Practical Coinduction

Dexter Kozen™ Alexandra Silva®

November 9, 2012

Abstract

Induction is a well-established proof principle that is taught in most un-
dergraduate programs in mathematics and computer science. In computer
science, it is used primarily to reason about inductively-defined datatypes
such as finite lists, finite trees, and the natural numbers. Coinduction is
the dual principle that can be used to reason about coinductive datatypes
such as infinite streams or trees, but it is not as widespread or as well un-
derstood. In this paper, we illustrate through several examples the use of
coinduction in informal mathematical arguments. Our aim is to promote
the principle as a useful tool for the working mathematician and to bring
it to a level of familiarity on par with induction. We show that coinduction
is not only about bisimilarity and equality of behaviors, but also applicable
to a variety of functions and relations defined on coinductive datatypes.

1 Introduction

Perhaps the single most important general proof principle in computer science,
and arguably in all of mathematics, is induction. There is a valid induction prin-
ciple corresponding to any well-founded relation, but in computer science, it is
most often seen in the form known as structural induction, in which the domain
of discourse is an inductively-defined datatype such as finite lists, finite trees,
or the natural numbers.

For example, consider the type List of A of finite lists over an alphabet A,
defined inductively by

e nil € Listof A
e ifuc Aand / € Listof A, thena :: £ € List of A.

*Computer Science Department, Cornell University, Ithaca, NY 14853-7501, USA

fInstitute for Computing and Information Sciences, Radboud University Nijmegen, 6525 A]
Nijmegen, The Netherlands. Also affiliated to Centrum Wiskunde & Informatica (Amsterdam,
The Netherlands) and HASLab/INESC TEC, Universidade do Minho (Braga, Portugal).

The defined datatype is the least solution of the equation
List of A = nil + A X List of A. (1.1)

It is the initial algebra for a signature consisting of one constant (nil) and one
binary constructor (::). This means that one can define functions with domain
List of A uniquely by structural induction. For example, the functions length,
which computes the length of a finite list, and concat, which concatenates two
finite lists, can be defined as follows.

length(nil) =0 concat(nil, £) = ¢
length(a ::) =1+ length(¢) concat(a :: {1, {) = a :: concat({q, {2).

No one would dispute that these functions are uniquely defined. Now we
can prove that length(concat(¢y, ¢)) = length(¢1) + length(¢y) by structural
induction on the first argument.

length(concat(nil, £2)) = length(¥;)

= 0+ length(¢2) = length(nil) + length(/>)

(
length(concat(a :: £1, £3)) = length(a :: concat(fq, £5))
=1+ length(concat(¢y, £3))
=1+ length(¢1) + length(¢2) (inductive step)
= length(a :: 1) + length(¢7)

This proof would raise no objections as to its correctness. The induction prin-
ciple in play here is implicit and trusted; there is no need to reassert its validity
every time it is used or whenever a new inductive datatype is introduced.

Coinduction, on the other hand, is still mysterious and unfamiliar to many.
Coinduction is the dual principle to induction and is used to prove properties
of coinductively-defined datatypes such as infinite streams, infinite trees, and
coterms. These datatypes are typically final coalgebras for a signature. For
example, the finite and infinite streams over A form the final coalgebra for the
signature (nil, ::) and are the greatest solution of (1.1).

Although coinduction has been around for decades, many proofs in the lit-
erature that rely on coinduction still end up essentially reasserting the principle
every time it is used. It is clearly not as familiar as induction and not trusted in
the same way. Quoting Rutten from his seminal paper on universal coalgebra:

Firstly, induction principles are well known and much used. The coinduc-
tive definition and proof principles for coalgebras are less well known by
far, and often even not very clearly formulated. [17]

This paper was the precursor of much work on coalgebra and coinduction,
which included, among many others, extensions to modal logics [12, 18, 19, 20]

and structural operational semantics [8, 21]. However, most attention has been
devoted to bisimulation proofs of equality between coinductively-defined ob-
jects. With few exceptions [2, 4, 15], not much has been explored when it comes
to properties of other relations on coinductive datatypes besides equality.

Our aim in this paper is to introduce an informal style of coinductive rea-
soning that can be quite useful in dealing with infinite data. We illustrate this
style with a number of interesting examples. Our arguments may seem a bit
magical at first, because they apply to infinite objects and look something like
induction without a basis. Nevertheless, they are backed by a sound formal
proof principle. The reason they work is summed up in the following motto:

A property holds by induction if there is good reason for it to hold; whereas
a property holds by coinduction if there is no good reason for it not to hold.

Although there is a coinductive step but no basis, any difficulty that would arise
that would cause the property not to hold would manifest itself in the attempt
to prove the coinductive step.

The examples we give in the paper demonstrate the versatility of the prin-
ciple. We will prove properties of several kinds:

e Classical bisimulation proofs. For example, given two coinductively-
defined streams, are they equal?

o Properties other than equality. For example, given two streams ¢ and T
over N, is ¢ lexicographically less than 7?

e Properties of relations on coinductive datatypes. For example, is the
subtype order on recursive types transitive?

o Properties of functions between coinductive datatypes. For example,
given two coinductively-defined partial orders and a function between
them, is the function monotone?

In all these examples, the proofs we give are quite short and involve establish-
ing a coinductive step analogous to the inductive step in proofs by induction.
What is missing is the final argument that the proof is a valid application of
the coinduction principle; but it is not necessary to include this step for the
same reason that it is not necessary to argue with every inductive proof that
the proof is a valid application of the induction principle.

We hope that this paper will be of interest both to experts in coalgebra and
coinduction by pointing out nonstandard examples of proofs by coinduction
and to nonexperts by showing how coinduction can be used to prove interest-
ing properties from the realm of functional and imperative programming.

2 Coinductive Datatypes

Coinductive datatypes usually refer to possibly infinite structures. Prime ex-
amples include infinite streams, infinite trees, coterms (infinite terms), and fi-
nite and infinite words over an alphabet. In programming language semantics,
coinductive types are often used to model traces [5], recursive types [2], and
program state [7].

Formally, coinductive datatypes can be defined as elements of a final coal-
gebra for a given polynomial endofunctor on Set. For instance, the set A“ of
infinite streams over an alphabet A is (the carrier of) the final coalgebra of the
functor FX = A x X, whereas the set A% of finite and infinite words over an
alphabet A is the final coalgebra of FX =1+ A x X.

Many functional programming languages such as Haskell and OCaml sup-
port coinductive types; Standard ML and F# do not. The type of streams in
Haskell would be defined as

data Stream a = S a (Stream a).

Coinductive datatypes are usually presented together with their destructors.
For instance, streams admit two operations hd : A — A and tl : AY — AY,
which in Haskell would be defined as

hd (Saas)=a tl (S a as) = as.

The existence of destructors is a consequence of the fact that A% is a coal-
gebra for the functor FX = A x X. All such coalgebras come equipped with
a structure map (obs,cont) : X — A x X; for A“, obs = hd and cont = tl.
Interestingly enough, the structure map of a final coalgebra is always an iso-
morphism, as is the structure map of an initial algebra. This is the content of
Lambek’s lemma [13]. Thus initial algebras and final coalgebras are always both
algebras and coalgebras for the same functor. In the case of streams, the inverse
of (hd, tl), usually referred to as the constructor, is :: (cons), a function of type
A x AY — AY. In Haskell, it would be defined as

o (a,as) =S a as.

The A-streams A“ can also be characterized as the cofree coalgebra on
generators A for the identity functor FX = X. This means that the functor
A — (A%, tl) is right adjoint to the forgetful functor (X, cont) — X. In this
characterization, hd is the counit of the adjunction.

3 Some Motivating Examples

3.1 Lexicographic Order on Streams

In this section, we give an informal proof that lexicographic order on streams
is transitive. The argument illustrates the use of coinduction in a nonstandard
setting. At first glance, this technique seems quite magical because it appears
to involve induction on a non-well-founded relation.

Let (A, <)bea partially ordered alphabet. An A-stream is an element of A“.
The constructor :: (cons) of type A x AY — A“ and corresponding destructors
hd : AY — Aandtl: AY — A% are defined as in §1. The ordering <., on
A-streams is defined to be the maximum relation R C A% x A“ satisfying the
following property:

Property 3.1 If o R, then

(i) hd(¢) < hd(T), and
(ii) ifhd(c) = hd(T), then tI(c") R tI(T).

The relation <. exists and is unique, and any relation satisfying Property 3.1
is a subset. This is because if { R, } is any indexed family of relations satisfying
Property 3.1, then their union |J, R, also satisfies Property 3.1. The relation
<lex 15 thus the union of all relations satisfying Property 3.1.

The relation <o satisfies many desirable properties. For example, <jox
is reflexive, that is, ¢ <je, 0 holds for any A-stream o, because the identity
relation id = {(c0,0) | 0 € A“} satisfies Property 3.1, therefore id C <jq,.

Moreover, because <jo, is maximum, the converse of Property 3.1 holds for
<jex; that is, if
(i) hd(o) < hd(7), and
(ii) hd(c) = hd(T) = tl(0) <jex tI(T),
then o <jox 7. If not, then <, would not be maximal; one could add the pair
(0, T) to <jex without violating Property 3.1.
To say that <} is the maximum relation satisfying Property 3.1 says that it
is the greatest fixpoint of the operator
T<,. (R) ={(c, T) | hd(¢) < hd(7) and hd(c) = hd(T) = tl(c) R tI(T)}.
Formally, the relation <j., is defined as the greatest fixpoint of T< _; in sym-
bols, <jex= vX.T<, (X).

Now we will use coinduction to show

Theorem 3.2 The relation <o, is transitive.

Proof. We want to show that if 0 <jo, p <jex T, then o <o 7. Suppose
0 Slex P Slex T- (3.2)
By Property 3.1(i),
hd(c) < hd(p) < hd(7). (3.3)

Since < is transitive on A, hd(¢) < hd(t). Thus Property 3.1(i) holds for the
pair o, T.

For Property 3.1(ii), if hd(c) = hd(7), then hd(c) = hd(p) = hd(7) by (3.3)
and the antisymmetry of < on A. By the assumption (3.2) and Property 3.1(ii),
th(o) <jex tl(p) <jex t(T). By the coinduction hypothesis, tl(0) <jex tI(T). This
establishes Property 3.1(ii) for o, 7.

We have shown that under the assumption (3.2) and the coinduction hy-
potheses on the tails, both clauses (i) and (ii) of Property 3.1 hold for the pair
o, T. By the converse of Property 3.1, 0 <joy T. O

The part of this proof that is unsettling is the appeal to the coinduction
hypothesis on the tails of the two streams. Streams are infinite, and there is
nothing like a basis. So the entire argument seems non-well-founded. But as
we will show later the argument is quite firmly grounded. Intuitively, one
can appeal to the coinductive hypothesis as long as there has been progress
in observing the elements of the stream (guardedness) and there is no further
analysis of the tails (opacity). We will explain this formally in §4.

There are of course other ways to prove transitivity of <j,. Here is an
informal proof by induction that is dual to the proof presented above.

Proof of Theorem 3.2 (alternative). We show the contrapositive: For any o, p, T,
if 0 Ljex T, then either 0 Lo p or p Llex T- We proceed by induction on the
inductive definition of £jey.

If ¢ £jex T because of (i), then hd(c) £ hd(7), therefore either hd(c) £
hd(p) or hd(p) £ hd(7), since < is transitive on A. Then either o %o, p or
0 Liex T by (i). This is the basis.

If ¢ £jex T because of (ii), then hd(¢) = hd(7) and tl(0) %y tl(T), and
tl(o) Liex tI(T) was determined at an earlier stage in the inductive definition.
By the induction hypothesis, either tl(c) %o tl(p) or tl(p) Ziex tI(T), say the
former without loss of generality. If either hd(c) £ hd(p) or hd(p) £ hd(7),
we are done as above. Otherwise hd(c) < hd(p) < hd(7), and since hd(c) =
hd(7), we have hd(c) = hd(p) = hd(7). Since tl(0) Ljex tl(p), we have o Ljey p
by (ii). a

In the latter proof, we are actually doing induction on the relation

{((tl(0),ti(7)), (¢, 7)) | hd() = hd(T)},

which is well-founded on the set £jo,. One can show that o £}, T iff there
exists n > 0 such that hd(tI"(¢)) = hd(tI™ (7)) for m < n and hd(tl"*(0)) £
hd(tl"(7)). The smallest such n is the stage in the inductive definition of %ey
at which o €., T is established.

Here is another example involving lexicographic order on streams.

Theorem 3.3 For streams over a commutative semigroup (A, +), pointwise addition
is monotone; that is,

VﬁlexTa”dP Slex ™= U"’P SlexT_'_nr

where o + T is the pointwise sum of the two streams.

Proof. First observe that the pointwise sum operation + on streams satisfies
the equations

hd(c + 7) = hd(c) + hd(7) tl(oc+ 1) = tl(o) + tI(7). (3.4)
By Property 3.1(i),
hd(c + p) = hd(c) + hd(p) < hd(t) + hd(7r) = hd(T + 7).
Thus, Property 3.1(i) holds for the pair (¢ + p, T + 7).

For Property 3.1(ii), if hd(c + p) = hd(t + 71) and using the fact that, by
hypothesis, hd(c) < hd(7) and hd(p) < hd(7), then we can conclude that
hd(¢) = hd(7) and hd(p) = hd(7). By the assumptions ¢ <o, Tand p <jex 7
and Property 3.1(ii), tl(0) <jex tI(7) and tl(p) <jex tl(7r). By the coinduction
hypothesis, we have tl(c) + tl(p) <jex tI(T) + tl(7r). That is, tI(c + p) <jex
tl(t + 7r). This establishes Property 3.1(ii) for (¢ + p, T+ 7).]

A subtle but important observation is that the equations (3.4) determine
the operation + on streams uniquely. Indeed, this would be the preferred way
to define the operation + coinductively for the purpose of formalization in an
automated deduction system such as Coq or NuPrl, as the informal definition
above using pointwise sum would require the extraneous notions of the natu-
ral numbers and indexing.

But how do we know from (3.4) alone that + exists and is unique? Ul-
timately, this comes from the fact that (A%, hd, tl) is a final coalgebra. This
means that for any coalgebra (X, obs, cont) with obs : X — A and cont : X —
X, there is a unique coalgebra morphism X — A“. If we make a coalgebra out
of A“ x A% by defining

obs(c, T) = hd(¢) + hd(7) cont(c, T) = (tI(0), tI(T)),

then + is the unique morphism to the final coalgebra A%, the equations (3.4)
asserting exactly that + is a coalgebra morphism.

3.2 Recursive Types

Recursive types were introduced by Mendler [14]. The subtyping problem for
recursive types was studied in [1, 2, 10]. In their simplest form, recursive types
are constructed from the constants | and T and the binary function space con-
structor —. The set of recursive types C is the set of coterms of this signature.
The subtype order < is defined to be the greatest binary relation on C such that
if o < 7, then either

e og=_1,0r
e T=T,o0r

eoc=0—>mnmandT=71 > hand T <cpand i < 1.

In other words, < is vX.T(X), the greatest postfixpoint of the monotone map

TX)={(L,t)|teC}uU{(cs, T)|ceC}
U {((71 — 02, 1 — Tz) | (Tl, (T]) € X, ((72, Tz) S X}

Theorem 3.4 < is transitive.

Proof. Suppose o < p < 7. If o = 1L or T = T, we are done. Otherwise,
we cannot have p = T since p < 7, and we cannot have p = L since ¢ < p,
therefore p = p; — pp for some pj, p2. Then we must also have 0 = 07 =
sincec < pand T =171 = T since p < 7. Because ¢ < p < 7, we must have
71 < p1 < o0pand 0p < pp < 1. By the coinduction hypothesis, 71 < 07 and
0y < Ty, therefore o < 1. O

3.3 Closure Conversion

Here is a more involved example from [7]. Consider the A-calculus with vari-
ables Var and atomic constants Const. Let FV(e) denote the set of free variables
of e. Let A-Abs denote the set of A-abstractions Ax.e. A capsule is a pair (e, o),
where e is a A-term and ¢ : Var — Const 4 A-Abs is a partial function with finite
domain dom o, such that

(i) FV(e) € domo
(ii) if x € domo, then FV(o(x)) C domo.
The component ¢ is called a capsule environment. The set of capsule environ-

ments is denoted CapEnv.

Capsules are a coalgebraic representation the state of a computation in func-
tional and imperative languages. They minimally extend the A-calculus to al-
low variables and assignment. Capsules are essentially coalgebras, and in [7]
informal coinductive reasoning was used extensively.

One result from [7] was that closure conversion for capsules is correct. Clo-
sures are the traditional representation of state, originally formulated to achieve
static scoping. They can be defined coinductively with the recursive type defi-
nition

Val = Const + Cl values
Cl = A-Abs x CIEnv closures
ClIEnv = Var — Val closure environments

Thus a closure is a pair {Ax.e, 0}, where Ax.e is a A-abstraction and o is a
closure environment. We use boldface for closure environments ¢ : CIEnv to
distinguish them from the simpler capsule environments. Closures {Ax.e, ¢}
must satisfy the additional requirements that FV(Ax.e) C dom ¢ and dom ¢ is
finite.

The closure-converted form of a capsule (e, o) is (e,), where

_. v JHoly), o}, ifo(y): A-Abs,
W) = {a(y), if o(y) : Const.

This is a coinductive definition. Although it appears circular, it actually defines
o uniquely for the same reason that + was defined uniquely in §3.1. In pseudo-
ML, the definition might look like

letrec o = Ay. match o(y) with
| Const(c) — Const(c)
| A-Abs(Ax.e) — Cl({Ax.e, T})

To state the relationship between capsules and closures, we define a binary
relation T on capsule environments, closure environments, and values. For
capsule environments, define ¢ C 7 if domo C domT and for all y € domo,
o(y) = t(y). The definition for values and closure environments is by mutual
coinduction: C is defined to be the largest relation such that

A. on closure environments, if ¢ C T then
(i) domo C dom T, and
(ii) forally € domo, o(y) C 7(y); and
B. onvalues, if u C v then

(i) u and v are constants and u = v; or
(ii) u={Axe, c},v={Axe T}, and o C 7.

Formally, T for closures consists of two relations defined by mutual coin-
duction, one on closure environments and one on values. More precisely, the
relation C is defined to be the largest relation R on (CIEnv x CIEnv) + (Val X

Val) such that R C T(R) (symbolically, C = vX.T (X)), where T is the mono-
tone map

T: (ClEnv x CIEnv) + (Val x Val) — (CIEnv x CIEnv) + (Val x Val)

defined as follows:

A. for closure environments, (¢, T) € T(R) iff

(i) domo C dom T, and
(ii) forally € domo, (c(y), T(y)) € R; and

B. for values, (1,v) € T(R) iff either

(i) u and v are constants and u = v; or
(ii) u={Axe, c},v={Axe, T}, and (0, T) € R.

Theorem 3.5 The relation T is transitive.

Proof. Suppose o C p C 1. By A(i), domo C domp C domT,sodomo C
dom 7, and A(i) holds for the pair o, T. Moreover, for all y € dom o, by A(ii),
o(y) C p(y) C 7(y), therefore o(y) C T(y) by the coinduction hypothesis on
values. Thus A(ii) holds, and ¢ C .

For values, suppose u C w C v. If u is a constant ¢, thenw = cand v = ¢,
hence B(i) holds for the pair u, v. If u = {Ax.e, o'}, then by B(ii), w = {Ax.e, p},
v = {Ax.e, T}, and ¢ C p T 7. By the coinduction hypothesis on closure
environments, o C 7, thus u C v. O

Theorem 3.6 Closure conversion is monotone with respect to C. That is, if ¢ T T,
theno C T.

Proof. Let 0 and T be capsule environments and suppose that o T 7. Then
domo C domtandc(y) = 7(y) forall y € domo. Note that domo = domo C
dom T = dom T, which gives A(i) for ¢ and T immediately.

For any y € domy, if o(y) is a constant ¢, then 7(y) = c because ¢ C T,
and 0(y) = o(y) = ©(y) = T(y), thus A(ii) holds of 7 and 7. If o(y) is a
A-abstraction, then so is 7(y) and they are equal, thus o(y) = {o(y),7} C
{t(y),T} = T(y), using the coinduction hypothesis B(ii). In both cases, A(ii)
holds of 7 and T. |

3.4 Bisimilarity
The traditional coinduction principle states that if two elements of a final coal-

gebra are bisimilar, then they are equal. More generally, bisimilarity between
two elements of two coalgebras implies that their unique images in the final

10

coalgebra are the same. These traditional proofs can also be handled by our
method.

For example, in the case of A-streams, R is a bisimulation if for any o, T,

(7, T) € R = hd(c) = hd(7) and (tl(0), tI(T)) € R.

The relation of bisimilarity ~ is the maximal bisimulation. This is the great-
est postfixpoint of the monotone operator

T(R) = {(o,) | hd(c) = hd(7) and (tl(c), ti(T)) € R},

or in other words, the greatest relation ~ such that ~ C T(~). The greatest
postfixpoint is also the greatest fixpoint, therefore ~ = T(~).

We can now prove coinductively that ~ is an equivalence relation. Let us
illustrate by proving that ~ on streams is symmetric.

Theorem 3.7 ~ on A-streams is symmetric relation. That is, ¢ ~ T implies T ~ 0.

Proof. Assume ¢ ~ 7. Then hd(¢) = hd(7) and tl(¢) ~ tI(7). By the
symmetry of equality on A, hd(7) = hd(c). By the coinduction hypothesis on
the tails, tl(t) ~ tI(¢). As ~ is maximal, T ~ 0. O

We can also use the principle to reason about properties of stream opera-
tions. For example, consider the two inverse stream operations

split(ogoon - -+) = (0pon ..., 0103+)
merge(0poy -+, ToT1 -+) = OpT01TL " - ,
characterized coinductively by the equations
merge(a :: 0, T) = a :: merge(T,)
split(a ::) = let (o, T) = split(c) in (a :: T, p)
or, expressed completely in terms of destructors,
hd(merge(c, T)) = hd(0) hd(split(c7)1) = hd(c)
tl(merge(c, 7)) = merge(t, tI(0)) ti(split(c)q) = split(tl(c))2 (3.5)
split(c)y = split(tl(c))1.

Let us argue that merge is a left inverse of split.

Theorem 3.8 For all streams o, merge(split(c)) = 0.

11

Proof. We argue in terms of the characterization (3.5).

hd(merge(split(¢))) = hd(merge(split(c)y, split(c)z2))
hd(split(c)1)

hd (o)

tl(merge(split(0))) = tl(merge(split(c)y, split(c)2))

()
)2, tl(split(c)1))
(

(

= merge(split(c 1
7)1, split(tl())2)
= merge(split(tl(c)))
~ tl(0),
the last step by the coinduction hypothesis. As ~ is maximal, we can conclude

that merge(split(c)) ~ o. Since equality and bisimilarity coincide on the final
coalgebra, merge(split(c)) = 0. O

= merge(split(tl

Why did we not argue in the last step that merge(split(tl(c))) = tl(c) by
the coinduction hypothesis, then conclude that merge(split(c)) = o because
the heads and tails were equal? We might have done so, but we wanted to
emphasize that it is bisimilarity ~, not equality =, that is the maximal fixpoint
of the relevant monotone map

T(X) = {(, T) | hd(¢) = hd(7) and (tI(c), tI(7)) € X}.

We may not use the technique with just any property, only with those defined
as maximal fixpoints.

We could conclude equality in the last sentence because streams are the final
coalgebra, for which bisimilarity and equality coincide. But except for the last
sentence, the argument works for any coalgebra for this signature. Consider
coalgebras (X, obs, cont) with observations obs : X — A and continuations
cont : X — X. The equations (3.5) can be interpreted as implicit coinductive
descriptions of maps merge : C x C — C and split : C — C x C:

obs(merge(x, y)) = obs(x) obs(split;(x)) = obs(x)
cont(merge(x, y)) = merge(y, cont(x)) cont(split;(x)) = splity(cont(x))
splity (x) = splity (cont(x)).
Note that these equations do not define merge and split uniquely, because they
do not specify what merge(x, y) and split(x) are, but only describe their ob-

servable behavior. Nevertheless, whatever they are, they are inverses up to
bisimulation:

Theorem 3.9 For all x, merge(split(x)) ~ x.

The proof is the same as that of Theorem 3.8, mutatis mutandis.

12

4 A Coinductive Proof Principle

The proofs of §3, magical as they may seem, involve no magic—only a little
sleight of hand! The rule we are using is best explained in the language of
dynamic logic (DL) and the modal p-calculus (see [3]). Our examples typically
involve

e coalgebras Kj, K, viewed as Kripke models with binary relations a2 and b,
respectively, encoding coalgebraic destructors, and

e a kind of simulation relation 7 : K1 x K, between them, often a function
T: Ky — K.

The relations a and b induce modalities [a], (a) on K; and [b], (b) on K;. To
have a common domain to work in, we form the coproduct K = K; + K, whose
elements are the disjoint union of K; and K; with relations a and b inherited
from Kj and Kj.

We are typically trying to establish that a property of the form Q — [7]R
holds universally in K, where R is a property on K, defined as a greatest fix-
point of the form R = vX.G A [b]X = [b*]G and Q is a precondition defined
on Kj. The property Q — [7|R says that any state in K;j satisfying Q must
map under 77 to a state or states in K satisfying R. The property G in the def-
inition of R is typically a condition that can be checked locally on states of Ky,
whereas the part of the definition involving [b] encodes a recursive check of R
on successor states.

For example, in the application of §3.1 involving the transitivity of <j., on
A-streams, the statement we are trying to prove is:

For all A-streams 0, p, T, if 0 <jex P <jex T, then o <jey 7.
Here Kj = AY x AY x A“ and K; = AY x A%, along with relations
(0, p, T) —= (tl(0), ti(p), tI(T)), if hd(c) = hd(p) = hd(T)
(¢, 7) -2 (tl(0), tI(7)), if hd(c") = hd(T)
(0, p, T) LN (o, T).

In this case the relation 7t is a function 77 : K; — Kj, the projection of a triple
onto its first and third components.

The property Q is true of a triple (0, p, T) if ¢ <jex p <jex T, and the prop-
erty R is true of a pair (o, 7) if 0 <jo, 7. Transitivity states that Q — [7r|R is
universally valid in K. The definition of R is R = vX.G A [b]X = [b*]G, where

G ={(o,) | hd(0) < hd(1)}.

13

4.1 A Proof Rule

It may seem that the informal rule we are using is

Q- [nlG [a)(Q— [7]R) = (Q = [7IR)
Q— [n]R

(4.6)
However, this rule is unsound in general (this is the sleight of hand mentioned
above). Here is a counterexample, in which a = b and 7 is the identity:

a

erg——9
But a careful look at the proof reveals that we did not use any properties of R

except G A [b]R — R at the very last moment. Up to that point, the induction
step actually established that

[a](Q = [7]X) = (Q — [7b]X) (4.7)
without any knowledge of X. Thus we are actually using the rule

Q—[nG [a)(Q— [n]X) = (Q — [7b]X)

Q — [7]R ' 49

where X is a fresh atomic symbol. We prove below (Theorem 4.1) that this rule
is sound.

Rules similar to this appear in different forms in the literature [2, 6, 22].
In most cases, the rules are Gentzen-style with structural restrictions such as
progress (aka guardedness or contraction [2]) and opacity (aka frozenness [22]). In
our treatment, progress takes the form of the modalities [a], [b], and opacity is
captured in the use of the atomic symbol X.

We have mentioned that we engaged in a little sleight-of-hand. This has to
do with the use of R instead of X in the last step, which makes it seem as if
we are using the unsound rule (4.6). To be completely honest, in the proof of
Theorem 3.2 we should replace the sentence,

By the coinduction hypothesis, tl(0) <jex tI(T).
with

By the coinduction hypothesis, (tl(c), tI(t)) € X, thus (0, T) €
[b]X and (o, p, T) € [7b]X.

14

4.2 Soundness

Theorem 4.1 The rule (4.8) is sound.

We give two proofs of this theorem.

Proof 1. For any P, if K F Q — [7]P, then K F [4](Q — [7]P) by modal
generalization. Substituting P for X in the second premise of (4.8), we have
KE Q — [ntb]P. Thus for any P,
KEQ— [n]P = KEQ — [nb]P.

Applying this construction inductively, we have that for all P and alln > 0,
KFQ— [n]P = KEQ— [nb"]|P,

therefore

KFEQ— [n]P = KEQ — [rtb™]P.

In particular, for P = G, using the first premise of (4.8) and the definition
R = [b*]G, we conclude that K £ Q — [7T]R. i

Proof 2. From DL, we have the Galois connection
EX =[]y & FE{()X—>Y, 4.9)

where ¢c= = {(s, t) | (t,s) € c}. Specializing the second premise of (4.8) at
X = (n7)Q, we have

K& [a](Q = [7l(m7)Q) — (Q— [mb](m7)Q).

But the left-hand side is a tautology of DL, therefore by modus ponens this
reduces to K F Q — [7tb](r~)Q. Again by (4.9) we have

KE (m7)Q — [b](m)Q.

Similarly, applying (4.9) to the first premise of (4.8), we have K £ (77)Q — G.
Combining these two facts,

K#E(m7)Q = GA[b[(n)Q,

therefore K F (717)Q — R, since R = vX.G A [b]X. Applying (4.9) one more
time, we obtain K F Q — [7]R, the conclusion of (4.8). O

15

4.3 A More General Version

The rule (4.8) only applies to monotone transformations of the form T(X) =
G A [b]X, for which R = vX.T(X) = [b*]G. This is all we need for the examples
in this paper. However, one can generalize the rule to arbitrary monotone T at
the expense of some added complication in the proof system. The rule is

[,Q—[n]X F Q— [#]T(X)
- Q— xR

, (4.10)

for X a fresh atomic symbol not occurring in I', Q, or 71, where R = vX.T(X).
In other words, if it is possible to prove Q — [7r]T(X) from the assumptions
I'and Q — [71]X, where X is an atomic symbol not occurring elsewhere, then
it is safe to conclude Q — [7]R. Soundness would say that for any Kripke
model K satisfying T, if K £ Q — [7r]T(X) whenever K F Q — [rr]X, then
K E Q — [|R. This rule now looks more like the rules of [2, 6, 22].

Theorem 4.2 The rule (4.10) is sound.

Proof. By induction on the lengths of proofs. Suppose it is possible to prove
Q — [7]T(X) from the assumptions I' and Q — [71]X, where X is an atomic
symbol not occurring in I, Q, or 7r. By the induction hypothesis, that proof is
sound. Thus in any Kripke model K satisfying I', for any interpretation of X,

KEQ—[n]X = KEQ— [n]T(X).
In particular, for X = (17)Q, we have
KEQ— [r)(n7)Q = KFQ— [n]T({(m)Q).

The left-hand side is a tautology of DL, so we are left with the right-hand side,
which reduces by (4.9) to K £ (77)Q — T((m)Q). As R = vX.T(X) is
the greatest postfixpoint of T, we have K £ (77)Q — R. The conclusion
KE Q — [7]R follows from this and (4.9). O
44 Examples

We now describe how the other examples of §3 fit into this framework.

4.4.1 Recursive Types
In the example of §3.2, the statement we are trying to prove is

For all types 0, o, T,if 0 < p < T, theno < 1.

16

Here K1 = C x C x C and K; = C x C, where C is the set of recursive types,
along with relations

((71 — 02,01 — P2, 71 — Tz) ((71 — 0, T] — Tz)
a a b b
(1, p1, 1) (02, p2,) (11, 1) (02,)

(0,0, 7) LN (0, 7)

The relation 7t is a function 7w : K; — K3, the projection of a triple onto its
first and third components. Note the contravariance of the left-hand a- and
b-successors.

The property Q is true of a triple (o, p, 7) if ¢ < p < 7, and the property
R is true of a pair (o, 7) if ¢ < 7. Transitivity states that Q — [7]R. The
definition of Ris R = vX.G A [b] X = [b*]G, where

G={(o, 1) | [b]false » (c=LVT=T)},

that is, G holds of a pair (o, T) with no b-successors in Kj if either ¢ = L or
T = T, thus ¢ < 7 by local considerations.

Note that there can be an infinite b-path of pairs (¢, 7) such that ¢ £ 7. For
example, ifc =1 - cand7=T — 7, theno £ Tand (0, 1) LN (o, T).

The property (717)Q in the second proof of Theorem 4.1 is true of the pair
(o, 1) iff 3p ¢ < p < 7. The main part of the argument of Theorem 3.4 essen-

tially shows that (7~)Q — [b](7r~)Q and that (7~)Q — G, thereby establish-
ing that (7r~)Q is a postfixpoint of T(X) = G A [b]X.

4.4.2 Closure Conversion

In the example of §3.3 involving the monotonicity of closure conversion, recall
that the closure-converted form of a capsule (e, 0) is (e, 7), where 7 is defined
as

_. v JHey), 7}, ifo(y): A-Abs,
7W) = {a(y), if o(y) : Const.

Here we can take
K7 = CapEnv x CapEnv K, = ClEnv x ClEnv,

where CapEnv and ClEnv are the sets of capsule environments and closure en-
vironments, respectively, and

Q={(e,7)[c L} R=A{(e, 7)[c E 7}

17

The relation T on capsule environments can be defined without coinduction:
o C tifdomo C domtand forally € domo, 0(y) = t(y). The definition
for closure environments is by coinduction. In §3.3, it was defined by mutual
coinduction on closure environments and values, but we can consolidate this
into a definition just on closure environments: T is the largest binary relation
on closure environments such that if ¢ T T, then dom o C dom T, and for all
y € dom o, either

e o(y) and T(y) are constants and ¢ (y) = t(y); or

e 0(y) ={Axe, p}, T(y) = {Axe, w},and p C .

The relation R is defined as the greatest fixpoint vX.G A [b]X = [b*]G, where
G is true of a pair (o, T) if domo C dom 7 and for all for all y € dom ¢, either

e 0(y) and 7(y) are constants and ¢ (y) = 7(y); or

e o(y) ={Axe, p}and T(y) = {Ax.e, 7t} for some Ax.e, p, and 7,
and the relation b on K5 is
(o, 7) = (p,)

whenever o(y) = {d, p} and t(y) = {e, 7} for some d, ¢, and y. The relation
a on Kj is simply (o, T) —= (0, 7).

The monotonicity theorem says
YoVt ot - 0LT,

which is just Q — [71|R, where 7 is the closure conversion function ¢ — ©.

4.4.3 Bisimilarity

In §3.4, we proved that bisimilarity is symmetric on streams and that merge is
a left inverse of split.

In the first example, the statement we are trying to prove is
For all A-streams o, T,if 0 ~ 7,then T ~ 0.
Here we take K1 = K, = AY x A% with relations
(0, T) 2% (ti(0), ti(T)) (0, 1) = (1, 0).

The properties Q and R are both ~. The theorem states that Q — [7r|R. The
definition of Ris R = vX.G A [b] X = [b™]G, where

G={(o,) | hd(0) = hd(1)}.

In the second example, the statement we are trying to prove is

18

For all A-streams ¢, merge(split(c)) = 0.
Here we take K; = AY and K, = A%“ x A% with relations
c-Ste) (0, 1) - M), t(r) o - (merge(split(c)), o).

The property R is still ~ as above, but here Q = true. In this case the theorem
Q — [7]R reduces to [7T|R. It is interesting to note that the property (7~)Q in
the second proof of Theorem 4.1 here reduces to (77~)true and holds of a pair
(o, T) iff 0 = merge(split(7)).

4.5 Discussion

There are two sufficient conditions for the premise (4.7) of our proof rule that
hold in many applications. These conditions can be expressed in the language
of Kleene algebra with tests (KAT) [9]. They are

Qmtb < Qarr Qa < aQ. (4.11)

The condition on the left says that the relation 7 is a kind of simulation: under
the enabling condition Q, the action a on the left-hand side of 7 simulates the
action b on the right-hand side. It serves the same purpose as the DL formula
Q — [am]X — [7b] X for atomic X, but is slightly stronger.

Lemma 4.3 In any Kripke model K, if Qrtb < Qarr, then for any X, the DL formula
Q — [at]X — [7tb] X holds universally in K.

Proof. Suppose Qrtb < Qarr in K. Then for any X, Q7tbX < anX, where the
overbar denotes Boolean negation. This implies the DL formula Q A (7tb) X —
(arr) X, which is equivalent to Q — [ar]X — [7b]X. O

The condition on the right of (4.11) says that the enabling condition Q is
preserved by a on the left-hand side. It is equivalent to the KAT equations
Qa = QaQ and QaQ = 0, to the DL formula Q — [a]Q, and to the Hoare
partial correctness assertion {Q} a {Q}.

Theorem 4.4 If Qrtb < Qarr, then the formula
(Q— [7]G) = (Q = [a]Q) = [a](Q — [7]R) = (Q — [1]R)

is universally valid.

Proof. We show that any state satisfying Q — [71]G, Q — [4]Q, [4](Q —
[7]R), and Q also satisfies [7]R. From Q and Q — [a]Q we have [4]Q. From
[a]Q and [a](Q — [7]R) we have [a](Q A (Q — [7]R)), whence [art]R. From
Q and [a7r]R, by Lemma 4.3 we have [7tb|R. From Q and Q — [7r]G we have
[7t]G. From [7b]R and [7t]G we have [7t](G A [b]R), and since G A [b]R = R
we have [7T]R. O

19

It follows from Theorem 4.4 that if Q7tb < Qar, then the proof rule

Q-G Q—[a]Q [a](Q— [7]R)
Q— [7]R

is sound, and this rule is similar to our unsound rule (4.6). However, in this
case a stronger result holds.

Lemma 4.5 The following is a theorem of KAT:
Qmb < Qart A Qa <aQ — Qmb* < Qa*m.
Proof. The premise Qa < aQ is equivalent to Qa = QaQ. Using this,
Q+(Qa)*Qa = Q+(Qa)*QaQ = (Qa)*Q,

therefore by a star rule of Kleene algebra, Q™ < (Qa)*Q. Also, (Qa)*Q =
Q(aQ)* < Qa*, therefore

Qa* = (Qa)*Q = Q(aQ)".
Using this and the first premise, we have
Qa*mb = (Qa)*Qnb = (Qa)*Qamr = Qa*arn,
therefore
Qm+ Qa*nb = Qmr + Qa*amr = Qa* .

Again by a star rule, Qtb* < Qa™ 7. i

Theorem 4.6 Suppose Qrtb < Qarr. The following rule is sound:

Q- (76 Q- laQ)
Q— [7R

Proof. From the two premises, we have Q — [71]G A [a]Q, therefore
Q = vX.[m|G A [a]X = [a*7]G.
By Lemmas 4.3 and 4.5, Q — [7tb*]G, thatis, Q — [7]R. i

In most of our examples, the condition Q7tb < Qarr and the premises of the
rule (4.12) are satisfied. For example, for recursive types, the first premise says
thatif o < p < 7, and if (¢, T) has no b-successors, then eitheroc = L V17 =T.
The second premise says that if

o =0 < p1—=>p2 <7D,
then 71 < p; <01 and 0» < py < 1. The condition Q7tb < Qart says that if
o =0 < p < T,

then p is of the form p; — pa.

20

5 Conclusion

We have introduced a new coinduction rule and illustrated its use in informal
mathematical arguments with several examples involving more general state-
ments than the usual equality proofs. The style of reasoning is similar to the
use of induction.

An interesting research direction is to investigate whether a similar proof
principle holds for properties and relations defined as least fixpoints. If this
is indeed the case, can we also devised a mixed principle for induction and
coinduction?

In the realm of metric coinduction, a similar proof principle has been pro-
posed in [11]. Studying connections and possible generalizations of both proof
principles will possibly encompass a change in category or a more categorical
formulation of the principle. We would also like to explore whether we can
incorporate other known proof techniques such as bisimulation up-to [16]. We
leave these investigations for future work.

Acknowledgments

We thank Samson Abramsky, Mark Bickford, Marcello Bonsangue, Robert Con-
stable, Helle Hvid Hansen, Bart Jacobs, Jean-Baptiste Jeannin, Jan Rutten, Ana
Sokolova, and Hans Zantema for stimulating discussions.

References

[1] Roberto Amadio and Luca Cardelli. Subtyping recursive types. ACM Tran. Pro-
gramming Languages and Systems, 15:104-118, 1993.

[2] Michael Brandt and Fritz Henglein. Coinductive axiomatization of recursive type
equality and subtyping. Fundamenta Informaticae, 33(4):309-338, 1998.

[3] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic. MIT Press, Cam-
bridge, MA, 2000.

[4] Claudio Hermida and Bart Jacobs. Structural induction and coinduction in a fibra-
tional setting. Inf. Comput., 145(2):107-152, 1998.

[5] Hasuo Ichiro, Bart Jacobs, and Ana Sokolova. Generic trace semantics via coinduc-
tion. Logical Methods in Computer Science, 3(4:11):1-36, 2007.

[6] Joxan Jaffar, Andrew Santosa, and Razvan Voicu. A coinduction rule for entailment
of recursively-defined properties. In P. J. Stuckey, editor, Proc. 14th Int. Conf. Prin-
ciples and Practice of Constraint Programming, volume 5202 of Lect. Notes in Computer
Science, pages 493-508. Springer, September 2008.

[7] Jean-Baptiste Jeannin and Dexter Kozen. Computing with capsules. In Martin
Kutrib, Nelma Moreira, and Rogério Reis, editors, Proc. Conf. Descriptional Com-
plexity of Formal Systems (DCFS 2012), volume 7386 of Lecture Notes in Computer
Science, pages 1-19, Braga, Portugal, July 2012. Springer.

21

[8] Bartek Klin. Bialgebraic operational semantics and modal logic. In LICS, pages
336-345. IEEE Computer Society, 2007.

[9] Dexter Kozen. Kleene algebra with tests. Transactions on Programming Languages
and Systems, 19(3):427-443, May 1997.

[10] Dexter Kozen, Jens Palsberg, and Michael I. Schwartzbach. Efficient recursive sub-
typing. Mathematical Structures in Computer Science, 5:113-125, 1995.

[11] Dexter Kozen and Nicholas Ruozzi. Applications of metric coinduction. Logical
Methods in Computer Science, 5(3), 2009.

[12] Alexander Kurz. Specifying coalgebras with modal logic. Theor. Comput. Sci.,
260(1-2):119-138, 2001.

[13] Joachim Lambek. A fixpoint theorem for complete categories. Mathematische
Zeitschrift, 103:151-161, 1968.

[14] Nax Paul Mendler. Inductive Definition in Type Theory. PhD thesis, Cornell Univer-
sity, 1988.

[15] Milad Niqui and Jan Rutten. Coinductive predicates as final coalgebras. In 6th
Workshop on Fixed Points in Computer Science (FICS 2009), 2009. informal proceed-
ings.

[16] Damien Pous and Davide Sangiorgi. Advanced Topics in Bisimulation and Coinduc-
tion, chapter “Enhancements of the coinductive proof method”. Cambridge Uni-
versity Press, 2011.

[17] Jan]. M. M. Rutten. Universal coalgebra: a theory of systems. Theor. Comput. Sci.,
249(1):3-80, 2000.

[18] Lutz Schroéder. Expressivity of coalgebraic modal logic: The limits and beyond.
In Vladimiro Sassone, editor, FoSSaCS, volume 3441 of Lecture Notes in Computer
Science, pages 440-454. Springer, 2005.

[19] Lutz Schroder. Expressivity of coalgebraic modal logic: The limits and beyond.
Theor. Comput. Sci., 390(2-3):230-247, 2008.

[20] Lutz Schréder and Dirk Pattinson. Rank-1 modal logics are coalgebraic. In Wolf-
gang Thomas and Pascal Weil, editors, STACS, volume 4393 of Lecture Notes in
Computer Science, pages 573-585. Springer, 2007.

[21] Daniele Turi and Gordon D. Plotkin. Towards a mathematical operational seman-
tics. In LICS, pages 280-291, 1997.

[22] Grigore Rosu and Dorel Lucanu. Circular coinduction: A proof theoretical foun-
dation. In Proc. 3rd Conf. Algebra and Coalgebra in Computer Science (CALCO’09),
volume 5728 of Lect. Notes in Computer Science, pages 127-144. Springer, September
2009.

22

