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Abstract. In automata theory, a machine transitions from one state
to the next when it reads an input symbol. It is common to also allow
an automaton to transition without input, via an ε-transition. These
ε-transitions are convenient, e.g., when one defines the composition of
automata. However, they are not necessary, and can be eliminated. Such
ε-elimination procedures have been studied separately for different types
of automata, including non-deterministic and weighted automata.
It has been noted by Hasuo that it is possible to give a coalgebraic
account of ε-elimination for some automata using trace semantics (as
defined by Hasuo, Jacobs and Sokolova).
In this paper, we give a detailed description of the ε-elimination pro-
cedure via trace semantics (missing in the literature). We apply this
framework to several types of automata, and explore its boundary.
In particular, we show that is possible (by careful choice of a monad)
to define an ε-removal procedure for all weighted automata over the
positive reals (and certain other semirings). Our definition extends the
recent proposals by Sakarovitch and Lombardy for these semirings.

1 Introduction

Automata are among the most basic structures in Computer Science. They have
applications in a wide range of areas, including parsing, speech processing, and
image recognition/generation software. Despite their simplicity, much research
is still devoted to the semantics of automata and of related constructions.

Coalgebra is a mathematical framework to study dynamical systems, of which
automata are prime examples. Deterministic automata were the first automata
to be studied as coalgebras in the seminal paper by Rutten [15]. Subsequently,
various other types of automata and constructions were studied coalgebraically.
This view has unified and generalized existing results and algorithms for different
types of automata [17,1,2,18,3].

In this paper, we give a coalgebraic account of another concrete construction
for automata: the elimination of ε-transitions. For this we use the abstract ma-
chinery of trace semantics. The advantage of this combination is two-fold. On
the one hand, the concrete examples that the various types of automata pro-
vide clarify and ground the abstract notion of trace. On the other hand, trace
semantics provides us with a uniform and intuitive definition for ε-elimination
for many types of automata.
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// q1

a

		

// q2

b

		

// q3

c

		
ε-Transitions are often useful at an intermedi-
ate stage. To illustrate this, let us show how to
construct a non-deterministic automaton (with-
out ε-transitions) that recognizes the language a∗b∗c∗. Note that it is easy to
find automata recognizing the languages a∗, b∗ and c∗ (above, respectively).

// q1

a

		
ε // q2

b

		
ε //// q3

c

		

If we compose these automata using ε-
transitions, we obtain an automaton, on the
left, that recognizes a∗b∗c∗. To obtain an au-
tomaton without ε-transitions that recognizes

a∗b∗c∗ we incrementally eliminate the ε-transitions, as displayed below.

Hasuo and others [7,9] noted that result of the iterative process seen above
can be captured using trace semantics in a Kleisli category, approach which we
will discuss in more detail in Section 2.
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ε
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In this paper, we take inspiration
from [7,9] and we give an elaborate treat-
ment of ε-elimination procedures using trace
semantics. We extend their theory to include
a class of weighted automata.

Though the process of ε-elimination
for non-deterministic automata is classical
and well-understood, for weighted automata
things are less clear-cut, as witnessed by re-
cent research [14,12]. The construction pre-
sented in this paper brings new results in
comparison with the research presented in
the aforementioned papers.

From a coalgebraic perspective, the challenge behind ε-elimination comes
from the fact that many notions and definitions, such as bisimilarity for a func-
tor, are given in a step-wise fashion. That is, the behavior of a certain system is
fully determined by looking one step ahead at each time. This phenomenon, of
having to deal with multi-step behavior, poses problems when having to model
internal actions, such as ε-transitions, of a system. This is also present in con-
currency theory, where internal actions (τ -steps) are discarded when defining
weak bisimilarity. The theory presented in this paper might give a direction to
improve the existing coalgebraic accounts of weak bisimilarity [20,4], which are
not yet satisfactory.

The paper is organized as follows. In Section 2, we discuss the concrete con-
struction for non-deterministic automata, we discuss how this paves the way to
a coalgebraic account, and we introduce the idiosyncrasies behind the analogous
construction for weighted automata. In Section 3, we present the general frame-
work to formalize elimination of ε-transitions. In Section 4, we show how to
model weighted automata in order to fit the framework. In Section 5, we discuss
directions for future work.All proofs are omitted in the present article. A full
version, containing all proofs and extra material can be found in [19].



2 Motivation

In this section we describe the existing ε-elimination procedures for weighted
and non-deterministic automata more thoroughly. We also recall some of the
basic notions concerning automata. We present the material in a manner that is
suited to the purposes of this paper. For instance, we represent these automata
as coalgebras and make no mention of initial states.

2.1 Non-Deterministic Automata

We represent a non-deterministic automaton (nda) with states X over the
alphabet A as a map α : X −→ ℘(A×X + 1), where ℘ is the powerset functor.
Given q, r ∈ X and a ∈ A, we write, omitting the coproduct injections,

q↓α ⇐⇒ ∗ ∈ α(q) q is a final state

q
a−→α r ⇐⇒ (a, r) ∈ α(q) q has an a-transition to r

Let us recall the usual (language) semantics of α, i.e., which words a state q ∈ X
of α accepts. Let w ≡ a1a2 · · · an be a word over A, and let q ∈ X. We say that
q accepts w if there are q1, . . . , qn ∈ X such that

q
a1−→α q1

a2−→α · · ·
an−→α qn and qn↓α. (1)

So the semantics of α is captured by the map [[−]]α : X −→ ℘(A∗) given by

w ∈ [[q]]α ⇐⇒ q accepts w,

where q ∈ X and w ∈ A∗. So we will simply say that [[−]]α is the semantics of α.

ε-Transitions An nda with ε-transitions (ε-nda) with states X over an
alphabet A is simply an nda with states X over the alphabet A+ {ε},

α : X −→ ℘((A+ {ε})×X + 1),

but with a different semantics, which we define next.

Given a word w̃ over A + {ε}, let w̃\ε be the word on A one obtains by
removing all the letters “ε” from w̃.

Let w ∈ A∗, and let q ∈ X. We say q accepts w (in the ε-nda α) if there
is w̃ ∈ (A + {ε})∗ such that w = w̃\ε and q accepts w̃ in α seen as an nda, as
in (1).

Hence the semantics of α is the map [[−]]εα : X −→ ℘(A∗) given by, for q ∈ X,

[[q]]εα =
{
w̃\ε : w̃ ∈ [[q]]α

}
.

Or, more abstractly, [[−]]εα = ℘(−\ε) ◦ [[−]]α.



ε-Elimination for Non-Deterministic Automata Let α be an ε-nda with
states X and over an alphabet A. We construct an nda α# : X → ℘(A×X + 1)
which has the same semantics as α, in the sense that [[−]]α# = [[−]]εα. Since α#

will have no ε-transitions we say “we have eliminated the ε-transitions”.
The nda α# is defined as follows. A state q ∈ X has a transition in α#

labelled by a ∈ A to a state r if either this transition was already there in α
or after a number of ε-transitions, starting from q, it is possible to make an
a-transition to r. Formally:

q↓α# ⇐⇒

[
q

ε−→α q1
ε−→α · · ·

ε−→α qn and qn↓α
for some n ∈ N and q1, . . . , qn ∈ X

q
a−→α# r ⇐⇒

[
q

ε−→α q1
ε−→α · · ·

ε−→α qn and qn
a−→α r

for some n ∈ N and q1, . . . , qn ∈ X

Let w ∈ A∗ and q ∈ X. We leave it to the reader to verify that q accepts w in
the ε-nda α if and only if q accepts w in the nda α#, i.e., [[q]]α# = [[q]]εα. Hence,
the following diagram commutes.

X
[[−]]α

//

[[−]]
α# **

℘((A+ {ε})∗)
℘(−\ε)
��

℘(A∗)

Note that [[−]]α is the semantics of α considered as an nda.

Coalgebraic Formulation We want to find an abstract definition of α# so
that it can be instantiated for other types of automata. To this end it turns out
to be fruitful to consider the following variant of α#. Let

trα : X −→ ℘(N× (A×X + 1) )

be the map given by: for all q, r ∈ X, and a ∈ A, and n ∈ N:

(n, (a, r)) ∈ trα(q) ⇐⇒

[
q

ε−→α q1
ε−→α · · ·

ε−→α qn and qn
a−→α r

for some q1, . . . , qn ∈ X

(n, ∗) ∈ trα(q) ⇐⇒

[
q

ε−→α q1
ε−→α · · ·

ε−→α qn and qn↓α
for some q1, . . . , qn ∈ X

The map trα contains more information than α#. For example, α# tells us if a
state q ∈ X is final by whether ∗ ∈ α#(q). The map trα tells us more, namely
whether a final state can be reached from the state q using exactly n ε-transitions
by whether (n, ∗) ∈ trα(q).

Note that we can recover α# from the map trα; we have

b ∈ α#(q) ⇐⇒ ∃n ∈ N (n, b) ∈ trα(q), (2)



for all q ∈ X and b ∈ B, where B := A × X + 1. More categorically, we can
formulate Statement (2) as:

X
trα //

α#
66

℘(N ·B )
℘(∇)

// ℘(B) commutes.

Here, N ·B is the countable coproduct and ∇ : N ·B → B is the codiagonal given
by ∇(n, b) = b for all (n, b) ∈ N ·B.

We are interested in trα because it satisfies a recursive relation, namely

(0, b) ∈ trα(q) ⇐⇒ b ∈ α(q)

(n+ 1, b) ∈ trα(q) ⇐⇒ ∃r ∈ X
[

(ε, r) ∈ α(q) ∧ (n, b) ∈ trα(r)
]
,

(3)

where q ∈ X and n ∈ N and b ∈ B.

The recursive relation (3) can be cast in an abstract form, and this allows us
to define trα (and hence α#) for different types of automata at once.

For this we will use the Kleisli category K`(℘) of the monad ℘. Recall that
a map f : V → ℘(W ) is a morphism from V to W in K`(℘), which we will write

as f : V ◦ // W .

Indeed, we will see that the map trα : X → ℘(N ·B) is the unique morphism
such that the following diagram commutes, in K`(℘).

X ◦
trα //

◦α′ ��

N ·B
◦ξ��

X +B ◦
trα +̇1

// N ·B +B

,

where α′ : X −→ ℘(X +B) is the composition of the following maps

X
α // ℘( (A+ {ε})×X + 1 )

∼= // ℘(X + (A×X + 1) ) , (4)

and ξ : N ·B −→ ℘(N ·B+B) is given by ξ(0, b) = {b}, and ξ(n+1, b) = {(n, b)},
for all b ∈ B and n ∈ N.

We can formulate this more coalgebraically, as follows. Let F be the functor
on K`(℘) given by F = −+B. Then we can regard α′ as an F -coalgebra,

X ◦α
′

// FX = X +B

The final F -coalgebra is ξ, and trα is the unique homomorphism from α′ to ξ.

Such a unique homomorphism trα into the final coalgebra in a Kleisli category
is called a trace map by Hasuo, Jacobs, and Sokolova [8].

We will use the observations above to study ε-elimination in a more general
setting later on. But let us first consider the class of weighted automata.



2.2 Weighted Automata

Let S be a semiring (such as R). A weighted automaton is similar to a non-
deterministic automaton, but each transition and state carries a weight, s ∈ S.
Depending on the semiring, one may think of the weight of the transition between
two states q and r as the distance of the transition from q to r, or as the
probability that α transitions from q to r. For more information on weighted
automata, see [5].

We represent a weighted automaton over the semiring S with states X
over an alphabet A by a map α : X −→M (A×X+ 1), where M is the multiset
monad over S. Recall that

M (X) =
{
ϕ | ϕ : X → S, suppϕ is finite

}
.

Given q, r ∈ X and a ∈ A and s ∈ S, we write

q↓sα ⇐⇒ s = α(q)(∗) q outputs weight s

q
a|s−→α r ⇐⇒ s = α(q)(a, r)

q has an a-transition to r

with weight s

The subscript α will be omitted whenever it is clear from the context.
Let a ∈ A be given. Note that formally there is an a-transition between any

pair of states with some weight. We will typically only depict transitions with
non-zero weight.

Semantics We explain the semantics of weighted automata by an example.
Consider the following variation on a directed graph that represents a maze.

A2
44

7 //

2
��

5

''

B
2 +3

C
2

// D
3 +3

Suppose we stand at vertex A, and want to find the shortest path to exit the
maze (via one of the exits, ⇒). It is A→ C → D ⇒ with length 7.

Let us increase the complexity of the maze by adding some labels.

Aa|2
44

b|7
//

a|2
��

b|5

''

B
2 +3

C
a|2

// D
3 +3

(5)

Again, we stand at A and want to find the shortest path to one of the exits,
but this time we are only allowed to move along an ab-labelled path. That is,
to exit the maze, we are only allowed to first move along an edge labelled by a,
and then along an edge labelled by b, and then along ⇒. Now the shortest path
is A→ A→ D ⇒ with length 10.



The maze in (5) can be represented by a weighted automaton α with states
X := {A,B,C,D} and alphabet A := {a, b} over a semiring1 on R ∪ {+∞}
in a straightforward manner. When there is no c-labelled edge from one vertex
to another we use a c-transition of weight +∞, e.g., α(B)(a,D) = +∞. We
interpret the symbol “

s +3 ” at a vertex q to mean that q outputs s.
Note that we can express the length of the shortest ab-labelled path from A

to an exit using α as follows.

min
q1∈X

min
q2∈X

[
α(A)(κ`(a, q1)) + α(q1)(κ`(b, q2)) + α(q2)(κr(∗))

]
Note that “+” and “min” form a semiring Tmin on R ∪ {+∞}, called the

tropical semiring. Confusingly, “+” is the multiplication of Tmin while “min” is
the addition. Hence the zero of Tmin is +∞ and the one is 0.

Observe that if we change the operations “+” and “min” (that is, if we change
the semiring on R ∪ {+∞}) we get different semantics [[−]]α. For instance, if we
take “+” and “max” instead, [[q]]α(w) will be the the length of the longest w-
labelled path from q to an exit.

We now give the general definition of semantics for weighted automata. Let
S be a semiring. Let α : X −→M (A×X + 1) be a weighted automaton over S.
Then the semantics of α is the map [[−]]α : X −→ SA

∗
, given by, for q1 ∈ X,

and a word w = a1 · · · an ∈ A∗,

[[q1]]α(w) :=
∑
q2∈X

· · ·
∑

qn+1∈X

( n∏
i=1

α(qi)(ai, qi+1)
)
· α(qn+1)(∗). (6)

So a state in the weighted automaton α recognizes functions in SA
∗
. These

functions are usually referred to as formal power series (over S).
Non-deterministic automata are a special case of weighted automata. Indeed,

the reader can verify that if we take S to be the Boolean semiring then weighted
automata over S correspond exactly to ndas.

ε-Transitions A weighted automaton with ε-transitions α over a semir-
ing S with states X and alphabet A is simply a weighted automaton over S with
states X and alphabet A+ {ε}.

To explain the semantics of α, we first consider the tropical case S = Tmin.
Following the earlier discussion of the semantics of ordinary weighted automata
over Tmin and shortest paths, it seems natural to define the semantics of α to
be the map [[−]]εα : X −→ SA

∗
given by, for q ∈ X and w ∈ A∗,

[[q]]εα(w) = min
{

[[q]]α(w̃) : w̃ ∈ (A+ {ε})∗ and w̃\ε = w
}
. (7)

In the maze analogy, [[q]]εα(w) is the length of a shortest w-labelled path from q
to an exit when ε-moves are not counted.

However, note that Equation (7) is not a sound definition for all α since the
minimum might not exist. We will return to this problem shortly.

1 The appropriate semiring structure on R ∪ {+∞} will become clear later on.



But first, we will further illustrate the semantics of ε-transitions. Recall that
state q1 in the following nda accepts the language denoted by a∗b∗c∗:

q1

a

		
ε // q2

b

		
ε //// q3

c

		

Instead of talking about acceptance we now want to assign to each word in the
language a∗b∗c∗ the difference between the number of b’s and c’s occurring in
the word. In order to do that, we modify the above automaton into a weighted
automaton over the tropical semiring Tmin.

q1

a|0

		
ε|0

// q2

b|1

		
ε|0

//// q3

c|−1

		
0 +3

Note that for w ∈ {a, b, c}∗ the weight [[q1]]εα(w) is precisely the number of b’s
occuring in w minus the number of c’s occuring in w.

Inspired by Equation (7) we would like to define the semantics of a weighted
automaton α with ε-transitions over any semiring S with states X and alpha-
bet A to be the map [[−]]εα : X −→ SA

∗
given by, for q ∈ X and w ∈ A∗,

[[q]]εα(w) =
∑ {

[[q]]α(w̃) : w̃ ∈ (A+ {ε})∗ and w̃\ε = w
}
. (8)

However, without further information this is only a valid definition if the set{
[[q]]α(w̃) : w̃ ∈ (A+ {ε})∗ and w̃\ε = w

}
. (9)

is finite. Otherwise, we do not know how we should interpret the symbol “
∑

”.
The problem is quite subtle. For example, consider the following weighted

automata with ε-transitions over R (with the normal “+” and “·”).

q1

ε|0.5

		
1 +3 q2

ε|−0.5

		
1 +3 q3

ε|2

		
1 +3 q4

ε|−1

		
1 +3

Writing � for the empty word, one sees using Equation (8), that

[[q1]]ε(�) = 1 + 0.5 + (0.5)2 + · · · = 2,

[[q2]]ε(�) = 1 − 0.5 + (0.5)2 − · · · = 2/3,

and in a daring mood we can compute,

[[q3]]ε(�) = 1 + 2 + 4 + 8 + · · · = +∞,
but what should we make of the following?

[[q4]]ε(�) = 1 − 1 + 1 − 1 + · · ·



To give proper meaning to weighted automata with ε-transitions it seems nec-
essary to require that the semiring is equipped with a notion of summation for
some sequences, and we must restrict ourselves to a class of weighted automata
with ε-transitions for which the set in Expression (9) is summable.

Possibly due to this problem, the formal semantics of weighted automata
with ε-transitions has not yet been settled in the literature.

In a recent proposal by Lombardy and Sakarovitch [12], semantics is given
to a certain class of ‘valid ’ weighted automata with ε-transitions over topologi-
cal semirings using a sophisticated ε-elimination algorithm. The automata with
states q1 and q2 are valid, and the other two are not valid.

In this paper, the abstract view on automata gives rise to semantics to all
weighted automata over certain semirings, namely positive partial σ-semirings.
The semiring [0,+∞) is such a semiring, while R is not. So the general theory
yields semantics for the automata with states q1 and q3, but not for the automata
with states q2 and q4.

We will return to the example of weighted automata is Section 4.

3 Generalised ε-Elimination

Let us now turn to ε-elimination in a more general setting.

3.1 Automata in General

Setting 1 Let C be a category, and assume that C has all finite limits and all
countable colimits. Let F be a functor on C, and let T be a monad on C, with
Kleisli category K`(T ).

In this setting, we abstractly define an automaton, parametrized by a functor F
and a monad T , as follows.

Definition 2 Let X be an object from C. An automaton of type T, F with
states X is a morphism α : X −→ TFX.

In other words, an automaton of type T, F is a morphism in K`(T ) of the form

α : X ◦ // FX.

Examples 3 Let C = Sets, and F = A×−+ 1 for some object A of C.

(i) Let T = ℘ be the powerset monad. Then the automata of type T, F are
non-deterministic automata with alphabet A.

(ii) Let S be a semiring. Let T := M be the multiset monad over S. Then the
automata of type T, F are weighted automata with alphabet A over S.

Example 4 Let C = Meas. Let F = A×−+1. Let T = G be the sub-probability
monad (see [11]). Then the automata of type T, F are sub-probabalistic automata.



3.2 Semantics of Automata

Setting 5 All conditions from Setting 1 and, in addition, assume that F is lifted
to a functor F on K`(T ), via a distributive law λ : FT −→ TF , and that K`(T )
has a final F -coalgebra, ω : Ω ◦ // FΩ.

Note that the F -coalgebras in K`(T ) are precisely the automata (of type T, F ).
The final F -coalgebra is what we will use in order to abstractly define the se-
mantics for F, T automata:

Definition 6 Let α : X ◦ // FX in K`(T ) be given. We call unique homo-
morphism into the final coalgebra [[−]]α : X ◦ // Ω the semantics of α.

3.3 Trace and Iterate in General

Before we turn to the study of ε-elimination for these general automata, we
present some theory on the assignment α 7→ α#. The material is a slight simpli-
fication of the work by Hasuo in [7].

Setting 7 Let K be a category that has all countable coproducts. Moreover,
assume that for each object B from K, there is a final −+B-coalgebra,

ξB : NB −→ NB +B.

This setting is equivalent to require that the functor −+B is iteratable [13]. In
the sequel we instantiate K to the Kleisli category of a given monad.

Recall that since ξB is final, there is a unique homomorphism from each
−+B-coalgebra to ξB . We call this homomorphism trace.

Definition 8 Let β : X → X + B be a morphism in K. The trace of β is the
unique morphism trβ : X → NB such that the following diagram commutes.

X
trβ

//

β ��

NB
ξB��

X +B
trβ +B

// NB +B

Setting 9 Let K be a category that has all countable coproducts. Let B be an
object from K. Denote the initial − + B-algebra by ιB : N · B + B −→ N · B.
Assume also that ξB := ι−1B is the final −+B-coalgebra. So we have

ξB : N ·B −→ N ·B +B.

Before we define the iterate operator, we need two additional definitions.

Definition 10 Let g : A→ B be a morphism in K. Let N · g : N ·A −→ N ·B be
given by, for all n ∈ N, (N · g) ◦ κn = κn ◦ g. Equivalently, N · g is the unique
morphism such that

N ·A
N·g

//

ξA��

N ·B
ξB commutes.��

N ·A+A
N·g+g

// N ·B +B



Definition 11 Let B be an object of K. The codiagonal is the morphism
∇B : N ·B −→ B given by ∇B ◦ κn = idB, where n ∈ N, and κn : B −→ N ·B
is the n-th coprojection.

Definition 12 Let X and A be objects from K, and let α : X −→ X + A be
a morphism. Then the iterate of α is the morphism α# : X −→ A given by
α# := ∇A ◦ trα.

Proposition 13 Suppose we have a commuting diagram in K of the form

X
f

//

α
��

Y
β��

X +A
f+g

// Y +B

where g : A→ B. Then the following square commutes.

X
f

//

α#
��

Y
β#
��

A
g

// B

3.4 ε-Elimination in General

First, we define what an abstract automaton with ε-transitions is. (Since our
general automata do not explicitly contain an alphabet this is not immediately
clear.) Recall that in the case of non-deterministic automata, an automaton with
ε-transitions is a map α : X −→ ℘( (A+ {ε})×X + 1 ), and this map gives rise
to a second map,

α′ : X −→ ℘(X + (A×X + 1) ).

We base our definition on the second map, α′, instead of α.

Definition 14 Let X be an object from C. An ε-automaton of type T, F with
states X is a morphism α : X −→ T (X + FX ). In other words, α is an au-
tomaton of type T, Fε, where Fε is the functor with

FεX = X + FX.

To provide the semantics of ε-automata, we need some assumptions.

Setting 15 In addition to the assumptions in Setting 5, we assume that K`(T )
has a final F ε-coalgebra ωε : Ωε ◦ // Ωε + FΩε. Here, F ε is the lifting of Fε
to K`(T ), via the distributive law λε given by (λε)X = [Tκ`, Tκr ◦ λX ], where
X is an object from C. Moreover, let B be an object from C. We denote the
initial − + B-algebra in K`(T ) by ιB : N · B + B ◦ // N · B. Assume that
ξB := ι−1B is the final −+B-coalgebra in K`(T ).

We need a last definition, before providing semantics to ε-automata.



Definition 16 Let −\ε be the unique morphism in C such that

Ωε
◦ω#

ε ��

◦
·\ε

// Ω
◦ω��

FΩε ◦
F (·\ε)

// FΩ

commutes. That is, ·\ε is the semantics of the automaton ω#
ε , ·\ε = [[−]]ω#

ε
.

Definition 17 Let α : X ◦ // X + FX be an ε-automaton of type T, F .
The semantics of α is the map [[−]]εα : X ◦ // Ω such that

X
◦

[[−]]α **

◦
[[−]]εα // Ω

Ωε

◦−\ε
OO

commutes, where [[−]]α is the semantics of α seen as automaton of type T, Fε.

We can now present one of the main results of this paper, showing that (language)
semantics is preserved by the abstract ε-elimination procedure.

Theorem 18 (ε-Elimination) Let X be from C. Let α : X ◦ // X+FX be
an ε-automaton of type T, F . Then the iterate α# : X ◦ // FX is an automa-
ton of type T, F with the same semantics as α. That is,

[[−]]α# = [[−]]εα.

4 Weighted Automata and the σM Monad

We now briefly return to the case of the weighted automata. Due to space con-
straints, we leave most details to the reader. Recall that a weighted automaton
over a semiring S with states X and alphabet A is a map α : X −→ MFX,
where F = A×−+ 1. So α is an automaton of type M , F .

Unfortunately, the type M , F does not fit our general framework for au-
tomata (see Setting 15), since the inverse

ι−1B : N ·B ◦ // N ·B +B

of the initial −+B-algebra ιB in K`(M ) is not the final −+B-coalgebra.
Indeed, this follows from the following example.

Example 19 Let B := {b} and let α : {∗} ◦ // {∗}+B be given by

α(∗)(κ`(∗)) = α(∗)(κr(b)) = 1.

Suppose τ : {∗} ◦ // N ·B is a homomorphism from α to ι−1B . Then supp τ(∗)
is finite by definition of M . However, the reader can verify that τ(∗)(n, b) = 1
for all n ∈ N. So we see that supp τ(∗) must be infinite as well. No such τ exists.
Hence, ι−1B is not the final −+B-coalgebra in K`(M ).



In order to study weighted automata in the general framework, we use

σMX := { ϕ : X → S | suppϕ is at most countable }

instead of MX. To turn σM in a monad we need to assume that S is equipped
with a notion of countable sums. For more details, see [19].

Note that an automaton of type σM , F represents a weighted automaton that
is allowed to have infinitely many (proper) transitions from a given state, while
an automaton of type M , F is a weighted automaton with only finitely many
transitions from a given state.

Fortunately, the automata of type σM , F do fit nicely in our framework. That
is, Setting 15 applies to them.

Proposition 1. Given a set B, the inverse ι−1B : N ·B ◦ // N ·B +B of the
initial − + B-algebra ιB in K`(σM ) is the final − + B-coalgebra. Similarly, the
inverse ξ : A∗ ◦ // A×A∗+ 1 of the initial F -algebra is the final F -coalgebra
in K`(σM ).

Moreover, given a set A, and α : X ◦ // X+A in K`(σM ), the iterate α# of α
is given by, for all q0 ∈ X and a ∈ A,

α#(q0)(a) =
∑
n∈N

∑
q1∈X

· · ·
∑

qn+1∈X

( n∏
i=1

α(qi)(qi+1)
)
· α(a).

So we see that the abstract theory gives the expected results: the semantics
[[−]]α of an automaton of type σM , F turns out to be precisely the same as the
semantics that we discussed before (see Equation (6)).

4.1 Valid Semirings

There is, however, a catch. The monad σM is only defined over a σ-semiring,
that is, a semiring S equipped with a summation operation that assigns to each
family (xi)i∈I of elements of S a sum

∑
i∈I xi.

Usually, a semiring S is only equipped with a sum for some families of el-
ements, which are then called summable. This idea is formalised in the notion
partial σ-semiring. An example is the semiring of non-negative reals, [0,∞),
equipped with a sum for all absolutely summable sequences. There are many ex-
amples of such partial σ-semirings. In fact, any semiring S is a partial σ-semiring
in which only the finite families are summable.

It is often possible to extend a partial σ-semiring S to a σ-semiring by adding
one element ∗ to S and declaring that the sum of a family of element (xi)i∈I
of S ∪ {∗} is the sum in S when (xi)i∈I was summable in S and otherwise ∗.

Indeed, the above construction is possible if the partial σ-semiring has the
following property: for all a, b ∈ S, a+ b = 0 =⇒ a = 0 and b = 0. We call such
semirings positive (using the terminology Gumm introduced for monoids [6]).
In fact, any σ-semiring must be positive. So we see that only the positive partial



σ-semirings can be extended to a σ-semiring. A typical example of a semiring
that is not positive is R.

Let S be a positive partial σ-semiring. Then S can be extended to a σ-
semiring S ∪ {∗}, and hence the abstract framework for automata is applicable
to weighted automata over the semiring S ∪ {∗}.

The object ∗ acts as an “undefined” element. Consider the following weighted
automaton α with ε-transitions over the semiring R with alphabet {a, b}.

ε|2

��
1ks q

a|1
oo

b|1
// 3 +3

Let us compute the semantics of α with Equation (8). We see that [[q]]εα(b) = 3,
but there is a difficulty when computing [[q]]εα(a) = 1 + 2 + 4 + · · · . However,
if we consider α as a weighted automaton over the semiring S ∪ {∗}, then we
simply get [[q]]εα(a) = ∗, while still [[q]]εα(b) = 3.

All in all, the abstract framework applies to, and hence given us seman-
tics, ε-elimination, and so on, for all weighted automata over positive semirings
(possibly equipped with a partial summation).

5 Discussion

We have presented a framework where ε-elimination can be thought of in an ab-
stract manner. The framework yields procedures for non-deterministic automata
and, notably, for weighted automata. What we presented here can be seen as
the beginning of a larger quest to understand multi-step behavior, which is still
a challenge coalgebraically. There are several directions we would like to explore
further and which we discuss briefly next.

Kleisli versus Eilenberg–Moore Recovering coalgebraic definitions of lan-
guage equivalence has been done in two different settings. The one we used in
this paper, based on Kleisli categories, and the one presented in [18,17,10], based
on Eilenberg-Moore categories and a generalized powerset construction. The def-
inition of iterate is natural in Kleisli and hence we have taken the first approach.
We want to explore if it is possible to define similar notions in the Eilenberg-
Moore setting and enlarge the examples the framework covers. For instance, the
generalized powerset construction works for every weighted automaton, without
having to resort to changes in the monad.

Weak Bisimilarity ε-transitions are in some sense similar to τ -transitions
in labelled transition systems (LTS). However, there are some subtleties to be
tackled, before fully exploring the present framework to study weak bisimilarity.
In particular, consider the example of the processes a + b and τ.a + b, which are
not weakly bisimilar. Naively applying the framework above would erroneously
identify them and extra care needs to be taken in order to avoid this. A more
detailed account on the applications to weak bisimilarity can be found in [19].
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