Universidade do Minho
Escola de Engenharia

André Filipe Pereira Félix

Web based player for public displays

Outubro 2014

Universidade do Minho

Escola de Engenharia
Departamento de Informatica

André Filipe Pereira Félix

Web based player for public displays

Dissertacao de Mestrado
Mestrado em Engenharia Informatica

Trabalho realizado sob orientacdo de

Professor Rui José

Outubro 2014

ACKNOWLEDGEMENTS

First of all, I would like to thank my parents and my family, without their help and support I
wouldn’t even be able to have the opportunity to undertake this project.

Secondly I would like to thank my supervisor, Professor Rui José, for the opportunity to work with
him, for his patience and availability.

A special thank you to my colleagues at DISPLR, for their involvement in the project and their
willingness to help, I hope the next months of work with them will be just as good as the past ones.

Last, but not least, to the friends I made since my first year at the University, specially to the ones
with whom I shared a home, I thank you, your companionship and all the unforgettable moments we

spent together definitely helped me brave the problems during my academic course.

i

o
o

ABSTRACT

The most important element in a network of public displays is a piece of software, the player, it
is responsible for interpreting the presentation instructions, which are sent in a specific format, and
make the content visible to the users according to those instructions. Usually both the software and
instructions format are proprietary.

One of the big issues regarding this type of software is their restrict system requirements. A player
is usually conceived having a specific target platform, this creates some issues when deploying new
displays. With the increasing development of web technologies emerges a solution to this issue: a
web based player with few system requirements and the capability to be deployed in a bigger range of
platforms.

The goal of this investigation is to design and implement a web based player using web technolo-
gies such as HyperText Mark-up Language 5 (HTMLS) and JavaScript. The new Chrome Packaged
Apps technology is also being looked at as a way to easily distribute and deploy the software.

Ultimately this web based player aims to increase the reach and availability of the public displays

networks by creating a platform to which the non-proprietary developer can create content to.

Keywords: Public displays, public displays networks, player, web technologies, web based player,
HTMLS5, JavaScript, chrome packaged apps.

iv

RESUMO

O elemento mais importante numa rede de ecras publicos é um pedacgo de software, o player, este
software é responsdvel por interpretar as instrugdes de apresentacdo, que sdo enviadas num formato
especifico, e tornar o contetido visivel aos utilizadores de acordo com essas instrugdes.

Um dos grandes problemas deste tipo de software sdo os seus requisitos de sistema restritos, nor-
malmente cada player é concebido para uma determinada plataforma, isto cria alguns problemas
quando € necessdrio implantar novos ecrds. Com o desenvolvimento das tecnologias web emerge
uma solugdo para este problema: um player baseado em tecnologias web com requisitos de sistema
baixose a capacidade de ser implantado numa maior quantidade de plataformas.

O objetivo desta investigacdo € de desenhar e implementar um player baseado em tecnologias web
recorrendo a tecnologias como o HTMLS e o JavaScript, a nova tecnologia Chrome Packaged Apps
também estd a ser abordada como forma facil de distribuir e instalar o software.

No futuro este player tem o objetivo de aumentar o alcance e disponibilidade das redes de ecras

publicos ao criar uma plataforma para a qual programadores ndo proprietarios podem criar conteddo.

Palavras chave: Ecras publicos, redes de ecras publicos, player, tecnologias web, player baseado
em tecnologias web, HTML5, JavaScript, chrome packaged apps.

CONTENTS

Contents vii

Acronyms xiii

1

INTRODUCTION 1
1.1 Motivation 1
1.2 Challenges 2
1.3 Objectives 2
1.4 Document Structure 3
1.5 Summary 3
STATE OF THE ART 4
2.1 Digital Signage Players 4
2.1.1 Ubisign 4
2.1.2 Xibo 4
2.1.3 Rise Vision 5
2.1.4 Concerto 5
2.1.5 OpenSign 6
2.1.6 IAdea 6
2.1.7 Sapo Digital Signage 6
2.1.8 TargetR 6
2.1.9 NoviSign 7
2.1.10 OpenSplash 7
2.1.11 Signagelive 7
2.1.12 Summary 7
2.2 Web Based Player 8
2.2.1 Prototype of the Web Based Player
2.3 Summary 9
WEB BASED MEDIA PLAYER FRAMEWORK
3.1 Player Operation Method 10
3.2 Functional Layers 11
3.2.1 Native Layer 11
3.2.2 Web Engine Layer 12
3.2.3 Web Layer 12
3.2.4 Applications Layer 12
3.3 Reference Stacks 12

vii

10

3.4 Common Functionalities From Other Players 14
3.4.1 Fault Tolerance 15
3.4.2 Content Management 15
3.4.3 Logging 16
3.4.4 Execution 16
3.4.5 Security 16
3.4.6 User Interaction 16
3.4.7 Updates 16
3.5 Key Functionalities 16
3.5.1 Native Layer 17
3.5.2 Web Engine Layer 17
3.5.3 Web Player Layer 18
3.5.4 Applications Layer 18
3.6 Player Architecture 19
3.7 Scheduling Principles and Format 20
3.8 Communication and Player Services 23
3.8.1 Player Services 23
3.8.2 Communication Protocol 27
3.8.3 State Diagrams 31
3.9 Libraries 32
3.9.1 Applications Life Cycle 33
3.9.2 Player Specific Library 33
3.9.3 Applications Specific Library 35
3.10 Summary 36
CASE STUDIES 38
4.1 Case studies and their targeted platforms 38
4.2 Displr 38
4.2.1 Control Module 39
4.2.2 Server Module 40
4.2.3 Registration Module 41
4.2.4 Scheduling Module 42
4.2.5 Media Handler Module 44
4.2.6 Apps Management Module 46
4.2.7 Logging Module 48
4.2.8 Interaction Module 49
4.2.9 Activity 50
4.2.10 Timer 53
4.3 Ubisign 53

viii

4.3.1 Server Module 54
4.3.2 Registration Module 54
4.4 Android and i0OS 54
4.4.1 Media Handler Module 55
4.4.2 Apps Management Module 55
4.5 Samsung SmartTV 55
4.5.1 Media Handler and Apps Management Module
4.5.2 Interaction Module 56
4.6 Summary 56
5 TESTING 57
5.1 Planning 57
5.2 Tests 58
5.2.1 Schedule Execution and Precision Tests 58
5.2.2 Stress Tests 59
5.2.3 Memory Profiling 60
5.2.4 Unit Tests 62
5.2.5 Deployment Tests 63
5.3 Summary 64
6 CONCLUSION 65
6.1 Conclusion 65
6.2 Future Work 66
Appendices 68
A EXAMPLE SCHEDULE 69
B EXAMPLE LOG FILE AND TRACE FILE 74
C SCREENSHOTS 77

ix

LIST OF FIGURES

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Figure 9

Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31
Figure 32

Layered architecture 11
Reference Stacks for Personal Computer (PC) and SFF 13
Reference Stacks for Raspberry Pi and pc-Duino 13

Reference Stacks for Rikomagic, Chromebox and Samsung Smart TV 14
Generic player’s architecture 19

Sequence of containers and/or applications 22

A layout, can be composed of containers or applications 23

Selector composed by a list of containers and/or applications and a set of
rules 23

A player undergoes this process when it is deployed 24
Periodic synchronization process 24

Process of posting logs to the server 25

Player restarting process 25

Process of unregistering a player and reseting it to factory specs 26
Process of changing a player’s domain 26

Process of updating a schedule on the server 27

Player state as seen by the server 32

Player state as seen by itself 32

Applications state diagram 33

Control module class diagram 39

Server module class diagram 41

Registration module class diagram 42

Scheduling module class diagram 44

Media Handler module class diagram 46

Apps Management module class diagram 47

Logging module class diagram 49

Interaction module class diagram 50

Activity class diagram 50

Scheduling sequence diagram 51

Timer class diagram 53

Example of a trace file 58

Example of a result file 59

Memory profilling report 61

Figure 33
Figure 34
Figure 35
Figure 36

Memory profilling report over a week

Example result page of the unit test

Home screen of the player.

Apps being executed.

78

77

xi

63

62

LIST OF TABLES

Table 2
Table 3
Table 4
Table 5

Digital signage solutions comparison

Dependencies of each of the layers

Messaging protocol

Deployment table

27
64

xii

11

7

ACRONYMS

API Application Programming Interface. 11, 12, 16-18, 32,
33,3942, 44, 46,47, 49, 50, 54, 55, 60, 61

CMS Content Management System. 7
CSS Cascading Style Sheets. 2, 5

GPS Global Positioning System. 6

HTMLS5 HyperText Mark-up Language 5. iv, v, 2, 3, 6, 54, 55
HTTP HyperText Transfer Protocol. 6

JSON JavaScript Object Notation. 6, 20, 28, 29
MIME Multi-purpose Internet Mail Extension. 28
OS Operating System. 5-7, 15, 16

PC Personal Computer. x, 6, 13, 39, 61

PHP PHP: Hypertext Preprocessor. 4, 5, 58, 59
POS Point of Sale. 6

RSS Rich Site Summary. 4

SAAS Software as a Service. 4, 7

SDK Software Development Kit. 55

SFFC Small Form Factor Computer. 1, 5, 6, 66
SMIL Synchronized Multimedia Integration Language. 6, 53

SQL Structured Query Language. 4

URL Uniform Resource Locator. 6, 8, 20, 46
USB Universal Serial Bus. 66

xiii

WPF Windows Preentation Foundation. 7, 53, 54

XML eXtensible Mark-up Language. 4, 5
XSLT eXtensible Style-Sheet Language. 53

Xiv

XV

1

INTRODUCTION

This work is centred around digital signage, this is the use of displays to communication for mar-
keting or informative purposes. A usual case of digital signage are public displays networks, these are
networks of displays used for digital signage. The software behind these displays are the players, they
are software responsible to schedule and display content on the screen. This work aims at developing
one of these players, using web technologies.

This chapter presents the motivation for this work as well as the challenges and key objectives
behind it.

1.1 MOTIVATION

A key element of a public display network is the software that handles the displaying of content on
screen. This software, or player, is responsible for receiving a set of content and a set of instructions
— the schedule, and, according to the instructions, display the content on the screens. The players are
usually proprietary software with very strict system requirements and very closed (usually proprietary
as well) scheduling format.

The development of a web based player is motivated by the need to solve the portability issue
as a way to spread the usage of public displays. Following the current technological trend centered
around web technologies, it is possible to take full advantage of the portability of these technologies
and create a software capable of being deployed on a wider selection of systems.

The usage of web technologies also lowers the system requirements of the web based player as
opposed to its native software counterparts. This allows the possibility of using new, and cheaper,
platforms such as Android pens and Small Form Factor Computer (SFFC), effectively lowering the
cost of deploying a public display.

Finally, a web based player aims at taking advantage of the ever growing community of web

developers by creating a platform where new content can easily be created.

1.2 CHALLENGES

The main challenges of this work are largely tied to the implications of using web technologies
to implement a digital signage player. Considering the characteristics of the web technologies that
are going to be used during this work (HTMLS5, JavaScript and Cascading Style Sheets (CSS)) it is
possible to identify the following challenges:

o Integration with the native system, some characteristics of a digital signage player relies on
interacting directly with the operative system. Operations like obtaining critical system infor-
mation for player diagnostics and controlling and scheduling system reboots to ensure a healthy
system is something that is expected from a digital signage player. This was trivial when imple-
menting a traditional native application, however web technologies have limited access to the

native system.

e Ensuring the player continues to work properly even during periods of no connectivity to the
internet. Being a web application, the web based player will require internet connectivity in
order to obtain the schedule and download all the necessary resources to display it. Given the
nature of a public display it is necessary to ensure that problems in the system, like a lack of
internet connectivity, are not shown to the users. These two characteristics of the player create
the necessity of an off-line mode for the web based player. This is not something a traditional
web application has to deal with, so mechanisms have to be put in place in order to handle
the caching and storage of resources to ensure a continuity of the service during periods of no

internet connectivity.

e Most of the contents that will be scheduled by the web based player are web applications, given
their nature it is necessary that the player is ready to respond positively to crashes originated
from those applications. On a native environment this could easily be done with multi-threading,
however, the web based player’s logic will be developed mainly with JavaScript, which has a

single threaded nature.

These challenges can be compared to the ones identified by Taivan et al., and, in summary, they
are centred around the limitations of web technologies and how to make use of those technologies
to implement a web based player that can offer the same characteristics of a native application while

taking advantage of the web technologies’ features.

1.3 OBIJECTIVES

The main objective of this work is to specify and implement a digital signage player for deploy-
ment on public displays network using web technologies.

That objective can be broken down into the following goals:

1.4

Specify a layered architecture that provides the player with the modular nature necessary to

implement different versions to be deployed on the identified reference stacks;

Implement the web based player using web technologies (HTMLS5, JavaScript and CSS) and

design a suitable scheduling algorithm;

Specify the necessary server side requirements to enable the player with a way to: fetch new

schedules, log information and register and unregister instances of the player;

Obtain quantitative metrics from testing processes to evaluate the validity of the player.

DOCUMENT STRUCTURE

This document is divided into six chapters, each covering a different part of the work.

1.5

Introduction: this chapter presents the motivation, challenges and objectives of this work.

State of the Art: the second chapter contextualizes the current state of public displays technolo-

gies, the go-to digital signage software solutions and the previous work on this subject.

Web Based Media Player Framework: the third chapter presents all the work leading to the
first implementation of the web based player: the layered format, reference stacks, system

requirements and architecture.

Case Studies: the forth chapter contains the different implementations that were developed

during the course of this work for four different case studies.

Testing: the fifth chapter contains all the information related to the testing of the web based

player, from the planning to the results.

Conclusion: the sixth and final chapter summarizes the entire work, which of the objectives

were met and presents the next logical steps in this work.

SUMMARY

This chapter presented the motivation behind this work: the usage of web technologies to imple-

ment a more traditionally native type of software to basically obtain the best of both worlds. Migrating

this type of software to web technologies isn’t something trivial and raises limitations that did not ex-

ist for native software.

The objectives of this work were also presented and can be summarized as the implementation of

a digital signage player using web technologies.

2

STATE OF THE ART

This chapter will contextualize where the development of digital signage players is at the mo-
ment, the characteristics of existing software and the previous investigative work that introduced this
work. This chapter will also feature a quick analysis to the technologies that will be involved in the

implementation of the Web Based Player.

2.1 DIGITAL SIGNAGE PLAYERS

Along the past few years a boom in Digital Signage technology could be observed, mainly due to
developments in the technologies involved in creating networks of public displays. This chapter will
present and analyse eleven of those digital signage software solutions and compare them with each

other.

2.1.1 Ubisign

Ubisign (2014) provides its Digital Signage solution as a Software as a Service (SAAS), as a
web service it can be remotely managed by the customer and provides a friendly, full-featured user
interface. It can be fully customizable in terms of screen layouts and media content scheduling, it also
supports external dynamic data content like Rich Site Summary (RSS) feeds or eXtensible Mark-up
Language (XML). The player provides support to web 2.0 content, creating a great and interactive
user experience. It supports content caching and crash recovery systems, providing some level of

service in case of connectivity issues. The scheduling format is proprietary.

2.1.2 Xibo

Released as an open source digital signage player on 2006, Xibo (2014) follows a client/server
paradigm. The server is a PHP: Hypertext Preprocessor (PHP)/MyStructured Query Language (SQL)
web application that runs on Windows, Mac or Linux and it is the administration tool of the application,
there a user can upload content, design layouts or create content schedules to be displayed on the

clients. The client is a display connected to a pc running the client application that is used to show

the content, each of the clients connected to the server can have its own schedule. There are two
versions of the client software, a .Net application, the first stable version to be released and more
recently a Python version, that’s been looked at as a suitable replacement for the .Net version for
both Windows and Linux platforms. The client — server configuration is done by exchanging XML
Schemas, on each of those is included the scheduling information, layouts and content needed to the

client’s functionality.

2.1.3 Rise Vision

Rise Vision (2014) has so far released two open source Digital Signage Players for Linux and
Windows 7, they both work on top of a standardized web browser, in this case Google Chrome. They
are able to play any kind of HTML content that is supported by the browser and are also able to run
JavaScript. The displays can be managed through a web platform where the schedules can be created
without requiring any proprietary format. Each display is managed by a JavaScript application running
on the browser that is responsible for showing the content according to the instructions received. The

application makes use of several objects during its execution:
e Display, represents any device capable of displaying content;

e Viewer, its the application running on a browser that displays the content on each of the Display

objects;
e Player, the native Operating System (OS) application responsible for running the viewer objects;
e Schedule, its a sequence of contents to be displayed;

e Presentation, each of the contents that are going to be displayed is represented by one instance

of the Presentation object;

e Placeholder is a fixed area inside a Presentation that contains a list of Gadgets, much like how

a Schedule contains a list of Presentations;

e (Gadget represents a Google Gadget developed by Rise Vision.

2.1.4 Concerto

Concerto (2013) is an open source Digital Signage player, implemented as a web application using
PHP, Concerto makes heavy use of CSS, JavaScript and jQuery for the displaying functionality. Each
instance of the player requires its own SFFC (Small Form Factor Computer) that is paired on a 1:1 ratio
with the display it is meant to control, it is however possible to have 1 SFFC controlling 2 displays

with a dual video card configuration. The front-end of the Concerto player only has the responsibility

to display the content as it is passed on by the back-end, all the configuration and scheduling features

are hosted on a central server that communicates with all the SFFC that make up the display network.

2.1.5 OpenSign

On March 2013 AOpen (2013), a well established digital signage enterprise release OpenSign,
a web based digital signage platform for Android devices. The service can be deployed on several
devices and controlled by a single PC connected to the web, the service also provides local redundancy
in cases of connectivity issues, the software can integrate any kind of external live feed such as Twitter

and Point of Sale (POS) data. This is however a proprietary software.

2.1.6 [Adea

[Adea (2014) commercializes its own proprietary hardware running a software compatible with
Synchronized Multimedia Integration Language (SMIL) W3C (2012b) and HTMLS. These SFF
(Small Form Factor PC) are Linux based and provide an easy to use interface that allows the user
to schedule various types of content, manage layouts and external sensors. It also has some connectiv-

ity issues tolerance by providing an offline mode.

2.1.7 Sapo Digital Signage

Sapo (2013) was developed internally as a means to support Digital Signage on Sapo’s Codebits
2012 to be ran on Raspberry Pi devices, this solution eventually grew into a full-blown client-server
application. This software is capable of interpreting JavaScript Object Notation (JSON) objects that
consists of a list of content Uniform Resource Locator (URL) to be displayed, these content URLS
can be any assortment of HTML pages, live streaming and video, however no local content can be
stored on the devices running the software. The client — server communications are done through an

HyperText Transfer Protocol (HTTP) pooling system.

2.1.8 TargetR

Following a client — server paradigm TargetR (2014) can be deployed on Android, Raspberry Pi
and PC. The TargetR server was developed using Java and runs on a Linux OS, the server provides
access to the administration interface that features a wide range of configuration, management and
scheduling options. The client, as stated above can be deployed on three different platforms, features
a crash recovery system and support for camera, Global Positioning System (GPS) and live television

functionalities.

2.1.9 NoviSign

Distributed as a SAAS, the Novisign (2014) solution is aimed at Android devices, it can be de-
ployed on anything ranging from tablet devices to Android TV devices. It uses a client — server
paradigm to operate and offers all the necessary features to create and manage schedules on the server

and then propagate them to all the integrated devices.

2.1.10 OpenSplash

OpenSplash (2014) is a free, multi-platform open source media player that can be driven by any
content management and scheduling system, it is highly extensible with a plug-in architecture. The
software receives the displaying instructions as a play-list and media files from the server, it supports
video, dynamic screen layouts and overlapping and depth order. It is not a complete Digital Signage
solution as it requires a content management system (Content Management System (CMS)) that is not

distributed with this software.

2.1.11 Signagelive

Signagelive (2014) allows the user to display dynamic content on any browser that’s connected to
the web, it runs on Windows or Android OS and features a wide array of functionalities. The content

and display management and configuration is done through a web interface.

2.1.12 Summary

In the following Table 2 we can see a comparison of the eleven digital signage solutions studied.

Player Platform Type Licensing
Ubisign Windows Windows Preentation Foundation (WPF) Proprietary

Xibo Windows/Linux Web Browser Open Source

Rise Vision Windows/Linux Google Chrome Open Source

Concerto - Web Browser Open Source
OpenSign Android Web Browser Proprietary
[Adea Linux Web Browser Proprietary

Sapo Digital Signage Linux Web Browser Open Source
TargetR Android/Linux Web Browser Proprietary
NoviSign Android Web Browser Proprietary

OpenSplash Windows/Linux Web Browser Open Source
Signagelive Windows/Android Web Browser Proprietary

Table 2.: Digital signage solutions comparison

From the information collected in the above table it is possible to observe two major characteristics
of the current digital signage solutions: the system dependency and the closeness of some of those
solutions. Furthermore the sole purpose of these solutions is to display content on a screen.

The web based player aims at being much more then that: taking advantage of the web technologies
behind it, it is possible to create a truly interactive experience with the users. With an open platform
ready to display applications that are limited only by the imagination of the developers. This is what

separates this work from what was being done before.

2.2 WEB BASED PLAYER

The Web Based Player concept was already explored before, this section will analyse two of the
most prominent investigations on the matter.

Lindén et al. (2010) specifies a very similar concept to the web based player this investigation
aims to create. The player uses a modular architecture, there are three larger modules: the resources
manager, the layouts manager and the visualization module, each of these is in charge of a part of
the whole process. The resources manager handles all the content and communicates it through a
web service interface to the layouts manager, which in turn is in charge of creating the layouts of the
schedules and sending them to the visualization module. The visualization module is essentially a
JavaScript application working atop the browser injecting HTML code into a skeleton HTML page.

Taivan et al. states four challenges that must be had in mind when developing a Web Based Player.
The first is content management and it evidences three specificities that have to be met in order to
present the users with a pleasant experiences when using a public display: avoid idle times, prevent
users from noticing the occurrence of errors and support partial disconnection problems. The second
is content addressability and it refers to the usage of resources identifiers, providing each web content
resource with its own identifier (URL) much like any resource-oriented architecture. The third is
visual adaptation and integration and refers to the handling of different display sizes, responsive Web
Design has become a standard practice in web development and the same should apply to a Web
Based Player, it has be able to cope and handle different display sizes and resize the content to be
displayed accordingly. Finally, execution environment refers to the security restrictions and how they
can raise issues for the integration with the execution environment, even though workarounds exist
to circumvent these restrictions they have to handled carefully as to not create security flaws in the

application.

2.2.1 Prototype of the Web Based Player

This work is building on a previous work by Carneiro (2013), which originated an early prototype
of the web based player. To achieve that it was necessary to thoroughly study the current state of the

art and the technologies involved in developing a web application with the nature of the web based

player.

Carneiro (2013) identified a set of reference stacks, which reduced the number of platform/system
combinations that would be targeted and supported by the web based player. The system requirements
for the web based player based on common features from other players, furthermore he also designed

the scheduling format that would eventually evolve to become the format used by the player today.

That investigation was essentially a first input to this work, an initial iteration to the creation of the
web based player. Its purpose was to clearly identify the design space and specificities of a software
like the web based player and provide this work with an invaluable input with which to start from and
eventually reach a state of maturity where the web based player could actually be used in a real digital

signage environment.

2.3 SUMMARY

In this chapter the characteristics and limitations of the current solutions regarding Digital Signage
were explored, from that study the major issues that were referenced before could be confirmed: strict
system requirements and few support to open source developers. It was also presented the solution
that aims to fix this problem, the first investigative works and the initial steps towards a functional first
version of the Web Based Player.

WEB BASED MEDIA PLAYER FRAMEWORK

This chapter will cover all the concepts that led to the development of the web based player. It
will present all the information resulting from the specification of the player: reference stacks, system
requirements, functionalities and architecture of a generic implementation of the web based player.
Furthermore this chapter will also have the specification of the scheduling format and the principles
that led to that format. Finally it will cover, in a brief manner, the player services and communications

protocol that support the player’s execution.

3.1 PLAYER OPERATION METHOD

The Web based player, is meant to receive a schedule from the service it is being managed from.
This schedule is essentially a list of content, usually web apps, and a set of instructions. These
instructions dictate how the player will display each of the contents on the screen.

Upon receiving a new schedule, the player will validate it and transform it into a scheduling tree.
This scheduling tree is essentially the schedule transformed into a logical object to be used by the
player modules. The scheduling tree is then parsed and each of the contents and instructions present
there will generate events. These events can be: prepare a content, start a content or stop a content,
these operations are done to the frame containing the content. These web frames are created, hidden,
made visible, and ultimatelly destroyed based on the type of event being execute on them. The full
list of events form the event table, which in conjunction with the scheduling tree form an activity.

An activity is a finite class that contain the scheduling information and the methods to display it
on the screen. Besides the activity there is another class involved in the process of displaying content:
the timer. This class generates a “tick” periodically, each time a “tick” is generated the activity moves
forward one position on the event table and executes any event on that position. When the event table
reaches its end, the activity is finished and it is destroyed.

This is the basic way of the player to display a schedule, the inherent functionalities of each module

will be explained on its respective section.

10

3.2 FUNCTIONAL LAYERS

The player will present a layered architecture, this will provide it with the ability to serve a wider
range of display system and hardware settings.

The following Figure 1 illustrates the layered architecture of the player, it is divided into 4 layers:
Applications layer where the displayable content is executed; the Web Player layer that combines
generic and system specific javascript modules; the Web Engine layer containing the modules that
work as an extension to the system’s web engine; and finally the system specific Native layer. Each of
these layers offers an Application Programming Interface (API) to the layer directly above it which is

used to communicate between those layers.

Application e
Layer Applications
Web Player API
Web
Player Dynamic JavaScript Modules
Layer
Web Engine API
Web
Engine Chrome App
Layer
Native API
Native .
Layer Native App

Figure 1.: Layered architecture

The following table 3, shows the layer’s dependencies and when each of them require a new

implementation upon system change.

Application Layer =~ Web Layer API Rare cases of API changes
Web Layer Web Engine Layer Web Engine changes

Web Engine Layer Web Engine Web Engine changes
Native Layer System and platform Native system changes

Table 3.: Dependencies of each of the layers

3.2.1 Native Layer

The native layer includes those modules that need to be implemented for a specific operating
systems or hardware platform. Typical functionality at this layer includes fault tolerance procedures,

privileged access to system resources, bootstrapping and screen on/off handling. Being platform

11

specific, the functionality provided by this layer may change considerably based on properties of the
underlying platform. A common situation may be the case where this module corresponds to an

existing digital signage system or to a particular type of set-top box or a smart TV.

3.2.2 Web Engine Layer

The Web Engine layer extends the web engine with functionality that needs to circumvent the
limitations imposed on javascript apps that execute on top of the standard web execution environment
that is offered by the web engine to web applications. Typical functionality at this layer includes

advanced content management operations, such as caching or pre-fetching procedures.

3.2.3 Web Layer

This module takes care of all the logic in the application, it integrates the other two modules, using
the functionalities they provide to ensure the application is able to run as intended.

The most specific of the layers, every different version of the player has a specific web module
containing a scheduler and/or other modules to be loaded and used by the Web Engine module. This
app also provides a JavaScript loader so other versions of the player can load and use their specific

modules.

3.2.4 Applications Layer

The content apps that are to be scheduled and displayed by the player are able to communicate

with the scheduler through an API that is made available by a library that can be loaded by the apps.

3.3 REFERENCE STACKS

Even considering the extensive portability of web technologies, it is necessary to consider the
differences in the logical layers that make up the execution environment. As such several reference
stacks were specified, Figures 2, 3 and 4, each containing a combination of system layers (hardware,

operative system and web engine).

12

Javascript Javaseript Javaseript

- I I N I 1 <

| PC I | SFF I | PC (iMac) I | SFF (Mac mini) I

,
o
-

J

bl
(s}
b
w
o
-
b

Figure 2.: Reference Stacks for PC and SFF

These reference stacks aim at reducing the number of possible combinations of the system layers,

thus defining the real target platforms of the player and creating specific development objectives.

™\ a!

Javascript Javascript

J J

Raspberry Pi pcDuino

Figure 3.: Reference Stacks for Raspberry Pi and pc-Duino

13

Javascript Javascript Javascript

A 4 A 4 ‘i

Rikomagic Chromebox SmartTV (Samsung Smart TV)

Figure 4.: Reference Stacks for Rikomagic, Chromebox and Samsung Smart TV

3.4 COMMON FUNCTIONALITIES FROM OTHER PLAYERS

The system requirements presented here were identified in Carneiro (2013)’s work in order to
provide the player with the necessary tools to ensure it can function properly. The system requirements

will be divided into seven categories:

e Fault Tolerance: functionalities responsible to keep the player alive after a faulty behaviour;
e Content Management: preparation and caching of content;

e Logging: functionalities to keep a history of the player’s behaviour;

e Execution: functionalities to execute the schedules;

e Security: safe communication with the service and the content that’s being displayed;

e User interaction: provide the user with means to interact with the content being displayed;

e Update: ways to handle software updates that the player may suffer.

The following functionalities are the most common among the other digital signage sollutions
studied:

e Power on/off displays: ensured during the installation by scheduled events to turn the display

on/off at the designated times.

14

e Enhanced system information: transmit to the service technical informal about the OS, hard-

ware, etc., this allows the application to make adjustments and diagnostics.
e Remote commands: turn the system on, reboot, etc..

e Display control: gives the possibility to turn off the display. It can be a command and have

numerous reasons: energy saving, hiding content loading situations, system reboots, etc..
e Sensors: support to connect sensors, like Kinect, to the display.

e Resolution adjustments: the player receives fixed size schedules, this allows to adapt the pre-

sentation resolution to the display’s resolution. This information is obtained from the OS.

3.4.1 Fault Tolerance

e Crash recovery: this functionality consists in detecting application crashes and acting accord-
ingly by rebooting the application, therefore resolving the crash. It is usually supported by a
”Watchdog” service, independent from the player application so it won’t crash when the player

itself does.

e Crash avoidance: this functionality consists in preventing crashes by surveilling the resources

consumption and other important system information. It is normally supported by a "Watchdog”
service, independent from the player application so it won’t crash when the player itself does.
It is specially important in machines where memory leaks and driver problems are expected. It

may require stopping the player.

e Safe execution: detection of any problems with the execution of applications in the web engine

and recover from those situations.

3.4.2 Content Management

e Content prefetch: this content activation process allows the scheduler to prepare the contents

that are about to be presented, this allows a fluid visualization and no loading times.

e Content caching: in some players, the system pre-downloads all the contents referenced in a
schedule before it is presented. This process is usually supported by a module independent
from the scheduler that interfaces with the scheduling server. When a new schedule is received
the scheduler will check all the content present in it and load the content that still isn’t avaiable
in that machine before alerting the scheduler to the presence of a new schedule. Links to remote

content can be made local before being handed to the scheduler.

15

3.4.3 Logging

e Scheduling logs: support for logging of scheduling events occurring at the web module.

e Screenshots: generate and send screenshots of what’s being presented. ”Watchdog” takes the

screenshot independently and stores the image on the server.

3.4.4 Execution

e Execution control: allows to stop or reboot the scheduler, when, for example, its necessary to

change the schedule.

e Scheduler: supports the interpretation and execution of schedules.

3.4.5 Security

e Application integrity: assures the application integrity, encryption and checksums.

3.4.6 User Interaction

o Interface: allows for direct and local control over the player’s operation.

3.4.7 Updates
e Automatic updates: automatic and non-assisted software updates. This process can be sup-
ported directly by the OS own mechanisms, as long as the software is ready for that. Using

Ubisign’s player as example, all the process is supported by a speciallized Windows applica-

tion.

3.5 KEY FUNCTIONALITIES

This section presents the key functionalities tied to each of the layers respective API. This creates

the bridge between the system requirements and the API offered by each of the layers.

16

3.5.1 Native Layer

The native module is responsible for all the interaction the player needs with the hosting system.
The more prominent functionalities this module has, among others, are management of the web engine

module (start-up, reboots, etc.), handle crash recovery/avoidance and display control.

Native API

The native module offers several functionalities to the Web Engine module, most of them are
operations that interact directly with the system. The functionalities offered by this API are dependant

on the system running the player and as such some methods may or may not be available.

ENVIRONMENT
e Display control: turn the display on/off;
e Systems information: provides information about the system running the player;
e Remote commands: turn the system on/off and reboots;

e Sensors: provides support to handle any sensor available to the player;

FAULT TOLERANCE
e Crash recovery: tools to recover the player state in case of a crash;

e Crash avoidance: tools to monitor the system and check for unusual behaviour that may lead to

a crash.

3.5.2 Web Engine Layer

The web engine module works as an extension of the web engine and therefore offers functional-
ities tied to it. Cache management and content prefetch are the most common functionalities to this
module.

Web Engine API

This API offers functionalities to be used by the Web Player Layer and focuses mainly on some

key aspects of the scheduling of applications: prefetch and caching.

17

CONTENT MANAGEMENT

e Content prefetch: allows the scheduler to request the preparation of content before it being

displayed;

e Content caching: allows the scheduler to request the download and caching of certain content

of an app to accelerate it’s preparation and presentation process.

3.5.3 Web Player Layer

The Web Layer constitutes the execution environment for applications. The functionality offered
by this layer includes the ability to coordinate scheduling with applications, access to environment
information, logging and interaction. Some of this functionality depends on services offered by lower

layers and may not always be available, depending on the specific stack.

Web Player Generic API

This API is offered to the applications being scheduled, it provides functionalities such as logging,
access to sensors and some level of user interaction. The methods offered by this API are system

dependant and may or may not be available on certain systems.

ENVIRONMENT
e Sensors: allows the apps to make use of a sensor that can be handled by the player;

e Resolution adjustments: request resolution information or a resolution change from the player.

LOGGING
e Scheduling Logs: request a log entry to be added to the execution log;

e Screenshots: request the player to take a screenshot and add it to the execution log.

USER INTERACTION

e Interface: provides access to a user interface.

3.5.4 Applications Layer

As part of their execution in the player, applications may interact with their environment to opti-

mise multiple aspects of their operation.

18

Assumptions

3.6

It is assumed that an app implementing this library follows this set of “rules”:

e The app should have the necessary methods available for subscription (play, finalize, standby,
prefetch, etc);

e The app should be ready to handle a set of parameters sent by the player on the messages, it

should, however, be able to properly function without them.

e These parameters include: lease times sent by the player informing how long the app has to

display and lease renewals, lease extensions/shortenings and lease renewals.

e The app should be ready to handle situations where no prefetch time is given to prepare the
content.

PLAYER ARCHITECTURE

As mentioned above the functionalities of the player can be decomposed into several categories,

to better handle this and to provide the player with a much needed modular architecture, the function-

alities were broken down into the modules illustrated in Figure 5.

Web Module Component Depencies Map Web Engine Module

<<component>> g]
Media Handler Module

<<component>> &]
Logging Module

<<component>> g]
1 Web Engine Components.

<<component>> 0

Apps Management Module

<<component>>]
Registration Module

1

1 1

1

<<component>> £]
Control Module

<<component>>]
Server Module

<<component>> &~
Interaction Module

1

Native Module

1

<<component>> &][_%"
Activity
1

1

<<component>> 8]

Scheduling Module Native Components

<<component>>]
Timer

Figure 5.: Generic player’s architecture

This modular architecture presents a solutions to the difficulties inherent to the creation of a soft-

ware deployable across a wide range of systems. Allowing the modules to be interchangeable it

provides the possibility to create players deployable on a huge amount of systems by reusing already

implemented modules and creating new ones to fit the needs of the new system.

19

3.7 SCHEDULING PRINCIPLES AND FORMAT

This section will cover all the aspects of the scheduling principles and the format of the schedules
that are received and interpreted by the player. On the appendices of this document a full schedule file
can be analysed. Each schedule is represented by a JSON object (Group (2014)), an example schedule
can be seen on Listing 3.1, it contains information about the schedule itself, the list of applications
that will be used by that schedule and the instructions on how, when and for how long to display the
applications.

{
"schedule": {

llidll: llschezll’

"version": "1.2",

"name": "test schedule",

"LastUpdate": "15-12-2013",

"playerId": "001",

"apps": [... 1,

"content": {
"rootContainer": "layout",
"repeatCount": "1",
"childElements": [.....]

Listing 3.1: Example schedule.

The schedule contains information about itself, Listing 3.2, this is used to identify the schedule,
its version, name, when it was last updated and which player will be using the schedule. All this is
needed for the synchronization process that happens between the player and the server.

"id": "sche2" ’
"version": "1.2",
"name": "test schedule",

"LastUpdate": "15-12-2013",
"playerId": "001",

Listing 3.2: Extract of a schedule.

The schedule also contains information about the applications that will be displayed during its
execution. Each entry of the application’s list, Listing 3.3, is composed by: the application’s Id,
which is a system wide identifier every player displaying this application uses the same Id to identify
it; the application’s URL where it is hosted; and finally the last time it was updated, this is used by the
player to verify the validity any content that might have been pre-downloaded by the player.

20

"appsll : [

"appId" . "appOOl",
"src": "http://testapplications.displr.com/feeds/?sources=
http://feeds.jn.pt/JIN-Destaques&num=10&delay=20&

animation=fade&placeId=8",

"lastUpdate": "15-12-2013"
bo
{
"appId": "appO02",
"src": "http://testapplications.displr.com/facebook/index.

html?type=photo&fbid=spiritocupcakes&title=
SpiritoCupcakesé&delay=10&num=10&placeId=8",

"lastUpdate": "15-12-2013"
}y
{
"appId": "appOO03",
"src": "http://testapplications.displr.com/twitter/index.

html?delay=15&count=12&screenName=cmjornalé&method=1¢&
placeId=8",
"lastUpdate": "15-12-2013"

Listing 3.3: List of applications on a schedule.

Finally, the schedule contains the presentation information, Listing 3.4. This information is mapped
into a tree of containers, each container can encapsulate as many others as necessary and have as many

levels as necessary.

"content": {

"rootContainer":

"repeatCount":

"childElements":

"layout",
"l",

[

{

"container": "appOO1l",
"duration": "25",
llleft": "Oll,
"top": HOII,
"width" . "l",
"height": "0.5",
"minWidth": "0",

"minHeight": "0O"

"container": "app002",

"duration": "25",

21

"left": "Q",
"tOp": v|0'5",
"width": "0.5",

"height": "0.5",
"minWidth": "0",
"minHeight": "0O"

by

{
"container": "app003",
"duration": "25",
"left": "0.5",
"top": "0.5",
"width": "0.5",
"height": "0.5",
"minWidth": "0",
"minHeight": "0O"

Listing 3.4: Tree mapping of a schedule.

A container can have three different types: sequence, layout and selector. A sequence, Figure 6,
represents a series of content, this content can be applications or other containers, which are to be

displayed one after the other, following the order present on the schedule.

= =

Figure 6.: Sequence of containers and/or applications

22

A layout, Figure 7, is a set of containers or applications that are to be displayed at the same time

on the screen, the duration of each must be equal to all the others.

App1

App2

App3

Figure 7.: A layout, can be composed of containers or applications

Finally, the selector, Figure 8, is a composed by a list of containers or applications that will be

displayed following a set of rules.

[=

Figure 8.: Selector composed by a list of containers and/or applications and a set of rules

Besides the container type, there is also present a series of other properties: the minimum height
and width; the desired height, width and position of the container; the duration, in seconds, of how
long that container should be displayed; and, when applicable, the list of the containers and/or appli-

cations encapsulated by that container.

3.8 COMMUNICATION AND PLAYER SERVICES
This section will cover all the interaction with the server: the services that are required by the

player in order for it to work properly and the communications protocol used to send information to

and from the player.

3.8.1 Player Services

Player Initiated Communications

These communication processes are initiated by the player and can be started at any time.

23

FIRST TIME INITIALIZATION
This process is performed whenever a player is intialized by the first time or the first time after a
system reset.

e o

I
I

I

| 1: Module Initialization
} 2: New Player Detected

2.1: Prepare Registration Process

2.2: Provide Registration Message to be Sent

3: registration_message
]
I
! 3.1: Generate new registration key and player id
|
I
| 3.2: Update info on database
I
|
I
|
| 3.3: registration_result
I
| T
3.3.1: Provide registration result to update player info }
I
|
3.3.1.1: Update player info |
|
3.3.2: synchronization_request !
»!
I
|
I
|
I
I

—————

Figure 9.: A player undergoes this process when it is deployed

REGULAR SYNCHRONIZATION
The player periodically sends a synchronization message, requesting the server to check for a

schedule update and to inform the server of the player’s current state.

o

1: Create new synchronization message

2: synchronization_request

[Schedule is up to date]

[Schedule is out of date]

1
1
1
1
1
1
1
1
1

>

'|_L—_| 2.1: Process synchronization message
T
1
1
i
1
1
1
1
]
i
1
1

3: Create new synchronization update message

4: synchronization_update
<

_E\ 4.1: Process synchronization update
T

Figure 10.: Periodic synchronization process

24

LOGGING REPORTS
During the execution of a schedule, the player periodically sends the log entries created so they

can be stored on the server.

Server Module

1: Request that a new bundle of log entries be saved on the server
‘r;:\ 1.1: Create new Logging Report
1.2: log_post R
: ’U:\ 1.2.1: Process logging report
|
1
[

Figure 11.: Process of posting logs to the server

PLAYER RESTART
Whenever the player comes online it is necessary to check it’s registration state and if it is not
registered a registration request is sent otherwise a synchronization request is sent.

IS EVBPIBATIE S 2 Ediion(Unive fo Minhe Server

1: Module Initialization

2: Create new synchronization message

3: synchronization_request

>
i ’l 4: Process synchronization message

alt]
[Schedule is up to date]
[Schedule is out of date] 5: Create new synchronization update message
L 6: synchronization_update

<
J:_\ 6.1: Process synchronization update

Figure 12.: Player restarting process

25

SYSTEM RESET
Following a system reset order issued by the user, the player sends an unregistration request to the

server and clears any player information present.

o

1: Reset order issued

2 Initiate reset process
>

2.1: Create new unregistration message

2.2: Clear player info

2.3: Provide unregistration message to be sent

l 2.3.1: unregistration_request R
'|-L__| 2.3.1.1: Process unregistration message

Figure 13.: Process of unregistering a player and reseting it to factory specs

Server Initiated Communications

These communications are dependent on the existence of an open websocket between the player
in question and the server. If the player is not currently available, the server will store the message to

be sent as soon as the player establishes a connection.

DOMAIN CHANGE
This message is sent by the server when the player’s domain is changed by the user.

1: Domain Changed

1
1
1
1
1
1
1
1
1 2: Create synchronization update
1

1

|

3: synchronization_update
<

_&\ 3.1: Process synchronization update

Figure 14.: Process of changing a player’s domain

26

SCHEDULE UPDATE

When the schedule is changed, the server automatically sends a synchronization request to the

player associated with that domain.

<

3: synchronization_update

1: Schedule Update

2: Create synchronization update

_&\ 3.1: Process synchronization update

Figure 15.: Process of updating a schedule on the server

3.8.2 Communication Protocol

The communication protocol between the player and a control service is based on WebSockets

(Corporation (2014)). The format of the messages that support the various interactions between player
and server is based on an already defined specification (P2P-SIP (2014)).

Messages Overview

Table 4 displays a list of the messages supported by the player.

Logging Post
Registration Request

Player to Server
Player to Server

Registration Result Server to Player

Unregistration Request Player to Server
Synchronization Request Player to Server
Synchronization Update Server to Player

Error Message Server to Player

Send a list of logging events

Request the registration of the player
Send the information necessary to
complete a registration process

Request the unregistration of the

player from the server

Request a synchronization of the schedule
present on the player

Send a notification when a change in the player
status occurs (schedule, domain, etc.)
Send a notification when an error occurs
during communication

Table 4.: Messaging protocol

Most of the messages sent by the player to the server follows a very specific format, composed by

four properties:

e method: identifies the http method necessary to be called on the server;

27

o url: identifies the specific url that can handle this request;

e format: displays what format the contents of the body property is using to make sure the server
knows how to handle it, this format follows a syntax based on Multi-purpose Internet Mail
Extension (MIME) types (Wikipedia (2014));

e body: contains the information needed to handle the request represented by the message.

The messages sent by the server as a response to the player usually follow a very specific JSON format

(Group (2014)) containing the sufficient information needed to handle the message.

Registration

These messages are used when handling the deployment of a new player to notify the server of its

existance.

REGISTRATION REQUEST

This message is sent by the player the first time it is initialized, it notifies the server of the existance
of a new player and cause the server to generate a new registration key and playerld.
{

"method": "POST",
"url": "/player/reg

REGISTRATION RESULT
This message sent by the server as a response to a registration request, it is a JSON object com-
posed of the registration key and the player id generated during the registration proccess.
{
"type": "registration",
"registration" : {
"key": "123123",
"playerId": "123123",

"schedule": {json_schedule},

28

CLAIMING OWNERSHIP
When the ownership of a player changes the server automatically sends a synchronization update
containing the new schedule. In case the server does not have a websocket open with the specific

player, this information will be requested by the player the next time it connects with the server

Unregistration

This message is used when a player requests to be unregistered from the server, essentially reseting

the player to it’s factory settings.

UNREGISTRATION REQUEST

The JSON object representing an unregistration request sent by a player as the default player to
server message structure defined on this communications protocol, the body property constains the
playerld referent to the player that sent the message.
{

"method": "DEL",
"url": "/player/unreg/{playerId}"

Synchronization

These messages are used to update the schedule on the player. This message will also be used to
determine the status of the player, considering this message will be sent on regular intervals the server
can determine either the player is active or not by checking the last time it received a synchronization

request.

SYNCHRONIZATION REQUEST
This message is sent by the player to the server, it contains information about the schedule that is

being currently and information about the status of the player.

{

"method": "POST",

"url": "/player/sync/{playerId}",

"format": "sync/Jjson",

"body" : {
"status": "active",
"domain": "domainl"<GUID>,
"scheduleId": "schel",

"scheVersion" : "v1"

29

SYNCHRONIZATION UPDATE
This message is sent by the server to the player whenever there is a change in the player status,
as seen by the server. This may include a change of domain or a change in the current version of the
schedule. The message contains an indication of the changes, e.g. new domain or new schedule and
also the new data that the player needs. In case of a new domain, the message includes the name of
the new domain. In case of a as well as the new schedule, the message includes the new schedule
itself. Upon receiving this message the player acts accordingly and extracts the new schedule from it.
{
"type": "synchronization",
"synchronization" : {
"domain": "placel",
"scheduleVersion": "v2",

"scheduleId": "sche2" || null,

"schedule": {json schedule} || null

Log Post

This message is sent by the player to the server when it is necessary to save one or more log entries
on the data base, the body property of this message can be composed by either one log entry or a list

of log entries.

{

"method": "POST",
"url": "/player/log/{playerId}",
"format": "log/json",
"body" : [
"logEntries" {
"scheduleId": "schel",
"timeStamp": "123456789",
"level": "TRACE",
"message": "Schedule started."
bo
{
"scheduleId": "schel",
"timeStamp": "123456789",

30

"level": "TRACE",

"message": "Schedule started."

Error Message

This message is sent by the server to the player when something wrong occurs while trying to

process a request from a player.

{

"type": "error",
"error" : {
"output": "output_string"

3.8.3 State Diagrams

The following diagrams display the possible states assumed by the player during execution, from
the moment it is deployed and a registration request occurs to an unregistration request and subsequent

reset.

Player as seen by the server

Figure 16 illustrates how the server classifies the player based on the requests the player sends and

its changes on the schedule and/or domain.

Player

Figure 17 illustrates how the player sees itself and changes its internal state based on the messages

sent by the server.

31

Visual Paradigm Standard Edition(Universidade do Minho) Sync w/ playerld

Synchronization w/o playerld

Unregistration Request

Logs

Figure 16.: Player state as seen by the server

Figure 17.: Player state as seen by itself

3.9 LIBRARIES
The libraries presented in this section represent the web player API, it is the most important of the

APIs that were developed and the only one that interacts with outside content. This API was design
in two libraries, one loaded by the player (through the web layer) and one loaded by the applications.

32

3.9.1 Applications Life Cycle

The following Figure 18 illustrates the life cycle of an application when it is scheduled to be

displayed by the player and how each of the API calls interact with the apps.

Suspend

°® WebView Greated _ (~Toading) [Content Load Event] Suspended AppConlentoaded StandBy]

Play

Prafatch

Play
b
Stop Finaized) Finalize GrTheAir 1
©< L\ StandBy

Renewlease .
Finalize

Figure 18.: Applications state diagram

3.9.2 Player Specific Library

To allow the player some degree of control over how the applications are being executed it will
have access to an API that provides methods to send commands to those applications, parallel to this,
the applications have access to a complementary API to inform the player of its internal state.

The player specific library, which is loaded by the player, offers methods for the player to manage

the state and execution of the applications being scheduled during their lifetime.

WEB PLAYER COMMUNICATION API

e addApp - called when a new frame is created to encapsulate a new application, the application
name, the frame id, the source url of the app and optional parameters can be passed;

var messenger = new CommPlayer () ;

messenger.addApp ("appname", "frameId", params, "source");

e play - called by the player when it is necessary to start displaying the application content of the

application encapsulated on the frame identified by frameld;

var messenger = new CommPlayer () ;

messenger.play ("frameId", params);

33

e prefetch - called by the player to notify the app that it has time to prepare the content to be
displayed soon;

var messenger = new CommPlayer () ;

messenger.prefetch () ;

e standBy - called by the player when it is necessary to pause the execution of the application

encapsulated on the frame identified by frameld;

var messenger = new CommPlayer () ;

messenger.standBy ("frameId", params);

e finalize - called by the player when it is necessary to stop the execution of the application

encapsulated on the frame identified by frameld;

var messenger = new CommPlayer () ;

messenger.finalize ("frameId", params);

34

e appList - returns the applications list currently being managed by the library;

var messenger = new CommPlayer () ;

messenger.applist () ;

e subscribe - subscribes a predefined set of actions to trigger when the application encapsulated

on the frame identified by frameld changes state.

var messenger = new CommPlayer () ;

messenger.subscribe ("frameId", params);

3.9.3 Applications Specific Library

This library is loaded by each application that is to be displayed on the current schedule. It provides
the application with methods to notify the player of changes in the application state and a way for the

player to call the methods subscribed by the application.

APPLICATIONS COMMUNICATION API

e subscribe - informs the library of which callback implemented by the application is subscribed

to which method (start, standBy, stop);

var messenger = new Communication ({ appname: ’'helloapp’, app: this});

messenger.subscribe ("method", callback);

e isOnTheAir - called by the application to notify the player that the application is displaying

content;

var messenger = new Communication ({ appname: ’'helloapp’, app: this});

messenger.isOnTheAir (params) ;

e isReady - called by the application to notify the player that all displayable content is ready and

there is nothing else for the application to do before going on the air;

35

var messenger = new Communication ({ appname: ’'helloapp’, app: this});

messenger.isReady (params) ;

e isStandBy - called by the application to notify the player that the application has downloaded

all the necessary resources;

var messenger = new Communication ({ appname: ’'helloapp’, app: this});

messenger.isStandBy (params) ;

e isStopped - called by the application to notify the player that the application is stopped and will
no longer display any content from this point forward,;

var messenger = new Communication ({ appname: ’'helloapp’, app: this});

messenger.isStopped (params) ;

e isSuspended - called by the application to notify the player that the application is not ready
to display content, the application assumes this state when it is still downloading resources or

something required the application to stop abruptly.

var messenger = new Communication ({ appname: ’'helloapp’, app: this});

messenger.isSuspended (params) ;

3.10 SUMMARY

This chapter covered all details of the specification and generic implementation of the player. In
order to have a valid and robust piece of software it was necessary to identify the systems it would
target. Even with the compatibility options of web technologies it is necessary to focus on four key
systems and work towards having those implementations of the player working seamlessly. To reach
that goal a set of key functionalities and system requirements were identified, these aimed at providing
the player with the tools necessary to properly execute the tasks it was created for.

Having in mind that the player would need to keep most of its key functionalities when it was
deployed in different platforms, a modular architecture was designed, this allowed the player to be

deployed on distinct platforms while changing only the strictly necessary modules.

36

A scheduling format was also designed in order to provide the player with the information needed
to display whatever type of schedule a user might want. Finally, to keep the player synchronized with
the current schedule and to have some degree of control over the player, a communication protocol

and a set of player services were created to be deployed on a server.

37

CASE STUDIES

In this chapter all the different case studies of implementations of the player are going to be anal-
ysed. This modular architecture didn’t happened by chance, it was the result of an iterative research
started before this work that culminated in the current architecture. The goal of this architecture is to
allow an easy replacement of a module to facilitate the implementation of new versions of the player.
All the modules that serve as the building blocks for each of the implementations of the player will be
thoroughly examined.

Being the base implementation of any version of the player, the Displr case study will be the first
to be covered in this chapter. Considering all other versions derive from the Displr case study, for
each of the other case studies only the modules that had to be reimplemented will be analysed.

These modules were all developed using the requireJS framework, this framework allows to easily

implement and manage any extremely modular application such as the web based player.

4.1 CASE STUDIES AND THEIR TARGETED PLATFORMS

In the first stages of this investigation, it was necessary to identify a set of reference stacks to nar-
row the platform/system combinations the web based player would be able to target. After developing
a prototype framework for the player it was possible to start thinking of applying it to some of those
platforms by implementing different versions of the player to meet the needs of several case studies.

The solutions created for those case studies were both to upgrade older, more restrictive digital
signage software into something more ubiquitous and less system dependant and to develop solutions
to brand new platforms in an effort to augment the reach of an already existing digital signage service.

During this stage it was possible to create solutions for Windows, Linux and MacOS based plat-
forms, Android and iOS platforms and Samsung SmartTVs (Samsung (2014b)).

4.2 DISPLR

Displr is a service that aims at taking the user interactive experience with public displays to a

whole new level. The service revolves around the content that’s being displayed and how the user

38

interacts with it using his smart phone. The content being displayed will feed a content stream that
in turn allows the user to actively influence what is displayed on screen by interacting with the Displr
app on his smart phone.

The Displr case study is the basic implementation of the web player: a Chrome Packaged App
composed by the modules displayed on the player’s architecture presented on the previous chapter.
This implementation is ready to communicate with the Displr service and consume the services it
provides. It is prepared to be deployed on all systems that can run a desktop version of Google
Chrome v32 or greater.

In this specific case the platform used will be a PC running an Ubuntu distribution.

4.2.1 Control Module

The control module, Figure 19, is the central module of the framework. It instantiates all other
modules and serves as a communications bridge between them. It is also responsible for obtaining

some system info such as the resolution of the screen that is displaying the content.

| “Server e igeheduler Media Handler
1

1

instantiates instantiates
instantiates

1
1

Control instantiates 1 Interaction

-bounds : object p
-currentSchedule : object

1
. . 1 1
instantiates
instantiates

instantiates

1 1

" [AppsManagement | Logging |

Figure 19.: Control module class diagram

39

4.2.2 Server Module

The server module, Figure 20 is responsible for handling all messaged received and sent. It con-
tains info about the player: its id, the registration key used to claim ownership over the player and the
domain to which the player is associated.

Being the module responsible for communications it uses the socketlO API (Contributors (2014))
to create, open and manage a socket connection to the server. The server’s address must be defined

within the connString variable.

API
This module implements three different methods that are called by the control module:
e init
The init method is called by the control module during the players initialization. It prepares the
server module for execution by opening a socket connection, requesting the registration module
to check the player state and, when everything is ready, it starts the schedule synchronization

periodic requests.

var serverModule;
serverModule.init (loggingModule, currentSchedule, schedulingModule,

registrationModule) ;

e close

This method simply closes the current socket connection with the server.

var serverModule;

serverModule.close () ;

e savel.ogs

This method is called to send a batch of log entries to be saved on the server, this is done
periodically by the logging module.

var serverModule;

serverModule.savelogs (logBundle) ;

40

isual Parads&Wé?d Edition(Unji
-connString : string
-playerinfo : object
-socket : object
+init()

+close()
+savelogs()

Figure 20.: Server module class diagram

4.2.3 Registration Module

The registration module, Figure 21, contains all the logic related to the player registration, unreg-
istration and player information updates. It checks the player registration status during the player’s
initialization and acts according to the information stored on the system, by either requesting a registra-
tion of the player, when a player is first deployed, or simply by telling the server module everything is

ready and the schedule synchronization should start when a player is already registered on the server.

API

e checkState

The checkState method is called by the server module when the player is initialized, it checks
the local storage for information about the player and acts according to what is found: if there
is a valid player id, the registration module tells the server module everything is ready and the
schedule synchronization should start; if there is no player id present or it is not a valid one (this
can happen when the player is initialized but cannot communicate with the server) this module
issues a registration request.

The registration request, already explained in the previous chapter, requests the server to gener-
ate a new id for this player and a new registration key.

var registrationModule;
registrationModule.checkState (socket, playerId, loggingModule) ;

e updateRegInfo

This method is called by the server module when it receives a registration result message, it
updates the player information with the new information contained in the message object and

saves it on the local storage.

41

var registrationModule;
registrationModule.updateRegInfo (messageObij, playerId);

e unregister
The unregister module simply resets the player to factory specifications, it clears all information
present on local storage and generates an unregistration request to be sent to the server so it is

updated on the status of the, now reset, player.

var registrationModule;

registrationModule.unregister () ;

“Registration |
-playerld : string
+checkState()
+updateRegInfo()
+unregister()

Figure 21.: Registration module class diagram

4.2.4 Scheduling Module

The scheduling module, Figure 22, is responsible for creating, initializing, managing and terminat-
ing all the activities. Each of these activities represents a schedule received from the server.

The module contains a list of all the activities that are queued to be executed and an object repre-
senting the activity that is currently being executed. It offers methods to initialize and manage these
activities, they are usually called by the server module when a new schedule is received and by the

interaction module when the user needs to interact with the player’s behaviour.

API
e init
This initializes the module by passing to it the instances of the modules that are required. The

currentSchedule object is also passed so that it can be managed by the scheduling module.

42

var schedulingModule;
schedulingModule.init (mediahandlerModule, appsmanagementModule,

loggingModule, currentSchedule);

newActivity
This initializes a new activity based on the json object passed as argument. It creates the schedul-
ing tree, requests that the activity create its own eventTable and queues it on the activity list.

var schedulingModule;

schedulingModule.newActivity (scheduleJSON) ;

pauseCurrent
Pauses the execution of the current activity. The content being displayed continues with its
execution but the player will not advance on the event table until it receives a resume order.

var schedulingModule;

schedulingModule.pauseCurrent () ;

resumeCurrent
Can only be called when an activity is paused, doing so will make the player resume its normal
execution of the activity.

var schedulingModule;

schedulingModule.resumeCurrent () ;

stopCurrent

Stops the current activity, can be called at any time when an activity is being executed. This
forces the player to stop the execution of the activity and start the execution of the next activity
in the queue, if there is any.

var schedulingModule;

schedulingModule.stopCurrent () ;

43

Yisual Paramgrs%'ﬁrgram?iﬁﬁmvcrsvdado do|\
-activityList : Array[activity]
-currentActivity : object
+init()

+newActivity()
+pauseCurrent()
+resumeCurrent()
+stopCurrent()

1

manages

4
Activity

Figure 22.: Scheduling module class diagram

4.2.5 Media Handler Module

The media handler module, Figure 23, is responsible for creating, managing and destroying the
frames that execute all the content described in each schedule. It contains a list of the frames that
currently exist and offers a range of frame manipulation methods, these are mostly called by the
activities during their execution.

These frames are WebView HTML elements Google (2014b) and, as stated before, they are a
Chrome specific API.

API
e init
The initialization method is used to provide the media handler module with the tools needed to

perform its job. This method receives as arguments the instance of the logging module and the

bounds object from the control module.

var mediahandlerModule;

mediahandlerModule.init (loggingModule, boundsObj) ;

e requestFrame

The requestFrame method is used by the activities to, like the name suggests, request a frame
to execute a piece of content in. When this method is called the media handler module checks
the frame list for an already existing frame, currently not being used, with the characteristics

needed and if there is one, that frame is returned otherwise, if no such frame exists the module

44

creates a new one using the createFrame method. Upon reaching a maximum number of frames
permitted, this method will start destroying the oldest, not being used frame in the list.
var mediahandlerModule;

mediahandlerModule.requestFrame (width, height, left, top, persistent,
containerId, appId);

createFrame This method complements the requestFrame method, it does not check the frame
list to try and recycle an old frame, it simply creates a new one if the maximum number of
frames wasn’t reached.

var mediahandlerModule;

mediahandlerModule.createFrame (width, height, left, top, persistent,
containerId, appld);

releaseFrame

This method is called by the activities during their execution and notifies the media handler
module that a frame is no longer needed and can be reused. The module then updates that

fram’es information for future use.

var mediahandlerModule;

mediahandlerModule.releaseframe (frameld) ;

resetData

This method is called once per activity execution, when the activity naturally finishes its execu-
tion or is manually stopped. Upon being called, the resetData method will clear all the frames

from the list and destroy the html tags represented by those frames.

var mediahandlerModule;

mediahandlerModule.resetData () ;

45

isual PaMgHSigwﬁglﬁimré iversida
-frameCollection : object
+init()

+requestFrame()
+releaseFrame()
+createFrame()
+resetData()

Figure 23.: Media Handler module class diagram

4.2.6 Apps Management Module

The apps management module, Figure 24, contains and manages information about all the con-
tent that was displayed on that player. It implements a list of applications (content), each of these
applications is an object containing information regarding the application it represents: id, the source
URL, if the application is cached, the number of times it was played by this player, the last time it
was played and its current state (being played, pre fetched or stopped). This information is updated
by the activities during its execution using the methods this module implements and stored on using
the ChromeStorage API Google (2013).

API

e load

The load method, is called by the control module during the player’s initialization. It checks the
local storage for any information previously saved regarding the applications that were executed

by this player, if anything is found it is loaded into the application list.

var appsmanagementModule;

appsmanagementModule.load () ;

® Save

Called every time a schedule stops being executed, this method saves the current state of the

application list on the local storage.

var appsmanagementModule;

appsmanagementModule.save () ;

46

e updateList

This method is used to add new applications to the application list. When the scheduling tree of
an activity is created, the scheduling module checks the app list of the schedule that generated
that activity, if any new app is found, the scheduling module adds it to the apps management
module application list.

var appsmanagementModule;

appsmanagementModule.updatelist (appld, appSrc);

e updateApp

During the execution of an activity it is necessary to keep the information the application list
updated. The activity uses this method to update that information on the list according to which
operation is being perform on the application (play, stop or pre fetch).

var appsmanagementModule;

appsmanagementModule.updatelApp (appld, status);

Apps Management Moduie"
-appList : object

+load()

+save()

+updatelList()

+updateApp()

Figure 24.: Apps Management module class diagram

47

4.2.7 Logging Module

The logging module, Figure 25, was implemented based on the specification of the log4JS frame-
work Down (2014). It offers methods to log the behaviour of the player depending on the severity of
the message.

The module contains a list of log entries that are periodically sent to the server to be saved.

API

e init
This method receives the object that represents the batch of log entries that have to be saved,
this object is shared with the server module so it can be sent to the server.
This method also starts the periodic request to save a new batch of logs, if there are any.
var loggingModule;
loggingModule.init (logBundleObj) ;

e trace
This method allows the player to log a message with the trace severity, this kind of messages
are usually generated during the execution of an activity.
var loggingModule;
loggingModule.trace (message, scheduleId);

e info
The info message are used to log generic events of the player’s execution: initialization, con-
nection to the server, messaged received and sent and similar events.
var loggingModule;
loggingModule.info (message) ;

e error

The error messages, just like the name suggests, are used to log unexpected behaviour of the

player such as a failure to parse a schedule, or a drop of the socket connection.

48

var loggingModule;

loggingModule.error (message) ;

isual ParadEBaaiﬁtgdmon(Umver
-logEntryColl : object
+init()

+trace()

+info()

+error()

Figure 25.: Logging module class diagram

4.2.8 Interaction Module

The interaction module, Figure 26, generates the user interface that allows the user for some exter-
nal control over the behaviour of the player. Using the interface provided by this module, a user can

pause, resume or stop the execution of the current activity.

API
e init
The init method is called during the player’s initialization, it orders the module to generate the

HTML elements that compose the Ul and inject them into the base frame of the player. It is

also used to pass, as argument, the necessary modules and bounds object present on the control

module.

var interactionModule;
interactionModule.init (loggingModule, boundsObj, schedulingModule) ;

49

“interaction
+init()

Figure 26.: Interaction module class diagram

4.2.9 Activity

The activity class, Figure 27, represents a schedule, it contains all the instructions necessary to
display the content present there and is able to parse it into an event table in order to be played.

The event table created based on the instructions present on the schedule that originated the activity
is travelled, one position at a time, according to the “’ticks” generated by the timer class. Each “tick”
received represents a position on the event table array, during the execution, the activity will check the
event table for any events on that specific position and act accordingly.

The events can be of one of three different types: pre-fetch, play and stop. During the pre-fetch
of an app, its frame is created, hidden, and the app is allowed to prepare itself by downloading any
necessary information until the play event is fired. When the play event for that app is launched, that
frame’s visibility is changed to visible until the stop event is fired. When that happens the frame is
again hidden and its status is updated on the media handler module until it is requested by the activity

to be played again or the frame is either recycled or destroyed.

isual Paradigm %&ﬂ%ﬁyomunwsrs\dade H
-scheld : string

-scheV : string
-eventTable : Array[Event]
-schedulingTree : object

+initialize()
+createEventTable()
+startExecution()
+stopexecution()
+resumeExecution()
+pauseExecution()
+getld()

+getV()

1

instantiates

1

Timer

Figure 27.: Activity class diagram

On the following Figure 28 the full scheduling process can be seen in detail.

50

L 7" Scheduling Module Activiy Timer ‘Apps Management
Module

I I
! 1: newSchedule() |

1.1: parseJsonObj()

1.2: updateAppsList()

1.3: createNewActivity()

2 launchActivity()
2.1: createEventTable()
3: startTick()

|
|

I 1
! 4: updateTick()

loop]

|

ﬂz 5: checkEventTable() 6: incrementTick()

alt,

[Has Event]

m 7: executeTgsk()

8: notifyScheduleFinished()
<

N]
2 8.1: clearData()

Figure 28.: Scheduling sequence diagram

API

e createEventTable

This method transforms the information from the scheduling tree into an event table. This event
table maps the pre-fetch, play and stop events for each of the applications (or content pieces)
to positions on an array. These positions will be iteratively travelled according to the “ticks”
generated by the timer class.

var activity = new Activity (schedulingTree, mediahandlerModule,
appsmanagementModule, loggingModule) ;

activity.createEventTable () ;

e startExecution

This method notifies the timer to start sending ticks to the activity and starts checking the event
table positions for events. A currentActObj is passed as argument, this object is used to keep

track of which activity (or schedule) is currently being played.

51

var activity = new Activity (schedulingTree, mediahandlerModule,
appsmanagementModule, loggingModule) ;

activity.startExecution (currentActObj) ;

stopExecution

This is the counter part of the previous method, the stopExecution method tells the timer to stop
its work and performs the tasks connected to the end of an activity: reseting the media handler
module data and saving the information present on the apps management module.

This method is both called when the activity naturally reaches its conclusion or when a user
intentionally requests the current activity to be stopped.

var activity = new Activity (schedulingTree, mediahandlerModule,
appsmanagementModule, loggingModule) ;

activity.stopExecution (currentActObj) ;

pauseExecution

The pauseExecution method can only be called by a user and simply tells the timer to stop gen-
erating ticks” until further notice. This does not reset the ticks” count like the stopExecution

does and when necessary the execution can be resumed by called the following method.

var activity = new Activity (schedulingTree, mediahandlerModule,
appsmanagementModule, loggingModule) ;

activity.;

resumeExecution

Like stated above this method is called to recover the normal execution after a pauseExecution

request is issued. This notifies the timer to resume the generation of “ticks”.

var activity = new Activity (schedulingTree, mediahandlerModule,
appsmanagementModule, loggingModule) ;

activity.resumeExecution () ;

getld

Returns the id of the schedule that generated this activity.

52

var activity = new Activity (schedulingTree, mediahandlerModule,
appsmanagementModule, loggingModule) ;
var scheduleld = activity.getId();

o getV

Returns the version of the schedule that generated this activity.

var activity = new Activity (schedulingTree, mediahandlerModule,
appsmanagementModule, loggingModule) ;

var scheduleVersion = activity.getV;

4.2.10 Timer

The timer class, Figure 29, is responsible for generating the “ticks” that allow the activity to move
forward on the event table. The “tick” is basically an integer that is incremented by one unit at regular
intervals and it is based on SMIL (W3C (2012b)).

This class is instantiated by the activity as a JavaScript worker (W3C (2014)) and they communi-
cate using the cross-window messaging system (W3C (2012a)). When the timer receives the order
to start incrementing the counter it creates a periodic event, based on the interval variable, that incre-

ments the counter and sends the new value to the activity.

isual Parad‘gmtgpard Edition(L
-tick : integer
-interval : integer

Figure 29.: Timer class diagram

4.3 UBISIGN

The Ubisign case study of the player aims at being deployed on already existing Ubisign digital
signage networks. Considering that the player should retain most of its deployment capabilities, only
the modules that interface with the network’s back-office or server (server and registration modules)

are required to be changed.

53

4.3.1 Server Module

As stated above, on the Ubisign case study, the player is required to connect and communicate to
an already existing infrastructure of servers. The Ubisign back-office implements several services in
a WPF programming model (Microsoft (2014a)) this forces a change in the socket communication
model already implemented on the player.

To allow the communication between the JavaScript player and the WPF server a web service
(W3C (2004)) interface was created. The basic services were implemented on that interface and
the player could use standard jQuery (jQuery Foundation (2014)) GET requests (RFC 2616 Fielding
(2004)) to communicate with it. During an initial stage only a registration and synchronization ser-
vices were created and tested successfully.

The synchronization service required a bit of finesse to implement as the Ubisign scheduling for-
mat was completely different of what the player was expecting. The solution was the implement a
eXtensible Style-Sheet Language (XSLT) style-sheet (W3C (1999)) on the web service that would
transform an Ubisign schedule into a schedule with the standard scheduling format developed for the

web player.

4.3.2 Registration Module

The registration module was simpler to port to Ubisign specifications. The logic of the module
remained the same only changing the registration message into a format that the WPF service could

understand.

4.4 ANDROID AND IOS

The Android and iOS versions are, at this moment, only a proof of concept. The idea is to deploy
the player on these platforms using the specific app store for each of the systems, therefore this re-
quires different apps for each of these cases. They will be analysed together due to the fact that for
the moment the apps only emulate a webview that runs an HTMLS version of the player deployed on
a server.

This HTMLS5 version runs all the same modules as the Displr implementation except for the ones
with visualization and storage capabilities (media handler and apps management), they require dif-
ferent APIs from the ones used on the original Chrome Packaged App since these APIs are chrome
specific.

The future of this implementation is moving the execution of the player into the android/iOS apps.

54

4.4.1 Media Handler Module

As stated before, the media handler module is responsible for managing the frames where the
content is displayed. The module generates and injects onto the HTMLS5 base frame the frames as
they are created. On the Chrome Packaged App implementation these frames represented WebView
HTML elements (Google (2014b)), however, being a Chrome specific API they are not usable on an
HTMLS only player.

The solution was to switch the usage of WebViews to iFrames. The iFrame API (Community
(2014)) is fully supported by HTMLS5 and allows the player top have a very similar behaviour to its
WebView counterpart.

As mentioned above, the next logical step on this case study is to move the whole execution of the
player to the android or iOS app itself, this will, once again, allow the use of WebViews since it is a

fully supported API on those environments (Ogden (2012)).

4.4.2 Apps Management Module

Much like the media handler module, the apps management module required an API change when
migrating the player to android/iOS systems. The standard Chrome Packaged App implementation of
the player relied on the chromeStorage API (Google (2013)) to store all the player and applications
information, being a chrome specific API it was necessary to rely on the localStorage API (Pilgrim
(2011)) for the HTML player.

Since both storage APIs have similar characteristics it was very easy performing the migration to
this APL

4.5 SAMSUNG SMARTTV

The Samsung SmartTV case study is aimed at creating a Samsung Smart App that runs the web
based player directly on a Samsung SmartTV. This app, like the Chrome Packaged App the Displr
version of the player is based on, can be distributed through the Samsung App Store accessible on any
Samsung SmartTV.

Much like the android and iOS case study requires a different media handler and apps management
modules, exactly for the same reasons as stated above. Besides these two modules, the interaction

module also had to be changed to allow for tv remote usage.

4.5.1 Media Handler and Apps Management Module

These two modules had to suffer the exact same modifications as the android/iOS case study. The

Samsung SmartTV implementation is a straight HTMLS5 implementation and could not use any of the

55

Chrome specific APIs.
A small detail with this case study is that in the android/iOS case study, when the player completely
integrated into the android/iOS app, it will be possible to once again use the WebView API, this is not

true for the Samsung SmartTV.

4.5.2 Interaction Module

The interaction module of the Samsung SmartTV player had to suffer a small implementation
change in order to accommodate the input of the TV’s remote command. However, the Samsung
Software Development Kit (SDK) (Samsung (2014a)) offers a library to handle key presses on the
remote command, it was only necessary to map these into the already existing user interface oand the

player became responsive to user interaction from the remote command.

4.6 SUMMARY

This chapter covered the four main case studies where the web based player framework was ap-
plied. Having an extremely modular nature, it is possible to create players that can be deployed on all
identified reference stacks.

The migration to different systems is not a straight forward mechanism, the necessity to develop
and implement the specific modules to each platform/system combination is still present, however the
architecture of the player and most of its characteristics are maintained, furthermore it shouldn’t be
necessary to replace all the modules when contemplating the identified reference stacks. Most of the
already implemented modules can be mix and matched in order to answer the requirements of those
systems.

Finally, this chapter attests to the portability of this framework in which, with minimum changes,

it was possible to deploy the web based player in several different platform/system combination.

56

TESTING

This chapter will present the planning, execution and results of the testing process. The purpose
of these tests is to prove that the player is ready to be deployed on a real digital signage network and
can handle without problems all the tasks required from a digital signage player.

The tests were executed on a controlled environment and all the logs and results created during the

testing process were thoroughly examined and validated.

5.1 PLANNING

In order to ensure that the player is working as intended and can properly function on a normal

working environment a series of tests have to be conducted to validate it. These tests will consist of:

e Scheduling execution tests, they consist on running several dummy schedules and making sure

the output log of resulting from the execution of those tests matches the traces for each schedule.

e Schedule precision tests, they are focused on ensuring the timing of the execution of a real

schedule is correct and there is no unexpected delays.

e Stress tests, the player will be subject to a battery of tests that aim to place the application
under a stressful execution situation to make sure it is capable of maintaining it’s functionalities

during those periods.

e Memory profiling, this process will involve tests aimed at finding memory leaks and understand

what is causing them.
e Unit tests aimed at proving the consistency of the application’s code.

e Deployment tests, test the deployment and registration process in various target platforms.

57

5.2 TESTS

5.2.1 Schedule Execution and Precision Tests

The following items describe the steps taken during this process:

e Create dummy schedules and their expected traces;
e Execute the dummy schedules several times while logging the execution;

e Compare the resulting logs with the traces.

For every different schedule a trace file Figure 30 is created containing the expected behaviour of
the player while executing the schedule. This file is created when the schedule is parsed. After the
execution of the schedule is over, the player saves the log associated to that schedule into a file. This is
done by POSTing the trace and log results to a PHP script, which handles the information and creates
the files. The usage of PHP rather then JavaScript for handling this information is justified due to
PHP’s ease of access to the FileSystem. There is also another PHP Script to read all the trace and log
files present in the folder and compare each of the schedule log files to it’s corresponding trace file.
The result of this operation is saved to a file, where every line of a log that does not match to the trace

file is enumerated.

0 PREFETCH app001
0 PLAY app001

0 PREFETCH app002
20 PLAY app002

20 STOP appO01

20 PREFETCH app003
40 PLAY app003

40 STOP app002

40 PREFETCH app004
80 PLAY app004

80 STOP app003

80 PREFETCH app005
110 PLAY app005
110 STOP app004
135 STOP app005

Figure 30.: Example of a trace file

58

Results

After running a number of different schedules and comparing the resulting logs to the traces gen-
erated we can conclude that the player is executing the schedules with precision and with the correct
behaviour. The PHP script used to compare the trace with the log files, compares line by line each
of the files and generates a file Figure 31 with the result of this comparison. On it the information of
the schedule ID and which files were compared can be observed. On the appendices of this document

more detailed information about the logs and trace files can be found.

dummyl —-> LOG_dummyl_1400068181640.txt - TRACE_dummyl.txt

Log and Trace file match.

dummy2 -> LOG_dummy2_1400068189484.txt — TRACE_dummy?2.txt

Log and Trace file match.

dummy3 —-> LOG_dummy3_1400068208265.txt — TRACE_dummy3.txt

Log and Trace file match.

precisionl —-> LOG_precisionl_1400073103633.txt - TRACE_precisionl.txt
Log and Trace file match.

precisionl -> LOG_precisionl_1400081395044.txt - TRACE_precisionl.txt
Log and Trace file match.

precision2 -> LOG_precision2_1400073111563.txt - TRACE_precision2.txt

Log and Trace file match.

Figure 31.: Example of a result file

5.2.2 Stress Tests

The stress tests will be executed in two steps:

e Run the player for a large period of time;

e Run the player with schedules that require a large amount of frames open simultaneously.

This will provide the information necessary to evaluate the player’s behaviour under extreme or

abnormal situations.

Results

The first portion of these tests was done in conjunction with the memory profiling tests. The player
was deployed on a machine and was left running the player, with the same schedule, for a period of
one week. During the time, the machine’s state was checked regularly and nothing out of the ordinary

was found.

59

Player and machine both handled well the initial value of maximum 20 frames open at any time.
These tests were done using the usual tick frequency of 1000ms, to speed up the testing process it
was experimented lowering the tick frequency to 100ms. With smaller, lighter schedules the player
and machine were able to handle the faster ticking rate. However when a bigger schedule, where 10
frames were required to be open at the same time while prefetching another 10, both the player and
the machine were unable to cope. Performance wise it was clear the machine wasn’t ready to handle
that amount of frames/operations in such a small time window. Player wise it was noticeable a few
operations were not executed: a couple of splash screens were not hidden and when the execution of
the schedule was over the player failed to clear all the existing frames, leaving a few behind.

This was, however, an extreme case, under normal circumstances it shouldn’t be necessary to
execute such an amount of operations in such a small time period, during this test the player had to

prefetch, play and stop a total of 90 frames under 1 minute.

5.2.3 Memory Profiling

These tests will be executed on three diferent levels to ensure any possible memory leaks are
identified:

e Apps running on their own;
e Apps running alone on the player;

e Apps running with other apps simultaneously on the player.

The player will also be fitted with a memory profiling tool that will periodically map the memory
usage to the player’s logs using Chrome’s Memory Profiling API.

60

Results

To log the memory usage Window’s Performance Monitor (Microsoft (2014b)) was used, this

generated reports such as the following Figure 32.

17:42:38 21:00:00 00:00:00 03:00:00 06:00:00 09:00:00 12:00:00 15:.00:00 18:00:00 21:00:00 00:00:00 03:00:00 06:00:00 02:00:00 12:52:09

Figure 32.: Memory profilling report

This graph shows the memory allocated by the machine during one of the tests. This particular
test was performed using a schedule with real apps for a period of 43 hours on a very controlled en-
vironment with only the memory monitor, the player and the system minimum processes using the
system’s resources. The next test, Figure 33 is a much more real one, it was taken over the course of
one week having the player running the same schedule on a PC competing for resources with other
processes.

This time the tool used to monitor the memory consumption was the performance monitorization
API for Chrome Packaged Apps (Google (2014a)), periodically measuring the amount of used mem-
ory and logging that result to a file.

This test shows us a lot of different events during its course, considering this is a shared environ-
ment these results are expected. We can observe spikes of used memory, with some periodicity, this
was not replicated during the controlled environment tests so it can be ruled out as being caused by
other processes. Overall the memory usage did not increment into an unbearable amount so this leads
to a conclusion that the player is ready to be deployed on any kind of system. Be it a machine running

exclusively the player or a machine that is running other background processes.

61

Used Memory (bytes)

2E+08

1,8E+09

1,6E+09

1,4E409

1,26409

1E+09

=——uUsed Memory (bytes)

11760000

Figure 33.: Memory profilling report over a week

5.2.4 Unit Tests

These tests will ensure the code is correct and fit for use, passing these tests with a green light
proves that the application is ready to be distributed and used. The testing framework used is Jasmine
(Jasmine (2014)). Each of the player’s modules will have its own testing suite, containing the atomic
tests related to that module. These atomic tests check each of the individual methods used by the

module that implements them to ensure they are performing as expected.

Results

After implementing and running the testing suites necessary, each containing multiple atomic tests

such the code snippet on Listing 5.1.

describe ("Reset data clears all existing frames and information.",
function () {
it ("Empties the framelist.", function () {

expect (mediaHandler.framelList.length) .not.toBe (0);
mediaHandler.resetData () ;
expect (mediaHandler.framelList.length) .toBe (0);

1)

1) i

Listing 5.1: Example atomic test

This example checks if the media handler module correctly clears all unnecessary frames and
information tied to a schedule that is no longer being displayed. Running the testing suites generates

a results page such as Figure 34.

62

Jasmine 2.0.0

0 specs, 0 failures

0 specs, 0 failures

13 specs, 0 failures

Update 1ist adds a new app.
App 1ist length should ke greater then before the update.

Update app changes the state of an app.
Changes the status of an existing app.
Increments the play counter if status is PLAY.
Does not increment the play counter is status is not PLAY

The app 1ist is saved successfTully intoe the local storage.
saves the info into the local storage.

The app list is loaded successfully from the local storage.
Loads the info from the local storage.

Create frame returns the id of an existing Trame.
Creates a frame in the html base page.
Return the frameId of an existing frame.

Release Trame changes the busy state of a frame to not busy.
Changes the state of the frame model.

Reset data clears all existing frames and information.
Empties the framelist.

It launches a new activity based on a 150N schedule.
The activity has a scheduling tree.
The activity has a valid scheduling tree.
The activity has a populated event table.

Jasmine 2.0.0

Figure 34.: Example result page of the unit test

As it can be seen the test results were all positive thus making the player able to move to the next

stage of testing: deployment.

5.2.5 Deployment Tests

These tests are aimed towards the deployment of the player on several different platforms. This

will allow us to identify the deployment procedures and dependencies for each of those platforms.

The platforms being tested are the following:

ChromeOS

Android (raspberryPi, rikomagic, android smartphones)
i0S (iPad, iPhone)

Samsung SmartTv

63

Results

The different builds of the player were deployed on each of their respective platforms according to
Table 5 . All of them were successfully deployed and executed.

Player Builds
Platforms Chrome App Android App i0OS App Samsung App
Windows X
Linux X
MacOS X
Android X
i0S X
Rikomagic X
Raspberry Pi X
Samsung SmartTV X

Table 5.: Deployment table

5.3 SUMMARY

The first step during the testing process was to identify which tests were needed, and how to
implement them, to unsure the player is ready to be deployed on a real digital signage network. After
the planning of the testing process it was time to gradually implement the tests, once the player passed
the first type of tests it was ready to be tested with the next type of tests and so on. This process
started with simple execution and precision tests and ended with deployment tests where the player
was deployed on real platforms and its behaviour was documented. Having successfully passed the

testing process, the player is now ready to be used on a digital signage network.

64

CONCLUSION

In this final chapter, a conclusion to this investigation will be presented containing a synthesis of
the work completed it will also take a look into how the objectives defined previously were, or not
accomplished.

Finally, the proposed future work will be presented. That section will identify and contextualize

the next logical steps in this project.

6.1 CONCLUSION

The objective of this thesis was to specify and implement a web based digital signage player with
multi-platform deployment capabilities based on the specifications of a previous investigation. The
initial stages of this project was focused on updating those specifications, identifying new require-
ments and specifying all the necessary aspects of the player such as an updated architecture, server
communication and player to application communication.

These are the specific milestones of the project that were successfully concluded:

e Update to the architecture design and the layered structure of the player, having in mind the

necessity of multi-platform support and ease of access to implement other versions of the player;

e Update to the scheduling format, it was redefined to become a self-contained, tree structured

format without imposing limits to the creation of schedules;

e Development of capable scheduling and media handler modules capable of interpreting the

instructions from the schedule and translate them into visual content.

e Creation of a server — player communication protocol in order to deploy a back-office to the

player so it could be fitted with server specific services;

e Specification and implementation of a player — application communication library, it became
clear it was necessary to provide the player with a tool to communicate with the applications in

order to have a better control of the scheduling process;

65

e Development of modules to allow deployment on other systems. This allowed the implementa-
tion of web based players for platforms such as Android and Samsung SmartTV based on the

initial Chrome Packaged App implementation;

e Testing, the player was submitted to a number of tests to assure it was capable of performing
under the necessary conditions. These tests encompassed execution tests, precision tests, stress

tests, memory profiling tests, unit tests and deployment tests.

Finally, looking at the objectives proposed by this thesis and the concluded milestones presented
above, it is apparent that they were successfully accomplished. In the end this project resulted in a
well defined specification of the web based player, i’s server side services, communication protocols,

scheduling format and most importantly a working, tested and valid software.

6.2 FUTURE WORK

Upon reaching the final stages of this work it became clear that even thought its objectives had
been met, much more can be made to improve the framework that resulted from the development of
the web based player.

e Implement modules to allow deployment on other systems: at this point the player can be
deployed on the systems identified on the reference stacks during the specification process.
However, considering the modular nature of the framework it is possible, with minimal coding
effort, to create other versions of the player for systems similar to the Samsung SmartTV or even
other SFFC to move towards a scenario where deploying a digital signage network becomes as

easy as downloading an app or connecting an Universal Serial Bus (USB) device to a display.

e Revise the scheduling format into a more dynamic one: for now the scheduling format is a
somewhat rigid format, the player receives the instructions and can do very little to interact
with it. The next logical step is to move from this paradigm into something where the player
can interact more with the schedule, still obeying the rules set by the schedule, but capable of

dynamic alterations to the schedule requested by the users or the apps themselves.

e Develop native applications to grant support on more systems: for now there are native appli-
cations for Linux and Windows systems with minimal functionalities. It is important that other
native applications are developed to provide the players targeting other systems with function-

alities specific to those systems.

e Improve the system to player communication in order to augment the native application ca-
pabilities: the web based player deployed as a Chrome Packaged App relies on the Chrome
native messaging API, while this is reliable for that version of the player the same is not true

for players deployed outside of the Chrome Packaged Apps environment. For those cases it

66

is necessary to investigate and develop a messaging system capable of providing the necessary

communication methods between the player and the native application.

67

Appendices

68

EXAMPLE SCHEDULE

This example schedule was used throughout the whole project to test and verify the behaviour of

the player in several occasions. It contains at least one container of each type.

{

"schedule": {
"_id": "schel",
"version": "1",
"name": "Default Schedule",
"LastUpdate": "16-07-2014",
"playerId": "-",
"apps": [
{

"appId": "appOO01l",

"src": "http://testapplications.displr.com/feeds/?sources=http://
feeds. jn.pt/JIN-Destaques&num=10&delay=20&animation=fades
placeId=8",

"lastUpdate": "15-12-2013"

"appId": "appO02",

"src": "http://testapplications.displr.com/facebook/index.html?
type=photo&fbid=spiritocupcakes&title=SpiritoCupcakes&delay
=10&num=10&placeId=8",

"lastUpdate": "15-12-2013"

"appId": "appO03",

"src": "http://testapplications.displr.com/twitter/index.html?
delay=15&count=12&screenName=cmjornalé&method=1&placeId=8",

"lastUpdate": "15-12-2013"

"appId": "appO004",
"src": "http://testapplications.displr.com/presences/?placeld=8",
"lastUpdate": "15-12-2013"

69

1,

"appId": "appOO05",

"src": "http://testapplications.displr
fade&interval=20&transition=1000",

"lastUpdate": "15-12-2013"

"appId": "applOO6",

"src": "http://testapplications.displr
interval=5000&lang=pt",

"lastUpdate": "15-12-2013"

"content": {

"rootContainer":
"repeatCount":
"childElements": [

"Seq",
"*l",

{

"container": "layout",
"repeatCount": "1",
"childElements": [

{

"container": "app0OOl",
"duration": "25",
"left": "O",
mon,
nyw,

"0.5",
mon,
nouw

"topll .
"width":
"height":
"minWidth":
"minHeight":

"container": "app002",

"duration": "25",
"left": "O",
"top": "0.5",
"width": "0.5",
"height": "0.5",
"minWidth": "0",

"minHeight": "0O"

"container": "seq",

"repeatCount": "1",
"left": "0.5",
"top": "0.5",

"width": "0.5",

70

.com/posters/?placeld=8&fx=

.com/stream/?placeId=8s&

"height": "0.5",
"minWidth": "0",
"minHeight": "O0",
"childElements": [
{
"container": "app003",

"duration": "10"

"container": "app004",

"duration": "15"

"container": "layout",
"repeatCount": "1",
"childElements": [
{
"container": "app0O05",
"duration": "20",
"left": "O",
"top": "O",
"width": "0.5",
"height": "1",
"minWidth": "0",
"minHeight": "0O"

"container": "appOOo6",
"duration": "20",
"left": "0.5",

"top": "O",

"width": "0.5",
llheight " : lllll,
"minWidth": "0",
"minHeight": "0O"

"container": "seq",

"repeatCount": "1",

"childElements": [
{

71

"container": "layout",
"childElements": [
{
"container": "seq",
"left": "O",
"top": "O",
"width": "0.5",
"height": "1",
"minWidth": "0O",
"minHeight": "0",
"childElements": [
{
"container": "app004",

"duration": "15"

"container": "appOO1l",

"duration": "15"

"container": "app002",
"duration": "30",
"left": "0‘5",

lltop": "O",

"width": "0.5",
"height " . "l",
"minWidth": "0O",
"minHeight": "O"

"container": "app0O03",
"duration": "20",
llleftll: "Oll,

"topﬂ: "O",

"Width": Illll,

"height " . "1",
"minWidth": "0",
"minHeight": "O"

"container": "selector",

72

"left": "O",
"top": "O",
"width": "1",
"height": "1",
"minWidth": "0",
"minHeight": "O",
"selectorType": "weighted",
"repeat": "O0",
"childElements": [
{
"container": "appOOl1l",
"weight": "3",

"duration": "15"

"container": "app002",
"Weight": "1",

"duration": "15"

"container": "app0O03",
"Weight": "2",

"duration": "15"

73

EXAMPLE LOG FILE AND TRACE FILE

This was one of the files generated during the testing phase. The trace file is the file created prior
to the schedule’s execution and is used to compare with the atual log file to find any mismatch and

identify any possible problem with schedule execution.

Tick: 0 || Task: PREFETCH || Container: cll || App: app001l
Created frame for container: cll

Tick: 0 || Task: PLAY || Container: cll || App: app00l
Tick: O || Task: PREFETCH || Container: cl3 || App: app003
Created frame for container: cl3

Tick: 1 || Frame for container cl3 loaded.

Tick: 2 || Frame for container cll loaded.

Tick: 15 || Task: PLAY || Container: cl3 || App: app003
Tick: 15 || Task: STOP || Container: cll || App: appO001l
Tick: 15 || Task: PREFETCH || Container: cll || App: appO01l
Container cll already prepared, event skipped.

Tick: 30 || Task: PLAY || Container: cll || App: app001l
Tick: 30 || Task: STOP || Container: cl3 || App: app003
Tick: 30 || Task: PREFETCH || Container: cl3 || App: app003
Container cl3 already prepared, event skipped.

Tick: 45 || Task: PLAY || Container: cl3 || App: app003
Tick: 45 || Task: STOP || Container: cll || App: appO001l
Tick: 45 || Task: PREFETCH || Container: cll || App: appO01l
Container cll already prepared, event skipped.

Tick: 60 || Task: PLAY || Container: cll || App: app001l
Tick: 60 || Task: STOP || Container: cl3 || App: app003
Tick: 60 || Task: PREFETCH || Container: cl2 || App: app002
Created frame for container: cl2

Tick: 65 || Frame for container cl2 loaded.

Tick: 75 || Task: PLAY || Container: cl2 || App: app002
Tick: 75 || Task: STOP || Container: cll || App: app001l
Tick: 75 || Task: PREFETCH || Container: c21 || App: app004
Created frame for container: c21

Tick: 76 || Frame for container c21 loaded.

Tick: 90 || Task: PLAY || Container: c21 || App: app004
Tick: 90 || Task: STOP || Container: cl2 || App: app002
Tick: 90 || Task: PREFETCH || Container: c23 || App: app00l

74

Created frame for

Tick: 91 || Frame for container c23 loaded.

Tick: 105 || Task: PLAY || Container: c23 || App:
Tick: 105 || Task: STOP || Container: c2l1 || App:
Tick: 105 || Task: PREFETCH || Container: c21 ||
Container c21 already prepared, event skipped.
Tick: 120 || Task: PLAY || Container: c2l1 || App:
Tick: 120 || Task: STOP || Container: c23 || App:
Tick: 120 || Task: PREFETCH || Container: c23 ||
Container c23 already prepared, event skipped.
Tick: 135 || Task: PLAY || Container: c23 || App:
Tick: 135 || Task: STOP || Container: c2l1 || App:
Tick: 135 || Task: PREFETCH || Container: c21 ||
Container c21 already prepared, event skipped.
Tick: 150 || Task: PLAY || Container: c21 || App:
Tick: 150 || Task: STOP || Container: c23 || App:
Tick: 150 || Task: PREFETCH || Container: c22 ||
Created frame for container: c22

Tick: 150 || Frame for container c22 loaded.
Tick: 165 || Task: PLAY || Container: c22 || App:
Tick: 165 || Task: STOP || Container: c2l1 || App:
Tick: 180 || Task: STOP || Container: c22 || App:

0 PREFETCH app001
0 PLAY app001

0 PREFETCH app003
15 PLAY app003

15 STOP app001

15 PREFETCH app001
30 PLAY app001

30 STOP app003

30 PREFETCH app003
45 PLAY app003

45 STOP appO001

45 PREFETCH app001
60 PLAY app001

60 STOP app003

60 PREFETCH app002
75 PLAY app002

75 STOP app001

75 PREFETCH app004
90 PLAY app004

90 STOP app002

90 PREFETCH app001
105 PLAY app001

container:

c23

Listing B.1: Log File

75

app001
app004
App: app004

app004
app001
App: app001l

app001
app004
App: app004

app004
app001
App: app005

app005
app004
app005

105
105
120
120
120
135
135
135
150
150
150
165
165
180

STOP app004
PREFETCH app004
PLAY app004
STOP app001
PREFETCH app001
PLAY app001
STOP app004
PREFETCH app004
PLAY app004
STOP app001
PREFETCH app005
PLAY app005
STOP app004
STOP app005

Listing B.2: Trace File

76

SCREENSHOTS

Here are a two screenshots of the DISPLR player in action. Figure 35 shows the home screen of

the player, this screen is presented while the player connects itself to the service.

E displr

Figure 35.: Home screen of the player.

77

On figure 36 it is possible to see the player displaying and executing three applications.

Luxemburgo rejeita gestao controlada de empresas do Grupo Espirito Santo

O Tribunal do Luxemburgo rejeitou, esta sexta-feira, os pedidos de gestao

controlada do Espirito Santo Financial Group (ESFG) e da Espirito Santo
Financiére (ESFIL), empresas do Grupo Espirito Santo (GES), anunciou o
tribunal.

Jornal de Noticias - Destaques 3-10-2014

£ Timeline: @cmjornal

SpiritoCupcakes

Correio da Manha ¥
@cmjornal

Seguro diz que aumento do saldrio minimo pode penalizar alguns trabalhadores
259-2014 16:13

Correio da Manha ¥

@cmjornal
Sporting-FC Porto iderado de "risco elevado" pela PSP
25.9-2014 16:03

Correio da Manha ¥

@cmjornal

Pilotos da Lufthansa podem fazer novas greves apés fracasso de negociagdes
25-9-2014 15:53

Spirito Cupcakes & Coffee 1-10-2014

Figure 36.: Apps being executed.

78

BIBLIOGRAPHY

AOpen. Opensign digital signage, 2013. URL http://www.aopen.com/.
Marco Pereira Carneiro. Um player web para redes de ecras puiblicos. 2013.

WHATWG Community. The iframe element, 2014. URL http://www.whatwg.org/specs/

web—-apps/current-work/multipage/the-iframe-element.html.
Concerto. Concerto digital signage, 2013. URL http://www.concerto-signage.org/.
Open-Source (MIT) Contributors. Socketio, 2014. URL http://socket.io/.
Kaazing Corporation. Websockets, 2014. URL https://www.websocket.org/.
Tim Down. log4javascript, 2014. URL http://log4javascript.org/.

Google. Chrome storage, 2013. URL https://developer.chrome.com/apps/storage.
html.

Google. Chrome packaged app apis, 2014a. URL https://developer.chrome.com/apps/

system_memory.

Google. Webview api, 2014b. URL https://developer.chrome.com/apps/tags/

webview.html.
JSON Group. Json, 2014. URL http://json.org/.
IAdea. ladea digital signage, 2014. URL http://www.iadea.com/.
Jasmine. Jasmine, 2014. URL http://jasmine.github.io/2.0/introduction.html.
The jQuery Foundation. jquery, 2014. URL http://jquery.com/.

Thomas Lindén, Tommi Heikkinen, Timo Ojala, Hannu Kukka, and Marko Jurmu. Web-based frame-

work for spatiotemporal screen real estate management of interactive public displays. 2010.

Microsoft. Windows presentation foundation, 2014a. URL http://msdn.microsoft.com/
en-us/library/ms754130 (v=vs.110) .aspx.

Microsoft. Windows performance monitor, 2014b. URL http://technet.microsoft.com/
en-us/library/cc749249.aspx.

79

http://www.aopen.com/
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html
http://www.concerto-signage.org/
http://socket.io/
https://www.websocket.org/
http://log4javascript.org/
https://developer.chrome.com/apps/storage.html
https://developer.chrome.com/apps/storage.html
https://developer.chrome.com/apps/system_memory
https://developer.chrome.com/apps/system_memory
https://developer.chrome.com/apps/tags/webview.html
https://developer.chrome.com/apps/tags/webview.html
http://json.org/
http://www.iadea.com/
http://jasmine.github.io/2.0/introduction.html
http://jquery.com/
http://msdn.microsoft.com/en-us/library/ms754130(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/ms754130(v=vs.110).aspx
http://technet.microsoft.com/en-us/library/cc749249.aspx
http://technet.microsoft.com/en-us/library/cc749249.aspx

Novisign. Novisign digital signage, 2014. URL http://www.novisign.com/android/
android-based-digital-signage/.

Max Ogden. Building webview applications, 2012. URL http://maxogden.com/

building-webview—applications.html.
OpenSplash. Opensplash digital signage, 2014. URL http://www.opensplash.net/.

P2P-SIP. Restful communication over websocket, 2014. URL http://p2p-sip.blogspot.

pt/2011/06/restful-communication-over—-websocket.html.

Mark Pilgrim. The past, present and future of local storage for web applications, 2011. URL http:
//diveintohtml5.info/storage.html.

et al. RFC 2616 Fielding. Http requests, 2004. URL http://www.w3.org/Protocols/
rfc2616/rfc261l6-sech.html.

Samsung. Samsung developers, 2014a. URL developer.samsung.com/.

Samsung. Samsung smarttv, 2014b. URL http://www.samsung.com/pt/

smart—-tv-o-futuro—-agora/.

Sapo. Sapo digital signage, 2013. URL https://github.com/sapo/

digital-signage-client.
Signagelive. Signagelive digital signage, 2014. URL http://signagelive.com/.

Constantin Taivan, Rui José, and Bruno Silva. Understanting the use of web technologies for applica-

tions in open display networks.
TargetR. Targetr digital signage, 2014. URL http://www.targetr.net/technology.
Ubisign. Ubisign digital signage, 2014. URL http://ubisign.com.
Rise Vision. Rise vision digital signage, 2014. URL http://www.risevision.com/.
W3C. Xsl transformations (xslt), 1999. URL http://www.w3.0rg/TR/xslt.
W3C. Web services architecture, 2004. URL http://www.w3.0org/TR/ws—arch/.
W3C. Html5 web messaging, 2012a. URL http://www.w3.0rg/TR/webmessaging/.
W3C. Smil, 2012b. URL http://www.w3.0org/Audiovideo/.
W3C. Web workers, 2014. URL http://www.w3.0rg/TR/workers/.
Wikipedia. Mime, 2014. URL http://en.wikipedia.org/wiki/MIME.

Xibo. Xibo digital signage, 2014. URL http://xibo.org.uk/.

80

http://www.novisign.com/android/android-based-digital-signage/
http://www.novisign.com/android/android-based-digital-signage/
http://maxogden.com/building-webview-applications.html
http://maxogden.com/building-webview-applications.html
http://www.opensplash.net/
http://p2p-sip.blogspot.pt/2011/06/restful-communication-over-websocket.html
http://p2p-sip.blogspot.pt/2011/06/restful-communication-over-websocket.html
http://diveintohtml5.info/storage.html
http://diveintohtml5.info/storage.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec5.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec5.html
developer.samsung.com/
http://www.samsung.com/pt/smart-tv-o-futuro-agora/
http://www.samsung.com/pt/smart-tv-o-futuro-agora/
https://github.com/sapo/digital-signage-client
https://github.com/sapo/digital-signage-client
http://signagelive.com/
http://www.targetr.net/technology
http://ubisign.com
http://www.risevision.com/
http://www.w3.org/TR/xslt
http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/webmessaging/
http://www.w3.org/AudioVideo/
http://www.w3.org/TR/workers/
http://en.wikipedia.org/wiki/MIME
http://xibo.org.uk/

	Contents
	Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Challenges
	1.3 Objectives
	1.4 Document Structure
	1.5 Summary

	2 State of the art
	2.1 Digital Signage Players
	2.1.1 Ubisign
	2.1.2 Xibo
	2.1.3 Rise Vision
	2.1.4 Concerto
	2.1.5 OpenSign
	2.1.6 IAdea
	2.1.7 Sapo Digital Signage
	2.1.8 TargetR
	2.1.9 NoviSign
	2.1.10 OpenSplash
	2.1.11 Signagelive
	2.1.12 Summary

	2.2 Web Based Player
	2.2.1 Prototype of the Web Based Player

	2.3 Summary

	3 Web Based Media Player Framework
	3.1 Player Operation Method
	3.2 Functional Layers
	3.2.1 Native Layer
	3.2.2 Web Engine Layer
	3.2.3 Web Layer
	3.2.4 Applications Layer

	3.3 Reference Stacks
	3.4 Common Functionalities From Other Players
	3.4.1 Fault Tolerance
	3.4.2 Content Management
	3.4.3 Logging
	3.4.4 Execution
	3.4.5 Security
	3.4.6 User Interaction
	3.4.7 Updates

	3.5 Key Functionalities
	3.5.1 Native Layer
	3.5.2 Web Engine Layer
	3.5.3 Web Player Layer
	3.5.4 Applications Layer

	3.6 Player Architecture
	3.7 Scheduling Principles and Format
	3.8 Communication and Player Services
	3.8.1 Player Services
	3.8.2 Communication Protocol
	3.8.3 State Diagrams

	3.9 Libraries
	3.9.1 Applications Life Cycle
	3.9.2 Player Specific Library
	3.9.3 Applications Specific Library

	3.10 Summary

	4 Case Studies
	4.1 Case studies and their targeted platforms
	4.2 Displr
	4.2.1 Control Module
	4.2.2 Server Module
	4.2.3 Registration Module
	4.2.4 Scheduling Module
	4.2.5 Media Handler Module
	4.2.6 Apps Management Module
	4.2.7 Logging Module
	4.2.8 Interaction Module
	4.2.9 Activity
	4.2.10 Timer

	4.3 Ubisign
	4.3.1 Server Module
	4.3.2 Registration Module

	4.4 Android and iOS
	4.4.1 Media Handler Module
	4.4.2 Apps Management Module

	4.5 Samsung SmartTV
	4.5.1 Media Handler and Apps Management Module
	4.5.2 Interaction Module

	4.6 Summary

	5 Testing
	5.1 Planning
	5.2 Tests
	5.2.1 Schedule Execution and Precision Tests
	5.2.2 Stress Tests
	5.2.3 Memory Profiling
	5.2.4 Unit Tests
	5.2.5 Deployment Tests

	5.3 Summary

	6 Conclusion
	6.1 Conclusion
	6.2 Future Work

	Appendices
	A Example Schedule
	B Example Log File and Trace File
	C Screenshots

