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Abstract 

Ray Tracing is usually considered one of the best quality photorealistic rendering 
techniques. However, the highly associated computational costs are prohibitive to time 
critical circumstances. This characteristic restricted the Ray Tracing applicability to a very 
few offline solutions, particularly focused on obtaining a single high quality and full 
resolution image.  

Over the years, faster hardware - with higher clock rates - has been the usual way 
to improve Ray Tracing computing times. Aside from highly costly parallel solutions only 
affordable by big industries - like movie industry -, there was no option to desktop users. 
Nevertheless, this scenario is dramatically changing with the introduction of more and 
more parallelism in current desktop PCs. Multi-core CPUs are a common basis in current 
PCs and the power of modern GPUs - which have been multi-core for a long time now - is 
getting unveiled to developers. nVidia's CUDA SDK for GPGPU is a powerful weapon to 
explore GPUs parallelism. Yet, its specific target - nVidia graphic cards only - does not 
provide any solution to other parallel hardware present. OpenCL is a new royalty-free 
cross-platform API created by Khronos Group in partnership with numerous companies 
and institutions. It is intended to be portable across different hardware manufacturers or 
even different platforms. If a driver is available, the same code could run in a nVidia and 
ATI/AMD graphic card or even in an Intel or AMD Processor. In practice, each driver is 
responsible for translating the source code into its machine code. 

The aforementioned technological evolution does not provide answers for every use 
cases. For instance, some applications may not rely on GPU computing if targeting PCs 
with low value graphic cards. In fact not every nVidia graphic card supports CUDA. This 
study focus on OpenCL advantages and disadvantages compared to CUDA. Even if 
OpenCL is more recent and intends to overcome some of the CUDA disadvantages, one 
must perceive if it is the correct answer to the problem. This study tries to help system 
designers decide which technology best fits their needs. 

During this thesis work, three kinds of ray tracers where developed: one is CPU based, 
while the other two are GPU based - using CUDA and OpenCL, respectively. At the end, a 
comparison is done between them. This dissertation embraces this research purpose, 
methodology, implementation, validation and conclusions. As a conclusion the OpenCL 
pros and cons are pointed out. Considering OpenCL recent release date, much more 
should be done to support it across more platforms and in a more optimized manner. 
This is something that should naturally evolve over time making OpenCL stronger and 
commonly supported. Meanwhile system designers must be aware of its flaws when they 
adopt it to their solution. Nevertheless, the potential is there, as is shown in this thesis. 
It is just a question of getting mature enough to maximize its capabilities 
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Resumo 

Ray Tracing é considerado por muitos como uma das melhores técnicas para 
síntese de imagens fotorealísticas. Contudo, os pesados custos computacionais 
associados são proibitivos para circunstâncias onde o tempo é um recurso crítico. 
Entretanto, Ray Tracing tem sido usado apenas em algumas soluções não tempo real 
interessadas sobretudo em obter uma única imagem de extrema qualidade e resolução.  

Hardware mais rápido tem sido a forma comum de melhorar os tempos de Ray 
Tracing. Além de dispendiosas soluções paralelas, apenas ao alcance de grandes 
indústrias como a cinematográfica, não havia alternativa para utilizadores comuns. 
Contudo este cenário está a mudar com a introdução de mais e mais paralelismo nos PCs 
de hoje em dia. CPUs multi-core tornaram-se comuns nas configurações de PCs actuais e 
o poder dos GPUs modernos - que há muito são multi-core - está a ser revelado aos 
programadores. nVidia’s CUDA SDK para computação genérica no GPU é uma ferramenta 
avançada para explorar o paralelismo dos GPUs. No entanto, restringe-se exclusivamente 
às placas da nVidia e não fornece nenhuma solução para outros componentes paralelos 
existentes no computador. OpenCL é uma API recente sem direitos de autor criada pelo 
Khronos Group conjuntamente com muitas companhias e instituições. Como pretende ser 
portável entre várias plataformas a sua aplicabilidade não está restrita apenas aos GPUs. 
Pelo contrário, deverá ser suportada por diversos tipos de componentes assim como por 
diversos fabricantes. Assim, o paralelismo presente no computador pode ser explorado 
de uma forma portável visto que o mesmo código pode correr numa placa gráfica da 
nVidia assim como numa da ATI/AMD ou até mesmo num processador Intel ou AMD. 
Para tal, basta que os respectivos drivers sejam lançados, pois estes é que são 
responsáveis pela tradução do código para algo que o respectivo hardware conheça. 

A evolução tecnológica aqui descrita não deve ser analisada com cuidado. Isto é: o 
facto de uma tecnologia ser mais recente que outra não quer dizer que responda melhor 
a todo o tipo de problemas. As tecnologias foram surgindo de forma faseada e 
procuraram ir respondendo aos problemas que se colocavam na altura. Mas 
especificidades do problema em questão poderão levar à adopção de uma tecnologia 
anterior em relação a uma mais recente. Por exemplo, não faz sentido usar computação 
na GPU se a aplicação será usada em computadores que não possuem placas gráficas 
que suportem tal tecnologia. A verdade é que ainda hoje muitos computadores estão 
equipados com placas gráficas da nVidia que não suportam CUDA. Este estudo centra-se 
na comparação de OpenCL com CUDA. Isto porque pese o facto de OpenCL ser mais 
recente e tenha como intenção superar algumas das desvantagens de CUDA, tal não quer 
necessariamente dizer que seja a melhor resposta para todos os problemas. Este estudo 
tenta por isso ajudar a escolher que tecnologia usar conforme o problema em questão. 

No decorrer do trabalho desta tese três tipos de Ray Tracing foram desenvolvidos: 
um para o CPU e outros dois para o GPU – um em CUDA e outro em OpenCL – com o 
intuito de os comparar no final. A presente dissertação contempla o propósito desta 
pesquisa, a sua metodologia, implementação, validação e conclusões. Visto OpenCL ser 
uma tecnologia bastante recente, muito mais deverá ser feito para que seja mais 
portável e optimizado. Isto é algo que deverá acontecer de uma forma natural à medida 
que a tecnologia amadurece. Entretanto é necessário manter-se atento às limitações de 
OpenCL aquando da sua adopção. Não obstante, o potencial está lá, como é mostrado 
nesta tese. É apenas uma questão de esperar que com o tempo, este evolua no sentido 
de maximizar as suas capacidades. 
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Start by doing what's necessary;  

then do what's possible;  

and suddenly you are doing the impossible. 

 

Saint Francis of Assisi 
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1 Introduction 

 

Desktop PCs resources are now more powerful than ever. The advent 

of multi-core CPUs and the remarkable parallelism power of current GPUs 

enable higher quality rendering approaches than simple triangle 

rasterization at satisfactory frame rates. Still, the programming paradigm 

should change and suit these mechanisms before it can profit from its own 

advantages. Recent Software Development Kits (SDK) such as nVidia 

CUDA and OpenCL help developers adapt to this new reality. In the case 

of OpenCL it introduces a whole new portability level in parallel 

computing. This study tries to understand how far this technology can 

enhance parallel computing for Ray Tracing purposes. Proper 

investigation, test and validation will be performed on the OpenCL 

different aspects such as available functionalities, portability or 

performance to clarify its advantages and disadvantages when compared 

to alternative technologies. 

 

1.1  Motivation 

 

Computer generated photorealistic images have been serving various 

areas from architecture to cinema or video games industry. The interest in 

this field of computer graphics has been responsible for the research, 

development and improvement of global illumination algorithms. 

Unfortunately, producing this kind of images is not linear. Firstly, there 

are few and poor open-source software. In addition, proprietary software 

tends to be very powerful but very expensive as well. Secondly, 

photorealistic algorithms imply high quality hardware due to the heavy 

computational costs usually involved. Finally, even the best equipped 

desktops have difficulties in dealing with these task fast enough to provide 

real-time solutions. These arguments show why photorealistic algorithms 
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are still mainly used in areas where images can be produced in offline 

mode (as in the movie industry) and not in real-time (as in video games). 

Nonetheless, the human quest for perfection is ceaseless. Over the 

last years, global illumination algorithms did not only get faster, but 

adopted improved approaches by considering new forms of light 

interaction. Yet, it is hard to imagine the day when perfection - both in 

time and quality - is reached and the quest is over. In fact, what was 

considered satisfactory a few years ago is no more accepted as such 

today. As computers get faster and algorithms are optimized, the quality 

requirements also increase, ie, as time goes by, bigger and more complex 

virtual scenes are rendered at higher resolutions and including more and 

more optical effects. One must then perceive that the quest will never 

end, no matter what discoveries/improvements are achieved. It is 

important to recognize the technological limitations and accept 

imperfections by establishing some minimum requirements to define the 

acceptable quality level. However, finding the proper balance between 

performance and image quality is a task that depends on the application 

purpose. The motion picture and the video game industry have completely 

different demands, and this is the reason why this balance is so different 

for each one of them. Whereas the first is able to wait from minutes to 

hours to render an image, the second can't afford to wait so long under 

penalty of losing game interactivity. The latter sacrifices quality to achieve 

better frame rates; which is just the opposite of the former. As one can 

then conclude, there is not - and probably there will never be - a universal 

balance that satisfies every task. However, this balance is being 

constantly readjusted whereas algorithms, strategies and hardware are 

developed and improved. 

With the institution of multi-core CPUs and the new generation of 

graphic boards - GPGPU capable -, PC clusters are not the only method of 

introducing parallelism in global illumination algorithms anymore. The 

embryonic state of recent investigations has not presented any clear 

conclusions about the possible achievements of such hardware yet, but 
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has already shown some impressive potential. Developers are, however, 

confronted with some challenges and problems when pioneering this 

hardware exploration. Portability, for instances, is not assured between 

different platforms or even across different manufacturers. Moreover, it is 

commonly needed to learn a new subset of a language, or even a whole 

new one. The worst case scenario is when code and/or performance is 

architecture dependent, resulting in non-functional or underperforming 

code within the same kind of hardware from the same manufacturer. 

These - and others -, are the reasons behind OpenCL creation. Its 

ambitions and goals cover exactly the problems mentioned above. With 

the first manufacturers releasing their drivers to OpenCL, this thesis work 

first motivation is to test this technology and compare it to others 

available. Considering the scope of this work, this evaluation and 

comparison will be held exclusively for Ray Tracing purposes. 

Last but not least, it is also the ambition of this thesis to inquire and 

evaluate current desktops aptness to support real time Ray Tracing 

recurring to GPU computing. 

 

1.2 Objectives 

 

The main objective of this thesis work is to test OpenCL. As a brand 

new technology it is expected to not be efficiently tuned up yet, but 

should already provide some indications about what it may provide in the 

near future. However, one of the major OpenCL features – portability – 

will not be considered yet since only nVidia has released drivers at the 

development time of this project. 

OpenCL may seem an evolution of CUDA, although sometimes the 

theory does not apply to what happens in practice. By testing and 

comparing OpenCL, this work aims at revealing OpenCL weaknesses on 

the one side and confirming its advantages on the other. Nonetheless, one 
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must keep in mind that some objectives of OpenCL are not shared by 

CUDA; for instances, CUDA does not intend to be portable across 

platforms. This abstraction implies, necessarily, performance costs to 

OpenCL. Such factors should be taken into account.   

From this point it may be already expected that OpenCL will lose in 

performance to CUDA. OpenCL is a slighter higher level language than 

CUDA and assumes a conversion to each device proper language that 

CUDA does not. Nonetheless it is important to understand how much it 

costs and if it is affordable with its advantages as contrast. 

To proper evaluate OpenCL, a Ray Tracer will be designed and 

implemented from scratch. It is also intended to propose a design that 

suits to OpenCL characteristics and architecture. This should also 

contribute with some ideas and solutions to problems raised by such 

architecture. For instance, Ray Tracing is an intrinsically recursive 

algorithm; however, recursion is not supported in OpenCL. Such 

requirements demand intelligent work around in order to maintain 

algorithm main structure without losing flexibility. 

It is supposed to provide answers to system designers about when to 

choose OpenCL or CUDA. Such answers depend on the problem 

specificities and on how portable it is intended the solution to be. 

Moreover, when it refers to Ray Tracing in particular, it is suggested an 

algorithm that meets OpenCL architecture. Nonetheless, some of the 

adopted concepts/solutions may be used for other purposes in completely 

different problems 

As a background objective it is evaluated how near to real-time Ray 

Tracing on Desktops, present hardware is. In spite of the great amount of 

research work being done in this area, this thesis work tries to, at least, 

understand how much OpenCL may improve future results. 
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1.3 Work approach 

 

In order to reach real time rates using Ray Tracing on a desktop PC, 

system design is specifically conceived to meet OpenCL architecture, 

structure and capabilities. Other language versions have a translated 

version of this design given the fact that they are used mainly for 

comparison purposes. Yet, the first approach will be held on CPU due to its 

programming facilities, debugging and also because serial execution is 

simpler. At the end, it shall be possible to test the same algorithm 

performance in different architectures avoiding a complex comparison 

between a series of different algorithms - each one devoted to exploring 

specific language/technology conveniences. As stated, this study’s main 

evaluation is OpenCL; other implementations will only suit comparison 

purposes. Moreover, every comparison reference is only and solely suited 

to Ray Tracing applications. It is also important to notice that since 

OpenCL design is the one that will be adopted among other 

implementations some languages/technologies may be thus neglected in 

order to keep the same design. This is an evident penalty in such 

implementations, but otherwise it would be almost impossible to compare 

different implementations - since each one would be using its own design. 

Finally, mastering these technologies requires lots of time to fully 

understand their architecture, behavior and tweaks - which is neither 

convenient nor affordable to the current study timeline.  

Still, this study should present clear conclusions on OpenCL 

performance, portability, simplicity and learning facility. It is common 

sense that portability will have costs in performance, but it is important to 

measure how much it costs. This measurement, aligned with the learning 

curve should provide good answers for those considering using OpenCL in 

their solutions. However, no universal answer will presumably be found. 

Each system designer should take his decision based on the specifics of 

his problem. 
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A couple of different scenes and hardware configurations will be used 

to test and compare the solution to survey the results in different 

situations and usages. This should provide material to other kind of 

conclusions such as those related to scalability and portability. 

Nevertheless, this study does not intend to cover every possible case and 

is not considered to be faultless. Whatever the final achievements may be 

better results, more and deeper comparisons or further optimizations 

could certainly take place, although time is a limited resource apart from 

the effort you put on. 

 

1.4 Thesis structure 

 

This thesis is divided into more seven chapters. The next chapter 

embraces a basic introduction to photorealistic rendering, namely Ray 

Tracing. We start with some background about areas where photorealistic 

rendering is used and end up with elementary Ray Tracing concepts. It is 

followed by a chapter showing the technologies compared here: CUDA and 

OpenCL. This chapter details their architecture and design. Chapter four is 

a review of the state of the art. Since OpenCL is a brand new technology, 

this chapter is more focused in Ray Tracing in general and using GPGPU in 

particular. As a background goal, real-time Ray Tracing is constantly 

referred and reviewed. Chapter five explains how the project will take 

place and how it is going to be evaluated. Chapter six depicts the system 

that was developed and explains how it works. In practice it is the 

architecture of the system. The following chapter shows the results 

obtained. These results are discussed and analyzed in chapter eight. This 

chapter also contains some guidelines on what should be done from this 

point on; ie, how this work may evolve in the future. Finally, the last 

chapter lists all the cited references. 

 



Universidade do Minho 
An OpenCL Ray-Tracer development and comparison over CUDA 

21 

 

 

2 Interactive photorealistic rendering 

 

Why are not high quality photorealistic images associated with areas 

like video games? To understand the answer one must perceive how 

compute intensive and time-consuming it is to render such images.  

 

2.1 Background 

 

Computer generated imagery (CGI) in the movie industry started in 

1973´s Westworld. By that time only 2D CGI was used, but soon after, in 

1976´s Futureworld, 3D CGI was introduced. However, Pixar studios and 

The Walt Disney Company 1995´s Toy Story remains for history as the first 

fully computer-generated movie. By then, each frame was rendered at 

1536 × 922, taking typically 2-3 hours to render. Recent films are 

rendered at least at 1920 x 1080 and tend to take about an hour per 

frame to render. It is remarkable to see how much this area 

overestimates image quality. In motion picture animation rendering time 

has not decreased so much due to image quality improvements with a lot 

of more effects represented at a higher resolution. Pixar’s general 

manager, Jim Morris’s words about the re-rendering of Toy Story for 3D 

Cinema confirm it: “It looks great and one of the reasons it looks great is 

actually our renderers are much better now than when we made the 

movie’s originally, so they actually have a higher level of detail to them 

and so forth. Just the shaders and the way they render.”2 

This is one side of the coin, offline rendering. But in order to provide 

interactivity any render cannot take one hour to compute a frame. In real-

time applications, one must sacrifice resolution and some image quality to 

reach shorter rendering times. As time goes by, video games tend to be 

                                    
2 http://www.collider.com/entertainment/interviews/article.asp/aid/9884/tcid/1/pg/1 
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more and more realistic. In fact, nowadays, most video games produce 

images that could almost have been considered photorealistic a few years 

ago. Recent developments suggest the integration of global illumination 

techniques, like Ray Tracing, in the near future. Intel's Michael Vollmer 

predicts: “We keep in touch with companies all over the world - I dare say 

that in two to three years time we will see something. There already are 

some individual approaches, especially in the science sector, which show 

that Ray-tracing algorithms are scaling very well with the numbers of 

cores.”3 

It is obvious that photorealistic images are taking, step by step, less 

time to render. The question is how long these improvements will last. Are 

they sustainable? It is hard to say, but their benefits are evident: motion 

picture industry gains in reducing the amount of rendering time while 

video games industry enriches game realism. But there are lots of other 

areas between them that benefit from a mixture of both: architecture, 

industrial design, car styling, healthcare informatics and so on (Figure 

2-1). 

 

 

 

 

 

                                    
3 http://www.pcgameshardware.com/aid,654068/Raytraced-games-in-2-to-3-years-says-Intel/News/ 
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Figure 2-1. Ray Tracing used in Car Styling and Architecture 

 

2.2 Global illumination - basis concepts 

 

In order to provide proper realism, one should consider not only the 

light that comes directly from the light(s) source(s) - direct illumination - 

but also the light reflected from other objects in the scene - indirect 

illumination. Any algorithm that takes into account both cases may be 

considered a global illumination one. Nowadays rasterization algorithms 

usually simulate indirect illumination using techniques like Shadow 

Mapping or Shadow Volumes[14, 43, 49, 10, 15]. Even if these techniques 

provide good-looking results, they do not compute these kinds of 

illumination: they fake it. Their results are not physically based. 

In real life, light travels from different light sources to our eyes 

bouncing in the different objects around us. Radiometry is a field of 
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physics responsible for light quantification. The concepts of Radiance4 and 

Irradiance were defined to help quantify light. Radiance defines the 

amount of light that leaves/reaches a specific point into/from a specific 

direction. Considering the point � and the direction �, ��� �  �
 denotes 
radiance reaching point � from direction �, while ��� � �
 denotes 
radiance exiting from � in direction �. On the other hand, Irradiance 
expresses the amount of light arriving at a specific surface point from all 

directions. 

 ��
 �  � �� � Θ
 �����
���  
�

 Equation 2.1 

 

In Equation 2.1, �� denotes a sphere around point �, while � is the 
angle between the surface point � and direction �. 

The reflection properties of the surfaces are usually defined as a 

Bidirectional Reflectance Distribution Function (BRDF). This function 

relates the incident radiance from a specific direction �, with the reflected 
radiance on a certain direction � at a specific point �. 

 ��,   �  �
 � ��� �  �
��� �   
 Equation 2.2 

 

Notice that BRDF is restricted to reflection representation, ie only 

takes into account the hemisphere around surface point � to where 
surface normal points to. However, it is easily extended to Bidirectional 

Transmittance Distribution Functions (BTDFs) - which accounts the 

opposite hemisphere, considering Transmission and Refraction - and 

Bidirectional Scattering Distribution Functions (BSDFs) - accounting the 

whole sphere around point � (BRDF + BTDF). 
                                    

4 Radiance is a radiometric measure that describes the amount of light that passes through or is emitted from a 
particular area, and falls within a given solid angle in a specified direction. The SI unit of radiance is watts per 

steradian per square meter! "#$ % &'(. 
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Mathematically, one can then compute all contributions to the point � 
from all directions on the sphere around it as 

 � �� �  Θ
 �  � )��, � �  �
 ��� � �
 *+,�-�  , �
./0  
12

 Equation 2.3 

 

Equation 2.3 is usually known as the rendering equation[28]. Since it 

is a recursive integral, no analytical solution can be provided. Global 

illumination algorithms compute approximated solutions based on this 

equation. 

Actually, there are three different lighting models to consider: 

geometric optics, wave optics and quantum optics[16, 5]. The rendering 

equation suits the first one, where it is assumed that light travels in 

straight lines and light particles do not interact with each other. 

Phenomenon like light emission, reflection, refraction or absorption suit 

well while others like light diffraction, light interference, light polarization, 

fluorescence or phosphorescence cannot be represented.  

In geometric optics Radiance invariance along straight paths property 

- ��� � �3
 � ���3 � �
 - applies. In practice this property says that the 
Radiance exiting point � to point �4 is exactly the same Radiance that 
arrives at point �4 from point �. Note that this is only true in geometric 
optics because it is not considered any participating media and light 

travels through vacuum. Anyway it is an important property since it can 

be extrapolated to BRDF so that )��, � �  �
 � )��, � �  �
, also known as 
Helmholtz reciprocity principle. 

Nevertheless, geometric optics models imply expensive computations 

in order to provide good solution approximations. There is the need to 

consider many samples from the sphere around each point in order to 

compute good approximations. Reproducing reliable photorealistic images 

involves simulating many light effects with heavy computations. Also, the 

recursive nature of rendering equation implies computing those costly 

effects in every call - reason why it takes so long to compute them. The 
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problem gets worse as scenes get bigger or more complex, since more 

rays and more primitive intersections need to be calculated.  

Among all global illumination algorithms available, trying to solve - 

the rendering equation[28] - respecting light properties, Ray Tracing and 

its derivations (beam tracing, cone tracing, etc) is the most straight 

forward one. Other global illumination algorithms like radiosity, photon 

mapping or ambient occlusion are out of this thesis scope. From now on, 

in order to keep it simple, any reference to global illumination should be 

interpreted strictly as Ray Tracing. 

 

2.3 Ray Tracing - basis concepts 

 

Although Ray Tracing can mean various different things5, in the 

context of this thesis, it always refers to the act of simulating light 

propagation, reflection and refraction through the air or on objects by 

considering rays of light. Tracing rays into the scene has developed a lot 

since Arthur Appel[2] introduced it to test which object was visible in each 

pixel. His technique is what nowadays is known as ray casting and is not 

restricted to primary rays anymore. Regardless of all different algorithms 

that appeared over the last years, the concept is still the same: 

intercepting rays with the geometric objects in the scene to simulate light 

transportation through light paths like it happens in reality. When a ray 

hits an object surface, new rays can be traced in many directions 

depending on material properties. This relies on a recursive solution and 

introduces the concept of ray depth - the number of bounces taken into 

account in order to compute the current ray. Since unlimited recursion is 

commonly presented in most scenes, the process should be ceased at one 

stage by adopting any stop criteria. 

 

                                    
5 http://en.wikipedia.org/wiki/Ray_tracing 



Universidade do Minho 
An OpenCL Ray-Tracer development and comparison over CUDA 

27 

 

 

2.3.1 Ray shooting 

 

The most basic element of Ray Tracing is the ray itself. A ray 

represents a line of photons travelling through the air and, eventually, 

hitting the surface of some object. It is usually denoted with a point and a 

vector representing its origin and direction, respectively. Any point of a 

ray is represented then according to instance of time 5 as: 
 6�5
 �  � 7 5� Equation 2.4 

 

where � is ray origin and � is ray direction. 
Considering the usual eye-based algorithm, one or more rays are 

traced from the eye position - usually assumed as the virtual camera 

position - through each pixel of the image (Figure 2-2).  

 

 

Figure 2-2. Eye-based Ray Tracing ray direction 

 

Each of these rays is then intersected with the scene. If it does not 

intersect any object, a background is used to color it. Otherwise, new rays 

are computed from the intersection point in various directions, depending 
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on the object’s properties as well as the Ray Tracing algorithm itself. 

Tracing rays in the direction of light sources and, depending on how 

reflective the object is, one or more to simulate its reflectiveness and 

refractiveness, is the usual approach. Apart from what these rays try to 

simulate or what direction they follow, they all share the same origin - the 

intersection point between the previous ray and the object intersected. 

Although this is the easiest approach, that is not how it exactly happens in 

nature. Some effects like subsurface scattering[27] turn the previous 

assumption into a false one (Figure 2-3). This is particularly noticeable in 

materials such as wax, marble and skin. 

 

 

 

Figure 2-3. Left - without Subsurface Scattering; Right - with Subsurface Scattering 
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When a ray hits any surface its radiance is absorbed, reflected or 

refracted6. In fact, everything happens simultaneously. The material 

properties define the amount to consider from each one. The reflection 

and refraction effects can be simulated by calculating other rays to 

represent them and then using the algorithm recurrently. The calculations 

of these rays depend, amongst others, on the surface material, on the hit 

point normal and the intersected ray direction. 

 

 

Figure 2-4. Radiance is either reflected, refracted or absorved 

 

In nature, light travels from light sources, directly or eventually 

reflected by some objects, to the eye7. Nonetheless, simulating this 

process is not efficient because a lot of rays will never reach the eye and 

then, computing them would result in a great computational cost without 

any improvement in quality. To avoid this performance drawback, Ray 

Tracing is normally computed the other way round. Tracing rays from the 

eye to the light sources8 handles with this factor providing almost the 

same results. It is not exactly the same simply because some effects are 

harder to reproduce by tracing rays in the backward order (compared to 

the way they travel in nature). This is especially noticeable in indirect 

illuminated scenes mainly. This derives from the lower probability of 

                                    
6 In some cases the light is absorbed and then re-emitted at a longer wavelength color in a random direction. 
This is called fluorescence. It is a rare phenomenon, reason why tends to be left out of most ray tracing 
algorithms. 
7 Either the eye of any animal including the humans or any kind of lens that capture radiance like the ones used 
in cameras. 
8 This technique is usually denoted as eye-based while tracing rays from light sources is denoted light-based. 
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hitting the light source in those circumstances. Nevertheless recent 

approaches try to use efficiently light-based Ray Tracing in order to deal 

with these cases. Photon mapping, for instance, tries to combine both 

approaches in an effort to achieve the best of both worlds. 

 

2.3.2 Primitives 

 

A virtual scene is composed from one to millions of primitives. 

Primitive is anything that represents scene geometry. For a long time, 

triangles were the one and only kind of primitive supported by graphic 

cards. However, in practice, a primitive could be any polygon or shape - 

quad, circle, sphere, cubes, etc. There are even means of representing 

free form shapes/surfaces recurring to splines, surface patches, NURBS, 

etc.  

Nowadays, some graphic cards support other kinds of primitives. But 

historic and portability reasons have placed triangles as the standard 

primitive. 

   

2.3.3 Acceleration structures 

 

Major Ray Tracing bottleneck is, undoubtedly, its performance due to 

the high computational costs it involves. A straightforward application of 

the Ray Tracing concepts would lead to a very inefficient solution, since 

every ray would result in an intersection test with every primitive in the 

scene. Over the time numerous techniques have been developed in order 

to accelerate Ray Tracing computations by reducing complexity. Given the 

fact that ray-object intersection tests are heavy to compute and that the 

amount of tests increases as the scene gets more complex or detailed, a 

great effort has been put into reducing the number of the necessary 
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intersection tests. Acceleration structures are a scheme for doing so. They 

create some kind of information structure in order to discard some groups 

of intersection tests. This structure should only be needed to compute 

once9 while accelerating computations every time a ray is traced. It seems 

logical that, the more complexity is added to the scene, the higher the 

image resolution or the deeper the ray maximum depth is, the more gains 

these techniques can obtain. Every time more primitives or more rays are 

computed, more profits will be provided by the acceleration structures - 

by reducing the number of the necessary intersection tests for each ray. 

In spite of the different approaches taken into account to the present, 

the acceleration structures may be subdivided into two groups:  

• the ones that rely on spatial subdivision or 

• the ones concerning object hierarchy.  

Whereas the former orders the scene space, the latter orders 

primitives. Wald et al. have done a deep and complete state of the art 

review in 2007 on acceleration structures for Ray Tracing purposes.[64] 

Quoting: "Spatial division and object hierarchy are dual in nature: Spatial 

division techniques uniquely represent each point in space, but each 

primitive can be referenced from multiple cells; object hierarchy 

techniques reference each primitive exactly once, but each 3D point can 

be overlapped by anywhere from zero to several leaf nodes."   

Several other properties define an acceleration structure design and 

implementation. Please refer to Wald et al. study for further investigation. 

  

                                    
9 Or in dynamic scenes, either when the light sources change, when the scene changes or when the camera 
moves. 
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2.3.4 Whitted algorithm 

 

There are several Ray Tracing algorithms. Essentially they diverge on 

one or more of these three points: 

• ray generation direction (from eye to light or from light to eye); 

• reflection, transmission and refraction direction samples and 

consequent rays; 

• stop criteria (Russian roulette, deterministic, etc.) 

T. Whitted[69] introduced a deterministic algorithm for Ray Tracing 

using backward direction - from eye to light. The reflected rays’ direction 

sample is also deterministically chosen. For each ray-surface intersection 

a ray is shot to each light source – designed as shadow rays - and if the 

material has specular properties, a perfect reflective and/or refractive ray 

is also shot.  

The algorithm is intrinsically recursive and only stops when diffuse 

surfaces are hit (since only shadow rays are shot). Whitted Ray Tracing 

models mirror-like reflections/refractions perfectly. However, in reality, no 

material is perfectly specular; some glossiness is always present. A glossy 

material also reflects/refracts but not towards a single direction. It 

reflects/refracts towards a small area of directions. The smaller this area 

is, the closer the material is to perfectly specular. Whitted Ray Tracing 

does not contemplate such a kind of effects, it only recognizes two kinds 

of material: specular and diffuse. Diffuse materials model matte-looking 

materials – rubber, wood, etc - whereas specular materials approximate 

glossy materials – metal, glass, mirror, etc. 
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3 OpenCL and CUDA basic architectures 

 

With the new graphic board generation - GPGPU capable - the need 

to provide developers with proper toolkits to explore it arose. nVidia 

released Compute Unified Device Architecture (CUDA) to provide such 

facilities for their hardware. However, nowadays there is many different 

parallel hardware present in a common desktop. Developers faced the 

need to learn different languages and architectures for each of these 

components. Moreover, CUDA, as aforementioned, is specific to nVidia's 

graphic boards. It won't work for other graphic board manufacturers. 

These portability issues lead to Open Compute Language (OpenCL) 

creation. OpenCL was firstly introduced by Apple, but was soon embraced 

by other companies and is now the responsibility of Khronos Group10. 

nVidia is also a member in OpenCL specification and development group. 

In fact, their graphic boards were the first to support OpenCL. 

Nevertheless, other manufacturers should follow and make their drivers 

available in the near future. 

A brief presentation of CUDA and OpenCL follows below. These 

concepts and their architecture are important because they restrict the 

Ray Tracing implementation presented in the System design chapter. It 

should be noticed, however, that only significant concepts to this thesis 

are presented. Please refer to CUDA programming guide[37] and OpenCL 

specification[35] for further information. 

 

3.1 CUDA - basis concepts 

 

As aforementioned, CUDA toolkit was designed to serve nVidia's 

graphic boards. Nevertheless, a host is needed to run the application, 

                                    
10 Also responsible for many other technologies such as OpenGL, OpenVG, COLLADA, etc. 
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dispatch, feed, manage and control CUDA device. CUDA programming 

model uses and extends standard C language with a new subset of 

functions. Functions that will run on device are marked with special 

attributes. These attributes define where the function will run and from 

where it can be invoked. The ones that run on device and are invoked 

from host are designated kernels. Thus, host manages device execution 

through kernels invocation. 

 

 
Figure 3-1. CUDA Execution Model 

 

Figure 3-1 shows a diagram of a CUDA application execution. Code 

runs serially on host until it dispatches job to device by invoking a given 

kernel. The kernel invocation must specify the number of threads to run 

on device. The kernel call will return asynchronously giving control back to 
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host. Each thread evocation will run the same code, ie, the same function. 

Yet, threads should be organized into groups and form a hierarchy.  

 

3.1.1 Thread hierarchy 

 

CUDA provides built-in methods for thread identification within the 

hierarchy. The hierarchy can be particularly handy for certain problems. A 

two -�8 matrix sum, for instance, could be mapped into -�8 kernels. 
Each kernel would then be responsible for a specific cell sum. Of course 

this example is over simplistic. CUDA thread hierarchy supports up to 

three dimensions of thread groups - designated blocks. Moreover, blocks 

may also be grouped and organized up to three dimensions into a grid. 

 

 
Figure 3-2. CUDA Thread Hierarchy 

 

A scenario using a two-dimensional grid and two-dimensional blocks 

is shown in Figure 3-2. However, some hardware restrictions apply to grid 

and block sizes. For instance, block size must not contain more than 512 

threads. In practice, this value could be even smaller depending on thread 
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and block memory usage. Indeed, it seems convenient to understand the 

architecture of nVidia's graphic boards before pointing out such 

limitations. 

 

3.1.2 Hardware architecture 

 

Each CUDA capable device11 has a group of multiprocessors and a 

specific amount of device memory. Each multiprocessor has eight scalar 

processors and on-chip shared memory. Multiprocessor execution employs 

a SIMT (single-instruction, multiple-thread) architecture. Each thread is 

mapped to one scalar processor and is executed independently with its 

own instruction address and registers. However, a multiprocessor SIMT 

unit is responsible for the creation, management, schedule and execution 

of a warp (a group of 32 parallel threads). Each warp executes the same 

instruction at a time. That doesn't mean that threads within a warp must 

follow the same execution time, but it is beneficial if they do so12. Since 

each thread block is assigned to only one multiprocessor, it is suggested 

to have thread block sizes multiples of 32. 

 

                                    
11 nVidia has an updated list in http://www.nvidia.com/object/cuda_learn_products.html 
12 "If threads of a warp diverge via a data-dependant conditional branch, the warp serially executes each 
branch path taken, disabling threads that are not on that path, and when all paths complete, the threads 
converge back to the same execution path." in CUDA programming guide[37]. 
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Figure 3-3. CUDA Hardware Model 

  

CUDA hardware model is depicted in Figure 3-3. As it is presented, a 

CUDA device has N multiprocessors and an amount of device memory 

accessible to all of them. Each multiprocessor may be decomposed in M 

processors - fed by an instruction unit - and on-chip memory 

(multiprocessor bounded memory).  

 

3.1.3 Memory hierarchy 

 

CUDA provides various memory spaces designed to meet different 

purposes. There is, however, an important point to be taken into account: 

memory could be off-chip - available to the entire device -, or on-chip - 

available to a multiprocessor, a thread block or a unique thread. On-chip 

memory is much faster than off-chip one. Still, host cannot access on-chip 

memory. 



38 OpenCL and CUDA basic architectures 
 

 

There are six CUDA device memory spaces as depicted in Figure 3-4. 

 

 
Figure 3-4. CUDA Device Memory Spaces 

 

Each of these memory spaces suits specific purposes and there are 

different restrictions and/or constraints amongst them: 

• Registers are located on-chip and are per thread accessible, ie, one 

thread cannot access other thread registers; 

• Shared Memory is located on-chip and is per block accessible , ie, all 

threads within a block access the same shared memory - that's why 

it is called shared -, but threads in different thread blocks do not; 

• Local Memory is per thread accessible but is located off-chip; 

• Global Memory is accessible across the entire grid and from host. It 

is also located off-chip; 

• Constant and Texture Memory can only be written from host but can 

be read from host and from the entire grid. Despite being located 

off-chip, on-chip cache is provided. 

Texture memory is specialized on texture fetching and provides 

different address modes, data filtering and specific data formats. 
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Bearing in mind the discussion about CUDA thread hierarchy, it is 

important to notice that memory usage can also compromise thread block 

and grid sizes assortment13.  

  

3.1.4 Programming Interface 

 

CUDA toolkit provides two different APIs: 

• A low-level API called the CUDA driver API; 

• A higher-level API called the CUDA runtime API that is implemented 

on top of the CUDA driver API. 

The CUDA driver API is language-independent14 and offers a better 

level of control. Still, it is also harder to program and debug. In the 

context of this thesis only the CUDA runtime API will be studied; please 

refer to CUDA programming guide[37] for more information about CUDA 

driver API and differences between both. 

The CUDA runtime library splits into three components: a host, a 

device and a common component. They provide variable types, functions, 

synchronization mechanisms, kernel invocation, memory copy instructions 

and OpenGL/Direct3D interoperability to host, device or both.  

Any use of the CUDA runtime library implies compiling with nVidia 

CUDA compiler (NVCC). NVCC compiles kernel sources and forwards host 

code compilation to host compiler. Please refer to nVidia CUDA Compiler 

Driver[36] for further information on NVCC. 

 

 

                                    
13 CUDA implements a memory transfer to slower memory in cascade to higher (and slower) memory spaces in 
hierarchy. For instance, if more registers than available are used, it would rely on shared memory, and so on.  
14 The CUDA driver API only deals with pre-compiled CUDA binary files. 
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3.2 OpenCL - basis concepts 

 

OpenCL resembles CUDA in most of its design. Like CUDA, a host 

device must be present. Moreover, application is also run on host and 

device is once again managed and controlled from it. 

  

 
Figure 3-5. OpenCL Platform Model 

 

As shown in Figure 3-5, an OpenCL platform consists of one Host 

connected to one or more devices. Each device has one or more compute 

unit each with one or more processing elements. 

 

3.2.1 Execution Model 

 

Just like CUDA, OpenCL host dispatches work to device through a 

special function call. These functions (running on device but called from 

host) are once again called kernels. Moreover, each thread will belong to a 

thread hierarchy. The concept of grid and thread block also applies. 

However, they are named differently: grid becomes NDRange and thread 

block becomes work-group. Each running thread is designated work-item. 

Nevertheless, similarly to CUDA grid and thread block, NDRange and 

work-groups can be organized up to three dimensions. Figure 3-6 shows 
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an example of a two-dimensional NDRange composed of two-dimensional 

work-groups. 

 

 
Figure 3-6. OpenCL Execution Model 

 

OpenCL implements the concept of command queue. Command 

queue is used for command dispatching15 and may implement an in-order 

or an out-of-order scheduling. An in-order schedule grants command 

serialization, ie, one command on the queue only starts when the previous 

one is completed. On the other hand, out-of-order schedule starts a 

command as soon as possible, even if previous commands are still in 

progress. Synchronization is then the responsibility of the programmer. 

  

3.2.2 Memory Model 

 

OpenCL implements four different memory regions: 

• Global Memory, accessible from host and to the entire NDRange; 

• Constant Memory, readable from host and to the entire NDRange. 

Must be initialized from host; 

                                    
15 Command is either a kernel execution, a synchronization or a memory copy instruction. 
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• Local Memory, accessible to all work-items inside a work-group; 

• Private Memory, work-item private memory and neither visible to 

any other work-item nor to host. 

Global and constant memory may be cached depending on device 

support. Local memory has either a dedicated region in device hardware 

or it is mapped onto sections of global memory. 

 
Figure 3-7. OpenCL Memory Model 

 

Figure 3-7 depicts OpenCL memory model. OpenCL grants local and 

global memory consistency across work-items in a single work-group at a 

work-group barrier. However, global memory consistency is not granted 

among different work-groups of the same NDRange. 

Finally OpenCL also delivers proper image/texture fetching, 

management and control facilities. The facilities include normalized 

addressing mode and linear filtering. The images allocation space is not 

defined and depends on device architecture16. 

 

                                    
16 However global/constant memory region should be taken as default since a mapping to other memory 
regions would induct complex memory management issues. 
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4  Related work 

 

Natural light exhibits a complex and diverse behavior according to 

object material properties and environmental conditions. Minnaert 

book[34] is a classic example for showing this kind of phenomena 

outdoors. As for light indoors these light effects and phenomena are 

complex too; furthermore, some of its characteristic features are not 

perceived outdoors. Anyway, global illumination techniques carry within 

them the will to realistically simulate this kind of phenomena over the 

image synthesis upon virtual scenes. Many global illumination algorithms 

have been developed over time. Ray Tracing is probably the best known 

and most complete one, but valuable approaches such as radiosity[20, 11, 

30], photon mapping[25, 26] or ambient occlusion[23, 31, 7] among 

others cannot be disregarded. In any case, this thesis scope on global 

illumination refers to Ray Tracing only and it will be the sole technique to 

be deeply discussed in this chapter. 

 

Ray Tracing 

Ray Tracing was first approached by Arthur Appel back in 1968[2]. 

His research aimed at the idea of shooting rays from the eye through each 

pixel to find the closest object hit by the ray. His technique is nowadays 

known as Ray Casting. Later, by the end of the seventies, Whitted[69] 

enhanced Ray Casting and introduced a huge research breakthrough. 

Whitted was the first to introduce the concept of secondary rays. In 

practice, his technique consists on keeping the Appel Ray Casting process 

after hitting an object surface. At this point reflection, refraction and 

shadow rays are traced and their intersection computed. Reflection and 

refraction rays would model mirror and transparent-like objects, 

respectively. Shadow rays are rays that are traced into source light in 
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order to test if the ray origin - which is an object surface point - is directly 

illuminated or not.  

Whitted technique introduced the possibility of efficiently handle the 

mirror reflections and refractions - in a perfect manner - taking into 

account direct illumination. However, other effects such as depth of field, 

caustics, glossy reflection, motion blur and indirect illumination were not 

supported in his approach. Such effects were only considered later on by 

Cook’s[13, 12] stochastic secondary rays direction sample. This means 

that secondary rays are not restricted to perfect reflection/refraction 

anymore; ie, the secondary rays’ direction is no longer deterministically 

chosen - some kind of randomness is introduced into the process. 

Stochastic Ray Tracing methods are now known as Monte Carlo and are 

able to simulate every type of light scattering. However, Monte Carlo 

methods tend to introduce noise in the rendered image. Research was 

done to reduce the noise by restricting selection to secondary rays 

direction sample[52, 57] and by using bidirectional Monte Carlo Ray 

Tracing[71, 56]. Whereas the former tries to distribute rays in a more 

careful manner, the latter tries a hybrid approach between eye-to-light 

and light-to-eye Monte Carlo Ray Tracing. Some biased solutions17 also 

appeared, like irradiance cache, which interpolates previously stored 

indirect illumination on diffuse surfaces[67]. Usually, biased techniques 

converge faster than unbiased ones; yet, the problem lies on converging 

to approximated solutions of the rendering equation instead of the correct 

solution. Nevertheless, most of the times, this flaw is not perceived to the 

naked eye.  

 

Distributed Ray Tracing 

Ray Tracing is commonly associated with off-line rendering due to its 

high computational costs that don’t make it suitable for real-time 

                                    
17 An unbiased method would converge to the rendering equation solution, while a biased method would add 
some noise to the converge limit (called bias).   
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applications. This is about to change with recent parallel resources present 

in nowadays desktops. In fact, Ray Tracing has always been recognized as 

a massively parallel algorithm since any ray can be intersected and traced 

independently from the others. This property has been explored over time 

in distributed architectures[65, 66, 63, 59, 58, 4, 55, 9] and 

supercomputers[39, 38]. Although good results have been found in such 

conditions, their structure and price specificity make them reasonable 

options for a small group of users only. Notwithstanding, their research 

has been applied and valued by industry, and originated the concept of 

rendering farms, ie, clusters specifically driven to rendering. 

However, their results open good perspectives to the growing parallel 

capabilities of modern desktop PCs. 

 

Desktop Implementations 

The efficiency of the rendering farms is based on the available 

parallel resources. With the introduction of similar resources in current 

desktops18, the effort of exploring such resources in a resembling manner 

increases. Thus, research has been done over recent multi-core 

architectures available in commodity cost desktops. Aside from having 

many cores, current CPUs provide SIMD instruction support. Such 

instruction set extension is being explored by mainly grouping coherent 

rays into one single instruction[6]. But there are also examples that do 

not rely on coherent rays, like Boulos multi-threaded architecture for Ray 

Tracing[53]. 

Apart from multi-core CPU developments, the successive increments 

in GPU programmability also capture the interest of the community. The 

Ray Engine[8] was the first approach to implement Ray Tracing on the GPU 

by calculating the ray-triangle intersections in it. However, the bandwidth 

                                    
18 Nowadays desktops usually have multi-core CPU and GPU with multiprocessors capable of doing general 
purpose computing. 
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limitations became the major bottleneck. Purcell et al.[41, 42] reduced 

such communications by computing almost everything in the GPU. Others 

took this approach[17, 29] further, but failed because of the limited GPU 

architecture at the time. With the release of the new generation of graphic 

boards along with technologies such as CUDA, GPU architecture limitations 

can be avoided/concealed in a simpler way. However, algorithms and 

system designs should still take into account the graphic boards 

differences from general purpose processors. The work from recent 

investigations[47, 1, 33] should be properly matured and trigger precise, 

specialized, and optimized solutions for such hardware. Usual Ray Tracing 

algorithms scarcely meet GPU architecture requirements to maximum 

efficiency. Constraints such as memory coalescence, warp-dependent 

branch conditions, etc. are difficult to apply since existing algorithms have 

intrinsic random accesses to memory and branching is usually ray-

dependent. 

Even so, such approaches are evolving quickly and promising results 

were already unveiled. For instance, real-time performance is being 

achieved by Georgiev et al.[19, 18] still in developing scene graph 

specially designed for their real time Ray Tracing engine. 

 

Ray Tracing Hardware 

Ray Tracing has evolved over time mainly by software means. Still, 

the discussion and research on designing specific Ray Tracing hardware is 

rising among the community. The problem is that current graphic boards 

– rasterization-based – are so ubiquitous that other approaches are 

completely forgotten or neglected. 

Other problems rely on the wide range of algorithms and data 

structures available. Moreover, each of them is adapted to specific 

requirements. It is very hard to supply general purpose Ray Tracing 

hardware having to choose a specific combination of them. Even worse, if 
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that was possible, such abstraction would have performance penalty 

costs. 

Nevertheless, existing approaches[48, 70] show that such specific 

hardware is feasible and cheap as rasterization-based one. It also inherits 

some valuable proprieties from Ray Tracing algorithms such as scalability 

either in the number of primitives in the scene or in the number of 

processors present in the system or in both. 

Others approaches rely on more general-purpose hardware with 

extreme parallel resources conceived for other purposes. Notwithstanding 

being rare in desktop environments, this kind of hardware is often easily 

adapted to such a reality. A mere example may be given with the Cell 

Processor. The Sony Cell Processor19 developed jointly with Toshiba and 

IBM was especially designed to Sony PlayStation 3. Nevertheless its 

extreme parallelism is being explored to meet Ray Tracing 

requirements[3] and has already proven that it can reach a 4 to 8 faster 

performance than usual x86 CPUs.  

 

Acceleration Structures 

A naïve Ray Tracing implementation would have to test the 

intersection between each ray and each primitive. This would scale linearly 

with the increase of primitive and/or image resolution. Such a penalty is 

avoided by storing primitives in a data structure which prevents some 

intersection tests from being done. Depending on the logical basis of the 

structure – spatial subdivision or object hierarchy -, this is done by 

“guessing” which primitives are likely to be the first to be intersected or 

by discarding groups of primitives at once. Indeed, spatial subdivision is 

barely the opposite of object hierarchy and vice-versa. While the former 

divides space into individual cells where more than one primitive may be 

                                    
19 http://researchweb.watson.ibm.com/cell/ 
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present, the latter individually references each primitive but each space 

cell may be overlapped multiple times in different leaf nodes. 

Despite any concept differences among all techniques, the 

comparison between them usually relies on two different aspects: 

• build quality, ie, the performance obtained in each render and 

• build time, ie, the time needed to build and/or update the data 

structure. 

Whereas the first barometer importance is quite obvious and related 

to overall Ray Tracing performance, the second could arise some doubts. 

Indeed, in static scenes one could afford to wait more in preprocessing if 

that would mean more frame rates at execution time. However, dynamic 

scenes imply changes and updates in the acceleration structure which are 

not predictable at preprocessing time. If the structure takes too long to 

re-adapt to scene changes, the profit it provides while rendering may not 

compensate after all. However, the balance between these two 

measurements is task-dependent. It depends on the scene complexity, 

organization and animation, on the system design and on the targeted 

devices.  

“(…) even though a large number of approaches have been proposed, 

it is very challenging to compare them to each other because they use 

different code bases, hardware, optimization levels, traversal algorithms, 

kinds of motion, test scenes, and ray distributions. Second, with so many 

factors influencing the relative pros and cons of the individual approaches, 

the “best” approach will always depend on the actual problem, with some 

approaches best in some situations, and others in other situations.”20 

Among spatial division techniques, grids[62] and kd-trees[61] stand 

out as the most popular ones. Samet’s studies[45, 44, 46] in spatial data 

structures provide an in-depth look on such techniques. More recent 

                                    
20 In State of the Art in Ray Tracing Animated Scenes[64].  
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investigations provide methods to adapt kd-trees to GPU architecture[24, 

40], for dynamic scenes inclusively[50]. 

On the other hand, bounding volume hierarchies (BVH) are the object 

hierarchy technique mainly used. When compared to kd-trees21, BVHs 

tend to be more flexible to incremental updates whereas on pure 

rendering, kd-trees are assumed to perform better[22]. Despite today’s 

interest in BVHs, this technique was neglected for years, at the time when 

dynamic scenes in Ray Tracing were too expensive to be feasible at real-

time rates. Since each primitive is referenced once only, build time is 

much smaller than spatial division techniques[60, 68]. Just as kd-trees, 

BVHs targeting GPU architecture is an active area of research[21, 32]. 

Indeed, some problems are present in both techniques such as the lack of 

a stack for tree transversal.  

 

                                    
21 Grids are usually used because of its simplicity but most of the times discussion of best suited acceleration 
structure is restricted to kd-trees BVHs. 
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5 Methodology and development strategy 

 

This study involves the development of a Ray Tracer from scratch 

using state of the art research; nevertheless, the main focus of this thesis 

is not on the development of a Ray Tracer per se, but on testing and 

evaluating how suitable it is to use OpenCL in Ray Tracing and its 

comparison with CUDA. 

Notwithstanding, the Ray Tracer is intended to be integrated on the 

Maximus FP7 European project. Maximus aims at providing professionals 

with tools – both in hardware and software – to deal with HDR images in 

real-time. Such tools should play a key role in prototype evaluation and 

construction. The full project description may be found on its website.22   

Before OpenCL implementation, a standard sequential CPU based 

version should be developed. This version is used as a startup point to 

GPU implementation. Moreover, it provides a fair perception of GPU 

version gain23. 

The present study evaluates how OpenCL can contribute to faster Ray 

Tracing reaching real-time rates, if possible. Even though performance is 

the most important element, it is not the sole factor under appreciation. 

The learning curve, debug facilities, programming environment and so on 

are also subjected to evaluation. 

During development phase only nVidia has released drivers with 

OpenCL support. For a straight comparison, CUDA version is as close as 

possible to the OpenCL one. On the one hand this clarifies if there is any 

performance penalty in using OpenCL. On the other hand CUDA is not 

intended to be as general as OpenCL and provides features and 

enhancements that OpenCL does not. In particular, the projected design 

might not be optimized to CUDA architecture. With a straight comparison 

                                    
22 http://www.maximus-eu.info 
23 Although CPU version could run much faster if multi-threaded. 
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one should be able to evaluate direct performance between both – which 

is exactly what is intended. This scenario might be handy for newcomers - 

who are not yet used to CUDA tricks and tweaks. Furthermore, it makes 

particular sense right now, when OpenCL is still a newborn technology; as 

time goes by, OpenCL compiler should get smarter and more efficient in 

order to take advantage of each specific platform. Meanwhile, comparing 

different designs – optimized to each architecture/technology – would 

result in a clear disadvantage to OpenCL. All in all, the idea is to question 

if features provided by OpenCL are efficient instead of trying to 

understand if they are enough. 

Thus, it is understandable that the performance evaluation is made 

essentially through the comparison with CUDA. Nevertheless, CPU 

implementation should not be neglected for such purposes and also fits 

benchmarking. Even if it is not the main scope of this work, real-time Ray 

Tracing is a subconscious goal. At the end, results should also be 

compared with the state of the art. Typical scenes will be used at different 

image resolution, from different camera angles and positions. Aside from 

that, different graphic boards should also be used. The scability of the 

developed system should also be perceptible from the collected 

information/results. Even more important than that is to understand how 

much OpenCL could help in improving current state of the art. 

The other areas under evaluation are somewhat more subjective. 

Anyway, as a newcomer to GPU computing, a close first contact with each 

technology should help distinguish the advantages and inconveniences of 

each in a neutral manner. 

The following subchapters explain in detail the problem in hands and 

how it is going to be solved. Furthermore, it is shown how the solution is 

going to be evaluated. 
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5.1 Hypotheses 

 

Concerning performance, CUDA is expected to be slightly faster than 

OpenCL. OpenCL uses a higher language level than CUDA; this implies 

more code translation into device recognizable code. Moreover, OpenCL is 

a newborn technology; it is easily understandable that its compiler might 

not be as efficient as it could. Nonetheless, the performance difference 

should be marginal. 

If, on the one hand, being the most recent technology may imply 

disadvantages in performance, on the other hand, it may be an advantage 

in its architecture and operation; ie, it should be cleaner and easier to 

learn. Moreover, OpenCL is intended to abstract developer from the device 

being used; thus, the greedy details of the device architecture should be 

concealed also. 

  

5.2 Scenario 

 

Despite a sincere effort to develop a technologically independent 

solution, in order to build up a system skeleton, some adoptions should be 

taken. First of all a graphics API should be adopted. It should provide 

methods for virtual scene creation, manipulation and visualization through 

an operating system window. This choice is the most compromising one 

and should be carried out with extreme care. After all, the whole system 

will rely on it with its advantages and disadvantages; secondly, it also 

compromises development phase: there are simple and complex libraries, 

in higher or lower level, etc; finally, it may also imply the programming 

language used24.   

                                    
24 Considering CUDA and OpenCL integration, C/C++ should be adopted. 
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At low level side one OpenGL and Direct3D are the most common 

used rendering libraries. A whole chapter could be done comparing both, 

but, in fact, none of them seemed suitable for the problem; at least, not 

directly. Both provide no scene abstraction and would lead to abusive 

development time to achieve expected goals. A higher level library may 

enable faster development by providing higher scene abstraction and by 

not relying exclusively on the rendering process. Instead, it should 

combine window management, visualization, rendering, input devices 

recognition, file system interoperability and scene files load, store and 

interpretation. A lot of examples could be presented such as GLX, CGL or 

WGL. Nevertheless, in what concerns scene description and manipulation, 

scenegraph-based approaches seem to provide better tools to scene 

perception, manipulation and access. As redundant as this may seem, 

scenegraph consists of storing the scene into a graph. This provides a 

better level of abstraction than having the entire scene in a “primitive 

soup” without proper relation among primitives. This approach is not new 

and is shared among several libraries: OpenSG, OpenSceneGraph, 

Performer, Open Inventor, Java3D, etc. 

Among them OpenSG is the one used because it is C++ compliant, 

has cross-platform capabilities25 and multi-threaded data structures 

support. Moreover, it is an active project with good community support. It 

is combined with Qt to window management and input devices handling. 

Last but not least, Adaptive Communication Environment (ACE) is 

adopted to simplify thread spanning, communication and management. 

Parallel code is by nature more complex, making it hard to understand 

and maintain. Also, some potential software bugs are embraced with 

parallel computing. Race conditions, synchronization, data dependency, 

etc., should be areas to be aware of in order to avoid further problems. 

ACE high level object-oriented programming interface provides a powerful 

yet simple method to adapt thread management, synchronization and 

                                    
25 As it used OpenGL as rendering library, it is supported either in Windows either Unix based platforms. 
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communication to a class-oriented project. Another ACE main advantage 

is portability: its cross-platform support is very handy since usually each 

operating system (OS) has its own means of thread management, 

memory management and inter-process communication. ACE isolates this 

concrete features, different from one OS to another through a unique set 

of platform-independent classes and methods. 

 

5.3 Variables 

 

Evaluation relies on analyzing the behavior of a group of variables. It 

may be seen as a mathematical function, with independent and dependent 

variables. Independent variables are the Ray Tracer versions - CUDA, 

OpenCL and CPU – and the virtual scenes used. Dependent variables are 

the frames per second achieved by each configuration; ie, by each pair of 

Ray Tracer version and virtual scene. 

 

5.4 Subjects 

 

Maximus has architecture and car styling professionals involved in the 

evaluation of the project. However, this evaluation will not take place 

within the timeline of this thesis work. Nonetheless, this solution potential 

users are present in such areas. Notwithstanding, any global illumination 

renderer in general, and Ray Tracing in particular, may be used in a wide 

range of areas for many different purposes. 
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5.5 Methodology and Procedure 

 

The solution consists of three independent Ray Tracers: one using 

CUDA, another one using OpenCL, both parallel, and a third one that runs 

on the CPU serially. 

The Whitted Ray Tracing algorithm is the one adopted. Nevertheless, 

some add-ons were introduced in order to not only meet Maximus project 

requirements but also enrich Ray Tracer with more effects. 

The whole project development is described on the following chapter. 
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6 System design 

 

The solution was split into several projects in order to isolate 

technological dependencies and enhance integration facility. That is of 

major importance regarding future integration on a vast interactive 

renderer on the scope of Maximus FP7 European project.  

 

 

Figure 6-1. Modules of the System  

  

As shown in Figure 6-1, three specific ray tracers were developed: 

Cpu Ray Tracer, OpenCL Ray Tracer and a CUDA Ray Tracer. These three projects 

depend on a general Ray Tracer. In practice, Ray Tracer implements an 

abstract class which is inherited by the classes defined on each specific 

representation. Ray Tracer sole method is virtual and it is the invocation to 

ray trace the scene. Depending on which specific representation is created 

it is overlapped with the method of the specific ray tracer.  
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Figure 6-2. Whole System 

  

The final solution incorporates another project which is a mere 

application using the above subsystem as shown in Figure 6-2. 

 

6.1 Chapter organization 

 

Each module is fully explained below. Since it is defined in Ray Tracer, 

BVH structure and construction is presented in the respective subchapter. 

Also, bearing in mind the adopted methodology, serial CPU version of the 

Ray Tracer was built first and was as a model for the other versions. Thus, 

Cpu Ray Tracer explanation also contemplates the Ray Tracing algorithm 

itself.  

 

6.2 Ray tracer 

 

Ray Tracer class is an abstract class with a single virtual method to ray 

trace. However it contains a BVH and the project encapsulates the whole 

BVH definition and implementation. This implementation is object of 

further discussion.  

After state of the art review, BVH seems the simpler acceleration 

structure to build and maintain. Moreover, it is competitive in performance 

when dynamic scenes take place. However, one must keep in mind that 
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this study does not intend to compare different acceleration structures, so 

any other could have been used for this study purposes. 

The BVH is, in practice, a binary tree composed of primitives. A primitive 

is either a node or a leaf. Nodes have a bounding box and two children - 

other primitives. Leaves are at the bottom of the tree and represent 

geometry elements - usually a group of triangles. BVH implementation 

was adopted from Peter Shirley book "Realistic Ray Tracing"[51]. His BVH 

implements axis aligned bounding box (AABB) for a faster transversal26. 

This study implementation introduces, however, some additions to 

Shirley's BVH. In practice, four classes were implemented: one BVH 

element abstract class - BVH Primitive - inherited by: 

• BVH - a default BVH node with an AABB and two children of type BVH 

Primitive; 

• Node Primitive - a class associated with a OpenSG geometry node and 

a child of type BVH Primitive; 

• Triangle - the leaf element representing a triangle of the geometry 

mesh. 

BVH and Triangle are the usual BVH node and leaf, respectively27. Node 

Primitive is a new concept which is a kind of adaptation from OpenSG scene 

graph. It is meant to make the project more versatile and prepared for 

dynamic scenes28. Node Primitives are a mixture of leaf and node; on the 

one hand they are interpreted and treated as leaves, on the other they 

also have children. In fact, the final result can be interpreted as a BVH of 

BVHs, ie, there is a primary BVH where the leaves are Node Primitives and 

each leaf has another BVH attached to it where the leaves are Triangles. 

 

                                    
26 AABB ray intersections tests are simpler than non AABB ones. Thence, much more research has been done 
over the former ones resulting in well optimized algorithms that not discovered – and maybe not even possible 
– on non AABB. 
27 Though usually a leaf is composed of more than one triangle for performance/memory issues. 
28 Yet, dynamic scenes are not working due to some missing implementations. 
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Figure 6-3. Primary and Secondary BVHs 

 

As shown in Figure 6-3, all the Node Primitives are at the same tree 

depth. This is due to the building method: as a matter of fact, a first BVH 

of Node Primitives is built and then for each one a new BVH is built with its 

Triangles. This separation of concepts is helpful because it is a good 

commitment between scene graph primitives organization and primitive 

soup style. The concept that lies behind is that rigid objects will never 

need to update its BVH, so dynamic scenes of rigid objects would imply an 

update for the first BVH only - the one of Node Primitives. The other BVHs 

would not need to update because each Node Primitive has the OpenSG 

geometry node transformation matrix attached to it. When a ray traverses 

the tree it is multiplied by the inverted transformation matrix at each Node 

Primitive enabling correct and updated intersection tests29. 

At the end, the distinction between the upper BVH and all the lower 

ones is so notorious that it would be even possible to have different 

acceleration structures between the two levels. There is nothing against 

the use of a BVH of kd-trees, for example. The single requirement for this 

would be to apply a different construction method to each one. 

 

                                    
29 Refer to section 6.2.2 - BVH traversal. 
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6.2.1 BVH construction 

 

No special heuristic was used for BVH construction: it is simply split 

using the median point from each bounding box dimension. The axis being 

used changes at each invocation between �, 9, and :. 

 

 

6.2.2 BVH traversal 

 

The tree traversal is also adopted from Shirley implementation. In the 

case of the BVH traversal it can be depicted like this: 

 

 

 

 

if ray hits this bounding box { 

 

 if ray hits left child or ray hits right child  

  return closest intersection information; 

 else 

  return false;  

} 

else 

 return false; 

BVH Primitive* buildBVH(BVH Primitive** primitives, int axis) { 

  

 if there is only 1 primitive 

  return first element of primitives; 

 if there are exactly 2 primitives 

  return new BVH(primitives[0], primitives[1]); 

 

 Bounding Box box; 

 for each primitive from primitives  

  surround box with current primitive bounding box; 

 

 Point pivot = median point of box; 

 

 int split point = find point of split in primitives according to current axis; 

 

 BVH Primitive* left = buildBVH(primitives until split point, (axis+1)%3); 

 BVH Primitive* right = buildBVH(primitives from split point, (axis+1)%3); 

  

 return new BVH(left, right, box); 

} 

Algorithm 6-2. BVH class ray traversal 

Algorithm 6-1. The BVH build function 
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The Node Primitive implementation comes down to the ray 

multiplication by the inverse matrix: 

 

  

6.2.3 BVH intersection tests 

 

The BVH traversal implies two intersection tests: one with the 

bounding boxes present at each BVH and the other with the BVH leaves - 

the Triangles. Both were also adopted from Shirley’s book[51]. 

For ray intersection purposes, bounding boxes are interpreted as a 

set of six lines - two in each axis. Shirley simplifies the concept to two 

dimensions before extrapolating to three dimensions: 

"The 2D bounding box is defined by two horizontal and two vertical 

lines: 

� � �;, 
� � �<, 
9 � 9;, 
9 � 9<. 

The points bounded by these lines can be described in interval 

notation: 

��, 9
 > ?�;, �<@  A  ?9;, 9<@." 
Thus, the algorithm deals with each pair of lines at a time to compute 

the interval between the closest and the furthest intersection point. After 

calculating this interval for each pair of lines, a new interval is computed 

from the intersection of the three previously computed ones. If the 

Matrix m = inverse of my transformation matrix; 

ray = ray * m; 

 

return my child intersection with ray; 

 
Algorithm 6-3. Node Primitive class ray traversal 
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resulting interval is empty, then no intersection has been found. The 

following pseudo-code exemplifies the stated algorithm: 

 

  

Triangle - ray intersection is a bit more complex. On the one hand the 

triangle is not necessarily aligned with any axis. On the other hand a 

simple true/false return does not provide enough information, ie, it is also 

needed to know where the intersection occurred. Barycentric coordinates 

are a mean of encoding this information. 

 

 
Figure 6-4. Barycentric Coordinates 

 

 

 

Tx min = (bounding box first line of x - ray position on x) / ray direction on x; 

Tx max = (bounding box second line of x - ray position on x) / ray direction on x; 

 

Ty min = (bounding box first line of y - ray position on y) / ray direction on y; 

Ty max = (bounding box second line of y - ray position on y) / ray direction on y; 

 

Tz min = (bounding box first line of z - ray position on z) / ray direction on z; 

Tz max = (bounding box second line of z - ray position on z) / ray direction on z; 

 

min = max of Tx min, Ty min and Tz min; 

max = min of Tx max, Ty max and Tz max; 

 

if min is greater than max 

 return false; 

else 

 return true; 

Algorithm 6-4. Axis aligned bounding box - ray intersection test 
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Figure 6-4 shows a triangle defined by points B, C and �. The triangle 
can then be described according to barycentric coordinates D, E and F: 

 6�D, E, F
 �  DB 7  EC 7  F� G  D 7  E 7  F � 1 Equation 6.1 

  

Moreover, barycentric coordinates must be positive. Then, after 

calculating point p, one can say whether it is inside the triangle by testing 

if all barycentric coordinates are positive and if their sum is equal to one. 

To compute barycentric coordinates one can use the areas of sub-

triangles IB, IC and I� according to the following rule: 
D �  IBI , 
E �  ICI , 
F �  I�I . 

where A is the triangle area. In practice, just two coordinates need to be 

computed since D may be written according to E and F: 
D 7  E 7  F � 1 J  D � 1 K  E K  F , then 

6�E, F
 � �1 K E K F
B 7  EC 7  F� 
J 6�E, F
 � B K EB K FB 7  EC 7  F� 

J 6�E, F
 � B 7  E�C K B
 7  F�� K B
 
Bearing in mind Equation 2.4 a ray 6�5
 hits the plane where 
 � 7 5� �  B 7  E�C K B
 7  F�� K B
 Equation 6.2 

 

To solve Equation 6.2 for 5, E and F one should first decompose the 
equation into each one of the three coordinates: 

� 7 5� �  B 7  E�C K B
 7  F�� K B
, 
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� 7 5� �  B 7  E�C K B
 7  F�� K B
, 
� 7 5� �  B 7  E�C K B
 7  F�� K B
. 

These three equations may be written as a standard linear equation: 

LB� K  C� B� K �� ��BM K  CM BM K �M �MBN K  CN BN K �N �N
O PEF5 Q �  PB� K  ��BM K  �MBN K  �N Q 

To solve such a linear system one may apply Cramer's rule and get the 

solutions as: 

E �  
RB� K �� B� K �� ��BM K �M BM K �M �MBN K �N BN K �N �N

R
|I| , 

F �  
RB� K C� B� K  �� ��BM K CM BM K  �M �MBN K CN BN K  �N �N

R
|I| , 

5 �  
RB� K  C� B� K �� B� K ��BM K  CM BM K �M BM K �MBN K  CN BN K �N BN K �N

R
|I| , 

where matrix A is 

T �  LB� K C� B� K �� ��BM K CM BM K �M �MBN K CN BN K �N �N
O. 

After reaching these values the intersection test is true if E U 0 G  F U
0  G  E 7 F W 1. 
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6.3 CPU ray tracer 

 

CPU Ray Tracer class inherits from Ray Tracer one. It implements a 

simple and serial Ray Tracing algorithm, despite the current frequent CPU 

parallelism. It is intended to be the canonical version from where any 

other branches – this being the reason why it was the first to be built. This 

subchapter will explain the Ray Tracing algorithm adopted in a step by 

step procedure through every feature of the Ray Tracer. 

Beforehand, primary rays are calculated. These rays share the same 

origin - the camera position - and go through each pixel of the image. 

Each pixel then follows a path - with possible branches - until a given 

point. The whole contribution of the path is then collected to the 

corresponding pixel. The process is done in a Whitted style, though with 

some increments/modifications. 

Each ray is intersected with the BVH. If no intersection is found then 

a cube map is used as background. The cube map returns a color from a 

specific point of one of its six faces according to a ray direction. 

 

6.3.1 Diffuse color and texture mapping  

 

If an intersection is found, the diffuse color of the intersection point is 

computed. It is either the result of the interpolation of each vertex diffuse 

color or the surface material diffuse color. The use of colors per vertex 

allows the use of another technique as a pre-process in order to simulate 

other kind of effects (typically low-frequency effects)30. It is especially 

relevant to Maximus project where it is intended to combine PRT and Ray 

Tracing. In this way, Ray Tracer may be seen as a consumer of the PRT 

output – stored as vertex colors. 

                                    
30 However, it may imply a more detailed model. For instance a plane may be represented with only four 
vertices, but it has colors per vertex, it may need more vertices in order to provide more information about its 
color along the entire plane. 
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When in the presence of textures, this diffuse color is properly 

blended with them according to the texture environment mode that may 

be one of these: 

• GL_REPLACE - replaces current diffuse color with texture color; 

• GL_DECAL - interpolates between current diffuse color and texture 

color according to texture alpha value31; 

• GL_MODULATE - multiplies current diffuse color with texture color 

and 

• GL_BLEND - interpolates texture environment color and current 

diffuse color according to texture color. 

To provide a clearer view, consider XY as current diffuse color, ZY as 
the texture color, Z[ as texture alpha component, Z\ as the texture 
environment color and X the final color. 

GL_REPLACE X �  ZY 
GL_DECAL X �  XY  �1 K  Z[
 7  ZYZ[ 

GL_MODULATE X �  XYZY 
GL_BLEND X �  XY  �1 K  ZY
 7  Z\ZY 

Table 1. Texture environment mode formulae. 

 

Table 1 shows the formulae behind each texture environment mode. 

If more than one texture is applied to the surface, the process is done 

iteratively until all textures have been applied. The order of textures is 

important given that each one consumes the previous result as current 

diffuse color, ie, the color resulting from the first - X -, is treated as 
current diffuse color by the second - XY – whose result is the current 
diffuse color of the third, and so on. 

 

                                    
31 if no alpha value is present it is assumed to be 1 and GL_DECAL behaves just like GL_REPLACE. 
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Figure 6-5. Multi-texture example 

 

Figure 6-5 exemplifies the process described above: a marble texture 

in GL_REPLACE mode is applied to a green material. The green is thus 

replaced by the texture which is then modulated with a grid texture. 

Finally the material is represented as wood because a wood texture is set 

with GL_REPLACE. Mind the importance in the texture order. For instance, 

if the wood texture was the first one, the material would end up as a 

gridded marble instead of wood. 

The final color - X -, with or without textures, is interpolated with the 
color obtained from refraction and reflection rays based on Fresnel 

equations. Fresnel equations are complex and compute-intensive, so an 

approximation is adopted. Fresnel reflection factor - ]� - is then calculated 
as 

 ]� � �^B_`�CaB� 7 ��B^b A �c 7 d. e
`�fb�, g, c
 Equation 6.3 

 

where 

 �^B_`�B, C, �
 � _ah�_B�B, C
, �
 Equation 6.4 

 

being d the direction of the ray and e the surface point normal. CaB�, ��B^b 
and `�fb� are auxiliary variables defined on each material shader. 
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On the other hand Fresnel transmission factor - i� can be deducted 
from Fresnel reflection factor: 

 i� � c K  ]� Equation 6.5 

 

From Equation 6.5 it is easily understood that Fresnel equations do 

not take into account diffuse color; they just provide the amount of 

refraction and reflection according to intersection point normal, ray 

direction and some material properties. In order to take into account 

diffuse color, two variables are introduced to each material shader: 

reflectivity and transmittance. The former is interpolated with the 

reflection ray resulting color whereas the latter does exactly the same 

thing with the refraction ray. Considering � as reflectivity, � as 
transmittance and �� as the color returned from reflection and �� as the 
color returned from refraction, the final color - ] - may be represented as 

 ] � ]�  A �� �c K �
 7 �� �
 7 i�  A �� �c –  �
  7  �� � 
 Equation 6.6 

Equation 6.6 contains almost all variables that play some kind of role 

in the image result. Concretely, it represents the color information that is 

returned by every ray which intersects any primitive. Consider, however, 

the recursive nature of such algorithm since both �� and �� are in practice 
new rays that would rely on the same kind of calculation, ie, they are 

recursive calls to the same function but with different rays. Without any 

stop condition, the algorithm would only end when no ray hit any surface 

and cube map colors were retrieved - since cube map color acquisition 

requires no further ray to be shot.  

However, even simple scenes may end up in an infinite loop and 

computing of intersections may never cease. A stop criteria should then 

be adopted to avoid such a scenario. Among dozens of different 

possibilities the simplest one is to stop at a maximum ray depth level. This 

solution is deterministic and implies the neglect of light scattering from a 
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given point on, resulting in a lower quality image. However, since an 

attenuation factor is multiplied at each invocation, deeper level rays tend 

to contribute less to the result than shallow level rays; moreover, since it 

is always multiplying itself, this contribution tends to decrease 

exponentially. Though this is just a tendency, particular objects, materials 

and/or light conditions could result in high contributions from deep level 

rays; notwithstanding, this assumption is valid most of the times. 

From Equation 6.6 we get the complete equation of the returned color 

of each ray-object intersection as 

 ] � ]�  A �� �c K �
 7  �� k �
 7 i�  A �� �c K  �
  7  �� I � 
 Equation 6.7 

 

where both I and k are three channel colors. Each is either multiplied by 
reflection or refraction returned color. Since every component is in 

practice a value between 0 and 1 it can also be interpreted as a factor of 

attenuation. k corresponds to material specular color and I to material 
ambient color. Whereas specular component is not completely 

misinterpreted, ambient color has not been definitely meant for this kind 

of attribute. However, it has been adopted on the scope of this work, 

because OpenSG materials do not contain any other attributes available to 

simulate what is intended and because ambient color has not been used in 

anything else.  

The next figure shows a blue transparent ball on a plane. The left 

image does not take into account any ambient color whereas the right one 

has a blue ambient color defined.  
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Figure 6-6. Ambient color effect 

 

It may be interpreted as if the left image refraction rays were always 

white whereas on the right image they turn into blue.  

 

6.3.2 Reflection  

 

As stated, �� and �� imply shooting new rays. Since only perfect 
reflection/refraction is simulated, these rays are calculated in a 

deterministic manner. 

 

 

Figure 6-7. Each Ray (C) originates a reflection ray (��) and a refraction ray (��) 
 



72 System design 
 

 

For the reflection ray, the law of reflection is used. The law of 

reflection states "(..) that the angle of incident light relative to the surface 

normal is the same as the angle of reflected light, and that the incident 

direction, surface normal, and reflected direction are coplanar."32 

 

 
Figure 6-8. Specular Reflection 

 

As depicted in Figure 6-8, the reflected ray - � - is computed 
according to the incident ray - � -, the surface normal - h - and the angle 
between them - �. Bearing in mind the figure nomenclature, � is 
computed as 

 � � � 7 lB Equation 6.8 

 

where B �  �.hmhml h. Assuming h is a unit vector, the division for the square of 
its length is unnecessary, ending in 

 � � � 7 l A �. h A h Equation 6.9 

 

                                    
32 in Realistic Ray Tracing[51]. 
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6.3.3 Refractions  

  

More variables play a role in refraction ray calculation. It is harder to 

understand and model because it does not depend exclusively on incident 

ray and surface normal. Material properties - such as density – must also 

be kept in mind. This interplay is described by Snell's law. 

 

 

Figure 6-9. Snell’s law 

 

Mathematically, considering a ray traveling from material 1 to 

material 2, the Snell's law is represented as 

 ncopq �c �  nlopq �l Equation 6.10 

 

where �c is the angle between incident ray and surface normal, �l is the 
angle between refracted ray and the inverted surface normal and nc and nl are the indices of refraction of material 1 and 2, respectively.  
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From Figure 6-9 one can perceive that Snell's law is helpful in finding 

refracted ray direction. One may then derive Equation 6.10 in order to 

retrieve �l: 
 opq �l � ncnl opq �c Equation 6.11 

  

 

Figure 6-10. Vector components 

  

Figure 6-10 illustrates how both incident ray - � - and refracted ray - � - may be split into tangent and normal part. This consideration is handy 
for refracted ray calculations because it is easier to calculate each part 

separately and sum up the result at the end since 

 � �  �r 7 �s  G  � �  �r 7 �s Equation 6.12 

 

One may rely on each part calculation in order to get refracted ray �. 
Simple trigonometry implies that 
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t�rt|�| �  opq �l  G  |�s||�| �  uvo �l , 
t�rt|�| �  opq �c  G  |�s||�| �  uvo �c  

 

Equation 6.13 

 

Assuming both � and � are normalized Equation 6.13 derives to 
 

t�rt �  opq �l  G  |�s| �  uvo �l , 
t�rt �  opq �c  G  |�s| �  uvo �c Equation 6.14 

 

This assumption is highly important for easily computing both normal 

and tangent part. From Equation 6.11 and Equation 6.14 one may 

represent tangent part of refracted ray as 

 t�rt �  ncnl t�rt Equation 6.15 

 

Figure 6-10 shows that 5r and .r are parallel and pointing in the same 
direction, justifying why Equation 6.15 may be simplified into 

 �r �  ncnl �r Equation 6.16 

 

To discover the normal part one may rely on Pythagoras theorem: 

 |�|l �  t�rtl 7  |�s|l  J  |�s| �  w|�|l K t�rtl  Equation 6.17 

 

Once again 5 is a unit vector so Equation 6.17 may simplified to 
 |�s| �  wc K t�rtl  Equation 6.18 

  

From Equation 6.14, t�rt may be replaced by and result in 
 |�s| �  xc K opql �l  Equation 6.19 
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Given the fact that the normal part of the reflected ray has exactly 

the same direction as the normal, but with inverse orientation and normal 

being a unit vector, one can say that  

 �s �  K|�s| A h �  K !xc K opql �l ( h  Equation 6.20 

 

Bearing in mind Equation 6.12, 

 � �  ncnl �r K !xc K opql �l ( h   equation 6.21 

 

it remains to be noticed that �l is precisely what is unknown in this 
process. Thus, opql �l must be replaced by known arguments. Fortunately, 
Snell's law - Equation 6.11 - clarifies how to get opq �l from material 
indices of refraction and opq �c so 

 opql �l �  !ncnl(l opql �c   Equation 6.22 

  

By applying this information in equation 6.21 one can obtain 

 � �  ncnl �r K ywc K !ncnl(l opql �c z h   equation 6.23 

 

To compute �r one may use Equation 6.12 and get  
 �r � � K  �s   Equation 6.24 

 

where a similar argument as the one in Equation 6.20 would clarify that 

 �s  �  K|�s  | A h   equation 6.25 

 

Recalling Equation 6.14 

 �s  � K uvo �c A h   Equation 6.26 

 



Universidade do Minho 
An OpenCL Ray-Tracer development and comparison over CUDA 

77 

 

 

So getting back to equation 6.23 it turns clear that 

 

� �
 ncnl �� 7 uvo �c A h
 K ywc K !ncnl(l opql �c z h   Equation 6.27 

 

From this point on - � being known - one may try to optimize its 
calculation a bit in order to achieve better performance. First, given that 

sine and cosine calculations are expensive, one should avoid computing 

both when it is possible to compute one from the other. Fundamental 

trigonometric identities states that 

 opql � 7  uvol � � c Equation 6.28 

 

and makes possible to rewrite Equation 6.27 to 

 

� �
 ncnl �� 7 uvo �c A h
 K ywc K !ncnl(l �c K  uvol �c
 z h   Equation 6.29 

 

Then one should avoid scalar-vector operation because it implies 

casting scalars to vectors and, depending on the architecture, making 

various scalar operations instead of just one vector operation. Since h is 
the only vector in Equation 6.29 it seems sensible to apply distributive 

properties in order to get just one multiplication per h 
 

� �
 ncnl � 7 yncnl uvo �c K wc K !ncnl(l �c K  uvol �c
 z h   Equation 6.30 

 

6.3.4 Thickness 

 

The discussion on refraction above is valid for each material 

transition. This means that the ray gets refracted not only when it enters 
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the material but also when it leaves it. However, virtual models do not 

usually specify a detail such as material thickness; at least not in a 

geometric manner. A glass window is commonly represented with a simple 

plane. 

 

 

Figure 6-11. The difference in either considering thickness or not 

  

Considering the above figure, it is easily understandable that a naïve 

implementation of refraction to custom virtual models would lead to 

undesirable results. However, modifying the geometric model is not the 

best option neither because it would result in burdensome models. 

Instead, it is simpler to define a variable that specifies material thickness 

in the material shader. This variable determines the length of the 

refracted ray inside the material. One should however be aware that this 

usage is a mere estimation and is not physically correct, since thickness 

actually varies according to the refracted ray angle. Yet, refraction is so 

complex that the introduced errors are undistinguishable through the 

naked eye. 
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6.3.5 Chromatic Dispersion 

 

All the discussion about refraction has been oversimplified up till now. 

In nature, light does not refract in an equal way along the entire 

wavelength as it has been assumed previously. In reality nc and nl change 
along the entire wavelength. For instance, this effect can be seen when 

light traverses a prism and a rainbow appears. In practice, the light 

follows different directions along its wavelength when refraction occurs 

resulting in this visual phenomenon. However, light is a wave with an 

analog signal forming a continuous wavelength. Nevertheless, it is 

common to assume its division into three discrete components: red, green 

and blue. This simplification is adopted and the next discussion relies on 

this assumption33. Basically, this implies shooting three refracted rays 

instead of just one.  

 

 

Figure 6-12. Chromatic Dispersion 

 

                                    
33 However the concepts should apply similarly to other kind of discretization. 
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Providing each of these rays only deals with one component, it is 

unnecessary to proceed with computations for the entire wavelength. 

Instead, each component ray only deals with this component when 

retrieving diffuse color and during the texture mapping process. Moreover 

a refraction of a previously refracted ray only originates one new 

refraction ray. For instances, consider the example of a ray that hits a 

surface and gets refracted. Taking into account the fact that this ray 

represents the entire wavelength its refraction originates three refracted 

rays, each one for each component. Then, if any of these rays gets 

refracted in another place, it is only necessary to find the contribution 

from the single component each ray deals with. So, one may only shoot 

one ray with the same wavelength. This scenario is represented in Figure 

6-13. 

 

 

Figure 6-13. Chromatic dispersion and thickness 

 

The inhibition of shooting unnecessary rays, along with the reduction 

of diffuse-related calculations into only one component leads to an 

important performance enhancement. Whereas the former avoids 

innumerous unnecessary intersection tests, the latter one simplifies 

diffuse color and texture mapping calculations. 
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6.3.6 Algorithm 

 

As previously referred CPU Ray Tracer class implements a serial ray 

tracer. Basically it executes a loop where at each step a primary ray is 

computed from the camera position and through a particular pixel. Then it 

is intersected with the scene. If it does not intersect any object then it 

retrieves the background color; otherwise, reflective and refractive rays 

are traced and the process starts again recursively. These calculations 

lead to pixel final color. The whole process is repeated to each pixel until 

the whole image is computed. 

 

6.4 OpenCL ray tracer 

 

OpenCL Ray Tracer class implements a parallel ray tracer to run in 

OpenCL compatible devices. Since only nVidia graphic boards have 

released to date OpenCL compatible drivers, this implementation is 

especially designed and optimized to meet their architecture. 

Nevertheless, several algorithm and data structures changes are 

mandatory to OpenCL. First of all, recursion is not supported. Secondly, 

pointers are hard to adapt, maintain and operate in OpenCL, aside from 

the fact that their manipulation is highly inefficient. Last but not least, 

OpenCL device execution is invoked through a command queue which 

introduces the notion of host and device communication is not present at 

the moment. All these changes are discussed next, one at a time. 
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6.4.1 BVH adaptation 

 

BVH inherent tree structure is definitely not optimized to OpenCL 

device architecture. Recursion is not supported because there is no stack 

available. Moreover pointers are not fully supported. On the other hand, 

these devices work better on arrays or equivalent, especially when using 

coalescing memory accesses. Binary tree BVH representation should then 

be converted into a more suitable and co-operating data representation, 

preferably in an array with enough information to allow stackless traverse. 

The adopted solution was adapted from Simonsen’s[54] approach: 

 

 

Figure 6-14. BVH traversal example 

  

The concept consists of numbering every node in a deep first, left to 

right order. As represented in Figure 6-14 these numbers match the node 

position in the array. Moreover, each node has an escape index pointing to 

the node to escape if no intersection is found. This scenario is illustrated 

by the dotted arrows in the diagram. Simonsen’s implementation used a 

texture to store the tree traversal representation and not the tree itself, 

although GPGPU allows joining both into one single representation. 

Simonsen’s approach also states that leaves do not need to store any 

escape index because their escape node is always the next one.  
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However some adaptations from the built BVH must be made before 

it can be converted into this representation: 

• Firstly, Node Primitives should be cleared from the tree structure 

because their semantic is completely different from other nodes. 

• Secondly, any OpenSG structure must be replaced by other versions 

- OpenCL compatible - with all the information hardcoded (this 

includes normal, textures coordinates, node matrices, etc.) 

The first question is solved by adding a material index to each BVH 

node. This material index points to an element in an array with the 

following information associated to the node: 

• Fresnel parameters; 

• Ambient and specular colors; 

• Reflectivity and transmittance parameters; 

• Refractive index for each channel; 

• Thickness value; 

• Index of binded textures and 

• Node transformation matrix. 

Each of these elements corresponds to exactly one OpenSG geometry 

node; ie, the array with this information – denoted from now on as M - 

has exactly the same size of the number of geometry nodes present in the 

scene34.  

The second question has already been partially solved with the 

construction of the array M. What is missing now is the triangle vertices 

information (position, normals, colors and texture coordinates indices) 

which is solved by building up a new array - T - with this information. T 

has the same size of the number of triangles in the scene since each 

triangle corresponds to one element in it. Given that triangles are always 

leaves of the BVH, and Simonsen’s approach does not need escape indices 

on leaves, one may use escape index to point to triangle position in array 

                                    
34 Note, however, that each element in M is pointed from multiple in array S. 
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T. This is a misinterpretation of escape index semantics but it is worthy 

because it allows the use of the same variable in different circumstances. 

In addition, each BVH element should provide information about it, ie, 

whether it is a node or a leaf. Should one consider escape index as 

pointing to the same array or pointing to a triangle in another array? 

Since every node has an attached bounding box this is answered by it: if 

the bounding box is empty35, current element is a leaf; otherwise, it is a 

node. 

Nevertheless, three more arrays are built: one with textures 

information (TexInfo) – size, number of channels, etc. –, another with 

texture coordinates (TexCoord) and another which is formed by the 

textures (Tex) themselves36. Texture indices in each element of M point to 

one TexInfo element while texture coordinates indices are defined in each 

triangle. 

 

                                    
35 A bounding box is considered empty if both the minimum point and the maximum point are the origin 
(0,0,0). 
36 One texture starts where the previous one finishes. 
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Figure 6-15. Arrays inter-dependence example 

 

Figure 6-15 is an illustrative example of what happens when an 

intersection is found in a triangle that has two textures attached. When 

considering the marked element in the tree – with index 5 in S - an empty 

bounding box is found, making it a leaf. Escape index is then read and 

interpreted as triangle position in T – index number 2. Considering that an 

intersection has been found, material index in the S element points to an 

element with node information in M. Each M element has several piece of 

information about the textures it uses; in its midst are the textures which 

are actually used. On the other hand, each triangle has three texture 

coordinates – one for each vertex. This information is used to know what 
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to read from TexCoords37. It is then combined with the textures being 

used - read from TexInfo - to get what to read from each texture.  

 

6.4.2 Algorithm 

   

Since recursion is not supported in OpenCL, the whole algorithm has 

been adapted to avoid such a mechanism. Moreover, CPU Ray Tracer is 

intrinsically serial, a situation that should change now. These two 

problems are somewhat co-related: introduction of parallel computing 

depends on the algorithm; on the other hand, algorithm should be 

designed to inhibit parallel computing.  

Recursion is introduction with the need to compute reflection and 

refraction rays and compute their result. Moreover, this result is evaluated 

at each step according to Equation 6.6. Recursion could be avoided if, at 

each step, before shooting new rays, current diffuse calculations as well 

as the weight associated with each of the new rays were stored. 

Preferably, diffuse calculations should be immediately summed up at each 

step, ie, the image should be continuously processed by adding colors at 

each pixel according to what has been calculated so far. However, each 

sum should be multiplied by the current weight, that is from now on part 

of the ray information. This way, primary rays have a weight of 1 which is 

then multiplied, according to Equation 6.7, by 

 { � {`�]� k �
 Equation 6.31 

 

or 

 { � {`�i� I � 
 Equation 6.32 

 

                                    
37 It is used in the same manner that OpenSG texture coordinates. Read OpenSG documentation for more 
details. 
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at every step. The result – { - is the weight of the ray, which depends on 

the weight of the parent ray - {`. Either Equation 6.31 or Equation 6.32 is 
used, depending on the ray simulating reflection or refraction, 

respectively. From both Equation 6.31 and Equation 6.32 it is clear that 

ray weight is not scalar, instead it has three components – one for each 

color channel. 

Now that every ray has an associated weight attached, it is possible 

to know the portion of the diffuse part of each ray that should be added to 

the image. Thus, everything is set up to introduce parallel computing in 

the algorithm using OpenCL compatible devices. Since OpenCL works 

through job dispatches from the host to the device, and each memory 

copy38 must be explicitly declared, the process is split into four different 

kernels: 

• Primary Rays 

• Intersector 

• Cube Map 

• Renderer 

‘Primary rays’ is responsible for computing the first rays, with origin 

in the camera position; ‘Intersector’ intersects rays with the scene and 

returns information about the eventual intersection; ‘Cube Map’ takes a 

cube map as input and returns the background color for each ray that did 

not intersect anything; and ‘Renderer’ takes rays that have intersected 

the scene, calculates diffuse color at intersection point and computes 

reflection and refraction rays, as well as their weight. The ‘Renderer’ 

output is consumed again by ‘Intersector’ in a loop until the stop criteria39 

is met. The kernel sequence is represented in the next figure: 

 

                                    
38 Both from host to device, from device to host or even from device to device. 
39 Asssumed to be a maximum ray depth. 
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Figure 6-16. Kernel sequence 

 

Provided that in the whole process each ray is independent from any 

other40, parallel computing may be easily introduced by setting that each 

kernel takes cares of one ray only. Then, similar kernels may run at the 

same time, in parallel on the OpenCL compatible device. 

 

6.4.3 CPU – OpenCL device communication 

 

At each frame, CPU – OpenCL host – starts by dispatching ‘Primary 

Rays’ to the device. As input parameters, ‘Primary Rays’ receives camera 

properties like position, field of view and so on. Then ‘Primary Rays’ 

compute first rays and stores them in the device. Host then dispatches 

‘Intersector’ with these rays. ‘Intersector’ fills a previously allocated array 

with information about the intersections. This array is then copied to host 

so it can perceive which rays have intersected the scene and which have 

not. With this information host dispatches ‘Cube Map’ with the ones that 

did not intersect anything and ‘Renderer’ with the ones that did. Aside 

                                    
40 Reflection and refraction rays dependo on the originating ray, but they are computed in the same kernel. 
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from reflection and refraction rays, ‘Renderer’ also produces an image 

with the result of the current depth rays diffuse color. Host reads this 

image and adds it with one that is initially black. If not in the maximum 

depth, the produced rays by ‘Renderer’ are consumed by ‘Intersector’ 

again, repeating the process until no more rays intersect the scene or the 

stop criteria is met.  

The image that has been added is then returned as output. In 

practice, this image is produced in phases, each phase corresponding to 

one different ray depth. That is, each ray depth diffuse calculations 

produce a layer; the final image is the sum of every layer. 

 

6.4.4 Emulated version 

 

OpenCL version uses many different structures from the CPU version 

one. This is due to the fact that OpenSG must be isolated inside the 

OpenCL kernels. As a consequence, OpenCL data structures reduce the 

usage of pointers to the barest minimum. Thus, it is interesting to see 

how these changes affect the algorithm performance. Notwithstanding, 

even the algorithm has suffered small changes which may also contribute 

to a different performance. Finally, OpenCL provides no debug options. 

These reasons lead to the development of an ‘emulated version’ of 

the OpenCL Ray Tracer. This version runs entirely on the CPU but in a similar 

manner to the OpenCL version, although it remains serial. It is handy to 

help in debugging and even more in performance analysis. In fact, this 

version is much faster than the original CPU one. This results from the fact 

that the used data structures provide a good optimization by avoiding 

many pointers reference. 
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6.5 CUDA ray tracer 

 

CUDA Ray Tracer is very similar to OpenCL one. Major changes are 

related to data variables since both CUDA and OpenCL have self-defined 

variable types such as vectors41. These differences lead to an abstract 

representation on the Ray Tracer class. Then each specific Ray Tracer 

converts this data to its own representation. Syntax is another difference 

between CUDA and OpenCL. Host-device communication42 uses a whole 

new subset of functions. 

Finally, other major differences are related to the way in which CUDA 

treats host threads: in CUDA each host thread has its own CUDA context. 

This means that a host thread does not recognize any memory allocated 

and filled in from any other thread. Keep in mind that every call to ray 

trace spawns a new thread, ie, at each frame, a new host thread is 

spawned to deal with the rendering process. This arises some problems 

because each thread wouldn’t know anything about what any previous 

threads sent to GPU. To solve this problem, CUDA Ray Tracer spawns a 

new thread at its construction. This thread lives as long as the class does. 

Every CUDA Ray Tracer public method communicates through a queue 

with this thread in order to always produce computations on the same 

thread. This factor should be taken into account especially when 

comparing performances since this introduces an overhead communication 

that does not exist in OpenCL. 

 

                                    
41 For instance CUDA int3 correspondes to OpenCL cl_int3. 
42 Memory copies, job dispatching, etc. 
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7 Results 

 

As described in subchapter 5.3, results would be provided from 

different scenes in order to test application scalability. It rapidly became 

clear that the number of the triangles of the scene was not a good metric 

to distinguish scene complexity. In fact, a bigger scene may run faster 

than a smaller one if it implies shooting fewer rays. Thus, scenes were 

zoomed in or out in order to get about the same number of intersections. 

It seemed relevant to do so due to the fact that it can have a great impact 

on the results. As previously pointed out, the same scene may perform 

totally differently if it is zoomed in or out43. Nevertheless, three different 

scenes were used:  

• Sphere – a glass sphere on the top of a plane (10 000 triangles). 

This model uses colors per vertex; 

• Bunny – Stanford bunny model on the top of a plane (69 453 

triangles); 

• Dragon - Stanford dragon model on the top of a plane (871 416 

triangles). 

Every scene contains refractive and reflective materials and at least 

one texture applied. Sphere scene is used mainly to test colors per vertex 

efficiency whereas Dragon’s is the most complex scene tested. 

It was used an nVidia GTX 280 graphics card to test the different 

scenes. Scenes were adjusted to generate about 100 000 intersections. 

Results were analyzed during about one minute for each scene. While the 

scenes were being analyzed, the camera moved constantly forcing the Ray 

Tracer to render from different viewpoints. The following table expresses 

the average time taken to render a frame by each scene: 

 

                                    
43 Pushing an object faraway reduces the number of intersections. Therefore less secondary rays will be shot. 
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 CPU Emul OpenCL CUDA 

Sphere 17,9 s 1,93 s 0,33 s 0,105 s 

Bunny 5,115 s 2,01 s 0,515 s 0,187 s 

Dragon 13,25 s 4,46 s 1,49 s 0,41 s 

Table 2. Average time to compute a frame (in seconds) 

 

The same table may be converted into the next one, where it is 

shown the number of frame rates achieved in each case: 

 

 CPU Emul OpenCL CUDA 

Sphere 0,1 fps 0,5 fps 3,0 fps 9,5 fps 

Bunny 0,2 fps 0,5 fps 1,9 fps 5,3 fps 

Dragon 0,1 fps 0,2 fps 0,7 fps 2,4 fps 

Table 3. Average frames per second 

 

Figure 7-1 shows a snapshot of the resulting images of each of the 

three above-described scenes. 

 

 

Figure 7-1. Sphere, Bunny and Dragon models 
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8 Conclusions and future work 

 

The first obvious conclusion that we can take is that OpenSG data 

structure is not suited for Ray Tracing. Although CPU version and the 

emulated one operate on different data structures, both are serial. 

However, the data structure difference is enough to get a significant speed 

improvement. Since both CUDA and OpenCL version operate on the same 

data structures of the emulated one, this is the version to be compared. 

Both CUDA and OpenCL revealed to be faster than the emulated 

version, as it had been expected since it is serial44. However, it is 

undeniable that CUDA is more than three times faster than OpenCL, which 

may be considered somehow unexpected. Several tests were performed to 

try to understand where this performance difference comes from. The 

most probable and correct answer is provided by the nVidia Bandwidth 

test both for CUDA and OpenCL: 

                                    
44 Nevertheless, even if CPU version were parallel, it should be slower because the number of cores in it is 
usually much smaller than the number of processors on the graphic board. 
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Figure 8-1. CUDA and OpenCL Bandwith Test 

 

Although CUDA performance is – as expected - better in every type of 

memory copy, OpenCL device to device copy is incredibly slow45. This 

seems to be the major OpenCL bottleneck. However, it is a driver issue 

which might be solved in future driver releases. nVidia does not have an 

official position on this subject so any expectation on this matter, is pure 

speculation. Nevertheless, this issue results in a clear disadvantage to 

OpenCL when compared to CUDA. 

                                    
45 About three times slower. 
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While this dissertation was being written, AMD also released drivers 

to support OpenCL. It is a new step into OpenCL portability and clearly a 

great advantage for it. System designer should then decide, taking this 

into consideration. Moreover, although OpenCL is very recent, it is already 

well documented. Also, it has raised interest over many researches, 

already counting on a valuable community. Finally, as a personal opinion, 

CUDA is tougher to learn than OpenCL. This results from the fact that 

OpenCL structure and syntax is cleaner than CUDA. CUDA greedy details 

are complex and require lots of time and practice to mastering. 

Another important point is debugging. During the development time 

of this project, OpenCL did not provide any kind of debugger. It really 

makes developing a tough job. However, during September nVidia 

released OpenCL Visual Profiler beta driver which promises to help 

developers in debugging OpenCL applications46. However, it was not 

tested, so no comment can be made about its efficiency. 

Last but not least, bear in mind that CUDA context changes at each 

CPU thread. In this case in particular, this problem was solved by creating 

a special thread to CUDA and by always operating on it. It involves some 

inter-thread communication that is not present in OpenCL. In practice, it 

adds more complexity to the solution. Moreover, it might not suit some 

solution designs which would add even more complexity to the problem. 

Nevertheless, this work caters for other kinds of conclusions beyond 

CUDA and OpenCL comparison. Colors per vertex proved to be an 

important feature. This way, the ray tracer may be combined with other 

techniques like PRT. This would allow low-frequency effects – such as soft 

shadows – to be simulated. On the one hand, it has no performance costs 

(considering that per vertex colors are pre-calculated) compared to scenes 

that do not use it. On the other hand, it implied more memory usage since 

colors were stored per vertex instead of per material. This might be a 

                                    
46 Yet it was designed especially to profile OpenCL applications and provide facility to OpenCL applications 
optimization. 
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problem when it refers to bigger scenes, because everything is being sent 

to the graphics board memory. Using colors per material instead of color 

per vertex would enable bigger scenes (with more triangles) support. 

Finally, even if not totally developed, the acceleration structure 

adopted seems to have some potential. Separating it into two different 

levels provides a good degree of freedom to support dynamic scenes47.  

 

8.1 Future work 

 

First and foremost, dynamic scenes would be quite interesting to test, 

and in particular, to test how a two-layered acceleration structure may 

benefit Ray Tracing in the GPU. The particular data structure present may 

introduce some unpredictable behavior that would be worthwhile testing. 

Apart from that, current solution relies excessively on the GPU 

memory since a lot of information is uploaded to it. It restrains solution 

applicability to virtual scenes that fit in graphics card memory. It is 

another restriction that is challenging to deal with. 

More light effects should be adopted and simulated. Monte Carlo Ray 

Tracing and BRDF materials, namely, seem to be the way to extend the 

current Ray Tracer. However, considering OpenSG, these materials are 

not standardized. It should be thought how to overcome this problem, ie, 

how to incorporate such materials in OpenSG in a practical and clean 

manner. In what concerns Monte Carlo Ray Tracing, the problem does not 

seem to be so complex once BRDF materials are adopted. 

Another work to be carried out consists on the usage of other kinds of 

primitives besides triangles, such as spheres or even NURBS. Considering 

other kinds of leaves on the acceleration structure beyond a primitive 

                                    
47 Tough just to static objects. 
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itself is also related with this problem. Having groups of primitives as 

leaves is common and preferable in most cases.  

Eventually, further optimizations might take place. Anyway, the 

whole work might be considered fairly good and the feeling of an 

accomplished task is present on the conclusions above. In fact, the 

objectives of this work have been achieved since it has been possible to 

test, compare and understand the results of the different technologies 

herein. 
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