Left-Handed Completeness

Dexter Kozen
Computer Science Department
Cornell University
Ithaca, NY 14853-7501, USA

Alexandra Silva*
Centrum Wiskunde \& Informatica
Science Park 123
1098 XG Amsterdam
The Netherlands

August 21, 2011

Abstract

We give a new, significantly shorter proof of the completeness of the left-handed star rule of Kleene algebra. The proof reveals the rich interaction of algebra and coalgebra in the theory.

1 Introduction

Axiomatizations of the equational theory of the regular sets over an alphabet Σ have received much attention over the years. The topic was introduced in the seminal 1956 paper of Kleene [5], who left axiomatization as an open problem. Salomaa [13] gave two complete axiomatizations, but these depended on rules of inference that were sound under the standard interpretation but not under other natural interpretations. Conway, in his monograph [3], coined the term Kleene algebra (KA) and contributed substantially to the understanding of the question of axiomatization. An algebraic solution was presented by Kozen [8], who postulated two equational implications, similar to the inference rules of Salomaa; but unlike Salomaa's rules, they are universal Horn formulas, therefore sound over a variety of nonstandard interpretations. The main goal of this paper is to show that only one of the implications is enough to guarantee completeness.

This result, which we shall call left-handed completeness, is a known result. It was claimed without proof by Conway [3, Theorem 12.5], although the accompanying informal description was of a somewhat weaker result. The only extant proof, by Boffa [1], relies on a result of Krob [10], who presented a schematic equational axiomatization representing infinitely many equations. The proof of Krob is quite lengthy, running to 137 journal pages.

Purely equational axiomatizations are undesirable for several reasons. From a practical point of view, they are inadequate for reasoning in the presence of other equational assumptions, which is almost always the case in real-life applications. To illustrate, consider the free R-algebra (Conway's terminology for an algebra satisfying all the equations of the regular sets) on the finite monoid

[^0]$\{1, a\}$, where $a a=a$. This algebra contains six elements: $0,1, a, 1+a, a^{*}, a a^{*}$. There is a KA homomorphism from the algebra of regular sets to this algebra, which maps \varnothing to $0,\{\varepsilon\}$ to 1 , other finite sets containing (resp., not containing) ε to $1+a$ (resp., a), and infinite sets containing (resp., not containing) ε to a^{*} (resp., $a a^{*}$). However, this six-element algebra does not resemble a Kleene algebra at all, as we would expect $a^{*}=1+a$ when $a a=a$; a real-life example would be the redundant assignment $x:=1 ; x:=1$. Thus equations alone are inadequate for even the simplest verification tasks involving iteration.

On the other hand, characterizing a^{*} as a least fixpoint is a natural and powerful device, and is satisfied in virtually all models that arise in real life. However, there are interesting and useful models that satisfy only one of the two star rules $[6,7,9]$, so it is important to know that only one of the rules is needed for equational completeness.
Even though we present a new proof of a known result, there is added value in the exploration of the exquisite interplay between algebra and coalgebra in the theory of regular sets. The (syntactic) Brzozowski derivative provides the link from the algebraic to the coalgebraic view of regular expressions, whereas the canonical embedding of a given coalgebra into a matrix algebra plays the converse role. This interplay between algebra and coalgebra, first explored in [4, 11], has opened the door to far-reaching extensions of Kleene's theorem and Kleene algebras [14].

Another interesting contribution of this paper is a clear characterization of how far one can go in the proof of completeness just using equations. In fact, we show that the equational implication is needed only to guarantee the existence of least solutions. Furthermore, we show that the existence of least solutions implies uniqueness of solutions in the free algebra, which neatly ties our axiomatization with the original axiomatization of Salomaa.

2 Axiomatization

2.1 Left-Handed Kleene Algebra

A weak Kleene algebra (weak KA) is an idempotent semiring with star satisfying (1)-(4):

$$
\begin{align*}
a^{*} & =1+a a^{*} \tag{1}\\
(a b)^{*} a & =a(b a)^{*} \tag{2}\\
(a+b)^{*} & =a^{*}\left(b a^{*}\right)^{*} \tag{3}\\
a^{* *} & =a^{*} \tag{4}
\end{align*}
$$

Axioms (2) and (3) are called sliding and denesting, respectively. These axioms were studied in depth by Conway [3] under the names productstar (for the combination of (1) and (2) in the single equation $(a b)^{*}=1+a(b a)^{*} b$), sumstar, and starstar, respectively. Although incomplete, these equations are sufficient for many arguments involving the star operator.

Conway studied many other useful families of axioms, including the powerstar rules

$$
\begin{equation*}
a^{*}=\left(a^{n}\right)^{*} \sum_{i=0}^{n-1} a^{n} \tag{5}
\end{equation*}
$$

although we will have little use for them.
A left-handed Kleene algebra (LKA) is a weak KA satisfying a certain universal Horn formula, called the left-handed star rule, which may appear in either of the two equivalent forms

$$
\begin{equation*}
b+a x \leq x \Rightarrow a^{*} b \leq x \quad a x \leq x \Rightarrow a^{*} x \leq x \tag{6}
\end{equation*}
$$

One consequence is the left-handed bisimulation rule

$$
\begin{equation*}
a x \leq x b \Rightarrow a^{*} x \leq x b^{*} \tag{7}
\end{equation*}
$$

2.2 Matrices

Let $\operatorname{Mat}(S, K)$ be the family of square matrices with rows and columns indexed by a finite set S with entries in K. Conway [3] shows that under the appropriately defined matrix operations, axioms (1)-(3) imply themselves for matrices. This is also true for (6) [8]. It is known for the powerstar rules (5) too, but only in a weaker form [3].

The characteristic matrix P_{f} of a function $f: S \rightarrow S$ has $\left(P_{f}\right)_{s t}=1$ if $f(s)=t, 0$ otherwise. A matrix is a function matrix if it is P_{f} for some f; that is, each row contains exactly one 1 and all other entries are 0 .

Let $S_{1}, \ldots, S_{n} \subseteq S$ be a partition of S. A matrix $A \in \operatorname{Mat}(S, K)$ is said to be block diagonal with blocks S_{1}, \ldots, S_{n} if $A_{s t}=0$ whenever s and t are in different blocks.

Lemma 2.1 Let $A, P_{f} \in \operatorname{Mat}(S, K)$ with P_{f} the characteristic matrix of a function $f: S \rightarrow S$. The following are equivalent:
(i) A is block diagonal with blocks refining the kernel of f; that is, if $A_{s t} \neq 0$, then $f(s)=f(t)$;
(ii) $A P_{f}=D P_{f}$ for some diagonal matrix D;
(iii) $A P_{f}=D P_{f}$, where D is the diagonal matrix $D_{s s}=\sum_{f(s)=f(t)} A_{s t}$.

Proof. Suppose $A P_{f}=D P_{f}$, where D is diagonal. Then

$$
\left(D P_{f}\right)_{s u}=\sum_{t} D_{s t}\left(P_{f}\right)_{t u}=D_{s s}\left(P_{f}\right)_{s u} \quad\left(A P_{f}\right)_{s u}=\sum_{t} A_{s t}\left(P_{f}\right)_{t u}=\sum_{u=f(t)} A_{s t}
$$

so if $A_{s t} \neq 0$ and $f(t)=u$, then $D_{s s}\left(P_{f}\right)_{s u} \neq 0$, therefore $f(s)=u$. Thus, (ii) implies (i).
If (i) holds, then $A_{s t}=0$ if $f(s) \neq f(t)$, therefore

$$
\left(A P_{f}\right)_{s u}=\sum_{u=f(t)} A_{s t}=\sum_{u=f(t)=f(s)} A_{s t}=\left(\sum_{f(s)=f(t)} A_{s t}\right)\left(P_{f}\right)_{s u}=D_{s s}\left(P_{f}\right)_{s u}=\left(D P_{f}\right)_{s u}
$$

where D is the diagonal matrix with $D_{s s}=\sum_{f(s)=f(t)} A_{s t}$. Thus, (i) implies (iii). We can now conclude the proof, since (iii) implies (ii) trivially.

2.3 Differential Kleene Algebra

A differential Kleene algebra (DKA) K is a weak KA containing a set $\Sigma \subseteq K$, called the actions, and a subalgebra C, called the observations, such that
(i) $a e=e a$ for all $a \in \Sigma$ and $e \in C$, and
(ii) C and Σ generate K,
and supporting a Brzozowski derivative consisting of a pair of functions $\varepsilon: K \rightarrow C$ and $\delta_{a}: K \rightarrow K$ for $a \in \Sigma$ satisfying

$$
\begin{array}{rlrl}
\delta_{a}\left(e_{1}+e_{2}\right) & =\delta_{a}\left(e_{1}\right)+\delta_{a}\left(e_{2}\right) & \varepsilon\left(e_{1}+e_{2}\right) & =\varepsilon\left(e_{1}\right)+\varepsilon\left(e_{2}\right) \\
\delta_{a}\left(e_{1} e_{2}\right) & =\delta_{a}\left(e_{1}\right) e_{2}+\varepsilon\left(e_{1}\right) \delta_{a}\left(e_{2}\right) & \varepsilon\left(e_{1} e_{2}\right) & =\varepsilon\left(e_{1}\right) \varepsilon\left(e_{2}\right) \\
\delta_{a}\left(e^{*}\right) & =\varepsilon\left(e^{*}\right) \delta_{a}(e) e^{*} & \varepsilon\left(e^{*}\right) & =\varepsilon(e)^{*} \tag{8}\\
\delta_{a}(b) & =\left\{\begin{array}{lll}
1 & \text { if } a=b, \\
0 & \text { if } a \neq b, & b \in \Sigma \\
\delta_{a}(c) & =0, c \in C & \varepsilon(b)
\end{array}\right)=0, b \in \Sigma \\
\varepsilon(c) & =c, c \in C
\end{array}
$$

Thus $\varepsilon: K \rightarrow C$ is a retract (a KA homomorphism that is the identity on C). The functions δ_{a} and ε impart a coalgebra structure of signature $-{ }^{\Sigma} \times C$ in addition to the algebra structure.
This definition is a slight generalization of the usual situation in which $C=\mathcal{L}$ and the function ε and δ_{a} are the (syntactic) Brzozowski derivatives. We will be primarily interested in matrix KAs in which C is the set of square matrices over \mathcal{L}.

2.4 Examples

One example of a DKA with observations $\mathcal{2}$ is $\operatorname{Brz}=\left(2^{\Sigma^{*}}, \delta, \varepsilon\right)$, where $\varepsilon(A)=1$ iff A contains the null string and 0 otherwise, and $\delta_{a}: 2^{\Sigma^{*}} \rightarrow 2^{\Sigma^{*}}$ is the classical Brzozowski derivative

$$
\delta_{a}(A)=\left\{x \in \Sigma^{*} \mid a x \in A\right\}
$$

This is the final coalgebra of the functor $-^{\Sigma} \times \mathcal{D}$. It is also an LKA under the usual set-theoretic operations.
Another example is the free LKA K_{Σ} on generators Σ. It is also a DKA, where δ_{a} and ε are defined inductively on the syntax of regular expressions according to (8). The maps δ_{a} and ε are easily shown to be well defined modulo the axioms of LKA.

These structures possess both an algebra and a coalgebra structure, and in fact are bialgebras [4]. Our main result essentially shows that the latter is isomorphically embedded in the former.

2.5 Properties of DKAs

Silva [14] calls the following result the fundamental theorem in analogy to a similar result proved for infinite streams by Rutten [12], closely related to the fundamental theorem of calculus. We show
here that the result holds under weaker assumptions than those assumed in [14].
Theorem 2.2 Let K be a DKA. For all elements $e \in K$,

$$
\begin{equation*}
e=\sum_{a \in \Sigma} a \delta_{a}(e)+\varepsilon(e) \tag{9}
\end{equation*}
$$

Proof. We proceed by induction on the generation of e from Σ and C using only equations of weak KA and properties of derivatives. For $e \in C, \varepsilon(e)=e$ and $\delta_{a}(e)=0$, thus (9) holds. For $e=a \in \Sigma$, the right-hand side of (9) reduces to a, thus (9) holds in this case as well.

For the induction step, the case of + is straightforward. For multiplication,

$$
\begin{aligned}
e_{1} e_{2} & =\left(\sum_{a \in \Sigma} a \delta_{a}\left(e_{1}\right)+\varepsilon\left(e_{1}\right)\right) e_{2}=\sum_{a \in \Sigma} a \delta_{a}\left(e_{1}\right) e_{2}+\varepsilon\left(e_{1}\right)\left(\sum_{a \in \Sigma} a \delta_{a}\left(e_{2}\right)+\varepsilon\left(e_{2}\right)\right) \\
& =\sum_{a \in \Sigma} a \delta_{a}\left(e_{1}\right) e_{2}+\sum_{a \in \Sigma} a \varepsilon\left(e_{1}\right) \delta_{a}\left(e_{2}\right)+\varepsilon\left(e_{1}\right) \varepsilon\left(e_{2}\right)=\sum_{a \in \Sigma} a\left(\delta_{a}\left(e_{1}\right) e_{2}+\varepsilon\left(e_{1}\right) \delta_{a}\left(e_{2}\right)\right)+\varepsilon\left(e_{1} e_{2}\right) \\
& =\sum_{a \in \Sigma} a \delta_{a}\left(e_{1} e_{2}\right)+\varepsilon\left(e_{1} e_{2}\right)
\end{aligned}
$$

For e^{*}, we use the KA identity

$$
\begin{equation*}
(x+y)^{*}=y^{*} x(x+y)^{*}+y^{*} \tag{10}
\end{equation*}
$$

which follows equationally from (1), (3), and distributivity. Using this identity with $x=\sum_{a \in \Sigma} a \delta_{a}(e)$ and $y=\varepsilon(e)$,

$$
\begin{aligned}
e^{*} & =\left(\sum_{a \in \Sigma} a \delta_{a}(e)+\varepsilon(e)\right)^{*}=\varepsilon(e)^{*} \sum_{a \in \Sigma} a \delta_{a}(e) e^{*}+\varepsilon(e)^{*} \quad \text { by }(10) \\
& =\sum_{a \in \Sigma} a \varepsilon(e)^{*} \delta_{a}(e) e^{*}+\varepsilon(e)^{*}=\sum_{a \in \Sigma} a \delta_{a}\left(e^{*}\right)+\varepsilon\left(e^{*}\right)
\end{aligned}
$$

Let K be a DKA with actions Σ and observations C. We define the C-free part of $e \in K$ to be

$$
\begin{equation*}
e^{\prime}=\sum_{a \in \Sigma} D_{a}(e) \tag{11}
\end{equation*}
$$

By the fundamental theorem, every element of K can be decomposed into its C-free part e^{\prime} and $\varepsilon(e) \in C$.

$$
\begin{equation*}
e=e^{\prime}+\varepsilon(e) \quad \varepsilon\left(e^{\prime}\right)=0 \tag{12}
\end{equation*}
$$

The map $e \mapsto e^{\prime}$ is linear and satisfies properties akin to derivations in calculus:

$$
\begin{equation*}
1^{\prime}=0 \quad(d e)^{\prime}=d^{\prime} e+d e^{\prime} \quad e^{* \prime}=e^{\prime+} \tag{13}
\end{equation*}
$$

For the last two,

$$
\begin{aligned}
\sum_{a \in \Sigma} a D_{a}(d e) & =\sum_{a \in \Sigma} a D_{a}(d) e+\sum_{a \in \Sigma} a \varepsilon(d) D_{a}(e) \\
& =d^{\prime} e+\varepsilon(d) e^{\prime}=d^{\prime} e^{\prime}+d^{\prime} \varepsilon(e)+\varepsilon(d) e^{\prime}=d^{\prime} e+d e^{\prime} \\
\sum_{a \in \Sigma} a D_{a}\left(e^{*}\right) & =\sum_{a \in \Sigma} a D_{a}(e) e^{*}=e^{\prime} e^{*}=e^{\prime}\left(e^{\prime}+\varepsilon(e)\right)^{*}=e^{\prime} e^{\prime *}=e^{\prime+}
\end{aligned}
$$

Moreover, the decomposition is unique: if $e=b+c$ with $\varepsilon(b)=0$ and $c^{\prime}=0$, then

$$
b=b^{\prime}+\varepsilon(b)=b^{\prime}+c^{\prime}=e^{\prime} \quad c=c^{\prime}+\varepsilon(c)=\varepsilon(b)+\varepsilon(c)=\varepsilon(e)
$$

The following consequence of the above observations will be useful in our application. If $G \subseteq K$, let $\langle G\rangle$ denote the subalgebra of K generated by G.

Lemma 2.3 Let K be a DKA with derivation'. Let $G \subseteq K$ and $x \in K$. If $e^{\prime}=e^{\prime} x$ and $\varepsilon(e) \in \mathscr{2}$ for all $e \in G$, then $e^{\prime}=e^{\prime} x$ and $\varepsilon(e) \in \mathscr{L}$ for all $e \in\langle G\rangle$.
Proof. We have $1^{\prime} x=0^{\prime} x=0$ and $e^{\prime} x=e^{\prime}$ for $e \in G$, and by induction,

$$
\begin{aligned}
(d+e)^{\prime} x & =d^{\prime} x+e^{\prime} x=d^{\prime}+e^{\prime}=(d+e)^{\prime} \\
(d e)^{\prime} x & =d^{\prime} e x+d e^{\prime} x=d^{\prime} e^{\prime} x+d^{\prime} \varepsilon(e) x+d e^{\prime} x=d^{\prime} e+d e^{\prime}=(d e)^{\prime} \\
\left(e^{*}\right)^{\prime} x & =e^{\prime+} x=e^{\prime *} e^{\prime} x=e^{\prime *} e^{\prime}=e^{\prime+}=e^{*^{\prime}}
\end{aligned}
$$

Also, $\varepsilon(e) \in \mathscr{Z}$ for all $e \in\langle G\rangle$ because ε is a homomorphism.
Lemma 2.4 Let K be a DKA with derivation '. Suppose $G \subseteq K$ and $x, x^{-} \in C$ such that $x^{-} x=1$ and $e^{\prime} x x^{-}=e^{\prime}$ and $\varepsilon(e) \in \mathscr{L}$ for all $e \in G$. Then the map $e \mapsto x^{-}$ex is a KA homomorphism on $\langle G\rangle$.
Proof. It is clearly a homomorphism with respect to 0,1 , and + . By Lemma 2.3, we can assume that $e^{\prime} x x^{-}=e^{\prime}$ and $\varepsilon(e) \in \mathscr{L}$ for all $e \in\langle G\rangle$. Now to show that the map preserves multiplication and star,

$$
\begin{aligned}
x^{-} d e x & =x^{-}\left(d^{\prime}+\varepsilon(d)\right) e x=x^{-} d^{\prime} e x+x^{-} \varepsilon(d) e x=x^{-} d^{\prime} x x^{-} e x+x^{-} x x^{-} \varepsilon(d) e x \\
& =x^{-} d^{\prime} x x^{-} e x+x^{-} \varepsilon(d) x x^{-} e x=x^{-} d x x^{-} e x \\
x^{-} e^{*} x & =x^{-}\left(e^{\prime}+\varepsilon(e)\right)^{*} x=x^{-} e^{\prime *} x=x^{-}\left(e^{\prime} x x^{-}\right)^{*} x=\left(x^{-} e^{\prime} x\right)^{*} x^{-} x \\
& =\left(x^{-} e^{\prime} x+x^{-} x \varepsilon(e)\right)^{*}=\left(x^{-}\left(e^{\prime}+\varepsilon(e)\right) x\right)^{*}=\left(x^{-} e x\right)^{*} .
\end{aligned}
$$

2.6 Systems of Linear Equations

A system of (left-)linear equations over a weak KA K is a coalgebra (S, D, E) of signature ${ }^{\Sigma}{ }^{\Sigma} \times K$, where $\Sigma \subseteq K, D: S \rightarrow S^{\Sigma}$, and $E: S \rightarrow K$. We curry D so as to write $D_{a}: S \rightarrow S$ for $a \in \Sigma$. The $\operatorname{map} D: \Sigma \rightarrow S \rightarrow S$ extends uniquely to a monoid homomorphism $D: \Sigma^{*} \rightarrow S \rightarrow S$, thus we have $D_{x}: S \rightarrow S$ for $x \in \Sigma^{*}$. A solution in K is a map $\varphi: S \rightarrow K$ such that

$$
\begin{equation*}
\varphi(s)=\sum_{a \in \Sigma} a \varphi\left(D_{a}(s)\right)+E(s) \tag{14}
\end{equation*}
$$

Every system of linear equations has a solution. To see this, form an associated matrix $A \in$ $\operatorname{Mat}(S, K)$, where

$$
A=\sum_{a \in \Sigma} \Delta(a) P(a) \in \operatorname{Mat}(S, K)
$$

where $\Delta(a)$ is the diagonal matrix with diagonal entries a and $P(a)$ is the characteristic matrix of the function D_{a}. Regarding φ and E as column vectors indexed by S, the solution condition (14) takes the form $\varphi=A \varphi+E$. Since $\operatorname{Mat}(S, K)$ is a weak $K A$, the vector $A^{*} E$ is a solution by (1). We call this solution the canonical solution. If in addition K is an LKA, then the canonical solution is also the least solution.

If K is freely generated by Σ, then the map $a \mapsto \Delta(a) P(a)$ extends uniquely to a KA homomorphism $\chi: K \rightarrow \operatorname{Mat}(S, K)$, called the standard embedding. It will follow from our results that χ is injective.

2.7 Bisimilarity and Completeness

Let (S, D, E) be a coalgebra of signature $-{ }^{\Sigma} \times \mathcal{D}$. We say that states $s, t \in S$ are bisimilar, and write $s \approx t$, if $E\left(D_{x}(s)\right)=E\left(D_{x}(t)\right)$ for all $x \in \Sigma^{*}$. The relation \approx is the maximal bisimulation on S and is the kernel of the unique coalgebra morphism $L_{S}: S \rightarrow \mathrm{Brz}$, where

$$
L_{S}(s)=\left\{x \in \Sigma^{*} \mid E\left(D_{x}(s)\right)=1\right\} .
$$

Soundness and completeness can be expressed in these terms. Let E be a set of equations or equational implications on regular expressions, and let Con E be the set of consequences of E in ordinary equational logic. The axioms E are sound if Con E refines bisimilarity; equivalently, if the Brzozowski derivative is well-defined on the free weak KA modulo E. A sound set of axioms are complete if Con E and bisimilarity coincide; that is, if the unique coalgebra morphism to the final coalgebra Brz is injective. We have mentioned above that the LKA axioms are sound; indeed, soundness has been shown in [8] for a larger set of axioms, namely those of KA. To prove that they are complete, our task is to show that the unique coalgebra morphism $L_{K_{\Sigma}}: K_{\Sigma} \rightarrow \mathrm{Brz}$ is injective.
This characterization of soundness and completeness was first observed by Jacobs [4] for classical regular expressions and KA and largely explored in the thesis of Silva [14] for generalized regular expressions. See [14] for a comprehensive introduction to this characterization.

3 Decompositions

3.1 Simple Strings

Let (S, D, E) be a coalgebra of type $-{ }^{\Sigma} \times \mathcal{D}$. Let K_{Σ} be the free LKA on generators Σ. Extend D to a monoid homomorphism $D: \Sigma^{*} \rightarrow S \rightarrow S$. Let $\chi: K_{\Sigma} \rightarrow \operatorname{Mat}(S, K)$ by $\chi(a)=\Delta(a) P(a)$ be the standard embedding.
Call $x \in \Sigma^{*}$ simple if $P(y) \neq P(z)$ for distinct suffixes y, z of x. If x is simple, then so are all its suffixes. Define

$$
\begin{aligned}
M & =\{x \mid x \text { is simple }\} \\
M_{x} & =\{y| | y \mid>0 \text { and } P(y x)=P(x), \text { but all proper suffixes of } y x \text { are simple }\} .
\end{aligned}
$$

Let $n=|S|$. If $y \in M_{x}$, then $1+|x| \leq|y x| \leq n^{n}$, as each function $S \rightarrow S$ is represented at most once as $P(z)$ for a proper suffix z of $y x$.
We now define a family of elements $R_{x}, T_{y, x}$, and V_{x} of K_{Σ} for $x, y \in \Sigma^{*}$.

$$
\begin{array}{cll}
R_{x}=\left(\sum_{y \in M_{x}} T_{y, x}\right)^{*} & T_{1, x}=1 & T_{a y, x}=R_{a y x} a T_{y, x}, a \in \Sigma \\
V_{x}=T_{x, 1} R_{1} & & V=\sum_{x \in M} V_{x} .
\end{array}
$$

Intuitively, if x is a simple word labeling a path from s to t, then all words represented by the expression V_{x} lead from s to t, and V represents all words in Σ^{*}.
The definitions of R_{x} and $T_{y, x}$ in (15) are by mutual induction, but it is not immediately clear that the definition is well-founded-note that R_{x} depends on $T_{y, x}$ for $y \in M_{x}$, which depends on $R_{y x}$. To prove well-foundedness, we define a binary relation \succ on tuples (R, x) and (T, y, x) defined as follows. For $x, y \in \Sigma^{*}$ and $a \in \Sigma$, let

$$
(R, x) \succ(T, y, x), y \in M_{x} \quad(T, a y, x) \succ(R, a y x) \quad(T, a y, x) \succ(T, y, x) .
$$

The relation \succ describes the dependencies in the definition (15).
Lemma 3.1 The relation \succ is well-founded; that is, there are no infinite \succ-paths.
Proof. Assign numbers to the tuples as follows:

$$
(R, x) \mapsto\left\{\begin{array}{ll}
\left(n^{n}-|x|+2\right. \\
2
\end{array}\right)-1 \text { if }|x| \leq n^{n}, \quad(T, y, x) \mapsto\left\{\begin{array}{ll}
\left(n^{n}-|x|+1\right. \\
2 & \text { otherwise },
\end{array} \quad \begin{array}{ll}
|y| & \text { if }|x| \leq n^{n}-1, \\
0 & \text { otherwise. }
\end{array}\right.
$$

As observed above, if $y \in M_{x}$, then $1 \leq|y| \leq n^{n}-|x|$. Using this fact, one can show by elementary arithmetic that the numbers assigned to the tuples are nonnegative and decrease strictly with \succ.

Note that $R_{x}=1$ for $x \geq n^{n}$, since the sum in the definition of R_{x} in (15) is vacuous in that case. It follows inductively that $T_{y, x}=y$ for $x \geq n^{n}$.
Lemma 3.2 For all $x, y \in \Sigma^{*}$ and $a \in \Sigma$,
(i) $V_{1}=R_{1}$ and $V_{a x}=R_{a x} a V_{x}$.
(ii) $V_{y x}=T_{y, x} V_{x}$.

Proof. For (i),

$$
V_{1}=T_{1,1} R_{1}=R_{1} \quad V_{a x}=T_{a x, 1} R_{1}=R_{a x} a T_{x, 1} R_{1}=R_{a x} a V_{x} .
$$

For (ii), we proceed by induction on $|y|$. The basis $V_{x}=T_{1, x} V_{x}$ is immediate. For the induction step, using (i),

$$
V_{a y x}=R_{a y x} a V_{y x}=R_{a y x} a T_{y, x} V_{x}=T_{a y, x} V_{x} .
$$

Lemma $3.3\left(\sum_{a \in \Sigma} a\right)^{*}=V$.
Proof. For the forward inequality, we use the left-handed star rule (6). Let $x \in M$ and $a \in \Sigma$. By Lemma 3.2(i),

$$
a V_{x} \leq R_{a x} a V_{x}=V_{a x}
$$

If $a x \in M$, then $V_{a x} \leq V$. If $a x \notin M$, say $x=y z$ with $P(a x)=P(a y z)=P(z)$, then $a y \in M_{z}$ and $z \in M$. By Lemma 3.2,

$$
V_{a x}=V_{a y z}=T_{a y, z} V_{z} \leq R_{z} V_{z}=V_{z} \leq V
$$

In either case, $a V_{x} \leq V$. Since $a \in \Sigma$ and $x \in M$ were arbitrary, $\left(\sum_{a \in \Sigma} a\right) V \leq V$. Also $1 \leq V$, since $1 \leq V_{1}=R_{1}$. By (6), $\left(\sum_{a \in \Sigma} a\right)^{*} \leq V$.

The reverse inequality follows from monotonicity.

3.2 Pumping

Every string can be reduced to a simple string by repeatedly removing certain substrings while preserving $P(-)$. This is the well-known pumping lemma from automata theory. If y is not simple, find a suffix $v w$ such that $P(v w)=P(w)$ and $v \neq \varepsilon$, and remove v. The resulting string is shorter and $P(-)$ is preserved. Repeating this step eventually produces a string $x \in M$ such that $P(y)=P(x)$. If we always choose the shortest eligible suffix $v w$, so that $v \in M_{w}$-this strategy is called right-to-left greedy-we obtain a particular element $\gamma(y) \in M$ related to the construction of V_{y}.

Lemma 3.4 For all $y \in \Sigma^{*}, V_{y} \leq V_{\gamma(y)}$.
Proof. If $v \in M_{w}$, then $V_{v w}=T_{v, w} V_{w} \leq V_{w}$, since $T_{v, w} \leq R_{w}$ and $R_{w} V_{w} \leq V_{w}$. The result follows inductively from the right-to-left construction of V_{y}.

3.3 Decompositions

Let (S, D, E) be a coalgebra of type $-{ }^{\Sigma} \times \mathcal{Z}$ with standard embedding

$$
\chi: K_{\Sigma} \rightarrow \operatorname{Mat}\left(S, K_{\Sigma}\right) \quad \chi(a)=\Delta(a) P(a)
$$

Let $e \in K_{\Sigma}$. A decomposition of e (with respect to χ) is a family of expressions $e_{x} \in K_{\Sigma}$ indexed by $x \in M$ such that
(a) $e=\sum_{x} e_{x}$, and
(b) $\chi\left(e_{x}\right)=\Delta\left(e_{x}\right) P(x)$ for all $x \in M$.

It follows that

$$
\begin{equation*}
\chi(e)=\sum_{x} \Delta\left(e_{x}\right) P(x) \tag{17}
\end{equation*}
$$

If P, Q are matrices, we say that the decomposition respects P, Q if in addition
(c) $P(x) Q=P$ for all x such that $e_{x} \neq 0$.

We say that e is decomposable if it has a decomposition. We will eventually show that all expressions are decomposable.
Lemma 3.5 Let $x \mapsto e_{x}$ be a decomposition of e. The decomposition respects P, Q iff $\chi(e) Q=\Delta(e) P$.
Proof. If the decomposition respects P, Q, then

$$
\chi(e) Q=\sum_{x} \Delta\left(e_{x}\right) P(x) Q=\sum_{x} \Delta\left(e_{x}\right) P=\Delta\left(\sum_{x} e_{x}\right) P=\Delta(e) P
$$

Conversely, if $e_{x} \neq 0$ and $P(x) Q \neq P$, then $\Delta\left(e_{x}\right) P(x) Q \not \leq \Delta(e) P$, therefore

$$
\chi(e) Q=\sum_{x} \Delta\left(e_{x}\right) P(x) Q \not \leq \Delta(e) P .
$$

We have specified the index set M in the definition of decomposition to emphasize that the $P(x)$ must be generated by the $P(a)$, but in fact any finite index set will do, provided the function matrices are so generated.
Lemma 3.6 Let e_{α} and P_{α} be finite indexed collections of elements of K_{Σ} and function matrices, respectively, such that

$$
e=\sum_{\alpha} e_{\alpha} \quad \chi\left(e_{\alpha}\right)=\Delta\left(e_{\alpha}\right) P_{\alpha}
$$

and such that each P_{α} is $P\left(y_{\alpha}\right)$ for some $y_{\alpha} \in \Sigma^{*}$. Then $e_{x}=\sum_{x=\gamma\left(y_{\alpha}\right)} e_{\alpha}$ is a decomposition of e.
Proof. By Lemma 3.4, if $x=\gamma\left(y_{\alpha}\right)$, then $P(x)=P\left(y_{\alpha}\right)$. Easy calculations then show

$$
e=\sum_{x} e_{x} \quad \chi\left(e_{x}\right)=\Delta\left(e_{x}\right) P(x)
$$

Decompositions can be combined additively or multiplicatively. The sum and product of two decompositions $F: M \rightarrow K_{\Sigma}$ and $G: M \rightarrow K_{\Sigma}$ are the decompositions

$$
(F+G)(x)=F(x)+G(x) \quad(F \times G)(x)=\sum_{x=\gamma(y z)} F(y) G(z)
$$

respectively.

Lemma 3.7

(i) If F is a decomposition of e and G is a decomposition of d, then $F+G$ is a decomposition of $e+d$. If F and G both respect P, Q, then so does $F+G$.
(ii) If F is a decomposition of e and G is a decomposition of d, then $F \times G$ is a decomposition of ed. If F respects P, Q and G respects Q, R, then $F \times G$ respects P, R.

Proof. Both (i) and (ii) are quite easy. We argue (ii) explicitly. Given $F: x \mapsto e_{x}$ and $G: x \mapsto d_{x}$, we have

$$
\begin{gathered}
e d=\left(\sum_{y} e_{y}\right)\left(\sum_{z} d_{z}\right)=\sum_{(y, z)} e_{y} d_{z}=\sum_{x} \sum_{x=\gamma(y, z)} e_{y} d_{z}=\sum_{x}(F \times G)(x), \\
\chi\left(e_{y} d_{z}\right)=\Delta\left(e_{y}\right) P(y) \Delta\left(d_{z}\right) P(z)=\Delta\left(e_{y} d_{z}\right) P(y z)=\Delta\left(e_{y} d_{z}\right) P(\gamma(y z)),
\end{gathered}
$$

therefore

$$
\chi\left(\sum_{x=\gamma(y, z)} e_{y} d_{z}\right)=\sum_{x=\gamma(y, z)} \Delta\left(e_{y} d_{z}\right) P(\gamma(y z))=\Delta\left(\sum_{x=\gamma(y, z)} e_{y} d_{z}\right) P(x),
$$

and $P(\gamma(y z)) R=P(y z) R=P(y) Q=P$.

To handle star, we describe a monad structure on systems built on top of the string monad. The motivation is that we wish to consider the elements of M as single letters of an alphabet. To avoid confusion, we use α, β, \ldots to denote words in M^{*}. In $\S 2.6$, we constructed the standard embedding χ with respect to a coalgebra (S, D, E) of type $-{ }^{\Sigma} \times C$. Now we wish to do the same for the alphabet M. We thus have a coalgebra (S, \widehat{D}) with $\widehat{D}_{x}: S \rightarrow S$ of type ${ }^{M}$ with $\widehat{D}_{x}=D_{x}$. The only difference is that on the left-hand side, x is considered as a single letter, whereas on the right-hand side, D_{x} is defined inductively from D_{a} for $a \in \Sigma$. The standard embedding is η, defined in the same way for (S, M) as χ was defined for (S, D) :

$$
\eta: K_{M} \rightarrow \operatorname{Mat}\left(S, K_{M}\right) \quad \eta(x)=\Delta(x) P(x), x \in M .
$$

Now let \widehat{M} be constructed as in $\S 3.1$ for the alphabet M as M was constructed for Σ.
Lemma 3.8 Suppose that $\left(\sum_{x \in M} x\right)^{*} \in K_{M}$ has a decomposition $d_{\alpha}, \alpha \in \widehat{M}$ with respect to η and that $e \in K_{\Sigma}$ has a decomposition $\sigma: x \mapsto e_{x}$ with respect to χ. Let $\mu(x)=\sum_{x=\gamma(\alpha)} d_{\alpha}$. Then $\sigma \mu: x \mapsto$ $\sigma\left(\sum_{x=\gamma(\alpha)} d_{\alpha}\right)$ is a decomposition of e^{*} with respect to χ. Moreover, if the decomposition of e respects Q, Q, then so does the decomposition e^{*}.
Proof. The map σ extends uniquely to a homomorphism

$$
\sigma: K_{M} \rightarrow K_{\Sigma} \quad \hat{\sigma}: \operatorname{Mat}\left(S, K_{M}\right) \rightarrow \operatorname{Mat}\left(S, K_{\Sigma}\right) .
$$

We have

$$
e=\sum_{x} e_{x} \quad \chi\left(e_{x}\right)=\Delta\left(e_{x}\right) P(x) \quad\left(\sum_{x \in M} x\right)^{*}=\sum_{\alpha} d_{\alpha} \quad \eta\left(d_{\alpha}\right)=\Delta\left(d_{\alpha}\right) P(\alpha) .
$$

Then for all $x \in M$,

$$
\chi \sigma(x)=\chi\left(e_{x}\right)=\Delta\left(e_{x}\right) P(x)=\Delta(\sigma(x)) P(x)=\widehat{\sigma}(\Delta(x) P(x))=\widehat{\sigma} \eta(x) .
$$

As $\chi \sigma$ and $\widehat{\sigma} \eta$ are homomorphisms and agree on the generators $x \in M$ of K_{M}, they coincide.

Now $\sigma \mu: x \mapsto \sigma\left(\sum_{x=\gamma(\alpha)} d_{\alpha}\right)$ is a decomposition of e^{*} with respect to χ :

$$
\begin{aligned}
e^{*}=\left(\sum_{x} e_{x}\right)^{*} & =\sigma\left(\left(\sum_{x} x\right)^{*}\right)=\sigma\left(\sum_{\alpha} d_{\alpha}\right)=\sum_{\alpha} \sigma\left(d_{\alpha}\right)=\sum_{x} \sigma\left(\sum_{x=\gamma(\alpha)} d_{\alpha}\right)=\sum_{x} \sigma \mu(x) \\
\chi(\sigma \mu(x)) & =\chi \sigma\left(\sum_{x=\gamma(\alpha)} d_{\alpha}\right)=\sum_{x=\gamma(\alpha)} \widehat{\sigma} \eta\left(d_{\alpha}\right)=\sum_{x=\gamma(\alpha)} \widehat{\sigma}\left(\Delta\left(d_{\alpha}\right) P(\alpha)\right) \\
& =\sum_{x=\gamma(\alpha)} \Delta\left(\sigma\left(d_{\alpha}\right)\right) P(x)=\Delta\left(\sigma\left(\sum_{x=\gamma(\alpha)} d_{\alpha}\right)\right) P(x)=\Delta(\sigma \mu(x)) P(x) .
\end{aligned}
$$

Finally, if the decomposition of e respects Q, Q, then by Lemma 3.5, $\chi(e) Q=\Delta(e) Q$. By Lemma 2.1, $\chi(e) Q$ is block diagonal with blocks refining the kernel of Q, therefore so is $\chi\left(e^{*}\right)$. Again by Lemma 2.1,

$$
\chi\left(e^{*}\right) Q=\sum_{x} \Delta(\sigma \mu(x)) P(x) Q=D Q
$$

for some diagonal matrix D. Thus $P(x) Q=Q$ for all x such that $\sigma \mu(x) \neq 0$, so the decomposition of e^{*} respects Q, Q.

3.4 Existence of Decompositions

Let (S, D, E) be a coalgebra of type $-{ }^{\Sigma} \times C$ with standard embedding $\chi: K_{\Sigma} \rightarrow \operatorname{Mat}\left(S, K_{\Sigma}\right)$. Let $M \subseteq \Sigma^{*}$ and $M_{x} \subseteq \Sigma^{*}$ for $x \in M$ be defined as in $\S 3.1$. Let $R_{x}, T_{y, x}$, and $V_{x} \in K_{\Sigma}$ be as defined in $\S 3.1$ with respect to M and M_{x}.

In the following, the term decomposition refers to decompositions with respect to χ. A universal decomposition is a decomposition for the universal expression $\left(\sum_{a \in \Sigma} a\right)^{*}$.

We remark that Lemmas 3.9 and 3.10 are actually co-dependent and require proof by mutual induction on the well-founded relation \succ and on dimension of the associated matrices. Lemma 3.9 can be proved for permutations without reference to Lemma 3.10 (this is the basis of the induction), but in the general case requires Lemma 3.10 for lower dimension; and the proof of Lemma 3.10 depends on Lemma 3.9 for permutations.

Lemma 3.9 For $x, y \in \Sigma^{*}$,
(i) $T_{y, x}$ has a decomposition respecting $P(y x), P(x)$.
(ii) R_{x} has a decomposition respecting $P(x), P(x)$.
(iii) $x \mapsto V_{x}$ is a universal decomposition.

Proof. The proof is by induction on the well-founded relation \succ, using the fact that χ and Δ are homomorphisms, and on dimension. Let us assume that the lemma is true for all matrices of smaller dimension.

For (i), $T_{1, x}=1$ has the trivial decomposition $1 \mapsto 1$ and $x \mapsto 0$ for all $x \in M-\{1\}$, and this clearly respects $P(x), P(x)$.

For $a y$, we have $T_{a y, x}=R_{a y x} a T_{y, x}$. By the induction hypothesis, we have a decomposition for $R_{a y x}$ respecting $P(a y x), P(a y x)$ and a decomposition for $T_{y, x}$ respecting $P(y x), P(x)$. We also have the trivial decomposition $a \mapsto a$ and $x \mapsto 0$ for all $x \in M-\{a\}$, which respects $P(a y x), P(y x)$. By Lemma 3.7(ii), the product of these three decompositions in the appropriate order is a decomposition for $T_{a y, x}$ respecting $P(a y x), P(x)$.
For (ii), we have $R_{x}=e^{*}$, where $e=\sum_{y \in M_{x}} T_{y, x}$. By the induction hypothesis, we can assume decompositions of $T_{y, x}$ for each $y \in M_{x}$ respecting $P(y x), P(x)$. Since $P(y x)=P(x)$ for $y \in M_{x}$, these decompositions also respect $P(x), P(x)$. By Lemma 3.7(i), the sum of these decompositions gives a decomposition of e respecting $P(x), P(x)$. By Lemma 3.5, $\chi(e) P(x)=\Delta(e) P(x)$.
If $P(x)$ is invertible, then $\chi(e)=\Delta(e)$, therefore

$$
\chi\left(R_{x}\right)=\chi(e)^{*}=\Delta(e)^{*}=\Delta\left(R_{x}\right) .
$$

In this case, we can decompose R_{x} trivially as $1 \mapsto R_{x}$ and $y \mapsto 0$ for $y \in M-\{1\}$, which respects $P(x), P(x)$, and we are done.

If $P(x)$ is not invertible, we can use Lemma 3.10 to reduce the problem to a lower dimension. By that lemma, we have a universal decomposition that we can use with Lemma 3.8 to obtain a decomposition of e^{*} respecting $P(x), P(x)$.
For (iii),

$$
\chi\left(V_{x}\right)=\chi\left(T_{x, 1}\right) \chi\left(R_{1}\right)=\chi\left(T_{x, 1}\right) P(1) \chi\left(R_{1}\right)=\Delta\left(T_{x, 1}\right) P(x) \Delta\left(R_{1}\right)=\Delta\left(T_{x, 1} R_{1}\right) P(x)=\Delta\left(V_{x}\right) P(x) .
$$

Conbined with Lemma 3.3, this makes $x \mapsto V_{x}$ a universal decomposition.

3.5 A Universal Decomposition

Lemma 3.10 There exists a universal decomposition.

Proof. The proof is by induction on dimension and on the number of letters of Σ. We can assume by Lemma 3.9 that we already have a universal decomposition for the subalphabet of Σ consisting of all a such that $P(a)$ is invertible. Now we show how to add in the rest of the elements of Σ one by one.
Suppose we have constructed a universal decomposition $x \mapsto e_{x}$ for a subalphabet $\Gamma \subseteq \Sigma$ including all a such that $P(a)$ is invertible. Let $e=\sum_{a \in \Gamma} a$ and $a \in \Sigma-\Gamma$. We have

$$
e^{*}=\sum_{x} e_{x} \quad \chi\left(e^{*}\right)=\Delta\left(e_{x}\right) P(x)
$$

and we wish now to construct a decomposition for $(a+e)^{*}$.
Since $P(a)$ is not a permutation, the range of the corresponding function is a proper subset $C \subset S$. Equivalently stated, the $S \times(S-C)$ submatrix of $P(a)$ is the zero matrix. Let X be the $S \times C$ matrix whose $C \times C$ submatrix is the identity matrix and whose other entries are 0 , and let X^{T} be its transpose. The following facts are easy to verify:

$$
\begin{equation*}
P(a)=P(a) X X^{T} \quad X^{T} X=I . \tag{18}
\end{equation*}
$$

These are square matrices of dimension $S \times S$ and $C \times C$, respectively. Now

$$
(a+e)^{*}=\left(e^{*} a\right)^{*} e^{*}=\left(1+e^{*} a\left(e^{*} a\right)^{*}\right) e^{*}
$$

By Lemma 3.7, we know how to combine decompositions additively and multiplicatively, and we have decompositions of a, e^{*}, and 1. It thus suffices to construct a decomposition of $a\left(e^{*} a\right)^{*}$.

We can reduce to a lower dimensional $C \times C$ problem. Let

$$
R(x)=X X^{T} P(x a) \quad Q(x)=X^{T} P(x a) X
$$

The matrix $R(x)$ is the $S \times S$ matrix whose $C \times C$ submatrix is $Q(x)$ and whose other entries are 0 . It follows from (18) that

$$
\begin{equation*}
R(x)=X Q(x) X^{T} \quad R(\alpha)=X Q(\alpha) X^{T} \tag{19}
\end{equation*}
$$

for any $\alpha \in M^{*}$.
Now consider the system

$$
\eta: K_{M} \rightarrow \operatorname{Mat}\left(C, K_{M}\right) \quad \eta(x)=\Delta(x) Q(x)
$$

of dimension $C \times C$. By the induction hypothesis on dimension, we have a universal decomposition with respect to η :

$$
\left(\sum_{x} x\right)^{*}=\sum_{\alpha} d_{\alpha} \quad \eta\left(d_{\alpha}\right)=\Delta\left(d_{\alpha}\right) Q(\alpha)
$$

where α ranges over \widehat{M}. Let

$$
P_{\alpha}=P(a) R(\alpha), \alpha \in \widehat{M} \quad \sigma(x)=e_{x} a
$$

The map σ extends uniquely to a KA homomorphism $\sigma: K_{M} \rightarrow K_{\Sigma}$. We claim that $a \sigma\left(d_{\alpha}\right)$ and P_{α} form a decomposition of $a\left(e^{*} a\right)^{*}$ with respect to χ. We must show that

$$
\begin{equation*}
a\left(e^{*} a\right)^{*}=\sum_{\alpha} a \sigma\left(d_{\alpha}\right) \quad \chi\left(a \sigma\left(d_{\alpha}\right)\right)=\Delta\left(a \sigma\left(d_{\alpha}\right)\right) P_{\alpha} \tag{20}
\end{equation*}
$$

According to Lemma 3.6, we must also show that the P_{α} are generated by the $P(a), a \in \Sigma$. The left-hand equation of (20) is a straightforward calculation:

$$
a\left(e^{*} a\right)^{*}=a\left(\sum_{x} e_{x} a\right)^{*}=a \sigma\left(\left(\sum_{x} x\right)^{*}\right)=a \sigma\left(\sum_{\alpha} d_{\alpha}\right)=\sum_{\alpha} a \sigma\left(d_{\alpha}\right)
$$

That the P_{α} are generated by the $P(a)$ can be shown inductively using (18):

$$
\begin{aligned}
P_{1} & =P(a) R(1)=P(a) X X^{T} P(a)=P\left(a^{2}\right) \\
P_{x \alpha} & =P(a) R(x) R(\alpha)=P(a) X X^{T} P(x a) R(\alpha)=P(a x) P(a) R(\alpha)=P(a x) P_{\alpha}
\end{aligned}
$$

It remains to prove the right-hand equation of (20). Let G be the image of the map $\chi \sigma: K_{M} \rightarrow$ $\operatorname{Mat}\left(S, K_{\Sigma}\right)$ defined by

$$
\chi \sigma(x)=\chi\left(e_{x} a\right)=\Delta\left(e_{x} a\right) P(x a)
$$

The generators satisfy $\chi \sigma(x)^{\prime}=\chi \sigma(x)^{\prime} X X^{T}$, so by Lemma 2.3, this also holds true for all elements of G, and $\varepsilon(A) \in\{0, I\}$ for all $A \in G$. Also, by Lemma 2.4, the map

$$
A \mapsto X^{T} A X: G \rightarrow \operatorname{Mat}\left(C, K_{\Sigma}\right)
$$

is a homomorphism on G, therefore so is its composition with $\chi \sigma$, the map $X^{T}(\chi \sigma) X: K_{M} \rightarrow$ $\operatorname{Mat}\left(C, K_{\Sigma}\right)$.

Now $X^{T}(\chi \sigma) X=\widehat{\sigma} \eta$, as they are both homomorphisms $K_{M} \rightarrow \operatorname{Mat}\left(C, K_{\Sigma}\right)$ and agree on the generators $x \in M$:

$$
\begin{aligned}
\left(X^{T}(\chi \sigma) X\right)(x) & =X^{T}(\chi \sigma(x)) X=X^{T}\left(\chi\left(e_{x} a\right)\right) X \\
& =X^{T}\left(\Delta\left(e_{x} a\right) P(x a)\right) X=\Delta\left(e_{x} a\right) X^{T} P(x a) X=\Delta\left(e_{x} a\right) Q(x) \\
\widehat{\sigma} \eta(x) & =\widehat{\sigma}(\Delta(x) Q(x))=\Delta(\sigma(x)) Q(x)=\Delta\left(e_{x} a\right) Q(x)
\end{aligned}
$$

Thus the value they take on $d_{\alpha} \in K_{M}$ is the same:

$$
\begin{equation*}
X^{T} \chi\left(\sigma\left(d_{\alpha}\right)\right) X=\widehat{\sigma} \eta\left(d_{\alpha}\right)=\widehat{\sigma}\left(\Delta\left(d_{\alpha}\right) Q(\alpha)\right)=\Delta\left(\sigma\left(d_{\alpha}\right)\right) Q(\alpha) \tag{21}
\end{equation*}
$$

Calculating, we find

$$
\begin{aligned}
\chi\left(a \sigma\left(d_{\alpha}\right)\right) & =\chi\left(a \sigma\left(d_{\alpha}\right)\right)^{\prime} & & \text { since } \varepsilon\left(\chi\left(a \sigma\left(d_{\alpha}\right)\right)\right)=0 \\
& =\Delta(a) P(a) X X^{T} \chi\left(\sigma\left(d_{\alpha}\right)\right) X X^{T} & & \text { by }(18) \text { and Lemma } 2.3 \\
& =\Delta(a) P(a) X \Delta\left(\sigma\left(d_{\alpha}\right)\right) Q(\alpha) X^{T} & & \text { by }(21) \\
& =\Delta(a) \Delta\left(\sigma\left(d_{\alpha}\right)\right) P(a) X Q(\alpha) X^{T} & & \\
& =\Delta\left(a \sigma\left(d_{\alpha}\right)\right) P(a) R(\alpha) & & \text { by }(19) \\
& =\Delta\left(a \sigma\left(d_{\alpha}\right)\right) P_{\alpha} & & \text { by definition of } P_{\alpha} .
\end{aligned}
$$

Corollary 3.11 All expressions are decomposable.
Proof. We proceed by induction on structure of the expression. Every element $a \in\{0,1\} \cup \Sigma$ has a trivial decomposition $1 \mapsto a$ and $x \mapsto 0$ for $x \in M-\{1\}$. Closure under sum and product follow from Lemma 3.7. For star, suppose we have a decomposition $e_{x}, x \in M$, of e. By Lemma 3.10, we have a decomposition for the universal expression $\left(\sum_{x \in M} x\right)^{*}$. Lemma 3.8 then provides a decomposition for e^{*} via the substitution $x \mapsto e_{x}$.

4 Completeness

Lemma 4.1 If $s \approx t$ then $\left(A^{*} E\right)_{s}=\left(A^{*} E\right)_{t}$.
Proof. We have

$$
A=\sum_{a \in \Sigma} \Delta(a) P(a)=\sum_{a \in \Sigma} \chi(a)=\chi\left(\sum_{a \in \Sigma} a\right)
$$

$$
A^{*}=\chi\left(\sum_{a \in \Sigma} a\right)^{*}=\chi\left(\left(\sum_{a \in \Sigma} a\right)^{*}\right)=\chi\left(\sum_{x \in M} V_{x}\right)=\sum_{x \in M} \chi\left(V_{x}\right)=\sum_{x \in M} \Delta\left(V_{x}\right) P(x) .
$$

Now for any $s \in S$,

$$
\left(A^{*} E\right)_{s}=\left(\sum_{x \in M} \Delta\left(V_{x}\right) P(x) E\right)_{s}=\sum_{x \in M} V_{x}(P(x) E)_{s}=\sum_{x \in M} V_{x} \sum_{u \in S} P(x)_{s u} E_{u}=\sum_{x \in M} V_{x} E\left(D_{x}(s)\right) .
$$

If $s \approx t$, then $E\left(D_{x}(s)\right)=E\left(D_{x}(t)\right)$ for all $x \in \Sigma^{*}$, therefore

$$
\left(A^{*} E\right)_{s}=\sum_{x \in M} V_{x} E\left(D_{x}(s)\right)=\sum_{x \in M} V_{x} E\left(D_{x}(t)\right)=\left(A^{*} E\right)_{t} .
$$

Consider a finite subcoalgebra (S, δ, ε) of K_{Σ}, where δ and ε comprise the Brozozowski derivative as defined as in (8). Let $\chi: K_{\Sigma} \rightarrow \operatorname{Mat}\left(S, K_{\Sigma}\right)$ be the standard embedding as defined in $\S 2.6$.
Lemma $4.2 e=(\chi(e) E)_{e}$.
Proof. If $e_{x} \neq 0$, then there exists $y \in \Sigma^{*}$ such that $y \leq e_{x}$. Since χ is monotone,

$$
\Delta(y) P(y)=\chi(y) \leq \chi\left(e_{x}\right)=\Delta\left(e_{x}\right) P(x)
$$

therefore $P(y)=P(x)$. Moreover, $1 \leq \delta_{y}\left(e_{x}\right) \leq \delta_{y}(e)$, therefore $\varepsilon\left(\delta_{y}(e)\right)=1$. Since $P(y)=P(x)$, $\varepsilon\left(\delta_{x}(e)\right)=1$.
We have shown that if $e_{x} \neq 0$, then $\varepsilon\left(\delta_{x}(e)\right)=1$; in other words, $e_{x}=e_{x} \varepsilon\left(\delta_{x}(e)\right)$. It follows that

$$
(\chi(e) E)_{e}=\left(\sum_{x} \Delta\left(e_{x}\right) P(x) E\right)_{e}=\sum_{x} e_{x}(P(x) E)_{e}=\sum_{x} e_{x} \varepsilon\left(\delta_{x}(e)\right)=\sum_{x} e_{x}=e .
$$

Lemma $4.3 e=\left(A^{*} E\right)_{e}$.
Proof. By Lemma 4.2 and the monotonicity of χ,

$$
e=(\chi(e) E)_{e} \leq\left(\chi\left(\left(\sum_{a \in \Sigma} a\right)^{*}\right) E\right)_{e}=\left(\left(\sum_{a \in \Sigma} \chi(a)\right)^{*} E\right)_{e}=\left(A^{*} E\right)_{e}
$$

For the reverse inequality, Theorem 2.2 says that the identity map $e \mapsto e$ is a solution to (14), and as noted in $\S 2.6, A^{*} E$ is the least solution.

Theorem 4.4 (Completeness) If $d \approx e$ then $d=e$.
Proof. Immediate from Lemmas 4.1 and 4.3.
An interesting consequence of Lemma 4.3 is that the canonical solution in K_{Σ} is not only the least, but actually the unique solution, as we show below in Theorem 4.6. For the proof of this theorem, we need the following lemma, which is an easy consequence of Lemma 4.1.

Lemma 4.5 Let $f:\left(S, D_{1}, E_{1}\right) \rightarrow\left(T, D_{2}, E_{2}\right)$ be a coalgebra homomorphism. Then $\varphi(f(s))=\varphi(s)$.
Proof. This is an immediate consequence of Lemma 4.1, since $f(s) \approx s$.

Theorem 4.6 (Uniqueness of the Canonical Solution) For all finite coalgebras (S, D, E), there is a unique homomorphism $\varphi:(S, D, E) \rightarrow\left(K_{\Sigma}, \delta, \varepsilon\right)$.
Proof. Existence is guaranteed: $\varphi:(S, D, E) \rightarrow\left(K_{\Sigma}, \delta, \varepsilon\right)$, defined as $\varphi(e)=\left(A^{*} E\right)_{e}=e$, is a coalgebra homomorphism.

For uniqueness, let $h:(S, D, E) \rightarrow\left(K_{\Sigma}, \varepsilon, \delta_{a}\right)$ be a coalgebra homomorphism. It follows from Lemmas 4.5 and 4.2 that

$$
h=\operatorname{id}_{K_{\Sigma}} \circ h=\varphi \circ h=\varphi .
$$

5 Discussion

In this paper, we have given a new, significantly shorter proof of the completeness of the lefthanded star rule of Kleene algebra. In this section, we discuss connections with existing work and give pointers for future work.

We have shown that the left-handed star rule is needed only to guarantee the existence of least solutions. It would be interesting to explore how one could prove the existence of least solutions just using the equations assumed by Krob [10], which are of the form

$$
M^{*}=\sum_{m \in M} \varepsilon_{M}^{-1}(m)
$$

for M a finite monoid.
A well-known algorithm to obtain the minimal deterministic automaton is the Brzozowski algorithm [2]. Starting from a possibly nondeterministic automaton, (i) reverse the transitions, exchanging final and initial states, then (ii) perform the subset construction, removing inaccessible states; then repeat (i) and (ii). The resulting automaton is a minimal automaton for the original language.
Starting from a finite automaton (S, D, E) with a start state s, we can build an automaton $\left(2^{S}, \widehat{D}, \widehat{E}\right)$ with start state E, and

$$
\widehat{D}(f)=D \circ f \quad \widehat{E}=\xi(s),
$$

where $\xi(s)$ denotes the characteristic function of the singleton set containing s. This new automaton recognizes the reverse of the original language. Interestingly, this is also reflected in the construction of the expressions V_{f} for the new automaton. There is apparently a relationship to the Brzozowski construction, but the exact relationship remains to be explored.

References

[1] Maurice Boffa. Une condition impliquant toutes les identités rationnelles. Informatique Théoretique et Applications/Theoretical Informatics and Applications, 29(6):515-518, 1995.
[2] John A. Brzozowski. Canonical regular expressions and minimal state graphs for definite events. In Mathematical Theory of Automata, volume 12(6), pages 529-561. Polytechnic Press, NY, 1962.
[3] John Horton Conway. Regular Algebra and Finite Machines. Chapman and Hall, London, 1971.
[4] Bart Jacobs. A bialgebraic review of deterministic automata, regular expressions and languages. In Kokichi Futatsugi, Jean-Pierre Jouannaud, and José Meseguer, editors, Essays Dedicated to Joseph A. Goguen, volume 4060 of Lecture Notes in Computer Science, pages 375-404. Springer, 2006.
[5] Stephen C. Kleene. Representation of events in nerve nets and finite automata. In C. E. Shannon and J. McCarthy, editors, Automata Studies, pages 3-41. Princeton University Press, Princeton, N.J., 1956.
[6] Łucja Kot and Dexter Kozen. Second-order abstract interpretation via Kleene algebra. Technical Report TR2004-1971, Computer Science Department, Cornell University, December 2004.
[7] Łucja Kot and Dexter Kozen. Kleene algebra and bytecode verification. In Fausto Spoto, editor, Proc. 1st Workshop Bytecode Semantics, Verification, Analysis, and Transformation (Bytecode'05), pages 201-215, April 2005.
[8] Dexter Kozen. A completeness theorem for Kleene algebras and the algebra of regular events. Infor. and Comput., 110(2):366-390, May 1994.
[9] Dexter Kozen and Jerzy Tiuryn. Substructural logic and partial correctness. Trans. Computational Logic, 4(3):355-378, July 2003.
[10] Daniel Krob. A complete system of B-rational identities. Theoretical Computer Science, 89(2):207-343, October 1991.
[11] Jan J. M. M. Rutten. Automata and coinduction (an exercise in coalgebra). In Davide Sangiorgi and Robert de Simone, editors, CONCUR, volume 1466 of Lecture Notes in Computer Science, pages 194-218. Springer, 1998.
[12] Jan J. M. M. Rutten. A coinductive calculus of streams. Mathematical Structures in Computer Science, 15(1):93-147, 2005.
[13] Arto Salomaa. Two complete axiom systems for the algebra of regular events. J. Assoc. Comput. Mach., 13(1):158-169, January 1966.
[14] Alexandra Silva. Kleene Coalgebra. PhD thesis, University of Nijmegen, 2010.

[^0]: *Until August 2011: Computer Science Department, Cornell University, Ithaca, NY 14853-7501, USA

