
Universidade do Minho
Escola de Engenharia

Departamento de Informática

Master Course in Computing Engineering

João Manuel Sousa Fonseca

Converting ontologies into DSLs

Master dissertation

Supervised by: Pedro Rangel Henriques

Maria João Varanda

Braga, September 22, 2014

parecer

Serve o presente parecer para declarar que o aluno João Manuel Sousa Fon-
seca concluiu, conforme esperado, a escrita do seu relatório de pré-dissertação.
O documento foi revisto pelos orientadores, os quais atestam a sua vali-
dade cient́ıfica, assim como o cumprimento dos objetivos propostos para esta
etapa. Mais se informa que as atividades de mestrado do aluno João Manuel
Sousa Fonseca decorrem dentro dos planos e prazos inicialmente previstos.

Pedro Rangel Henriques

(Orientador)

Maria João Varanda

(Co-orientador)

AC K N OW L E D G E M E N T S

First of all I will like to express my gratitude to PhD. Pedro Rangel Henriques and PhD. Maria João

Varanda for the magnificent support and dedication to this project.

In addiction, I big thanks to my mother, father and little brother for being always be my side and

supporting me in every decision that I make.

A very special thank you to all my grandparents; João Sousa and Helena Vilas Boas, João Fonseca

and Angelina Sousa; for all the affection and dedication because even when I try to explain my work

and they don’t understand, they support me.

Finally but not last, I like thankfully for my few but good closest friends; Sara Viera, Sofia Oliveira,

Rita Faria, Cátia Félix, Mário Esteves, Jorge Soares and Diogo Vieira; that are always ready to help

and give me motivation to move on.

a

A B S T R AC T

This paper presents a project whose main objective is to explore the Ontological-based development

of Domain Specific Languages (DSL), more precisely, of their underlying Grammar.

After reviewing the basic concepts characterizing Ontologies and Domain-Specific Languages, we

introduce a tool, OWL2Gra, that takes profit of the knowledge described by the ontology and auto-

matically generates a grammar for a DSL that allows to discourse about the domain described by that

ontology.

This approach represents a rigorous method to create, in a secure and effective way, a grammar for

a new specialized language restricted to a concrete domain. The usual process of creating a grammar

from the scratch is, as every creative action, difficult, slow and error prone; so this proposal is, from a

Grammar Engineering point of view, of uttermost importance.

After the grammar generation phase, the Grammar Engineer can manipulate it to add syntactic

sugar to improve the final language quality or even to add semantic actions.

The OWL2Gra project is composed of three engines. The main one is OWL2DSL, the component

that converts an OWL ontology into an attribute grammar. The two additional modules are Onto2OWL

and Ddesc2OWL. The former, Onto2OWL, converts ontologies written in OntoDL (a light-weight DSL

to describe ontologies) into standard OWL XML that can be loaded into the well known Protégé sys-

tem to future editing; the later, Ddesc2OWL, converts domain instances written in the DSL generated

by OWL2DSL into the initial OWL ontology.

Ddesc2OWL plays an important role because it allows for the population of the original ontology

with concept and relation instances extracted from the new language concrete sentences this allow a

faster ontology population.

b

C O N T E N T S

Contents . iii

1 I N T RO D U C T I O N . 3

1.1 Objectives . 3

1.2 Research Hypothesis . 4

1.3 Document structure . 4

2 S TAT E O F T H E A RT . 6

2.1 Ontologies . 6

2.1.1 The Hermes Project . 6

2.1.2 Lightweight Ontologies . 6

2.2 Domain Specific Languages . 7

2.2.1 The IDEA project-Implementation of DSL: Evaluation of Approaches . 7

2.2.2 Feature Description Language . 7

2.3 Converting Ontology to DSL . 8

2.3.1 Using Ontologies in the Domain Analysis of Domain Specific Languages 8

2.3.2 Ontology Driven Development of Domain-Specific Languages 9

3 O W L 2 G R A : A R C H I T E C T U R E A N D G E N E R A L OV E RV I E W 10

3.1 Application Usage Modes . 11

4 O N T O 2 O W L M O D U L E . 13

4.1 The parser for OntoDL files . 14

4.2 The OWL file generator . 18

5 O W L 2 D S L M O D U L E . 25

5.1 Grammar Generation . 27

5.2 Java Class Set Generation . 31

5.3 DDesc input template . 33

6 D D E S C 2 O W L M O D U L E . 35

6.1 Grammar DDescG Processor . 37

6.2 DSL(DDesc) Processor . 38

6.3 OWL Generator . 40

7 C O N C L U S I O N . 45

A C A S E S T U DY 1 - B O O K I N D E X . 48

A.1 Book index OntoDL . 48

A.2 Book Index generated OWL . 49

A.3 Book Index generated Grammar . 50

iii

Contents

A.4 Book Index DDesc Input . 52

A.5 Book Index DDesc2OWL Result . 52

B C A S E S T U DY 2 - L AU N D RY P RO C E S S . 53

B.1 Laundry OntoDL . 53

B.2 Laundry generated OWL . 54

B.3 Laundry generated Grammar . 56

B.4 Laundry DDesc input . 58

B.5 Laundry Process DDesc2OWL Result . 59

C C A S E S T U DY 3 - L A N G UAG E P RO C E S S I N G D O M A I N 61

C.1 Language Processing OntoDL . 61

C.2 Language Processing generated OWL . 63

C.3 Language Processor generated Grammar . 66

C.4 Language Processing Ddesc input . 72

C.5 Language Processing DDesc2OWL Result . 73

iv

L I S T O F F I G U R E S

Figure 1 Onto2Gra . 10

Figure 2 Java Application OWL2Gra . 12

Figure 3 Help Menu from Command Line Support 12

Figure 4 Onto2OWL Architecture . 13

Figure 5 “Ontology” production . 14

Figure 6 ’Concepts’ productions . 15

Figure 7 “Hierarchies” production . 16

Figure 8 “Relations” production . 16

Figure 9 “Links” production . 17

Figure 10 Statistics processed by Onto2OWL Module 23

Figure 11 Protégé screenshot showing the Family ontology generated in OWL/XML 24

Figure 12 OWL2DSL Architecture . 25

Figure 13 Ontology Parser schema . 26

Figure 14 CodeGenerator schema . 27

Figure 15 Ontology Graph . 28

Figure 16 DDesc2OWL Module Interface . 35

Figure 17 DDesc2OWL Module schema . 36

Figure 18 DDesc error alert example . 39

Figure 19 Final Ontology with individuals loaded into Protégé 43

Figure 20 DDesc2OWL final result Case Study 1 opened in Protégé 52

Figure 21 DDesc2OWL final result on Case Study 2 opened in Protégé 60

Figure 22 DDesc2OWL outcome opened in Protégé 73

v

L I S T O F L I S T I N G S

4.1 OntoDL Example: Ontology specification . 14

4.2 OntoDL Example: Concept specification . 15

4.3 OntoDL Example: Hierarchy specification . 16

4.4 OntoDL Example: Relation specification . 17

4.5 OntoDL Example: Link specification . 18

4.6 Ontologies Class . 18

4.7 OWL Specification header . 19

4.8 “Concepts” Class . 19

4.9 “Concept” Specification in OWL . 19

4.10 “Hierarchies” Class . 20

4.11 Hierarchical Specification in OWL . 20

4.12 “Relations” Class . 20

4.13 “Triples” Class . 21

4.14 Links Specification in OWL . 21

5.1 Thing rule . 28

5.2 Thing production . 29

5.3 Hierarchical productions rule . 29

5.4 Cardinalities rules . 30

5.5 Generated Productions for different cardinalities . 30

5.6 Generated Thing.java . 31

5.7 ProgramLanguage Class generated . 32

5.8 Generated DDesc Template . 33

6.1 Grammar Pre-Processing . 37

6.2 Grammar Pre-Processing . 38

6.3 Metadata File generated . 40

6.4 Validation of the “metadata.json” . 41

6.5 Declaration of the individual . 41

6.6 Data Property specification example . 42

6.7 Object Property specification example . 42

6.8 DDesc input example . 43

A.1 Book Index OntoDL . 48

vi

List of Listings

A.2 Book index generated OWL . 49

A.3 Book index Grammar generated . 50

A.4 Book index DDesc input example . 52

B.1 Laundry OntoDL . 53

B.2 Laundry generated OWL . 54

B.3 Laundry generated Grammar . 56

B.4 Laundry Process DDesc input . 58

C.1 Language Processing OntoDL . 61

C.2 Language Processing OWL . 63

C.3 Language Processor outcome from OWL2DSL . 66

C.4 DDesc input file for Ddesc2OWL module . 72

vii

1

I N T RO D U C T I O N

The use of domain-specific languages (DSL) has increased in the recent years. This technology en-

ables a quick interaction with different domains, thereby taking a greater impact on productivity be-

cause there is no need for special or deep programming skills to use that language. However, to create

a domain-specific languages is a thankless task, which requires the participation of language engi-

neers, which are (usually) not experts in the domain for which the language is targeted Robert Tairas

(2009). Therefore, the participation of domain experts in this process is also commonly required.

The experts’ task is to organize the domain knowledge in such a way that the language engineer is

able to incorporate the domain concepts in the concepts of the language. Although the latter is known

as a complex and time consuming task, it brings together the program and the problem domains of the

DSL, which is one of its most important characteristics Oliveira (2010).

The domain knowledge is usually organized in ontologies. Informally, an ontology is an artifact

that defines a set of concepts, relations and axioms for a specific knowledge domain. It represents and

organizes the implicit knowledge in such a way that a set of cooperative systems agree on it and share

D.Jin (2004) Grimm (2010). In practice, ontologies are usually represented in OWL files (a particular

XML dialect) of very easy comprehension, but not so easy creation. Fortunately, there are tools such

as Protégé1, that help on this process.

Also the creation of population for these domains is a thankless work. This was one of the last

priorities of this project. The idea behind has to gather the domain specification of the DSL and using

that DSL to generating inputs for the ontology this process would allow a faster ontology generated

population, once the creation of individuals one by one on the ontology is a hard work.

1.1 O B J E C T I V E S

The work hereby proposed aims at taking advantage of the processable nature of OWL ontologies

to generate DSLs from the enclosed domain knowledge. This is expected to automatize, at a certain

extent, the language engineer task of bringing program and problem domains together.

1 http://protege.stanford.edu/

3

1.2. Research Hypothesis

Ontologies are usually created as only a scheme of the domain knowledge. But this is far from

being a complete ontology. Ontologies also support instances of the concepts and their relations, but

populating such database is a tremendous manual and time consuming routine.

A foreseen byproduct of the proposed work is the possibility of populating ontologies from text files

written in the new and automatically generated DSL. This would combine the best of both worlds. In

practice, it is desired to take advantage of modeling the domain as an ontology from where a DSL

(and its processor) can be extracted. The DSL processor can be specialized to convert its input (the

programs) into new OWL files containing the instances capable of being extracted from key parts of

the program.

1.2 R E S E A R C H H Y P OT H E S I S

Given an abstract ontology, describing a knowledge domain in terms of its concepts and the relations

among them, it is possible to derive automatically a grammar to define a DSL for that same domain.

1.3 D O C U M E N T S T RU C T U R E

This document describes the work that has been done for the last several months and will be divide in

seven important chapters.

In the second chapter, it will be presented a brief description about the state of the art and it will be

characterized in more detail the main technologies presented in this project: ontologies and domain

specific languages.Other existing tools that were developed with one or both technologies, will be

referred.

In third chapter, it will be presented the architecture of the system proposed, OWL2GRA, to solve

the problem. A general overview of OWL2GRA will be provided. Each one of the three system

components will be described.

Chapter four describes Onto2OWL. This module accepts the description of and ontology in On-

toDL, a DSL we have defined to allow an easy and light description, and convert it into OWL standard.

The generated OWL file can be loaded into a tool like Protégé to allow further processing.

The fifth Chapter describes the heart of the project, the module OWL2DSL.This module converts

ontologies into Domain Specific Languages(DSL’s).The result is a grammar with syntactic sugar and

semantic axioms. Several other files that help and reduce work for the users are also generated. This

Module can be used separately from the previous one because it accepts all the ontologies that are

specify on all standard formats.

In Chapter six it will be described Module Ddesc2OWL that was not on the initial list of objectives

but soon became one priority of this project, because of the possibilities that can bring to the generation

of the individuals of an ontology. It was noticed that the generation of the grammar that will describe

the domain will create individuals and actions for that same domain. The idea was to gather that

4

1.3. Document structure

individuals and actions and populate the ontology this allow the faster creation of individuals from

any domain that was specified from an ontology. The ontology populated also allows an important

functionality that is the ontology querying, this feature can be used on multiples situations, such as a

small database using SPARQL or even using it on web-semantic, that helps with page indexation and

better querying results from the search engines on the web.

Chapter seven is the Conclusion, where the results of this master thesis will be explained as well as

directions for future work. Also and not less important, the problems that appeared and the way they

were solved will be discussed.

This document also includes three Appendixes where some more realistic and different examples

will be presented in order to explain with more detail the results of OWL2GRA.

5

2

S TAT E O F T H E A RT

In this master project, it will be used technologies like Domain Specific Languages and Ontologies

and in the sections bellow, it will be described some characteristics of this technologies and some

projects where they were used.

2.1 O N T O L O G I E S

Ontologies can be used in many differently situations, even they can be used for different purposes.

They also can be split according its degree of complexity, expressivity of the domain and formality.

This technology is normally associated with Web-Semantic with two main objectives, describe objects

or categorize them. In nowadays the ontologies, are used to catalog the websites that appear on the

results from search engines like Google, Bing or Yahoo, also can be used to make direct queries to the

network of knowledge granted by ontologies, for example, DBpedia.1.

2.1.1 The Hermes Project

This project has the purpose to process data systems into knowledge systems. This is for a better

understanding of things like properties of autonomy, sociability and learning abilities of software. The

knowledge systems provide better usability and effectiveness than tradicional systems. The ontologies

were used to representing the knowledge bases, because the reusable and easy extension. This project

also infers the taxonomic relationships between concepts is very useful to define hierarchies and to

give meaning to relations between concepts. Girardi (2010)

2.1.2 Lightweight Ontologies

The idea behind this project is to categorize objects and trying to resolve the problem of classifying,

for example, photos, webpages or books. Lightweight uses ontologies with tree structure where each

node is associated with a natural language label. Also, sometimes Formal Lightweight Ontologies are

obtain from Lightweight Ontologies by translating the meaning of the labels with Description Logics

1 http://dbpedia.org/About/

6

2.2. Domain Specific Languages

formulas witch captures the label meaning and provides an example of how such translation can be

done.In Formal Lightweight Ontologies, the node formulas are describe in a subsumption relation, so

the formula is always more general in the father node then the formula on the child node. Another

point in favor for the Lightweight Ontologies is the automated documentation, classification or query

answering. Even with advantages, this technology does not have the support from the users because

among other problems is the lack of interest of the user to build the Ontologies. Giunchiglia et al.

(2009)

2.2 D O M A I N S P E C I F I C L A N G UAG E S

A Domain Specific Language is a tailor made notation toward a specific domain, this means that it

is much easier to describe and generate information relative to that domain. (Kosar et al., 2008) Also

with DSL, the productivity can be increased because the knowledge of the domain is less require.

The downfall of this technology is that is very expensive to generate, because to generate a DSL the

programmer must have some expertise on both domain and coding language.

2.2.1 The IDEA project-Implementation of DSL: Evaluation of Approaches

This project was born from the ideia of putting all the approaches to DSLs implementations together.

The result was a detailed description of each approach and also how hard is to implement the approach.

With this study it was able to understand that the approach with more efficient result was the Embedded

Implementation.

The Embedded approach, consist in taking, the existing mechanism in the native language that is

used to create the DSL. Then the semantic tools are used to specify the domain then the embedded DSL

receive the language constructs and add the domain specification from primitives that are closer to the

user DSL. The main limitations notice in this approach is the syntactic mechanism in the language.

Also, it was notice that the error reporting is problematic because the messages are in terms of the

language concepts.

In this paper was also tested the Preprocessing approach, this technique aggregates the DSL con-

structs and translate them to the native language, but with this, the static analysis is limited.

Another method is the Compiler Generator. This approach is similar to the Embedded, excepts that

some of the work of compiling is done using the native language with tools. (Kosar et al., 2008)

2.2.2 Feature Description Language

This paper address the feature diagrams in more detail, thus as relationship with a DSL. For that, it

was developed the Feature Description Language (FDL), a textual language to describe features. This

technology, explores automated manipulations of features descriptions like normalization, expansion

7

2.3. Converting Ontology to DSL

to normal form, variability computation and constraint satisfaction. This project was divided in four

main phases.

First of all , the formalization of the notion of feature diagrams, by using DSL for features defini-

tions called FDL. This also allow the manipulation of FDL expressions.

Secondly, to support feature was developed a prototype tool and get new ideas for further develop-

ment.

Another objective, has to resolve the problem that was difficult to find actual examples of features

diagrams used in concrete projects.

Finally, was unclear how to proceed once a diagram exist. To address this problem was created a

tool that does the mapping of an FDL description to a UML diagram that allow a first version of the

configuration interface. van Deursen and Klint (2001)

2.3 C O N V E RT I N G O N T O L O G Y T O D S L

A Domain Specific Language has a detailed knowledge about a certain domain. However, to gener-

ate this DSL is required paradigms such as Generative Programming or Domain Engineering. The

Ontology has the ability to describe any domain with precision. So, why not merge these two tech-

nologies? The works below were conceived on that same basic idea, that extracts from the Ontology

the knowledge of that specific domain to generate a DSL.

2.3.1 Using Ontologies in the Domain Analysis of Domain Specific Languages

The meaning of this work is to achieve the domain analysis to induce what elements can be reused.

This is very helpful, when it’s used paradigms such as the Generative Programming or Domain Engi-

neering. Like it was referred before, to build a DSL, it’s required overall knowledge from the domain,

this domain model is given by the ontology, revealing important information that influence the lan-

guage shape. The ontology contributes for the early stages of the domain analysis. So, this work uses

ontologies to validate the domain analysis and to get the domain terminology for the DSL creation.

In this paper, the author uses ontology to help with the domain terminology, but it can also be use to

describe the concepts domain and its relationships. That reveals interesting connection between DSL

and ontologies. A domain model is defined by defining the scope of the domain, the terminology,

concepts description and features model describing commonalities and variabilities.

The case study on this paper show improvement of the DSL development using ontologies on the

early stages. Because, an ontology can provide a defined and structured process domain. Also with

the domain specification on the ontology there is no need to start from scratch the DSL development

Tairas et al. (2009).

8

2.3. Converting Ontology to DSL

2.3.2 Ontology Driven Development of Domain-Specific Languages

This paper propose an ontology-based domain analysis and its incorporation on the early design phase

of the DSL.

In this article there are covered two types of languages. The type of language to which this article

is directed are the DSL, Domain Specific Language, these language normally are tailored made to a

specific domain. In this case,the intentions is study what is the best approach to DSL development.

In this paper, the authors identified several phases that a DSL development need. The most impor-

tant are the decision, analysis, design, implementation and deployment.

The decision phase is important because defines all the answers to the questions for development

of a DSL.

In the other phases, the process is very similar to the GPL development, with the difference in the

activities , approaches and techniques used in each phase.

In the domain analysis, it’s a process that uses several methodologies that differ from the level of

formality, information extraction or their products. The objective is to select and define the domain

focus and collect the important information and integrate with a domain model.

In the design phase, it has the definition of the constructs and semantics values. The semantics has

the objective of formalize the meaning of the constructs and also the detail and behavior unspecified

in the program. The DSL can be classified on two dimensions, the relations between the DSL and the

computer language and the formality of the DSL description.

The implementation phase, as the name indicates, is the phase where was decided what approach

to implement and also what approach required less effort and has more efficacy to the end user.

In the paper was created a framework to enable the automated generation of a grammar construction

from a target ontology. This framework is the Ontology2OWL. This framework accepts OWL files

as input and parses it and generate and fill internal data structures. Then a processor apply a set of

transformation patterns over the data structures. The result is a grammar, generated automatically, that

can be inspected by a DSL engineer in order to verify if there is something wrong Ceh et al. (2011).

9

3

OW L 2 G R A : A R C H I T E C T U R E A N D G E N E R A L OV E RV I E W

The proposal for the OWL2Gra project here reported is to create automatically an attribute grammar

for a concrete Domain Specific Language, based on an ontological description of that domain.

Figure 1 — the block diagram that depicts the architecture of OWL2Gra system — represents

all the processes and modules that are presented in this project showing how an abstract ontology(

described in a simple ontology specification language) is transformed into an OWL XML ontology

that is then transformed into an AntLR attribute grammar.

Figure 1.: Onto2Gra

The first module of this project is called Onto2OWL. This phase was designed to improve the

knowledge on the problem. The idea behind this layer is to offer the possibility of conversion of a

simple text and description into a OWL standard file. The original ontology shall be described in

a DSL, a kind of natural language specifically tailored for that purpose, called OntoDL – Ontology

light-weight Description Language. This tool, Onto2OWL, takes an OntoDL file, that is an ontology

specification file, and converts it into OWL XML, that is the standard format for ontology descriptions.

The aim of this tool is to offer an easy way to build a knowledge base to support the next phase.

10

3.1. Application Usage Modes

However, it is important to notice that this phase is not mandatory – this step can be skipped if the

source ontology is already available in OWL format (or even in RDF XML format). In that case, the

user of OWL2Gra system can go directly to the second stage.

The second block is the most important on this proposal, and also the core of OWL2Gra. It is com-

posed of a tool, OWL2DSL that makes the conversion of an OWL XML or a RDF XML file into an

attribute grammar. This grammar is created systematically from a set of rules that will be explained

in Chapter 5. From the OWL ontology description, OWL2DSL is able to infer: the non-terminal and

terminal symbols; the grammar production rules; the symbol attributes and their evaluation rules1.

Besides that, OWL2DSL generates a set of Java classes that are necessary to create an Internal Repre-

sentation of the concrete ontology2 in order to store all the information that will be processed by the

generated grammar.

The Grammar generated by OWL2DSL is written in such a format that can be compiled by a Com-

piler Generator (specifically in our case we are using the AnTLR compiler generator) in order to

immediately create a processor for the sentences of the new Domain Specific Language. AnTLR is

very helpful because it builds a Java program to process the target language; we call that processor

DDesc2OWL and it is precisely the engine in the center of the third block.

In that third block of the OWL2Gra architecture, the tool DDesc2OWL, will read a Ddesc input

file, with a concrete description of the Domain specified by the initial ontology, and will generate an

OWL or a RDF XML file that, when merged into the original OWL or RDF XML file, will originate

a specification that populates the original ontology creating a network of knowledge.

In the next chapters it will be described in great detail the objectives of each phase, the problems

found and how they were solved.

3.1 A P P L I C AT I O N U S AG E M O D E S

OWL2Gra system has three modules that can be used separately. The first objective of this project

was to create a Java graphical interface to provide access to this three modules.

Figure 2 shows the Java Application graphical interface that offers to the end-user a simple usage

mode.

1 In the future we will also be able to derive the contextual conditions.
2 An ontology with instances.

11

3.1. Application Usage Modes

Figure 2.: Java Application OWL2Gra

This platform was created using the Java Swing libraries that help to build a simple Frame that

present all the possibilities that are on the OWL2Gra program.

This program can also be used by third part using the command line interface(instead of the graph-

ical one shown and described above.

Figure 3 shows the help menu available in the command line interface.

Figure 3.: Help Menu from Command Line Support

12

4

O N T O 2 OW L M O D U L E

Module Onto2OWL is the first layer of this project. Onto2OWL creates a specification file in the

standard notation for ontologies specification, OWL-XML, from an ontology specification written in

OntoDL, a Domain Specific Language to describe in a simple, easy to use, way the ontologies.

This module is composed by two important parts. The first is a parser for the input file written in a

DSL that we have specially designed, called OntoDL. The second part is a java class that manipulates

the information gathered by the parser and generates the OWL-XML standard file.

Figure 4.: Onto2OWL Architecture

In the next subsections it will be explained how these two parts work together.

13

4.1. The parser for OntoDL files

4.1 T H E PA R S E R F O R O N T O D L F I L E S

This parser is generated from a grammar that was created to specify OntoDL language.This parses

is generated based on an attribute grammar that collects all the informations about the domain and

returns it to the main program that invoques the Parser.

This attribute grammar specifies the syntax and the semantic of the language OntoDL that was

define to specify ontologies; it is a quite simple grammar.

This parser will recognize all the basic components of an ontology described in OntoDL language.

After analyzing the problem, it was decided that only four components are necessary to describe the

basic information about an ontology: Concepts, Hierarchies, Relations and Links. So, the first

grammar rule is:

Figure 5.: “Ontology” production

This explain how simple is to describe a domain though an ontology. In listing 4.1 bellow is an

example how this first part is written in OntoDL.

Ontology{

Concepts[...]

Hierarchies[...]

Relations[...]

Links[...]

}

Listing 4.1: OntoDL Example: Ontology specification

An ontology is a description of a certain domain. In order to describe the domain objects the

ontology uses Concepts, or Classes. A Concept has a name, a description and a list of attributes.

An Attribute is a field that defines a characteristic of a Concept. It is composed of a name and a

type that can be a ’string’, ’int’, ’boolean’ or ‘float’. Figure 6 represents all these productions.

14

4.1. The parser for OntoDL files

Figure 6.: ’Concepts’ productions

This part is important because it declares all the Classes that will be present on the ontology and that

will be used on the following specifications like Hierarchies and Links. The listing bellow represent

an example of the two Concept specifications.

Concepts[

{

DSL,

Description("tailor made notation toward a specific domain")

Attributes[

{"attribute_1" string}

{"attribute_2" int}

]

},

{

ProgramLanguage

}

]

Listing 4.2: OntoDL Example: Concept specification

After the Concept specification, it is possible to define the hierarchy between two Concepts, the

first is the super-class Concept and second is the sub-class Concept. If one of the Concepts is not

previously specified, the program ignores the Hierarchy that is being specified and issues a warning

message. The production for the Hierarchy specification is represented in Figure 7.

15

4.1. The parser for OntoDL files

Figure 7.: “Hierarchies” production

The Hierarchies production specifies the relations there are normally represented by the link “is-a”.

Listing 4.3 is a Hierarchy example extracted from a OntoDL file that says that Concept “DSL”, the

subclass, is-a “ProgramLanguage”,the super class.

Hierarchies[

{

ProgramLanguage > DSL

}

]

Listing 4.3: OntoDL Example: Hierarchy specification

After defining the hierarchical relations holding among Concepts, it is necessary to define the

non-hierarchical Relations that will be used to connect Concepts. A Relation is a bridge between

Concepts and it brings semantic value to the domain graph. With that in mind it was added a produc-

tion rule to describe a Relation, as shown in Figure 8.

Figure 8.: “Relations” production

This group of Relations include all the other relations that link Concepts and are not the hierarchical

“is-a” connection. Listing 4.4 bellow shows how to specify this part.

16

4.1. The parser for OntoDL files

Relations[

{

bases

},

{

produces

}

]

Listing 4.4: OntoDL Example: Relation specification

At last, we need to define the Links that are used to identify the Concepts and the Relation that

connect them.

A Link is composed of two Concepts and one Relation. If one of the three items is not previously

specified, the Link is ignored and a warning is displayed on the console.The first ID that appears is

the ID for the first Concept, the next is for the relation and finally the last is for the second Concept.

Another interesting part about the Links is the possibility to specify cardinality constraints between

the Concepts. This allows a more precise and correct grammar generation as well as better domain

specification. There are of course, two cardinality options to specify.

The first is the “min” constraint, this allows the user to specify the minimum number of Links that

will be needed to create.

The second is clearly the “max” constraint, this allows the user to define the maximum number of

Link that can be created.

The important thing about this cardinality properties is that both are not required and the speci-

fication of one of them does not required the specification of the other. However, if none of this

cardinalities are specified the generation will assume that the Link is an N-M relation.

The Links have the specification that is shown in Figure 9.

Figure 9.: “Links” production

17

4.2. The OWL file generator

This language construction specifies the Relation that connects the Concepts. Listing 4.5 bellow

illustrates how to specify a link.

Links[

{

KnowledgeDomain bases Languagedesign

},

{

Languagedesign is_expressed Grammar

},

{

Grammar produces min 1 max 1 ProgramLanguage

}

]

Listing 4.5: OntoDL Example: Link specification

In conclusion, with this grammar specification it is possible to generate a parser to process an

OntoDL specification. This parser will store the information extracted from the input file into a set of

Java classes that were designed to accommodate the needs of the translator, as explained in the next

subsection.

4.2 T H E O W L F I L E G E N E R AT O R

The OWL Generation uses the information that were retrieved by the parser and stored in the Java

classes in order to generate the final product that is an OWL XML file.

The parser returns an object of the class Ontologies. Listing 4.6 shows how this class is organized.

public class Ontologies{

public ArrayList<Concepts> concept;

public ArrayList<Hierarchies> hierarchy;

public ArrayList<Relations> relation;

public ArrayList<Triples> triple;

public void gerarowl(String input) throws FileNotFoundException {

...

}

}

Listing 4.6: Ontologies Class

As the listing above shows, the object that is returned by the parser already has all the information

required to generate the OWL file. This information is stored in four important Array List.

18

4.2. The OWL file generator

However before going into details about these four classes and explaining the OWL generation de-

rived for each one, it is necessary to describe the beginning of the file that must be generated. Any

OWL specification starts with the references to the standard notations used. The listing bellow shows

the start specification for the OWL files.

<?xml version="1.0"?>

<!DOCTYPE Ontology [

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >

<!ENTITY xml "http://www.w3.org/XML/1998/namespace" >

<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >

]>

<Ontology xmlns="http://www.w3.org/2002/07/owl#"

xml:base="http://example.com/onto2owl/langprocessor#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:xml="http://www.w3.org/XML/1998/namespace"

ontologyIRI="IRI for the langprocessor">

<Prefix name="rdf" IRI="http://www.w3.org/1999/02/22-rdf-syntax-ns#"/>

<Prefix name="rdfs" IRI="http://www.w3.org/2000/01/rdf-schema#"/>

<Prefix name="xsd" IRI="http://www.w3.org/2001/XMLSchema#"/>

<Prefix name="owl" IRI="http://www.w3.org/2002/07/owl#"/>

Listing 4.7: OWL Specification header

The first array stores all the Concepts that are identified by the parser. The Concepts object class is

specified in Listing 4.8.

public class Concepts{

public String name;

public String description;

public ArrayList<Atributes> atribute;

}

Listing 4.8: “Concepts” Class

The OWL specification for the Concepts is very simple, just a simple declaration. Listing 4.9 illus-

trate such a declaration for the specification exemplified in Listing 4.8.

<Declaration>

<Class IRI="#KnowledgeDomain"/>

</Declaration>

<Declaration>

19

4.2. The OWL file generator

<Class IRI="#Languagedesign"/>

</Declaration>

Listing 4.9: “Concept” Specification in OWL

The second array stores the Hierarchies between concepts. This object is very simple, it only saves

the name of the super-class and the sub-class name, as shown in Listing 4.10

public class Hierarchies{

public String class_name;

public String subclass_name;

}

Listing 4.10: “Hierarchies” Class

The hierarchical connections are an important part of the ontology. The OWL that must be gener-

ated for a hierarchy is exemplified in Listing 4.11.

<SubClassOf>

<Class IRI="#DSL"/>

<Class IRI="#ProgramLanguage"/>

</SubClassOf>

<SubClassOf>

<Class IRI="#Interpreter"/>

<Class IRI="#LanguageProc"/>

</SubClassOf>

Listing 4.11: Hierarchical Specification in OWL

The third array is also important because it stores all the non-hierarchical relations between Con-

cepts. A non-hierarchical relation must be defined previously so that its name can be used to create

Links. Listing 4.12 shows how the information about Relations is saved in a Java class.

public class Relations{

public String name;

public String description;

}

Listing 4.12: “Relations” Class

In OWL the relations are not specified directly. Instead of that, they are defined as object properties

and so they are specified by the domain (the object of the relation) and the range (the object that is

associated). So to generate the respective OWL we need the Links. As was referred above, the fourth

20

4.2. The OWL file generator

array is the one that stores the Links or Triples. The Links represent what Concepts are connected and

with what Relation. The respective Java class is defined in Listing 4.13.

public class Triples {

public String class1; // Super-class

public String relation;

public int min;

public int max;

public String class2; // SubClass

}

Listing 4.13: “Triples” Class

Another important point concerning Object Properties is that in case of multiple domains for the

same property, it is important in the ranges to make a simple annotation to specify the precise domain

for each range.

<ObjectPropertyDomain>

<ObjectProperty IRI="#bases"/>

<Class IRI="#KnowledgeDomain"/>

</ObjectPropertyDomain>

<ObjectPropertyRange>

<Annotation>

<AnnotationProperty abbreviatedIRI="owl:backwardCompatibleWith"/>

<IRI>#KnowledgeDomain</IRI>

</Annotation>

<ObjectProperty IRI="#bases"/>

<Class IRI="#Languagedesign"/>

</ObjectPropertyRange>

<ObjectPropertyRange>

<Annotation>

<AnnotationProperty abbreviatedIRI="owl:backwardCompatibleWith"/>

<IRI>#Grammars</IRI>

</Annotation>

<ObjectProperty IRI="#produces"/>

<ObjectMinCardinality cardinality="1">

<ObjectProperty IRI="#produces"/>

<Class IRI="#ProgramLanguage"/>

</ObjectMinCardinality>

</ObjectPropertyRange>

Listing 4.14: Links Specification in OWL

21

4.2. The OWL file generator

To generate the final OWL file, the system just has to execute the method “RunModule(String

ontofilepath, String name for ontology)” that belong to the class “Onto2OWL”. This function exe-

cutes the OWL generation using information collected and stored in the object “ontology”. That is

returned by the OntoDL parser.

This method receives a string parameter. This parameter specifies the name of the OWL file; nor-

mally this name is the same as the OntoDL file, sent as input to the parser.

This function computes some statistics and also gathers information about the generation of the

final file. As can be seen in Figure 10, this information is displayed in the Text Area of the OWL2Gra

interface.

22

4.2. The OWL file generator

Figure 10.: Statistics processed by Onto2OWL Module

After the generation of the OWL file we can work more on the ontology, to explore or to edit it.For

that purpose we can load it into Protégé1, as displayed in Figure 11. This allows us to add information

to the domain without creating specifications from the scratch.

1 http://protege.stanford.edu/

23

4.2. The OWL file generator

Figure 11.: Protégé screenshot showing the Family ontology generated in OWL/XML

Concluding, this module was created with the objective of generating OWL files from simple on-

tological descriptions of the domain. It can be used separately from the other components but its

objective is to generate input files for the second module of this project, OWL2DSL.

24

5

OW L 2 D S L M O D U L E

This section introduces the second module, OWL2DSL, and explains how it is possible to generate

a grammar specification and a parser for a DSL to describe elements for the domain. A diagram to

sketch the architecture of this module is presented in Figure 12.

Figure 12.: OWL2DSL Architecture

As we can see in the image above, this processor is composed of two components.

One of them is the Ontology parser. As the studies showed, there are several standard formats to

specify an ontology, therefore they must be supported by this module. This component is easy to

use because there is no need to specify the input format; this module decides the type and uses the

appropriate parser. Figure 13 depicts such choice.

25

Figure 13.: Ontology Parser schema

No matter the parser activated, the final results that outcomes from this component is an Ontology

Object (OO), that contains all the information about the concepts (classes) and relations (hierarchies

and properties) extracted from the ontology description contained in the Input file. This information

gathered in the OO is crucial because it will enable the creation of the desired grammar.

The second module CodeGenerator, is a recursive function that analyze the OO and visits all

the Concepts, Hierarchical and non-hierarchical Relations connections to generate several files: the

desired attribute grammar, a simplified version containing only context free grammar, several Java

Classes and a DDesc template.

The first is a grammar with Java code for further processing and the other is the CFG (without the

Java code), for better understanding and eventual modification.

This function also generates DDesc input template. This functionality allows normal users, that are

not familiar with the specified domain and do not read easily a grammar, to know how to write correct

sentences.

Finally, the CodeGenerator, with the help of a function named “subproduction”, generates a set of

classes Java that are helpful in the next module of this project. The Java code generated at this stage,

allows for the proper processing of the generated grammar in order to extract information from the

source texts and to store it in classes for further process.

This generation process is controlled by a Java class named CodeGenerator as schematized in

Figure 14.

26

5.1. Grammar Generation

Figure 14.: CodeGenerator schema

Next sub-sections will explain in detail the grammar generation process and the associated rules,

the Java classes generation and the Ddesc file template.

5.1 G R A M M A R G E N E R AT I O N

The main objective of this master thesis was to generate a grammar that represents a certain domain

specified by an Ontology written in any OWL standard. Figure 15 represent, a small part from the

graph from the language processing ontology, our running example, previously shown in section 4.2 .

27

5.1. Grammar Generation

Figure 15.: Ontology Graph

The generation of the grammar is very systematic and obeys a certain rules. The rules are just a

few, but without them it was impossible to generate the productions.

The first rule is concerned with the main production. This rule is very simple, it states that if the

concept is connected hierarchically to Thing, this concept it will be added to an cycle of super pro-

ductions. The grammar Axiom on start symbol is named thing, it was named based on the ontology

schema where the main Concept is always “Thing”, this is any Concept “is a” Thing. The first produc-

tion, with the grammar axiom thing, has in its RHS all the Concepts that are hierarchically connected

to the class “Thing”, as alternatives. These alternatives are followed by one iterator to allow zero or

more occurrences of each one.

For example if the concept A “is a” Thing, B “is a” Thing and C “is a” A; then in the main produc-

tion Thing will appear A and B but not C. Listing bellow illustrate how this rule is applied on this first

production.

Example:: if A is_a Thing and B is_a Thing and C is_a A

The result::

thing : (A|B)+ ; //C doesn’t appear because is not connected hierarchically with

Thing.

Listing 5.1: Thing rule

In our running example, the Hierarchical Concepts connected to “Thing” are twelve. Listing 5.2

shows, with real information, some of those Concepts and the way they are specify on the first pro-

duction.

28

5.1. Grammar Generation

thing:

’Thing[’

(

knowledgedomain|

languagedesign|

programlanguage|

computerprogram|

...|

sdt|

semdt

)+ //it is always required at least 1 instance specification

’]’

;

Listing 5.2: Thing production

After the first production, the next step is to decide how to generate the other productions that

correspond to the other Concepts.

First was decided that every production would start with an ID that specifies the name of the instance

of the concept on the LHS. After that we need to address the attributes of that Concept that is being

processed. These attributes are optional, this is, it is not mandatory to define these values in the

DDesc file. The attribute is represented by its the name and its value, that can be a string, int, float or

a boolean.

The next big part of the grammar generation process is the hierarchical connections. The rule used

was the same that was used on the main production “thing”. That means a Concept that is a super-class

will have each sub-class as a symbol on a RHS alternative. Alternatives are grouped and an iterator

operator is added to allow zero or more occurrences of each alternative. Listing bellow show how this

particular rule work.

Example::

if B is_a A and C is_a A

A is a super class and B and C are connected hierarchically to A

The result is::

A : A_ID ’[’ (B | C)* ’]’ ;

Listing 5.3: Hierarchical productions rule

Finally the non-hierarchical connection. This part is different, because it depends on the cardinality

of the connections defined between Concepts. The cardinality is given by two parameters presented

on the TripleRange class, the min and max. These variables define how the relation will be translated

into a grammar rule. The variants are simple to explain. Listing 5.4 shows the cardinalities that

29

5.1. Grammar Generation

are recognized by our system and how those cardinalities are translate to the grammar. If there is a

combination of minimum and maximum the grammar generated will represent that same cardinality

in the productions.

The recognized cardinalities are just a few but they are very important for a better grammar genera-

tion. Listing 5.4 shows all the possible cardinalities recognized by OWL2GRA.

if A bases F then A -> (bases F)*
if A bases min 1 F then A -> (bases F)+

if A bases max 1 F then A -> (bases F)?

if A bases min 2 F then A -> (bases F) (bases F)+

if A bases max 2 F then A -> (bases F)? (bases F)?

if A bases min 1 max 2 F then A -> (bases F) (bases F)?

if A bases min 2 max 2 F then A -> (bases F) (bases F)

Listing 5.4: Cardinalities rules

Listing 5.5 will show some fragments of the generated grammar for the same running example to

illustrate the application of the rules that were described in the last paragraphs.

knowledgedomain:

’KnowledgeDomain{’

knowledgedomainID

(’,’ ’[’ (knowledgedomain_bases_languagedesign)* ’]’)?

’}’

;

programlanguage:

’ProgramLanguage{’

programlanguageID

(’,’ ’[’ //hierarchical connections

(gpl | dsl)*
’]’)?

(’,’ ’[’ //non-hierarchical connections

(programlanguage_specifiedby_grammar)+ // cardinality min=1

(programlanguage_specifiedby_regularexp) (

programlanguage_specifiedby_regularexp)+ // cardinality min=2

’]’)?

’}’

;

programlanguage_specifiedby_grammars:

’{’ ’specifiedby’ ’grammars’ grammarsID ’}’

;

programlanguage_specifiedby_regularexp:

30

5.2. Java Class Set Generation

’{’ ’specifiedby’ ’regularexp’ regularexpID ’}’

;

grammarsID:

STRING

;

regularexpID:

STRING

;

tg:

’TG{’

tgID

(’,’ ’[’

(tg_implements_sdt)? (tg_implements_sdt)? //cardinality max=2

(tg_implements_semdt)* //cardinality no min and no max

’]’)?

’}’

;

Listing 5.5: Generated Productions for different cardinalities

The grammar generated can be read by a Language Engineer and modified or adapted or can be

used directly by the last module of OWL2Gra. However, if the grammar is modified probably it will

not work properly on the DDesc2OWL Module.

To complement this generated attribute grammar and in order to be directly processed by the last

stage of OWL2Gra, a set of Java class will also be generated as described in the next section. These

classes store the information extracted from the DDesc input files.

5.2 JAVA C L A S S S E T G E N E R AT I O N

The Java classes enables the storage of the information that is gather for the DDesc input file process-

ing. This information is equivalent to Individuals on the OWL terminology. This concrete data will

populate that domain with Individuals(or Instances) on the ontology. The Java classes generation is

very simple and easy to understand.

The main production of the grammar must save all information from all the hierarchical Classes that

are connected to “Thing”. Listing 5.6 bellow will show a generated Java class named “Thing.java” that

contains several ArrayLists to store all the Specification.

31

5.2. Java Class Set Generation

package langprocessor;

import java.util.ArrayList;

public class Thing{

public ArrayList<KnowledgeDomain> knowledgedomains=new ArrayList<>();

public ArrayList<Languagedesign> languagedesigns=new ArrayList<>();

public ArrayList<ProgramLanguage> programlanguages=new ArrayList<>();

public ArrayList<ComputerProgram> computerprograms=new ArrayList<>();

public ArrayList<Grammar> grammars=new ArrayList<>();

public ArrayList<LanguageProc> languageprocs=new ArrayList<>();

public ArrayList<CompilerConstTool> compilerconsttools=new ArrayList<>();

public ArrayList<Analysis> analysiss=new ArrayList<>();

public ArrayList<CodeGen> codegens=new ArrayList<>();

public ArrayList<RegularExp> regularexps=new ArrayList<>();

public ArrayList<SDT> sdts=new ArrayList<>();

public ArrayList<SemDT> semdts=new ArrayList<>();

}

Listing 5.6: Generated Thing.java

The other Java Classes are generated based on the Concept properties, so each generation is differ-

ent for each Concept. The Concept attributes are represented using simple variables. The Hierarchical

connections are represented with an ArrayList, as happen for the main class “Thing”. This allows the

storage of all the hierarchical instances specified on the input. The Relations, non-hierarchical con-

nections, have the same representation with ArrayList as it happens for the hierarchical connections,

but instead of saving Concept object it saves the reference for that object.

Listing 5.7 is an example of a generated Java class that contains hierarchical and non-hierarchical

connections.

package langprocessor;

import java.util.ArrayList;

public class ProgramLanguage{

public String programlanguageID=null;

//Hierarchical connections

public ArrayList<GPL>gpl=new ArrayList<>();

public ArrayList<DSL>dsl=new ArrayList<>();

//Non-hierarchical connections

public ArrayList<String> grammar_specifiedby=new ArrayList<>();

public ArrayList<String> regularexp_specifiedby=new ArrayList<>();

}

Listing 5.7: ProgramLanguage Class generated

32

5.3. DDesc input template

The generation of these classes complements the grammar as it was explained in section 5.1 in

order to be able to process the DDesc inputs files. These is also another important class generated, the

Main. This executable class helps the process of the DDesc Module.

The next section will explain what is a DDesc and how the template is generated.

5.3 D D E S C I N P U T T E M P L AT E

For people not used with programming languages, it could be difficult to create an input file reading

the generated grammar. With that in mind, the CodeGenerator, while is processing the Ontology to

generate the grammar file and the auxiliary Java code, also produces a DDesc input file template.

This template is created with all the possibilities of the grammar. Of course the user does not need

to use all the Concepts but if needed he can look at the template to understand how it should be

specified. This template allows also to understand the cardinality of the relations between Concepts

and how they should be specified as well.

The listing bellow is an example of a DDesc template automatically generated by the CodeGenera-

tor considering again the same running example.

Thing[

KnowledgeDomain{

"Intance of knowledgedomain ID"

,[

{ bases "languagedesignID_reference" } // many possible but need to

be sequential

]

}

Languagedesign{

"Intance of languagedesign ID"

,[

{ produces "programlanguageID_reference" } // many possible but need

to be sequential

]

}

ProgramLanguage{

"Intance of programlanguage ID"

,[//this instances bellow are not necessary

GPL{

"Intance of gpl ID"

}

DSL{

"Intance of dsl ID"

}

]

,[

33

5.3. DDesc input template

{ specifiedby "grammarID_reference" } // at least one is required

{ specifiedby "regularexpID_reference" } // at least two is required

but more possible

]

}

]

Listing 5.8: Generated DDesc Template

As it is possible to see in Listing 5.8, it is very simple to create an input for describing a concrete do-

main to be processed by the next Module DDesc. This create the possibility to populate the Ontology

with many Concept instances just with one simple input file.

34

6

D D E S C 2 OW L M O D U L E

DDesc2OWL is the last module of the OWL2Gra. The purpose of this module is to populate the initial

ontology that was used to generate the grammar.

The initial ontology is only a specification a rigorous schema of a certain domain. However, if the

ontology is populated the domain gains meaning and this allows establishing a network of knowledge

that can be used by search engines or used on the Web pages giving them some semantic value. This

ontology-based technology is being developing exponentially, because it facilitates the work of the

search engines to catalog the information on the pages; this results in better performance and in better

quality of the retrieved information.

This Module is very simple; it receives three parameters, that are files, and processes them in

different moments.

Figure 16 represents the interface of this module.

Figure 16.: DDesc2OWL Module Interface

The first important parameter is the path of the grammar file that was generated during the last

phase. This grammar will need the Java class set (also generated at the previous stage).

The second file is the DDesc input file. This file describes all the instances that will create the

individuals on the ontology.

35

Finally, the last file is the original ontology that was used for the creation of the grammar by the

OWL2DSL Module. This file will be processed again to rebuild the ontology in order to create the

populated version.

Figure 17 represents a schema of this module that will be described with full details in the next

sections.

Figure 17.: DDesc2OWL Module schema

36

6.1. Grammar DDescG Processor

6.1 G R A M M A R D D E S C G P RO C E S S O R

In order to use the grammar generated at the second phase (by OWL2DSL module), it is required to

use a compiler generator like AnTLR to generate the Parser and Lexer files that will be used to process

the DDesc File.

This Jar file, named “antlr-3.5.1-complete.jar”, is included on the OWL2Gra program. The Parser

and Lexer are generated using a single system call.

Listing 6.1 describes how this grammar processor works; it makes a process involving the compiler

generator chosen (AntLR) with the grammar file as argument. If there is a problem with the Parser

and Lexer generation the TextArea on the module interface will show the error.

Process p=Runtime.getRuntime().exec("java -jar antlr-3.5.1-complete.jar -Dfile.

encoding=utf-8 "+grammarfile.getAbsolutePath());

p.waitFor(); //wait that the generation is completed.

if(p.exitValue()==0){

DataInputStream dis = new DataInputStream(p.getErrorStream());

String line = "";

while ((line = dis.readLine()) != null)

{

jTextArea1.setText(jTextArea1.getText()+"\n"+line);

}

dis.close();

}else{

DataInputStream dis = new DataInputStream(p.getErrorStream());

String line = "";

while ((line = dis.readLine()) != null){

jTextArea1.setText(jTextArea1.getText()+"\n"+line);

}

dis.close();

}

Listing 6.1: Grammar Pre-Processing

The DDesc Processor, that is generated by this process, is the important part of this module, because

it is responsible for recognizing and gathering all the information that is represented in the DDesc

input file. Without this Processor, it was not possible to retrieve the population that is in the DDesc

file.

The DDesc Processor (generated at this stage) will be explained in the next section.

37

6.2. DSL(DDesc) Processor

6.2 D S L (D D E S C) P RO C E S S O R

In this part, it is crucial that all the information is collected properly in the right places so that this

process must run perfectly.

Several components are necessary to execute this phase: all the Java classes that were generated by

the last Module OWL2DSL and the Parser and Lexer that were generated in the previous stage. In

addiction, this process uses the file Main.java that was created by the last Module.

Listing 6.2 shows how the DDesc2OWL handles this process. However, if any error occurs, exit

value different than zero, it will be printed in the TextArea of the Module interface.

p=Runtime.getRuntime().exec("javac -cp antlr-3.5.1-complete.jar:commons-io-2.4.

jar:\$CLASSPATH:dom4j-2.0.0-ALPHA-2.jar:json-simple-1.1.1.jar:. -encoding utf8

Main.java");

if(p.exitValue()==0){

DataInputStream dis = new DataInputStream(p.getErrorStream());

String line = "";

while ((line = dis.readLine()) != null)

{

jTextArea1.setText(jTextArea1.getText()+"\n"+line);

}

dis.close();

}else{

DataInputStream dis = new DataInputStream(p.getErrorStream());

String line = "";

while ((line = dis.readLine()) != null){

jTextArea1.setText(jTextArea1.getText()+"\n"+line);

}

dis.close();

}

Listing 6.2: Grammar Pre-Processing

If DDesc input is not properly written, the errors will be detected and displayed in the TextArea of

DDesc2OWL interface.

Figure 18 bellow demonstrates the processing of an example in order to demonstrate the type of the

alerts messages that are issued to the user. This allows the user to correct the DDesc input easily and

quickly.

38

6.2. DSL(DDesc) Processor

Figure 18.: DDesc error alert example

If the process is completed and no errors are detected none of these error messages will appear and

the user can understand that everything is correctly processed. In this case, when the processing is

completed with success, the program will create an ontology populated with extracted data.

The result of this grammar process is a file with the Meta information of the instances described in

the DDesc input file. This file is used by the OWL Generator, to generate the OWL. This generation

uses a certain set of rules for the proper creation of OWL individuals.

This Meta information is stored in a Json file. The file contains an array of objects that represents

the Individuals of the ontology. These objects have the same specification; first they contain two

pairs that are mandatory, “name” and “type”, these pairs represent the name of each individual and

the ontology class where belongs to. In addition, there are another two pairs, not mandatory, that

represent information that can be or not be present in the individual specification contained in the

DDesc file. These two pairs are the “dataprop” and the “objprop”; both have the same structure.

39

6.3. OWL Generator

The “dataprop”, as the name shows, is used to store the Data Properties of the Individual. In the

array objects, it is specified what is the Data property and its value. As referred above, this array may

be empty because not every class have Data Properties.

The “objprop” is very similar to the “dataprop”. This time the array is used to store the non-

hierarchical relation between Individuals. The objects in the array store the same type of information

that the Data properties, but in this case it stores the name of the Object properties and the Individual

that it is connected.

Listing 6.3 shows an example of the Json that is being generated for the processed grammar.

{

"instancias":[

{

"name":"Domain_Knowledge_individual_name1",

"type":"KnowledgeDomain",

"objprop":[

{

"data":"languagedesignID",

"prop":"bases"

}

]

},{

"name":"Domain_Knowledge_individual_name2",

"type":"KnowledgeDomain",

"objprop":[

{

"data":"languagedesignID",

"prop":"bases"

}

]

}

]

}

Listing 6.3: Metadata File generated

The grammar processor is just a middle processor for this module. Next section explains the final

part of this module that generates the OWL file with the individuals.

6.3 O W L G E N E R AT O R

This component of the third module, gathers all the information from the instances described in the

input test and add that information to the original ontology file.

40

6.3. OWL Generator

The first part of this process is to get the initial OWL file so that no reference or something is

missing in the final ontology file.

The same OWL API that is used to parse the ontology on the OWL2DSL Module, now its used to

add the information of the individuals on the final ontology.

To be able to generate these individuals the module should have access to the generated file with

the Meta information that was described in the section above.

Listing bellow shows this first verification on the module.

File metajson=new File("metadata.json");

if(!metajson.exists()){

output+="\nERROR::Metadata.json was not found the process was not completed!!

";

return output;

}

Listing 6.4: Validation of the “metadata.json”

After the verification, the module is ready to create the individuals with the help of the OWL API.

This API allows the module to add individuals without having to rewrite the ontology from the scratch.

In order to create the sequence of individuals the “metadata.json” is processed and for each object

inside the same process occurs.

First is extracted the “name” and the “type” from the object that is processed. This information will

help on the declaration of the Individual.

The Listing 6.5 explains how this information is used by the OWL API to generate the Individual.

JSONObject obj=i.next();//get the object that will be processed

//Individual and Class type generation

OWLNamedIndividual name =df.getOWLNamedIndividual(IRI.create(obj.get("name").

toString()));

OWLClass type = df.getOWLClass(IRI.create(ontology.getOntologyID().getOntologyIRI

()+"#"+obj.get("type").toString()));

OWLClassAssertionAxiom classAssertion = df.getOWLClassAssertionAxiom(type, name);

manager.addAxiom(ontology,classAssertion);

Listing 6.5: Declaration of the individual

In addiction, it was explained that this object that contains the individual information has two pairs

that are not mandatory, the “dataprop” and the “objprop”.

The first to be processed is the “dataprop” array. This array contains the object that specifies all the

Data properties that need to be add to the individual that was declare in the example 6.5. To be able to

do this the object contains two important keys that are “prop”, specifies the name of the Data Property,

and the “data” that specify the value of that property.

41

6.3. OWL Generator

The Listing bellow shows an example of how this property is added to the individual.

if(obj.containsKey("dataprop")){

JSONArray object=(JSONArray)obj.get("dataprop");

for(Iterator<JSONObject> o = object.iterator();o.hasNext();){

JSONObject otemp=o.next();

OWLDataProperty prop = df.getOWLDataProperty(IRI.create(ontology.

getOntologyID().getOntologyIRI() + "#" + otemp.get("prop").toString())

);

OWLDataPropertyAssertionAxiom dataPropertyAssertionAxiom = df.

getOWLDataPropertyAssertionAxiom(prop, name, otemp.get("data").

toString());

manager.addAxiom(ontology,dataPropertyAssertionAxiom);

}

}

Listing 6.6: Data Property specification example

The final processing array is the “objprop’that represents the Object Properties. The non-hierarchical

connection between individuals is specified by this array as it was explained before. The objects in

the array have only two keys, like the objects presented on the Data Properties. However this time

the “prop” key saves the value of the Object Property that will be used and the “data” represents the

Individual that is connect by the property to the individual.

Listing 6.7 represent the creation process of this Object Properties.

//ObjectProperties generation

if(obj.containsKey("objprop")){

JSONArray object=(JSONArray)obj.get("objprop");

for(Iterator<JSONObject> o = object.iterator();o.hasNext();){

JSONObject otemp=o.next();

OWLObjectProperty prop = df.getOWLObjectProperty(IRI.create(ontology.

getOntologyID().getOntologyIRI()+"#"+otemp.get("prop").toString()));

OWLNamedIndividual connected_indiv =df.getOWLNamedIndividual(IRI.create(

otemp.get("data").toString()));

OWLObjectPropertyAssertionAxiom propertyAssertion = df.

getOWLObjectPropertyAssertionAxiom(prop,name,connected_indiv);

manager.addAxiom(ontology,propertyAssertion);

}

}

Listing 6.7: Object Property specification example

The result of this module is the population of the original ontology. This allows to use the outcome

to reach other objectives rather than just describing the domain. As was refereed before a populated

42

6.3. OWL Generator

ontology can be used for several cases, like web-semantic that allows better querying results from the

web search engines. An offline use is also possible, it can be used as a small database and can use

SparQL querying to search the information.

Listing 6.8 shows a simple example of a DDesc input file that will create two individuals on the

ontology through the OWL Generator that was described.

Thing[

KnowledgeDomain{

"KnowledgeDomain" //name of the individual

,[{ bases languagedesign "Java" }]//connection to other individuals

}

Languagedesign{

"Java"

,[{ produces programlanguage "Java_Language" }]

}

]

Listing 6.8: DDesc input example

Figure 19 represents the ontology with the generated individuals by the Module DDesc2OWL from

the previous example of the DDesc input, opened with Protégé system.

Figure 19.: Final Ontology with individuals loaded into Protégé

43

6.3. OWL Generator

This module was not included in the original objective but during the development it was possible

to understand the possibility to create it easily and it become clear how useful it could be to populate

an entire ontology with only one simple input.

44

7

C O N C L U S I O N

The masterwork that was described and proposed along this thesis report was challenging and has

potential, because these two technologies addressed in this master thesis (ontologies and grammars)

can work perfectly together like it was proved.

The work reported had a slow start with the collection and study of the most important state of the art

technologies used in the two referred areas but it speed up when the development phase started. In the

beginning of this master thesis, the objective was only to prove the possibility of converting Ontology

to a Domain Specific Language generating its grammar. However, with the need of Ontologies to

further test the generation during the development, a new objective was added to the project: that was

to allow creating an Ontology through a Domain Specific Language. To realize this objective, a new

module was added: Onto2OWL.

This new module, Onto2OWL, allows the creation of a simple ontology based on simple sentences

that describes the domain and all its properties in terms of relations between concepts. This proves

that not only is possible to create an ontology based on a simple description file, such as the one

written in OntoDL (Ontology Description Language), but also proves to be very useful for learning

what is ontology and how it can be specified.

The development of this first module was very useful for the main phase of this work that was to

transform ontology into an attribute grammar for a Domain Specific Language. The progress of the

work has shown that it is necessary to add some annotations to the ontology in order to generate a full

attribute grammar.

The Domain and the Range of the Object Properties are not specified in a proper way that allows

the Code Generator, see chapter 5, and process correctly them. The problem was found when different

Concepts are connected to different Ranges with the same property; in that case, the Code generator

will assume that all the Domains have all the Ranges. This assumption leads to the generation of a

grammar with errors. This problem was easily overcome with OWL Annotations that tell the parser,

what are the proper ranges for each Domain. The annotations are very simple to process and avoid

the errors on the attribute grammar. If the grammar does not present annotations, the relations will be

ignored and an error message issued.

With the addiction of cardinality to the properties, the Code Generator is able to generate a more

correct and complete grammar.

45

After the development of this module, when the idea of generating a grammar from an Ontology

proven feasible, the possibility of using the same generated grammar to populate the Ontology was

proposed and some modifications were made to the Code Generator that was responsible to generate

the grammar.

The Code Generator was changed in order to generate two grammars from the Ontology. Both

grammars describe the same syntax; have the same productions and syntactic sugar. However, one

of them has attributes and some embedded code that allows the storage of information for further

processing.

For a user that is not familiar with attribute grammars it is not easy to produce a correct input. To

overcome this problem, the Code Generator suffers other change in order to generate a template for

the domain description. This allows users without experience on the Domain Specific Language, to

work with this tool and obtain the results they are expecting.

This template is useful to produce the input description that will be feed to the third module that was

created with the intention of populating the Ontology (that was used to create the attribute grammar)

with the data that can be extracted from a Domain Description File.

This is a smart way to populate on Ontology because it reduces time and effort on this task. The

template supports the creation of many individuals and establishes the individuals connections.

To develop this module we faced among some problems with the proper generation of the individu-

als, but all the problems were resolved easily. This module is proving that the inverse path of the one

followed OWL2DSL is also possible, and that a DSL can generate ontology with individuals that can

be used for many purposes.

The possibility given by the command line support is important because it makes the OWL2Gra a

tool that can be used by other system and run on other systems.

Finally, it is possible to state that the outcomes of this master thesis work accomplished all the

initial objectives that were proposed and the other objectives that were created along the way. These

Modules can be used separately for different purposes. This allows a customizable use of this tool

that proves that is possible to generate a semantic sugared attribute grammar from Ontology.

46

B I B L I O G R A P H Y

Ines Ceh, Matej Crepinsek, Tomaz Kosar, and Marjan Mernik. Ontology driven development of

domain-specific languages, 2011.

D.Jin. Ontological adaptive integration of reverse engineering tools, 2004.

Rosario Girardi. The hermes project advances and challenges, 2010.

Fausto Giunchiglia, Biswanath Dutta, and Vincenzo Maltese. Faceted lightweight ontologies, 2009.

S. Grimm. Knowledge representation and ontologies, in m. gaber. (eds.) scientific data mining and

knowledge discovery: Principles and foundations, 2010.

Tomaz Kosar, Pablo E. Martı́nez López, Pablo A. Barrientos, and Marjan Mernik. A preliminary study

on various implementation approaches of domain-specific language, 2008.

Nuno Ernesto Salgado Oliveira. Improving program comprehension tools for domain specific lan-

guages, 2010.

Jeff Gray Robert Tairas, Marjan Mernik. Using ontologies in the domain analysis of domain-specific

languages, 2009.

Robert Tairas, Marjan Mernik, and Jeff Gray. Using ontologies in the domain analysis of domain-

specific languages, 2009.

Arie van Deursen and Paul Klint. Domain-specific language design requires feature descriptions,

2001.

47

A
C A S E S T U DY 1 - B O O K I N D E X

This case study reflects the daily work that is found on a normal day at some book store, the book index.

This is a very simple example that show how easy is to describe a domain like this and demonstrate

how OWL2Gra processes all the information and manage the cardinality restrictions in the relations

between Individuals.

A.1 B O O K I N D E X O N T O D L

This DSL show how easy is to define the things that represent the Book.

The listing bellow show the OntoDL.

Ontology{

Concepts[

{Book},

{

Page,

Attributes[

{text string},

{number int}

]

},

{Title},

{SpecialTerm}

]

Hierarchies[

]

Relations[

{has},

{contains}

]

Links[

{Book has Page},

{Book has min 1 Title},

48

A.2. Book Index generated OWL

{Page contains SpecialTerm}

]

}

Listing A.1: Book Index OntoDL

A.2 B O O K I N D E X G E N E R AT E D O W L

The listing bellow show the OWL that has generated from Onto2OWL Module.

<?xml version="1.0"?>

<Ontology xmlns="http://www.w3.org/2002/07/owl#"

xml:base="http://example.com/onto2owl/Bookindex/"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:xml="http://www.w3.org/XML/1998/namespace"

ontologyIRI="http://example.com/onto2owl/Bookindex/">

<Prefix name="rdf" IRI="http://www.w3.org/1999/02/22-rdf-syntax-ns#"/>

{...}

<Prefix name="owl" IRI="http://www.w3.org/2002/07/owl#"/>

<Declaration>

<Class IRI="#Book"/>

</Declaration>

{...}

<Declaration>

<ObjectProperty IRI="#contains"/>

</Declaration>

{...}

<Declaration>

<DataProperty IRI="#number"/>

</Declaration>

{...}

<ObjectPropertyDomain>

<ObjectProperty IRI="#contains"/>

<Class IRI="#Page"/>

</ObjectPropertyDomain>

{...}

<ObjectPropertyRange>

<Annotation>

<AnnotationProperty abbreviatedIRI="owl:backwardCompatibleWith"/>

<IRI>#Page</IRI>

</Annotation>

<ObjectProperty IRI="#contains"/>

<Class IRI="#SpecialTerm"/>

49

A.3. Book Index generated Grammar

</ObjectPropertyRange>

<ObjectPropertyRange>

<Annotation>

<AnnotationProperty abbreviatedIRI="owl:backwardCompatibleWith"/>

<IRI>#Book</IRI>

</Annotation>

<ObjectProperty IRI="#has"/>

<Class IRI="#Page"/>

</ObjectPropertyRange>

<ObjectPropertyRange>

<Annotation>

<AnnotationProperty abbreviatedIRI="owl:backwardCompatibleWith"/>

<IRI>#Book</IRI>

</Annotation>

<ObjectProperty IRI="#has"/>

<ObjectMinCardinality cardinality="1">

<ObjectProperty IRI="#has"/>

<Class IRI="#Title"/>

</ObjectMinCardinality>

</ObjectPropertyRange>

<DataPropertyDomain>

<DataProperty IRI="#number"/>

<Class IRI="#Page"/>

</DataPropertyDomain>

{...}

<DataPropertyRange>

<DataProperty IRI="#text"/>

<Datatype IRI="string"/>

</DataPropertyRange>

</Ontology>

Listing A.2: Book index generated OWL

A.3 B O O K I N D E X G E N E R AT E D G R A M M A R

Listing bellow shows the resulting grammar of OWL2DSL from the OWL presented on listing A.2.

grammar Bookindex;

thing:

’Thing[’(page|title|specialterm|book)+ ’]’

;

page: ’Page{’pageID (’number’ number)?(’text’ text)?

(’,’ ’[’ (page_contains_specialterm)* ’]’)?’}’

50

A.3. Book Index generated Grammar

;

pageID :

STRING

;

number:

INT

;

text:

STRING

;

page_contains_specialterm:

’{’ ’contains’ ’specialterm’ specialtermID’}’;

title: ’Title{’titleID ’}’

;

titleID :

STRING

;

specialterm: ’SpecialTerm{’specialtermID ’}’

;

specialtermID :

STRING

;

book: ’Book{’bookID

(’,’ ’[’ (book_has_page)*(book_has_title)+ ’]’)?’}’

;

bookID :

STRING

;

book_has_page:

’{’ ’has’ ’page’ pageID’}’;

book_has_title:

’{’ ’has’ ’title’ titleID’}’;

Listing A.3: Book index Grammar generated

51

A.4. Book Index DDesc Input

A.4 B O O K I N D E X D D E S C I N P U T

Listing A.4 shows an possible input for the last module in DDesc terminology.

Thing[

Page{

"GOT_page1"

text "Concent of the page"

}

Book{ "GOT_Book"

,[

{ has page "GOT_page1" }

{ has title "Game of Thrones" }

]

}

Title{

"Game of Thrones"

}

]

Listing A.4: Book index DDesc input example

A.5 B O O K I N D E X D D E S C 2 O W L R E S U LT

In order to complete this Figure 20 represent the final result on DDesc2OWL module, the original

ontology with individuals.

Figure 20.: DDesc2OWL final result Case Study 1 opened in Protégé

52

B
C A S E S T U DY 2 - L AU N D RY P RO C E S S

The case study is about a very different domain, the daily process of a Laundry.

In this case study is possible to demonstrate properties like multiple attributes and also the cardinal-

ity restrictions on Links.

B.1 L AU N D RY O N T O D L

Listing B.1 shows a clear example of multiple attributes on Concept “Type” and also cardinality re-

strictions on the last two links.

Ontology{

Concepts[

{Laundry},

{Order},

{Client},

{Bag},

{Item},

{

Type,

Attributes[

{classes string},

{tinge string},

{material string}

]

},

{Quantity}

]

Hierarchies[

]

Relations[

{has},

{owns},

{receives},

{contains}

53

B.2. Laundry generated OWL

]

Links[

{Laundry receives Order},

{Client owns Order},

{Order contains Bag},

{Bag contains Item},

{Item has max 1 Type},

{Item has max 1 Quantity}

]

}

Listing B.1: Laundry OntoDL

B.2 L AU N D RY G E N E R AT E D O W L

Listing B.2 show the OWL that has generated from Onto2OWL Module.

<?xml version="1.0"?>

<Ontology xmlns="http://www.w3.org/2002/07/owl#"

xml:base="http://example.com/onto2owl/Laundry/"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:xml="http://www.w3.org/XML/1998/namespace"

ontologyIRI="http://example.com/onto2owl/Laundry/">

<Prefix name="rdf" IRI="http://www.w3.org/1999/02/22-rdf-syntax-ns#"/>

{...}

<Prefix name="owl" IRI="http://www.w3.org/2002/07/owl#"/>

<Declaration>

<Class IRI="#Bag"/>

</Declaration>

<Declaration>

<Class IRI="#Client"/>

</Declaration>

<Declaration>

<Class IRI="#Item"/>

</Declaration>

<Declaration>

<Class IRI="#Laundry"/>

</Declaration>

{...}

<Declaration>

<ObjectProperty IRI="#contains"/>

</Declaration>

{...}

54

B.2. Laundry generated OWL

<Declaration>

<ObjectProperty IRI="#receives"/>

</Declaration>

{...}

<Declaration>

<DataProperty IRI="#tinge"/>

</Declaration>

{...}

<ObjectPropertyDomain>

<ObjectProperty IRI="#receives"/>

<Class IRI="#Laundry"/>

</ObjectPropertyDomain>

<ObjectPropertyRange>

<Annotation>

<AnnotationProperty abbreviatedIRI="owl:backwardCompatibleWith"/>

<IRI>#Order</IRI>

</Annotation>

<ObjectProperty IRI="#contains"/>

<Class IRI="#Bag"/>

</ObjectPropertyRange>

{...}

<ObjectPropertyRange>

<Annotation>

<AnnotationProperty abbreviatedIRI="owl:backwardCompatibleWith"/>

<IRI>#Item</IRI>

</Annotation>

<ObjectProperty IRI="#has"/>

<ObjectMaxCardinality cardinality="1">

<ObjectProperty IRI="#has"/>

<Class IRI="#Type"/>

</ObjectMaxCardinality>

</ObjectPropertyRange>

<DataPropertyDomain>

<DataProperty IRI="#material"/>

<Class IRI="#Type"/>

</DataPropertyDomain>

{...}

<DataPropertyRange>

<DataProperty IRI="#tinge"/>

<Datatype IRI="string"/>

</DataPropertyRange>

</Ontology>

Listing B.2: Laundry generated OWL

55

B.3. Laundry generated Grammar

B.3 L AU N D RY G E N E R AT E D G R A M M A R

Listing B.3 represent one of the outcomes from OWL2DSL. In this grammar its possible to see clearly

in the “type” production how the Data properties(attributes on OntoDL) are processed and generated.

grammar Laundry;

thing:

’Thing[’(type|laundry|bag|client|item|order|quantity)+ ’]’

;

type: ’Type{’typeID (’tinge’ tinge)?(’material’ material)?(’classes’ classes)?’

}’

;

typeID :

STRING

;

tinge:

STRING

;

material:

STRING

;

classes:

STRING

;

laundry: ’Laundry{’laundryID

(’,’ ’[’ (laundry_receives_order)* ’]’)?’}’

;

laundryID :

STRING

;

laundry_receives_order:

’{’ ’receives’ ’order’ orderID’}’;

bag: ’Bag{’bagID

(’,’ ’[’ (bag_contains_item)* ’]’)?’}’

;

bagID :

STRING

;

bag_contains_item:

56

B.3. Laundry generated Grammar

’{’ ’contains’ ’item’ itemID’}’;

client: ’Client{’clientID

(’,’ ’[’ (client_owns_order)* ’]’)?’}’

;

clientID :

STRING

;

client_owns_order:

’{’ ’owns’ ’order’ orderID’}’;

item: ’Item{’itemID

(’,’ ’[’ (item_has_quantity)?(item_has_type)? ’]’)?’}’

;

itemID :

STRING

;

item_has_quantity:

’{’ ’has’ ’quantity’ quantityID’}’;

item_has_type:

’{’ ’has’ ’type’ typeID’}’;

order: ’Order{’orderID

(’,’ ’[’ (order_contains_bag)* ’]’)?’}’

;

orderID :

STRING

;

order_contains_bag:

’{’ ’contains’ ’bag’ bagID’}’;

quantity: ’Quantity{’quantityID ’}’

;

quantityID :

STRING

;

Listing B.3: Laundry generated Grammar

57

B.4. Laundry DDesc input

B.4 L AU N D RY D D E S C I N P U T

In this DDesc input is possible to understand the terminology in the “Type” specification, that is used

to describe the Data Properties.

Listing B.4 shows how easy is to write several individuals and even to link Individuals to other

without specify them like “bag 2”.

Thing[

Client{

"Client_1"

,[

{ owns order "order_2" }

{ owns order "order_4" }

]

}

Client{

"Client_2"

,[

{ owns order "order_1" }

{ owns order "order_3" }

]

}

Item{

"item_1"

,[

{ has type "type_1" }

{ has quantity "quantity_private" }

]

}

Type{

"type_1"

tinge "colour_full"

classes "colour_cloth"

material "not fibers"

}

Laundry{

"Laundry_name"

,[

{ receives order "order_1" }

{ receives order "order_2" }

{ receives order "order_3" }

{ receives order "order_4" }

]

}

Bag{

"bag_1"

58

B.5. Laundry Process DDesc2OWL Result

,[

{ contains item "item_1" }

{ contains item "item_2" }

]

}

Quantity{

"quantity_private"

}

Order{ "order_1"

,[

{ contains bag "bag_1" }

]

}

Order{ "order_2"

,[

{ contains bag "bag_2" }

]

}

Order{ "order_3"

,[

{ contains bag "bag_1" }

]

}

Order{ "order_4"

,[

{ contains bag "bag_2" }

]

}

]

Listing B.4: Laundry Process DDesc input

B.5 L AU N D RY P RO C E S S D D E S C 2 O W L R E S U LT

In the example above it was shown that one of the individuals was not described on the Ddesc input,

but once the Reasoner starts to process the ontology it associate the individual “bag 2” with the class

“Bag”.

Figure 21 represent the final result of the same input.

59

B.5. Laundry Process DDesc2OWL Result

Figure 21.: DDesc2OWL final result on Case Study 2 opened in Protégé

Figure 21 demonstrate even when the user forget to describe a concept in the DDesc input,the

module will create that individual without a type specify. However using the Reasoner, the individuals

will be classified by the Reasoner logic processor. In this case “bag 2” it will be associated with the

Class “Bag”.

60

C
C A S E S T U DY 3 - L A N G UAG E P RO C E S S I N G D O M A I N

The particularity of this case study is to demonstrate that the OWL2Gra also supports big and complex

domains.

There is two parts that are important to retain from this case study; the complexity of the domain

and also the way that hierarchies are handle in all the OWL2Gra modules.

C.1 L A N G UAG E P RO C E S S I N G O N T O D L

This first section demonstrate an big and complex ontology being described using a simple language

as OntoDL.

Listing C.1 shows how easy is to describe a complex domain using a simple notation and also how

hierarchies are describe in OntoDL terminology.

Ontology{

Concepts[

{KnowledgeDomain},

{Languagedesign},

{GPL},

{DSL},

{ProgramLanguage},

{ComputerProgram},

{Grammars},

{LanguageProc},

{CompilerConstTool},

{Interpreter},

{Analyzer},

{Translator},

{Compilers},

{Analysis},

{LexicalAnal},

{SyntacticAnal},

{SemanticAnal},

{CodeGen},

61

C.1. Language Processing OntoDL

{RegularExp},

{CFG},

{TG},

{AG},

{SDT},

{SemDT}

]

Hierarchies[

{ProgramLanguage > GPL},

{ProgramLanguage > DSL},

{LanguageProc > Interpreter},

{LanguageProc > Compilers},

{LanguageProc > Analyzer},

{LanguageProc > Translator},

{Grammars > CFG},

{Grammars > TG},

{Grammars > AG},

{Analysis > LexicalAnal},

{Analysis > SyntacticAnal},

{Analysis > SemanticAnal}

]

Relations[

{bases},

{produces},

{isWritten},

{requires},

{uses},

{implements},

{specifiedBy},

{is_expressed},

{constructs}

]

Links[

{KnowledgeDomain bases Languagedesign},

{Languagedesign isexpressed Grammars},

{Grammars produces min 1 max 1 ProgramLanguage},

{ComputerProgram isWritten ProgramLanguage},

{ComputerProgram requires LanguageProc},

{ProgramLanguage specifiedBy min 1 Grammars},

{ProgramLanguage specifiedBy min 2 RegularExp},

{CompilerConstTool constructs LanguageProc},

{CompilerConstTool uses Grammars},

{LexicalAnal uses RegularExp},

{SyntacticAnal uses CFG},

{SemanticAnal uses TG},

{SemanticAnal uses min 1 max 2 AG},

{CodeGen uses TG},

62

C.2. Language Processing generated OWL

{CodeGen uses AG},

{TG implements max 2 SDT},

{AG implements SemDT},

{LanguageProc requires Analysis},

{LanguageProc requires CodeGen}

]

}

Listing C.1: Language Processing OntoDL

C.2 L A N G UAG E P RO C E S S I N G G E N E R AT E D O W L

Listing C.2 shows the OWL that is the outcome of Onto2OWL module.

<?xml version="1.0"?>

<Ontology xmlns="http://www.w3.org/2002/07/owl#"

xml:base="http://example.com/onto2owl/Langprocessor/"

{...}

<Prefix name="owl" IRI="http://www.w3.org/2002/07/owl#"/>

<Declaration>

<Class IRI="#AG"/>

</Declaration>

<Declaration>

<Class IRI="#Analysis"/>

</Declaration>

<Declaration>

<Class IRI="#Analyzer"/>

</Declaration>

<Declaration>

<Class IRI="#CFG"/>

</Declaration>

<Declaration>

<Class IRI="#CodeGen"/>

</Declaration>

{...}

<Declaration>

<ObjectProperty IRI="#requires"/>

</Declaration>

<Declaration>

<ObjectProperty IRI="#specifiedBy"/>

</Declaration>

<Declaration>

<ObjectProperty IRI="#uses"/>

</Declaration>

<SubClassOf>

63

C.2. Language Processing generated OWL

<Class IRI="#Analysis"/>

<Class IRI="#LexicalAnal"/>

</SubClassOf>

<SubClassOf>

<Class IRI="#Analysis"/>

<Class IRI="#SemanticAnal"/>

</SubClassOf>

<SubClassOf>

<Class IRI="#Analysis"/>

<Class IRI="#SyntacticAnal"/>

</SubClassOf>

<SubClassOf>

<Class IRI="#Grammars"/>

<Class IRI="#AG"/>

</SubClassOf>

{...}

<SubClassOf>

<Class IRI="#ProgramLanguage"/>

<Class IRI="#DSL"/>

</SubClassOf>

<SubClassOf>

<Class IRI="#ProgramLanguage"/>

<Class IRI="#GPL"/>

</SubClassOf>

<ObjectPropertyDomain>

<ObjectProperty IRI="#bases"/>

<Class IRI="#KnowledgeDomain"/>

</ObjectPropertyDomain>

<ObjectPropertyDomain>

<ObjectProperty IRI="#isWritten"/>

<Class IRI="#ComputerProgram"/>

</ObjectPropertyDomain>

<ObjectPropertyDomain>

<ObjectProperty IRI="#is_expressed"/>

<Class IRI="#Languagedesign"/>

</ObjectPropertyDomain>

<ObjectPropertyDomain>

<ObjectProperty IRI="#produces"/>

<Class IRI="#Grammars"/>

</ObjectPropertyDomain>

{...}

<ObjectPropertyDomain>

<ObjectProperty IRI="#requires"/>

<Class IRI="#ComputerProgram"/>

</ObjectPropertyDomain>

<ObjectPropertyDomain>

<ObjectProperty IRI="#requires"/>

64

C.2. Language Processing generated OWL

<Class IRI="#LanguageProc"/>

</ObjectPropertyDomain>

<ObjectPropertyDomain>

<ObjectProperty IRI="#specifiedBy"/>

<Class IRI="#ProgramLanguage"/>

</ObjectPropertyDomain>

<ObjectPropertyDomain>

<ObjectProperty IRI="#uses"/>

<Class IRI="#SyntacticAnal"/>

</ObjectPropertyDomain>

<ObjectPropertyRange>

<Annotation>

<AnnotationProperty abbreviatedIRI="owl:backwardCompatibleWith"/>

<IRI>#KnowledgeDomain</IRI>

</Annotation>

<ObjectProperty IRI="#bases"/>

<Class IRI="#Languagedesign"/>

</ObjectPropertyRange>

<ObjectPropertyRange>

<Annotation>

<AnnotationProperty abbreviatedIRI="owl:backwardCompatibleWith"/>

<IRI>#CompilerConstTool</IRI>

</Annotation>

<ObjectProperty IRI="#constructs"/>

<Class IRI="#LanguageProc"/>

</ObjectPropertyRange>

<ObjectPropertyRange>

<Annotation>

<AnnotationProperty abbreviatedIRI="owl:backwardCompatibleWith"/>

<IRI>#AG</IRI>

</Annotation>

<ObjectProperty IRI="#implements"/>

<Class IRI="#SemDT"/>

</ObjectPropertyRange>

<ObjectPropertyRange>

<Annotation>

<AnnotationProperty abbreviatedIRI="owl:backwardCompatibleWith"/>

<IRI>#TG</IRI>

</Annotation>

<ObjectProperty IRI="#implements"/>

<ObjectMaxCardinality cardinality="2">

<ObjectProperty IRI="#implements"/>

<Class IRI="#SDT"/>

</ObjectMaxCardinality>

</ObjectPropertyRange>

{...}

<ObjectPropertyRange>

65

C.3. Language Processor generated Grammar

<Annotation>

<AnnotationProperty abbreviatedIRI="owl:backwardCompatibleWith"/>

<IRI>#Grammars</IRI>

</Annotation>

<ObjectProperty IRI="#produces"/>

<ObjectMinCardinality cardinality="1">

<ObjectProperty IRI="#produces"/>

<Class IRI="#ProgramLanguage"/>

</ObjectMinCardinality>

</ObjectPropertyRange>

<ObjectPropertyRange>

<Annotation>

<AnnotationProperty abbreviatedIRI="owl:backwardCompatibleWith"/>

<IRI>#ProgramLanguage</IRI>

</Annotation>

<ObjectProperty IRI="#specifiedBy"/>

<ObjectMinCardinality cardinality="1">

<ObjectProperty IRI="#specifiedBy"/>

<Class IRI="#Grammars"/>

</ObjectMinCardinality>

</ObjectPropertyRange>

<ObjectPropertyRange>

<Annotation>

<AnnotationProperty abbreviatedIRI="owl:backwardCompatibleWith"/>

<IRI>#ProgramLanguage</IRI>

</Annotation>

<ObjectProperty IRI="#specifiedBy"/>

<ObjectMinCardinality cardinality="2">

<ObjectProperty IRI="#specifiedBy"/>

<Class IRI="#RegularExp"/>

</ObjectMinCardinality>

</ObjectPropertyRange>

</Ontology>

Listing C.2: Language Processing OWL

C.3 L A N G UAG E P RO C E S S O R G E N E R AT E D G R A M M A R

Listing C.3 show if the ontology is complex and extensive the resulting grammar will be more com-

plex to understand.

66

C.3. Language Processor generated Grammar

grammar Langprocessor;

thing:

’Thing[’(codegen|regularexp|compilerconsttool|gpl|translator|ag|analyzer|cfg|

semanticanal|interpreter|sdt|languagedesign|compilers|knowledgedomain|

computerprogram|dsl|syntacticanal|tg|semdt|lexicalanal)+ ’]’

;

codegen: ’CodeGen{’codegenID

(’,’ ’[’ (codegen_uses_ag) (codegen_uses_ag)?(codegen_uses_tg)* ’]’)?’}’

;

codegenID :

STRING

;

codegen_uses_ag:

’{’ ’uses’ ’ag’ agID’}’;

codegen_uses_tg:

’{’ ’uses’ ’tg’ tgID’}’;

regularexp: ’RegularExp{’regularexpID ’}’

;

regularexpID :

STRING

;

compilerconsttool: ’CompilerConstTool{’compilerconsttoolID

(’,’ ’[’ (compilerconsttool_uses_grammars)*(

compilerconsttool_constructs_languageproc)* ’]’)?’}’

;

compilerconsttoolID :

STRING

;

compilerconsttool_uses_grammars:

’{’ ’uses’ ’grammars’ grammarsID’}’;

compilerconsttool_constructs_languageproc:

’{’ ’constructs’ ’languageproc’ languageprocID’}’;

gpl: ’GPL{’gplID

(’,’ ’[’ (programlanguage)+

’]’)?’}’

;

gplID :

STRING

67

C.3. Language Processor generated Grammar

;

programlanguage: ’ProgramLanguage{’programlanguageID

(’,’ ’[’ (programlanguage_specifiedby_grammars)+(

programlanguage_specifiedby_regularexp) (

programlanguage_specifiedby_regularexp)+ ’]’)?’}’

;

programlanguageID :

STRING

;

programlanguage_specifiedby_grammars:

’{’ ’specifiedby’ ’grammars’ grammarsID’}’;

programlanguage_specifiedby_regularexp:

’{’ ’specifiedby’ ’regularexp’ regularexpID’}’;

translator: ’Translator{’translatorID

(’,’ ’[’ (languageproc)+

’]’)?’}’

;

translatorID :

STRING

;

languageproc: ’LanguageProc{’languageprocID

(’,’ ’[’ (languageproc_requires_analysis)*(languageproc_requires_codegen)* ’]

’)?’}’

;

languageprocID :

STRING

;

languageproc_requires_analysis:

’{’ ’requires’ ’analysis’ analysisID’}’;

languageproc_requires_codegen:

’{’ ’requires’ ’codegen’ codegenID’}’;

ag: ’AG{’agID

(’,’ ’[’ (grammars)+

’]’)?

(’,’ ’[’ (ag_implements_semdt)* ’]’)?’}’

;

agID :

STRING

;

68

C.3. Language Processor generated Grammar

ag_implements_semdt:

’{’ ’implements’ ’semdt’ semdtID’}’;

grammars: ’Grammars{’grammarsID

(’,’ ’[’ (grammars_produces_programlanguage) ’]’)?’}’

;

grammarsID :

STRING

;

grammars_produces_programlanguage:

’{’ ’produces’ ’programlanguage’ programlanguageID’}’;

analyzer: ’Analyzer{’analyzerID ’}’

;

analyzerID :

STRING

;

cfg: ’CFG{’cfgID ’}’

;

cfgID :

STRING

;

semanticanal: ’SemanticAnal{’semanticanalID

(’,’ ’[’ (analysis)+

’]’)?

(’,’ ’[’ (semanticanal_uses_tg)*(semanticanal_uses_ag) (semanticanal_uses_ag)

? ’]’)?’}’

;

semanticanalID :

STRING

;

semanticanal_uses_tg:

’{’ ’uses’ ’tg’ tgID’}’;

semanticanal_uses_ag:

’{’ ’uses’ ’ag’ agID’}’;

analysis: ’Analysis{’analysisID ’}’

;

analysisID :

STRING

69

C.3. Language Processor generated Grammar

;

interpreter: ’Interpreter{’interpreterID ’}’

;

interpreterID :

STRING

;

sdt: ’SDT{’sdtID ’}’

;

sdtID :

STRING

;

languagedesign: ’Languagedesign{’languagedesignID

(’,’ ’[’ (languagedesign_is_expressed_grammars)* ’]’)?’}’

;

languagedesignID :

STRING

;

languagedesign_is_expressed_grammars:

’{’ ’is_expressed’ ’grammars’ grammarsID’}’;

compilers: ’Compilers{’compilersID ’}’

;

compilersID :

STRING

;

knowledgedomain: ’KnowledgeDomain{’knowledgedomainID

(’,’ ’[’ (knowledgedomain_bases_languagedesign)* ’]’)?’}’

;

knowledgedomainID :

STRING

;

knowledgedomain_bases_languagedesign:

’{’ ’bases’ ’languagedesign’ languagedesignID’}’;

computerprogram: ’ComputerProgram{’computerprogramID

(’,’ ’[’ (computerprogram_requires_languageproc)*(

computerprogram_iswritten_programlanguage)* ’]’)?’}’

;

70

C.3. Language Processor generated Grammar

computerprogramID :

STRING

;

computerprogram_requires_languageproc:

’{’ ’requires’ ’languageproc’ languageprocID’}’;

computerprogram_iswritten_programlanguage:

’{’ ’iswritten’ ’programlanguage’ programlanguageID’}’;

dsl: ’DSL{’dslID ’}’

;

dslID :

STRING

;

syntacticanal: ’SyntacticAnal{’syntacticanalID

(’,’ ’[’ (syntacticanal_uses_cfg)* ’]’)?’}’

;

syntacticanalID :

STRING

;

syntacticanal_uses_cfg:

’{’ ’uses’ ’cfg’ cfgID’}’;

tg: ’TG{’tgID

(’,’ ’[’ (tg_implements_sdt)? (tg_implements_sdt)? ’]’)?’}’

;

tgID :

STRING

;

tg_implements_sdt:

’{’ ’implements’ ’sdt’ sdtID’}’;

semdt: ’SemDT{’semdtID ’}’

;

semdtID :

STRING

;

lexicalanal: ’LexicalAnal{’lexicalanalID

(’,’ ’[’ (lexicalanal_uses_regularexp)* ’]’)?’}’

;

71

C.4. Language Processing Ddesc input

lexicalanalID :

STRING

;

lexicalanal_uses_regularexp:

’{’ ’uses’ ’regularexp’ regularexpID’}’;

Listing C.3: Language Processor outcome from OWL2DSL

C.4 L A N G UAG E P RO C E S S I N G D D E S C I N P U T

In this next Listing it will be presented a possible input for the DDesc2OWL Module and it will show

example of hierarchical relations.

Thing[

TG{

"Intance of tg ID"

,[

Grammars{ "Intance of grammars ID"

,[{ produces programlanguage "programlanguageID_reference" }]

}

]

,[

{ implements sdt "sdtID_reference1" }

{ implements sdt "sdtID_reference2" }

]

}

SDT{ "Intance of sdt ID"

}

GPL{

"Intance of gpl ID"

,[

ProgramLanguage{

"Intance of programlanguage ID"

,[

{ specifiedby grammars "grammarsID_reference" }

{ specifiedby regularexp "regularexpID_reference1" }

{ specifiedby regularexp "regularexpID_reference2" }

]

}

]

}

RegularExp{ "Intance of regularexp ID"

}

CFG{ "Intance of cfg ID"

72

C.5. Language Processing DDesc2OWL Result

}

]

Listing C.4: DDesc input file for Ddesc2OWL module

C.5 L A N G UAG E P RO C E S S I N G D D E S C 2 O W L R E S U LT

Figure 22 represent the outcome of the Ddesc2OWL Module.

Figure 22.: DDesc2OWL outcome opened in Protégé

73

	Contents
	1 Introduction
	1.1 Objectives
	1.2 Research Hypothesis
	1.3 Document structure

	2 State of the art
	2.1 Ontologies
	2.1.1 The Hermes Project
	2.1.2 Lightweight Ontologies

	2.2 Domain Specific Languages
	2.2.1 The IDEA project-Implementation of DSL: Evaluation of Approaches
	2.2.2 Feature Description Language

	2.3 Converting Ontology to DSL
	2.3.1 Using Ontologies in the Domain Analysis of Domain Specific Languages
	2.3.2 Ontology Driven Development of Domain-Specific Languages

	3 OWL2Gra: architecture and general overview
	3.1 Application Usage Modes

	4 Onto2OWL Module
	4.1 The parser for OntoDL files
	4.2 The OWL file generator

	5 OWL2DSL Module
	5.1 Grammar Generation
	5.2 Java Class Set Generation
	5.3 DDesc input template

	6 DDesc2OWL Module
	6.1 Grammar DDescG Processor
	6.2 DSL(DDesc) Processor
	6.3 OWL Generator

	7 Conclusion
	A Case Study 1 - Book Index
	A.1 Book index OntoDL
	A.2 Book Index generated OWL
	A.3 Book Index generated Grammar
	A.4 Book Index DDesc Input
	A.5 Book Index DDesc2OWL Result

	B Case Study 2 - Laundry Process
	B.1 Laundry OntoDL
	B.2 Laundry generated OWL
	B.3 Laundry generated Grammar
	B.4 Laundry DDesc input
	B.5 Laundry Process DDesc2OWL Result

	C Case Study 3 - Language Processing Domain
	C.1 Language Processing OntoDL
	C.2 Language Processing generated OWL
	C.3 Language Processor generated Grammar
	C.4 Language Processing Ddesc input
	C.5 Language Processing DDesc2OWL Result

