
November 2009

University of Minho
School of Engineering

Rui Mário da Silva e Freitas

Formal Software Development Techniques
in a Continuous Vital Signs Control System

Thesis in Informatics Engineering

Supervisor:
Prof. Dr. João Miguel Fernandes

November 2009

University of Minho
School of Engineering

Rui Mário da Silva e Freitas

Formal Software Development Techniques
in a Continuous Vital Signs Control System

Resumo

A área da biotecnologia encontra-se em constante crescimento. Vários produtos

apareceram nos últimos anos com a promessa de melhorar as nossas vidas. Moni-

torizar e controlar os sinais vitais para a saúde, desporto e outros propósitos é hoje

um grande mercado com um enorme impacto nas nossas vidas.

Nesta tese eu proponho um produto com a capacidade de controlar os sinais

vitais de várias pessoas com o objectivo de ajudar hospitais e outro tipo de serviços

de saúde a responderem melhor aos seus pacientes tanto dentro das suas instalações

como fora, nas suas vidas normais.

O meu objectivo para esta tese é construir um sistema fiável usando uma técnica

de análise e design de software e explicar esse processo. Pretendo, também, construir

um protótipo funcional, baseado no sistema desenvolvido, que irá permitir testar esse

mesmo sistema num ambiente real.

iii

Abstract

The biotechnology area is in constant growth. Several products appeared in the

last few years with the promise of improving our lives. Monitoring and controlling

vital signs for health, sports and other purposes is a big market today with an

enormous impact in our lives.

In this thesis I propose a product with the capability of controlling the vital signs

of several persons with the aim of helping hospitals and other type of health care

providers responding better to their patients inside the facility or living their lifes

normally outside the facility.

My aim to this thesis is to build a reliable system using a software analysis

and design technique and explain that process. I also intend to build a functional

prototype, based on the system developed, that would permit to test that same

system in a real environment.

v

Contents

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Background . 2

1.2 Proposed Problem . 3

1.3 Approach . 4

1.4 Objectives . 4

1.5 Overview . 5

2 State of the Art 7

3 Technologies 11

3.1 VDM++ . 11

3.1.1 Why use VDM++ . 12

3.2 HOL . 13

3.3 Automatic Proof System . 15

3.4 VDMUnit . 15

vii

3.5 Web Services . 16

4 Software Analysis and Design 19

4.1 Requirements Analysis . 19

4.1.1 Problem Description . 19

4.1.2 Introspection . 20

4.1.3 Domain Analysis . 20

4.1.4 Prototyping . 21

4.1.5 Final Problem Description . 22

4.2 System Architecture . 23

4.3 Modeling using VDM++ . 27

4.3.1 Classes Description . 27

4.3.2 System Invariants . 34

4.4 Testing . 38

4.4.1 Using HOL . 38

4.4.2 Using VDMUnit . 39

4.5 Prototype . 41

4.6 Calculating the Database Schema . 44

5 Conclusions 51

5.1 Future Work . 52

Bibliography 55

viii

List of Figures

3.1 The usage of the APS tool to generate HOL code from VDM++ . . . 15

4.1 The first system scheme. 20

4.2 The second system scheme. 21

4.3 The Proof of Principle. 22

4.4 The architecture of the first system. 24

4.5 The architecture of the second system. 26

ix

List of Tables

4.1 Differences and similarities between VDM++ and Java 42

4.2 Data types presented in the Client class for the database calculation . 45

xi

Chapter 1

Introduction

In this document I present a system for control the vital signs continuously.

Why is this important for the world we live in? Demography answers this question.

According to the International Data Base[1] from the U.S. Census Bureau, there are

around 6,7 billions people on earth. 97 millions have 80+ years old. The U.S. Census

Bureau has a prediction for 2050 and the results say that the entire population on

earth will be around 9,5 billions and the people that have 80+ years old will be 470

millions. These numbers points to a 40% growth in the entire population on earth

and a 380% growth in the population with 80+ years old. So, the population on

earth is getting older and we need to provide them the best medical care so they

can live longer and healthier.

Now the question is: how can this system help? Imagine a person who lives

completely alone. This person may have a heart failure and not be capable of

asking for help. If this person had a monitoring system, the heart failure could be

detected and the authorities warned automatically. This is a possible application

of monitoring systems. Search for cardiac diseases and prevent them are other

possible applications. Out of the cardiac area other examples are helping persons

with diabetes remembering them to take their medicines.

World population is getting older and this brings the need of a monitoring system

to live longer, with some quality and independence. But, would the population

in general and the hospitals use a system like this? A study made by Frost &

1

2 CHAPTER 1. INTRODUCTION

Sullivan[2] in 2006 says that 70% of the adults and 90% of the elderly prefer home-

based treatment. For the hospitals, home care treatment is less expensive because

they don’t need skilled nursing, inpatient rehabilitation and long term care facilities.

Vital signs monitoring systems already exist and they can be used for military

purposes, sports, health care, like the ones I have been talking, and others. The

system I propose in this document is for the health care area.

Health is a sensitive area, so it is necessary to build a reliable system. For that

reason, strong methodologies of software analysis and design are used in this thesis

and deserve my attention.

1.1 Background

Hospitals and health care facilities all over the world monitor their patients in

order to check their health status. They want to ensure the well being of their

patients, for example tracking down their cardiovascular system. For that reason,

they have machines connected to sensors that are attached to the patient to capture

vital information.

In the last century this type of machinery was very rudimentary, large machines,

to many wires. For the patient to be monitored he had to give up of comfort.

With the arrival of the wireless technology to the masses and the shrinkage of

the processors, many companies started to evolve their products. We began to

see a revolution in the bio-technology area. What was once large, expensive and

uncomfortable, it is now small, cheap and comfortable. One of those companies

is Polar[3] that developed a watch that connects wirelessly with a chest strap and

monitors the heart rate. It can be used for sports purposes but it is possible to find

similar products working in other environments like military.

The patients in the hospital bed no longer need to give up of their comfort to

be monitored. Today, it is possible to monitor patients using smaller and smarter

devices working together wirelessly. These devices can send information to central

1.2. PROPOSED PROBLEM 3

systems where authorized people can access and act according to the information

received. It is already possible for physicians to use their personal computers in

the office, or even in their own homes, at the same time that they are observing

the vital information of their patients. Information Technology evolved into a phase

where large amount of data can be easily stored and consulted remotely with access

control.

1.2 Proposed Problem

Sports and health are two possible applications for a system that monitors vital

signs continuously. It can be used by professional athletes that want to improve their

performances. They can monitor their heart rate, respiration rate, and other vital

information continuously during their training. They can store that information

for further analysis with their personal trainers to improve certain aspects on their

performances.

The monitoring system can be used for health purposes, where the patients are

monitored for a period of time previously set. Information is captured during the

monitoring and it can be accessed by an authorized physician in real-time or it can

be stored for further analysis. With such systems it is possible to analyze patients

in their normal day activities and perform a faster and accurate diagnosis.

Alcor, Life Extension Foundation, located at Scottsdale, Arizona, is interested

in a system with specific characteristics. They need to provide a fast response to

their clients if a cardiac problem is detected. They requested a system that would

monitor 24 hours a day vital information. If a cardiac problem occurs with one of

their clients an alert is sent back to Alcor employees so they can prepare all the

necessary arrangements.

4 CHAPTER 1. INTRODUCTION

1.3 Approach

Alcor, Life Extension Foundation, made a request to me and Diogo Martins to

create such system. For that reason, we moved into Scottsdale, Arizona, for a few

months where we spent some time in the Alcor’s facilities to understand their needs

and requirements.

It was clear that they had a Software and Hardware problem. They knew that

there were many available products but none of those products were good enough for

their needs. Because of that me and Diogo Martins started a Requirements Analysis

process. It is a cooperative process where we meet with the client and where we try

to completely understand the characteristics of the system.

It was decided to extend the project scope, adding the capability of working with

several Organizations/Associations, such as Hospitals, Health Companies, etc..

From the System Architecture we identified two parts of the project: mobile

and control. The mobile is responsible for monitoring the patient 24 hours a day

and send alerts if needed. The control part manages the alerts and the vital signs

data from the users. Only authorized people can access the control for consulting

the information. Diogo Martins is responsible for the mobile part[4], and I am

responsible for the control part.

The control part is a Software problem only. For that reason, I need to identify

the best technologies to be used. In the end I want to create a functional prototype

able to run in a real environment. This is a critical system, and consequently,

modeling and testing stages are very important.

1.4 Objectives

In this thesis I present a continuous vital signs control system capable of helping

hospitals and other type of health care providers providing them more information

about their patients. Information like vital signs, can help physicians in the process

1.5. OVERVIEW 5

of finding the patient problem. Some diseases can only be found with an extensive

data information.

The control system along with the mobile system, permits the health care providers

to receive constant updates of their patients. For example, if a patient has an heart

attack and the mobile system detects it, an alert is immediately sent to the health

care provider and to the contral system which can be accessed by authorized people.

A system with this characteristics must be robust. A robust system is built based

on strong methodologies that makes it trusty. Those methodologies combined with

a software analysis and design process lead to a consistent final prototype. The

creation of that prototype capable of running in a real environment, is the main

objective of this thesis.

For that purpose the following tasks are considered:

• Make an accurate analysis of the problem combining several techniques of

requirements analysis to achieve a final system architecture. One of those

techniques is the creation of a proof of principle where a very rudimentary

prototype is created;

• Create a model based on the System Architecture using a specification lan-

guage;

• Verify the model using testing methodologies. The process of verification is

very important to validate the model;

• Calculate the database schema from the abstract model.

1.5 Overview

This thesis is divided into 5 Chapters being this one the Introduction.

The Chapter 2 is the State of the Art. This chapter aims to present the several

existent products. Some of them were developed by companies, others by research

6 CHAPTER 1. INTRODUCTION

groups at Universities all over the world. The information gathered in this chapter

is used as a starting point for the project. There is no need to create a product

that already exists, for that reason it is important to have a strong knowledge of

the existing ones.

To create good software it is important to choose the right tools and technologies

to build it. In Chapter 3 are presented the Technologies that are used or referred

in the following chapters. I give a brief overview over them and explain why they

make part of the project.

In the Chapter 4 is presented the entire process of the Software Analysis and

Design. It starts with the Requirements Analysis where the techniques applied

are presented as well as the respective process of requirements analysis. A System

Architecture is created and used to build the Model. In the end of this chapter the

Functional Prototype capable of running in a real environment is created and the

database schema calculation is presented.

Conclusions is the Chapter 5 and the last one. I conclude the thesis presenting

my personal remarks and results. I also present my point of view and expectations

for the project in the future. The project does not end with this thesis and it is

important to point out the direction for the future.

Chapter 2

State of the Art

The biotechnology area has a lot of research groups around it and many projects

were created in the last few years. I am only interested in those that have the purpose

of monitoring and control the vital signs whether they have the interest for the health

care or simply for areas like sports, military and others. I give a special focus on

those with a central or control system separated from the monitoring system. In this

section I enumerate, also, some companies that work in the vital signs monitoring

area. This shows the focus the industrial world is giving to the area.

A system to detect the fall of the elderly persons was presented by Hansen

and his team[5]. The fall detection system is equipped by 3-axis accelerometers, a

GPS receiver and a embedded processor to analyze the data locally. If during the

analysis a suspected fall is found the fall detection system makes a connection with

the camera from the user’s phone via Bluetooth and sends the data to the same

phone. The system first attempts to make contact with the user through the phone

speaker or the keypad, and if the user doesn’t provide any response or claims for

help then the system will inform the emergency service and provide them access to

the data from the microphone, camera and the fall detector.

Another system I want to talk about is the AID-N system[6]. The AID-N was

built to help in disaster scene environments and his main purpose is to replace the

normal triage at the hospital for automatic triage. The AID-N is able to do this

monitoring the patients’ vital signs continuously. The patient caries with him/her

7

8 CHAPTER 2. STATE OF THE ART

sensors and a PDA that makes the continuous monitoring and analyzes the vital

signs, searching for problems with the patient’s status. If, during the analysis, an

abnormal reading occur, an alert is sent wirelessly to the miTag Server informing

the patient’s status. All the information is stored in the miTag Server which can be

accessible through a web portal by medical staff, paramedics and other authorized

personal to provide the best medical arrangements for the patient before he/she

arrives the hospital, during the trip to the hospital and while he/she stays in the

hospital.

The idea of monitoring patients during their normal day activities, instead of

doing an ECG or other exams in the hospital, already exists[7]. The data from

the monitoring is stored in a portable device carried by the patient for a period

of time or until the next physician visit. To read the stored data on the portable

device the doctor need to download the information to his/her personal computer

and analyze it with a specific program. By the time the article came out, the authors

were testing a new feature for the system which allowed reporting periodically the

physician with the patients’ normal readings. This new feature would also permit

alert the physician when some problem occur with the patient.

The SMART system[8] is very similar to the AID-N system[6]. This system was

built for disaster scene environment purposes and to help the hospital when the emer-

gency department (ED) is overcrowded. It is also possible help the paramedics since

the disaster scene until the hospital providing them all the necessary information to

help the patient. All this is possible because every patient in the SMART system

is being monitored continuously. The information from the monitoring process is

stored in the SMART central, which is the main server of the SMART system. The

SMART central receives all the patients’ data (vital signs) and analyze it searching

for abnormal readings. When an abnormal reading is found the SMART central

is able to process an alert with the patient information and send it to the nearest

available doctor. The SMART central is also able to process the post-triage which

would help the overcrowded ED and because it is possible to check in real time

the status of each patient in the system, the medical staff can help the paramedics

and provide all the proper arrangements for the patient before he/she arrives the

9

hospital.

Paul Blair is a Calit2[9] staff researcher and he thinks that the applications for

monitoring our health will be the ”next killer mobile applications” on the market.

He says that we have the available technology to do that but we don’t use it. For

Calit2[9] this is a prime area of investigation right now, according to Philip Rios.

They are developing a Web Platform for Physicians and Patients, as well an entire

system for monitoring the patients’ vital signs. In the Web Platform the physicians

have a more detailed view about the patients’ vital signs, and the users can track

their own vital signs. They built all the technology in their labs, like the necessary

sensors to monitoring the vital signs with a Bluetooth interface. The data from the

sensors is transmitted to the user’s phone and than to the web.[10]

CardioNet[11] is one of the companies that work in Biotechnology area. They

built a system called CardioNet MCOT[12]. This system monitors the patient 24

hours a day during 21 days. If during this monitoring an abnormality is detected,

the CardioNet MCOT sends the ECG information automatically to the CardioNet

monitoring center. This will allow the monitoring technicians to analyze the ECG

information, respond to events, and inform the physicians. The physicians can select

”the events to be monitored, and the level and timing of response by the CardioNet

Center”[12]. This system was proved to be 3x more effective than LOOP event

monitors in diagnosing clinically significant arrhythmias[13].

Corventis[14] is a startup company in San Jose, CA, that built a wearable and

wireless technology capable of detects early signs of heart failure[15]. This technol-

ogy has a sensor, built by the Corventis company, that beams the patient’s data to

a phone and then the phone transmits the data to servers that will process it. This

servers can find many possible problems with the patient like heart failure. This

technology allows the physicians to see the patients’ data through the iPhone or a

website from anywhere in the world. The company is studying the possibility of

the sensor to diagnose sleep apnea through changes in respiration and blood oxygen

levels.

Biodevices, S.A.,[16] is a spin-off from IEETA (Institute of Electronics and

Telematics Engineering of Aveiro / University of Aveiro) with the mission of de-

10 CHAPTER 2. STATE OF THE ART

veloping, commercialize and export biomedical engineering solutions for medical

diagnosis support. They built a product called VitalJacket[17] which is a t-shirt

with vital signs’ sensors built in that do the monitoring continuously and a Blue-

tooth sensor to send the data wirelessly from the sensor to the PDA and store it to

future analysis in the HWM version or for real-time analysis in the VJMobile.

Zephyr Technologies[18] is a company that builds vital signs sensors. There is a

framework called Zephyr Open[19] that uses the sensors from the Zephyr Technolo-

gies company. The Zephyr Open is not a product from the Zephyr Technologies,

it is an independent project leaded by Brad Zdanivsky. Using this framework it is

possible to connect the sensors with a personal computer and see the monitoring in

real time.

Continua, Health Alliance[20], is a partnership of more than 200 companies.

They work together with the aim of design guidelines for constructing new products

and establish a product certification program. The results will be better health

solutions to help individuals living independently and securely.

Chapter 3

Technologies

This chapter aims to give a quick overview over the modeling and testing tech-

nologies used in this thesis. The Web Services technology is also explored and

presented.

3.1 VDM++

The VDM[22, 23] (Vienna Development Method) is one of the most established

formal methods in software construction. It started as a project in the mid of

the 1970s and has been growing since then adding several group of techniques and

tools. The language used is VDM-SL (VDM Specification Language) and it is

used to present specifications in a model-oriented style. VDM has been extended

to VDM++ which is an object-oriented specification language and will be the

language used in this thesis to model the problem. The VDM is also part of the

VDMTools, a group of tools supporting the analysis of system models expressed in

the formal language of the Vienna Development Method. The VDMTools provides

several features that will be described later in this section.[21]

11

12 CHAPTER 3. TECHNOLOGIES

3.1.1 Why use VDM++

Using VDM++ is using a tool for modeling. So, why modeling? Software should

be modeled before the implementation because a successful model allow accurate

analysis and prediction of the system’s behavior. Today’s software industry oblige

programs to be in constant growth and changing. If we have to add new features

or change the system, it is better to change the model first instead of the imple-

mentation. Changing and testing the model is faster than changing and testing

the implementation. A model should be an abstract approach of the system. Ab-

straction consists in omitting details that are not relevant to the model in order to

focus in the essential system’s behavior. With modeling an understanding of the

system properties and structure is obtained. This offers lower cost rectifications of

the software system, in case of errors or future improvements.[22, 23]

The use of VDM++ is very helpful for the design and testing processes. With

VDM++, or VDM-SL if an object oriented approach is not needed, it is possible to

emulate the system behavior in the design process. The ability to add restrictions to

instance variables (invariants) and to operations (pre and post-conditions) raises the

possibility of testing the model. With VDM++ is possible to create a mathematical

model which is usually a very rigorous approach to the system.

VDM++ has also an extensive community working together to improve and cre-

ate new supporting features. One of those projects is the VDMTools. VDMTools

has several features to analyze VDM++ models: Syntax Checker, Type Checker,

Interpreter and Debugger, Integrity Examiner, Test Facility, Automatic Code Gen-

erator, Rose-VDM++ Link, Java to VDM++ Translator.

• Syntax Checker: the Syntax Checker verifies the VDM++ syntax. If the

syntax is incorrect the VDMTools will alert and point the problems.

• Type Checker: the Type Checker will check for inconsistencies in the use of

variables and operators in the code.

• Interpreter and Debugger: the Interpreter allows the user to interact with

the created model and the Debugger allows the user to debug the program

3.2. HOL 13

adding breaks in the middle of the code to check the values of instance vari-

ables, for example.

• Integrity Examiner: the Integrity Examiner allows the generation of in-

tegrity properties which can be possible sources for errors. Those proper-

ties are generated based on the invariants, pre and post-conditions, sequence

bounds and map domains. This properties are very important for testing the

model. They can serve as input for a theorem prover or they can be used

for calculate the model by hand. It doesn’t matter how you calculate it, the

important thing is that those properties evaluate to true.

• Test Facility: the Test Facility allows you to create a test suite in order to

automate the model testing.

• Automatic Code Generator: the Automatic Code Generator gives the

possibility to generate C++ or Java code from the VDM++ specification

model.

• Rose-VDM++ Link: the Rose-VDM++ Link creates a bi-directional trans-

lation between the UML and the VDM++.

• Java to VDM++ Translator: the Java to VDM++ Translator allows the

creation of VDM++ models based on the Java implementation.

3.2 HOL

The basis for HOL (Higher-Order Logic) were first developed by Robin Milner[24].

He also designed the ML language that underlines HOL.

The LCF (Logic for Computable Functions) was the first attempt by Robin

Milner to create a proof-checking program. HOL emerged from the LCF with the

aim of verifying the hardware at the register transfer level with a higher-order logic

formalism. The HOL system was being developed in order to become a general

purpose proof assistant.

14 CHAPTER 3. TECHNOLOGIES

The HOL system was always very open and because of that many people have

made several contributions to it. As a result, more than one HOL system has been

built.[25, 26]

• HOL88: The first stable version of the HOL system, with various changes

and enhancements. It was developed in Cambridge by Mike Gordon supported

by DSTO Australia and Hewlett Packard. It included its own meta language

implementation based on Common Lisp.

• HOL90: Was a re-implementation of the HOL system using the Standard ML.

It was developed in Calgary and Bell Labs. The resulting system provided a

signification performance improvement.

• HOL98: It uses the Moscow ML, which is an implementation of the Standard

ML. It was developed in Cambridge, Glasgow and Utah.

• HOL4: It is based on the HOL88, is an open source project and is the only

HOL system that is still being maintained. It can be built with either Moscow

ML or Poly/ML.

Another two implementations of the HOL system appeared with different pur-

poses.

• ProofPower: Created by ICL as a commercial system at the beginning, with

the special target of security applications. It was designed to support the Z

notation and it is now an open source project.

• HOL Light: It started as a simpler version of the HOL system with some

changes at the design level. It included automatic provers that separate proof

search from checking. It was first implemented in Caml Light but now uses

OCaml. It is faster than the HOL88. Now it has grown into another main-

stream version of HOL.

The use of the HOL system very useful in the model verification process. The

operations in the HOL language are theorems, and they can be proved using infer-

3.3. AUTOMATIC PROOF SYSTEM 15

ence rules. The HOL system can help in the automation of using those inference

rules to prove if the operations are correct or not.

3.3 Automatic Proof System

This tool is being developed by Miguel Ferreira and permits the translation of

the VDM++ model to the HOL language automatically and the corresponding

process of proving the model in the HOL system.[27]

Figure 3.1: The usage of the APS tool to generate HOL code from VDM++

At the moment there are no available releases for download. The software used in

this thesis was gently provided by Miguel Ferreira. The APS tool operates with two

modes: translating and proving. The translation is not always completely accurate.

Sometimes, the code produced after the translation process needs to be changed in

order to create a valid HOL model. Although, it is a powerful and a promising tool.

3.4 VDMUnit

Unit testing is another method for software verification and validation. The idea

is to create individual test cases to test the software. With this verification method

we will gain confidence but no certainty on the model.

The VDMUnit is a framework that allows Unit testing for the VDM++

models[28]. It is an open framework and it can be changed to be better adapted to

a specific problem.

16 CHAPTER 3. TECHNOLOGIES

The VDMUnit framework is composed by four classes: Test, TestSuite, Test-

Case and TestResult.

• Test: is an abstract class with only one operation called ”run” that will be

used to execute the tests.

• TestSuite: is sub-class of Test. Contains the sequence of unit tests.

• TestCase: is sub-class of Test. Represents the test itself.

• TestResult: is responsible for maintain references to the tests that failed.

3.5 Web Services

This project is composed by two parts: Mobile and Control. Eventually, the

Mobile system will work on a mobile phone. Today, there are several platforms for

mobile phones. The most commonly used are:

• Windows Mobile[29]: The Microsoft operating system for mobile devices

and smartphones.

• Android[30]: The Google operating system for mobile phones that runs on

linux kernel and is open source.

• iPhone OS[31]: The Apple operating system for the iPhone and iPod Touch

devices.

• Symbian OS[32]: Is the operating system mainly used by Nokia in its mobile

phones.

The best way to connect the Mobile part with the Control part services is using

a Web Service.

A Web Service is a software that permits the interoperability between two ma-

chines over a network[33]. In this case the network that will be used is the Internet.

3.5. WEB SERVICES 17

Creating a web service is creating a public API that other software can use despite

their programming language.

There are two big types of Web Services: ”Big Web Services” and RESTful Web

Services. The ”Big Web Services” make use of a specific communication protocol

called SOAP. This protocol works on top of the HTTP protocol and is used to send

the services requests and responses in XML messages. RESTful web services make

use of the HTTP protocol to transmit its messages. Many RESTful users claim that

this is how the web services should work, because it is how the web works.[34, 35]

Chapter 4

Software Analysis and Design

In this chapter I present the process of the Software Analysis and Design for

the vital signs Control system. Requirements Analysis is the first section and It is

common in my and Diogo Martins’ theses[4]. The Software Architecture is created

here and serves as a base for the Model to be contructed. That Model is then Tested

and the chapter ends with the creation of the final Prototype and the calculation of

a database schema.

4.1 Requirements Analysis

The Requirements Analysis has a fundamental role in the whole system develop-

ment. This is the stage where the Client and the Developer cooperate to reach an

agreement about which characteristics the final product will have. In the end of the

Requirements Analysis the developer should obtain the System Architecture and its

functionalities and properties.

4.1.1 Problem Description

Alcor, Life Extension Foundation, is an American company working on the

biotechnology area. Alcor staff is very interested in a Continuous Monitoring System

able to warn them every time one of their costumers had a heart failure, causing a

19

20 CHAPTER 4. SOFTWARE ANALYSIS AND DESIGN

serious danger of death. Alcor contacted Diogo Martins and me to create a system

with these properties.

The basic goal is to send a warning to our client when a given person have a

heart stop.

Figure 4.1: The first system scheme.

4.1.2 Introspection

To create a short overview of the problem we used an elicitation technique called

Introspection. Using Introspection the analyst defines the system requirements

based on what he believes the client needs are. This technique is considered to

be a good starting point for other types of techniques.[36]

Based on what we knew from the Problem Description we identified the basic

components of the system. Those components would be, then, a sensor receiving

the heart information and transmitting it to a device capable of sending a message

to Alcor. Storing the heart information of a end-user could be very useful, so the

data should be stored for analysis.

4.1.3 Domain Analysis

The first technique used for the Requirements Analysis was the Domain Anal-

ysis. This technique consists in the search for documents and similar projects[36].

During the Domain Analysis we found different kinds of monitoring systems. This

was important to discover which sensors could we use and to analyze the existent

architectures.

4.1. REQUIREMENTS ANALYSIS 21

About the Software development, Zephyr Open Framework[19] caught our at-

tention. This project, leaded by Brad Zdanivsky, runs on a pc and works with the

sensors from Zephyr Technology[18] company. The costumer connects the sensor via

bluetooth with the computer using the Zephyr Open Framework. The data from

the sensor starts being transmitted over the air from the sensor to the computer

each time the both connect. The costumer is able to see it in real time and store it

for further analysis.

Figure 4.2: The second system scheme.

4.1.4 Prototyping

Using the framework provided by Zephyr Open, a first basic prototype was built.

This is a technique known as Prototyping and consists in the creation of a rudi-

mentary system, usually known as Proof of Principle, that implements the basic

functionalities of the system. This is a good technique to receive feedback from the

client and for the developer to understand if the analysis made is being the best[36].

This feedback is very important to improve the problem description and to find

some details in the client wishes.

This prototype only did the monitoring and showed the results in real time,

updated every second, in the computer. We decided to add a new feature that send

an email if a specific value of the heart rate was observed during the monitoring.

To observe the system working we couldn’t use values like ”0”, which is a result

received from a non-beating heart. Instead, we used an achievable value like ”100”,

that is easy to get putting the costumer practicing some exercise. We did that to

demonstrate that we can send emails if a value is reached, either if it is ”0” or ”100”.

22 CHAPTER 4. SOFTWARE ANALYSIS AND DESIGN

Figure 4.3: The Proof of Principle.

While presenting the Proof of Principle to the company we received some useful

feedback, that allowed us to get a better problem specification. Our client sugges-

tions were the following:

• It would be better to receive the data from the sensor in a Mobile Phone. In

terms of user comfort this would be the best option;

• Before sending an alert the user should have a short period of time to cancel

it. This is useful to avoid false alerts.

4.1.5 Final Problem Description

After the completion of the stages described above a final problem description

was achieved. We divided the problem in two different parts: monitoring and control.

Diogo Martins is responsible for the first one and I am responsible for the second

one.

The monitoring part will run on a Mobile Phone or a Personal Computer and

is responsible for receive the data from a vital signs sensor and send alerts to the

Association each time the sensor reports an abnormal reading. Before sending the

alert to the Association it is important to warn the client during a small period of

time. If the client didn’t cancel the warning then the alert should be sent to the

Association. The client is able to observe the data received from the sensor in real

time and store it in the control system.

The control part will manage the alerts and the vital signs information received

from the client. This permits the further analysis of the data in better detail, which

can also permit the detection of diseases or possible disasters. A history record is

4.2. SYSTEM ARCHITECTURE 23

also kept for each user. One of the objectives is to put the Vital Signs Information

accessible to each user, or in certain cases to the Association, to consult and observe.

4.2 System Architecture

From now on I will give more attention to the control part, the main theme of

this thesis.

The control system doesn’t need an entity to represent the Association Alcor.

Although, this does not apply to the Clients. The system can have hundreds or even

thousands of Clients. This identifies the class Client.

Client is the class that handle all the information and operations of the client.

It will store information like alerts and vital signs data. Other types of information

like a name, contacts, addresses are not that relevant, because it is information that

won’t change a lot. Although, I consider the name of the client just as an example.

Alert and Data are classes as well. The Alert contains the type of the alert

(”cardiac arrest”, etc.), the GPS position for better results in attending the alert,

the date, and two boolean variables indicating if the alert was attended and if the

alert was false. The Data contains several information about the vital signs (heart

rate, body temperature, etc.) and the date when the respective information was

captured by the sensor.

The reason why Alert and Data are classes is to allow future system modifications

easily. For example, in the future we add a new sensor to the system that allows

the reading of the blood glucose, it would be much easier to add this new variable

and change the functions that operate over it in the Data class instead of make this

changes in the Client class. The same thing happens with the Alert if we decide

to add a new type of alert or change a current one. This gives me the possibility

to add new functionalities to the Alert or even Data classes without even touch the

Client.

Now that the variables and the entities are identified it is time to identify the

24 CHAPTER 4. SOFTWARE ANALYSIS AND DESIGN

operations. The Client has operations to add alerts and data. The Alert has

operations to declare false alerts and attended alerts. At the moment, the Data

entity doesn’t need any relevant operation. The architecture is presented in the Fig.

4.4.

Figure 4.4: The architecture of the first system.

The system was extended to increase the project scope. The new system has

more than one Association. The Client can choose several Associations and/or other

Clients to receive updates and warnings. The idea is having family and friends

connected and alert them if something wrong happens. The Client can have zero

followers and use the system just to keep a registry of his/her vital signs and alerts.

One of the goals is having hospitals and other type of health care providers using

the system. The Client can choose hospitals and health care providers within his/her

4.2. SYSTEM ARCHITECTURE 25

residence area.

To avoid thousands of requests made by clients to Associations, and the inability

of response by those Associations, I decided that the Association would be the entity

making the request to follow the client. Ideally there would be a pre signed deal

before the Association makes the request.

Now that we have more than one Association we need to create a new entity

Association. The entity Client will be changed in order to operate the new func-

tionalities.

The Client now has to store information like which clients is he/she following,

which entities are following him/her, the requests by other entities to follow him/her,

the requests he/she have received to follow clients and information about the at-

tended and unattended alerts. There are some new operations as well. The client

can now request to be followed by a client, accept following a client, accept to be

followed by an Association, reject following a client, reject to be followed by an

Association, stop following a client, stop to be followed by an Association, attend

alerts and declare false alerts.

The Association is the new entity and stores information about the following

clients, the requests made to clients to follow them and information about the at-

tended and unattended alerts. In terms of the operations, the Association is capable

of making requests to follow Clients, stop following Clients, attend alerts and declare

false alerts. The architecture is presented in the Fig. 4.5.

26 CHAPTER 4. SOFTWARE ANALYSIS AND DESIGN

Figure 4.5: The architecture of the second system.

This new system raises a privacy problem. We don’t want any entity in the

system capable of reading or receiving any alert from clients they don’t follow.

That is called a system invariant and has to be considered in the model.

4.3. MODELING USING VDM++ 27

4.3 Modeling using VDM++

The model is constructed based on the information gathered in the Requirements

Analysis. It is important to achieve a consistent model and to do that, abstraction

and rigor are fundamental. Abstraction is important for the first system approach

where irrelevant details should be omitted. Rigor is the quality of being valid and

trustworthy. The combination between this two components is the base for every

model to be successful.[28]

4.3.1 Classes Description

In this section I present the types, variables and operations of each class. The

idea is to explain in better detail the structure of the model.

Client

types

public String = seq of char;

public Entity = Client | Association;

In VDM++ the String type is not defined, so I needed to define it. The Entity

type was defined just to simplify, some operations may receive either a Client or an

Association as a parameter.

instance variables

name : String := [];

28 CHAPTER 4. SOFTWARE ANALYSIS AND DESIGN

The instance variable ”name” stores the name of the client.

following : set of Client := {};

followers : set of Entity := {};

The client can follow other clients and that registry is kept in the ”following”

variable. For the same reason the client can be followed by several entities and that

registry is kept in the ”followers” variable.

requestsToClientsToFollowMe : set of Client := {};

requestsByClientsToFollowThem : set of Client := {};

requestsByAssociationsToFollowMe :

set of Association := {};

Before being followed or following someone it is necessary to make and receive

requests. Those requests are stored in these three variables. The variable ”request-

sToClientsToFollowMe” stores the requests that the client makes to be followed by

other clients. The variable ”requestsByClientsToFollowThem” stores the requests

received to follow other clients. The variable ”requestsByAssociationsToFollowMe”

stores the requests made by Associations to follow the client.

alerts : map Alert to set of Entity := {|->};

data : set of Data := {};

The client can store alerts and vital data. The variable ”alerts” stores the alerts

sent automatically by the mobile part and the entities that attend each alert. The

variable ”data” stores the vital data also sent from the mobile part.

4.3. MODELING USING VDM++ 29

attendedAlerts : map Client to set of Alert := {|->};

unattendedAlerts : map Client to set of Alert := {|->};

These are the last two variables of the client class. The ”attendedAlerts” variable

stores the attended alerts from the client. The ”unattendedAlerts” is responsible for

store the alerts from the following clients that were not attended yet by the client.

operations

public Client: String ==> Client

The operation ”Client” Is the class constructor. It is used to create instances of

the Client. The parameter ”String” is the name of the client.

public RequestToBeFollowed: Client ==> ()

public AcceptFollowing: Client ==> ()

public AcceptBeFollowed: Association ==> ()

public RejectFollowing: Client ==> ()

public RejectBeFollowed: Association ==> ()

public UnfollowClient: Client ==> ()

public RemoveEntity: Entity ==> ()

These are the operations that control the clients and Associations requests, ac-

ceptances and rejections. The operation ”RequestToBeFollowed” is used by the

client when he wants to make requests to be followed by other clients. ”Accept-

Following” is used when the client agrees to follow another client. Associations

can make requests to follow the client, and to accept those requests the ”Accept-

BeFollowed” operation has to be used. The client not always agree to be followed

30 CHAPTER 4. SOFTWARE ANALYSIS AND DESIGN

or following someone. When something like that happens the client can use the

operation ”RejectFollowing” to reject following a client, and use the operation ”Re-

jectBeFollowed” to reject be followed by an Association. Even though, the client

accepts the requests from the Associations, he can decide to stop being followed by

a specific Association or client using the ”RemoveEntity” operation. For the same

reason the client can decide to stop following a client using the ”UnfollowClient”

operation.

public SendAlert: Alert ==> ()

public AddData: Data ==> ()

public AddSetOfData : set of Data ==> ()

For the client to add vital information and alerts to his profile he needs to use

this three operation. The ”SendAlert” operation is used for the client to add alerts

and send them to his followers. The ”AddData” and ”AddSetOfData” operations

are used to add vital information. The first one adds only one package of data, and

the second one adds several packages of data to the client profile.

public AttendAlert: Client * Alert ==> ()

public FalseAlert: Client * Alert ==> ()

When the client follows other clients he can receive alerts. To mark those alerts

as attended, the operation ”AttendAlert” is used. Sometimes alerts can be false,

and when the client realizes that he can use the ”FalseAlert” operation.

Association

instance variables

name : String := [];

4.3. MODELING USING VDM++ 31

Like clients, Associations have names, and the ”name” variable stores the name

of the Association.

following : set of Client := {};

requestsToClients : set of Client := {};

These two variables are responsible for keeping a registry of the requests made

to clients to follow them, ”requestsToClients”, and the registry of the clients being

followed by the Association, ”following”.

attendedAlerts : map Client to set of Alert := {|->};

unattendedAlerts : map Client to set of Alert := {|->};

The Association can also attend and receive alerts from his following clients.

Those registries are kept in the variable ”attendedAlerts” for the alerts attended by

the association, and in the ”unattendedAlerts” variable for the received alerts from

his following clients that are not attended yet.

operations

public Association: String ==> ()

The operation ”Association” is the class constructor. It is used to create in-

stances of the Association class. The parameter ”String” is the name of the associ-

ation.

32 CHAPTER 4. SOFTWARE ANALYSIS AND DESIGN

public RequestToFollow: Client ==> ()

public UnfollowClient: Client ==> ()

The association to follow clients first has to request to follow them. The opera-

tion ”RequestToFollow” manages those requests. If, for some reason, the association

decides that no longer wants to follow a specific client, then the operation ”Unfol-

lowClient” is used.

public AttendAlert: Client * Alert ==> ()

public FalseAlert: Client * Alert ==> ()

When the association follows clients then it will receive alerts. Those alerts can

be attended using the operation ”AttendAlert” and can be declared as false using

the operation ”FalseAlert”.

Alert

types

public AlertType = <Dead > | <CardiacAttack >;

public Lat = real

inv x == x >= -90 and x <= 90;

public Long = real

inv x == x >= -180 and x <= 180;

public Location = Lat * Long;

The ”AlertType” is a list of possible alerts that the control system supports. The

4.3. MODELING USING VDM++ 33

other three types will be explained later in the Section 4.3.2.

instance variables

alertType : AlertType;

date : nat;

location : Location;

attended : bool := false;

falseAlert : bool := false;

These are the instance variables of the Alert class. The ”alertType” is the type

of the alert, the ”date” is the date when the alert occured, ”location” stores the

GPS location of the client at the time of the alert. The last two variables indicate

if the alert was attended and if it was a false alert.

operations

public Alert: AlertType * nat * Location ==> Alert

The Alert operation is the class constructor. It is used to create instances of the

Alert class.

public AttendAlert: () ==> ()

public FalseAlert: () ==> ()

This last two operations of the class Alert exist to declare the alert as attended,

”AttendAlert”, and to declare the alert as false, ”FalseAlert”.

34 CHAPTER 4. SOFTWARE ANALYSIS AND DESIGN

Data

instance variables

date : nat;

heartRate : nat;

velocity : nat;

The Data class, at the moment, only permits to store information about the

client heart rate and the velocity. The ”date” variable stores the date when the

vital information was captured by the sensor.

operations

public Data : nat * nat * nat ==> Data

”Data” is the only operation of the class Data. It is the class constructor and it

is used to create instances of the Data class.

4.3.2 System Invariants

In the Requirements Analysis stage I identified a system invariant which I wrote

in VDM++ as follows:

inv forall c in set dom unattendedAlerts &

c in set following

It is clear that one of my concerns is the privacy policy, and the invariant is the

4.3. MODELING USING VDM++ 35

answer to that concern. I don’t want clients or associations receiving or reading

others clients’ alerts and data without being completely authorized.

This invariant is presented in the classes Client and Association. The variable

unattendedAlerts is responsible for storing the references for the unattended alerts,

and the variable following is responsible for storing the references for the clients that

are being followed. The invariant says that the clients and the associations cannot

have unattended alerts from clients they do not follow.

Now I have to guarantee the invariant preservation within the model. To do that

I have to:

1. identify the operations that change or consult the variables presented in the

invariant: unattendedAlerts and following ;

2. add the necessary conditions to those operations to guarantee the invariant

preservation.

Adding a new client to the following variable will not represent a concern, the

invariant is not at risk of being unpreserved. Although, removing a client from

the following variable might represent a privacy concern. For example, if an entity

decides to stop following a client, he/she needs to be completely removed from the

unattendedAlerts variable as well as the following variable. The same thing happens

when a client decides to stop being followed by an entity.

So, the following items make up the list of operations that may represent a

problem for the invariant, and consequently for the system integrity:

• UnfollowClient: present in the Client and Association classes;

• RemoveEntity: present in the Client class;

• SendAlert: present in the Client class;

• AttendAlert: present in the Client and Association classes;

• FalseAlert: present in the Client and Association classes.

36 CHAPTER 4. SOFTWARE ANALYSIS AND DESIGN

UnfollowClient is the first operation. This operation removes a client from the

following variable. To guarantee that the previous scenario doesn’t happens I added

the following code within the operation:

unattendedAlerts := {c} <-: unattendedAlerts;

With so, when an entity decides to stop following a client, this client is removed

from the following variable and if any unattended alert from the client existed in the

entity, they are also removed. The practical result is that the entity will no longer

receive alerts and will no longer be able to attend alerts from that client, unless the

entity starts following the client again.

RemoveEntity is a very similar operation. The only difference is that first it will

remove the entity from the client profile and than remove the client from the entity

profile using an operation with the same properties as the UnfollowClient.

Adding alerts is another operation that might represent a ”problem”. It is im-

portant to guarantee that only the followers receive the alerts. SendAlert is the

operation responsible for adding the alert to the client profile and than send it to

the followers. To guarantee that all the followers receive the alert I added the fol-

lowing code:

for all e in set followers do

e.ReceiveAlert(self ,a);

ReceiveAlert is an operation defined in the Client class and in the Association

class, used to receive alerts from the following clients. To guarantee that only alerts

from the following clients are received, I added a pre-condition to the ReceiveAlert

operation:

4.3. MODELING USING VDM++ 37

pre c in set following and

a not in set attendedAlerts(c) and

a not in set unattendedAlerts(c);

c is the client that sends the alert, and a is the alert sent. I also added two more

properties to the pre-condition to assure that alerts are received only once.

The next operation is AttendAlert. This operation has to guarantee that only

alerts from following clients can be attended. That is assured with a pre-condition:

pre c in set following and

a not in set attendedAlerts(c) and

a in set unattendedAlerts(c);

Again, c is the client that sent the alert, and a is the alert sent. In the previous

pre-condition there are also two more properties that guarantee that the alert is

unattended by the client or by the association.

FalseAlert is the last operation. The only thing that this operation has to guar-

antee is that an entity that wants to declare a false alert has to be following the

client that sent the alert. To do that, a pre-condition was added:

pre c in set following;

The operations related with the presented invariant are over. But I also have

another invariant. The Alert class has a data type called Location which is repre-

sented by two values: latitude and longitude. The latitude assumes values between

-90o and +90o, and the longitude assumes values between -180o and +180o.

38 CHAPTER 4. SOFTWARE ANALYSIS AND DESIGN

public Lat = real

inv x == x >= -90 and x <= 90;

public Long = real

inv x == x >= -180 and x <= 180;

public Location = Lat * Long;

4.4 Testing

After modeling, it is important to validate the resultant model.

4.4.1 Using HOL

Using the theorem prover HOL is one of the options. If the HOL validates the

model that means that the model is correct. If the HOL fails to validate the model

one of two things might have happened: or the tested properties were to complex

and I need to simplify them using the PF-transform[37] and repeat the process, or

the model is incorrect and it needs to be corrected. The model is validated only

when the theorem prover says so, until then the model might not be correct.

To validate the model using HOL I have to:

1. translate the model and his proof obligations from VDM++ to HOL.

2. use HOL system over the translated model and the correspondent proof obli-

gations to validate the model.

The translation is automatic if the Automatic Proof System (APS) tool is used.

This tool is still in the developing process, so the translation might not be accurate.

In most cases the translated code is not a valid HOL code, it needs some changes

before running it in the HOL system.

4.4. TESTING 39

My experience turned out to be much more peculiar. First of all, the VDMTools

generated proof obligations with no expression, meaning that there was nothing to

be proved. The second problem was the translator incorporated on the APS. This

translator is not yet capable of translating models using instance variables or states.

The solution that Miguel Ferreira, the developer of the APS tool, proposed me was

to re-write the entire model to a functional style. That would be the only way

of translating the model automatically to HOL using the APS tool. The other

solution was to create the entire model in HOL from the scratch.

Both of the solutions were discarded by me. The reason why I don’t want to

create another model from the scratch is because I don’t agree with the creation of

two models for the same problem in two different languages. The first solution would

be to re-write the entire model which is almost the same thing as create another

model.

This type of validation using HOL is very important. Although, I can verify

the model using other techniques like the Unit Testing. I will gain confidence in the

model but no certainty. The easiest way to gain certainty is validating using the

HOL system.

4.4.2 Using VDMUnit

Using the VDMUnit framework[28] I will test the model. I want to guarantee

that the most delicate operations run properly. For that reason I created a class

with several tests to be performed automatically with the help of the VDMUnit

framework. My main concerns are:

• add connections between clients and between clients and associations;

• operations related with the alerts: adding and attending;

• remove connections between clients and between clients and associations.

Like I previously said, privacy is my main concern. Because of that, adding

connections between entities must operate with the expected results. Using the

40 CHAPTER 4. SOFTWARE ANALYSIS AND DESIGN

VDMUnit framework I created a test case where I simulated those operations. In

my test case there are three clients and two associations: client1, client2, client3,

association1 and association2. I putted the names in here to simplify only. Next

are the connections made:

• client1 will be following: client3 ;

• client2 will be following: client1 ;

• client3 will be following: client2 ;

• association1 will be following: client1 and client3 ;

• association2 will be following: client2.

Just to remember, if the client1 follows the client3, then the client1 receives

the alerts from the client3. So, to guarantee, for example, that the client1 doesn’t

receive alerts from the client2 I have to check if during the process of creating the

connections between the entities only the expected ones are created.

Running this test case I didn’t found any anomaly with the model, meaning that

everything had the expected result.

Now I will test the operations related with the alerts. Adding and Attending

alerts could become a problem if a not authorized entity receives and attends alerts

that weren’t suppose to be received or attended by that same entity. For that reason

I created a test case where an alert was added by the client1. If everything works the

way it should, only the client2, the association1 and the association2 will receive

and attend the alert, the client3 won’t notice the existence of that alert.

With this test case I didn’t found any type of anomaly with the model. The

operations worked perfectly fine.

At last I will test the connections between entities and the alerts at the same

time. For example, if an alert is added by the client2, then the client3 and the

association2 will receive it and, at the same time, they will be able to attend it.

But, if the client2 right after adding the alert decides that the association2 is no

4.5. PROTOTYPE 41

longer a good alternative for attending his alerts, then the association2 cannot be

able to attend his alerts. If the association2 is able to attend the alert then an

invariant violation is raised.

In my test case I executed the following operations by this same order:

1. client2 adds the alert;

2. client3 attends the alert;

3. client2 removes the association2 from his followers.

After this operations were executed the association2 was no longer able to access

the alert from the client2. This means that the test case didn’t revealed any anomaly

with the model and all the properties were preserved.

The model reveals some confidence and it is safe to proceed to the prototype

stage.

4.5 Prototype

The VDMTools permit the automatic translation from VDM++ to Java. In

95% of the VDM++ constructors, the code generator presented in the VDMTools

produces correct and executable code.[28]

The VDMTools Lite is a free version of the VDMTools and do not have this

type of functionality available. The translation from VDM++ to Java has to be

performed manually. Although, the VDM++ uses the object oriented paradigm,

so the translation is not that hard. To easily understand some differences between

VDM++ and Java consult the table 4.1.

In the model presented in the Section 4.3 there are at least two important data

types: set and map.

Sets are abstract representations in VDM++, that don’t have strong restrictions

or properties. In Java there are many other equivalent representations like the

42 CHAPTER 4. SOFTWARE ANALYSIS AND DESIGN

VDM++ Java

Class Class

Operations Methods

Instance Variables Class Variables

Values Constants

Types Data Types

Table 4.1: Differences and similarities between VDM++ and Java

LinkedLists, ArrayLists, HashSets and more. In my prototype the order by which

the elements are inserted into the sets matters, so the HashSets use is excluded.

Between the other two I decided to use the ArrayList.

Maps in Java are known as HashMaps. It has the same properties as the Map in

VDM++. So, the Maps translation from VDM++ to Java does not offer any sort

of problem.

The Java language doesn’t provide a way of declare invariants, pre and post-

conditions without using external tools like JML[38] or Modern Jass[39, 40]. The

only problem with the JML is that it is ignored by the java compiler. So, JML is

not an alternative. Although, the Modern Jass code is compatible with the Java

compiler, thanks to the API provided by the Java community that allows to create

plugins for the Java compiler.

So, using the Modern Jass will be the solution to use the pre and post-

conditions. However, it is very simple to add the properties presented in the original

model without using the Modern Jass. They are translated to if-clauses in Java code.

The invariant, however, disappears in the prototype because it was already tested

in the model and it was proved that with the existing conditions the invariant is not

violated.

For example, the following code represents the AddData operation in VDM++:

AddData(d) ==

(

4.5. PROTOTYPE 43

data := data union {d};

)

pre d not in set data;

In this operation we have a set and one property in the pre-condition. The set, as

I previously said, is transformed into an ArrayList. The pre-condition is transformed

into an If-Clause with one condition. The ArrayList in Java has a method called

contains which checks if a specific element is presented in the array. That is the

solution for the property in the pre-condition. So, the code in Java would be:

if (!(GetData().contains(d)))

{

this.data.add(d);

}

If the property fails an exception is raised indicating the problem. When the

mobile system uses this method or it gets the expected result or it gets an exception.

I will not present the Java code for the other methods. My idea for this section

is explain how the prototype will work.

As you already know, the project is composed by two parts: mobile and control.

So, the prototype will also have this two parts, but merged into one single system.

However, the control part will be presented and the mobile too, but they will be

part of one single program. The idea was to simplify the prototype and, at the same

time, not lose the initial properties presented in the model.

Resuming, it is a local program written in the Java language that simulates

the entire system. The mobile system receives the vital data from the sensor, and

if wanted or necessary sends information to the control system. Since it is all the

same program, there is no problem with the connections between the mobile and the

control. In future versions, this two parts will be working in separate environments,

44 CHAPTER 4. SOFTWARE ANALYSIS AND DESIGN

eventually the mobile part will communicate with the control part through the

Internet.

To avoid create new clients every-time the system starts, the information related

to clients, associations, etc., is stored. When the system starts, that information is

loaded and the mobile starts sending information periodically to the control system

using its methods.

My part of the prototype is independent from the mobile part. The control

system doesn’t need any method from the mobile to work. The control will only

receive information from the mobile. However, the opposite doesn’t verify. The

mobile part has to use methods from the control part when necessary, for example

to store vital information.

4.6 Calculating the Database Schema

In the paper ”Transforming Data by Calculation”[37] is presented a practical

method to calculate the schema of a database from an abstract model using calculus.

The relational rules used to calculate the database from the model presented in the

Section 4.3 are presented in the previous cited paper[37].

The first class to be calculated is the Client. The Client has 10 variables but it

is clear that all of them represent data types, for example the variable following is a

set of Clients and name is a String. So, in the Client we have: Client, Association,

Alert, Data and String. These are the main data types in the class. Until now,

only the String was considered to be a data type and the others were consider to be

classes only. But the fact is that every time an instance of those classes is created

an identification is also created to identify the instance. So, when we have a set

of Clients, in fact what we have is a set of identifiers that point to the client’s

information.

To easily understand the calculations of the database I will simplify the notation

for the data types (table 4.2).

4.6. CALCULATING THE DATABASE SCHEMA 45

Original Simplified

Client C

Association A

Alert Al

Data D

Table 4.2: Data types presented in the Client class for the database calculation

Now we just need to represent each variable and start the calculations.

• name: is a String and I will use the letter ”N” to represent it;

• following: P(C);

• followers: P(C + A);

• requestsToClientsToFollowMe: P(C);

• requestsByClientsToFollowThem: P(C);

• requestsByAssociationsToFollowMe: P(A);

• alerts: Al ⇀ P(C + A);

• data: P(D);

• attendedAlerts: C ⇀ P(Al);

• unattendedAlerts: C ⇀ P(Al).

As I previously said, each instance of the Client class has an identifier pointing to

it. So, the first line of the calculation will have a ”C” pointing to all the information

presented in the class. Now the calculation:

46 CHAPTER 4. SOFTWARE ANALYSIS AND DESIGN

C ⇀ (N × P(C)× P(C + A)× P(C)× P(C)× P(A)× (Al ⇀ P(C + A))×

×P(D)× (C ⇀ P(Al))× (C ⇀ P(Al)))

∼= {92}

C ⇀ (N × (C ⇀ 1)× (C + A ⇀ 1)× (C ⇀ 1)× (C ⇀ 1)× (A ⇀ 1)×

×(Al ⇀ (C + A ⇀ 1))× (D ⇀ 1)× (C ⇀ (Al ⇀ 1))× (C ⇀ (Al ⇀ 1)))

∼= {107}

C ⇀ (N × (C ⇀ 1)× (C ⇀ 1)× (A ⇀ 1)× (C ⇀ 1)× (C ⇀ 1)× (A ⇀ 1)×

×(Al ⇀ ((C ⇀ 1)× (A ⇀ 1)))× (D ⇀ 1)× (C ⇀ (Al ⇀ 1))× (C ⇀ (Al ⇀ 1)))

≤ {112}

C ⇀ (N × (C ⇀ 1)× (C ⇀ 1)× (A ⇀ 1)× (C ⇀ 1)× (C ⇀ 1)× (A ⇀ 1)×

×(Al ⇀ (C ⇀ 1))× (Al × A ⇀ 1)× (D ⇀ 1)× (C ⇀ (Al ⇀ 1))×

×(C ⇀ (Al ⇀ 1)))

≤ {78, 112, 92}

C ⇀ (N × (C ⇀ 1)× (C ⇀ 1)× (A ⇀ 1)× (C ⇀ 1)× (C ⇀ 1)× (A ⇀ 1)×

×(Al ⇀ 1)× (Al × C ⇀ 1)× (Al × A ⇀ 1)× (D ⇀ 1)× (C ⇀ 1)×

×(C × Al ⇀ 1)× (C ⇀ 1)× (C × Al ⇀ 1))

∼= {86, 89}

C ⇀ (N × (4× C ⇀ 1)× (2× A ⇀ 1)× (Al ⇀ 1)× (Al × C ⇀ 1)

×(Al × A ⇀ 1)× (D ⇀ 1)× (2× C ⇀ 1)× (2× C × Al ⇀ 1))

≤ {112}

(C ⇀ N)× (C × 4× C ⇀ 1)× (C × 2× A ⇀ 1)× (C × Al ⇀ 1)×

×(C × Al × C ⇀ 1)× (C × Al × A ⇀ 1)× (C ×D ⇀ 1)×

×(C × 2× C ⇀ 1)× (C × 2× C × Al ⇀ 1))

The following items explain the results obtained:

• C ⇀ N : This is the table that represents the Client. It has the Client ID as

a key and stores the name of the client.

4.6. CALCULATING THE DATABASE SCHEMA 47

• C × 4 × C ⇀ 1: This table makes the relations between clients. It has

4 identifiers indicating the relation between the first and the second client:

following, follower, request to follow and request to be followed.

• C×2×A ⇀ 1: This table makes the relations between clients and associations.

It has 2 identifiers indicating if the association following the client or if the

association has a request to follow the client.

• C × Al ⇀ 1: This table makes the relation between the client and his alerts.

• C ×Al×C ⇀ 1: Table that relates the Client with the Alert and the Clients

that attended that alert.

• C ×Al×A ⇀ 1: Table that relates the Client with the Alert and the Associ-

ations that attended that alert.

• C ×D ⇀ 1: Table that relates the Client with his vital information.

• C × 2 × C × Al ⇀ 1: Table that relates the Client with the attended and

unattended alerts from the other clients.

There is another table that I didn’t mention. The reason why is because that

table makes no sense. It has two identifiers related with alerts, and that is no need to

keep that information because we already have a table that stores that information.

The second class is the Association. There is no new data types, so I will use

the previous notation.

Association has 5 variables:

• name: is a String and I will use the letter ”N” to represent it;

• following: P(C);

• requestsToClients: P(C);

• attendedAlerts: C ⇀ P(Al);

• unattendedAlerts: C ⇀ P(Al).

48 CHAPTER 4. SOFTWARE ANALYSIS AND DESIGN

For the same reason as with the Client I will start with the Association Identifier

pointing to the rest of the information.

A ⇀ (N × P(C)× P(C)× (C ⇀ P(Al))× (C ⇀ P(Al)))

∼= {92}

A ⇀ (N × (C ⇀ 1)× (C ⇀ 1)× (C ⇀ (Al ⇀ 1))× (C ⇀ (Al ⇀ 1)))

≤ {78, 112, 92}

A ⇀ (N × (C ⇀ 1)× (C ⇀ 1)× (C ⇀ 1)× (C × Al ⇀ 1)× (C ⇀ 1)×

×(C × Al ⇀ 1))

∼= {86, 89}

A ⇀ (N × (2× C ⇀ 1)× (2× C ⇀ 1)× (2× C × Al ⇀ 1))

≤ {112}

(A ⇀ N)× (A× 2× C ⇀ 1)× (A× 2× C ⇀ 1)× (A× 2× C × Al ⇀ 1))

The following items explain the results obtained:

• A ⇀ N : This is the main table of the Association. It stores the name for each

Association.

• A × 2 × C ⇀ 1: Table with 2 identifiers. It relates the Association with the

Client and indicates if the association is following or if it has a request to

follow the client.

• A× 2×C×Al ⇀ 1: Table that relates the Association with the attended and

unattended alerts from the clients.

The other table that I didn’t mention has the same problem has the unmentioned

table from the client. It has irrelevant information and it is not needed for the

purpose of this problem.

4.6. CALCULATING THE DATABASE SCHEMA 49

It only misses two classes: Alert and Data. This classes are very simple. With

them I will use the same notation presented, in the table 4.2, only for the major

data types.

So, next is the Alert:

Al ⇀ (2×Date× Location× Attended× FalseAlert)

This table has the Alert ID as a key. The 2 identifiers indicate the type of the

alert: ”CardiacAttack” or ”Dead”.

And the last is Data:

D ⇀ (Date×HeartRate× V elocity)

This last table has the Data ID as a key.

Now that all the resultant tables are identified it is necessary to identify possible

repeated tables. Alert and Data class produced unique tables, so no problem was

found with them. But if we look at the Association and the Client we can find

repeated tables. The middle table, the one that represents the following clients and

requests, is already presented in the Client resultant tables. They represent the

same type of information. It is important to know how to interpret the results to

avoid such ”problems”.

So, in the end we have 8 tables from the Client class, 2 tables from the Association

class, 1 table from the Alert class and 1 table from the Data class, with a total of 12

tables for the entire model. This results are very important because they represent

exactly the model structure, so if in the future when the database is implemented

using this schema, the model won’t need to change much because the structure of

the data types is preserved.

Chapter 5

Conclusions

My main objective was to create a functional prototype of a Continuous Mon-

itoring Control System. To create that prototype several tasks were performed.

In this section my personal remarks and conclusions about the fields studied and

methodologies followed are presented.

The most important phase to understand a client’s needs is the Requirements

Analysis. This stage was carefully considered in the developed system. Those re-

quirements were completely identified when a Proof of Principle was created. Pre-

senting it to the client was important to realize if the right direction was being

followed.

From the Requirements Analysis, I defined the System Architecture which is the

base for the Software Model construction. The modeling stage is very important

to identify and define the system behavior properties. Through testing or analyt-

ical methods this properties can be verified. This verification leads to the model

validation. This is important to give confidence to the developer to proceed to

the implementation. VDM++ was the modeling technology chosen to model the

Control system.

My previous experience with VDM++ was practically none. I learned how to

use it in my first year of the Masters Degree but I had never used VDM++ before

on a project. It is a widely used modeling language and I it was very helpful in this

51

52 CHAPTER 5. CONCLUSIONS

project. Since HOL wasn’t used, why not to use Java instead of VDM++?

Even though, the Java language has tools like JUnit[41], which is a testing

framework to create unit tests, and Modern Jass[39], which permits the creation

of pre, post-conditions and invariants in Java, using VDM++ should not be dis-

carded. VDM++ has a level of abstraction impossible to reproduce using Java.

VDM++ allows the developer to focus only on the problem properties, using Java

the developer has to think on implementation details too. Problems with implemen-

tation will distract from the essential properties.

Using the VDMTools it is possible to generate proof obligations to check by hand

or using a theorem prover. The objective it to validate the model produced.

I tried to use a theorem prover (HOL) but I discarded this option because there

is no effective automatic translation tool from VDM++ to HOL[26]. Although, a

unit testing framework called VDMUnit[28] was used to verify my model. The

test cases used evaluated to true. That gave me confidence to start building the

prototype.

Using formal techniques the database schema can be calculated from the abstract

model. These techniques are very useful to produce correct database structures.

5.1 Future Work

The project presented in this thesis is not over. The following items are my next

tasks that will be completed in the near future:

• create a web service for the control system;

• develop a front-end application for the control system.

The web service will be essential for the project. Using a web service I will create

an application capable of running on the internet. The mobile system will be able

to access my methods and interact with the control system through the internet.

5.1. FUTURE WORK 53

For most of the companies that is an essential point. A web service also permits the

interaction between two different platforms. That is also essential for the mobile

part to connect with the control system.

Developing a front-end application that access the control system will be im-

portant for the users to read and manage their profiles. This front-end application

will be probably a web page. That will permit any user to access the system from

anyplace and check the vital information updates from the clients they follow.

What do I expect for the project in the future? I am very happy to see companies

like Alcor, Life Extension Foundation, believing in such technologies. But I would

like to see more companies and persons working together with the aim of improving

our well being and independence. The Continua Health Alliance[20] is trying to do

so.

Detect diseases, specially the cardiac ones, in time for the affected person to be

cured, preventing then a possible disaster, will be a major step for our lives. That

is possible today thanks to the advances in the technology world. We cannot run

in the opposite direction. I intend to build a system capable of preventing diseases

and providing the best medical treatment possible. I hope that a large number of

persons can take a major benefit from my system.

Bibliography

[1] “U.S. Census Bureau International Data Base with demographics data for the

entire world with predictions until 2050.” http://www.census.gov/ipc/www/

idb/index.html.

[2] “Frost & sullivan.” http://www.frost.com/.

[3] “Polar usa.” http://www.polarusa.com/us-en/.

[4] D. Martins, “Reliable software development in a vital signs monitoring system,”

Master’s thesis, University of Minho, November 2009. Under Revision.

[5] T. R. Hansen, J. M. Eklund, J. Sprinkle, R. Bajcsy, and S. Sastry, “Using smart

sensors and a camera phone to detect and verify the fall of elderly persons,”

in European Medicine, Biology and Engineering Conference, (Prague, Czech

Republic), November 2005.

[6] T. Gao, L. K. Hauenstein, A. Alm, D. Crawford, C. K. Sims, A. Husain, and

D. M. White, “Vital signs monitoring and patient tracking over a Wireless

network,” in Johns Hopkins APL Technical Digest, vol. 27, pp. 66–74, 2006.

[7] T. Landolsi, A. R. Al-Ali, and Y. Al-Assaf, “Wireless stand-alone portable

patient monitoring and logging system,” Journal of Communications, vol. 2,

no. 4, 2007.

[8] D. W. Curtis, E. J. Pino, J. M. Bailey, E. I. Shih, J. Waterman, S. A. Vinterbo,

T. O. Stair, J. V. Guttag, R. A. Greenes, and L. Ohno-Machado, “Smart – an

integrated wireless system for monitoring unattended patients,” Journal of the

American Medical Informatics Association, vol. 15, no. 1, 2008.

55

http://www.census.gov/ipc/www/idb/index.html
http://www.census.gov/ipc/www/idb/index.html
http://www.frost.com/
http://www.polarusa.com/us-en/

56 BIBLIOGRAPHY

[9] “Calit2 : California institute for telecommunications and information technol-

ogy.” http://www.calit2.net/.

[10] D. Ramsey, “New wireless devices could help consumers keep track of their

vital signs.” Website, December 2007. http://ucsdnews.ucsd.edu/newsrel/

science/12-07NewWirelessDevices.html.

[11] “Website of the cardionet company: “cardionet – get to the heart of the prob-

lem”.” http://www.cardionet.com/.

[12] “Link to the cardionet mcot product.” http://www.cardionet.com/

patients_02.htm.

[13] S. A. ROTHMAN, J. C. LAUGHLIN, J. SELTZER, J. S. WALIA, R. I. BA-

MAN, S. Y. SIOUFFI, R. M. SANGRIGOLI, and P. R. KOWEY, “The di-

agnosis of cardiac arrhythmias: A prospective multi-center randomized study

comparing mobile cardiac outpatient telemetry versus standard loop event mon-

itoring,” Journal of Cardiovascular Electrophysiology, vol. 18, no. 3, 2007.

[14] “Website of the corventis company.” http://www.corventis.com/.

[15] ““remote monitoring of the heart – wearable, wireless technology detects

early signs of heart failure” is an article by david talbot that was pub-

lished in the technology review (published by mit) in april 2009.” http:

//www.technologyreview.com/biomedicine/22519/.

[16] “Website of the biodevices, s.a., a spin-off from ieeta (institute of electronics

and telematics engineering of aveiro / university of aveiro) with the mission

of developing, commercialize and export biomedical engineering solutions for

medical diagnosis support.” http://www.biodevices.pt.

[17] “Website for the product vitaljacket made by the biodevices, s.a., company.”

http://www.vitaljacket.com.

[18] “Website of the company zephyr technologies.” http://www.

zephyr-technology.com/.

http://www.calit2.net/
http://ucsdnews.ucsd.edu/newsrel/science/12-07NewWirelessDevices.html
http://ucsdnews.ucsd.edu/newsrel/science/12-07NewWirelessDevices.html
http://www.cardionet.com/
http://www.cardionet.com/patients_02.htm
http://www.cardionet.com/patients_02.htm
http://www.corventis.com/
http://www.technologyreview.com/biomedicine/22519/
http://www.technologyreview.com/biomedicine/22519/
http://www.biodevices.pt
http://www.vitaljacket.com
http://www.zephyr-technology.com/
http://www.zephyr-technology.com/

BIBLIOGRAPHY 57

[19] “Website of the independent project zephyr open.” http://code.google.com/

p/zephyropen/.

[20] “Website of the continua health alliance.” http://www.continuaalliance.

org/.

[21] “Vdmtools: advances in support for formal modeling in vdm,” SIGPLAN Not.,

vol. 43, no. 2, pp. 3–11, 2008.

[22] C. B. Jones, Systematic software development using VDM (2nd ed.). Upper

Saddle River, NJ, USA: Prentice-Hall, Inc., 1990.

[23] J. C. Bicarregui, J. S. Fitzgerald, P. A. Lindsay, R. Moore, and B. Ritchie,

Proof in VDM: a practitioner’s guide. New York, NY, USA: Springer-Verlag

New York, Inc., 1994.

[24] R. Milner, M. Gordon, and C. P. Wadsworth, “Edinburgh lcf: A mechanised

logic of computation,” Lecture Notes in Computer Science, vol. 78, 1979.

[25] M. J. C. Gordon, “From lcf to hol: a short history,” in Proof, language and

interaction: essays in honour of Robin Milner, pp. 169–185, MIT Press, 2000.

[26] “Hol website.” http://hol.sourceforge.net/.

[27] M. A. Ferreira, “Implementing the Overture Automatic Proof System,” 2009.

Submitted for publication.

[28] J. Fitzgerald, P. G. Larsen, P. Mukherjee, N. Plat, and M. Verhoef, Validated

Designs For Object-oriented Systems. Santa Clara, CA, USA: Springer-Verlag

TELOS, 2005.

[29] “Windows mobile website.” http://www.microsoft.com/windowsmobile/

en-us/default.mspx.

[30] “Android website.” http://www.android.com/.

[31] “iphone os website.” http://developer.apple.com/iphone/.

[32] “Symbian os website.” http://www.symbian.org/.

http://code.google.com/p/zephyropen/
http://code.google.com/p/zephyropen/
http://www.continuaalliance.org/
http://www.continuaalliance.org/
http://hol.sourceforge.net/
http://www.microsoft.com/windowsmobile/en-us/default.mspx
http://www.microsoft.com/windowsmobile/en-us/default.mspx
http://www.android.com/
http://developer.apple.com/iphone/
http://www.symbian.org/

58 BIBLIOGRAPHY

[33] “W3c - web services architecture.” http://www.w3.org/TR/ws-arch/.

[34] L. Richardson and S. Ruby, RESTful Web Services. O’Reilly Media, Inc., May

2007.

[35] E. Cerami, Web Services Essentials. O’Reilly Media, Inc., February 2002.

[36] R. Machado, J. Fernandes, and P. Ribeiro, Engenharia e Gestão de Software.

Colecção Engenharia de Software, Lisboa: FCA - Editora de Informática. In

preparation.

[37] J. N. Oliveira, “Transforming data by calculation,” in Generative and Transfor-

mational Techniques in Software Engineering II: International Summer School,

GTTSE 2007, Braga, Portugal, July 2-7, 2007. Revised Papers, (Berlin, Hei-

delberg), pp. 134–195, Springer-Verlag, 2008.

[38] “Website of the jml - the java modeling language.” http://www.cs.ucf.edu/

~leavens/JML/.

[39] “Website of the modern jass technology.” http://modernjass.sourceforge.

net/.

[40] J. Rieken, “Design by contract for java - revised,” Master’s thesis, Carl Von

Ossietzky University, April 2007.

[41] “Website of the junit testing framework.” http://www.junit.org/.

http://www.w3.org/TR/ws-arch/
http://www.cs.ucf.edu/~leavens/JML/
http://www.cs.ucf.edu/~leavens/JML/
http://modernjass.sourceforge.net/
http://modernjass.sourceforge.net/
http://www.junit.org/

	List of Figures
	List of Tables
	Introduction
	Background
	Proposed Problem
	Approach
	Objectives
	Overview

	State of the Art
	Technologies
	VDM++
	Why use VDM++

	HOL
	Automatic Proof System
	VDMUnit
	Web Services

	Software Analysis and Design
	Requirements Analysis
	Problem Description
	Introspection
	Domain Analysis
	Prototyping
	Final Problem Description

	System Architecture
	Modeling using VDM++
	Classes Description
	System Invariants

	Testing
	Using HOL
	Using VDMUnit

	Prototype
	Calculating the Database Schema

	Conclusions
	Future Work

	Bibliography
	Rui Mário da Silva e Freitas.pdf
	Página 1
	Página 2
	Página 3

