
e
A
d
d
or

M
od

if
y

F
il
e
R
em

ov
e

Fo
ld
er

A
d
d

Fo
ld
er

R
em

ov
e

F
il
e
A
d
d
or

M
od

if
y

T
he

co
m
pu

te
r

th
at

in
it
ia
te
d

th
e
sy
nc
hr
o-

ni
za
ti
on

pr
oc
es
s

re
-

na
m
es

it
s

ve
rs
io
n

to
fil
en
am

e
+

(c
on

fli
ct
)

an
d

re
ce
iv
es

th
e

re
-

m
ot
e
ve
rs
io
n.

T
he

fil
e
re
m
ov
e
is

ig
-

no
re
d

an
d

th
e

fil
e

is
sy
nc
hr
on

iz
ed
.

-
If

th
e
fo
ld
er

co
nt
ai
ns

th
e
fil
e
be

in
g
ad

de
d
or

m
od

ifi
ed

it
is

cr
ea
te
d

an
d

th
e

fil
e

sy
nc
hr
o-

ni
ze
d.

F
il
e

R
e-

m
ov
e

Sa
m
e
ap

pr
oa

ch
as

th
e

up
pe

r
co
lu
m
n.

-
-

-

Fo
ld
er

A
d
d

-
-

T
he

fo
ld
er

is
cr
ea
te
d

in
bo

th
pl
ac
es
.

T
he

Fo
ld
er

R
em

ov
e

in
st
ru
ct
io
n

is
ig
no

re
d

an
d

th
e

fo
ld
er

is
ad

de
d.

Fo
ld
er

R
e-

m
ov
e

T
he

sa
m
e
ap

pr
oa

ch
as

th
e
F
ile

A
dd

or
M
od

-
ify

/
Fo

ld
er

R
em

ov
e

co
lu
m
n.

-
T
he

Fo
ld
er

R
em

ov
e

in
st
ru
ct
io
n

is
ig
no

re
d

an
d

th
e

fo
ld
er

is
ad

de
d.

-

Ta
bl
e
3.
1:

C
on

fli
ct

ha
nd

lin
g
st
ra
te
gy
.

28 CHAPTER 3. BOLT CLOUD

The operations described always preserve the user’s intention by
never deleting any changes made to the files and folders. By renam-
ing the files in conflict the system alerts the user to the conflict and
the user can act accordingly.

Storage Driver

The Storage Driver module is the mediator between the Controller
and the Storage. The API used by the Controller to communicate
with the Storage Driver is the following:

• sendAllObjects(user,client connection)
The storage driver asks the storage for a special object contain-
ing an index of all the user’s objects. Then asks the storage for
all the objects in that index and sends them through the client
connection. This method is invoked the first time a machine is
registered in order to receive all the files already in the system.

• sendFile(user,key,client connection)
The storage driver asks the storage for the user’s object with
the specified key and sends it through the client connection.
This method is invoked each time a file has to be added to the
client synchronizing.

• putObject(user,key,object)
The storage driver puts the object in the storage. This object
can be a file or folder.

• removeObject(user,key)
The object with the specified key is removed from the storage.

• modifyObject(user,key,diff)
The object with the specified key is retrieved from storage and
information about differences made to the object in diff are
applied. The the updated object is put in the storage.

3.1. A WORKING SET DISSEMINATION SERVICE 29

• bool userHasMachine(user,machine)
The storage driver asks the storage for the user state object.
Then verifies if the machine specified already is registered for
that user.

• addMachine(user,machine)
The machine specified is added to the user’s machine list.

• addUser(login,pass,firstmachine)
A new user is added by creating a new user state object.

• userState getUState(user)
This method returns the user state object. This method is
called whenever a synchronization process is initiated on the
server side.

• setUState(user,userState)
This method allows changes to be made to the user state.

3.1.3 The Storage

The storage is a stand alone system that can be completely indepen-
dent from the Bolt Cloud system. The system need only to know
how to interact with the storage, which means it only has to know
the storage API.

The storage API considered in Bolt Cloud is the following:

• putObject(key,object)
If the object already exists it is replaced.

• object getObject(key)

• removeObject(key)

When designing Bolt Cloud we considered a key-value storage. This
type of storage allows a client to store data objects, which can be

30 CHAPTER 3. BOLT CLOUD

anything, and access them by defining a key for each of them. This
model meets the Bolt Cloud requirements as files and user informa-
tion can be mapped to objects by generating keys adequately. As
the key-value massive scalable storage systems are often offered as
a service we can use them directly by implementing an adequate
storage driver. Implementation details about the storage system are
described in section 3.3.5.

3.1.4 Synchronization Process

The synchronization process involves the server and the various ma-
chines of a single user. Each machine is running an instance of the
Bolt Cloud client.

The client monitors a folder chosen by the client and detects changes
made to that folder. We will start to describe the synchronization
protocol by admitting a change occurred in one of the user’s ma-
chines.

The machine where the change occurred has the description of this
change in a data structure. This data structure has the relative path
of the file or folder changed and the type of change (add, delete or
modify). The relative path is the file or folder path from the root
folder (the folder being watched). The relative path is, therefore,
equal across machines. If the change is of type file modified the data
structure will also have the data concerning blocks changed.

When a synchronization begins it starts to collect the information
about the changes that occurred since the last time the process run.
From now on we will refer to this information only by changes. After
collecting the changes, the client contacts the server and authenti-
cates by sending information about user login, password and ma-
chine name. If the authentication is successful, the client sends the
changes to the server and waits for a response.

For each machine the server has a list of pending changes. These

3.2. FLASHSYNC 31

pending changes are changes other machines made to the files or
folder and are not yet synchronized. After receiving the client changes
the server picks up the list of pending changes for the machine name
the client provided. Then the server compares the pending changes
with the new changes coming from the client. From this comparison
the server concludes if there are conflicts to be handled1. In either
case, the server produces two set of instructions. One set of instruc-
tions to be applied by the server to the storage system and the other
to be applied by the client. After applying these instructions, the
client and the server become synchronized. The set of instructions
intended to be applied to the storage is also added to the set of pend-
ing changes of the other machines so that all machines are notified
about the changes made.

This process is then repeated for the other machines as soon as they
initiate the synchronization process (manually or automatically).

The client that was waiting for the response receives it in the form of
the instruction set. Applying the instruction set can involve creat-
ing or deleting folders, deleting files or downloading new file versions
from the server. After this process the client finishes the synchro-
nization process and disconnects from the server.

Figure 3.5 depicts this process.

3.2 FlashSync

The FlashSync system is an improvement to the existingWorking Set
Dissemination Services. It is composed by two different subsystems:
the Personal FlashSync and the Group FlashSync. These systems
were designed based in some observations related to way Working
Set Dissemination Services work today.

1The way conflicts can occur and the way they are handled have already been
described in Section 3.1.2

32 CHAPTER 3. BOLT CLOUD

Synchronization Process

Client
machineT

Server

(...) (...)

4 - add "a*"machineN

4 - add "a*"machineP

machineT [x,y]

Pending
ChangesMachine Name

1 - send changes "a"

5 - receive changes "x*,y*"

Storage

3 - apply "a*"

2 - see if "a" conflicts with "x,y" and
produce instruction set "a*" and "x*,y*"

"a*" and "x*,y*" are the changes to be applied that allow the server and the client to be
synchronized and the conflicts to be handled

Figure 3.5: Synchronization Process.

3.2. FLASHSYNC 33

As it is implemented in existing Working Set Dissemination Ser-
vices, the synchronization process involves data travelling from one
computer to the server and from the server to the other computers.
Often, several of the user’s computers are in the same network, typ-
ically at home. Therefore, it does not make much sense to send the
data to the server and then download it back. Furthermore, we can
take advantage of the fact that often a user is connected behind a
firewall in a local area network alongside many potential Bolt Cloud
users, for example, at the university. If at the time a user arrives at
the university and connects her laptop the data to be synchronized is
already available locally, in a colleague’s computer for example, she
will save a significant amount of time in the synchronization process.

The Personal FlashSync system is aimed at optimizing the synchro-
nization between computers in the same network and belonging to
the same user while the Group FlashSync system involves a col-
laborative environment where computers from different users have
information related to each other. Along this section we describe
these two systems detailing their objectives and how they work. We
begin by describing how they were incorporated into Bolt Cloud.

3.2.1 FlashSync and Bolt Cloud

To incorporate the FlashSync system, three modules were added to
the Bolt Cloud ’s system architecture, two in the client and one in
the server. Client and server architectures are depicted in Figure 3.6
and Figure 3.7.

The server-side FlashSync module stores information about the users
who activated the Group FlashSync system. Each time a user ac-
tivates the Group FlashSync system the user’s IP is recorded and
indexed to be easily connected with other users behind the same
firewall or router. This module is also responsible for managing the
unique identifiers assigned to each group of changes processed. In

34 CHAPTER 3. BOLT CLOUD

Bolt Cloud Client

File System Watcher

FlashSync

Manager

Communication FlashSync
Communication

Operating System

Figure 3.6: Bolt Cloud client architecture including FlashSync

Bolt Cloud Server

Storage
Driver

Controller

Conflict
Detection
System

Distributed
Coordination

Service

Storage
FlashSync

Figure 3.7: Bolt Cloud server architecture including FlashSync

3.2. FLASHSYNC 35

fact, while some changes are pushed to other users’ computers new
changes can arrive to the server. To distinguish new changes from
those it had already pushed through the Group FlashSync system,
the FlashSync system has to stamp each group of changes with an
unique identifier.

The server-side FlashSync module also tracks the validity of pushed
changes. When a client connects on a network where there is no other
Group FlashSync enabled computer with available information, it
will synchronize with the server directly. When this happens, all
the pushed changes relating to that client become obsolete and are
ignored in future synchronizations.

The client-side FlashSync module is used by the Personal FlashSync
system and by the Group FlashSync system to discover all the other
Bolt Cloud clients running in the same network. This process is done
in collaboration with the FlashSync communication module, which
relies on different technologies as described in Section 3.3.

The client-side FlashSync module also controls the synchronization
process between machines in the same network and deals with possi-
ble conflicts using similar strategies to the ones described in Section
3.1.2.

3.2.2 Personal FlashSync

The peer-to-peer concept in its origins suppresses the need to have
a server mediating communication and cooperation between peers.
Each peer or node communicates directly with its pairs and together
collaborate to achieve a common goal. In the particular case of the
Working Set Dissemination Service, we devised the Personal Flash-
Sync to allow computers, within the same network and belonging to
the same user, to synchronize with each other without all of them
having to contact the server. When the Manager module initiates
the synchronization process it asks the FlashSync module to begin

36 CHAPTER 3. BOLT CLOUD

the local area network sync. All the computers in the same net-
work and belonging to the same user are discovered and changes
to be synchronized are sent to each of them. This process is done
one computer at a time to ensure that all of them can contribute
with changes and that in the end all share the same state. After this
process the computer that initiated the synchronization contacts the
server and the server also becomes synchronized.

The Personal FlashSync system does not avoid the need for a server
mediating the process but minimizes the amount of data traveling
in the network optimizing the synchronization process. Even though
we considered along this work the server deployed in a Cloud with
elastic resources, the performance of the system is always bounded
by network constraints. Taking advantage of the fact that today per-
sonal computers have significant computational resources, the Per-
sonal FlashSync system works as a complement to the Cloud and
results in an optimized system.

Personal FlashSync Process

The Personal FlashSync process runs in each synchronization but it
is initiated before the client contacts the server. Personal FlashSync
provides the ability to synchronize all the user’s machines in the
same network.

The first step consists in discovering all the machines in the same
network that have the Bolt Cloud client running and that belong
to the same user. This process is done by a separate thread so this
information is always available to the rest of the system.

When initiating the synchronization process the client contacts all
those machines in the same network and informs them that a syn-
chronization is about to begin. This way all of them suspend their
own synchronization processes and change their application icon sig-
naling the user that a synchronization is in progress. Afterwards, the

3.2. FLASHSYNC 37

client contacts all these machines one at a time sending them the
changes. The contacted machine will act as server and handle the
conflicts and will respond with a set of changes of their own. Both
the client that initiated the process and the contacted one apply the
respective changes and become synchronized.

This process has a small but very important detail that distinguishes
it from the synchronization process. As a client has to synchronize
with potentially more than one machine in the network it has to
propagate its own changes but also the ones it receives from the other
machines. Each time the client receives changes from one machine
it has to send them to all the machines that already contributed to
the synchronization process. This way, at the end all the machines
become synchronized.

After these steps, the client initiates the normal synchronization
process with the server but also sends the server the names of the
machines that already reflect those changes. This way, the changes
sent will not go to their pending changes list. When these machines
try to synchronized with the server they will not have to download
those changes and the system as a whole benefits from it.

Finally, the client contacts all of the machines informing the syn-
chronization process ended and continues to run normally.

Figure 3.8 depicts this process.

3.2.3 Group FlashSync

While Personal FlashSync works between computers of the same
user and is intended typically for home networks, Group FlashSync
is intended for computers working in a larger environment such as
the university or a company. In these scenarios, we normally connect
our computers to a network behind a firewall and share this network
with colleagues’ or coworkers’ desktop machines and laptops. We
can use these devices as a cache for synchronization information.

38 CHAPTER 3. BOLT CLOUD

Personal FlashSync Process

Client
machineT

changes:"a"

1 - send changes "a"

3 - send changes "a" + "b"

Client
machineP

changes:"c"

Client
machineN

changes:"b"

4 - receive changes "c"

2 - receive changes "b"

5 - send changes "c"

Conflict handling is not depicted in this Figure as it is similar to the one described in the
synchronization process.

Figure 3.8: Personal FlashSync Process.

3.2. FLASHSYNC 39

Each user that activates the Group FlashSync system is asked to
share a certain amount of disk space with other users. Then the
system detects the IP from where the Group FlashSync was activated
and this IP will be the IP from the Firewall, which is the same
for every colleague’s or coworker’s computer. Every time a client
synchronizes from the same IP the Bolt Cloud server will send along
with the normal synchronization, information from other Bolt Cloud
users that have activated the Group FlashSync for that IP. The client
synchronizing performs the normal operations to its folder and stores
the information regarding to other users encrypted in a separate
folder.

When a user connects in a Group FlashSync enabled network, she
can synchronize pending changes (changes made at home for exam-
ple) without having to download them from the server because they
were already pushed to a colleague or coworker machine. Further-
more, there are always some machines at the university or company
permanently connected and these are ideal to be the cache for all
the Bolt Cloud users in that network.

Group FlashSync Process

When a client connects to a Group FlashSync enabled network, dis-
covers all the Bolt Cloud clients running in that network and asks
if any of them has changes for it. In case there are, the computer
that has those changes replies to the client with the identifier of the
changes it owns. The client sends these identifiers to the server and
asks for changes. The server checks if those identifiers are valid and
up to date. If they are, the server replies to the client with only new
changes and instructions to synchronize the already pushed changes.
Otherwise, the server instructs the client to ignore locally available
changes and replies with all the available changes.

This process is depicted in Figure 3.9.

40 CHAPTER 3. BOLT CLOUD

Group FlashSync Process

Local Network
Client
User A

Client
User B

Server

1 - Changes?

4 - Id[123]ok + newid[456]

3 - Sync! LocalId:123

Client
User N

2 - Yes! Id[123]

2 - No.

New
Changes

456

Pushed
Changes

123

Client

A

5 - retrieve 123, apply 123, apply 456

1 - Changes?

Figure 3.9: Group FlashSync Process.

3.3. PROTOTYPE IMPLEMENTATION DETAILS 41

3.3 Prototype Implementation Details

In this section we describe some of the prototype details. Some of
these details will be useful to better understand the architecture
proposed and the Bolt Cloud system.

3.3.1 Programming Language Considerations

In order to implement the Bolt Cloud system, a decision was taken
to start with a client written in Objective-C and the server writ-
ten in Java. Since the author is a Macintosh user, Objective-C was
the logical choice for the Mac OS X operating system as it is di-
rectly supported in the system. Specifically, when building the File
System Watcher this choice enabled the use of the FS Events frame-
work directly. Details about the File System Watcher will be in
Section 3.3.3.

The Bolt Cloud server was written in Java. Java is a very mature
language and has a very interesting framework supporting it. Java’s
portability was also a key asset as it allow the server to run in almost
every machine or system. This is important because we want to be
able to run our server in different machines but also in different
virtualized environments, which are very popular when applying the
Cloud Computing model.

Even though both choices seemed logic, together they represented
a challenge. Implementing the communication between the server
and the client was one of the most time consuming tasks. The ab-
sence of standard frameworks or modules to ease the process forced
the implementation of all the communication based purely on BSD
sockets, which is known to be rather taxing. The communication
modules were implemented but possibly at the cost of not being
able to enhance other aspects of the system.

As described earlier, there were two different communication mod-

42 CHAPTER 3. BOLT CLOUD

ules. One module wase described in the previous paragraph and is
the mediator between the Bolt Cloud client and the server. The
other one is used by the FlashSync module to communicate with all
the computers in the same network. This module is implemented
using the Bonjour services. Bonjour [4] is Apple’s implementation
of zero-configuration networking [30]. The Bonjour system allows
automatic discovery of devices and services on IP networks. On
top of bonjour, the FlashSync module uses the Distributed Objects
technology from the Objective-C language to allow communication
between machines. Using these technologies, what really happens
in our system is that each Bolt Cloud client has a Bonjour service
associated. This service allows other clients in the same network
to discover it and interact with it. This service serves as media-
tor between the different clients and enables the local area network
synchronization process.

3.3.2 User Interface

The user interface is non-intrusive and the amount of user inter-
action needed is minimum. This complies with one of our initial
goals. Therefore, the user interface consists of only two different
components. The first one is a dialog window that appears when
one first runs Bolt Cloud. This window is used to obtain the user
information necessary to initiate the system. Besides the login and
password, the user also has to choose the name of the machine where
the client is running (this is important to distinguish the different
user’s machines), and the folder name to be watched. Finally, the
user chooses where he wants the watched folder to be created. This
window is depicted in Figure 3.10.

The other component appears when the application is running. This
component is a Status Item located on the menu bar on top of the
screen of the Mac OS X system. This icon has a menu associated
that allows the user to close the application and to manually initiate

3.3. PROTOTYPE IMPLEMENTATION DETAILS 43

the synchronizing process. The icon is depicted in Figure 3.11. This
icon changes when a synchronization is in process alerting the user.

3.3.3 File System Watcher

The File System Watcher is a module intrinsically connected to the
operating system. This being the case, we will describe in more detail
its implementation. The File SystemWatcher has to monitor a folder
and report or store all the changes made to that folder specifying the
type of change and the object of the change. This means that for
each change the File System Watcher must record which file or folder
was changed and what was the change (add, remove or modify). To
achieve this goal we used the FS Events [8] API offered by the Mac
OS X system. Using the FS Events API our application is notified
every time a file system change occurs inside a folder we specify as
root folder. Events on that specific folder and child folders are all
detected as the system is recursive. One particular detail about this

Figure 3.10: Bolt Cloud Login Window.

Figure 3.11: Bolt Cloud Menu Bar Icon.

44 CHAPTER 3. BOLT CLOUD

system is that it is folder oriented, in the sense that attached to
each change notification is the path of the folder were the change
occurred and not of the object that actual changed. The application
is therefore responsible for determining what actually changed in the
given folder and act accordingly.

For our File System Watcher we had to implement a data structure
and some search methods to search for what actually changed on
each notification. The data structure has information about folder
contents and file modification time which is later used to determine
if a file or folder was added, deleted or modified. This information
is then stored to be available to other Bolt Cloud modules.

Another important problem we had to overcome was the possibility
of offline events. Offline events are those file system changes that
are made while the Bolt Cloud system is not running. These events
must be detected and added to the list of stored changes. The FS
Events API offers the possibility of storing the offline events and
then send them to the application when it starts. However, the FS
Events system does not distinguish the offline events from those that
are new. As we run a synchronization process on application start
and we wanted to signal all the possible conflicts arising from offline
events, we wanted the File System Watcher to be able to clearly
distinguish them. To accomplish this we store a snapshot of the
file system tree state that allows us to compare to a new possible
state when the application starts. This way we detect all the offline
events.

Finally, the last feature included in this module is the ability to de-
tect file modification at block level. When the File System Watcher
detects a new file it computes an hash value for each file block. This
information is stored in an auxiliary file. Later on, if a file is modified
the File System Watcher will compute a set of new hash values for
the file and compare with the ones it had previously stored. From
this comparison it will detect the set of blocks modified, added or

3.3. PROTOTYPE IMPLEMENTATION DETAILS 45

those that were removed. During the synchronization process, in-
stead of sending the whole modified file to the server the client will
only send the necessary blocks saving bandwidth.

3.3.4 Distributed Coordination Service

For our implementation we used a system similar to the Chubby lock
service [25]. Chubby was successfully used in Bigtable [26], therefore
offers the desirable availability and reliability.

The open source implementation of the distributed and fault toler-
ant coordination service used is ZooKeeper [23]. ZooKeeper allows
distributed applications to coordinate processes by exporting a sim-
ple API similar to the one of a file system. ZooKeeper provides
synchronization, groups and naming services. For the Bolt Cloud
system we used ZooKeeper as a distributed lock service.

3.3.5 Storage Implementation

The Bolt Cloud prototype at this point is using the hard drive di-
rectly as storage. However, the storage is intended to be an inde-
pendent key-value massive scalable storage system. As we described
in Chapter 2 there are many storage systems implemented and suc-
cessfully running. If Bolt Cloud was to be deployed in a real world
scenario, it would incorporate one of these storage systems.

Our proposal is to use Amazon’s Web Services. Bolt Cloud would
use Amazon’s SimpleDB to store user related data and Amazon’s
Simple Storage Service to store files. These systems provide high
availability and reliability and at the same time provide a pay-per-
use billing model, which is suitable to Bolt Cloud.

46 CHAPTER 3. BOLT CLOUD

Chapter 4

Evaluation

A Working Set Dissemination Service is difficult to evaluate. The
large number of prospective users makes it difficult to simulate real
life load conditions. In this chapter we describe some experiments
we carried and that allow some insight about the performance and
resource consumption of Bolt Cloud.

4.1 Test scenario

We tested the system under a single server deployment and then with
two servers running. The storage in both situations was the local
hard drive of one of the servers and Zookeeper was also running in
that same server. The servers were two Macbook Pros with an Intel
Core 2 Duo 2,2 GHz/2,5 GHz processor and 4GB of RAM each. As
clients we used nine iMac computers with 2GB of RAM and an Intel
Core 2 Duo 2,0 GHz processor each.

We measured the CPU usage and the memory usage in each server
with different number of connections per minute. Various instances
of the Bolt Cloud client were running watching a folder each. Each
client was configured to synchronize every 10 seconds, which means
6 connections/synchronizations per minute to the server. To provide
data to synchronize to the client, we wrote a Python script to create

47

48 CHAPTER 4. EVALUATION

files and folders in each watched folder every 5 seconds.

The synchronization timings and the interval between the Python’s
creation of files or folders were defined after some preliminary tests.
We started by configuring the Python script to create files or folders
continuously. This was a really bad choice as the processing capa-
bilities of the client computer were wasted in that task only. The
Bolt Cloud client almost never could actually start the synchroniza-
tion process and this lead to really low load rates on the server.
Configuring the Bolt Cloud client to synchronize continuously also
revealed to be a poor choice. Each Bolt Cloud client only runs one
synchronization at a time, thus when one synchronization was run-
ning others would start to create a waiting queue. In fact, in each
synchronization files are sent to the server and file transfer rates are
bounded to network characteristics, if the time between synchro-
nizations is lower than the average time a synchronization lasts the
waiting queue will have infinite growth. This situation also lead to
low load rates on the server. With these observations in mind we
configured the synchronization timing and the Python interval in
order that each synchronization has data to send and the client is
always active.

In the next Section we present the results we obtained and some
conclusions we can draw from those results.

4.2 Results

In Figure 4.1 we present the CPU usage for the single server sce-
nario. We can see that, has expected, the CPU Usage grows as
the number of connections grows. We can also see that after eighty
connections per minute the CPU usage starts to stabilize. This is
explained by the fact that at this point the network reached its full
capacity and the server simply could not attend more simultaneous
synchronizations as it could not receive more data.

4.2. RESULTS 49

In Figure 4.2 its depicted the memory usage for the same single
server scenario. Again, as expected, the memory grows with the
number of connections but never exceeds the thirty megabytes level.
The increased growth we can see from the seventy connections per
minute forward comes from the fact that the server has to wait for
the network to be free to attend all the requests. With the increasing
usage of the network bandwidth the server begins to have threads
waiting for data, which leads to more memory consumption. These
tests are useful to see that for this test scenario the limitations are
network transfer rates.

Figure 4.1: CPU usage, single server scenario.

The second test was made with two servers running. Figure 4.3 and
Figure 4.4 depict the CPU usage and memory usage in each of the
two servers. From these tests we can see that for the same load
scenarios the load rate in each server is considerably lower than for

50 CHAPTER 4. EVALUATION

Figure 4.2: Memory usage, single server scenario.

4.2. RESULTS 51

the single server scenario. It is important to notice that Server two
has always more CPU usage and memory usage and this is due to
the fact that the storage and the Zookeeper service was running in
Server one. The remote connection has a clear impact in Server two’s
performance.

Figure 4.3: CPU usage, two servers scenario.

The important conclusion to withdraw from these tests are the scala-
bility properties of the system. If we double the values obtained from
Server two’s behavior, which is the one with higher usage values, we
will obtain very similar values to the ones obtained in the single
server scenario. We can infer from this observation that doubling
the number of servers is likely to make the system be able to handle
almost twice the load. Even though real life scenario test should
be made we can have here a positive evidence about the system’s
scalability.

52 CHAPTER 4. EVALUATION

Figure 4.4: Memory usage, two servers scenario.

Chapter 5

Conclusion

The work described in this dissertation is concerned with the Work-
ing Set Dissemination Problem and had as its main goal to improve
upon existing solutions. The proposed software architecture is em-
bodied in the Bolt Cloud system from which a prototype comprising
a client for Mac OS X and a Java server were implemented and eval-
uated. Bolt Cloud architecture solves the Working Set Dissemina-
tion problem and includes Personal FlashSync andGroup FlashSync,
which are two innovative systems that represent an improvement to
how the Working Set Dissemination problem was being solved.

Bolt Cloud system allows a user to have a folder contents synchro-
nized between various computers. Bolt Cloud also stores a copy of
the files in a reliable storage that can be used as data back up. The
user installs the Bolt Cloud client in each computer and chooses a
folder to be assigned to the system, which then ensures that all folder
contents are synchronized.

Personal FlashSync was designed based on the observation that in
existing Working Set Dissemination Services, the synchronization
process between computers always had the server as an intermediate.
Often, computers being synchronized are connected in the same local
network, for example, at the users’ home. Personal FlashSync takes
advantage of this locality factor and enables synchronization directly

53

54 CHAPTER 5. CONCLUSION

between computers from the same user sharing a local network.

Group FlashSync emerged from the observation that many poten-
tial Bolt Cloud users can have a computer sharing the university’s or
company’s network. We can also notice that these users also work at
home and need to synchronize their laptops when they are connected
to the university or company network. In this scenario, when the
laptop starts the Bolt Cloud client, changes made at home to the
working set of files must be downloaded from the Bolt Cloud server
and this operation can be time consuming. The Group FlashSync
system allows that users from the same university or company col-
laborate with each other to diminish the time this operation takes.
Each user is asked to share a certain amount of disk space to be used
as a cache for other users. When a user synchronizes the computer
with the server, not only downloads her own information but also
other users’ information. When another user synchronizes within
that network will already have the synchronization data available
locally. Group FlashSync is specially suited for cases where at the
university or company, there are computers permanently connected
that can be used as cache for multiple Bolt Cloud users.

5.1 Future Work

Bolt Cloud system implementation is now operational as a prototype
and a proof of concept to the proposed architecture. Having this
in mind some of the system modules could be improved in order
to provide better reliability guarantees. The first step would be
to improve the communication modules between the client and the
server. As stated earlier, these modules were built over the BSD
socket API and every marshalling and unmarshalling methods were
written specifically to this system. If these modules were rewritten
using higher level libraries we could reach a more resilient module
and open the possibility for an easier way to add more features to

5.1. FUTURE WORK 55

the system.

Besides the libraries also some protocol related details could be im-
proved. In case of connection failure during a synchronization the
system should be able to resume the synchronization process anytime
and this does not happen in the present implementation.

Finally, the system could be put into production and released to
be used by the public. In this situation, we could test the system
performance against real world conditions and the system’s ability to
scale as well as retrieve usage pattern information. This information
could lead us to improve the system and study new features the
service could offer. As these features would come from usage patterns
they would likely be of interest to the system users.

56 CHAPTER 5. CONCLUSION

Bibliography

[1] Amazon simple storage service, developer guide. http://docs.
amazonwebservices.com/AmazonS3/2006-03-01/.

[2] Amazon simpledb, detailed description. http://aws.amazon.

com/simpledb/#details.

[3] Amazon web services. http://aws.amazon.com/.

[4] Bonjour. http://developer.apple.com/networking/

bonjour/index.html.

[5] Box.net. urlhttp://www.box.net/.

[6] Carbonite. http://www.carbonite.com/.

[7] Dropbox. http://www.getdropbox.com/.

[8] Fs events programming guide. http://developer.apple.

com/mac/library/documentation/Darwin/Conceptual/

FSEvents_ProgGuide/Introduction/Introduction.html.

[9] Google app engine. http://code.google.com/appengine/.

[10] Megashares. http://www.megashares.com/.

[11] Megaupload. http://www.megaupload.com/.

[12] Mobileme. http://www.mobileme.com.

[13] Mozy. http://mozy.com/.

57

http://docs.amazonwebservices.com/AmazonS3/2006-03-01/
http://docs.amazonwebservices.com/AmazonS3/2006-03-01/
http://aws.amazon.com/simpledb/#details
http://aws.amazon.com/simpledb/#details
http://aws.amazon.com/
http://developer.apple.com/networking/bonjour/index.html
http://developer.apple.com/networking/bonjour/index.html
http://www.carbonite.com/
http://www.getdropbox.com/
http://developer.apple.com/mac/library/documentation/Darwin/Conceptual/FSEvents_ProgGuide/Introduction/Introduction.html
http://developer.apple.com/mac/library/documentation/Darwin/Conceptual/FSEvents_ProgGuide/Introduction/Introduction.html
http://developer.apple.com/mac/library/documentation/Darwin/Conceptual/FSEvents_ProgGuide/Introduction/Introduction.html
http://code.google.com/appengine/
http://www.megashares.com/
http://www.megaupload.com/
http://www.mobileme.com
http://mozy.com/

58 BIBLIOGRAPHY

[14] Opendrive online disk. http://www.opendrive.com/.

[15] Rapidshare - easy filehosting. http://www.rapidshare.com/.

[16] Spideroak. https://spideroak.com/engineering_matters.

[17] Sugarsync. https://www.sugarsync.com/tour/.

[18] Sugarsync-like applications comparison. https://www.

sugarsync.com/sync_comparison.html.

[19] Syncplicity. http://www.syncplicity.com/Features/.

[20] Ubuntuone. https://ubuntuone.com/.

[21] Windows azure platform. http://www.microsoft.com/

windowsazure/windowsazure/.

[22] Windows live mesh. https://www.mesh.com/Welcome/

overview/overview.aspx.

[23] Zookeeper. http://hadoop.apache.org/zookeeper/.

[24] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz,
A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica,
and M. Zaharia. Above the clouds: A berkeley view of cloud
computing. Technical Report UCB/EECS-2009-28, EECS De-
partment, University of California, Berkeley, Feb 2009.

[25] M. Burrows. The chubby lock service for loosely-coupled dis-
tributed systems. In OSDI ’06: Proceedings of the 7th sympo-
sium on Operating systems design and implementation, pages
335–350, Berkeley, CA, USA, 2006. USENIX Association.

[26] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable:
a distributed storage system for structured data. In OSDI ’06:
Proceedings of the 7th USENIX Symposium on Operating Sys-
tems Design and Implementation, pages 15–15, Berkeley, CA,
USA, 2006. USENIX Association.

http://www.opendrive.com/
http://www.rapidshare.com/
https://spideroak.com/engineering_matters
https://www.sugarsync.com/tour/
https://www.sugarsync.com/sync_comparison.html
https://www.sugarsync.com/sync_comparison.html
http://www.syncplicity.com/Features/
https://ubuntuone.com/
http://www.microsoft.com/windowsazure/windowsazure/
http://www.microsoft.com/windowsazure/windowsazure/
https://www.mesh.com/Welcome/overview/overview.aspx
https://www.mesh.com/Welcome/overview/overview.aspx
http://hadoop.apache.org/zookeeper/

BIBLIOGRAPHY 59

[27] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein,
P. Bohannon, H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yer-
neni. Pnuts: Yahoo!’s hosted data serving platform. Proc.
VLDB Endow., 1(2):1277–1288, 2008.

[28] L. P. Cox, C. D. Murray, and B. D. Noble. Pastiche: making
backup cheap and easy. SIGOPS Oper. Syst. Rev., 36(SI):285–
298, 2002.

[29] B. T. Loo, B. T. Loo, A. LaMarca, G. Borriello, and B. T. Loo.
Peer-to-peer backup for personal area networks. 2003.

[30] D. Steinberg and S. Cheshire. Zero Configuration Networking:
The Definitive Guide. O’Reilly Media, Inc., 2005.

	Contents
	List of Figures
	List of Tables
	Introduction
	Exploiting workspace collocation
	Structure of the thesis

	Related Work
	Existing Applications
	Sharing Applications
	Backup Applications
	Working Set Dissemination Applications

	Massive Scalable Storage Systems

	Bolt Cloud
	A Working Set Dissemination Service
	Client
	Server
	The Storage
	Synchronization Process

	FlashSync
	FlashSync and Bolt Cloud
	Personal FlashSync
	Group FlashSync

	Prototype Implementation Details
	Programming Language Considerations
	User Interface
	File System Watcher
	Distributed Coordination Service
	Storage Implementation

	Evaluation
	Test scenario
	Results

	Conclusion
	Future Work

	References
	Francisco António Ferraz Martins de Almeida Maia.pdf
	Página 1
	Página 2
	Página 3

