

iii

Acknowledgments

First of all I would like to thank my family and friends for all the support and
incentive along not only this thesis but also along my entire academic path. A special
word here goes to Marta for pushing up whenever I was down. I cannot also forget my
parents for always giving me what I need to accomplish this stage.

Then I would like to also thank Prof. Adérito Marcos for accepting me to this master
and giving me the chance to do it in the computer graphics area. I also thank him
together with Fraunhofer IGD for the opportunity to do my work in Darmstadt, Germany.
Of course I could not forget to mention here André Stork – for accepting me, Pedro
Santos – for all the support related with my stay there, Gabi – for all the help in the
bureaucracy, Thomas Gierlinger – for the guiding through my work, Daniel Weber – for
opening the room for me every day and sharing so much of his knowledge with me,
Rafael Huff – because always had an answer to my questions (even the most silly ones),
Alécio and João for all the good talks and everyone without exception of A2 department
for the receptiveness.

Finally I would like to thank very much Umbelina Lima for helping me with the
English.

Without everyone here and many others not here mentioned, this work would not
be possible. For this reason I would like, once again, to thank you all very much.

An OpenCL Ray Tracer development and comparison over CUDA

v

Abstract

Ray Tracing is usually considered one of the best quality photorealistic rendering
techniques. However, the highly associated computational costs are prohibitive to time
critical circumstances. This characteristic restricted the Ray Tracing applicability to a very
few offline solutions, particularly focused on obtaining a single high quality and full
resolution image.

Over the years, faster hardware - with higher clock rates - has been the usual way
to improve Ray Tracing computing times. Aside from highly costly parallel solutions only
affordable by big industries - like movie industry -, there was no option to desktop users.
Nevertheless, this scenario is dramatically changing with the introduction of more and
more parallelism in current desktop PCs. Multi-core CPUs are a common basis in current
PCs and the power of modern GPUs - which have been multi-core for a long time now - is
getting unveiled to developers. nVidia's CUDA SDK for GPGPU is a powerful weapon to
explore GPUs parallelism. Yet, its specific target - nVidia graphic cards only - does not
provide any solution to other parallel hardware present. OpenCL is a new royalty-free
cross-platform API created by Khronos Group in partnership with numerous companies
and institutions. It is intended to be portable across different hardware manufacturers or
even different platforms. If a driver is available, the same code could run in a nVidia and
ATI/AMD graphic card or even in an Intel or AMD Processor. In practice, each driver is
responsible for translating the source code into its machine code.

The aforementioned technological evolution does not provide answers for every use
cases. For instance, some applications may not rely on GPU computing if targeting PCs
with low value graphic cards. In fact not every nVidia graphic card supports CUDA. This
study focus on OpenCL advantages and disadvantages compared to CUDA. Even if
OpenCL is more recent and intends to overcome some of the CUDA disadvantages, one
must perceive if it is the correct answer to the problem. This study tries to help system
designers decide which technology best fits their needs.

During this thesis work, three kinds of ray tracers where developed: one is CPU based,
while the other two are GPU based - using CUDA and OpenCL, respectively. At the end, a
comparison is done between them. This dissertation embraces this research purpose,
methodology, implementation, validation and conclusions. As a conclusion the OpenCL
pros and cons are pointed out. Considering OpenCL recent release date, much more
should be done to support it across more platforms and in a more optimized manner.
This is something that should naturally evolve over time making OpenCL stronger and
commonly supported. Meanwhile system designers must be aware of its flaws when they
adopt it to their solution. Nevertheless, the potential is there, as is shown in this thesis.
It is just a question of getting mature enough to maximize its capabilities

Desenvolvimento de um Ray Tracer em OpenCL e comparação com CUDA

vii

Resumo

Ray Tracing é considerado por muitos como uma das melhores técnicas para
síntese de imagens fotorealísticas. Contudo, os pesados custos computacionais
associados são proibitivos para circunstâncias onde o tempo é um recurso crítico.
Entretanto, Ray Tracing tem sido usado apenas em algumas soluções não tempo real
interessadas sobretudo em obter uma única imagem de extrema qualidade e resolução.

Hardware mais rápido tem sido a forma comum de melhorar os tempos de Ray
Tracing. Além de dispendiosas soluções paralelas, apenas ao alcance de grandes
indústrias como a cinematográfica, não havia alternativa para utilizadores comuns.
Contudo este cenário está a mudar com a introdução de mais e mais paralelismo nos PCs
de hoje em dia. CPUs multi-core tornaram-se comuns nas configurações de PCs actuais e
o poder dos GPUs modernos - que há muito são multi-core - está a ser revelado aos
programadores. nVidia’s CUDA SDK para computação genérica no GPU é uma ferramenta
avançada para explorar o paralelismo dos GPUs. No entanto, restringe-se exclusivamente
às placas da nVidia e não fornece nenhuma solução para outros componentes paralelos
existentes no computador. OpenCL é uma API recente sem direitos de autor criada pelo
Khronos Group conjuntamente com muitas companhias e instituições. Como pretende ser
portável entre várias plataformas a sua aplicabilidade não está restrita apenas aos GPUs.
Pelo contrário, deverá ser suportada por diversos tipos de componentes assim como por
diversos fabricantes. Assim, o paralelismo presente no computador pode ser explorado
de uma forma portável visto que o mesmo código pode correr numa placa gráfica da
nVidia assim como numa da ATI/AMD ou até mesmo num processador Intel ou AMD.
Para tal, basta que os respectivos drivers sejam lançados, pois estes é que são
responsáveis pela tradução do código para algo que o respectivo hardware conheça.

A evolução tecnológica aqui descrita não deve ser analisada com cuidado. Isto é: o
facto de uma tecnologia ser mais recente que outra não quer dizer que responda melhor
a todo o tipo de problemas. As tecnologias foram surgindo de forma faseada e
procuraram ir respondendo aos problemas que se colocavam na altura. Mas
especificidades do problema em questão poderão levar à adopção de uma tecnologia
anterior em relação a uma mais recente. Por exemplo, não faz sentido usar computação
na GPU se a aplicação será usada em computadores que não possuem placas gráficas
que suportem tal tecnologia. A verdade é que ainda hoje muitos computadores estão
equipados com placas gráficas da nVidia que não suportam CUDA. Este estudo centra-se
na comparação de OpenCL com CUDA. Isto porque pese o facto de OpenCL ser mais
recente e tenha como intenção superar algumas das desvantagens de CUDA, tal não quer
necessariamente dizer que seja a melhor resposta para todos os problemas. Este estudo
tenta por isso ajudar a escolher que tecnologia usar conforme o problema em questão.

No decorrer do trabalho desta tese três tipos de Ray Tracing foram desenvolvidos:
um para o CPU e outros dois para o GPU – um em CUDA e outro em OpenCL – com o
intuito de os comparar no final. A presente dissertação contempla o propósito desta
pesquisa, a sua metodologia, implementação, validação e conclusões. Visto OpenCL ser
uma tecnologia bastante recente, muito mais deverá ser feito para que seja mais
portável e optimizado. Isto é algo que deverá acontecer de uma forma natural à medida
que a tecnologia amadurece. Entretanto é necessário manter-se atento às limitações de
OpenCL aquando da sua adopção. Não obstante, o potencial está lá, como é mostrado
nesta tese. É apenas uma questão de esperar que com o tempo, este evolua no sentido
de maximizar as suas capacidades.

viii

ix

Start by doing what's necessary;

then do what's possible;

and suddenly you are doing the impossible.

Saint Francis of Assisi

xi

Table of Contents

1 INTRODUCTION .. 15

1.1 MOTIVATION ... 15

1.2 OBJECTIVES .. 17

1.3 WORK APPROACH ... 19

1.4 THESIS STRUCTURE ... 20

2 INTERACTIVE PHOTOREALISTIC RENDERING 21

2.1 BACKGROUND.. 21

2.2 GLOBAL ILLUMINATION - BASIS CONCEPTS ... 23

2.3 RAY TRACING - BASIS CONCEPTS ... 26

3 OPENCL AND CUDA BASIC ARCHITECTURES 33

3.1 CUDA - BASIS CONCEPTS ... 33

3.2 OPENCL - BASIS CONCEPTS ... 40

4 RELATED WORK .. 43

5 METHODOLOGY AND DEVELOPMENT STRATEGY 51

5.1 HYPOTHESES ... 53

5.2 SCENARIO .. 53

5.3 VARIABLES ... 55

5.4 SUBJECTS .. 55

5.5 METHODOLOGY AND PROCEDURE.. 56

6 SYSTEM DESIGN ... 57

6.1 CHAPTER ORGANIZATION ... 58

6.2 RAY TRACER ... 58

6.3 CPU RAY TRACER ... 66

6.4 OPENCL RAY TRACER ... 81

6.5 CUDA RAY TRACER ... 90

7 RESULTS ... 91

8 CONCLUSIONS AND FUTURE WORK .. 93

xii

8.1 FUTURE WORK ... 96

9 REFERENCES ... 99

xiii

List of Figures1

Figure 2-1. Ray Tracing used in Car Styling and Architecture _________________________ 23

Figure 2-2. Eye-based Ray Tracing ray direction __________________________________ 27

Figure 2-3. Left - without Subsurface Scattering; Right - with Subsurface Scattering _________ 28

Figure 2-4. Radiance is either reflected, refracted or absorved _________________________ 29

Figure 3-1. CUDA Execution Model __ 34

Figure 3-2. CUDA Thread Hierarchy ___ 35

Figure 3-3. CUDA Hardware Model ___ 37

Figure 3-4. CUDA Device Memory Spaces _______________________________________ 38

Figure 3-5. OpenCL Platform Model ___ 40

Figure 3-6. OpenCL Execution Model __ 41

Figure 3-7. OpenCL Memory Model ___ 42

Figure 6-1. Modules of the System ___ 57

Figure 6-2. Whole System __ 58

Figure 6-3. Primary and Secondary BVHs _______________________________________ 60

Figure 6-4. Barycentric Coordinates ___ 63

Figure 6-5. Multi-texture example __ 68

Figure 6-6. Ambient color effect __ 71

Figure 6-7. Each Ray (C) originates a reflection ray (��) and a refraction ray (��) ___________ 71
Figure 6-8. Specular Reflection __ 72

Figure 6-9. Snell’s law ___ 73

Figure 6-10. Vector components __ 74

Figure 6-11. The difference in either considering thickness or not _______________________ 78

Figure 6-12. Chromatic Dispersion __ 79

Figure 6-13. Chromatic dispersion and thickness __________________________________ 80

Figure 6-14. BVH traversal example ___ 82

Figure 6-15. Arrays inter-dependence example ____________________________________ 85

Figure 6-16. Kernel sequence __ 88

Figure 7-1. Sphere, Bunny and Dragon models ____________________________________ 92

Figure 8-1. CUDA and OpenCL Bandwith Test ____________________________________ 94

1 Figure 2-1 from www.creativecrash.com
 Figure 2-3 from http://graphics.ucsd.edu/~henrik/images/subsurf.html
 Figure 3-1,2,3 and 4 from nVidia CUDA Programming Guide [37]
 Figure 3-5,6 and 7 from The OpenCL Specification[35]
 Figure 6-4 from Realistic Ray Tracing[51]
 Figure 6-14 from A comparison of acceleration structures for GPU assisted ray tracing [54]

xiv

Nomenclature

AABB : Axis Aligned Bounding Box

ACE : Adaptive Communication Environment

API : Application Programming Interface

BRDF : Bidirectional Reflectance Distribution Function

BSDF : Bidirectional Scattering Distribution Function

BTDF : Bidirectional Transmittance Distribution Function

BVH : Bounding Volume Hierarchy

CGI : Computer Generated Imagery

CPU : Central Processing Unit

CUDA : Compute Unified Device Architecture

GPGPU : General-Purpose Computing on Graphics Processing Units

GPU : Graphics Processing Unit

NURB : Nonuniform Rational B-spline

NVCC : nVidia CUDA Compiler

OpenCL : Open Computing Language

OS : Operating System

PC : Personal Computer

SDK : Software Development Kit

SIMD : Single Instruction, Multiple Data

SIMT : Single Instruction, Multiple-Thread

Universidade do Minho
An OpenCL Ray-Tracer development and comparison over CUDA

15

1 Introduction

Desktop PCs resources are now more powerful than ever. The advent

of multi-core CPUs and the remarkable parallelism power of current GPUs

enable higher quality rendering approaches than simple triangle

rasterization at satisfactory frame rates. Still, the programming paradigm

should change and suit these mechanisms before it can profit from its own

advantages. Recent Software Development Kits (SDK) such as nVidia

CUDA and OpenCL help developers adapt to this new reality. In the case

of OpenCL it introduces a whole new portability level in parallel

computing. This study tries to understand how far this technology can

enhance parallel computing for Ray Tracing purposes. Proper

investigation, test and validation will be performed on the OpenCL

different aspects such as available functionalities, portability or

performance to clarify its advantages and disadvantages when compared

to alternative technologies.

1.1 Motivation

Computer generated photorealistic images have been serving various

areas from architecture to cinema or video games industry. The interest in

this field of computer graphics has been responsible for the research,

development and improvement of global illumination algorithms.

Unfortunately, producing this kind of images is not linear. Firstly, there

are few and poor open-source software. In addition, proprietary software

tends to be very powerful but very expensive as well. Secondly,

photorealistic algorithms imply high quality hardware due to the heavy

computational costs usually involved. Finally, even the best equipped

desktops have difficulties in dealing with these task fast enough to provide

real-time solutions. These arguments show why photorealistic algorithms

16 Introduction

are still mainly used in areas where images can be produced in offline

mode (as in the movie industry) and not in real-time (as in video games).

Nonetheless, the human quest for perfection is ceaseless. Over the

last years, global illumination algorithms did not only get faster, but

adopted improved approaches by considering new forms of light

interaction. Yet, it is hard to imagine the day when perfection - both in

time and quality - is reached and the quest is over. In fact, what was

considered satisfactory a few years ago is no more accepted as such

today. As computers get faster and algorithms are optimized, the quality

requirements also increase, ie, as time goes by, bigger and more complex

virtual scenes are rendered at higher resolutions and including more and

more optical effects. One must then perceive that the quest will never

end, no matter what discoveries/improvements are achieved. It is

important to recognize the technological limitations and accept

imperfections by establishing some minimum requirements to define the

acceptable quality level. However, finding the proper balance between

performance and image quality is a task that depends on the application

purpose. The motion picture and the video game industry have completely

different demands, and this is the reason why this balance is so different

for each one of them. Whereas the first is able to wait from minutes to

hours to render an image, the second can't afford to wait so long under

penalty of losing game interactivity. The latter sacrifices quality to achieve

better frame rates; which is just the opposite of the former. As one can

then conclude, there is not - and probably there will never be - a universal

balance that satisfies every task. However, this balance is being

constantly readjusted whereas algorithms, strategies and hardware are

developed and improved.

With the institution of multi-core CPUs and the new generation of

graphic boards - GPGPU capable -, PC clusters are not the only method of

introducing parallelism in global illumination algorithms anymore. The

embryonic state of recent investigations has not presented any clear

conclusions about the possible achievements of such hardware yet, but

Universidade do Minho
An OpenCL Ray-Tracer development and comparison over CUDA

17

has already shown some impressive potential. Developers are, however,

confronted with some challenges and problems when pioneering this

hardware exploration. Portability, for instances, is not assured between

different platforms or even across different manufacturers. Moreover, it is

commonly needed to learn a new subset of a language, or even a whole

new one. The worst case scenario is when code and/or performance is

architecture dependent, resulting in non-functional or underperforming

code within the same kind of hardware from the same manufacturer.

These - and others -, are the reasons behind OpenCL creation. Its

ambitions and goals cover exactly the problems mentioned above. With

the first manufacturers releasing their drivers to OpenCL, this thesis work

first motivation is to test this technology and compare it to others

available. Considering the scope of this work, this evaluation and

comparison will be held exclusively for Ray Tracing purposes.

Last but not least, it is also the ambition of this thesis to inquire and

evaluate current desktops aptness to support real time Ray Tracing

recurring to GPU computing.

1.2 Objectives

The main objective of this thesis work is to test OpenCL. As a brand

new technology it is expected to not be efficiently tuned up yet, but

should already provide some indications about what it may provide in the

near future. However, one of the major OpenCL features – portability –

will not be considered yet since only nVidia has released drivers at the

development time of this project.

OpenCL may seem an evolution of CUDA, although sometimes the

theory does not apply to what happens in practice. By testing and

comparing OpenCL, this work aims at revealing OpenCL weaknesses on

the one side and confirming its advantages on the other. Nonetheless, one

18 Introduction

must keep in mind that some objectives of OpenCL are not shared by

CUDA; for instances, CUDA does not intend to be portable across

platforms. This abstraction implies, necessarily, performance costs to

OpenCL. Such factors should be taken into account.

From this point it may be already expected that OpenCL will lose in

performance to CUDA. OpenCL is a slighter higher level language than

CUDA and assumes a conversion to each device proper language that

CUDA does not. Nonetheless it is important to understand how much it

costs and if it is affordable with its advantages as contrast.

To proper evaluate OpenCL, a Ray Tracer will be designed and

implemented from scratch. It is also intended to propose a design that

suits to OpenCL characteristics and architecture. This should also

contribute with some ideas and solutions to problems raised by such

architecture. For instance, Ray Tracing is an intrinsically recursive

algorithm; however, recursion is not supported in OpenCL. Such

requirements demand intelligent work around in order to maintain

algorithm main structure without losing flexibility.

It is supposed to provide answers to system designers about when to

choose OpenCL or CUDA. Such answers depend on the problem

specificities and on how portable it is intended the solution to be.

Moreover, when it refers to Ray Tracing in particular, it is suggested an

algorithm that meets OpenCL architecture. Nonetheless, some of the

adopted concepts/solutions may be used for other purposes in completely

different problems

As a background objective it is evaluated how near to real-time Ray

Tracing on Desktops, present hardware is. In spite of the great amount of

research work being done in this area, this thesis work tries to, at least,

understand how much OpenCL may improve future results.

Universidade do Minho
An OpenCL Ray-Tracer development and comparison over CUDA

19

1.3 Work approach

In order to reach real time rates using Ray Tracing on a desktop PC,

system design is specifically conceived to meet OpenCL architecture,

structure and capabilities. Other language versions have a translated

version of this design given the fact that they are used mainly for

comparison purposes. Yet, the first approach will be held on CPU due to its

programming facilities, debugging and also because serial execution is

simpler. At the end, it shall be possible to test the same algorithm

performance in different architectures avoiding a complex comparison

between a series of different algorithms - each one devoted to exploring

specific language/technology conveniences. As stated, this study’s main

evaluation is OpenCL; other implementations will only suit comparison

purposes. Moreover, every comparison reference is only and solely suited

to Ray Tracing applications. It is also important to notice that since

OpenCL design is the one that will be adopted among other

implementations some languages/technologies may be thus neglected in

order to keep the same design. This is an evident penalty in such

implementations, but otherwise it would be almost impossible to compare

different implementations - since each one would be using its own design.

Finally, mastering these technologies requires lots of time to fully

understand their architecture, behavior and tweaks - which is neither

convenient nor affordable to the current study timeline.

Still, this study should present clear conclusions on OpenCL

performance, portability, simplicity and learning facility. It is common

sense that portability will have costs in performance, but it is important to

measure how much it costs. This measurement, aligned with the learning

curve should provide good answers for those considering using OpenCL in

their solutions. However, no universal answer will presumably be found.

Each system designer should take his decision based on the specifics of

his problem.

20 Introduction

A couple of different scenes and hardware configurations will be used

to test and compare the solution to survey the results in different

situations and usages. This should provide material to other kind of

conclusions such as those related to scalability and portability.

Nevertheless, this study does not intend to cover every possible case and

is not considered to be faultless. Whatever the final achievements may be

better results, more and deeper comparisons or further optimizations

could certainly take place, although time is a limited resource apart from

the effort you put on.

1.4 Thesis structure

This thesis is divided into more seven chapters. The next chapter

embraces a basic introduction to photorealistic rendering, namely Ray

Tracing. We start with some background about areas where photorealistic

rendering is used and end up with elementary Ray Tracing concepts. It is

followed by a chapter showing the technologies compared here: CUDA and

OpenCL. This chapter details their architecture and design. Chapter four is

a review of the state of the art. Since OpenCL is a brand new technology,

this chapter is more focused in Ray Tracing in general and using GPGPU in

particular. As a background goal, real-time Ray Tracing is constantly

referred and reviewed. Chapter five explains how the project will take

place and how it is going to be evaluated. Chapter six depicts the system

that was developed and explains how it works. In practice it is the

architecture of the system. The following chapter shows the results

obtained. These results are discussed and analyzed in chapter eight. This

chapter also contains some guidelines on what should be done from this

point on; ie, how this work may evolve in the future. Finally, the last

chapter lists all the cited references.

Universidade do Minho
An OpenCL Ray-Tracer development and comparison over CUDA

21

2 Interactive photorealistic rendering

Why are not high quality photorealistic images associated with areas

like video games? To understand the answer one must perceive how

compute intensive and time-consuming it is to render such images.

2.1 Background

Computer generated imagery (CGI) in the movie industry started in

1973´s Westworld. By that time only 2D CGI was used, but soon after, in

1976´s Futureworld, 3D CGI was introduced. However, Pixar studios and

The Walt Disney Company 1995´s Toy Story remains for history as the first

fully computer-generated movie. By then, each frame was rendered at

1536 × 922, taking typically 2-3 hours to render. Recent films are

rendered at least at 1920 x 1080 and tend to take about an hour per

frame to render. It is remarkable to see how much this area

overestimates image quality. In motion picture animation rendering time

has not decreased so much due to image quality improvements with a lot

of more effects represented at a higher resolution. Pixar’s general

manager, Jim Morris’s words about the re-rendering of Toy Story for 3D

Cinema confirm it: “It looks great and one of the reasons it looks great is

actually our renderers are much better now than when we made the

movie’s originally, so they actually have a higher level of detail to them

and so forth. Just the shaders and the way they render.”2

This is one side of the coin, offline rendering. But in order to provide

interactivity any render cannot take one hour to compute a frame. In real-

time applications, one must sacrifice resolution and some image quality to

reach shorter rendering times. As time goes by, video games tend to be

2 http://www.collider.com/entertainment/interviews/article.asp/aid/9884/tcid/1/pg/1

22 Interactive photorealistic rendering

more and more realistic. In fact, nowadays, most video games produce

images that could almost have been considered photorealistic a few years

ago. Recent developments suggest the integration of global illumination

techniques, like Ray Tracing, in the near future. Intel's Michael Vollmer

predicts: “We keep in touch with companies all over the world - I dare say

that in two to three years time we will see something. There already are

some individual approaches, especially in the science sector, which show

that Ray-tracing algorithms are scaling very well with the numbers of

cores.”3

It is obvious that photorealistic images are taking, step by step, less

time to render. The question is how long these improvements will last. Are

they sustainable? It is hard to say, but their benefits are evident: motion

picture industry gains in reducing the amount of rendering time while

video games industry enriches game realism. But there are lots of other

areas between them that benefit from a mixture of both: architecture,

industrial design, car styling, healthcare informatics and so on (Figure

2-1).

3 http://www.pcgameshardware.com/aid,654068/Raytraced-games-in-2-to-3-years-says-Intel/News/

Universidade do Minho
An OpenCL Ray-Tracer development and comparison over CUDA

23

Figure 2-1. Ray Tracing used in Car Styling and Architecture

2.2 Global illumination - basis concepts

In order to provide proper realism, one should consider not only the

light that comes directly from the light(s) source(s) - direct illumination -

but also the light reflected from other objects in the scene - indirect

illumination. Any algorithm that takes into account both cases may be

considered a global illumination one. Nowadays rasterization algorithms

usually simulate indirect illumination using techniques like Shadow

Mapping or Shadow Volumes[14, 43, 49, 10, 15]. Even if these techniques

provide good-looking results, they do not compute these kinds of

illumination: they fake it. Their results are not physically based.

In real life, light travels from different light sources to our eyes

bouncing in the different objects around us. Radiometry is a field of

24 Interactive photorealistic rendering

physics responsible for light quantification. The concepts of Radiance4 and

Irradiance were defined to help quantify light. Radiance defines the

amount of light that leaves/reaches a specific point into/from a specific

direction. Considering the point � and the direction �, ��� � �
 denotes
radiance reaching point � from direction �, while ��� � �
 denotes
radiance exiting from � in direction �. On the other hand, Irradiance
expresses the amount of light arriving at a specific surface point from all

directions.

 ��
 � � �� � Θ
 �����
���
�

 Equation 2.1

In Equation 2.1, �� denotes a sphere around point �, while � is the
angle between the surface point � and direction �.

The reflection properties of the surfaces are usually defined as a

Bidirectional Reflectance Distribution Function (BRDF). This function

relates the incident radiance from a specific direction �, with the reflected
radiance on a certain direction � at a specific point �.

 ��, � �
 � ��� � �
��� �
 Equation 2.2

Notice that BRDF is restricted to reflection representation, ie only

takes into account the hemisphere around surface point � to where
surface normal points to. However, it is easily extended to Bidirectional

Transmittance Distribution Functions (BTDFs) - which accounts the

opposite hemisphere, considering Transmission and Refraction - and

Bidirectional Scattering Distribution Functions (BSDFs) - accounting the

whole sphere around point � (BRDF + BTDF).

4 Radiance is a radiometric measure that describes the amount of light that passes through or is emitted from a
particular area, and falls within a given solid angle in a specified direction. The SI unit of radiance is watts per

steradian per square meter! "#$ % &'(.

Universidade do Minho
An OpenCL Ray-Tracer development and comparison over CUDA

25

Mathematically, one can then compute all contributions to the point �
from all directions on the sphere around it as

 � �� � Θ
 � �)��, � � �
 ��� � �
 *+,�-� , �
./0
12

 Equation 2.3

Equation 2.3 is usually known as the rendering equation[28]. Since it

is a recursive integral, no analytical solution can be provided. Global

illumination algorithms compute approximated solutions based on this

equation.

Actually, there are three different lighting models to consider:

geometric optics, wave optics and quantum optics[16, 5]. The rendering

equation suits the first one, where it is assumed that light travels in

straight lines and light particles do not interact with each other.

Phenomenon like light emission, reflection, refraction or absorption suit

well while others like light diffraction, light interference, light polarization,

fluorescence or phosphorescence cannot be represented.

In geometric optics Radiance invariance along straight paths property

- ��� � �3
 � ���3 � �
 - applies. In practice this property says that the
Radiance exiting point � to point �4 is exactly the same Radiance that
arrives at point �4 from point �. Note that this is only true in geometric
optics because it is not considered any participating media and light

travels through vacuum. Anyway it is an important property since it can

be extrapolated to BRDF so that)��, � � �
 �)��, � � �
, also known as
Helmholtz reciprocity principle.

Nevertheless, geometric optics models imply expensive computations

in order to provide good solution approximations. There is the need to

consider many samples from the sphere around each point in order to

compute good approximations. Reproducing reliable photorealistic images

involves simulating many light effects with heavy computations. Also, the

recursive nature of rendering equation implies computing those costly

effects in every call - reason why it takes so long to compute them. The

26 Interactive photorealistic rendering

problem gets worse as scenes get bigger or more complex, since more

rays and more primitive intersections need to be calculated.

Among all global illumination algorithms available, trying to solve -

the rendering equation[28] - respecting light properties, Ray Tracing and

its derivations (beam tracing, cone tracing, etc) is the most straight

forward one. Other global illumination algorithms like radiosity, photon

mapping or ambient occlusion are out of this thesis scope. From now on,

in order to keep it simple, any reference to global illumination should be

interpreted strictly as Ray Tracing.

2.3 Ray Tracing - basis concepts

Although Ray Tracing can mean various different things5, in the

context of this thesis, it always refers to the act of simulating light

propagation, reflection and refraction through the air or on objects by

considering rays of light. Tracing rays into the scene has developed a lot

since Arthur Appel[2] introduced it to test which object was visible in each

pixel. His technique is what nowadays is known as ray casting and is not

restricted to primary rays anymore. Regardless of all different algorithms

that appeared over the last years, the concept is still the same:

intercepting rays with the geometric objects in the scene to simulate light

transportation through light paths like it happens in reality. When a ray

hits an object surface, new rays can be traced in many directions

depending on material properties. This relies on a recursive solution and

introduces the concept of ray depth - the number of bounces taken into

account in order to compute the current ray. Since unlimited recursion is

commonly presented in most scenes, the process should be ceased at one

stage by adopting any stop criteria.

5 http://en.wikipedia.org/wiki/Ray_tracing

Universidade do Minho
An OpenCL Ray-Tracer development and comparison over CUDA

27

2.3.1 Ray shooting

The most basic element of Ray Tracing is the ray itself. A ray

represents a line of photons travelling through the air and, eventually,

hitting the surface of some object. It is usually denoted with a point and a

vector representing its origin and direction, respectively. Any point of a

ray is represented then according to instance of time 5 as:
 6�5
 � � 7 5� Equation 2.4

where � is ray origin and � is ray direction.
Considering the usual eye-based algorithm, one or more rays are

traced from the eye position - usually assumed as the virtual camera

position - through each pixel of the image (Figure 2-2).

Figure 2-2. Eye-based Ray Tracing ray direction

Each of these rays is then intersected with the scene. If it does not

intersect any object, a background is used to color it. Otherwise, new rays

are computed from the intersection point in various directions, depending

28 Interactive photorealistic rendering

on the object’s properties as well as the Ray Tracing algorithm itself.

Tracing rays in the direction of light sources and, depending on how

reflective the object is, one or more to simulate its reflectiveness and

refractiveness, is the usual approach. Apart from what these rays try to

simulate or what direction they follow, they all share the same origin - the

intersection point between the previous ray and the object intersected.

Although this is the easiest approach, that is not how it exactly happens in

nature. Some effects like subsurface scattering[27] turn the previous

assumption into a false one (Figure 2-3). This is particularly noticeable in

materials such as wax, marble and skin.

Figure 2-3. Left - without Subsurface Scattering; Right - with Subsurface Scattering

Universidade do Minho
An OpenCL Ray-Tracer development and comparison over CUDA

29

When a ray hits any surface its radiance is absorbed, reflected or

refracted6. In fact, everything happens simultaneously. The material

properties define the amount to consider from each one. The reflection

and refraction effects can be simulated by calculating other rays to

represent them and then using the algorithm recurrently. The calculations

of these rays depend, amongst others, on the surface material, on the hit

point normal and the intersected ray direction.

Figure 2-4. Radiance is either reflected, refracted or absorved

In nature, light travels from light sources, directly or eventually

reflected by some objects, to the eye7. Nonetheless, simulating this

process is not efficient because a lot of rays will never reach the eye and

then, computing them would result in a great computational cost without

any improvement in quality. To avoid this performance drawback, Ray

Tracing is normally computed the other way round. Tracing rays from the

eye to the light sources8 handles with this factor providing almost the

same results. It is not exactly the same simply because some effects are

harder to reproduce by tracing rays in the backward order (compared to

the way they travel in nature). This is especially noticeable in indirect

illuminated scenes mainly. This derives from the lower probability of

6 In some cases the light is absorbed and then re-emitted at a longer wavelength color in a random direction.
This is called fluorescence. It is a rare phenomenon, reason why tends to be left out of most ray tracing
algorithms.
7 Either the eye of any animal including the humans or any kind of lens that capture radiance like the ones used
in cameras.
8 This technique is usually denoted as eye-based while tracing rays from light sources is denoted light-based.

30 Interactive photorealistic rendering

hitting the light source in those circumstances. Nevertheless recent

approaches try to use efficiently light-based Ray Tracing in order to deal

with these cases. Photon mapping, for instance, tries to combine both

approaches in an effort to achieve the best of both worlds.

2.3.2 Primitives

A virtual scene is composed from one to millions of primitives.

Primitive is anything that represents scene geometry. For a long time,

triangles were the one and only kind of primitive supported by graphic

cards. However, in practice, a primitive could be any polygon or shape -

quad, circle, sphere, cubes, etc. There are even means of representing

free form shapes/surfaces recurring to splines, surface patches, NURBS,

etc.

Nowadays, some graphic cards support other kinds of primitives. But

historic and portability reasons have placed triangles as the standard

primitive.

2.3.3 Acceleration structures

Major Ray Tracing bottleneck is, undoubtedly, its performance due to

the high computational costs it involves. A straightforward application of

the Ray Tracing concepts would lead to a very inefficient solution, since

every ray would result in an intersection test with every primitive in the

scene. Over the time numerous techniques have been developed in order

to accelerate Ray Tracing computations by reducing complexity. Given the

fact that ray-object intersection tests are heavy to compute and that the

amount of tests increases as the scene gets more complex or detailed, a

great effort has been put into reducing the number of the necessary

Universidade do Minho
An OpenCL Ray-Tracer development and comparison over CUDA

31

intersection tests. Acceleration structures are a scheme for doing so. They

create some kind of information structure in order to discard some groups

of intersection tests. This structure should only be needed to compute

once9 while accelerating computations every time a ray is traced. It seems

logical that, the more complexity is added to the scene, the higher the

image resolution or the deeper the ray maximum depth is, the more gains

these techniques can obtain. Every time more primitives or more rays are

computed, more profits will be provided by the acceleration structures -

by reducing the number of the necessary intersection tests for each ray.

In spite of the different approaches taken into account to the present,

the acceleration structures may be subdivided into two groups:

• the ones that rely on spatial subdivision or

• the ones concerning object hierarchy.

Whereas the former orders the scene space, the latter orders

primitives. Wald et al. have done a deep and complete state of the art

review in 2007 on acceleration structures for Ray Tracing purposes.[64]

Quoting: "Spatial division and object hierarchy are dual in nature: Spatial

division techniques uniquely represent each point in space, but each

primitive can be referenced from multiple cells; object hierarchy

techniques reference each primitive exactly once, but each 3D point can

be overlapped by anywhere from zero to several leaf nodes."

Several other properties define an acceleration structure design and

implementation. Please refer to Wald et al. study for further investigation.

9 Or in dynamic scenes, either when the light sources change, when the scene changes or when the camera
moves.

32 Interactive photorealistic rendering

2.3.4 Whitted algorithm

There are several Ray Tracing algorithms. Essentially they diverge on

one or more of these three points:

• ray generation direction (from eye to light or from light to eye);

• reflection, transmission and refraction direction samples and

consequent rays;

• stop criteria (Russian roulette, deterministic, etc.)

T. Whitted[69] introduced a deterministic algorithm for Ray Tracing

using backward direction - from eye to light. The reflected rays’ direction

sample is also deterministically chosen. For each ray-surface intersection

a ray is shot to each light source – designed as shadow rays - and if the

material has specular properties, a perfect reflective and/or refractive ray

is also shot.

The algorithm is intrinsically recursive and only stops when diffuse

surfaces are hit (since only shadow rays are shot). Whitted Ray Tracing

models mirror-like reflections/refractions perfectly. However, in reality, no

material is perfectly specular; some glossiness is always present. A glossy

material also reflects/refracts but not towards a single direction. It

reflects/refracts towards a small area of directions. The smaller this area

is, the closer the material is to perfectly specular. Whitted Ray Tracing

does not contemplate such a kind of effects, it only recognizes two kinds

of material: specular and diffuse. Diffuse materials model matte-looking

materials – rubber, wood, etc - whereas specular materials approximate

glossy materials – metal, glass, mirror, etc.

Universidade do Minho
An OpenCL Ray-Tracer development and comparison over CUDA

33

3 OpenCL and CUDA basic architectures

With the new graphic board generation - GPGPU capable - the need

to provide developers with proper toolkits to explore it arose. nVidia

released Compute Unified Device Architecture (CUDA) to provide such

facilities for their hardware. However, nowadays there is many different

parallel hardware present in a common desktop. Developers faced the

need to learn different languages and architectures for each of these

components. Moreover, CUDA, as aforementioned, is specific to nVidia's

graphic boards. It won't work for other graphic board manufacturers.

These portability issues lead to Open Compute Language (OpenCL)

creation. OpenCL was firstly introduced by Apple, but was soon embraced

by other companies and is now the responsibility of Khronos Group10.

nVidia is also a member in OpenCL specification and development group.

In fact, their graphic boards were the first to support OpenCL.

Nevertheless, other manufacturers should follow and make their drivers

available in the near future.

A brief presentation of CUDA and OpenCL follows below. These

concepts and their architecture are important because they restrict the

Ray Tracing implementation presented in the System design chapter. It

should be noticed, however, that only significant concepts to this thesis

are presented. Please refer to CUDA programming guide[37] and OpenCL

specification[35] for further information.

3.1 CUDA - basis concepts

As aforementioned, CUDA toolkit was designed to serve nVidia's

graphic boards. Nevertheless, a host is needed to run the application,

10 Also responsible for many other technologies such as OpenGL, OpenVG, COLLADA, etc.

34 OpenCL and CUDA basic architectures

dispatch, feed, manage and control CUDA device. CUDA programming

model uses and extends standard C language with a new subset of

functions. Functions that will run on device are marked with special

attributes. These attributes define where the function will run and from

where it can be invoked. The ones that run on device and are invoked

from host are designated kernels. Thus, host manages device execution

through kernels invocation.

Figure 3-1. CUDA Execution Model

Figure 3-1 shows a diagram of a CUDA application execution. Code

runs serially on host until it dispatches job to device by invoking a given

kernel. The kernel invocation must specify the number of threads to run

on device. The kernel call will return asynchronously giving control back to

Universidade do Minho
An OpenCL Ray-Tracer development and comparison over CUDA

35

host. Each thread evocation will run the same code, ie, the same function.

Yet, threads should be organized into groups and form a hierarchy.

3.1.1 Thread hierarchy

CUDA provides built-in methods for thread identification within the

hierarchy. The hierarchy can be particularly handy for certain problems. A

two -�8 matrix sum, for instance, could be mapped into -�8 kernels.
Each kernel would then be responsible for a specific cell sum. Of course

this example is over simplistic. CUDA thread hierarchy supports up to

three dimensions of thread groups - designated blocks. Moreover, blocks

may also be grouped and organized up to three dimensions into a grid.

Figure 3-2. CUDA Thread Hierarchy

A scenario using a two-dimensional grid and two-dimensional blocks

is shown in Figure 3-2. However, some hardware restrictions apply to grid

and block sizes. For instance, block size must not contain more than 512

threads. In practice, this value could be even smaller depending on thread

36 OpenCL and CUDA basic architectures

and block memory usage. Indeed, it seems convenient to understand the

architecture of nVidia's graphic boards before pointing out such

limitations.

3.1.2 Hardware architecture

Each CUDA capable device11 has a group of multiprocessors and a

specific amount of device memory. Each multiprocessor has eight scalar

processors and on-chip shared memory. Multiprocessor execution employs

a SIMT (single-instruction, multiple-thread) architecture. Each thread is

mapped to one scalar processor and is executed independently with its

own instruction address and registers. However, a multiprocessor SIMT

unit is responsible for the creation, management, schedule and execution

of a warp (a group of 32 parallel threads). Each warp executes the same

instruction at a time. That doesn't mean that threads within a warp must

follow the same execution time, but it is beneficial if they do so12. Since

each thread block is assigned to only one multiprocessor, it is suggested

to have thread block sizes multiples of 32.

11 nVidia has an updated list in http://www.nvidia.com/object/cuda_learn_products.html
12 "If threads of a warp diverge via a data-dependant conditional branch, the warp serially executes each
branch path taken, disabling threads that are not on that path, and when all paths complete, the threads
converge back to the same execution path." in CUDA programming guide[37].

Universidade do Minho
An OpenCL Ray-Tracer development and comparison over CUDA

37

Figure 3-3. CUDA Hardware Model

CUDA hardware model is depicted in Figure 3-3. As it is presented, a

CUDA device has N multiprocessors and an amount of device memory

accessible to all of them. Each multiprocessor may be decomposed in M

processors - fed by an instruction unit - and on-chip memory

(multiprocessor bounded memory).

3.1.3 Memory hierarchy

CUDA provides various memory spaces designed to meet different

purposes. There is, however, an important point to be taken into account:

memory could be off-chip - available to the entire device -, or on-chip -

available to a multiprocessor, a thread block or a unique thread. On-chip

memory is much faster than off-chip one. Still, host cannot access on-chip

memory.

38 OpenCL and CUDA basic architectures

There are six CUDA device memory spaces as depicted in Figure 3-4.

Figure 3-4. CUDA Device Memory Spaces

Each of these memory spaces suits specific purposes and there are

different restrictions and/or constraints amongst them:

• Registers are located on-chip and are per thread accessible, ie, one

thread cannot access other thread registers;

• Shared Memory is located on-chip and is per block accessible , ie, all

threads within a block access the same shared memory - that's why

it is called shared -, but threads in different thread blocks do not;

• Local Memory is per thread accessible but is located off-chip;

• Global Memory is accessible across the entire grid and from host. It

is also located off-chip;

• Constant and Texture Memory can only be written from host but can

be read from host and from the entire grid. Despite being located

off-chip, on-chip cache is provided.

Texture memory is specialized on texture fetching and provides

different address modes, data filtering and specific data formats.

Universidade do Minho
An OpenCL Ray-Tracer development and comparison over CUDA

39

Bearing in mind the discussion about CUDA thread hierarchy, it is

important to notice that memory usage can also compromise thread block

and grid sizes assortment13.

3.1.4 Programming Interface

CUDA toolkit provides two different APIs:

• A low-level API called the CUDA driver API;

• A higher-level API called the CUDA runtime API that is implemented

on top of the CUDA driver API.

The CUDA driver API is language-independent14 and offers a better

level of control. Still, it is also harder to program and debug. In the

context of this thesis only the CUDA runtime API will be studied; please

refer to CUDA programming guide[37] for more information about CUDA

driver API and differences between both.

The CUDA runtime library splits into three components: a host, a

device and a common component. They provide variable types, functions,

synchronization mechanisms, kernel invocation, memory copy instructions

and OpenGL/Direct3D interoperability to host, device or both.

Any use of the CUDA runtime library implies compiling with nVidia

CUDA compiler (NVCC). NVCC compiles kernel sources and forwards host

code compilation to host compiler. Please refer to nVidia CUDA Compiler

Driver[36] for further information on NVCC.

13 CUDA implements a memory transfer to slower memory in cascade to higher (and slower) memory spaces in
hierarchy. For instance, if more registers than available are used, it would rely on shared memory, and so on.
14 The CUDA driver API only deals with pre-compiled CUDA binary files.

40 OpenCL and CUDA basic architectures

3.2 OpenCL - basis concepts

OpenCL resembles CUDA in most of its design. Like CUDA, a host

device must be present. Moreover, application is also run on host and

device is once again managed and controlled from it.

Figure 3-5. OpenCL Platform Model

As shown in Figure 3-5, an OpenCL platform consists of one Host

connected to one or more devices. Each device has one or more compute

unit each with one or more processing elements.

3.2.1 Execution Model

Just like CUDA, OpenCL host dispatches work to device through a

special function call. These functions (running on device but called from

host) are once again called kernels. Moreover, each thread will belong to a

thread hierarchy. The concept of grid and thread block also applies.

However, they are named differently: grid becomes NDRange and thread

block becomes work-group. Each running thread is designated work-item.

Nevertheless, similarly to CUDA grid and thread block, NDRange and

work-groups can be organized up to three dimensions. Figure 3-6 shows

Universidade do Minho
An OpenCL Ray-Tracer development and comparison over CUDA

41

an example of a two-dimensional NDRange composed of two-dimensional

work-groups.

Figure 3-6. OpenCL Execution Model

OpenCL implements the concept of command queue. Command

queue is used for command dispatching15 and may implement an in-order

or an out-of-order scheduling. An in-order schedule grants command

serialization, ie, one command on the queue only starts when the previous

one is completed. On the other hand, out-of-order schedule starts a

command as soon as possible, even if previous commands are still in

progress. Synchronization is then the responsibility of the programmer.

3.2.2 Memory Model

OpenCL implements four different memory regions:

• Global Memory, accessible from host and to the entire NDRange;

• Constant Memory, readable from host and to the entire NDRange.

Must be initialized from host;

15 Command is either a kernel execution, a synchronization or a memory copy instruction.

42 OpenCL and CUDA basic architectures

• Local Memory, accessible to all work-items inside a work-group;

• Private Memory, work-item private memory and neither visible to

any other work-item nor to host.

Global and constant memory may be cached depending on device

support. Local memory has either a dedicated region in device hardware

or it is mapped onto sections of global memory.

Figure 3-7. OpenCL Memory Model

Figure 3-7 depicts OpenCL memory model. OpenCL grants local and

global memory consistency across work-items in a single work-group at a

work-group barrier. However, global memory consistency is not granted

among different work-groups of the same NDRange.

Finally OpenCL also delivers proper image/texture fetching,

management and control facilities. The facilities include normalized

addressing mode and linear filtering. The images allocation space is not

defined and depends on device architecture16.

16 However global/constant memory region should be taken as default since a mapping to other memory
regions would induct complex memory management issues.

Universidade do Minho
An OpenCL Ray-Tracer development and comparison over CUDA

43

4 Related work

Natural light exhibits a complex and diverse behavior according to

object material properties and environmental conditions. Minnaert

book[34] is a classic example for showing this kind of phenomena

outdoors. As for light indoors these light effects and phenomena are

complex too; furthermore, some of its characteristic features are not

perceived outdoors. Anyway, global illumination techniques carry within

them the will to realistically simulate this kind of phenomena over the

image synthesis upon virtual scenes. Many global illumination algorithms

have been developed over time. Ray Tracing is probably the best known

and most complete one, but valuable approaches such as radiosity[20, 11,

30], photon mapping[25, 26] or ambient occlusion[23, 31, 7] among

others cannot be disregarded. In any case, this thesis scope on global

illumination refers to Ray Tracing only and it will be the sole technique to

be deeply discussed in this chapter.

Ray Tracing

Ray Tracing was first approached by Arthur Appel back in 1968[2].

His research aimed at the idea of shooting rays from the eye through each

pixel to find the closest object hit by the ray. His technique is nowadays

known as Ray Casting. Later, by the end of the seventies, Whitted[69]

enhanced Ray Casting and introduced a huge research breakthrough.

Whitted was the first to introduce the concept of secondary rays. In

practice, his technique consists on keeping the Appel Ray Casting process

after hitting an object surface. At this point reflection, refraction and

shadow rays are traced and their intersection computed. Reflection and

refraction rays would model mirror and transparent-like objects,

respectively. Shadow rays are rays that are traced into source light in

44 Related work

order to test if the ray origin - which is an object surface point - is directly

illuminated or not.

Whitted technique introduced the possibility of efficiently handle the

mirror reflections and refractions - in a perfect manner - taking into

account direct illumination. However, other effects such as depth of field,

caustics, glossy reflection, motion blur and indirect illumination were not

supported in his approach. Such effects were only considered later on by

Cook’s[13, 12] stochastic secondary rays direction sample. This means

that secondary rays are not restricted to perfect reflection/refraction

anymore; ie, the secondary rays’ direction is no longer deterministically

chosen - some kind of randomness is introduced into the process.

Stochastic Ray Tracing methods are now known as Monte Carlo and are

able to simulate every type of light scattering. However, Monte Carlo

methods tend to introduce noise in the rendered image. Research was

done to reduce the noise by restricting selection to secondary rays

direction sample[52, 57] and by using bidirectional Monte Carlo Ray

Tracing[71, 56]. Whereas the former tries to distribute rays in a more

careful manner, the latter tries a hybrid approach between eye-to-light

and light-to-eye Monte Carlo Ray Tracing. Some biased solutions17 also

appeared, like irradiance cache, which interpolates previously stored

indirect illumination on diffuse surfaces[67]. Usually, biased techniques

converge faster than unbiased ones; yet, the problem lies on converging

to approximated solutions of the rendering equation instead of the correct

solution. Nevertheless, most of the times, this flaw is not perceived to the

naked eye.

Distributed Ray Tracing

Ray Tracing is commonly associated with off-line rendering due to its

high computational costs that don’t make it suitable for real-time

17 An unbiased method would converge to the rendering equation solution, while a biased method would add
some noise to the converge limit (called bias).

Universidade do Minho
An OpenCL Ray-Tracer development and comparison over CUDA

45

applications. This is about to change with recent parallel resources present

in nowadays desktops. In fact, Ray Tracing has always been recognized as

a massively parallel algorithm since any ray can be intersected and traced

independently from the others. This property has been explored over time

in distributed architectures[65, 66, 63, 59, 58, 4, 55, 9] and

supercomputers[39, 38]. Although good results have been found in such

conditions, their structure and price specificity make them reasonable

options for a small group of users only. Notwithstanding, their research

has been applied and valued by industry, and originated the concept of

rendering farms, ie, clusters specifically driven to rendering.

However, their results open good perspectives to the growing parallel

capabilities of modern desktop PCs.

Desktop Implementations

The efficiency of the rendering farms is based on the available

parallel resources. With the introduction of similar resources in current

desktops18, the effort of exploring such resources in a resembling manner

increases. Thus, research has been done over recent multi-core

architectures available in commodity cost desktops. Aside from having

many cores, current CPUs provide SIMD instruction support. Such

instruction set extension is being explored by mainly grouping coherent

rays into one single instruction[6]. But there are also examples that do

not rely on coherent rays, like Boulos multi-threaded architecture for Ray

Tracing[53].

Apart from multi-core CPU developments, the successive increments

in GPU programmability also capture the interest of the community. The

Ray Engine[8] was the first approach to implement Ray Tracing on the GPU

by calculating the ray-triangle intersections in it. However, the bandwidth

18 Nowadays desktops usually have multi-core CPU and GPU with multiprocessors capable of doing general
purpose computing.

46 Related work

limitations became the major bottleneck. Purcell et al.[41, 42] reduced

such communications by computing almost everything in the GPU. Others

took this approach[17, 29] further, but failed because of the limited GPU

architecture at the time. With the release of the new generation of graphic

boards along with technologies such as CUDA, GPU architecture limitations

can be avoided/concealed in a simpler way. However, algorithms and

system designs should still take into account the graphic boards

differences from general purpose processors. The work from recent

investigations[47, 1, 33] should be properly matured and trigger precise,

specialized, and optimized solutions for such hardware. Usual Ray Tracing

algorithms scarcely meet GPU architecture requirements to maximum

efficiency. Constraints such as memory coalescence, warp-dependent

branch conditions, etc. are difficult to apply since existing algorithms have

intrinsic random accesses to memory and branching is usually ray-

dependent.

Even so, such approaches are evolving quickly and promising results

were already unveiled. For instance, real-time performance is being

achieved by Georgiev et al.[19, 18] still in developing scene graph

specially designed for their real time Ray Tracing engine.

Ray Tracing Hardware

Ray Tracing has evolved over time mainly by software means. Still,

the discussion and research on designing specific Ray Tracing hardware is

rising among the community. The problem is that current graphic boards

– rasterization-based – are so ubiquitous that other approaches are

completely forgotten or neglected.

Other problems rely on the wide range of algorithms and data

structures available. Moreover, each of them is adapted to specific

requirements. It is very hard to supply general purpose Ray Tracing

hardware having to choose a specific combination of them. Even worse, if

Universidade do Minho
An OpenCL Ray-Tracer development and comparison over CUDA

47

that was possible, such abstraction would have performance penalty

costs.

Nevertheless, existing approaches[48, 70] show that such specific

hardware is feasible and cheap as rasterization-based one. It also inherits

some valuable proprieties from Ray Tracing algorithms such as scalability

either in the number of primitives in the scene or in the number of

processors present in the system or in both.

Others approaches rely on more general-purpose hardware with

extreme parallel resources conceived for other purposes. Notwithstanding

being rare in desktop environments, this kind of hardware is often easily

adapted to such a reality. A mere example may be given with the Cell

Processor. The Sony Cell Processor19 developed jointly with Toshiba and

IBM was especially designed to Sony PlayStation 3. Nevertheless its

extreme parallelism is being explored to meet Ray Tracing

requirements[3] and has already proven that it can reach a 4 to 8 faster

performance than usual x86 CPUs.

Acceleration Structures

A naïve Ray Tracing implementation would have to test the

intersection between each ray and each primitive. This would scale linearly

with the increase of primitive and/or image resolution. Such a penalty is

avoided by storing primitives in a data structure which prevents some

intersection tests from being done. Depending on the logical basis of the

structure – spatial subdivision or object hierarchy -, this is done by

“guessing” which primitives are likely to be the first to be intersected or

by discarding groups of primitives at once. Indeed, spatial subdivision is

barely the opposite of object hierarchy and vice-versa. While the former

divides space into individual cells where more than one primitive may be

19 http://researchweb.watson.ibm.com/cell/

48 Related work

present, the latter individually references each primitive but each space

cell may be overlapped multiple times in different leaf nodes.

Despite any concept differences among all techniques, the

comparison between them usually relies on two different aspects:

• build quality, ie, the performance obtained in each render and

• build time, ie, the time needed to build and/or update the data

structure.

Whereas the first barometer importance is quite obvious and related

to overall Ray Tracing performance, the second could arise some doubts.

Indeed, in static scenes one could afford to wait more in preprocessing if

that would mean more frame rates at execution time. However, dynamic

scenes imply changes and updates in the acceleration structure which are

not predictable at preprocessing time. If the structure takes too long to

re-adapt to scene changes, the profit it provides while rendering may not

compensate after all. However, the balance between these two

measurements is task-dependent. It depends on the scene complexity,

organization and animation, on the system design and on the targeted

devices.

“(…) even though a large number of approaches have been proposed,

it is very challenging to compare them to each other because they use

different code bases, hardware, optimization levels, traversal algorithms,

kinds of motion, test scenes, and ray distributions. Second, with so many

factors influencing the relative pros and cons of the individual approaches,

the “best” approach will always depend on the actual problem, with some

approaches best in some situations, and others in other situations.”20

Among spatial division techniques, grids[62] and kd-trees[61] stand

out as the most popular ones. Samet’s studies[45, 44, 46] in spatial data

structures provide an in-depth look on such techniques. More recent

20 In State of the Art in Ray Tracing Animated Scenes[64].

Universidade do Minho
An OpenCL Ray-Tracer development and comparison over CUDA

49

investigations provide methods to adapt kd-trees to GPU architecture[24,

40], for dynamic scenes inclusively[50].

On the other hand, bounding volume hierarchies (BVH) are the object

hierarchy technique mainly used. When compared to kd-trees21, BVHs

tend to be more flexible to incremental updates whereas on pure

rendering, kd-trees are assumed to perform better[22]. Despite today’s

interest in BVHs, this technique was neglected for years, at the time when

dynamic scenes in Ray Tracing were too expensive to be feasible at real-

time rates. Since each primitive is referenced once only, build time is

much smaller than spatial division techniques[60, 68]. Just as kd-trees,

BVHs targeting GPU architecture is an active area of research[21, 32].

Indeed, some problems are present in both techniques such as the lack of

a stack for tree transversal.

21 Grids are usually used because of its simplicity but most of the times discussion of best suited acceleration
structure is restricted to kd-trees BVHs.

Universidade do Minho
An OpenCL Ray-Tracer development and comparison over CUDA

51

5 Methodology and development strategy

This study involves the development of a Ray Tracer from scratch

using state of the art research; nevertheless, the main focus of this thesis

is not on the development of a Ray Tracer per se, but on testing and

evaluating how suitable it is to use OpenCL in Ray Tracing and its

comparison with CUDA.

Notwithstanding, the Ray Tracer is intended to be integrated on the

Maximus FP7 European project. Maximus aims at providing professionals

with tools – both in hardware and software – to deal with HDR images in

real-time. Such tools should play a key role in prototype evaluation and

construction. The full project description may be found on its website.22

Before OpenCL implementation, a standard sequential CPU based

version should be developed. This version is used as a startup point to

GPU implementation. Moreover, it provides a fair perception of GPU

version gain23.

The present study evaluates how OpenCL can contribute to faster Ray

Tracing reaching real-time rates, if possible. Even though performance is

the most important element, it is not the sole factor under appreciation.

The learning curve, debug facilities, programming environment and so on

are also subjected to evaluation.

During development phase only nVidia has released drivers with

OpenCL support. For a straight comparison, CUDA version is as close as

possible to the OpenCL one. On the one hand this clarifies if there is any

performance penalty in using OpenCL. On the other hand CUDA is not

intended to be as general as OpenCL and provides features and

enhancements that OpenCL does not. In particular, the projected design

might not be optimized to CUDA architecture. With a straight comparison

22 http://www.maximus-eu.info
23 Although CPU version could run much faster if multi-threaded.

52 Methodology and development strategy

one should be able to evaluate direct performance between both – which

is exactly what is intended. This scenario might be handy for newcomers -

who are not yet used to CUDA tricks and tweaks. Furthermore, it makes

particular sense right now, when OpenCL is still a newborn technology; as

time goes by, OpenCL compiler should get smarter and more efficient in

order to take advantage of each specific platform. Meanwhile, comparing

different designs – optimized to each architecture/technology – would

result in a clear disadvantage to OpenCL. All in all, the idea is to question

if features provided by OpenCL are efficient instead of trying to

understand if they are enough.

Thus, it is understandable that the performance evaluation is made

essentially through the comparison with CUDA. Nevertheless, CPU

implementation should not be neglected for such purposes and also fits

benchmarking. Even if it is not the main scope of this work, real-time Ray

Tracing is a subconscious goal. At the end, results should also be

compared with the state of the art. Typical scenes will be used at different

image resolution, from different camera angles and positions. Aside from

that, different graphic boards should also be used. The scability of the

developed system should also be perceptible from the collected

information/results. Even more important than that is to understand how

much OpenCL could help in improving current state of the art.

The other areas under evaluation are somewhat more subjective.

Anyway, as a newcomer to GPU computing, a close first contact with each

technology should help distinguish the advantages and inconveniences of

each in a neutral manner.

The following subchapters explain in detail the problem in hands and

how it is going to be solved. Furthermore, it is shown how the solution is

going to be evaluated.

Universidade do Minho
An OpenCL Ray-Tracer development and comparison over CUDA

53

5.1 Hypotheses

Concerning performance, CUDA is expected to be slightly faster than

OpenCL. OpenCL uses a higher language level than CUDA; this implies

more code translation into device recognizable code. Moreover, OpenCL is

a newborn technology; it is easily understandable that its compiler might

not be as efficient as it could. Nonetheless, the performance difference

should be marginal.

If, on the one hand, being the most recent technology may imply

disadvantages in performance, on the other hand, it may be an advantage

in its architecture and operation; ie, it should be cleaner and easier to

learn. Moreover, OpenCL is intended to abstract developer from the device

being used; thus, the greedy details of the device architecture should be

concealed also.

5.2 Scenario

Despite a sincere effort to develop a technologically independent

solution, in order to build up a system skeleton, some adoptions should be

taken. First of all a graphics API should be adopted. It should provide

methods for virtual scene creation, manipulation and visualization through

an operating system window. This choice is the most compromising one

and should be carried out with extreme care. After all, the whole system

will rely on it with its advantages and disadvantages; secondly, it also

compromises development phase: there are simple and complex libraries,

in higher or lower level, etc; finally, it may also imply the programming

language used24.

24 Considering CUDA and OpenCL integration, C/C++ should be adopted.

54 Methodology and development strategy

At low level side one OpenGL and Direct3D are the most common

used rendering libraries. A whole chapter could be done comparing both,

but, in fact, none of them seemed suitable for the problem; at least, not

directly. Both provide no scene abstraction and would lead to abusive

development time to achieve expected goals. A higher level library may

enable faster development by providing higher scene abstraction and by

not relying exclusively on the rendering process. Instead, it should

combine window management, visualization, rendering, input devices

recognition, file system interoperability and scene files load, store and

interpretation. A lot of examples could be presented such as GLX, CGL or

WGL. Nevertheless, in what concerns scene description and manipulation,

scenegraph-based approaches seem to provide better tools to scene

perception, manipulation and access. As redundant as this may seem,

scenegraph consists of storing the scene into a graph. This provides a

better level of abstraction than having the entire scene in a “primitive

soup” without proper relation among primitives. This approach is not new

and is shared among several libraries: OpenSG, OpenSceneGraph,

Performer, Open Inventor, Java3D, etc.

Among them OpenSG is the one used because it is C++ compliant,

has cross-platform capabilities25 and multi-threaded data structures

support. Moreover, it is an active project with good community support. It

is combined with Qt to window management and input devices handling.

Last but not least, Adaptive Communication Environment (ACE) is

adopted to simplify thread spanning, communication and management.

Parallel code is by nature more complex, making it hard to understand

and maintain. Also, some potential software bugs are embraced with

parallel computing. Race conditions, synchronization, data dependency,

etc., should be areas to be aware of in order to avoid further problems.

ACE high level object-oriented programming interface provides a powerful

yet simple method to adapt thread management, synchronization and

25 As it used OpenGL as rendering library, it is supported either in Windows either Unix based platforms.

Universidade do Minho
An OpenCL Ray-Tracer development and comparison over CUDA

55

communication to a class-oriented project. Another ACE main advantage

is portability: its cross-platform support is very handy since usually each

operating system (OS) has its own means of thread management,

memory management and inter-process communication. ACE isolates this

concrete features, different from one OS to another through a unique set

of platform-independent classes and methods.

5.3 Variables

Evaluation relies on analyzing the behavior of a group of variables. It

may be seen as a mathematical function, with independent and dependent

variables. Independent variables are the Ray Tracer versions - CUDA,

OpenCL and CPU – and the virtual scenes used. Dependent variables are

the frames per second achieved by each configuration; ie, by each pair of

Ray Tracer version and virtual scene.

5.4 Subjects

Maximus has architecture and car styling professionals involved in the

evaluation of the project. However, this evaluation will not take place

within the timeline of this thesis work. Nonetheless, this solution potential

users are present in such areas. Notwithstanding, any global illumination

renderer in general, and Ray Tracing in particular, may be used in a wide

range of areas for many different purposes.

56 Methodology and development strategy

5.5 Methodology and Procedure

The solution consists of three independent Ray Tracers: one using

CUDA, another one using OpenCL, both parallel, and a third one that runs

on the CPU serially.

The Whitted Ray Tracing algorithm is the one adopted. Nevertheless,

some add-ons were introduced in order to not only meet Maximus project

requirements but also enrich Ray Tracer with more effects.

The whole project development is described on the following chapter.

Universidade do Minho
An OpenCL Ray-Tracer development and comparison over CUDA

57

6 System design

The solution was split into several projects in order to isolate

technological dependencies and enhance integration facility. That is of

major importance regarding future integration on a vast interactive

renderer on the scope of Maximus FP7 European project.

Figure 6-1. Modules of the System

As shown in Figure 6-1, three specific ray tracers were developed:

Cpu Ray Tracer, OpenCL Ray Tracer and a CUDA Ray Tracer. These three projects

depend on a general Ray Tracer. In practice, Ray Tracer implements an

abstract class which is inherited by the classes defined on each specific

representation. Ray Tracer sole method is virtual and it is the invocation to

ray trace the scene. Depending on which specific representation is created

it is overlapped with the method of the specific ray tracer.

58 System design

Figure 6-2. Whole System

The final solution incorporates another project which is a mere

application using the above subsystem as shown in Figure 6-2.

6.1 Chapter organization

Each module is fully explained below. Since it is defined in Ray Tracer,

BVH structure and construction is presented in the respective subchapter.

Also, bearing in mind the adopted methodology, serial CPU version of the

Ray Tracer was built first and was as a model for the other versions. Thus,

Cpu Ray Tracer explanation also contemplates the Ray Tracing algorithm

itself.

6.2 Ray tracer

Ray Tracer class is an abstract class with a single virtual method to ray

trace. However it contains a BVH and the project encapsulates the whole

BVH definition and implementation. This implementation is object of

further discussion.

After state of the art review, BVH seems the simpler acceleration

structure to build and maintain. Moreover, it is competitive in performance

when dynamic scenes take place. However, one must keep in mind that

Universidade do Minho
An OpenCL Ray-Tracer development and comparison over CUDA

59

this study does not intend to compare different acceleration structures, so

any other could have been used for this study purposes.

The BVH is, in practice, a binary tree composed of primitives. A primitive

is either a node or a leaf. Nodes have a bounding box and two children -

other primitives. Leaves are at the bottom of the tree and represent

geometry elements - usually a group of triangles. BVH implementation

was adopted from Peter Shirley book "Realistic Ray Tracing"[51]. His BVH

implements axis aligned bounding box (AABB) for a faster transversal26.

This study implementation introduces, however, some additions to

Shirley's BVH. In practice, four classes were implemented: one BVH

element abstract class - BVH Primitive - inherited by:

• BVH - a default BVH node with an AABB and two children of type BVH

Primitive;

• Node Primitive - a class associated with a OpenSG geometry node and

a child of type BVH Primitive;

• Triangle - the leaf element representing a triangle of the geometry

mesh.

BVH and Triangle are the usual BVH node and leaf, respectively27. Node

Primitive is a new concept which is a kind of adaptation from OpenSG scene

graph. It is meant to make the project more versatile and prepared for

dynamic scenes28. Node Primitives are a mixture of leaf and node; on the

one hand they are interpreted and treated as leaves, on the other they

also have children. In fact, the final result can be interpreted as a BVH of

BVHs, ie, there is a primary BVH where the leaves are Node Primitives and

each leaf has another BVH attached to it where the leaves are Triangles.

26 AABB ray intersections tests are simpler than non AABB ones. Thence, much more research has been done
over the former ones resulting in well optimized algorithms that not discovered – and maybe not even possible
– on non AABB.
27 Though usually a leaf is composed of more than one triangle for performance/memory issues.
28 Yet, dynamic scenes are not working due to some missing implementations.

60 System design

Figure 6-3. Primary and Secondary BVHs

As shown in Figure 6-3, all the Node Primitives are at the same tree

depth. This is due to the building method: as a matter of fact, a first BVH

of Node Primitives is built and then for each one a new BVH is built with its

Triangles. This separation of concepts is helpful because it is a good

commitment between scene graph primitives organization and primitive

soup style. The concept that lies behind is that rigid objects will never

need to update its BVH, so dynamic scenes of rigid objects would imply an

update for the first BVH only - the one of Node Primitives. The other BVHs

would not need to update because each Node Primitive has the OpenSG

geometry node transformation matrix attached to it. When a ray traverses

the tree it is multiplied by the inverted transformation matrix at each Node

Primitive enabling correct and updated intersection tests29.

At the end, the distinction between the upper BVH and all the lower

ones is so notorious that it would be even possible to have different

acceleration structures between the two levels. There is nothing against

the use of a BVH of kd-trees, for example. The single requirement for this

would be to apply a different construction method to each one.

29 Refer to section 6.2.2 - BVH traversal.

Universidade do Minho
An OpenCL Ray-Tracer development and comparison over CUDA

61

6.2.1 BVH construction

No special heuristic was used for BVH construction: it is simply split

using the median point from each bounding box dimension. The axis being

used changes at each invocation between �, 9, and :.

6.2.2 BVH traversal

The tree traversal is also adopted from Shirley implementation. In the

case of the BVH traversal it can be depicted like this:

if ray hits this bounding box {

 if ray hits left child or ray hits right child

 return closest intersection information;

 else

 return false;

}

else

 return false;

BVH Primitive* buildBVH(BVH Primitive** primitives, int axis) {

 if there is only 1 primitive

 return first element of primitives;

 if there are exactly 2 primitives

 return new BVH(primitives[0], primitives[1]);

 Bounding Box box;

 for each primitive from primitives

 surround box with current primitive bounding box;

 Point pivot = median point of box;

 int split point = find point of split in primitives according to current axis;

 BVH Primitive* left = buildBVH(primitives until split point, (axis+1)%3);

 BVH Primitive* right = buildBVH(primitives from split point, (axis+1)%3);

 return new BVH(left, right, box);

}

Algorithm 6-2. BVH class ray traversal

Algorithm 6-1. The BVH build function

62 System design

The Node Primitive implementation comes down to the ray

multiplication by the inverse matrix:

6.2.3 BVH intersection tests

The BVH traversal implies two intersection tests: one with the

bounding boxes present at each BVH and the other with the BVH leaves -

the Triangles. Both were also adopted from Shirley’s book[51].

For ray intersection purposes, bounding boxes are interpreted as a

set of six lines - two in each axis. Shirley simplifies the concept to two

dimensions before extrapolating to three dimensions:

"The 2D bounding box is defined by two horizontal and two vertical

lines:

� � �;,
� � �<,
9 � 9;,
9 � 9<.

The points bounded by these lines can be described in interval

notation:

��, 9
 > ?�;, �<@ A ?9;, 9<@."
Thus, the algorithm deals with each pair of lines at a time to compute

the interval between the closest and the furthest intersection point. After

calculating this interval for each pair of lines, a new interval is computed

from the intersection of the three previously computed ones. If the

Matrix m = inverse of my transformation matrix;

ray = ray * m;

return my child intersection with ray;

Algorithm 6-3. Node Primitive class ray traversal

Universidade do Minho
An OpenCL Ray-Tracer development and comparison over CUDA

63

resulting interval is empty, then no intersection has been found. The

following pseudo-code exemplifies the stated algorithm:

Triangle - ray intersection is a bit more complex. On the one hand the

triangle is not necessarily aligned with any axis. On the other hand a

simple true/false return does not provide enough information, ie, it is also

needed to know where the intersection occurred. Barycentric coordinates

are a mean of encoding this information.

Figure 6-4. Barycentric Coordinates

Tx min = (bounding box first line of x - ray position on x) / ray direction on x;

Tx max = (bounding box second line of x - ray position on x) / ray direction on x;

Ty min = (bounding box first line of y - ray position on y) / ray direction on y;

Ty max = (bounding box second line of y - ray position on y) / ray direction on y;

Tz min = (bounding box first line of z - ray position on z) / ray direction on z;

Tz max = (bounding box second line of z - ray position on z) / ray direction on z;

min = max of Tx min, Ty min and Tz min;

max = min of Tx max, Ty max and Tz max;

if min is greater than max

 return false;

else

 return true;

Algorithm 6-4. Axis aligned bounding box - ray intersection test

64 System design

Figure 6-4 shows a triangle defined by points B, C and �. The triangle
can then be described according to barycentric coordinates D, E and F:

 6�D, E, F
 � DB 7 EC 7 F� G D 7 E 7 F � 1 Equation 6.1

Moreover, barycentric coordinates must be positive. Then, after

calculating point p, one can say whether it is inside the triangle by testing

if all barycentric coordinates are positive and if their sum is equal to one.

To compute barycentric coordinates one can use the areas of sub-

triangles IB, IC and I� according to the following rule:
D � IBI ,
E � ICI ,
F � I�I .

where A is the triangle area. In practice, just two coordinates need to be

computed since D may be written according to E and F:
D 7 E 7 F � 1 J D � 1 K E K F , then

6�E, F
 � �1 K E K F
B 7 EC 7 F�
J 6�E, F
 � B K EB K FB 7 EC 7 F�

J 6�E, F
 � B 7 E�C K B
 7 F�� K B

Bearing in mind Equation 2.4 a ray 6�5
 hits the plane where
 � 7 5� � B 7 E�C K B
 7 F�� K B
 Equation 6.2

To solve Equation 6.2 for 5, E and F one should first decompose the
equation into each one of the three coordinates:

� 7 5� � B 7 E�C K B
 7 F�� K B
,

Universidade do Minho
An OpenCL Ray-Tracer development and comparison over CUDA

65

� 7 5� � B 7 E�C K B
 7 F�� K B
,
� 7 5� � B 7 E�C K B
 7 F�� K B
.

These three equations may be written as a standard linear equation:

LB� K C� B� K �� ��BM K CM BM K �M �MBN K CN BN K �N �N
O PEF5 Q � PB� K ��BM K �MBN K �N Q

To solve such a linear system one may apply Cramer's rule and get the

solutions as:

E �
RB� K �� B� K �� ��BM K �M BM K �M �MBN K �N BN K �N �N

R
|I| ,

F �
RB� K C� B� K �� ��BM K CM BM K �M �MBN K CN BN K �N �N

R
|I| ,

5 �
RB� K C� B� K �� B� K ��BM K CM BM K �M BM K �MBN K CN BN K �N BN K �N

R
|I| ,

where matrix A is

T � LB� K C� B� K �� ��BM K CM BM K �M �MBN K CN BN K �N �N
O.

After reaching these values the intersection test is true if E U 0 G F U
0 G E 7 F W 1.

66 System design

6.3 CPU ray tracer

CPU Ray Tracer class inherits from Ray Tracer one. It implements a

simple and serial Ray Tracing algorithm, despite the current frequent CPU

parallelism. It is intended to be the canonical version from where any

other branches – this being the reason why it was the first to be built. This

subchapter will explain the Ray Tracing algorithm adopted in a step by

step procedure through every feature of the Ray Tracer.

Beforehand, primary rays are calculated. These rays share the same

origin - the camera position - and go through each pixel of the image.

Each pixel then follows a path - with possible branches - until a given

point. The whole contribution of the path is then collected to the

corresponding pixel. The process is done in a Whitted style, though with

some increments/modifications.

Each ray is intersected with the BVH. If no intersection is found then

a cube map is used as background. The cube map returns a color from a

specific point of one of its six faces according to a ray direction.

6.3.1 Diffuse color and texture mapping

If an intersection is found, the diffuse color of the intersection point is

computed. It is either the result of the interpolation of each vertex diffuse

color or the surface material diffuse color. The use of colors per vertex

allows the use of another technique as a pre-process in order to simulate

other kind of effects (typically low-frequency effects)30. It is especially

relevant to Maximus project where it is intended to combine PRT and Ray

Tracing. In this way, Ray Tracer may be seen as a consumer of the PRT

output – stored as vertex colors.

30 However, it may imply a more detailed model. For instance a plane may be represented with only four
vertices, but it has colors per vertex, it may need more vertices in order to provide more information about its
color along the entire plane.

Universidade do Minho
An OpenCL Ray-Tracer development and comparison over CUDA

67

When in the presence of textures, this diffuse color is properly

blended with them according to the texture environment mode that may

be one of these:

• GL_REPLACE - replaces current diffuse color with texture color;

• GL_DECAL - interpolates between current diffuse color and texture

color according to texture alpha value31;

• GL_MODULATE - multiplies current diffuse color with texture color

and

• GL_BLEND - interpolates texture environment color and current

diffuse color according to texture color.

To provide a clearer view, consider XY as current diffuse color, ZY as
the texture color, Z[as texture alpha component, Z\ as the texture
environment color and X the final color.

GL_REPLACE X � ZY
GL_DECAL X � XY �1 K Z[
 7 ZYZ[

GL_MODULATE X � XYZY
GL_BLEND X � XY �1 K ZY
 7 Z\ZY

Table 1. Texture environment mode formulae.

Table 1 shows the formulae behind each texture environment mode.

If more than one texture is applied to the surface, the process is done

iteratively until all textures have been applied. The order of textures is

important given that each one consumes the previous result as current

diffuse color, ie, the color resulting from the first - X -, is treated as
current diffuse color by the second - XY – whose result is the current
diffuse color of the third, and so on.

31 if no alpha value is present it is assumed to be 1 and GL_DECAL behaves just like GL_REPLACE.

68 System design

Figure 6-5. Multi-texture example

Figure 6-5 exemplifies the process described above: a marble texture

in GL_REPLACE mode is applied to a green material. The green is thus

replaced by the texture which is then modulated with a grid texture.

Finally the material is represented as wood because a wood texture is set

with GL_REPLACE. Mind the importance in the texture order. For instance,

if the wood texture was the first one, the material would end up as a

gridded marble instead of wood.

The final color - X -, with or without textures, is interpolated with the
color obtained from refraction and reflection rays based on Fresnel

equations. Fresnel equations are complex and compute-intensive, so an

approximation is adopted. Fresnel reflection factor -]� - is then calculated
as

]� � �^B_`�CaB� 7 ��B^b A �c 7 d. e
`�fb�, g, c
 Equation 6.3

where

 �^B_`�B, C, �
 � _ah�_B�B, C
, �
 Equation 6.4

being d the direction of the ray and e the surface point normal. CaB�, ��B^b
and `�fb� are auxiliary variables defined on each material shader.

Universidade do Minho
An OpenCL Ray-Tracer development and comparison over CUDA

69

On the other hand Fresnel transmission factor - i� can be deducted
from Fresnel reflection factor:

 i� � c K]� Equation 6.5

From Equation 6.5 it is easily understood that Fresnel equations do

not take into account diffuse color; they just provide the amount of

refraction and reflection according to intersection point normal, ray

direction and some material properties. In order to take into account

diffuse color, two variables are introduced to each material shader:

reflectivity and transmittance. The former is interpolated with the

reflection ray resulting color whereas the latter does exactly the same

thing with the refraction ray. Considering � as reflectivity, � as
transmittance and �� as the color returned from reflection and �� as the
color returned from refraction, the final color -] - may be represented as

] �]� A �� �c K �
 7 �� �
 7 i� A �� �c – �
 7 �� �
 Equation 6.6

Equation 6.6 contains almost all variables that play some kind of role

in the image result. Concretely, it represents the color information that is

returned by every ray which intersects any primitive. Consider, however,

the recursive nature of such algorithm since both �� and �� are in practice
new rays that would rely on the same kind of calculation, ie, they are

recursive calls to the same function but with different rays. Without any

stop condition, the algorithm would only end when no ray hit any surface

and cube map colors were retrieved - since cube map color acquisition

requires no further ray to be shot.

However, even simple scenes may end up in an infinite loop and

computing of intersections may never cease. A stop criteria should then

be adopted to avoid such a scenario. Among dozens of different

possibilities the simplest one is to stop at a maximum ray depth level. This

solution is deterministic and implies the neglect of light scattering from a

70 System design

given point on, resulting in a lower quality image. However, since an

attenuation factor is multiplied at each invocation, deeper level rays tend

to contribute less to the result than shallow level rays; moreover, since it

is always multiplying itself, this contribution tends to decrease

exponentially. Though this is just a tendency, particular objects, materials

and/or light conditions could result in high contributions from deep level

rays; notwithstanding, this assumption is valid most of the times.

From Equation 6.6 we get the complete equation of the returned color

of each ray-object intersection as

] �]� A �� �c K �
 7 �� k �
 7 i� A �� �c K �
 7 �� I �
 Equation 6.7

where both I and k are three channel colors. Each is either multiplied by
reflection or refraction returned color. Since every component is in

practice a value between 0 and 1 it can also be interpreted as a factor of

attenuation. k corresponds to material specular color and I to material
ambient color. Whereas specular component is not completely

misinterpreted, ambient color has not been definitely meant for this kind

of attribute. However, it has been adopted on the scope of this work,

because OpenSG materials do not contain any other attributes available to

simulate what is intended and because ambient color has not been used in

anything else.

The next figure shows a blue transparent ball on a plane. The left

image does not take into account any ambient color whereas the right one

has a blue ambient color defined.

Universidade do Minho
An OpenCL Ray-Tracer development and comparison over CUDA

71

Figure 6-6. Ambient color effect

It may be interpreted as if the left image refraction rays were always

white whereas on the right image they turn into blue.

6.3.2 Reflection

As stated, �� and �� imply shooting new rays. Since only perfect
reflection/refraction is simulated, these rays are calculated in a

deterministic manner.

Figure 6-7. Each Ray (C) originates a reflection ray (��) and a refraction ray (��)

72 System design

For the reflection ray, the law of reflection is used. The law of

reflection states "(..) that the angle of incident light relative to the surface

normal is the same as the angle of reflected light, and that the incident

direction, surface normal, and reflected direction are coplanar."32

Figure 6-8. Specular Reflection

As depicted in Figure 6-8, the reflected ray - � - is computed
according to the incident ray - � -, the surface normal - h - and the angle
between them - �. Bearing in mind the figure nomenclature, � is
computed as

 � � � 7 lB Equation 6.8

where B � �.hmhml h. Assuming h is a unit vector, the division for the square of
its length is unnecessary, ending in

 � � � 7 l A �. h A h Equation 6.9

32 in Realistic Ray Tracing[51].

Universidade do Minho
An OpenCL Ray-Tracer development and comparison over CUDA

73

6.3.3 Refractions

More variables play a role in refraction ray calculation. It is harder to

understand and model because it does not depend exclusively on incident

ray and surface normal. Material properties - such as density – must also

be kept in mind. This interplay is described by Snell's law.

Figure 6-9. Snell’s law

Mathematically, considering a ray traveling from material 1 to

material 2, the Snell's law is represented as

 ncopq �c � nlopq �l Equation 6.10

where �c is the angle between incident ray and surface normal, �l is the
angle between refracted ray and the inverted surface normal and nc and nl are the indices of refraction of material 1 and 2, respectively.

74 System design

From Figure 6-9 one can perceive that Snell's law is helpful in finding

refracted ray direction. One may then derive Equation 6.10 in order to

retrieve �l:
 opq �l � ncnl opq �c Equation 6.11

Figure 6-10. Vector components

Figure 6-10 illustrates how both incident ray - � - and refracted ray - � - may be split into tangent and normal part. This consideration is handy
for refracted ray calculations because it is easier to calculate each part

separately and sum up the result at the end since

 � � �r 7 �s G � � �r 7 �s Equation 6.12

One may rely on each part calculation in order to get refracted ray �.
Simple trigonometry implies that

Universidade do Minho
An OpenCL Ray-Tracer development and comparison over CUDA

75

t�rt|�| � opq �l G |�s||�| � uvo �l ,
t�rt|�| � opq �c G |�s||�| � uvo �c

Equation 6.13

Assuming both � and � are normalized Equation 6.13 derives to

t�rt � opq �l G |�s| � uvo �l ,
t�rt � opq �c G |�s| � uvo �c Equation 6.14

This assumption is highly important for easily computing both normal

and tangent part. From Equation 6.11 and Equation 6.14 one may

represent tangent part of refracted ray as

 t�rt � ncnl t�rt Equation 6.15

Figure 6-10 shows that 5r and .r are parallel and pointing in the same
direction, justifying why Equation 6.15 may be simplified into

 �r � ncnl �r Equation 6.16

To discover the normal part one may rely on Pythagoras theorem:

 |�|l � t�rtl 7 |�s|l J |�s| � w|�|l K t�rtl Equation 6.17

Once again 5 is a unit vector so Equation 6.17 may simplified to
 |�s| � wc K t�rtl Equation 6.18

From Equation 6.14, t�rt may be replaced by and result in
 |�s| � xc K opql �l Equation 6.19

76 System design

Given the fact that the normal part of the reflected ray has exactly

the same direction as the normal, but with inverse orientation and normal

being a unit vector, one can say that

 �s � K|�s| A h � K !xc K opql �l (h Equation 6.20

Bearing in mind Equation 6.12,

 � � ncnl �r K !xc K opql �l (h equation 6.21

it remains to be noticed that �l is precisely what is unknown in this
process. Thus, opql �l must be replaced by known arguments. Fortunately,
Snell's law - Equation 6.11 - clarifies how to get opq �l from material
indices of refraction and opq �c so

 opql �l � !ncnl(l opql �c Equation 6.22

By applying this information in equation 6.21 one can obtain

 � � ncnl �r K ywc K !ncnl(l opql �c z h equation 6.23

To compute �r one may use Equation 6.12 and get
 �r � � K �s Equation 6.24

where a similar argument as the one in Equation 6.20 would clarify that

 �s � K|�s | A h equation 6.25

Recalling Equation 6.14

 �s � K uvo �c A h Equation 6.26

Universidade do Minho
An OpenCL Ray-Tracer development and comparison over CUDA

77

So getting back to equation 6.23 it turns clear that

� �
 ncnl �� 7 uvo �c A h
 K ywc K !ncnl(l opql �c z h Equation 6.27

From this point on - � being known - one may try to optimize its
calculation a bit in order to achieve better performance. First, given that

sine and cosine calculations are expensive, one should avoid computing

both when it is possible to compute one from the other. Fundamental

trigonometric identities states that

 opql � 7 uvol � � c Equation 6.28

and makes possible to rewrite Equation 6.27 to

� �
 ncnl �� 7 uvo �c A h
 K ywc K !ncnl(l �c K uvol �c
 z h Equation 6.29

Then one should avoid scalar-vector operation because it implies

casting scalars to vectors and, depending on the architecture, making

various scalar operations instead of just one vector operation. Since h is
the only vector in Equation 6.29 it seems sensible to apply distributive

properties in order to get just one multiplication per h

� �
 ncnl � 7 yncnl uvo �c K wc K !ncnl(l �c K uvol �c
 z h Equation 6.30

6.3.4 Thickness

The discussion on refraction above is valid for each material

transition. This means that the ray gets refracted not only when it enters

78 System design

the material but also when it leaves it. However, virtual models do not

usually specify a detail such as material thickness; at least not in a

geometric manner. A glass window is commonly represented with a simple

plane.

Figure 6-11. The difference in either considering thickness or not

Considering the above figure, it is easily understandable that a naïve

implementation of refraction to custom virtual models would lead to

undesirable results. However, modifying the geometric model is not the

best option neither because it would result in burdensome models.

Instead, it is simpler to define a variable that specifies material thickness

in the material shader. This variable determines the length of the

refracted ray inside the material. One should however be aware that this

usage is a mere estimation and is not physically correct, since thickness

actually varies according to the refracted ray angle. Yet, refraction is so

complex that the introduced errors are undistinguishable through the

naked eye.

Universidade do Minho
An OpenCL Ray-Tracer development and comparison over CUDA

79

6.3.5 Chromatic Dispersion

All the discussion about refraction has been oversimplified up till now.

In nature, light does not refract in an equal way along the entire

wavelength as it has been assumed previously. In reality nc and nl change
along the entire wavelength. For instance, this effect can be seen when

light traverses a prism and a rainbow appears. In practice, the light

follows different directions along its wavelength when refraction occurs

resulting in this visual phenomenon. However, light is a wave with an

analog signal forming a continuous wavelength. Nevertheless, it is

common to assume its division into three discrete components: red, green

and blue. This simplification is adopted and the next discussion relies on

this assumption33. Basically, this implies shooting three refracted rays

instead of just one.

Figure 6-12. Chromatic Dispersion

33 However the concepts should apply similarly to other kind of discretization.

80 System design

Providing each of these rays only deals with one component, it is

unnecessary to proceed with computations for the entire wavelength.

Instead, each component ray only deals with this component when

retrieving diffuse color and during the texture mapping process. Moreover

a refraction of a previously refracted ray only originates one new

refraction ray. For instances, consider the example of a ray that hits a

surface and gets refracted. Taking into account the fact that this ray

represents the entire wavelength its refraction originates three refracted

rays, each one for each component. Then, if any of these rays gets

refracted in another place, it is only necessary to find the contribution

from the single component each ray deals with. So, one may only shoot

one ray with the same wavelength. This scenario is represented in Figure

6-13.

Figure 6-13. Chromatic dispersion and thickness

The inhibition of shooting unnecessary rays, along with the reduction

of diffuse-related calculations into only one component leads to an

important performance enhancement. Whereas the former avoids

innumerous unnecessary intersection tests, the latter one simplifies

diffuse color and texture mapping calculations.

Universidade do Minho
An OpenCL Ray-Tracer development and comparison over CUDA

81

6.3.6 Algorithm

As previously referred CPU Ray Tracer class implements a serial ray

tracer. Basically it executes a loop where at each step a primary ray is

computed from the camera position and through a particular pixel. Then it

is intersected with the scene. If it does not intersect any object then it

retrieves the background color; otherwise, reflective and refractive rays

are traced and the process starts again recursively. These calculations

lead to pixel final color. The whole process is repeated to each pixel until

the whole image is computed.

6.4 OpenCL ray tracer

OpenCL Ray Tracer class implements a parallel ray tracer to run in

OpenCL compatible devices. Since only nVidia graphic boards have

released to date OpenCL compatible drivers, this implementation is

especially designed and optimized to meet their architecture.

Nevertheless, several algorithm and data structures changes are

mandatory to OpenCL. First of all, recursion is not supported. Secondly,

pointers are hard to adapt, maintain and operate in OpenCL, aside from

the fact that their manipulation is highly inefficient. Last but not least,

OpenCL device execution is invoked through a command queue which

introduces the notion of host and device communication is not present at

the moment. All these changes are discussed next, one at a time.

82 System design

6.4.1 BVH adaptation

BVH inherent tree structure is definitely not optimized to OpenCL

device architecture. Recursion is not supported because there is no stack

available. Moreover pointers are not fully supported. On the other hand,

these devices work better on arrays or equivalent, especially when using

coalescing memory accesses. Binary tree BVH representation should then

be converted into a more suitable and co-operating data representation,

preferably in an array with enough information to allow stackless traverse.

The adopted solution was adapted from Simonsen’s[54] approach:

Figure 6-14. BVH traversal example

The concept consists of numbering every node in a deep first, left to

right order. As represented in Figure 6-14 these numbers match the node

position in the array. Moreover, each node has an escape index pointing to

the node to escape if no intersection is found. This scenario is illustrated

by the dotted arrows in the diagram. Simonsen’s implementation used a

texture to store the tree traversal representation and not the tree itself,

although GPGPU allows joining both into one single representation.

Simonsen’s approach also states that leaves do not need to store any

escape index because their escape node is always the next one.

Universidade do Minho
An OpenCL Ray-Tracer development and comparison over CUDA

83

However some adaptations from the built BVH must be made before

it can be converted into this representation:

• Firstly, Node Primitives should be cleared from the tree structure

because their semantic is completely different from other nodes.

• Secondly, any OpenSG structure must be replaced by other versions

- OpenCL compatible - with all the information hardcoded (this

includes normal, textures coordinates, node matrices, etc.)

The first question is solved by adding a material index to each BVH

node. This material index points to an element in an array with the

following information associated to the node:

• Fresnel parameters;

• Ambient and specular colors;

• Reflectivity and transmittance parameters;

• Refractive index for each channel;

• Thickness value;

• Index of binded textures and

• Node transformation matrix.

Each of these elements corresponds to exactly one OpenSG geometry

node; ie, the array with this information – denoted from now on as M -

has exactly the same size of the number of geometry nodes present in the

scene34.

The second question has already been partially solved with the

construction of the array M. What is missing now is the triangle vertices

information (position, normals, colors and texture coordinates indices)

which is solved by building up a new array - T - with this information. T

has the same size of the number of triangles in the scene since each

triangle corresponds to one element in it. Given that triangles are always

leaves of the BVH, and Simonsen’s approach does not need escape indices

on leaves, one may use escape index to point to triangle position in array

34 Note, however, that each element in M is pointed from multiple in array S.

84 System design

T. This is a misinterpretation of escape index semantics but it is worthy

because it allows the use of the same variable in different circumstances.

In addition, each BVH element should provide information about it, ie,

whether it is a node or a leaf. Should one consider escape index as

pointing to the same array or pointing to a triangle in another array?

Since every node has an attached bounding box this is answered by it: if

the bounding box is empty35, current element is a leaf; otherwise, it is a

node.

Nevertheless, three more arrays are built: one with textures

information (TexInfo) – size, number of channels, etc. –, another with

texture coordinates (TexCoord) and another which is formed by the

textures (Tex) themselves36. Texture indices in each element of M point to

one TexInfo element while texture coordinates indices are defined in each

triangle.

35 A bounding box is considered empty if both the minimum point and the maximum point are the origin
(0,0,0).
36 One texture starts where the previous one finishes.

Universidade do Minho
An OpenCL Ray-Tracer development and comparison over CUDA

85

Figure 6-15. Arrays inter-dependence example

Figure 6-15 is an illustrative example of what happens when an

intersection is found in a triangle that has two textures attached. When

considering the marked element in the tree – with index 5 in S - an empty

bounding box is found, making it a leaf. Escape index is then read and

interpreted as triangle position in T – index number 2. Considering that an

intersection has been found, material index in the S element points to an

element with node information in M. Each M element has several piece of

information about the textures it uses; in its midst are the textures which

are actually used. On the other hand, each triangle has three texture

coordinates – one for each vertex. This information is used to know what

86 System design

to read from TexCoords37. It is then combined with the textures being

used - read from TexInfo - to get what to read from each texture.

6.4.2 Algorithm

Since recursion is not supported in OpenCL, the whole algorithm has

been adapted to avoid such a mechanism. Moreover, CPU Ray Tracer is

intrinsically serial, a situation that should change now. These two

problems are somewhat co-related: introduction of parallel computing

depends on the algorithm; on the other hand, algorithm should be

designed to inhibit parallel computing.

Recursion is introduction with the need to compute reflection and

refraction rays and compute their result. Moreover, this result is evaluated

at each step according to Equation 6.6. Recursion could be avoided if, at

each step, before shooting new rays, current diffuse calculations as well

as the weight associated with each of the new rays were stored.

Preferably, diffuse calculations should be immediately summed up at each

step, ie, the image should be continuously processed by adding colors at

each pixel according to what has been calculated so far. However, each

sum should be multiplied by the current weight, that is from now on part

of the ray information. This way, primary rays have a weight of 1 which is

then multiplied, according to Equation 6.7, by

 { � {`�]� k �
 Equation 6.31

or

 { � {`�i� I �
 Equation 6.32

37 It is used in the same manner that OpenSG texture coordinates. Read OpenSG documentation for more
details.

Universidade do Minho
An OpenCL Ray-Tracer development and comparison over CUDA

87

at every step. The result – { - is the weight of the ray, which depends on

the weight of the parent ray - {`. Either Equation 6.31 or Equation 6.32 is
used, depending on the ray simulating reflection or refraction,

respectively. From both Equation 6.31 and Equation 6.32 it is clear that

ray weight is not scalar, instead it has three components – one for each

color channel.

Now that every ray has an associated weight attached, it is possible

to know the portion of the diffuse part of each ray that should be added to

the image. Thus, everything is set up to introduce parallel computing in

the algorithm using OpenCL compatible devices. Since OpenCL works

through job dispatches from the host to the device, and each memory

copy38 must be explicitly declared, the process is split into four different

kernels:

• Primary Rays

• Intersector

• Cube Map

• Renderer

‘Primary rays’ is responsible for computing the first rays, with origin

in the camera position; ‘Intersector’ intersects rays with the scene and

returns information about the eventual intersection; ‘Cube Map’ takes a

cube map as input and returns the background color for each ray that did

not intersect anything; and ‘Renderer’ takes rays that have intersected

the scene, calculates diffuse color at intersection point and computes

reflection and refraction rays, as well as their weight. The ‘Renderer’

output is consumed again by ‘Intersector’ in a loop until the stop criteria39

is met. The kernel sequence is represented in the next figure:

38 Both from host to device, from device to host or even from device to device.
39 Asssumed to be a maximum ray depth.

88 System design

Figure 6-16. Kernel sequence

Provided that in the whole process each ray is independent from any

other40, parallel computing may be easily introduced by setting that each

kernel takes cares of one ray only. Then, similar kernels may run at the

same time, in parallel on the OpenCL compatible device.

6.4.3 CPU – OpenCL device communication

At each frame, CPU – OpenCL host – starts by dispatching ‘Primary

Rays’ to the device. As input parameters, ‘Primary Rays’ receives camera

properties like position, field of view and so on. Then ‘Primary Rays’

compute first rays and stores them in the device. Host then dispatches

‘Intersector’ with these rays. ‘Intersector’ fills a previously allocated array

with information about the intersections. This array is then copied to host

so it can perceive which rays have intersected the scene and which have

not. With this information host dispatches ‘Cube Map’ with the ones that

did not intersect anything and ‘Renderer’ with the ones that did. Aside

40 Reflection and refraction rays dependo on the originating ray, but they are computed in the same kernel.

Universidade do Minho
An OpenCL Ray-Tracer development and comparison over CUDA

89

from reflection and refraction rays, ‘Renderer’ also produces an image

with the result of the current depth rays diffuse color. Host reads this

image and adds it with one that is initially black. If not in the maximum

depth, the produced rays by ‘Renderer’ are consumed by ‘Intersector’

again, repeating the process until no more rays intersect the scene or the

stop criteria is met.

The image that has been added is then returned as output. In

practice, this image is produced in phases, each phase corresponding to

one different ray depth. That is, each ray depth diffuse calculations

produce a layer; the final image is the sum of every layer.

6.4.4 Emulated version

OpenCL version uses many different structures from the CPU version

one. This is due to the fact that OpenSG must be isolated inside the

OpenCL kernels. As a consequence, OpenCL data structures reduce the

usage of pointers to the barest minimum. Thus, it is interesting to see

how these changes affect the algorithm performance. Notwithstanding,

even the algorithm has suffered small changes which may also contribute

to a different performance. Finally, OpenCL provides no debug options.

These reasons lead to the development of an ‘emulated version’ of

the OpenCL Ray Tracer. This version runs entirely on the CPU but in a similar

manner to the OpenCL version, although it remains serial. It is handy to

help in debugging and even more in performance analysis. In fact, this

version is much faster than the original CPU one. This results from the fact

that the used data structures provide a good optimization by avoiding

many pointers reference.

90 System design

6.5 CUDA ray tracer

CUDA Ray Tracer is very similar to OpenCL one. Major changes are

related to data variables since both CUDA and OpenCL have self-defined

variable types such as vectors41. These differences lead to an abstract

representation on the Ray Tracer class. Then each specific Ray Tracer

converts this data to its own representation. Syntax is another difference

between CUDA and OpenCL. Host-device communication42 uses a whole

new subset of functions.

Finally, other major differences are related to the way in which CUDA

treats host threads: in CUDA each host thread has its own CUDA context.

This means that a host thread does not recognize any memory allocated

and filled in from any other thread. Keep in mind that every call to ray

trace spawns a new thread, ie, at each frame, a new host thread is

spawned to deal with the rendering process. This arises some problems

because each thread wouldn’t know anything about what any previous

threads sent to GPU. To solve this problem, CUDA Ray Tracer spawns a

new thread at its construction. This thread lives as long as the class does.

Every CUDA Ray Tracer public method communicates through a queue

with this thread in order to always produce computations on the same

thread. This factor should be taken into account especially when

comparing performances since this introduces an overhead communication

that does not exist in OpenCL.

41 For instance CUDA int3 correspondes to OpenCL cl_int3.
42 Memory copies, job dispatching, etc.

Universidade do Minho
An OpenCL Ray-Tracer development and comparison over CUDA

91

7 Results

As described in subchapter 5.3, results would be provided from

different scenes in order to test application scalability. It rapidly became

clear that the number of the triangles of the scene was not a good metric

to distinguish scene complexity. In fact, a bigger scene may run faster

than a smaller one if it implies shooting fewer rays. Thus, scenes were

zoomed in or out in order to get about the same number of intersections.

It seemed relevant to do so due to the fact that it can have a great impact

on the results. As previously pointed out, the same scene may perform

totally differently if it is zoomed in or out43. Nevertheless, three different

scenes were used:

• Sphere – a glass sphere on the top of a plane (10 000 triangles).

This model uses colors per vertex;

• Bunny – Stanford bunny model on the top of a plane (69 453

triangles);

• Dragon - Stanford dragon model on the top of a plane (871 416

triangles).

Every scene contains refractive and reflective materials and at least

one texture applied. Sphere scene is used mainly to test colors per vertex

efficiency whereas Dragon’s is the most complex scene tested.

It was used an nVidia GTX 280 graphics card to test the different

scenes. Scenes were adjusted to generate about 100 000 intersections.

Results were analyzed during about one minute for each scene. While the

scenes were being analyzed, the camera moved constantly forcing the Ray

Tracer to render from different viewpoints. The following table expresses

the average time taken to render a frame by each scene:

43 Pushing an object faraway reduces the number of intersections. Therefore less secondary rays will be shot.

92 Results

 CPU Emul OpenCL CUDA

Sphere 17,9 s 1,93 s 0,33 s 0,105 s

Bunny 5,115 s 2,01 s 0,515 s 0,187 s

Dragon 13,25 s 4,46 s 1,49 s 0,41 s

Table 2. Average time to compute a frame (in seconds)

The same table may be converted into the next one, where it is

shown the number of frame rates achieved in each case:

 CPU Emul OpenCL CUDA

Sphere 0,1 fps 0,5 fps 3,0 fps 9,5 fps

Bunny 0,2 fps 0,5 fps 1,9 fps 5,3 fps

Dragon 0,1 fps 0,2 fps 0,7 fps 2,4 fps

Table 3. Average frames per second

Figure 7-1 shows a snapshot of the resulting images of each of the

three above-described scenes.

Figure 7-1. Sphere, Bunny and Dragon models

Universidade do Minho
An OpenCL Ray-Tracer development and comparison over CUDA

93

8 Conclusions and future work

The first obvious conclusion that we can take is that OpenSG data

structure is not suited for Ray Tracing. Although CPU version and the

emulated one operate on different data structures, both are serial.

However, the data structure difference is enough to get a significant speed

improvement. Since both CUDA and OpenCL version operate on the same

data structures of the emulated one, this is the version to be compared.

Both CUDA and OpenCL revealed to be faster than the emulated

version, as it had been expected since it is serial44. However, it is

undeniable that CUDA is more than three times faster than OpenCL, which

may be considered somehow unexpected. Several tests were performed to

try to understand where this performance difference comes from. The

most probable and correct answer is provided by the nVidia Bandwidth

test both for CUDA and OpenCL:

44 Nevertheless, even if CPU version were parallel, it should be slower because the number of cores in it is
usually much smaller than the number of processors on the graphic board.

94 Conclusions and future work

Figure 8-1. CUDA and OpenCL Bandwith Test

Although CUDA performance is – as expected - better in every type of

memory copy, OpenCL device to device copy is incredibly slow45. This

seems to be the major OpenCL bottleneck. However, it is a driver issue

which might be solved in future driver releases. nVidia does not have an

official position on this subject so any expectation on this matter, is pure

speculation. Nevertheless, this issue results in a clear disadvantage to

OpenCL when compared to CUDA.

45 About three times slower.

Universidade do Minho
An OpenCL Ray-Tracer development and comparison over CUDA

95

While this dissertation was being written, AMD also released drivers

to support OpenCL. It is a new step into OpenCL portability and clearly a

great advantage for it. System designer should then decide, taking this

into consideration. Moreover, although OpenCL is very recent, it is already

well documented. Also, it has raised interest over many researches,

already counting on a valuable community. Finally, as a personal opinion,

CUDA is tougher to learn than OpenCL. This results from the fact that

OpenCL structure and syntax is cleaner than CUDA. CUDA greedy details

are complex and require lots of time and practice to mastering.

Another important point is debugging. During the development time

of this project, OpenCL did not provide any kind of debugger. It really

makes developing a tough job. However, during September nVidia

released OpenCL Visual Profiler beta driver which promises to help

developers in debugging OpenCL applications46. However, it was not

tested, so no comment can be made about its efficiency.

Last but not least, bear in mind that CUDA context changes at each

CPU thread. In this case in particular, this problem was solved by creating

a special thread to CUDA and by always operating on it. It involves some

inter-thread communication that is not present in OpenCL. In practice, it

adds more complexity to the solution. Moreover, it might not suit some

solution designs which would add even more complexity to the problem.

Nevertheless, this work caters for other kinds of conclusions beyond

CUDA and OpenCL comparison. Colors per vertex proved to be an

important feature. This way, the ray tracer may be combined with other

techniques like PRT. This would allow low-frequency effects – such as soft

shadows – to be simulated. On the one hand, it has no performance costs

(considering that per vertex colors are pre-calculated) compared to scenes

that do not use it. On the other hand, it implied more memory usage since

colors were stored per vertex instead of per material. This might be a

46 Yet it was designed especially to profile OpenCL applications and provide facility to OpenCL applications
optimization.

96 Conclusions and future work

problem when it refers to bigger scenes, because everything is being sent

to the graphics board memory. Using colors per material instead of color

per vertex would enable bigger scenes (with more triangles) support.

Finally, even if not totally developed, the acceleration structure

adopted seems to have some potential. Separating it into two different

levels provides a good degree of freedom to support dynamic scenes47.

8.1 Future work

First and foremost, dynamic scenes would be quite interesting to test,

and in particular, to test how a two-layered acceleration structure may

benefit Ray Tracing in the GPU. The particular data structure present may

introduce some unpredictable behavior that would be worthwhile testing.

Apart from that, current solution relies excessively on the GPU

memory since a lot of information is uploaded to it. It restrains solution

applicability to virtual scenes that fit in graphics card memory. It is

another restriction that is challenging to deal with.

More light effects should be adopted and simulated. Monte Carlo Ray

Tracing and BRDF materials, namely, seem to be the way to extend the

current Ray Tracer. However, considering OpenSG, these materials are

not standardized. It should be thought how to overcome this problem, ie,

how to incorporate such materials in OpenSG in a practical and clean

manner. In what concerns Monte Carlo Ray Tracing, the problem does not

seem to be so complex once BRDF materials are adopted.

Another work to be carried out consists on the usage of other kinds of

primitives besides triangles, such as spheres or even NURBS. Considering

other kinds of leaves on the acceleration structure beyond a primitive

47 Tough just to static objects.

Universidade do Minho
An OpenCL Ray-Tracer development and comparison over CUDA

97

itself is also related with this problem. Having groups of primitives as

leaves is common and preferable in most cases.

Eventually, further optimizations might take place. Anyway, the

whole work might be considered fairly good and the feeling of an

accomplished task is present on the conclusions above. In fact, the

objectives of this work have been achieved since it has been possible to

test, compare and understand the results of the different technologies

herein.

Universidade do Minho
An OpenCL Ray-Tracer development and comparison over CUDA

99

9 References

[1] ALLGYER, M. Real-time ray tracing using cuda. Tech. rep.,

Rochester Institute of Technology, December 2008.

[2] APPEL, A. Some techniques for shading machine renderings of

solids. In AFIPS ’68 (Spring): Proceedings of the April 30–May 2, 1968,

spring joint computer conference (New York, NY, USA, 1968), ACM,

pp. 37–45.

[3] BENTHIN, C., WALD, I., SCHERBAUM, M., AND FRIEDRICH, H. Ray

tracing on the cell processor. In In Proceedings of the 2006 IEEE

Symposium on Interactive Ray Tracing (2006), pp. 15–23.

[4] BENTHIN, C., WALD, I., AND SLUSALLEK, P. A scalable approach to

interactive global illumination. In Computer Graphics Forum (2003),

vol. 22, Blackwell Publishing, Inc, pp. 621–630.

[5] BORN, M., AND WOLF, E. Principles of optics: electromagnetic

theory of propagation, interference and diffraction of light. Cambridge

University Press, 1999.

[6] BOULOS, S., EDWARDS, D., LACEWELL, J. D., KNISS, J., KAUTZ, J.,

SHIRLEY, P., AND WALD, I. Packet-based whitted and distribution ray tracing.

In GI ’07: Proceedings of Graphics Interface 2007 (New York, NY, USA,

2007), ACM, pp. 177–184.

[7] BUNNELL, M. Dynamic ambient occlusion and indirect lighting.

GPU Gems 2 (2005), 223–233.

[8] CARR, N. A., HALL, J. D., AND HART, J. C. The ray engine. In

HWWS ’02: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS

conference on Graphics hardware (Aire-la-Ville, Switzerland, Switzerland,

2002), Eurographics Association, pp. 37–46.

100 References

[9] CHALMERS, A., DAVIS, T., AND REINHARD, E. Practical parallel

rendering. A. K. Peters, Ltd., Natick, MA, USA, 2002.

[10] CHAN, E., AND DURAND, F. Rendering fake soft shadows with

smoothies. In EGRW ’03: Proceedings of the 14th Eurographics workshop

on Rendering (Aire-la-Ville, Switzerland, Switzerland, 2003), Eurographics

Association, pp. 208–218.

[11] COHEN, M. F., WALLACE, J., AND HANRAHAN, P. Radiosity and

realistic image synthesis. Academic Press Professional, Inc., San Diego,

CA, USA, 1993.

[12] COOK, R. L. Stochastic sampling and distributed ray tracing.

161–199.

[13] COOK, R. L., PORTER, T., AND CARPENTER, L. Distributed ray

tracing. SIGGRAPH Comput. Graph. 18, 3 (1984), 137–145.

[14] CROW, F. C. Shadow algorithms for computer graphics.

SIGGRAPH Comput. Graph. 11, 2 (1977), 242–248.

[15] DE BOER, W. H. Smooth penumbra transitions with shadow

maps. Journal of Graphics, GPU, & Game Tools 11, 2 (2006), 59–71.

[16] DUTRE, P., BALA, K., BEKAERT, P., AND SHIRLEY, P. Advanced Global

Illumination. AK Peters Ltd, 2006.

[17] ERNST, M., VOGELGSANG, C., AND GREINER, G. Stack

implementation on programmable graphics hardware. In Vision Modeling

and Visualization 2004: Proceedings, November 16-18, 2004, Standford,

USA (2004), IOS Press, p. 255.

[18] GEORGIEV, I., RUBINSTEIN, D., HOFFMANN, H., AND SLUSALLEK, P.

Real time ray tracing on many-core-hardware. In Proceedings of the 5th

INTUITION Conference on Virtual Reality (2008).

Universidade do Minho
An OpenCL Ray-Tracer development and comparison over CUDA

101

[19] GEORGIEV, I., AND SLUSALLEK, P. Rtfact: Generic concepts for

flexible and high performance ray tracing. In IEEE Symposium on

Interactive Ray Tracing, 2008. RT 2008 (2008), pp. 115–122.

[20] GORAL, C. M., TORRANCE, K. E., GREENBERG, D. P., AND BATTAILE, B.

Modeling the interaction of light between diffuse surfaces. SIGGRAPH

Comput. Graph. 18, 3 (1984), 213–222.

[21] GUNTHER, J., POPOV, S., SEIDEL, H.-P., AND SLUSALLEK, P. Realtime

ray tracing on gpu with bvh-based packet traversal. In Interactive Ray

Tracing, 2007. RT ’07. IEEE Symposium on (Sept. 2007), pp. 113–118.

[22] HAVRAN, V., PRIKRYL, J., AND PURGATHOFER, W. Statistical

comparison of ray-shooting efficiency schemes. Tech. rep., Tech. Rep. TR-

186-2-00-14, Institute of Computer Graphics, Vienna University of

Technology, 2000.

[23] HAYDEN, L. Production-ready global illumination. In ACM

SIGGRAPH (2002), pp. 87–102.

[24] HORN, D. R., SUGERMAN, J., HOUSTON, M., AND HANRAHAN, P.

Interactive k-d tree gpu raytracing. In I3D ’07: Proceedings of the 2007

symposium on Interactive 3D graphics and games (New York, NY, USA,

2007), ACM, pp. 167–174.

[25] JENSEN, H. W. Global illumination using photon maps. In

Proceedings of the eurographics workshop on Rendering techniques ’96

(London, UK, 1996), vol. 96, Springer-Verlag, pp. 21–30.

[26] JENSEN, H. W. Realistic image synthesis using photon mapping.

A. K. Peters, Ltd., Natick, MA, USA, 2001.

[27] JENSEN, H. W., MARSCHNER, S. R., LEVOY, M., AND HANRAHAN, P. A

practical model for subsurface light transport. In SIGGRAPH ’01:

Proceedings of the 28th annual conference on Computer graphics and

interactive techniques (New York, NY, USA, 2001), ACM, pp. 511–518.

102 References

[28] KAJIYA, J. T. The rendering equation. In SIGGRAPH ’86:

Proceedings of the 13th annual conference on Computer graphics and

interactive techniques (New York, NY, USA, 1986), ACM, pp. 143–150.

[29] KARLSSON, F., AND LJUNGSTEDT, C. Ray tracing fully implemented

on programmable graphics hardware.

[30] KELLER, A. Instant radiosity. In SIGGRAPH ’97: Proceedings of

the 24th annual conference on Computer graphics and interactive

techniques (New York, NY, USA, 1997), ACM Press/Addison-Wesley

Publishing Co., pp. 49–56.

[31] LANGER, M., AND BÜLTHOFF, H. Depth discrimination from shading

under diffuse lighting. Perception 29 (2000), 649–660.

[32] LAUTERBACH, C., GARLAND, M., SENGUPTA, S., LUEBKE, D., AND

MANOCHA, D. Fast bvh construction on gpus. In Computer Graphics Forum

(2009), vol. 28, pp. 375–384.

[33] LUEBKE, D., AND PARKER, S. Interactive ray tracing with cuda.

Tech. rep., nVidia, 2008.

[34] MINNAERT, M., AND SEYMOUR, L. Light and Color in the Outdoors.

Springer, 1992.

[35] MUNSHI, A. The opencl specification version 1.0. Tech. rep.,

Khronos OpenCL Working Group, 2009.

[36] NVIDIA, C. Nvidia cuda compiler driver 2.2. Tech. rep., nVIdia,

2009.

[37] NVIDIA, C. Nvidia cuda programming guide 2.2.1. Tech. rep.,

nVidia, 2009.

[38] PARKER, S., MARTIN, W., SLOAN, P.-P. J., SHIRLEY, P., SMITS, B.,

AND HANSEN, C. Interactive ray tracing. In I3D ’99: Proceedings of the 1999

symposium on Interactive 3D graphics (New York, NY, USA, 1999), ACM,

pp. 119–126.

Universidade do Minho
An OpenCL Ray-Tracer development and comparison over CUDA

103

[39] PARKER, S., SHIRLEY, P., LIVNAT, Y., HANSEN, C., AND SLOAN, P.-P.

Interactive ray tracing for isosurface rendering. In VIS ’98: Proceedings of

the conference on Visualization ’98 (Los Alamitos, CA, USA, Oct. 1998),

IEEE Computer Society Press, pp. 233–238.

[40] POPOV, S., GUNTHER, J., SEIDEL, H.-P., AND SLUSALLEK, P. Stackless

kd-tree traversal for high performance gpu ray tracing. Computer

Graphics Forum 26, 3 (September 2007), 415–424.

[41] PURCELL, T. J. Ray tracing on a stream processor. PhD thesis,

Stanford University, Stanford, CA, USA, 2004. Adviser-Hanrahan, Patrick

M.

[42] PURCELL, T. J., BUCK, I., MARK, W. R., AND HANRAHAN, P. Ray

tracing on programmable graphics hardware. In SIGGRAPH ’05: ACM

SIGGRAPH 2005 Courses (New York, NY, USA, 2005), ACM, p. 268.

[43] REEVES, W. T., SALESIN, D. H., AND COOK, R. L. Rendering

antialiased shadows with depth maps. SIGGRAPH Comput. Graph. 21, 4

(1987), 283–291.

[44] SAMET, H. Applications of spatial data structures: Computer

graphics, image processing, and GIS. Addison-Wesley Longman Publishing

Co., Inc., Boston, MA, USA, 1990.

[45] SAMET, H. The design and analysis of spatial data structures.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1990.

[46] SAMET, H. Foundations of multidimensional and metric data

structures. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,

2006.

[47] SCHIFFER, T. A parallel geometry core for high performance ray

tracing. Tech. rep., Technical University Graz, 2008.

[48] SCHMITTLER, J., WALD, I., AND SLUSALLEK, P. Saarcor: a hardware

architecture for ray tracing. In HWWS ’02: Proceedings of the ACM

104 References

SIGGRAPH/EUROGRAPHICS conference on Graphics hardware (Aire-la-

Ville, Switzerland, Switzerland, 2002), Eurographics Association, pp. 27–

36.

[49] SEGAL, M., KOROBKIN, C., VAN WIDENFELT, R., FORAN, J., AND

HAEBERLI, P. Fast shadows and lighting effects using texture mapping. In

SIGGRAPH ’92: Proceedings of the 19th annual conference on Computer

graphics and interactive techniques (New York, NY, USA, 1992), ACM,

pp. 249–252.

[50] SHEVTSOV, M., SOUPIKOV, A., AND KAPUSTIN, A. Highly parallel fast

kd-tree construction for interactive ray tracing of dynamic scenes.

Computer Graphics Forum 26, 3 (September 2007), 395–404.

[51] SHIRLEY, P., AND MORLEY, R. K. Realistic Ray Tracing. A. K.

Peters, Ltd., Natick, MA, USA, 2003.

[52] SHIRLEY, P. S. Physically based lighting calculations for

computer graphics. PhD thesis, University of Illinois, Champaign, IL, USA,

1991.

[53] SPJUT, J., BOULOS, S., KOPTA, D., BRUNVAND, E., AND KELLIS, S.

Trax: A multi-threaded architecture for real-time ray tracing. In

Application Specific Processors, 2008. SASP 2008. Symposium on (June

2008), pp. 108–114.

[54] THRANE, N., AND SIMONSEN, L. O. A comparison of acceleration

structures for gpu assisted ray tracing. Master’s thesis, University of

Aarhus, 2005.

[55] TOLE, P., PELLACINI, F., WALTER, B., AND GREENBERG, D. P.

Interactive global illumination in dynamic scenes. ACM Trans. Graph. 21, 3

(2002), 537–546.

[56] VEACH, E., AND GUIBAS, L. Bidirectional estimators for light

transport. In surfaces (1994), vol. 18, pp. 19–20.

Universidade do Minho
An OpenCL Ray-Tracer development and comparison over CUDA

105

[57] VEACH, E., AND GUIBAS, L. J. Optimally combining sampling

techniques for monte carlo rendering. In SIGGRAPH ’95: Proceedings of

the 22nd annual conference on Computer graphics and interactive

techniques (New York, NY, USA, 1995), ACM, pp. 419–428.

[58] WALD, I. Realtime ray tracing and interactive global

illumination. PhD thesis, Universität des Saarlandes, 2004.

[59] WALD, I., BENTHIN, C., AND SLUSALLEK, P. Distributed interactive

ray tracing of dynamic scenes. In PVG ’03: Proceedings of the 2003 IEEE

Symposium on Parallel and Large-Data Visualization and Graphics

(Washington, DC, USA, 2003), IEEE Computer Society, p. 11.

[60] WALD, I., BOULOS, S., AND SHIRLEY, P. Ray tracing deformable

scenes using dynamic bounding volume hierarchies. ACM Trans. Graph.

26, 1 (2007), 6.

[61] WALD, I., AND HAVRAN, V. On building fast kd-trees for ray

tracing, and on doing that in o(n log n). In IN PROCEEDINGS OF THE 2006

IEEE SYMPOSIUM ON INTERACTIVE RAY TRACING (September 2006),

pp. 61–69.

[62] WALD, I., IZE, T., KENSLER, A., KNOLL, A., AND PARKER, S. G. Ray

tracing animated scenes using coherent grid traversal. ACM Trans. Graph.

25, 3 (2006), 485–493.

[63] WALD, I., KOLLIG, T., BENTHIN, C., KELLER, A., AND SLUSALLEK, P.

Interactive global illumination using fast ray tracing. In EGRW ’02:

Proceedings of the 13th Eurographics workshop on Rendering (Aire-la-

Ville, Switzerland, Switzerland, 2002), Eurographics Association, pp. 15–

24.

[64] WALD, I., MARK, W. R., GUNTHER, J., BOULOS, S., IZE, T., HUNT, W.,

PARKER, S. G., AND SHIRLEY, P. State of the art in ray tracing animated

scenes. Computer Graphics Forum 28 (September 2007), 1691–1722.

106 References

[65] WALD, I., SLUSALLEK, P., BENTHIN, C., AND WAGNER, M. Interactive

distributed ray tracing of highly complex models. In Proceedings of the

12th Eurographics Workshop on Rendering Techniques (London, UK,

2001), Springer-Verlag, pp. 277–288.

[66] WALD, I., SLUSALLEK, P., BENTHIN, C., AND WAGNER, M. Interactive

rendering with coherent ray tracing. Computer Graphics Forum 20, 3

(September 2001), 153–165.

[67] WARD, G. J., AND HECKBERT, P. S. Irradiance gradients. In

SIGGRAPH ’08: ACM SIGGRAPH 2008 classes (New York, NY, USA, 2008),

ACM, pp. 1–17.

[68] WÄCHTER, C., AND KELLER, A. Instant ray tracing: The bounding

interval hierarchy. In IN RENDERING TECHNIQUES 2006 – PROCEEDINGS

OF THE 17TH EUROGRAPHICS SYMPOSIUM ON RENDERING (2006),

pp. 139–149.

[69] WHITTED, T. An improved illumination model for shaded display.

Commun. ACM 23, 6 (1980), 343–349.

[70] WOOP, S., SCHMITTLER, J., AND SLUSALLEK, P. Rpu: a

programmable ray processing unit for realtime ray tracing. ACM Trans.

Graph. 24, 3 (2005), 434–444.

[71] YVES, E. L., AND WILLEMS, Y. D. Bi-directional path tracing. In

Proceedings of Third International Conference on Computational Graphics

and Visualization Techniques (Compugraphics ’93 (1993), pp. 145–153.

