
Universidade do Minho

Escola de Engenharia

Nuno Filipe Trovisco Fernandes

Cryptographic Library Support for a

Certified Compiler

Janeiro de 2014

Universidade do Minho

Escola de Engenharia

Nuno Filipe Trovisco Fernandes

Cryptographic Library Support for a

Certified Compiler

Janeiro de 2014

Dissertação de Mestrado

Mestrado em Engenharia Informática

Trabalho realizado sob orientação de

Professor José Carlos Bacelar Almeida

Abstract

Cryptographic Library Support for a Certified Compiler

An essential component regarding the development of information systems is the compiler: a tool

responsible for translating high-level language code, like C or Java, into machine code. The issue is,

compilers are themselves big and complex programs, making them also vulnerable to failures that may

be propagated to the compiled programs. To overcome those risks research on “certified compilers” has

been made, and recently some proposals have appeared. That sort of compilers guarantees that the

compilation process runs as specified.

In this dissertation is studied the applicability of the certified compiler CompCert in cryptographic

software development. The first point being addressed was the use of support libraries, such as big

number libraries. As a matter of fact, such libraries are an essential requisite for the considered type of

application, therefore the study of different options for using these libraries, always considering the impact

in program’s performance and semantic preservation offered by the compiler.

The second point being addressed was the use of SIMD extensions available on recent processors.

Here the objective was to demonstrate how one could overcome the current CompCert ’s limitations as to

discuss other solutions.

Keywords: GMP, LIP, certified compilers, cryptography, mathematical operations, big number libraries,

cryptographic algorithms, proofs, gcc, compcert, coq, AES, SSE, processor extension, Intel

iii

Resumo

Bibliotecas de Suporte Criptográfico para um Compilador Certificado

Um componente essencial na produção de sistemas informáticos é o compilador: a ferramenta re-

sponsável por traduzir o código numa linguagem de alto ńıvel como o C ou o Java em instruções do

processador que serão efectivamente executadas. Mas os compiladores são eles próprios programas

grandes e complexos, vulneráveis a falhas que se podem propagar de forma incontrolável por todos os

programas por eles processados. Com o objectivo de ultrapassar esse risco surgiram recentemente as

primeiras propostas de “compiladores certificados” onde se garante que o processo de compilação está

conforme o especificado.

Nesta dissertação é estudada a aplicabilidade do compilador certificado CompCert no desenvolvi-

mento de software criptográfico. O primeiro aspecto abordado foi a utilização de bibliotecas de suporte,

como as bibliotecas de números grandes. De facto, tais bibliotecas são um requisito essencial para tipo de

aplicação considerado, estudando-se por isso diferentes alternativas para a utilização dessas bibliotecas,

considerando quer o impacto na eficiência dos programas, quer as garantias de preservação semântica

oferecidas pelo compilador.

Um segundo aspecto abordado foi a utilização de extensões SIMD disponibilizadas pelos proces-

sadores mais recentes. Aqui o objectivo foi o de mostrar como é posśıvel ultrapassar as limitações da

versão actual do CompCert, assim como discutir soluções mais abrangentes ao problema.

Palavras-chave: GMP, LIP, compiladores certificados, criptografia, operações matemáticas, bibliotecas

de grandes números, algoritmos criptográficos, provas, gcc, compcert, coq, AES, SSE, extensões do

processador, Intel

v

Contents

1 Introduction 1

1.1 Context 1

1.2 Objectives 3

1.3 Structure 3

2 Certified Compilation 5

2.1 COQ 5

2.1.1 Examples 5

2.1.2 Final Remarks 7

2.2 Certified Compilers 8

2.2.1 Correctness Property 8

2.2.2 Certified Compilation 9

2.2.2.1 Certified Compilers 9

2.2.2.2 Certifying Compilers 10

2.2.2.3 Proof-carrying Code 10

2.2.2.4 Translation Validation 11

2.2.3 Back-end 11

2.2.3.1 Languages 11

2.2.3.2 Language’s Translation Steps 13

2.2.4 Final Remarks 15

2.3 CompCert 16

2.3.1 Limitations 16

2.3.2 Misc Information and Further Improvements 17

2.3.3 Final Remarks 17

3 Cryptographic Library Support 19

3.1 Efficient Mathematical Algorithms 19
vii

viii

3.1.1 Radix Representation 19

3.1.2 Multiplication 19

3.1.3 Squaring 20

3.1.4 Division 21

3.1.5 Modular Multiplication 22

3.1.5.1 Classic 22

3.1.5.2 Montgomery Reduction 22

3.1.6 Greater Common Divisor 23

3.1.6.1 Binary (Euclidean based) 23

3.1.6.2 Binary Extended (Euclidean Extended based) 23

3.1.7 Exponentiation 25

3.1.7.1 Sliding Window 25

3.1.7.2 Montgomery Exponentiation 26

3.1.8 Final Remarks 26

3.2 Cryptographic Libraries Benchmarking 27

3.2.1 Experimental Setup 27

3.2.1.1 Machine Specifications 29

3.2.2 Results 29

3.2.2.1 Division Algorithm 30

3.2.2.2 Great Common Divisor Algorithm 31

3.2.2.3 Extended Great Common Divisor Algorithm 32

3.2.2.4 RSA Algorithm 33

3.2.2.5 Multiplication Algorithm 33

3.2.2.6 RSA - GMP power-modulo calculation modification 34

3.2.2.7 RSA - LIP power-modulo calculation modification 36

3.2.2.8 LIPCERT 37

3.2.3 Final Remarks 38

3.3 TrustedLib Support 39

ix

3.3.1 TrustedLib Context 39

3.3.2 Adding TrustedLib to CompCert 39

3.3.2.1 List of newly supported functions 40

3.3.3 Examples 40

3.3.3.1 Some relevant pre-requisites 40

3.3.4 mpn add n 42

3.3.5 Final remarks 43

4 SIMD Extensions 45

4.1 Context and Problems 45

4.1.1 Alignment 46

4.1.2 ABI - CompCert Arguments 46

4.1.3 Native Support 46

4.2 Library Development 47

4.2.1 Key Expansion Algorithms 48

4.2.1.1 Algorithm for 128 bits key size 48

4.2.1.2 Algorithm for 192 bits key size 49

4.2.1.3 Algorithm for 256 bits key size 49

4.2.2 ECB mode 50

4.2.3 CBC mode 53

4.2.4 CTR mode 54

4.3 Developed Library Performance 55

4.4 External library VS Assembly incorporation 58

4.5 Final remarks 58

5 Conlusions 59

5.1 Future Work 60

List of Figures

2.1 Languages and their translation flow 12

3.1 Divide 30

3.2 Great common divisor 31

3.3 Great common divisor extended 32

3.4 RSA 33

3.5 Multiply 34

3.6 Comparing mpz powm and mpz powm sec 35

3.7 Comparing mpz powm and mpz powm sec 35

3.8 Comparing zmod m ary, zmontexp and zexpmod 36

3.9 Comparing zmod m ary, zmontexp and zexpmod 36

3.10 Great common divisor 38

4.1 ECB encryption schema mode 51

4.2 ECB decryption schema mode 51

4.3 CBC encryption schema mode 53

4.4 CBC decryption schema mode 53

4.5 CTR encryption schema mode 54

4.6 CTR decryption schema mode 55

4.7 Comparing libraries’s performance for the different key sizes for ECB mode 56

4.8 Comparing libraries’s performance for the different key sizes for CBC mode 57

4.9 Comparing libraries’s performance for the different key sizes for CTR mode 57

xi

List of Tables

3.1 Differences between GMP and LIP. 28

3.2 Default values for m, when using the zmod m ary function. m = zdefault m(e) 37

xiii

1 . Introduction

1.1 Context

There are several important factors to sustain while programing, but one of them not only becomes trans-

parent to the programmer but a little neglected: the compiler. An excellent programmer may fail if the

compiler has bugs. In a cryptographic context this matter became extremely relevant since bugs could

propagate themselves to the final program, possibly compromising not only its behavior but also some vital

information, specially when developing cryptographic software where information integrity and security are

some of the main concerns. It’s in situations like these that compilation bugs and errors must be avoided

at all cost.

With this thought in mind, the need of a compiler capable of ensuring that the result of the compilation

process was no other than the one expected, became a priority. And so researchers came with the concept

of certified compilers, which basically consists of a compiler with the ability of generating assembly code

semantically equivalent to its source program, and its correctness is entirely proved within a proof assistant.

There are some proof assistant systems (ACL2, Agda, Coq, HOL Light, HOL4, etc...) but in this case the

focus goes to a particular one, Coq. It deserves special attention because it was used to develop a certified

compiler named CompCert, which in its turn, is a crucial element in this dissertation study.

As it was already stated, cryptographic software development requires some special attention. This

same type of development usually makes use of big number libraries, since not only it involves work-

ing with numbers which require a lot of bits (i.e: 2048) for their representation, but also because such

numbers are used in complex mathematical operations so cryptographic operations could be performed

(i.e: RSA and exponentiation). Following this reasoning, one can not start studying these kind of libraries

without first analyzing the mathematical algorithms themselves by looking at their classical pseudocode

implementation and their respective asymptotic analysis. In a practical point of view, one library (GMP)
1

2

was immediately chosen because of its completeness and performance. GMP evenly balances perfor-

mance, both in time and in memory, with the amount of operations it provides on both mathematical and

cryptographic contexts.

By using it, one’s able to perform some basic arithmetic operations (i.e: addition, subtraction, multiplica-

tion), others a little bit more complex (i.e: exponentiation, great common divisor) and also some advanced

ones (i.e: modular multiplication, modular exponentiation), obviously aside from many more. Of course

that some of them consist only on combining more than one operations, nevertheless this only reinforces

its completeness. Remaining only to chose another library to compare with GMP the choice fell on LIP,

which is a library that offers a pretty reasonable complete, yet narrower, range of functions with a relatively

good performance.

Finished all the research, analysis and benchmarking, it was time to use a module called TrustedLib in

order to give an extra support to CompCert, which basically consisted in a Coq implementation of some

low-level GMP functions, so the certified compiler would trust them, thus complementing its certification

guarantees.

Having already been referred a few times, performance plays a key role practically in all areas, and

off course cryptography is also one of them. In the best case scenario performance and security would

walk side by side, unfortunately this is not the case. Encrypting/decrypting a text, generating a key/set

of keys are operations that take their time, typically depending on the text size and number of key bits,

respectively. A good way to achieve good performance, without explicitly using parallelism, is to resort to

assembly instructions.

On 2010 Intel made a great advance on this field by natively implementing on their processors, assembly

functions to perform AES encryption. Depending on how the instructions were used, several modes of

encryption (like ECB, CBC and CTR) could be implemented. With this the opportunity to expand the study

to a different, yet still connected area, came along. The goal was to develop a library, by making use of

such assembly functions, so it could be possible to perform CBC, ECB and CTR encryption and decryption

algorithms.

Also, the library would have to be modular enough so a program could be compiled by CompCert despite

of its limitations.

3

1.2 Objectives

This project covers some areas (cryptography, formal methods, program certification, computer architec-

ture) that besides distinct could easily relate to each other. To do so the following objectives were defined:

- understand the concept of certified compilers, and their importance in cryptographic software de-

velopment;

- search and chose a big number library to compare with GMP ;

- evaluate CompCert ’s support for libraries used in cryptographic operations, such as big numbers

libraries, and the corresponding impact on its efficiency;

- extend CompCert ’s semantic preservation result to make it aware of “trusted” external libraries for

(a core) big number functionality;

- study the impact of recent SIMD assembly instructions, available in the new generation of proces-

sors, in cryptography particularly how they can be exploited in CompCert based developments.

1.3 Structure

Chapter 2 introduces not only the concepts of certified compilation and certified compilers but some

detailed information on each certification step as well. It also presents some basic concepts of how

CompCert was developed (used language to be more precisely) and a perspective from a user point of

view regarding its limitations, usage, and even some misc information whose purpose is none other than

to demonstrate the effort needed to develop a compiler of this kind.

Chapter 3 is devoted to big numbers. It contains all the information about big number libraries support.

Beginning by mentioning the analysis of mathematical algorithms, and then presenting the results obtained

by comparing GMP and LIP performance. To do so a GMP benchmark (GMPBench v0.2) was used.

Obviously it was necessary to slightly modify the benchmark’s source code so it could be used by the

4

LIP library. The goal is to compare the programs performance when compiled with GCC (v4.7.3) and

CompCert (v2.0), and then determine the impact of certified compilation. It’s also considered the case

where the LIP source code is compiled with CompCert, in order to compare the performance of a certified

program when using a certified library. Finally are presented all details on how TrustedLib was used to

extend CompCert so it could support some of GMP core functions.

At last but not least, chapter 4 states all the details, which involves both process and achieved results,

on how the latest AES-SSE Instruction Set extensions were used to develop a cryptographic library. Such

library consisted in combining the available SIMD extensions datatypes and assembly functions, and all

together obtain three modes of AES encryption and decryption.

2 . Certified Compilation

Before presenting the most important concepts and details about certified compilation, it’s important

to begin with the basics. In this case such basic concept is none other than the COQ proof language. The

reason why, it’s because it was the chosen programming language to develop the certified compiler called

CompCert, which will be an important subject of study in this proejct.

2.1 COQ

COQ is a proof development system implemented in OCaml. It implements a program specification and

mathematical higher-level language called Gallina.

With this system it’s possible to define functions (it only accepts functions that end otherwise it will give

an error), predicates (that can be evaluated efficiently), state software specification, and via an enormous

set of tactics it is possible to define theorems and lemmas. It is then possible to interactively develop

formal proofs of these theorems. Such proofs can then be machine-check by a relatively small certification

kernel.

There are two ways to use the system, by using the command coqtop to interactively construct proofs,

or to write them in a file and then call the compiler using the command coqc. Just like common systems,

COQ has some extensions. A particular important one is called SSREFLECT 1

2.1.1 Examples

Defining a Lemma:

Lemma weak_peirce : ((((P->Q)->P)->P)->Q)->Q.

Proof.

intros H.
1http://www.msr-inria.inria.fr/Projects/math-components

5

http://www.msr-inria.inria.fr/Projects/math-components

6

apply H.

intros H0.

apply H0.

intros H1.

apply H.

intros H2.

apply H1.

Qed.

Defining a Theorem:

Theorem P_Q_nQ_nP : forall(P Q:Prop), (P->Q)->~Q->~P.

Proof.

intros P Q H H0.

intros H1.

apply H0.

apply H.

assumption.

Qed.

Let’s see a specific example. Consider a function that tells if a given month has an even number of days.

To do this, first a new inductive type must be defined:

Inductive month : Set :=

January : month | February : month | March : month | April : month |

May : month | June : month | July : month | August : month | Septembre : month |

Octobre : month | Novembre : month | Decembre : month.

7

Now the only thing missing is the function definition. Since February could have either 28 or 29 days, the

user must tell if the year is a leap year or not:

Definition month_even (leap:bool) (m:month) : bool :=

match m with

| February => if leap then false else true

| April | June | September | November => true

| _ => false

end.

Another example is a function that counts the number of times a natural number appears in a list. But

this time we need to use recursion:

Fixpoint count_list (n:nat) (l:list nat):=

match l with

| nil => 0

| h::t => if beq_nat n h then 1 + count_list n t else count_list n t

end.

beq nat is a native COQ library function that compares two natural numbers and returns a boolean value.

To test these function the following can be done:

Eval compute in (month_even True February).

Eval compute in (count_list 2 (1::2::3::1::2::3::1::2::3::nil)).

2.1.2 Final Remarks

The main goal of this section was neither to teach the COQ language or to present the available tactics

to prove theorems/lemmas. It was only to give a basic notion of how it works, and more important, to

8

introduce now some syntax since later in this document more code will be shown. As it was said earlier,

the specific details about certified compiler development will be presented next.

2.2 Certified Compilers

Compilers are seen as a black-box, but in reality they are a piece of complex software and vulnerable to

bugs. A compiler error that could take a lot of time to be discovered when using “normal” compilation,

would take less time if trusted compilation was used instead.

Formally a compiler is a function that for a given source either returns nothing (in case of an error) or

a compiled code:

Compiler : Source →CompiledCode∪{None} (2.1)

When developing critical/high-assurance and security relevant applications, the compiler has an im-

portant and relevant role. With this in mind the use of formal methods like model checking and program

proof is extremely important and necessary. Such methods are applied to the source code in order to

guarantee some safety properties.

Although developing such kind of compilers is hard, mostly because of the automated proofing mech-

anisms, the outcome is a totally fail-safe applications compiler.

2.2.1 Correctness Property

The concept of simulation has been established with the purpose to maintain the program translation pro-

cess transparent. More precisely, the compilation process as to simulate the source language behavior.

There’s a simulation relation between the source and the compiled code. Such relation is established by

the compiler and its made once. For every behavior in the source exists an equivalent behavior in the

compiled code and vice-versa.

Next there are five correctness properties between the source and the compiled code that must be

9

met in order to ensure the application safety properties:

• Source and compiled code are observationally equivalent;

• If the source has well-defined semantics, then source and compiled code are observationally equiv-

alent;

• If the source has well-defined semantics and satisfies some functional specification, then the com-

piled code also satisfies that same specification;

• If the source is type-safe and memory-safe , then so is the compiled code;

• Compiled code is type-safe and memory-safe;

Generally the certification of a compiler guarantees that all safety properties, previously proved in the

source code, must hold for the compiled code as well.

2.2.2 Certified Compilation

Certified compilation ensures that a program runs accordingly to its behavior. To do so it is needed to

introduce the concept of certified/verified compilers, since it’s through this that certified compilation its

attainable.

2.2.2.1 Certified Compilers

Regarding this definition a compiler is a function that for a given source code returns some compiled code

that satisfies a desired correctness property:

∀s ∈ Source,c ∈CompiledCode : Compiler(s) = Some(c)⇒ Property(s,c) (2.2)

On a certified compiler both algorithm and implementation are verified, which is perfectly suited to

compile critical software systems. In the end, if all proofs are correct and complete, then the result is

10

a bug-free compiler. Although it seems easy, implementing this kind of compiler is a difficult and long

process. If by any chance the proving process can be automated, putting up the proof obligations for each

transformation (reminding that every single transformations requires a proof) is still a manual process.

Given this hindrance it became necessary to explore other ways to achieve certified compilation.

2.2.2.2 Certifying Compilers

It is known that its easier to prove the correctness of a computation result rather than the compilation

algorithm itself. This was the start-point to the concept of certifying compilers which basically consists on

equip a compiler with a certifier that checks the result of a translation. If by any chance the returned proof

doesn’t work, it can be checked in a second step:

∀s ∈ S,c ∈C,π ∈ Proo f : CComp(s) = Some(c,π)∧πcorrect ⇒ Prop(s,c) (2.3)

2.2.2.3 Proof-carrying Code

A solution that uses a certifying compiler its the concept of proof-carrying code (PCC). The idea is to

eliminate the need for trust between code consumer, code provider and a secure communication. In

order to do so it is the code that carries a proof on predefined safety properties. PCC does not make a

statement about who generates the proof, it can be a compiler or even by hand. In case of a malicious

code or code manipulation, when trying to execute the code the proof would fail, stoping the program’s

execution. The same happens for proof manipulation. This method comes with an overhead, which refers

to the first execution, where the proof needs to be checked. After such verification the code runs without

any performance drawback.

Concerning compilation, the program’s execution approach works only for properties that are checked

during the compilation process and can be used to detect bugs in a compiler. Although it can not guarantee

a correct translation or even a simulation relation between source and compiled code.

11

2.2.2.4 Translation Validation

In the translation validation approach the compiler function presented earlier, is now complemented with

a verifier:

∀s ∈ S,c ∈C : Comp(s) = (Some(c)∧Veri f y(s,c) = true)⇒ Prop(s,c) (2.4)

Such verifier consists in two components: an analyzer and a proof checker (a simple theorem prover).

The analyzer receives both source and compiled code, it then finds corresponding sections on the code and

generates proof scripts. Such scripts are then sent to the proof checker in order to verify their correctness.

Given the fact that each compilation result is automatically checked against the source, compilation

errors can be detected almost immediately. The translation validation method is very flexible because it

can verify any kind of translator, whether it is a complete compiler or a single compiler pass. It monitors

each transformation and ensures that the compiled code still simulates the source code. If such relation

can not be verified the transformation is aborted, otherwise, there is a correct simulation of the source

and therefore certified compilation is achieved.

Given this, it is possible to say that not every correct program must verify, but every verified program

must be correct. The only downside of translation validation is that correct translations may be rejected

due to deficits in the verifier implementation.

2.2.3 Back-end

This section is divided in two, the first half explains the intermediate languages used in CompCert whilst

the second one explains the translation steps between those languages. The following image shows the

intermediate languages and their translation flow.

2.2.3.1 Languages

The first source language is Cminor, which is a simplified and low-level language based on C. The basic

structure is expressions, statements, functions and programs. The Cminor possesses a very weak typing

12

Figure 2.1 Languages and their translation flow

system, with only int and float types, although it is useful for later transformations (see next section), it

is also very susceptible to run time errors, therefore the programmer must be very careful. Besides this,

function definitions/calls are annotated with signatures which gives information about the number and

type of arguments and an optional type for the result. An important remark must be made, there are two

types of Cminor, the external and the internal one. The first one is processor independent and it’s the

front-end interface. The second one refers to the back-end and includes a set of operators that reflect

what the target processor can do, in other words, processor dependent. The conversion from external to

internal is automatically made.

The first intermediate language is RTL (Register Transfer Language). Here functions are represented

as a control-flow graph (CFG) of abstract instructions operating on (temporary) pseudo-registers. Each

and every function has an unlimited supply of these registers. The nodes of the CFG consist in individual

instructions, instead of basic blocks, because it simplifies semantics without slowing down the compilation

process. This language has the same trivial and static typing system as Cminor. From now one, several

variations of RTL will be used as intermediate steps towards the final goal, the assembly code. This whole

process will progressively refine the notion of pseudo-register until they are mapped to hardware registers

and stack slots.

In this next language, called LTL (Location Transfer Language), control is still represented by a graph

but now the nodes contain basic instructions blocks. This change is due to the fact that the transformations

from RTL to LTL insert reload and spill instructions, and such insertion is easier to perform on instruction

13

blocks instead of single instructions. Stack slots are not yet mapped to memory locations, instead there is

a mapping of locations to values. This happens because distinct slots may overlap, what could later result

in an overlap between memory areas.

The Linear is a variant of the LTL. Here the CFG and the basic blocks are replaced by a list of instruc-

tions with explicit labels and branches, where non-branch instructions continue at the next instruction in

the list. This language has three infinite supplies of stack slots, namely local, incoming, outgoing. This

slots will later be mapped to actual memory locations.

The last intermediate language is called Mach. It’s the last step before the assembly code be generated.

This language is a variant of Linear, where the three infinite supplies of stack slots are mapped to actual

locations on the stack frame. The local and outgoing slots go to the callee stack frame while the incoming

slot goes to the caller stack frame. All hardware registers are global and shared between caller and callee.

2.2.3.2 Language’s Translation Steps

The first of several translation steps is the translation from external Cminor to internal Cminor, which is

called instruction selection and re-associaton. It matches the processor known operations and addressing

modes. The operators that do not correspond to a processor instruction are accordingly encoded.

The next phase is the RTL generation, which consists on the translation from internal Cminor to RTL.

Here, the Cminor structured control is encoded as a flow graph. Every expression is decomposed into

sequences of RTL instructions, such decomposition is easily made because of the previous conversion

from external to internal Cminor, where every operation became one instruction. Then pseudo-registers

are generated and they’ll hold the values of Cminor variables, as well as the values of intermediate results

of expression evaluations. The major difficulty here is the need to generate “fresh” pseudo-registers as well

as “fresh” CFG nodes and fill them with new instructions and branch them properly to another graph node.

The translation from RTL to LTL, called register allocation, is based on coloring an inference graph.

Such graph is obtained by inverting the edges of the CFG. There are two ways to express these interferences,

14

it can refer to an interference between two pseudo-registers, or, an interference between a pseudo-register

and an hardware register. Although this coloring procedure isn’t certified, the returned coloring is. This

highlights the fact that it’s simpler to verify the result rather than the computation. Being more specific,

the procedure itself consists in:

1. Creating an interference graph. Preference edges (meaning that two pseudo-registers should prefer-

ably be allocated to the same/to a specific location) are also recorded. This extra information has

no impact on the correctness of the register allocation, only in its quality;

2. Perform type reconstruction on the input code. It basically consists in associating an int/float type

to every pseudo-register. Graph coloring will then choose the hardware registers and stack slots of

the appropriate class;

3. Coloring of the interference graph, which then returns a mapping from pseudo-registers to locations;

This translation mechanism replaces references to pseudo-registers by the reference to their mapping.

Also the values of all registers are preserved by the registers allocation process, although this does not

hold for dead registers, for the simple fact that their values are totally irrelevant.

After the register allocation phase comes the linearization phase, where a translation from LTL to

Linear is performed. This step basically linearizes the CFG by:

1. Rewriting the CFG by eliminating branches-to-branches (“sequences of branches with no intervening

computations”). This elimination process is know by control flow graph tunneling 2;

2. Producing an ordered list that contains the enumeration of the reachable nodes of the graph;

3. Putting the CFG instructions in a list according to the previously established order. It adds a goto

to every instruction that points to the label of its successor in the CFG. If a goto branches to an

immediately following label, such goto is eliminated.

2 http://compcert.inria.fr/doc-1.6/html/Tunneling.html

http://compcert.inria.fr/doc-1.6/html/Tunneling.html

15

The Linear to Mach translation consists on laying out the stack frame. It’s the only time where changes

in the memory layout occur. This peculiarity makes this step very hard to prove. The compiler plays an

important role, since its job is to compute the number of slots of each kind and the number of callee-save

registers that need to be used. In order to do so it scans the Linear code and then determines the size and

layout of the stack frame. After this, references to stack slots are translated into actual loads and stores.

Besides this, it also adds function prologues3 and epilogues4 so they can, respectively, save and restore

the values of used callee-save registers. It ensures that, if nothing fails (program doesn’t get stuck at

runtime), locations of type int always contain either integer or pointer or undef values, and that locations

of type float always contain either float or undef values.

The last step is the generation of assembly code. It translates the Mach code to assembly. This simple

process consists in an expansion of Mach instructions, operators and addressing modes to instruction

sequences.

2.2.4 Final Remarks

Compilation is a critical step in software development. As it was seen certified/verified compilation is a

better and safer solution. The downside is that it is very hard to achieve. It implies a whole reformulation

in compilers development to incorporate the use of formal methods.

CompCert5 is a verified compiler that uses the Coq6 proof assistant. For more details on this matter, [3]

and [7] might be a very good reading. Now that the technical details have been introduced, it is time to

see CompCert from a user point of view. The next section contains precisely that.

3Assembly language specific code lines placed at the beginning of a function. They prepare the stack and registers.
4Placed at the end of a function. Used to restore the stack and registers to the previous state (before function call).
5http://compcert.inria.fr
6http://coq.inria.fr/

http://compcert.inria.fr
http://coq.inria.fr/

16

2.3 CompCert

Technical details aside, it is now time to see CompCert from a user point of view. The next section intents

to show that. Other details can bee seen in [4]

2.3.1 Limitations

According to the official website, CompCert supports all of ISO C 99 standard specifications, with some

exceptions:

• switch statements must be structured as in MISRA-C; unstructured ”switch”, as in Duff’s device, is

not supported.

• Unprototyped function types are not supported. All functions must be prototyped;

• Variable-argument functions cannot be defined.;

• longjmp and setjmp are not guaranteed to work;

• Variable-length array types are not supported;

• Designated initializers are not supported;

• Consequently, CompCert supports all of the MISRA-C 2004 subset of C, plus many features ex-

cluded by MISRA (such as recursive functions and dynamic heap memory allocation).

Besides these, it also has some limitations regarding flags passed in compilation time, and it can only

produce code for IA32 (x86 32-bits) architectures.

Still according to the website, several extensions to ISO C 99 standard are indeed supported:

• The Alignof operator and the Alignas attribute from ISO C2011.

• Pragmas and attributes to control alignment and section placement of global7 variables.
7only in a global context, local variables are not assured

17

2.3.2 Misc Information and Further Improvements

In order to give a better perspective about how hard it is to write a certified compiler, the numbers describing

CompCert ’s constitution were also retrieved from the official website: 16% of code, 8% of semantics, 17%

of claims, 53% of proof scripts and 7% of miscellaneous information. It’s not much of a surprise that more

than a half of the compiler consists on proof scripts. Now, how big can this 53% can be? Well, based on

information retrieved from the website, it’s about 50 000 lines of Coq code.

Besides its limitations, some improvements could also be done:

• Low proof automation;

• More assurance;

• More optimizations;

• Shared-memory concurrency;

• Connections with hardware verification;

• Support other source languages (i.e: Object Oriented);

• Verifying program provers and static analyzers.

2.3.3 Final Remarks

The purpose of this section was to present CompCert from an end user perspective, mainly by exhibiting

some of its limitations. Of course that since it’s still in development, new functionalities are being added.

Meanwhile, expecting it to support everything that, for example, GCC supports is a long shot bet. It’s

not impossible, but it’s an extremely hard work. As an example, simply adding new types of data and/or

features, will likely imply a great effort on revisiting the respective files and implement proofs regarding cor-

rectness, memory preservation and more. There are cases (as will be seen later in this document) where

adding a specific feature would imply reproducing such modification until assembly level conversions. As

18

was seen, numbers speak for themselves and developing a compiler with this kind of reliability requires

a tremendous amount of effort. Curiosities apart and moving towards another phase of this dissertation

project, the next chapter describes all work and investigation done regarding cryptographic library support

for a certified compiler.

3 . Cryptographic Library Support

3.1 Efficient Mathematical Algorithms

The following chapter consists of an overall view about some of the most heavier mathematical operations.

All of them refer to multiple-precision arithmetic. These algorithms were taken from [5]. Before introduce

the algorithms themselves, it’s important to show the numbers representation.

3.1.1 Radix Representation

Although there are innumerous ways to represent a number, the most common are base/radix 10 (also

known as decimal) and base/radix 2 (also known as binary). While the first one is most used in math,

science and “normal life”, the other is more suited for machine computations. For example, if x = 1724

in a radix 10 representation, it means that x = 1 ∗ 103 + 7 ∗ 102 + 2 ∗ 101 + 4 ∗ 100. In a radix 2

representation, x = 1724 equals x = 11010111100, which means that x = 1∗210+1∗29+0∗28+

1 ∗ 27 + 0 ∗ 26 + 1 ∗ 25 + 1 ∗ 24 + 1 ∗ 23 + 1 ∗ 22 + 0 ∗ 21 + 0 ∗ 20. More formally, a positive integer

number x can be represented as x = an ∗bn +an−1 ∗bn−1 + ...+a1 ∗b+a0, each integer digit being

between 0 and b, and an ̸= 0. This is called the radix b representation of x. On the next algorithms, this

same representation is written as x = (anan−1...a1a0)b. The signed-magnitude representation will be

used to represent any negative integer number.

3.1.2 Multiplication

Not different from the basic and traditional pencil and paper method. Consider two positive integer num-

bers x and y in a radix b representation. The product w = x ∗ y, with x = (xn, ...,x0), y = (yt , ...,y0),
19

20

and w = (wt+n+1, ...,w0), is calculated by the following algorithm:

do i = 0, t {

c = 0

do j = 0, n {

(uv) = wi+ j + x j ∗ yi + c

wi+ j = v

c = u

}

wi+n+1 = u

}

return(w)

Computational efficiency: This algorithm requires (n+1)(t+1) multiplications. These, lets say,

small multiplications are performed in single precision.

3.1.3 Squaring

Consider one positive integer number x in a radix b representation. The squaring w = x ∗ x, with x =

(xt−1, ...,x0) and w = (w2t−1, ...,w0), is calculated by the following algorithm:

do i=0, t - 1{

(uv) = w2i + xi ∗ xi

w2i = v

c = u

do j = i + 1, t - 1 {

(uv) = wi+ j +2x j ∗ xi + c

wi+ j = v

c = u

21

}

wi+t = u

}

(uv) = w2t−2 + xt−1 ∗ xt−1

w2t−2 = v

w2t−1 = u

return(w)

Computational efficiency: This algorithm requires (t2 + t)/2 single precision multiplications,

which is close to one half of the ones needed by the multiplication algorithm. Generally speaking, per-

forming a squaring instead of a multiplication can bring a speedup factor of 2.

3.1.4 Division

while (x ≥ ybn−t) {

qn−t = qn−t +1; x = x− ybn−t

}

do i = n, t+1, -1 {

if(xi == yt){ qi−t−1 = b−1 }

else{ qi−t−1 = ⌊(xib+ xi−1)/yt⌋ }

while (qi−t−1(ytb+ yt−1)> xi−1b+ xi−2){

qi−t−1 = qi−t−1 −1

}

x = qi−t−1ybi−t−1

if(x < 0){ x = x+ ybi−t−1;qi−t−1 = qi−t−1 −1 }

}

r = x

return(q,r)

22

Computational efficiency: This algorithm requires at most n− t single precision divisions.

3.1.5 Modular Multiplication

3.1.5.1 Classic

This algorithm combines the previous multiple precision multiplication and division. The result, x∗y mod

m, is obtained by first multiplying x and y and then divide the result by m. The division’s reminder is the

algorithm’s result.

Computational efficiency: This algorithm requires (n+1)(t +1) single precision multiplications

and n− t single precision divisions.

3.1.5.2 Montgomery Reduction

A = T

do i=0, n-1{

ui = aim′ mod b

A = A+uimbi

}

A = A/bn

if(A ≥ m){A = A−m}

return(A)

Computational efficiency: This algorithm requires n(n+ 1) single precision multiplications and

0 single precision divisions. Not only it is faster than the previous one, it also takes advantage when the

input values are the same (squaring).

23

3.1.6 Greater Common Divisor

3.1.6.1 Binary (Euclidean based)

Given two numbers x and y, so that x ≥ y, the gcd(x,y) is computed by the following algorithm:

g = 1

while(is even(x) && is even(y)){

x = x/2

y = y/2

g = g/2

}

while(x ̸= 0){

while(is even(x))

x = x/2

while(is even(y))

y = y/2

t = |x− y|/2

if(x ≥ y){x = t}

else{ y = t }

}

return (g∗ y)

Computational efficiency: If numbers x and y are in radix 2, all divisions by 2 become right-shifts,

which are extremely fast.

3.1.6.2 Binary Extended (Euclidean Extended based)

Given two numbers x and y, so that x ≥ y, the gcd(x,y) is computed by the following algorithm:

g = 1

24

while(is even(x) && is even(y)){

x = x/2; y = y/2; g = g/2

}

u = x; v = y; A = 1; B = 0; C = 0; D = 1

while (u ̸= 0) {

while (is even(u)){

u = u/2

if(((A mod 2) == 0) && ((B mod 2) == 0)){ A = A/2; B = B/2 }

else{ A = (A+ y)/2; B = (B− x)/2 }

}

while(is even(v)){

v = v/2

if(((C mod 2) == 0) && ((D mod 2) == 0)){ C =C/2; D = D/2 }

else{ C = (C+ y)/2; D = (D− x)/2 }

}

if(u ≥ v){ u = u− v; A = A−C; B = B−D }

else{ v = v−u; C =C−A; D = D−B }

}

a =C;

b = D;

return(a,b,g∗ v)

Computational efficiency: The only multiple precision operations are addition and subtraction.

Divisions by 2 are right-shifts. As the number of bits needed to represent u and/or v decreases at least

by 1, the number of iterations taken by the algorithm is at most 2(lg x + lg y + 2).

25

3.1.7 Exponentiation

3.1.7.1 Sliding Window

Given g, e = (et , ...,e0) in base 2 representation with et = 1, and a window size k ≥ 1. The algorithm

computes ge.

g1 = g

g2 = g2

do i=1, (2k−1 −1) { g2i+1 = g2i−1 ∗g2 }

A = 1

i = t

while (i ≥ 0) {

if(ei == 0) {

A = A2

i = i−1

}

else {

find longest bit string (ei, ...,el) that verifies ((i− l +1 ≤ k) && (el == 1)) {

A = A2i−l+1 ∗g(ei, ...,el)

i = l −1

}

}

}

return A

Computational efficiency: It requires, at most, (2k−1 − 1) + (l − 1) multiplications and 1+

(lk+hl) squarings.

26

3.1.7.2 Montgomery Exponentiation

Given m = (ml−1, ...,m0), R = bl , m′ = −m−1 mod b, e = (et , ...,e0) in base 2 representation and

with et = 1. The result is xe mod m.

x̃ = MontMul(x,R2 mod m)

A = R mod m

do i=t, 0, -1 {

A = MontMul(A,A)

if(ei == 1){ A = MontMul(A, x̃) }

}

A = MontMul(A,1)

return A

Computational efficiency: This algorithm requires 2l(l +1)+3tl(l +1)+ l(l +1)single preci-

sion multiplications, and 7
2 l Montgomery multiplications.

3.1.8 Final Remarks

As it was possible to see, and a little bit of expected, not all algorithms possess the same computational

efficiency. This is due to many facts, being the main ones, the type of operation being either basic like

multiplication or more complex like exponentiation, and at last but not least, more than one algorithm

to perform the same operation, for example the classic and Montgomery algorithms that perform the

modular multiplication, which is the result of improving the performance of prior algorithm(s). With all of

this mathematical algorithms, the hardest part is done, remaining only the coding, which varies depending

of the chosen programming language, and the machine specs in which the code will be executed. All of

these are important factors to take in account.

Introduced the most important and relevant arithmetic algorithms and their execution time, it is now

time to show the benchmark results and compare the chosen big number libraries performance regarding

the compiler (normal and certified).

27

3.2 Cryptographic Libraries Benchmarking

The GMP1 and LIP2 where the chosen libraries to analyse. The GNU Multiple Precision arithmetic library is

a vast, complex and an optimized implementation of various mathematical operations. The LIP library can

be called a lightweight version of GMP. The objective is to analyse the impact of certified compilation versus

normal compilation. A benchmark consisting of performing some heavy mathematical and cryptographic

operations involving numbers with a significant size (number of bits) was used.

3.2.1 Experimental Setup

Some modifications were made to the GMPBench code so it could be used by the LIP library. Such

modifications include both type definitions and function definitions. The parameters order is different (e.g.

in GMP the variable that stores the result is the first argument, while in the LIP is the last one).

The number of bits of program’s input was also changed to a more adequate one. Table 3.1 shows

the most relevant modifications as well as the functions correspondence.

1http://gmplib.org/
2 http://www.win.tue.nl/~klenstra/lip.html

http://gmplib.org/
http://www.win.tue.nl/~ klenstra/lip.html

28

GMP LIP

mpz t verylong

mpz urandomb zrandomb

mpz tdiv q zdiv

mpz gcd zgcdeucl

mpz mul zmul

mpz setbit zsetbit

mpz mod zmod

mpz powm zexpmod

mpz sub zsub

mpz add zadd

mpz cmp ui zcompare

mpz invert zinvmod

mpz init/clear verylong var assigned to 0

Table 3.1 Differences between GMP and LIP.

The following piece of code is extracted from the benchmark and it is used to determine the number of

iterations, which means, the number of times that the algorithm will be executed. This value considers the

function elapsed time. The fact that this is not a fixed value ensures a more fair benchmarking, because

it considers different execution times for the several algorithms.

TIME (t, mpz_tdiv_q (z, x, y));

printf ("done\n");

niter = 1 + (unsigned long) (1e4 / t);

An example of how the time required to run a function is measured:

t0 = cputime ();

29

for (i = niter; i > 0; i--)

{

mpz_tdiv_q (z, x, y);

}

ti = cputime () - t0;

printf ("done!\n");

ops_per_sec = 1000.0 * niter / ti;

3.2.1.1 Machine Specifications

The performance tests were conducted in a machine with the following specifications:

Manufacturer: Apple

Model: MacBook6,1

CPU: Intel Core 2 Duo P7550 (Penryn) @ 2.26GHz

Main memory: DDR3 PC3-8500, 4GB with 14ns latency

CPU #cores / #threads: 2/2

CPU peak FP performance: 18 GFLOPS

Cache details : L2 3072 KB

3.2.2 Results

The following charts show the obtained results after running the benchmark three to eight times, and

the selected results are in a range no larger than 5% of the other 2 best values. They contain the cases

where the programs using the GMP library were compiled with GCC and CompCert. The same for the LIP

30

library. Both libraries were compiled with GCC. Only the charts shown in the LIPCERT sub-section contain

the results for the LIP compiled with CompCert.

Example of parameters interpretation:

multiply 32 32 - multiplies a 32-bit random number for a 32-bit random number;

multiply 32 - squares a 32-bit random number;

rsa 32 - signs a 32-bit random message.

3.2.2.1 Division Algorithm

Figure 3.1 Divide

As expected, GMP achieves better performance than LIP. Increasing the size of input data, in this

case the number of bits, there is a performance decrease. For GMP this happens until dividing a 8192 bit

number for a 2048 bit number, since in the next two cases there is a improvement, especially in the last

case, where performance achieves excellent results. The same thing happens using LIP, but this time only

in the last test. For the discrepancy noticed on the last case, some other experience was made consisting

on executing the division algorithm with the same range of values, but both input values were the same

(divide x,x, where x varies from 32 to 8192). The results obtained were much more higher, and pointed

31

out the fact that the algorithm’s performance is higher when dividing numbers with an equal amount of

bits.

3.2.2.2 Great Common Divisor Algorithm

Figure 3.2 Great common divisor

Without surprises GMP achieves better performance than LIP. Also increasing the number of bits

results in a performance decrease, as expected. Although it’s important to say that along with this increase,

the gap between GMP and LIP enlarges. Meaning that the LIP ’s performance decreases faster than GMP ’s.

32

3.2.2.3 Extended Great Common Divisor Algorithm

Figure 3.3 Great common divisor extended

GCD’s extended version has the same behavior as the previous one. The only difference is that, in the

overall this algorithm’s performance is slightly worst than the previous one. Such thing does make sense

because the extended version of the Euclidean algorithm besides finding the greatest common divisor of

two integers, say a and b, it also finds other two integers, say x and y (one of which is typically negative)

that satisfy Bézout’s identity

ax+by = gcd(a,b) (3.1)

33

3.2.2.4 RSA Algorithm

Figure 3.4 RSA

The performance of both libraries also decreases along with the increase of algorithms data input size.

Without any surprises since this was the expected behavior. Once again GMP achieves higher levels of

performance. LIP ’s number of operations per second drops faster than GMP ’s.

3.2.2.5 Multiplication Algorithm

Through the several multiplication tests although the conclusion is the same, and that is GMP showing

better results than LIP, there are a few interesting remarks to be said.

For an instance, consider the case where the multiply algorithm is squaring a n-bit random number

and one where it multiplies a n-bit random number for another n-bit random number. Despite the fact

that both have the same input size, there is a minimal difference in the number of operations per second.

This results in the squaring method having a better performance. Such difference resides in the fact that

squaring uses only one number instead of two different ones. This shows that both libraries possess

mechanisms that take advantage of multiplying two equal numbers.

For the last method, multiplying a 8192-bit random number for a n-bit random number, there is a

significant drop in performance compared with the other two. But those were not strange news, since the

34

Figure 3.5 Multiply

size of the input data is bigger than the other ones. What is more important here is the gap between both

libraries and the fact that it is larger than the ones on the previous two methods. This shows the benefits

from using GMP over LIP, since its performance is better.

Bridging all three methods, several conclusion can be took: i) considering the GMP library, multiplying

a 8192-bit number for a 32-bit number has approximately the same number of operations as squaring

a 512-bit number; ii) considering the LIP library multiplying a 8192-bit number for a 32-bit number has

approximately the same number of operations as multiplying two 512-bit numbers;

3.2.2.6 RSA - GMP power-modulo calculation modification

The mpz powm is the normal RSA mode. The mpz powm sec function performs exponentiation with the

same time and same cache access patterns for any arguments with the same size. This function was

specially designed for cryptographic purposes, where resilience to side-channel attacks is desired.

In both cases the mpz powm sec performance is a little worst than the normal one. This result

was already expected, because of its cache access methodology. The compilers choice doesn’t seem

35

Figure 3.6 Comparing mpz powm and mpz powm sec

Figure 3.7 Comparing mpz powm and mpz powm sec

to significantly influence performance. Considering the security properties offered by the mpz powm sec

function, and the not so significant loss of performance, choosing this function over the other one seems to

be a very good decision. This statement is reinforced by the fact that, the test algorithm is a cryptographic

one.

36

3.2.2.7 RSA - LIP power-modulo calculation modification

The normal calculation mode uses the zexpmod function. But there are two more functions worth exploring,

the zmod m ary which performs exponentiation in a size m window, and the zmontexp which uses the

Montgomery modulo exponentiation (it also requires the Montgomery number conversion, so LIP can use

the Montgomery arithmetic functions).

Figure 3.8 Comparing zmod m ary, zmontexp and zexpmod

Figure 3.9 Comparing zmod m ary, zmontexp and zexpmod

Overall the use of a certain method instead of another didn’t seem to be relevant. For data input

37

sizes between 32 and 512 bits (considering the chart’s scale), the best choice is the Montgomery method,

followed by the m ary method, using the default value (see Table 3.2) of m accordingly to exponent number

of bits and then the normal one (perform exponentiation with the zexpmod function. From 1024 to 8192

bits the Montgomery method offers the worst performance, followed by the m ary method, and at last but

not least, achieving better results the normal method. Despite the turn of events the gap between all three

functions is very small.

e m

< 2 2

< 3 3

< 7 4

< 16 5

< 35 6

< 75 7

< 160 8

< 340 9

otherwise 10

Table 3.2 Default values for m, when using the zmod m ary function. m = zdefault m(e)

3.2.2.8 LIPCERT

On the following chart, Cert CompCert means “LIP library compiled with CompCert and benchmark

files also compiled with CompCert”, and Uncert CompCert means “LIP library compiled with GCC and

benchmark files compiled with CompCert”. It is only shown one example, simply because the remaining

results do not differ much from one compiler to another, except for this one where the difference is more

visible.

Generally speaking these results do not differ from the previous ones at all. But the main focus here is

whether or not to choose using the LIP library compiled with CompCert. All results are really close. There

38

Figure 3.10 Great common divisor

are some tests where CERT COMPCERT shows better performance, and same tests where it does not.

Given the small gap between both cases, and the safety properties of using a certified library, one can

choose using a full certified (library plus code) application, instead if a partial (code only) one.

3.2.3 Final Remarks

High performance and high security are very hard to achieve. GCC proves to be slightly more efficient

than CompCert, although the difference is not that big. Therefore and considering the benefits from using

a certified compiler, one can choose CompCert over GCC. The major drawback is that CompCert may

not compile some code that GCC compiles (this has to do with the own compiler’s source code), which

leads to one of two things, put a tremendous effort to modify the source code so it can be compiled by

CompCert, or simply dispose from the benefits of certified compilation and use GCC.

39

3.3 TrustedLib Support

In this chapter are shown some of changes made to CompCert ’s source code, so it could be able to

formally support some GMP low-level functions. This new level of support is achieved due to the inclusion

of the TrustedLib 34 library. The implementation of this functions in the compiler’s code makes it possible

to CompCert to understand that although such functions come from an external library, they are to be

trusted. Besides the whole list is referenced in the document, only an implementation is exhibited, for

content cleaning purpose.

3.3.1 TrustedLib Context

CompCert ’s formalizations only support calls to system libraries that leave the memory state unchanged.

This results in the compiler not dealing with modifications in the memory state on calls to external functions.

Given that GMP functions does cause memory modifications, a problem arises. With this in mind, the need

for “something” that allows a programmer to specify functions that could, a) get data from the environment

and fill input memory regions with it; and b) set the environment with data from output memory regions;

came up. That “something” is TrustedLib and it ensures to CompCert that such modifications can indeed

be trusted and even tells it the expected result (i.e: adding two numbers)

Resuming, TrustedLib is nothing but a “mechanism for declaring external functions that may impact

the memory” [1] and its role is to tell CompCert that the specified external functions can indeed be trusted.

3.3.2 Adding TrustedLib to CompCert

In order to give CompCert the correct support for a specific external function, one must first correctly

specify the function arguments in the “TrustedLibBuiltin” file and then the proof code itself in the “Trust-

edLibBuiltinSem” file.

3This work was mostly developed by professor José Bacelar Almeida, and was slightly improved in this thesis context.
4It uses the SSREFLECT COQ language extension

40

3.3.2.1 List of newly supported functions

In the source code each function has the prefix “TLGMP” which stands for TrustedLib GMP.

• mpn add n

• mpn add 1

• mpn add

• mpn sub n

• mpn sub 1

• mpn sub

• mpn neg

• mpn mul n

• mpn mul

• mpn sqr

• mpn mul 1

• mpn addmul 1

• mpn submul 1

• mpn tdiv qr

• mpn divrem 1

• mpn divexact by3c

• mpn mod 1

• mpn lshift

• mpn rshift

• mpn cmp

• mpn gcd

• mpn gcd 1

• mpn gcdext

• mpn sqrtrem

3.3.3 Examples

3.3.3.1 Some relevant pre-requisites

Before showing the developed code for the functions above, it’s important to present some other relevant

functions which are the core of the low level GMP functions specification, since they deal with the memory

41

representations of 32 bit limbs5.

First the split limb32 function, which splits an integer in a limb part and the remainder:

Definition split_limb32 (z:Z) : Z*Z := (Zmod z (2^32), z / (2^32)).

The encodeZ32' function it’s used to get the memory representation of an integer and the respective

carry:

Fixpoint encodeZ32' nbytes (z:Z) : (nbytes.-tuple byte) * Z :=

match nbytes

with

| nbytes'.+4 =>

let (l,h) := split_limb32 z in

let (bytes, r) := (encodeZ32' nbytes' h) in

(cat_tuple (limb_of_Z l) bytes, r)

| nbytes' => bytes_of_Z nbytes' z

end.

Analogous to the previous function, except that the encodeZ32 ignores the carry:

Definition encodeZ32 nbytes (z:Z) : nbytes.-tuple byte :=

(encodeZ32' nbytes z).1.

At last but not least, the decodeZ32 which is used to read an integer from a memory representation:

Fixpoint decodeZ32 (l:list byte) : Z :=

match l with

| [:: b1, b2, b3, b4 & l'] => Z_of_limb [tuple b1;b2;b3;b4] + 2^32 * decodeZ32 l'

| l' => int_of_bytes l'

end.
5part of a multi-precision number that fits into a single word

42

Finished introducing the basic functions to get both memory representation of an integer, and the

integer itself, it’s time to discuss some low-level GMP implementation examples.

The next example is organized in the following way: first is presented the function header with the re-

spective arguments and then the function definition itself. For both cases there’s the respective and

detailed explanation.

3.3.4 mpn add n

According to the GMP documentation, the function signature is:

mp_limb_t mpn_add_n (mp_limb_t* rp, const mp_limb_t* s1p, const mp_limb_t* s2p,

mp_size_t n)

and it adds {s1p, n} and {s2p, n}, and write the n least significant limbs of the result to rp.

The function header signature accordingly to TrustedLib pragmas is:

mpn_add_n : OutPtr (4 * #3), InPtr (4 * #3), InPtr (4 * #3), Int -> Int

where each argument is separated by a semicolon, and the argument count starts at zero: OutPtr (4 *

#3), output pointer multiplies by 4 the 3rd argument content. This characterizes the memory region of

the result gmp integer.

The first InPtr (4 * #3), input pointer, multiplies by 4 the 3rd argument content. This characterizes the

memory region of the input gmp integer.

The second InPtr (4 * #3) multiplies by 4 the 3rd argument content. This characterizes the memory region

of the input gmp integer.

The first Int specifies the size (number of bits) of the other arguments.

The function’s semantics is added to CompCert through the following Coq definition:

43

Definition TLGMP_mpn_add_n (outs: list nat) (ins:list (int + list byte)) :

option (tl_outdata' outs * Z) :=

match outs, ins with

| [:: n] , [:: inr o1; inr o2; inl o3] =>

let (res, carry) := encodeZ32' n (decodeZ32 o1 + decodeZ32 o2)

in Some([::: res], carry)

| _, _=> None

end.

outs: list of natural numbers.

ins: either a integer number or a list of bytes.

inr o1: matches o1 variable with the list of bytes from the ins argument.

inr o2: matches o2 variable with the list of bytes from the ins argument.

inl o3: matches o3 variable with the integer from the ins argument.

In the success case scenario, both o1 and o2 integers are decoded, accordingly to the previously char-

acterized input memory regions, and added. The result is then encoded and stored in the (previously

characterized) output memory region. Otherwise the result is None.

3.3.5 Final remarks

Despite of the relevant number of the functions that were listed in this chapter, there is much work yet to

be done. Not only because of the total amount of functions, but mostly because of their complexity. All

the functions mentioned in this chapter are low-level, therefore, adding this to the dimension of the GMP

library, one can see the true complexity and effort needed to give full support for GMP.

Covered one of the main topics of this thesis, an agreement between both student and teacher was made,

so the study could proceed to a new and promising area. Such area is the core of the next chapter,

and it relates to the AES (short for Advanced Encryption Standard) Instruction Set extension for the x86

Instruction Set Architecture proposed by Intel in 2008, and incorporated in the 2010 processoros. The

extension adds a new set of instructions that can be combined to implement/run the AES algorithm.

4 . SIMD Extensions

This last chapter explains the type of support given to CompCert regarding the AES extensions Instruction

Set and how it was attained through a developed library. Such library was created so it was easy to use

the assembly functions in a more high-level and intuitive way, and more important so it could be used by

a program that is intended to be compiled by both GCC and CompCert.

4.1 Context and Problems

Cryptographic operations are know to work with large number of bits, either for messages, ciphertexts,

keys or, depending on the algorithm, initialization vectors and nonces. Usually one uses these libraries to

perform these types of operations in a software level. Therefore being able to work with such datatypes

as closer to the machine level as possible, the best. SIMD - Single Instruction Multiple Data [6]- processor

extensions support precisely that. Although the types were always there, the required instructions were

still missing. This was until the year 20101 where Intel expanded the Instruction Set2 and implemented

directly in hardware, functions that could perform parts of AES algorithm operations. Combining such

functions, different modes of AES could be implemented. The main reason was to increase the speed of

programs/applications using AES to encrypt and/or decrypt information. A library that uses these same

instructions was developed.

Using only GCC did not brought much problems, but since the main topic of this thesis is certified

compilers, and therefore CompCert, necessarily it must also be used. As was expected some problems

arose. An assessment of such problems is described next.

1Although the model was proposed in 2008, processors with such extension only came out in early 2010, more precisely the Westmere processors family.
2created the AES-NI which is short for Advanced Encryption Standard New Instructions

45

46

4.1.1 Alignment

Since CompCert only guarantees alignment in global variables, the test vectors used in the main program

were declared as global variables instead of local. Only by doing this, the local alignment limitation was

overcome. Since this is a small and controlled programing environment having global variables (with this

level of importance) wasn’t much of a big deal, therefore the hazards involving the use of global variables

were, in certain a way, irrelevant.

4.1.2 ABI - CompCert Arguments

Trying to use the m128i data type (intrinsic type of SSE2 extension) as the type of arguments for each

function, would result in the main program only being compiled with GCC. The reason why is simple,

CompCert can not, yet, support these extensions types. The adopted solution was to wrap the library

functions so the parameters were types know by both GCC and CompCert, such as array of integers.

4.1.3 Native Support

The former limitations could also be overcome by modifying CompCert ’s code and specifying the new

kind of alignment and the new types. However, besides hard this was a relatively intrusive solution since

probably would imply refactoring parts of the code. Exploring other less complicate solutions some ap-

proaches could be considered. For instance, in the first case correcting CompCert to contemplate 16 bit

data alignment should be enough.

Regarding the Application Binary Interface case, another solution could be represent such data types

in the compiler’s code, and then create structures (this time in the program’s code) that would resemble

to the ones used by the extensions. Aside from this would also be needed to specify the same type in Coq.

With this there was no need to include the respective header files.

In order to being able to use the extensions function calls a feasible solution, but also kind of a cheating

one, could be: first declare the same functions used by the extensions (with same signature) and in the

47

function’s body explicitly use the extensions registers (i.e: %xmm0) and/or processor’s registers (i.e: %eax)

depending on the instruction. Resuming, rebuild the important functions resorting to inline assembly. Then

the only thing still missing is setting up the environment to call and test the functions. In order to perform

a better linking with CompCert ’s purpose, such functions could be declared in the TrustedLib module.

Probably the major drawback of this solution is code replication. Although the above is a feasible solution

it is clear that the correct one is giving full support to the compiler. However such process would be

extremely hard to perform.

4.2 Library Development

A modular and portable library was developed3 so it could behave exactly like GMP in chapter 3.2, com-

piled by GCC and used by CompCert. In this particular case the main program, which runs the encryption

and decryption functions, was compiled by CompCert and uses the previously compiled (by GCC) library

functions.

List of used AES-SSE extensions functions/data types:

• m128i

• mm shuffle epi32

• mm slli si128

• mm xor si128

• mm loadu si128

• mm aeskeygenassist si128

• mm shuffle pd

• mm aesenc si128

• mm aesenclast si128

• mm aesenclast si128 si128

• mm aesdec si128

• mm aesdeclast si128
3most of the functions content was retrieved from [2], but the portability so it could be compiled by CompCert, which implied some modifications to the

previous referenced code, was made in this thesis context.

48

• mm set epi32

• mm setr epi8

• mm setzero si128

• mm insert epi64

• mm insert epi32

• mm srli si128

• mm shuffle epi8

• mm add epi64

• mm add epi32

• mm aesimc si128

4.2.1 Key Expansion Algorithms

The following algorithms are used to prepare the cipher key for the encryption algorithm. Such process is

called key expansion and it is necessary to encrypt the message. In the decryption process the expanded

key is re-processed, but this time by a invert mix column function (mm aesimc si128).

4.2.1.1 Algorithm for 128 bits key size

__m128i AES_128_ASSIST (__m128i temp1, __m128i temp2) {

__m128i temp3;

temp2 = _mm_shuffle_epi32 (temp2 ,0xff);

temp3 = _mm_slli_si128 (temp1, 0x4);

temp1 = _mm_xor_si128 (temp1, temp3);

temp3 = _mm_slli_si128 (temp3, 0x4);

temp1 = _mm_xor_si128 (temp1, temp3);

temp3 = _mm_slli_si128 (temp3, 0x4);

temp1 = _mm_xor_si128 (temp1, temp3);

temp1 = _mm_xor_si128 (temp1, temp2);

return temp1;

}

49

4.2.1.2 Algorithm for 192 bits key size

void KEY_192_ASSIST(__m128i* temp1, __m128i* temp2, __m128i* temp3) {

__m128i temp4;

*temp2 = _mm_shuffle_epi32 (*temp2, 0x55);

temp4 = _mm_slli_si128 (*temp1, 0x4);

*temp1 = _mm_xor_si128 (*temp1, temp4);

temp4 = _mm_slli_si128 (temp4, 0x4);

*temp1 = _mm_xor_si128 (*temp1, temp4);

temp4 = _mm_slli_si128 (temp4, 0x4);

*temp1 = _mm_xor_si128 (*temp1, temp4);

*temp1 = _mm_xor_si128 (*temp1,* temp2);

*temp2 = _mm_shuffle_epi32(*temp1, 0xff);

temp4 = _mm_slli_si128 (*temp3, 0x4);

*temp3 = _mm_xor_si128 (*temp3, temp4);

*temp3 = _mm_xor_si128 (*temp3,* temp2);

}

4.2.1.3 Algorithm for 256 bits key size

void KEY_256_ASSIST_1(__m128i* temp1, __m128i* temp2){

__m128i temp4;

*temp2 = _mm_shuffle_epi32(*temp2, 0xff);

temp4 = _mm_slli_si128 (*temp1, 0x4);

*temp1 = _mm_xor_si128 (*temp1, temp4);

temp4 = _mm_slli_si128 (temp4, 0x4);

*temp1 = _mm_xor_si128 (*temp1, temp4);

temp4 = _mm_slli_si128 (temp4, 0x4);

50

*temp1 = _mm_xor_si128 (*temp1, temp4);

*temp1 = _mm_xor_si128 (*temp1,* temp2);

}

void KEY_256_ASSIST_2(__m128i* temp1, __m128i* temp3) {

__m128i temp2,temp4;

temp4 = _mm_aeskeygenassist_si128 (*temp1, 0x0);

temp2 = _mm_shuffle_epi32(temp4, 0xaa);

temp4 = _mm_slli_si128 (*temp3, 0x4);

*temp3 = _mm_xor_si128 (*temp3, temp4);

temp4 = _mm_slli_si128 (temp4, 0x4);

*temp3 = _mm_xor_si128 (*temp3, temp4);

temp4 = _mm_slli_si128 (temp4, 0x4);

*temp3 = _mm_xor_si128 (*temp3, temp4);

*temp3 = _mm_xor_si128 (*temp3, temp2);

}

4.2.2 ECB mode

Before talking about the implemented functions, lets recall the ECB encryption and decryption processes

represented in the following images.

51

Figure 4.1 ECB encryption schema mode

Figure 4.2 ECB decryption schema mode

52

The next functions execute both encryption and decryption (of a plaintext and a ciphertext respectively)

using the ECB (short for Electronic Codebook) encryption/decryption mode of AES. The first argument is

a pointer to the cipher key, the second a pointer for the message and the third a pointer for the ciphertext

(where to store the result), followed by a pointer to the expected ciphertext. The last argument simply tells

whether to print or not the information.

The difference for all three functions is the number of bits used in the respective key, since every key

size has it own key expansion algorithm.

void ECB128(unsigned int* _k, unsigned int* _m, int size, unsigned int* _out,

unsigned int* Expected_CIPHERTEXT, int verbose);

void ECB192(unsigned int* _k, unsigned int* _m, int size, unsigned int* _out,

unsigned int* Expected_CIPHERTEXT, int verbose);

void ECB256(unsigned int* _k, unsigned int* _m, int size, unsigned int* _out,

unsigned int* Expected_CIPHERTEXT, int verbose);

53

4.2.3 CBC mode

Lets now recall the CBC encryption and decryption processes represented in the following images.

Figure 4.3 CBC encryption schema mode

Figure 4.4 CBC decryption schema mode

The following code refers to functions that perform both encryption and decryption using the CBC

(short for Block Cipher Mode) encryption/decryption mode of AES. The arguments are, a pointer to the

cipher key, a pointer for the message/plaintext to be encrypted, a pointer for the ciphertext, a 16 bits

initialization vector, the expected ciphertext and a flag to print or not the results. Again the difference for

all three functions is the number of bits used in the respective key.

void CBC128(unsigned int* _k, unsigned int* _m, int size, unsigned int* _out,

54

unsigned int ivec[16], unsigned int* Expected_CIPHERTEXT, int verbose);

void CBC192(unsigned int* _k, unsigned int* _m, int size, unsigned int* _out,

unsigned int ivec[16], unsigned int* Expected_CIPHERTEXT, int verbose);

void CBC256(unsigned int* _k, unsigned int* _m, int size, unsigned int* _out,

unsigned int ivec[16], unsigned int* Expected_CIPHERTEXT, int verbose);

4.2.4 CTR mode

The CTR encryption and decryption processes are as follow:

Figure 4.5 CTR encryption schema mode

At last but not least, the functions that perform both encryption and decryption using the CTR (short

for Counter mode) encryption/decryption mode of AES. The arguments are, a pointer to the cipher key, a

pointer for the message/plaintext to be encrypted, a pointer for the ciphertext, a 8 bits initialization vector,

a 4 bits nonce, the expected ciphertext and a flag to print or not the results. Once again the difference for

all three functions is the number of bits used in the respective key.

void CTR128(unsigned int* _k, unsigned int* _m, int size, unsigned int* _out,

unsigned int ivec[8], unsigned int nonce[4], unsigned int* Expected_CIPHERTEXT,

55

Figure 4.6 CTR decryption schema mode

int verbose);

void CTR192(unsigned int* _k, unsigned int* _m, int size, unsigned int* _out,

unsigned int ivec[8], unsigned int nonce[4], unsigned int* Expected_CIPHERTEXT,

int verbose);

void CTR256(unsigned int* _k, unsigned int* _m, int size, unsigned int* _out,

unsigned int ivec[8], unsigned int nonce[4], unsigned int* Expected_CIPHERTEXT,

int verbose);

4.3 Developed Library Performance

The performance tests were conducted in a machine with the following specifications:

Manufacturer: Samsung

CPU: Intel Core i5 2467M (Sandy Bridge) @ 1,6 GHz (2,3 GHz with Turbo Boost)

Main memory: DDR3 PC3-10600, 4GB with 10.5ns latency

56

CPU #cores / #threads: 2/4

CPU peak FP performance: 25,6 GFLOPS (37 GFLOPS with Turbo Boost)

Cache details : L3 3072 KB

This machine is different than the previous one (in the other the Intel’s extensions were not present in

the processor). There was a solution, for example, use SDE, an extensions emulator developed by Intel 4.

But since this would incur in a small (and undetermined) overhead, another machine was used in order

to obtain more trusted results.

For a better comprehension of the following charts, an iteration represents the encryption and decryp-

tion process. The Library data set represents the developed library, and the Common data set represents

some modified scripts taken from the polarssl-1.3.4 package.

Figure 4.7 Comparing libraries’s performance for the different key sizes for ECB mode

4http://software.intel.com/en-us/articles/intel-software-development-emulator

57

Figure 4.8 Comparing libraries’s performance for the different key sizes for CBC mode

Figure 4.9 Comparing libraries’s performance for the different key sizes for CTR mode

As the charts show, the developed library has indeed some interesting performance. Although the

charts also show is that the other version of the algorithms (which does not uses the extensions) has by far

a better performance. The explanation is indeed quite simple, the algorithms designated as “Common”

are well worked out algorithms that use lookup tables, therefore decreasing their runtime computational

load, while at the same time increasing performance. This also demonstrates how significant the savings

in processing time can be. But despite the whole difference one detail was verified on both case studies,

in each mode whenever the number of bits was increased the performance decayed. This was totally

expected because more data to be processed requires more time, and most of all, because increasing the

key bits requires more encryption/decryption rounds (10 for 128, 12 for 192 and 14 for 256).

58

4.4 External library VS Assembly incorporation

Another way to achieve this kind of support would be incorporating the extensions assembly directives

directly in the CompCert assembly code. Although it doesn’t sound very difficult, as a matter of fact it

is. Mostly because it implies adding new information, like the new 128 bit data structures, on the most

top files of the compiler (first files to be compiled when compiling CompCert ’s source code) so they could

be “transferred” along the compilation processes into the files below which of course, means having the

remaining files featuring the same support. Besides this, a full specification of the used functions should

also be included.

Resuming, it would imply a total (or almost total) file content refactoring so the newly added information

would be recognized and finally reach the generated assembly code, then and only then the extension

assembly functions would be known and therefore we would have a fully support for AES extensions.

4.5 Final remarks

Considering the two options and their respective complexity/time-effort ratio against the remaining time, a

choice was made and it consisted on only giving the same type of support as given to GMP. Although the

fully assembly support was a more challenging and interesting approach, it would require a great amount

of time, time that did not exist. The performance tests were conducted only using GCC, that’s because

since CompCert could only compile the main program, which basically consists in a few lines of code,

most of the work was being made by the GCC compiled code. This approach results in only have certifying

the program’s entry point, which obviously does not give as much guarantees as expected. Looking at

the execution times themselves there is not much to discuss. Although the developed library uses the

SIMD extensions it has less performance than the other, mostly because it is a naive/straight-to-the-point

implementation while the other one resorts to lookup tables and other performance boost “techniques”.

5 . Conlusions

Throughout this entire document some concepts were explained, some work was made and the re-

spective results were presented and discussed. Among them one idea was always kept in mind, comparing

GCC with CompCert. Not to tell which’s the best compiler, but to show that in certain and particular cases,

CompCert was a good bet. Mainly when high assurance is an important requisite.

In order to attend such level of assurance, it’s necessary to resort to formal methods at the compilation

time. Since compilation is a critical step in software development, certified/verified compilation came to

be a better and at same time a safer solution. As it was seen, the major downside is that it’s very hard to

achieve since it implies a whole reformulation in the compilers source code so the use of formal methods

could be integrated.

After analyzing some of the most commonly used mathematical algorithms in cryptography, it was

easily seen that not all of them possess the same computational efficiency. Obviously such variation

depends of the type of operation used, whether it’s a basic one like multiplication or a bit more complex

one like exponentiation, or even the combination of more than one operation, as it happens for example

with the Classic and Montgomery algorithms for the modular multiplication.

Already taking execution times into account and perfectly knowing that high performance and high

security are two concepts hard to combine, all charts presented in section 3.2 demonstrate that despite

the fact of GCC being slightly more efficient than CompCert, the entire set of benefits that come alongside

with the use of a certified compiler, choosing CompCert instead of GCC seems not a bad idea at all. This is

principally valid for the LIPCERT case, since in the other ones CompCert only treated the main program’s

entry point leaving the rest of the work to be made by code compiled with GCC. This results in a program

being only partially verified.

Adding support for some of the GMP core functions turned to be a challenging work that also allowed

a better insight of how CompCert’s source code is organized and more important, how it uses Coq to

perform function’s formal verifications. It also shows how complex a well coded and complete big number

library can be.

When developing the SSE-AES library some problems appeared along the way. Whether the solution
59

60

was to wrap the library and use it with a higher level interface or declaring testing data in global variable

space they were all overcome. Besides the adopted solutions and the obvious one (which is native support)

other possible good options were slightly studied.

Based an all of the previous points although CompCert seems a good option when compared to GCC,

it is important to keep in mind a great limitation: CompCert can not compile code that GCC can. Good

examples are the GMP library and the developed SSE-AES library. CompCert could not compile them

either because of the use of certain flags (in the second case) or because of certain functions. However in

some cases simpler than the ones stated in this document, given the advantages and assurance offered

by CompCert, it is a good option to use it instead of GCC. Other solution is to do the same that was made

here, and use CompCert to only compile the main program that uses libraries compiled with GCC. In

order of this to work such libraries must be compiled for a 32bits architecture since CompCert cannot yet

support the 64bits one.

5.1 Future Work

It was clearly seen that a lot of work is yet to be done in CompCert, not only implementing other GMP core

functions, but high-level functions as well. Since it would require a lot of time, only part of the first one

was made in this thesis context, while the second one was not even considered.

Another thing that could still be done was to make CompCert able to support the SSE-AES directives

directly in it assembly code. Although it was part of the plan, as it was said before, such option was dis-

carded due to some unexpected problems regarding the SSE-AES library development. Also, the developed

library could be expanded so other modes could be implemented.

Bibliography

[1] J.B Almeida, M. Barbosa, G. Barthe, and F. Dupressoir. Certified computer-aided cryptography: Effi-

cient provably secure machine code from high-level implementations. CCS, 2013.

[2] Shay Gueron. Intel® Advanced Encryption Standard (AES) New Instructions Set, 2012.

[3] Xavier Leroy. Formal certification of a compiler back-end or: Programming a compiler with a proof

assistant. POPL, 2006.

[4] Xavier Leroy. The CompCert C verified compiler - Documentation and user’s manual. INRIA Paris-

Rocquencourt, version 2.1 edition, October, 28 2013.

[5] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography. CRC Press, 1996.

[6] David A. Patterson and John L. Hennessy. Computer Organization and Design - The Hardware /

Software Interface. MK, 4th edition, November 2011.

[7] Sebastian Prehn. Formally certified and certifying compiler back-ends. WS, 2008.

61

	Introduction
	Context
	Objectives
	Structure

	Certified Compilation
	COQ
	Examples
	Final Remarks

	Certified Compilers
	Correctness Property
	Certified Compilation
	Certified Compilers
	Certifying Compilers
	Proof-carrying Code
	Translation Validation

	Back-end
	Languages
	Language's Translation Steps

	Final Remarks

	CompCert
	Limitations
	Misc Information and Further Improvements
	Final Remarks

	Cryptographic Library Support
	Efficient Mathematical Algorithms
	Radix Representation
	Multiplication
	Squaring
	Division
	Modular Multiplication
	Classic
	Montgomery Reduction

	Greater Common Divisor
	Binary (Euclidean based)
	Binary Extended (Euclidean Extended based)

	Exponentiation
	Sliding Window
	Montgomery Exponentiation

	Final Remarks

	Cryptographic Libraries Benchmarking
	Experimental Setup
	Machine Specifications

	Results
	Division Algorithm
	Great Common Divisor Algorithm
	Extended Great Common Divisor Algorithm
	RSA Algorithm
	Multiplication Algorithm
	RSA - GMP power-modulo calculation modification
	RSA - LIP power-modulo calculation modification
	LIPCERT

	Final Remarks

	TrustedLib Support
	TrustedLib Context
	Adding TrustedLib to CompCert
	List of newly supported functions

	Examples
	Some relevant pre-requisites

	mpn_add_n
	Final remarks

	SIMD Extensions
	Context and Problems
	Alignment
	ABI - CompCert Arguments
	Native Support

	Library Development
	Key Expansion Algorithms
	Algorithm for 128 bits key size
	Algorithm for 192 bits key size
	Algorithm for 256 bits key size

	ECB mode
	CBC mode
	CTR mode

	Developed Library Performance
	External library VS Assembly incorporation
	Final remarks

	Conlusions
	Future Work

