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Weighted automata are a generalisation of non-deterministic automata where each
transition, in addition to an input letter, has also a quantity expressing the weight (e.g. cost
or probability) of its execution. As for non-deterministic automata, their behaviours can be
expressed in terms of either (weighted) bisimilarity or (weighted) language equivalence.
Coalgebras provide a categorical framework for the uniform study of state-based systems
and their behaviours. In this work, we show that coalgebras can suitably model weighted
automata in two different ways: coalgebras on Set (the category of sets and functions)
characterise weighted bisimilarity, while coalgebras on Vect (the category of vector spaces
and linear maps) characterise weighted language equivalence.
Relying on the second characterisation, we show three different procedures for computing
weighted language equivalence. The first one consists in a generalisation of the usual
partition refinement algorithm for ordinary automata. The second one is the backward
version of the first one. The third procedure relies on a syntactic representation of rational
weighted languages.

© 2011 Published by Elsevier Inc.

1. Introduction

Weighted automata were introduced in Schützenberger’s classical paper [38]. They are of great importance in computer
science [10], arising in different areas of application, such as speech recognition [27], image compression [2], control theory
[20] and quantitative modelling [25,3]. They can be seen as a generalisation of non-deterministic automata, where each
transition has a weight associated to it. This weight is an element of a semiring, representing, for example, the cost or
probability of taking the transition.

The behaviour of weighted automata is usually given in terms of weighted languages (also called formal power series [37,
6]), that are functions assigning a weight to each finite string w ∈ A∗ over an input alphabet A. For computing the weight
given to a certain word, the semiring structure plays a key role: the multiplication of the semiring is used to accumulate the
weight of a path by multiplying the weights of each transition in the path, while the addition of the semiring computes the
weight of a string w by summing up the weights of the paths labelled with w [24]. Alternatively, the behaviour of weighted
automata can be expressed in terms of weighted bisimilarity [8], that is, an extension of bisimilarity (for non-deterministic
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automata) subsuming several kinds of quantitative equivalences such as, for example, probabilistic bisimilarity [21]. As in
the case of non-deterministic automata, (weighted) bisimilarity implies strictly (weighted) language equivalence.

In this paper, we study linear weighted automata, which are “deterministic” weighted automata where the set of states
forms a vector space. A linear weighted automaton can be viewed as the result of “determinizing” an ordinary weighted
automaton with weights in a generic field, using some kind of “weighted powerset construction”. As such, linear weighted
automata are typically infinite state. The key point is that the linear structure of the state space allows for finite represen-
tations of these automata and effective algorithms operating on them.

To be more specific, the goal of the present paper is to undertake a systematic study of the behavioural equivalences and
minimisation algorithms for (linear) weighted automata. To achieve this goal, we will benefit from a coalgebraic perspective on
linear weighted automata. The theory of coalgebras offers a unifying mathematical framework for the study of many differ-
ent types of state-based systems and infinite data structures. Given a functor G : C → C on a category C , a G-coalgebra is a
pair consisting of an object X in C (representing the state space of the system) and a morphism f : X → G X (determining
the dynamics of the system). Under mild conditions, functors G have a final coalgebra (unique up to isomorphism) into
which every G-coalgebra can be mapped via a unique so-called G-homomorphism. The final coalgebra can be viewed as the
universe of all possible G-behaviours: the unique homomorphism into the final coalgebra maps every state of a coalgebra
to a canonical representative of its behaviour. This provides a general notion of behavioural equivalence (≈G ): two states
are equivalent if and only if they are mapped to the same element of the final coalgebra.

Our first contribution in this paper is to recast both weighted bisimilarity and weighted language equivalence in the
theory of coalgebras. We see weighted automata for a field K and alphabet A, as coalgebras of the functor W = K × K−A

on Set (the category of sets and functions). Concretely, a W-coalgebra consists of a set of states X and a function 〈o, t〉 : X →
K × KX A

where, for each state x ∈ X , o : X → K assigns an output weight in K and t : X → KX A
assigns a function in KX A

.
For each symbol a ∈ A and state x′ ∈ X , t(x)(a)(x′) is a weight k ∈ K representing the weight of a transition from x to x′

with label a, in symbols x
a,k−−→ x′ . If t(x)(a)(x′) = 0, then there is no a-labelled transition from x to x′ . Note that there could

exist several weighted transitions with the same label outgoing from the same state: x
a,k1−−−→ x1, x

a,k2−−−→ x2, . . . , x
a,kn−−−→ xn .

Adapting the above reasoning, we model linear weighted automata as coalgebras of the functor L = K × (−)A on Vect
(the category of vector spaces and linear maps). A linear weighted automaton consists of a vector space V and a linear
map 〈o, t〉 : V → K × V A where, as before, o : V → K defines the output and t : V → V A the transition structure. More
precisely, for each vector v ∈ V and a ∈ A, t(v)(a) = v ′ means that there is a transition from v to v ′ with label a, in
symbols v a−→ v ′ . Note that the transition structure is now “deterministic”, since for each vector v and input a ∈ A there is
only one vector v ′ ∈ V . When V = KX , each vector v ∈ V can be seen as a linear combination of states x1, . . . , xn ∈ X , i.e.,

v = k1x1 + · · · + knxn for some k1, . . . ,kn ∈ K. Therefore, the transitions x
a,k1−−−→ x1, . . . , x

a,kn−−−→ xn of a weighted automaton
correspond to a single transition x a−→ (k1x1 + · · · + knxn) of a linear weighted automaton.

We show that ≈W (i.e., the behavioural equivalence induced by W) coincides with weighted bisimulation while ≈L
coincides with weighted language equivalence. Determinisation is the construction for moving from ordinary weighted
automata and weighted bisimilarity to linear weighted automata and weighted language equivalence. Similar to the pow-
erset construction, determinisation combines all the states within one vector, but unlike the determinisation of a non-
deterministic automaton, the resulting state space will not be finite but forming a vector space of finite dimension. On this
respect, our determinisation differs from the construction described by Mohri [27] for a subclass of weighted automata with
weights on a semiring (rather than a field), which associates states of the determinised weighted automaton with a set of
states of the original weighted automaton.

Once we have fixed the mathematical framework, we investigate three different types of algorithms for computing ≈L .
These algorithms work under the assumption that the underlying vector space has finite dimension. The first is a for-
ward algorithm that generalises the usual partition-refinement algorithm for ordinary automata: one starts by decreeing as
equivalent states with the same output values, then refines the obtained relation by separating states for which outgoing
transitions go to states that are not already equivalent. Linearity of the automata plays a crucial role to ensure termination
of the algorithm. Indeed, the equivalences computed at each iteration can be represented as finite-dimensional subspaces
in the given vector space. The resulting descending chain of subspaces must therefore converge in a finite number of steps,
despite the fact that the state space itself is infinite. We also show that each iteration of the algorithm coincides with the
equivalence generated by each step of the (standard) construction of the final coalgebra via the final sequence. The minimal
linear representation of weighted automata over a field was first considered by Schützenberger [38]. This algorithm was
reformulated in a more algebraic and slightly simplified fashion in the book of Berstel and Reutenauer [6]. Their algorithm
is different from our method, as it is related to the construction of a basis for a subgroup of a free group. Further, no evident
connections can be traced between their treatment and the notions of bisimulation and coalgebras.

The second algorithm proceeds in a similar way, but uses a backward procedure. It has been introduced by the third
author together with linear weighted automata [7]. In this case, the algorithm starts from the complement – in a precise
geometrical sense – of the relation identifying vectors with equal weights. Then it incrementally computes the space of
all states that are backward reachable from this relation. The largest bisimulation is obtained by taking the complement of
this space. The advantage of this algorithm over the previous one is that the size of the intermediate relations is typically
much smaller. The presentation of this algorithm in [7] is somewhat more concrete, as there is no attempt at a coalgebraic
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treatment and the underlying field is fixed to R (for example, this leads to using orthogonal complements rather than dual
spaces and annihilators, which we consider in Section 4). No connection is made with rational series.

Finally, the third algorithm is new and uses the fact that equivalent states are mapped by the unique homomorphism
into the same element of the final coalgebra. We characterise the final morphism in terms of so-called rational weighted
languages (which are also known as rational formal power series). This characterisation is useful for the computation of the
kernel of the final homomorphism, which consists of weighted language equivalence. Taking again advantage of the linear
structure of our automata, calculating the kernel of the above homomorphism will correspond to solving a linear system of
equations.

The results in this paper are presented for weighted automata with weights taken from a field, as opposed to the more
general and classical definition where weights from a semiring are considered. This restriction is convenient for presentation
purposes and, as we will discuss in Section 6, many of the results (but not all) can be extended to semirings.

A coalgebraic perspective on weighted automata is by no means the only approach to understand their structure and
properties, as is already clear from the various references to related work mentioned above (more will follow in Section 6).
We have found the application of coalgebra as a general framework for the study of dynamical systems and infinite be-
haviour in the present setting useful for a number of reasons, which we shall briefly discuss next.

An important feature of the coalgebraic methodology is that once a class of systems is identified as the class of coalge-
bras of a certain type (formally, a functor), then several things come for free, following from the general theory of universal
coalgebra [32]: (i) the semantics or behaviour of each system is obtained by a unique homomorphism into the final coalge-
bra; (ii) with each coalgebra type, a canonical notion of behavioural equivalence is associated; (iii) the homomorphism into
the final coalgebra identifies all and only those states that are equivalent; (iv) consequently, the image of the system under
this final coalgebra homomorphism is its minimisation with respect to the canonical notion of behavioural equivalence. Yet
another advantage of the general perspective of coalgebra is that it offers a framework in which it is possible to relate
different types of systems in a rigorous manner.

By identifying, in the present setting, the different types of weighted automata (notably, classical branching weighted
automata and linear weighted automata) as different types of coalgebras, we obtain immediately an appropriate notion of
behavioural equivalence for each of them. As a consequence, we have been able to put the different existing notions of
equivalence of weighted automata (weighted bisimilarity and weighted language equivalence) into a coherent perspective.
Using their coalgebraic characterisations, it was relatively straightforward to give a precise description of the transformation
of (branching) weighted automata into linear weighted automata, by means of a generalised version of the well-known
powerset construction. Our coalgebraic characterisation has furthermore led to a canonical description of the minimisation
of linear weighted automata, in Section 5. The details of this construction are very similar to the use of rational power series
and linear systems of equations [6]. What is pleasant about the coalgebraic approach is that the present description of the
minimisation of linear weighted automata is an instance of the canonical and general insights from universal coalgebra,
mentioned above.

Structure of the paper. In Section 2 we introduce weighted automata and coalgebras. We also show that W-coalgebras char-
acterise weighted automata and weighted bisimilarity. In Section 3.2, after recalling some preliminary notions of linear
algebras, we show that each weighted automaton can be seen as a linear weighted automaton, i.e., an L-coalgebra. This
change of perspective allows us to coalgebraically capture weighted language equivalence. In Section 4, we show the for-
ward and the backward algorithm while, in Section 5, we first introduce a syntactic characterisation of rational weighted
languages and then we show how to employ it in order to compute ≈L . In Section 6, after summarising the main results
of the paper, we discuss how to extend them to the case of automata with weights in a semiring.

Sections 2.3 and 4.3 show some interesting minor results that could be safely skipped by the not interested reader. The
presentation is self-contained and does not require any prior knowledge on the theory of coalgebras.

2. Weighted automata as coalgebras

We will first introduce the fundamental definitions and facts about weighted automata, weighted bisimilarity and their
characterisation as coalgebras over Set, the category of sets and functions. We will next introduce weighted language equiv-
alence over weighted automata. In the final subsection, we will discuss a further equivalence that naturally arises from the
theory of coalgebras; this equivalence will play no role in the rest of the paper, though.

2.1. Fundamental definitions

First we fix some notation. We will denote sets by capital letters X, Y , Z , . . . and functions by lower case f , g,h, . . . .

Given a set X , idX is the identity function and, given two functions f : X → Y and g : Y → Z , g ◦ f is their composition. The
product of two sets X, Y is X × Y with the projection functions π1 : X × Y → X and π2 : X × Y → Y . The product of two
functions f1 : X1 → Y1 and f2 : X2 → Y2 is f1 × f2 defined for all 〈x1, x2〉 ∈ X1 × X2 by ( f1 × f2)〈x1, x2〉 = 〈 f (x1), f (x2)〉.
The disjoint union of X, Y is X + Y with injections κ1 : X → X + Y and κ2 : Y → X + Y . The union of f1 : X1 → Y1 and
f2 : X2 → Y2 is f1 + f2 defined for all z ∈ X +Y by ( f1 + f2)(κi(z)) = κi(( f i(z))) (for i ∈ {1,2}). The set of functions ϕ : Y → X
is denoted by X Y . For f : X1 → X2, the function f Y : X Y

1 → X Y
2 is defined for all ϕ ∈ X Y

1 by f Y (ϕ) = λy ∈ Y . f (ϕ(y)). The
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Fig. 1. The weighted automata (X, 〈oX , t X 〉) and (Y , 〈oY , tY 〉) (from left to right). The dashed arrows denote the W-homomorphism h : X → Y . This induces
the equivalence relation Rh = X × X that equates all the states in X .

collection of finite subsets of X is denoted by Pω(X) and the empty set by ∅. For a set of letters A, A∗ denotes the set of
all finite words over A; ε the empty word; and w1 w2 the concatenation of words w1, w2 ∈ A∗ .

We fix a field K. We use k1,k2, . . . to range over elements of K. The sum of K is denoted by +, the product by ·, the
additive identity by 0 and the multiplicative identity by 1. The support of a function ϕ from a set X to a field K is the set
{x ∈ X | ϕ(x) �= 0}.

Weighted automata [38,10] are a generalisation of ordinary automata where transitions in addition to an input letter
have also a weight in a field K and each state is not just accepting or rejecting but has an associated output weight in K.

Formally, a weighted automaton (wa, for short) with input alphabet A is a pair (X, 〈o, t〉), where X is a set of states,
o : X → K is an output function associating to each state its output weight and t : X → (KX )A is the transition relation that

associates a weight to each transition. We shall use the notation x
a,k−−→ y meaning that t(x)(a)(y) = k. Weight 0 means no

transition.
If the set of states is finite, a wa can be conveniently represented in form of matrices. First of all, we have to fix an

ordering (x1, . . . , xn) of the set of states X . Then the transition relation t can be represented by a family of matrices {Ta}a∈A
where each Ta ∈ Kn×n is a K-valued square matrix, with Ta(i, j) specifying the value of the a-transition from x j to xi , i.e.,
t(x j)(a)(xi). Note that we define the matrices Ta to have the source state as column index and the target state as row index.
The output weight function o can be represented as a K-valued row vector in K1×n that we will denote by the capital
letter O .

For a concrete example, let K = R (the field of real numbers) and A = {a,b} and consider the weighted automata
(X, 〈oX , t X 〉) and (Y , 〈oY , tY 〉) in Fig. 1. Their representation as matrix is the following:

O X = ( 1 1 1 ) , T Xa =
(1 0 0

1 3 0
1 0 3

)
, T Xb =

(3 3 3
0 0 0
0 0 0

)
, O Y = (1), T Ya = (3), T Yb = (3).

Weighted bisimilarity generalises the abstract semantics of several kind of probabilistic and stochastic systems. This has
been introduced by Buchholz in [8] for weighted automata with a finite state space. Here we extend that definition to
(possibly infinite states) automata with finite branching, i.e., those (X, 〈o, t〉) such that for all x ∈ X , a ∈ A, t(x)(a)(x′) �= 0 for
finitely many x′ . This will be needed in the sequel, when we model weighted automata coalgebraically, to ensure that the
final coalgebra exists (the final coalgebra can be thought of the universe of possible behaviours and will be used to provide
semantics to each state of the automaton).

Hereafter we will always implicitly refer to weighted automata with finite branching. Moreover, given an x ∈ X and an
equivalence relation R ⊆ X × X we will write [x]R to denote the equivalence class of x with respect to R .

Definition 1. Let (X, 〈o, t〉) be a weighted automaton. An equivalence relation R ⊆ X × X is a weighted bisimulation if for all
(x1, x2) ∈ R , it holds that:

1. o(x1) = o(x2),
2. ∀a ∈ A, x′ ∈ X ,

∑
x′′∈[x′]R

t(x1)(a)(x′′) =∑x′′∈[x′]R
t(x2)(a)(x′′).

Weighted bisimilarity (in symbols ∼w ) is defined as the largest weighted bisimulation.

For instance, the relation Rh in Fig. 1 is a weighted bisimulation.
Now, we will show that weighted automata and weighted bisimilarity can be suitably characterised through coalge-

bras [32].
We first recall some basic definitions about coalgebras. Given a functor G : C → C on a category C , a G-coalgebra is

an object X in C together with an arrow f : X → G X . For many categories and functors, such a pair (X, f ) represents a
transition system, the type of which is determined by the functor G . Vice versa, many types of transition systems (e.g.,
deterministic automata, labelled transition systems and probabilistic transition systems) can be captured by a functor.
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A G-homomorphism from a G-coalgebra (X, f ) to a G-coalgebra (Y , g) is an arrow h : X → Y preserving the transition
structure, i.e., such that the following diagram commutes.

X

f

h
Y

g

G X Gh
GY

A G-coalgebra (Ω,ω) is said to be final if for any G-coalgebra (X, f ) there exists a unique G-homomorphism �−�G
X : X → Ω .

Final coalgebra can be viewed as the universe of all possible G-behaviours: the unique homomorphism �−�G
X : X → Ω maps

every state of a coalgebra X to a canonical representative of its behaviour. This provides a general notion of behavioural
equivalence: two states x1, x2 ∈ X are G-behaviourally equivalent (x1 ≈G x2) iff �x1 �G

X = �x2 �G
X .1

The functors corresponding to many well-known types of systems are shown in [32]. In this section we will show a
functor W : Set → Set such that ≈W coincides with weighted bisimilarity. In order to do that, we need to introduce the
field valuation functor.

Definition 2 (Field valuation functor). Let K be a field. The field valuation functor K−
ω : Set → Set is defined as follows. For

each set X , KX
ω is the set of functions from X to K with finite support. For each function h : X → Y , Kh

ω : KX
ω → KY

ω is the
function mapping each ϕ ∈ KX

ω into ϕh ∈ KY
ω defined, for all y ∈ Y , by

ϕh(y) =
∑

x′∈h−1(y)

ϕ
(
x′).

Note that the above definition employs only the additive monoid of K, i.e., the element 0 and the + operator. For this
reason, such functor is often defined in literature (e.g., in [16]) for commutative monoids instead of fields.

We need two further ingredients. Given a set B , the functor B × − : Set → Set maps every set X into B × X and every
function f : X → Y into idB × f : B × X → B × Y . Given a finite set A, the functor −A : Set → Set maps X into X A and
f : X → Y into f A : X A → Y A (recall that f A is defined for all ϕ ∈ X A as f A(ϕ) = λa ∈ A. f (ϕ(a))).

Now, the functor corresponding to weighted automata with input alphabet A over the field K is W = K× (K−
ω)A : Set →

Set. Note that every function f : X → W(X) consists of a pair of functions 〈o, t〉 with o : X → K and t : X → (KX
ω)A . Therefore

any W-coalgebra (X, f ) is a weighted automaton (X, 〈o, t〉) (and vice versa).

Proposition 1. (See [39].) The functor W has a final coalgebra.

Proof. By [17, Theorem 7.2], the fact that W is bounded is enough to guarantee the existence of a final coalgebra. Intuitively,
a functor F is bounded by some cardinal number c, if for all F -coalgebras (X, f ) and all states x ∈ X , the set of states
“reachable” from x has cardinality smaller than or equal to c. For instance the powerset functor P(−) is not bounded
(and does not have final coalgebra [32]), while the finite powerset functor Pω(−) is bounded by ω. Also, the functor W is
bounded by ω because of the finite branching condition. �

In order to show that the equivalence induced by the final W-coalgebra (≈W ) coincides with weighted bisimilarity
(∼w ), it is instructive to spell out the notion of W-homomorphism. A function h : X → Y is a W-homomorphism between
weighted automata (X, 〈oX , t X 〉) and (Y , 〈oY , tY 〉) if the following diagram commutes.

X

〈oX ,t X 〉

h
Y

〈oY ,tY 〉

K × (KX
ω)A

id×(Kh
ω)A

K × (KY
ω)A

This means that for all x ∈ X , y ∈ Y , a ∈ A,

oX (x) = oY
(
h(x)

)
and

∑
x′∈h−1(y)

t X (x)(a)
(
x′)= tY

(
h(x)

)
(a)(y).

For every W-homomorphism h : (X, 〈oX , t X 〉) → (Y , 〈oY , tY 〉), the equivalence relation Rh = {(x1, x2) | h(x1) = h(x2)} is a
weighted bisimulation. Indeed, by the properties of W-homomorphisms and by definition of Rh , for all (x1, x2) ∈ Rh

oX (x1) = oY
(
h(x1)

)= oY
(
h(x2)

)= oX (x2)

1 Here we are implicitly assuming that C is a concrete category [1], i.e., there exists a forgetful functor U : C → Set. By writing x1, x2 ∈ X , we formally
mean that x1, x2 ∈ U X and by �xi �G

X , we mean U (�−�G
X )xi .



Author's personal copy

82 F. Bonchi et al. / Information and Computation 211 (2012) 77–105

and for all a ∈ A, for all y ∈ Y∑
x′′∈h−1(y)

t X (x1)(a)
(
x′′)= tY

(
h(x1)

)
(a)(y) = tY

(
h(x2)

)
(a)(y) =

∑
x′′∈h−1(y)

t X (x2)(a)
(
x′′).

Trivially, the latter implies that for all x′ ∈ X∑
x′′∈[x′]Rh

t X (x1)(a)
(
x′′)=

∑
x′′∈[x′]Rh

t X (x2)(a)
(
x′′).

For an example look at the function h depicted by the dashed arrows in Fig. 1: h is a W-homomorphism and Rh is a
weighted bisimulation.

Conversely, every bisimulation R on (X, 〈oX , t X 〉) induces a coalgebra (X/R, 〈oX/R , t X/R〉) where X/R is the set of all

equivalence classes of X w.r.t. R and oX/R : X/R → K and t X/R : X/R → (KX/R
ω )A are defined for all x1, x2 ∈ X , a ∈ A by

oX/R
([x1]R

)= oX (x1), t X/R
([x1]R

)
(a)
([x2]R

)=
∑

x′∈[x2]R

t X (x1)(a)
(
x′).

Note that both oX/R and t X/R are well-defined (i.e., independent from the choice of the representative) since R is a weighted
bisimulation. Most importantly, the function εR : X → X/R mapping x into [x]R is a W-homomorphism.

X

〈oX ,t X 〉

�−�W
X

εR X/R

〈oX/R ,t X/R 〉

�−�W
X/R

Ω

ω

W(X)

W(�−�W
X )

W(εR )
W(X/R)

W(�−�W
X/R )

W(Ω)

Theorem 1. Let (X, 〈o, t〉) be a weighted automaton and let x1 , x2 be two states in X. Then, x1 ∼w x2 iff x1 ≈W x2 , i.e., �x1 �W
X =�x2 �W

X .

Proof. The proof follows almost trivially from the above observations.
If x1 ≈W x2, i.e., �x1 �W

X = �x2 �W
X , then (x1, x2) ∈ R �−�W

X
and R �−�W

X
is a weighted bisimulation because �−�W

X is a
W-homomorphism. Thus x1 ∼w x2.

If x1 ∼w x2, then there exists a weighted bisimulation R such that (x1, x2) ∈ R . Let (X/R, 〈oX/R , t X/R〉) and εR : X →
X/R be the W-coalgebra and the W-homomorphism described above. Since there exists a unique W-homomorphism
from (X, 〈oX , t X 〉) to the final coalgebra, then �−�W

X = �−�W
X/R ◦ εR . Since εR(x1) = εR(x2), then �x1 �W

X = �x2 �W
X , i.e.,

x1 ≈W x2. �
2.2. Weighted language equivalence

The semantics of weighted automata can also be defined in terms of weighted languages. A weighted language over A and
K is a function σ : A∗ → K assigning to each word in A∗ a weight in K. For each wa (X, 〈o, t〉), the function lX : X → KA∗

assigns to each state x ∈ X its recognised weighted language. For all words a1 . . .an ∈ A∗ , it is defined by

lX (x)(a1 . . .an) =
∑{

k1 · . . . · kn · k
∣∣ x = x1

a1,k1−−−→ · · · an,kn−−−→ xn and o(xn) = k
}
.

We will often use the following characterisation: for all w ∈ A∗ ,

lX (x)(w) =
{

o(x), if w = ε;∑
x′∈X (t(x)(a)(x′) · lX (x′)(w ′)), if w = aw ′.

Two states x1, x2 ∈ X are said to be weighted language equivalent (denoted by x1 ∼l x2) if lX (x1) = lX (x2). In [8], it is
shown that if two states are weighted bisimilar then they are also weighted language equivalent. For completeness, we
recall here the proof.

Proposition 2. ∼w ⊆∼l .

Proof. We prove that if R is a weighted bisimulation, then for all (x1, x2) ∈ R , lX (x1) = lX (x2). We use induction on words
w ∈ A∗ .
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Fig. 2. The states x1, y1, z1 and u1 in the above automaton recognise the language mapping aa into 2 and the other words into 0. Although they are all
language equivalent, they are not bisimilar.

If w = ε , then lX (x1)(w) = o(x1) and lX (x2)(w) = o(x2) and o(x1) = o(x2) since R is a weighted bisimulation.
If w = aw ′ , then

lX (x1)(w) =
∑
x′∈X

(
t(x1)(a)

(
x′) · lX

(
x′)(w ′)).

By induction hypothesis for all x′′ ∈ [x′]R , lX (x′′)(w ′) = lX (x′)(w ′). Thus in the above summation we can group all the states
x′′ ∈ [x′]R as follows:

lX (x1)(w) =
∑

[x′]R∈X/R

(( ∑
x′′∈[x′]R

t(x1)(a)
(
x′′)) · lX

(
x′)(w ′)).

Since (x1, x2) ∈ R and R is a weighted bisimulation, the above summation is equal to∑
[x′]R∈X/R

(( ∑
x′′∈[x′]R

t(x2)(a)
(
x′′)) · lX

(
x′)(w ′))

that, by the previous arguments, is equal to lX (x2)(w). �
The inverse inclusion does not hold: the states x1, y1, z1 and u1 in Fig. 2 are language equivalent but they are not

equivalent according to weighted bisimilarity.

2.3. On the difference between W-bisimilarity and W-behavioural equivalence

We conclude this section with an example showing the difference between W-behavioural equivalence (and hence
weighted bisimulation) and another canonical equivalence notion from the theory of coalgebra, namely W-bisimulation.
This result is not needed for understanding the next sections, and therefore this subsection can be safely skipped.

The theory of coalgebras provides an alternative definition of equivalence, namely G-bisimilarity (�G ), that coincides
with G-behavioural equivalence whenever the functor G preserves weak pullbacks [32]. In the case of weighted automata,
the functor W does not preserve weak pullbacks and �W is strictly included into ≈W . Since weighted automata are one
of the few interesting cases where this phenomenon arises, we now show an example of two states that are in ≈W , but
not in �W (the paper [15] was of great inspiration for the construction of this example).

First, let us instantiate the general coalgebraic definition of bisimulation and bisimilarity to the functor W . A W-
bisimulation between two W-coalgebras (X, 〈oX , t X 〉) and (Y , 〈oY , tY 〉) is a relation R ⊆ X × Y such that there exists
〈oR , tR〉 : R → W(R) making the following diagram commute. The largest W-bisimulation is called W-bisimilarity (�W ).

X

〈oX ,t X 〉
R

π1

〈oR ,tR 〉

π2
Y

〈oY ,tY 〉

W(X) W(R)W(π1) W(π2)
W(Y )

Note that the actual definition of ≈W relates the states of a single automaton. We can extend it in order to relate states
of possibly distinct automata: given (X, 〈oX , t X 〉) and (Y , 〈oY , tY 〉), the states x ∈ X and y ∈ Y are equivalent w.r.t. ≈W iff�x�W

X = � y�W
Y .

Consider now the coalgebras in Fig. 3: x1 ≈W y1, but x1 ��W y1. For the former, it is enough to observe that the
functions h1 and h2 (represented by the dashed arrows) are W-homomorphisms, and by uniqueness of �−�W : �x1 �W

X =�h1(x1)�W
Z = �z1 �W

Z = �h2(y1)�W
Z = � y1 �W

Y . For x1 ��W y1, note that there exists no R ⊆ X × Y that is a W-bisimulation
and such that (x1, y1) ∈ R . Since x2 and x3 have different output values than y1, then neither (x2, y1) nor (x3, y1) can
belong to a bisimulation. Thus, the only remaining non-empty relation on X × Y is the one equating just x1 and y1, i.e.,
R = {(x1, y1)}. But this is not a W-bisimulation since there exists no 〈oR , tR〉 making the leftmost square of the above
diagram commute. In order to understand this fact, note that π−1

1 (x2) = ∅ and π−1
1 (x3) = ∅. Thus for all possible choices of
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Fig. 3. From left to right, three weighted automata over R: (X, 〈oX , t X 〉), (Z , 〈oZ , t Z 〉) and (Y , 〈oY , tY 〉). The dashed arrows denote the W-homomorphisms
h1 : X → Z and h2 : Y → Z . The states x1 and y1 are behaviourally equivalent, but they are not W-bisimilar.

〈oR , tR〉, the function W(π1) ◦ 〈oR , tR〉 maps (x1, y1) into a pair 〈k,ϕ〉 where ϕ(a)(x2) = 0 and ϕ(a)(x3) = 0. On the other
side of the square, we have that 〈oX , t X 〉 ◦ π1(x1, y1) = 〈oX (x1), t X (x1)〉 and t X (x1)(a)(x2) = 1 and t X (x1)(a)(x3) = −1.

It is interesting to observe that transitions with negative weight play an essential role for having x1 ≈W y1 and
x1 ��W y1. Similar examples can be constructed by using commutative monoids which are not zero-sum free (a monoid
is said to be zero-sum free if k1 +k2 = 0 implies k1 = 0 = k2). We refer the interested reader to [16], where the relationship
between zero-sum free monoids and weak-pullback preserving functors is discussed in detail.

3. Linear weighted automata as linear coalgebras

In this section, we will introduce linear weighted automata as coalgebras for an endofunctor L : Vect → Vect, where
Vect is the category of vector spaces and linear maps over a field K. The goal of this approach is to characterise weighted
language equivalence as the behavioural equivalence induced by the final L-coalgebra.

3.1. Preliminaries

First we fix some notations and recall some basic facts on vector spaces and linear maps. We use v1, v2, . . . to range
over vectors and V , W , . . . to range over vector spaces on a field K. Given a vector space V , a vector v ∈ V and a k ∈ K,
the scalar product is denoted by k · v (or kv for short). The space spanned by an I-indexed family of vectors B = {vi}i∈I is
the space span(B) of all v such that

v = k1 vi1 + k2 vi2 + · · · + kn vin

where for all j, vi j ∈ B . In this case, we say that v is a linear combination of the vectors in B . A set of vectors is linearly
independent if none of its elements can be expressed as the linear combination of the remaining ones. A basis for the space V
is a linearly independent set of vectors that spans the whole V . All the bases of V have the same cardinality which is called
the dimension of V (denoted by dim(V )). If (v1, . . . , vn) is a basis for V , then each vector v ∈ V is equal to k1 v1 +· · ·+kn vn

for uniquely determined k1, . . . ,kn ∈ K. For this reason, each vector v can be represented as an n × 1-column vector

v =
⎛
⎝k1

...

kn

⎞
⎠ .

We use f , g, . . . to range over linear maps. Identity and composition of maps are denoted as usual. If B V = (v1, . . . , vn)

and BW = (w1, . . . , wm) are, respectively, the bases of the vector spaces V and W , then every linear map f : V → W can
be represented as an m × n-matrix. Indeed, for each v ∈ V , v = k1 v1 + · · · + kn vn and f (v) = k1 f (v1) + · · · + kn f (vn),
by linearity of f . For each vi , f (vi) can be represented as m × 1-column vector by taking as basis BW . Thus the matrix
corresponding to f (w.r.t. B V and BW ) is the one having as i-th column the vector corresponding to f (vi). In this paper we
will use capital letters F , G, . . . to denote the matrices corresponding to linear maps f , g, . . . in lower case. By multiplying
the matrix F with vector v (in symbols, F × v) we can compute f (v). More generally, matrix multiplication corresponds to
composition of linear maps, in symbols:

g ◦ f = G × F .

The product of two vector spaces V , W is written as V × W , and the product of two linear maps f1, f2 is f1 × f2, defined
as for functions. It will be clear from the context whether × refer to the multiplication of matrices or to the product of
spaces (or maps). Given a set X , and a vector space V , the set V X (i.e., the set of functions ϕ : X → V ) carries a vector space
structure where sum and scalar product are defined point-wise. Hereafter we will use V X to denote both the vector space
and the underlying carrier set. Given a linear map f : V 1 → V 2, the linear map f X : V X

1 → V X
2 is defined as for functions.

If A is a finite set we can conveniently think V A as the product of V with itself for |A|-times (|A| is the cardinality of A).
A linear map f : U → V A can be decomposed in a family of maps indexed by A, f = { fa : U → V }a∈A , such that for all
u ∈ U , fa(u) = f (u)(a).

For a set X , the set KX
ω (i.e., the set of all finite support functions ϕ : X → K) carries a vector space structure where sum

and scalar product are defined in the obvious way. This is called the free vector space generated by X and can be thought
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of as the space spanned by the elements of X : each vector k1xi1 + k2xi2 + · · · + knxin corresponds to a function ϕ : X → K
such that ϕ(xi j ) = k j and for all x /∈ {xij | j = 1, . . . ,n}, ϕ(x) = 0; conversely, each finite support function ϕ corresponds to a
vector ϕ(xi1 )xi1 + ϕ(xi2 )xi2 + · · · + ϕ(xin )xin .

A fundamental property holds in the free vector space generated by X : for all functions f from X to the carrier-set
of a vector space V , there exists a linear map f � : KX

ω → V that is called the linearisation of f . For all ϕ ∈ KX
ω , ϕ =

k1xi1 + k2xi2 + · · · + knxin and f �(ϕ) = k1 f (xi1 ) + k2 f (xi2 ) + · · · + kn f (xin ).

KX
ω

f �

X
f

ηX

V

Note that f � is the only linear map such that f = f � ◦ ηX , where ηX (x) is the function assigning 1 to x and 0 to all the
other elements of X .

The kernel ker( f ) of a linear map f : V → W is the subspace of V containing all the vectors v ∈ V such that f (v) = 0.
The image im( f ) of f is the subspace of W containing all the w ∈ W such that w = f (v) for some v ∈ V . If V has finite
dimension, the kernel and the image of f are related by the following equation:

dim(V ) = dim
(
ker( f )

)+ dim
(
im( f )

)
. (1)

Given two vector spaces V 1 and V 2, their intersection V 1 ∩ V 2 is still a vector space, while their union V 1 ∪ V 2 might not
be. Instead of union we consider the coproduct of vector spaces: we write V 1 + V 2 to denote the space span(V 1 ∪ V 2) (note
that in the category of vector spaces, product and coproduct coincide).

3.2. From weighted automata to linear weighted automata

We have now all the ingredients to introduce linear weighted automata and a coalgebraic characterisation of weighted
language equivalence.

Definition 3 (lwa). A linear weighted automaton (lwa, for short) with input alphabet A over the field K is a coalgebra for
the functor L = K × −A : Vect → Vect.

More concretely [7], an lwa is a pair (V , 〈o, t〉), where V is a vector space (representing the state space), o : V → K is a
linear map associating to each state its output weight and t : V → V A is a linear map that for each input a ∈ A associates a
next state (i.e., a vector) in V . We will write v1

a−→ v2 for t(v1)(a) = v2.
The behaviour of linear weighted automata is expressed in terms of weighted languages. The language recognised by a

vector v ∈ V of an lwa (V , 〈o, t〉) is defined for all words a1 . . .an ∈ A∗ as �v �L
V (a1 . . .an) = o(vn) where vn is the vector

reached from v through a1 . . .an , i.e., v
a1−−→ · · · an−−→ vn . We will often use the following (more compact) characterisation: for

all w ∈ A∗ ,

�v �L
V (w) =

{
o(v), if w = ε;�t(v)(a)�L

V (w ′), if w = aw ′.

Here we use the notation �−�L
V because this is the unique L-homomorphism into the final L-coalgebra. In Section 3.3,

we will provide a proof for this fact and we will also discuss the exact correspondence with the function lX introduced in
Section 2.

Given a weighted automaton (X, 〈o, t〉), we can build a linear weighted automaton (KX
ω, 〈o�, t�〉), where KX

ω is the free
vector space generated by X and o� and t� are the linearisations of o and t . If X is finite, we can represent t� and o�

by the same matrices that we have introduced in the previous section for t and o. By fixing an ordering x1, . . . , xn of the
states in X , we have a basis for KX

ω , i.e., every vector v ∈ KX
ω is equal to k1x1 + · · · + knxn and it can be represented as an

n × 1-column vector. The values t�(v)(a) and o�(v) can be computed via matrix multiplication as Ta × v and O × v .
For a concrete example, consider the weighted automaton (X, 〈oX , t X 〉) in Fig. 1. The corresponding linear weighted

automaton (RX
ω, 〈o�

X , t�
X 〉) has as state space the space of all the linear combinations of the states in X (i.e., {k1x1 + k2x2 +

k3x3 | ki ∈ R}). The function o�
X maps v = k1x1 + k2x2 + k3x3 into k1oX (x1) + k2oX (x2) + k3oX (x3), i.e., k1 + k2 + k3. By

exploiting the correspondence between functions and vectors in KX
ω (discussed in Section 3.1), we can write t�

X (v)(a) =
k1t X (x1)(a) + k2t X (x2)(a) + k3t X (x3)(a) that is k1(x1 + x2 + x3) + k23x2 + k33x3 and t�

X (v)(b) = k13x1 + k23x1 + k33x1. This
can be conveniently expressed in terms of matrix multiplication:

o�
X (v) = (1 1 1 )

(k1
k2
k3

)
, t�

X (v)(a) =
(1 0 0

1 3 0
1 0 3

)(k1
k2
k3

)
, t�

X (v)(b) =
(3 3 3

0 0 0
0 0 0

)(k1
k2
k3

)
.
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Fig. 4. The weighted automata (X, 〈oX , t X 〉) (left) and (Y , 〈oY , tY 〉) (right). The corresponding linear weighted automata (RX
ω, 〈o�

X , t�
X 〉) and (RY

ω, 〈o�
Y , t�

Y 〉)
are isomorphic.

A linear map h : V → W is an L-homomorphism between lwa (V , 〈oV , tV 〉) and (W , 〈oW , tW 〉) if the following diagram
commutes.

V

〈oV ,tV 〉

h
W

〈oW ,tW 〉

K × V A
id×hA K × W A

This means that for all v ∈ V , a ∈ A, oV (v) = oW (h(v)) and h(tV (v)(a)) = tW (h(v))(a). If V and W have finite dimension,
then we can represent all the morphisms of the above diagram as matrices. In this case, the above diagram commutes if
and only if for all a ∈ A,

O V = O W × H and H × T Va = T Wa × H

where T Va and T Wa are the matrix representations of tV and tW for any a ∈ A.
For a function h : X → Y , the function Kh

ω : KX
ω → KY

ω (formally introduced in Definition 2) is a linear map. Note that
if h is a W-homomorphism between the wa (X, 〈oX , t X 〉) and (Y , 〈oY , tY 〉), then Kh

ω is an L-homomorphism between

the lwa (KX
ω, 〈o�

X , t�
X 〉) and (KY

ω, 〈o�
Y , t�

Y 〉). For an example, look at the W-homomorphism h : (X, 〈oX , t X 〉) → (Y , 〈oY , tY 〉)
represented by the dashed arrows in Fig. 1. The linear map Rh

ω : RX
ω → RY

ω is represented by the matrix H = (1 1 1) and it is

an L-homomorphism between (RX
ω, 〈o�

X , t�
X 〉) and (RY

ω, 〈o�
Y , t�

Y 〉). This can be easily checked by showing that O X = O Y × H ,
H × T Xa = TYa × H and H × T Xb = TYb × H .

Note that two different weighted automata can represent the same (up to isomorphism) linear weighted automaton. As
an example, look at the weighted automata (X, 〈oX , t X 〉) and (Y , 〈oY , tY 〉) in Fig. 4. They represent, respectively, the linear
weighted automata (RX

ω, 〈o�
X , t�

X 〉) and (RY
ω, 〈o�

Y , t�
Y 〉) that are isomorphic. The transitions and the output functions for the

two automata are described by the following matrices:

T Xa =
( 0 0 0

1 1 0
−1 0 1

)
, O X = ( 1 1 1 ) , T Ya =

⎛
⎜⎝

3
2 0 1

2
1
2 1 1

2

− 3
2 0 − 1

2

⎞
⎟⎠ , O Y = ( 2 2 2 ) .

Note that T Xa and TYa are similar, i.e., they represent the same linear map. This can be immediately checked by showing
that TYa = j−1 ◦ t Xa ◦ j, where j : RY → RX is the isomorphic map representing the change of bases from Y = (x1 + x2,

x2 + x3, x3 + x1) to X = (x1, x2, x3) and j−1 : RX → RY is its inverse. The matrix representation of j and j−1 is the following:

J =
(1 0 1

1 1 0
0 1 1

)
, J−1 =

⎛
⎜⎝

1
2

1
2 − 1

2

− 1
2

1
2

1
2

1
2 − 1

2
1
2

⎞
⎟⎠ .

Also O X and O Y represent the same map in different bases. Indeed, O Y = O X × J .
At this point, it is easy to see that the linear isomorphism j−1 : RX → RY is an L-homomorphism, because O X =

O X × J × J−1 = O Y × J−1 and J−1 × T Xa = J−1 × T Xa × J × J−1 = TYa × J−1. Analogously for j : RY → RX .

3.3. Language equivalence and final L-coalgebra

We introduce the final L-coalgebra and we show that the behavioural equivalence ≈L , induced by the functor L, coin-
cides with weighted language equivalence.
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The set of all weighted languages KA∗
carries a vector space structure: the sum of two languages σ1, σ2 ∈ KA∗

is the
language σ1 +σ2 defined for each word w ∈ A∗ as (σ1 +σ2)(w) = σ1(w) +σ2(w); the product of a language σ for a scalar
k ∈ K is kσ defined as kσ(w) = k · σ(w); the element 0 of KA∗

is the language mapping each word into the 0 of K.
The empty function ε : KA∗ → K and the derivative function d : KA∗ → (KA∗

)A are defined for all σ ∈ KA∗
, a ∈ A as

ε(σ ) = σ(ε), d(σ )(a) = σa

where σa : A∗ → K denotes the a-derivative of σ that is defined for all w ∈ A∗ as

σa(w) = σ(aw).

Proposition 3. The maps ε : KA∗ → K and d : KA∗ → (KA∗
)A are linear.

Proof. We show the proof for d. The one for ε is analogous.
Let σ1, σ2 be two weighted languages in KA∗

. Now for all a ∈ A, w ∈ A∗ , d(σ1 + σ2)(a)(w) = (σ1 + σ2)(aw) = σ1(aw) +
σ2(aw) = d(σ1)(a)(w) + d(σ2)(a)(w).

Let k be a scalar in K and σ be a weighted language in KA∗
. Now for all a ∈ A, w ∈ A∗ , k · d(σ )(a)(w) = k · σ(aw) =

d(kσ)(a)(w). �
Since KA∗

is a vector space and since ε and d are linear maps, (KA∗
, 〈ε,d〉) is an L-coalgebra. The following theorem

shows that it is final.

Theorem 2 (Finality). From every L-coalgebra (V , 〈o, t〉) there exists a unique L-homomorphism into (KA∗
, 〈ε,d〉).

V

〈o,t〉

�−�L
V

KA∗

〈ε,d〉

L(V )
L(�−�L

V )
L(KA)

Proof. The only function making the above diagram commute is �−�L
V , i.e., the function mapping each vector v ∈ V into

the weighted language that it recognises. Hereafter we show that �−�L
V is a linear map.

By induction on w , we prove that for all v1, v2 ∈ V , for all w ∈ A∗ , �v1 + v2 �L
V (w) = �v1 �L

V (w) + �v2 �L
V (w).

Suppose that w = ε . Then �v1 + v2 �L
V (ε) = o(v1 + v2). Since o is a linear map, this is equal to o(v1)+o(v2) = �v1 �L

V (ε)+�v2 �L
V (ε).

Now suppose that w = aw ′ . Then �v1 + v2 �L
V (aw ′) = �t(v1 + v2)(a)�L

V (w ′). Since t is a linear map, this is equal to�t(v1)(a) + t(v2)(a)�L
V (w ′) that (by induction hypothesis) is equal to �t(v1)(a)�L

V (w ′) + �t(v2)(a)�L
V (w ′) = �v1 �L

V (aw ′) +�v2 �L
V (aw ′).

We can proceed analogously for the scalar product. �
Thus, two vectors v1, v2 ∈ V are L-behaviourally equivalent (v1 ≈L v2) iff they recognise the same weighted lan-

guage (as defined in Section 3.2). Proposition 4 below shows that �−�L
KX

ω
: KX

ω → KA∗
is the linearisation of the function

lX : X → KA∗
(defined in Section 2) or, in other words, is the only linear map making the following diagram commute.

KX
ω �−�L

KX

X
lX

ηX

KA∗

Lemma 1. Let (X, 〈o, t〉) be a wa and (KX
ω, 〈o�, t�〉) be the corresponding linear weighted automaton. Then for all x ∈ X, lX (x) =�x�L

KX
ω

.

Proof. We prove it by induction on w ∈ A∗ .
If w = ε , then lX (x)(w) = oX (x) = o�

X (x) = �x�L
KX

ω
(w).
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If w = aw ′ , then �x�L
KX

ω
(w) = �t�(x)(a)�L

KX
ω
(w ′). Note that by definition, t�(x)(a) = ∑

x′∈X t(x)(a)(x′) · x′ and thus�t�(x)(a)�L
KX

ω
(w ′) is equal to� ∑

x′∈X

t(x)(a)
(
x′) · x′

�L

KX
ω

(
w ′)

which, by linearity of �−�L
KX

ω
, coincides with

∑
x′∈X

t(x)(a)
(
x′) · �

x′�L
KX

ω

(
w ′).

By induction hypothesis �x′�L
KX

ω
(w ′) = lX (x′)(w ′) and thus the above coincides with

∑
x′∈X

t(x)(a)
(
x′) · lX

(
x′)(w ′)

that is lX (x)(w). �
Proposition 4. Let (X, 〈o, t〉) be a wa and (KX

ω, 〈o�, t�〉) be the corresponding linear weighted automaton. Then, for all v = k1xi1 +
· · · + knxin , �v �L

KX
ω

= k1lX (xi1 ) + · · · + knlX (xin ).

Proof. It follows from Lemma 1 and linearity of �−�L
KX

ω
. �

3.4. Linear bisimulations and subspaces

We now introduce a convenient characterisation of language equivalence by means of linear weighted bisimulations.
Differently from ordinary (weighted) bisimulations, these can be seen both as relations and as subspaces. The latter charac-
terisation will be exploited in the next section for defining an algorithm for checking language equivalence.

First, we show how to represent relations over a vector space V as subspaces of V , following [40,7].

Definition 4 (Linear relations). Let U be a subspace of V . The binary relation RU over V is defined by

v1 RU v2 if and only if v1 − v2 ∈ U .

A relation R is linear if there is a subspace U such that R equals RU .

Note that a linear relation is a total equivalence relation on V . Let now R be any binary relation over V . There is a
canonical way of turning R into a linear relation, which we describe in the following. The kernel of R (in symbols ker(R))
is the set {v1 − v2 | v1 R v2}. The linear extension of R , denoted R , is defined by: v1 R v2 if and only if (v1 − v2) ∈
span(ker(R)).

Lemma 2. Let U be a subspace of V , then ker(RU ) = U .

According to the above lemma, a linear relation R is completely described by its kernel, which is a subspace, that is

v1 R v2 if and only if (v1 − v2) ∈ ker(R). (2)

Conversely, for any subspace U ⊆ V there is a corresponding linear relation RU whose kernel is U . Hence, without loss of
generality, we can identify linear relations on V with subspaces of V . For example, by slight abuse of notation, we can write
v1 U v2 instead of v1 RU v2; and conversely, we will sometimes denote by R the subspace ker(R). The context will be
sufficient to tell whether we are actually referring to a linear relation or to the corresponding subspace (kernel). Note that
the subspace {0} corresponds to the identity relation on V , that is R{0} = IdV . In fact: v1 IdV v2 iff v1 = v2 iff v1 − v2 = 0.
Similarly, the space V itself corresponds to R V = V × V .

We are now ready to define linear weighted bisimulation. This definition relies on the familiar step-by-step game played
on transitions, plus an initial condition requiring that two related states have the same output weight. We call this form of
bisimulation linear to stress the difference with the one introduced in Definition 1.

Definition 5 (Linear weighted bisimulation). Let (V , 〈o, t〉) be a linear weighted automaton. A linear relation R ⊆ V × V is a
linear weighted bisimulation if for all (v1, v2) ∈ R , it holds that:
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(1) o(v1) = o(v2),
(2) ∀a ∈ A, t(v1)(a) R t(v2)(a).

For a concrete example, consider the automaton (RX
ω, 〈o�

X , t�
X 〉) in Fig. 4. The relation R = {(x2, x3)} is not linear, because

U = {x2 −x3} is not a subspace of RX
ω . However, we can turn R into a linear relation by applying its kernel ker(R) = {x2 −x3}.

The linear extension of R is R = {(k1x1 + k2x2 + k3x3,k′
1x1 + k′

2x2 + k′
3x3) | k1 = k′

1 and k2 + k3 = k′
2 + k′

3}. It is easy to see
that R is a linear weighted bisimulation.

The following lemma provides a characterisation of linear weighted bisimulation as a subspace. Let us say that a subspace
U is f -invariant if f (U ) ⊆ U . Bisimulations are transition-invariant relations that refine the kernel of the output map o.

Lemma 3. Let (V , 〈o, t〉) be an lwa and R be a linear relation over V . R is a linear weighted bisimulation if and only if

(1) R ⊆ ker(o),
(2) R is ta-invariant for each a ∈ A.

This lemma will be fundamental in the next section for defining an algorithm computing the greatest linear weighted
bisimulation. In the remainder of this section, we show that the greatest linear weighted bisimulation coincides with the
kernel of the final map �−�L

V . More generally, the kernel of each L-homomorphism is a linear weighted bisimulation R
and, vice versa, for each linear weighted bisimulation R there exists an L-homomorphism whose kernel is R .

Proposition 5. Let (V , 〈oV , tV 〉) be an lwa. If f : V → W is an L-homomorphism (for some lwa (W , 〈oW , tW 〉)) then ker( f ) is a
linear weighted bisimulation. Conversely, if R is a linear weighted bisimulation for (V , 〈o, t〉), then there exist an lwa (W , 〈oW , tW 〉)
and an L-homomorphism f : V → W such that ker( f ) = R.

Proof. First, we suppose that f : V → W is an L-homomorphism and we prove that ker( f ) satisfies (1) and (2) of Lemma 3.
Take a vector v ∈ ker( f ). Thus, f (v) = 0 and, since oW and tW are linear maps, oW ( f (v)) = 0 and tW ( f (v))(a) = 0 for all
a ∈ A. Since f is an L-homomorphism, we have that (1) oV (v) = oW ( f (v)) = 0, i.e., ker( f ) ⊆ ker(oV ) and (2) f (tV (v)(a)) =
tW ( f (v))(a) = 0 meaning that tV (v)(a) ∈ ker( f ), i.e., ker( f ) is tVa -invariant.

In order to prove the second part, we need to recall quotient spaces and quotient maps from [18]. Given a subspace
U of V , the equivalence class of v w.r.t. U is [v]U = {v + u | u ∈ U }. Note that v1 ∈ [v2]U if and only if v1 RU v2. The
quotient space V /U is the space of all equivalence classes [v]U where scalar product k[v]U is defined as [kv]U and the sum
[v1]U + [v2]U as [v1 + v2]U . It is easy to check that these operations are well-defined (i.e., independent from the choice of
the representative) and turn V /U into a vector space where the element 0 is U . Most importantly, the quotient function
εU : V → V /U mapping each vector v into [v]U is a linear map such that ker(εU ) = U .

Now, let U be the subspace corresponding to the linear weighted bisimulation R . We can take W = V /U and we
define oW as oW ([v]U ) = oV (v) and tW as tW ([v]U )(a) = [t(v)(a)]U . Note that both oW and tW are well-defined: for all
v ′ ∈ [v]U = {v + u | u ∈ U }, oW (v ′) = oW (v) (since oV (u) = 0 for all u ∈ U ) and tW (v ′)(a) ∈ [tW (v)(a)]U (since tV (u)(a) ∈ U
for all u ∈ U ). It is also easy to check that they are linear.

Finally, we take f : V → W as εU and with the previous definition of oW and tW is trivial to check that εU is an
L-homomorphism. As said above, its kernel is U . �
Theorem 3. Let (V , 〈o, t〉) be an lwa and let �−�L

V : V → KA∗
be the unique L-morphism into the final coalgebra. Then ker(�−�L

V )

is the largest linear weighted bisimulation on V .

Proof. First of all, note that by the first part of Proposition 5, ker(�−�L
V ) is a linear weighted bisimulation.

Now, suppose that R is a linear weighted bisimulation. By the second part of Proposition 5, there exist an lwa

(W , 〈oW , tW 〉) and an L-homomorphism f : V → W such that R = ker( f ). Now note that, since (W , 〈oW , tW 〉) is an
L-coalgebra there exists an L-homomorphism �−�L

W : W → KA∗
to the final coalgebra. Since the composition of two L-

homomorphisms is still an L-homomorphism, also �−�L
W ◦ f : V → KA∗

is an L-homomorphism. Since �−�L
V is the unique

L-homomorphism from V to KA∗
, then �−�L

W ◦ f = �−�L
V . Finally, R = ker( f ) ⊆ ker(�−�L

W ◦ f ) = ker(�−�L
V ). �

Corollary 1. ≈L is the largest linear weighted bisimulation.

The characterisation of bisimulations as subspaces seems to be possible in Vect and not in Set because the former
category is abelian [13]: every map has a kernel that is a subspace and every subspace is the kernel of some map. We
leave as future work to study (at a more general level) the categorical machinery allowing to characterise bisimulations as
subspaces.

In Section 2, we have shown that the largest weighted bisimulation (∼w ) is strictly included in language equivalence,
while here we have shown that the largest linear weighted bisimulation coincides with language equivalence. However, it
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is not clear yet what is the relationship between weighted bisimulations and linear weighted bisimulations. The following
proposition explains it.

Proposition 6. Let (X, 〈o, t〉) be a weighted automaton and (KX
ω, 〈o�, t�〉) be the corresponding linear weighted automaton. If R is a

weighted bisimulation on X, then R is a linear weighted bisimulation on KX
ω .

Proof. Recall the weighted automaton (X/R, 〈oX/R , t X/R〉) and the function εR : X → X/R defined before Theorem 1 and
recall also that εR is a W-homomorphism between (X, 〈o, t〉) and (X/R, 〈oX/R , t X/R〉). In Section 3.2, we have shown that,

for every W-homomorphism h, Kh
ω is an L-homomorphism. Therefore KεR

ω : KX
ω → KX/R

ω is an L-homomorphism between

(KX
ω, 〈o�, t�〉) and (KX/R

ω , 〈o�
X/R , t�

X/R〉). By Proposition 5, ker(KεR
ω ) is a linear weighted bisimulation on KX

ω .

Therefore, in order to complete the proof, we only have to prove that ker(KεR
ω ) = R . First of all note that KεR

ω : KX
ω →

KX/R
ω maps each v = k1x1 + · · · + knxn in

∑
[xi ]R∈X/R

( ∑
x j∈[xi ]R

k j

)
[xi]R

and thus v ∈ ker(KεR
ω ) if and only if for all xi ,

∑
x j∈[xi ]R

k j = 0. Then, we show that v ∈ R if and only if the same condition

holds. Indeed, by definition, v ∈ R if and only if for all j, l ∈ {1, . . . ,n}, exist k′
j,l such that (1) v =∑n

j=1
∑n

l=1 k′
j,l(x j − xl)

and (2) if (x j, xl) /∈ R then k′
j,l = 0. Thus

v =
n∑

l=1

(
k′

1,l − k′
l,1

)
x1 + · · · +

n∑
l=1

(
k′

n,l − k′
l,n

)
xn,

i.e., for all j, k j =∑n
l=1(k

′
j,l − k′

l, j). Recall that, according to Definition 1, R is an equivalence relation and thus (x j, xl) ∈ R

iff xl ∈ [x j]R . Then, by (2) above, k j = ∑
xl∈[x j ]R

(k′
j,l − k′

l, j). For all xi ,
∑

x j∈[xi ]R
k j = ∑

x j∈[xi ]R

∑
xl∈[x j ]R

(k′
j,l − k′

l, j). Since

[x j]R = [xi]R , each k′
j,l occurs exactly once in a positive way and once in a negative way and thus

∑
x j∈[xi ]R

k j = 0. �
The other implication does not hold. For instance, there exists no weighted bisimulation relating the states y1

and z1 in Fig. 2, however we can show a linear weighted bisimulation relating them: the linear extension of R =
{(y1, z1), (y2, z2), (y3 + y5,2z3)} is a linear weighted bisimulation.

4. Linear partition refinement

In the previous section, we have shown that weighted language equivalence (∼l) can be seen as the largest linear
weighted bisimulation. In this section, we exploit this characterisation in order to provide a “partition-refinement” algorithm
that allows to compute ∼l . We will examine below two versions of the algorithm, a forward version (Section 4.1) and
a backward one (Section 4.2). The former is straightforward but computationally not very convenient; the latter is more
convenient, although it requires the introduction of some extra machinery. In both cases, we must restrict to lwa’s where
the state space is of finite dimension.

4.1. A forward algorithm

Lemma 3 suggests that, in order to compute the largest linear weighed bisimulation for an lwa (V , 〈o, t〉), one might
start from ker(o) and refine it until the condition (2) given in the lemma is satisfied. This is indeed the case.

Proposition 7 (Partition refinement, forward version). Let (V , 〈o, t〉) be an lwa. Consider the sequence (Ri)i�0 of subspaces of V
defined inductively by

R0 = ker(o), Ri+1 = Ri ∩
⋂
a∈A

t(Ri)(a)−1

where t(Ri)(a)−1 is the space {v ∈ V | t(v)(a) ∈ Ri}. Then there is j � dim(V ) such that R j+1 = R j . The largest linear weighted
bisimulation is ≈L = R j .

Proof. The Ri ’s form a descending chain of subspaces of V . The corresponding dimensions form a non-increasing sequence,
hence the existence of j as required is obvious. That R j is a bisimulation follows by applying Lemma 3: indeed, it is
obvious that (1) ker(o) ⊇ R j , while as to (2) we have that, since R j+1 = R j , then R j ∩⋂a∈A t(R j)(a)−1 = R j , i.e., for all
a ∈ A, t(R j)(a) ⊆ R j .
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Fig. 5. A weighted automata (V , 〈o, t〉) (left) and its reversed (V , 〈o, tt〉) (right).

We finally show that any linear weighted bisimulation R is included in R j . We do so by proving that for each i, R ⊆ Ri ,
thus, in particular R ⊆ R j . We proceed by induction on i. Again by Lemma 3, we know that R0 = ker(o) ⊇ R . Assume
now R ⊆ Ri . For each action a, by Lemma 3 we have that t(R)(a) ⊆ R , which implies R ⊆ {v ∈ Ri | ∀a ∈ A, t(v)(a) ∈ Ri} =
Ri+1. �

Concretely, the algorithm iteratively computes a basis Bi for each space Ri . This can be done by solving systems of linear
equations expressing the constraints in the definition of Ri . Since the backward algorithm presented in the next section is
computationally more efficient, we avoid to give further details about its implementation and we show, as an example, the
algorithm at work with the linear automata (V , 〈o, t〉) in Fig. 5.

Example 1. We start by computing a basis for R0 = ker(o). This is

B0 =
⎧⎨
⎩
⎛
⎝− 1

2
1

0

⎞
⎠ ,

⎛
⎝− 1

2
0

1

⎞
⎠
⎫⎬
⎭ .

In the first iteration, we compute one basis for the space t(R0)(a)−1 and one for the space t(R0)(b)−1. These are respectively

Ba
1 =

⎧⎨
⎩
⎛
⎝− 1

3
1

0

⎞
⎠ ,

(−1
0
1

)⎫⎬
⎭ and Bb

1 =
⎧⎨
⎩
⎛
⎝− 1

6
1

0

⎞
⎠ ,

⎛
⎝− 3

2
0

1

⎞
⎠
⎫⎬
⎭ .

Then, R1 is given by the intersection R0 ∩ t(R0)(a)−1 ∩ t(R0)(b)−1. A basis for R1 is

B1 =
{(−2

3
1

)}
.

In the second iteration, we compute one basis for the space t(R1)(a)−1 and one for the space t(R1)(b)−1. These are respec-
tively

Ba
2 =

⎧⎨
⎩
⎛
⎝− 1

3
1

0

⎞
⎠ ,

(−1
0
1

)⎫⎬
⎭ and Bb

2 =
{(−2

3
1

)}
.

Then, R2 is the intersection R1 ∩ t(R1)(a)−1 ∩ t(R0)(b)−1. A basis for R2 is

B2 =
{(−2

3
1

)}

that is equal to B1. Since R1 = R2 the algorithm terminates and returns R1. Now, in order to check if two vectors v1, v2 ∈ V
accept the same weighted language (i.e., v1 ≈L v2), we have to look if v1 − v2 belongs to R1. For instance, x1 ≈L 3

2 x2 + 1
2 x3

because x1 − 3
2 x2 − 1

2 x3 ∈ R1.

We note that ker(o) is in general a large subspace: since o : V → K with dim(K) = 1, by virtue of Eq. (1) we have
that dim(ker(o)) � dim(V ) − 1. This might be problematic in the actual computation of the basis of ≈L . We present an
alternative version in the next subsection which will avoid this problem.



Author's personal copy

92 F. Bonchi et al. / Information and Computation 211 (2012) 77–105

4.2. A backward algorithm

Two well-known concepts from linear algebra will be relied upon to describe the basic operations of the backward
algorithm. More precisely, annihilators will be used to describe the complement of a relation, while transpose maps will
be used to describe the operation of “reversing arrows” in an automaton. These operations are carried out within the dual
space of V . So we start by reviewing the concept of dual space; an in-depth treatment can be found in e.g. [18].

Let K be any field and V a vector space over K. The dual space of V , denoted V � , is the set of all linear maps V → K,
with K seen as a 1-dimensional vector space. The elements of V � are often called functionals and we use ψ1,ψ2, . . . to
range over them. The sum of two functionals ψ1 + ψ2 and the scalar multiplication k · ψ (for k ∈ K) are defined point-wise
as expected, and turn V � into a vector space over K. We will denote functional application ψ(v) as [v,ψ], the bracket
notation intending to emphasise certain analogies with inner products. Fix an ordered basis B = (v1, . . . , vn) of V and
consider B� = (v�

1, . . . , v�
n), where the functionals v�

i are specified by [v j, v�
i ] = δi j for each i and j. Here, δi j denotes the

Kronecker symbol, which equals 1 if i = j and 0 otherwise. It is easy to check that B� forms a basis of V � , referred to as
the dual basis of B . Hence dim(V �) = dim(V ). In particular, the morphism (−)� : V → V � that sends each vi into v�

i is an
isomorphism between V and V � . A crucial definition is that of transpose morphism.

Definition 6 (Transpose linear map). Let f : V → V be a linear map. We let the transpose of f be the endomorphism t f : V � →
V � defined for all ψ ∈ V � as t f (ψ) = ψ ◦ f .

It is easy to check that if F is the matrix representing f in V w.r.t. to B , then the transpose matrix t F represents t f in
V � w.r.t. B� , whence the terminology and the notation. Denote by V �� the space (V �)� , called double dual of V . There is
a natural isomorphism i between V and V �� , given by i : v �→ [v,−] (note that this isomorphism does not depend on the
choice of a basis). In the sequel, we shall freely identify V and V �� up to this isomorphism, i.e. identify v and [v,−] for
each v ∈ V . With this identification, one has that t(t f ) = f .

We need another concept from duality theory. Given a subspace U of V , we denote by U o the annihilator of U , the
subset of functionals that vanish on U .

Definition 7 (Annihilator). For any subspace U ⊆ V , we let U o = {ψ ∈ V � | [u,ψ] = 0 for each u ∈ U }.

Once again, the notation makes the analogy with inner products explicit. We use the following properties of annihilators,
where U , W are subspaces of V : (i) U o is a subspace of V �; (ii) (−)o reverses inclusions, i.e. if U ⊆ W then W o ⊆ U o;
(iii) (−)o is an involution, that is (U o)o = U up to the natural isomorphism between V and its double dual. These three
properties suggest that U o can be regarded as a complement, or negation, of U seen as a relation. Another useful property
is: (iv) dim(U o)+ dim(U ) = dim(V ). Transpose morphisms and annihilators are connected via the following property, which
is crucial to the development of the algorithm. It basically asserts that f -invariance of R corresponds to t f -invariance of
the complementary relation represented by Ro .

Lemma 4. Let U be a subspace of V and f be an endomorphism on V . If U is f -invariant then U o is t f -invariant.

We are now ready to give the backward version of the partition-refinement algorithm. An informal preview of the
algorithm is as follows. Rather than computing directly the subspace representing ≈L , the algorithm computes the subspace
representing the complementary relation. To this end, the algorithm starts from a relation R0 that is the complement of
the relation identifying vectors with equal weights, then incrementally computes the space of all states that are backward
reachable from R0. The largest bisimulation is obtained by taking the complement of this space. Geometrically, “going
backward” means working with the transpose transition functions tta rather than with ta . Taking the complement of a
relation actually means taking its annihilator. This essentially leads one to work within V � rather than V . Recall that U + W
denotes span(U ∪ W ).

Theorem 4 (Partition refinement, backward version). Let (V , 〈o, t〉) be an lwa. Consider the sequence (Ri)i�0 of subspaces of V �

inductively defined by:

R0 = ker(o)o, Ri+1 = Ri +
∑
a∈A

tta(Ri). (3)

Then there is j � dim(L) such that R j+1 = R j . The largest L-bisimulation ≈L is Ro
j , modulo the natural isomorphism between V

and V �� .

Proof. Since R0 ⊆ R1 ⊆ R2 ⊆ · · · ⊆ V � , the sequence of the dimensions of these spaces is non-decreasing. As a consequence,
for some j � dim(V �) = dim(L), we get dim(R j) = dim(R j+1). Since R j ⊆ R j+1, this implies R j = R j+1.
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We next show that Ro
j is an L-bisimulation. Indeed, by the properties of annihilators and up to the natural isomorphism:

(1) ker(o)o ⊆ R j implies (ker(o)o)o = ker(o) ⊇ Ro
j . Moreover: (2) for any a ∈ A, tta(R j) ⊆ tta(R j) + R j ⊆ R j+1 = R j implies,

by Lemma 4, that t(tta(Ro
j )) = ta(Ro

j ) ⊆ Ro
j ; by (1), (2) and Lemma 3, we conclude that Ro

j is an L-bisimulation.
We finally show that any L-bisimulation R is included in Ro

j . We do so by proving that for each i, R ⊆ Ro
i , thus,

in particular R ⊆ Ro
j . We proceed by induction on i. Again by Lemma 3, we know that Ro

0 = ker(o) ⊇ R . Assume now

R ⊆ Ro
i , that is, Ro ⊇ Ri . For each action a, by Lemma 3 we have that ta(R) ⊆ R , which implies tta(Ro) ⊆ Ro by Lemma 4.

Hence Ro ⊇ tta(Ro) ⊇ tta(Ri), where the last inclusion stems from Ro ⊇ Ri . Since this holds for each a, we have that Ro ⊇∑
a

tta(Ri) + Ri = Ri+1. Taking the annihilator of both sides reverses the inclusion and yields the wanted result. �
We note that what is being “refined” in the algorithm above are not, of course, the subspaces Ri , but their complements:

Ro
0 ⊇ Ro

1 ⊇ · · · ⊇ Ro
j =≈L . In particular, we start with a “small” space Ro

0 of dimension � 1: this may represent an advantage
in a practical implementation of the algorithm.

To conclude the section, we briefly discuss some practical aspects involved in the implementation of the algorithm. By
virtue of (2), checking v1 ≈L v2, for any pair of vectors v1 and v2, is equivalent to checking v1 − v2 ∈ ker(≈L). This can be
done by first computing a basis of ≈L and then checking for linear (in)dependence of v1 − v2 with respect to this basis.
Alternatively, and more efficiently, one can check whether v1 − v2 is in Ro

j , or, more explicitly, whether [v1 − v2,ψ] = 0
for each ψ ∈ R j . This reduces to showing whether [v1 − v2,ψ] = 0 for each ψ ∈ B j , where B j is a basis for R j . Thus, our
task reduces to computing such a basis. To do so, fix any basis B of V and let O and Ta (a ∈ A) be the row vector and
matrices, respectively, representing the weight function o and transition functions Ta of the lwa in the basis B . The concrete
computations are carried out representing vectors and functionals in this basis.

1. Compute a basis B0 of R0. As already discussed, dim(ker(o)) � dim(V )−1, hence dim(ker(o)o) � 1. It is readily checked
that o ∈ ker(o)o , thus ker(o)o is spanned by o. We thus set B0 = {o}. With respect to the chosen basis B , B0 is repre-
sented by {O }.

2. For each i � 0, compute a basis Bi+1 of Ri+1. This can be obtained by incrementally joining to Bi the functionals
tta(ψ), for a ∈ A and ψ ∈ Bi , that are linearly independent from previously joined functionals. With respect to the
basis B , tta(ψ) is represented by Ψ × Ta , where Ψ is the row vector representing ψ ; checking linear independence of
tta(ψ) means hence checking linear independence of Ψ × Ta from previously joined row vectors.

After j � n iterations, one finds a set B j such that B j+1 = B j : this is the basis of R j . We illustrate this algorithm in the
example below.

Example 2. Consider the lwa (V , 〈o, t〉) on the left of Fig. 5. At the beginning we can set B0 = {O }. Next, we apply the
algorithm to build the Bi ’s. Manually, the computation of the vectors Ψ × Ta = t(tTa × tΨ ) can be carried out by looking
at the transitions of the wa with arrows reversed (in the right of Fig. 5). Doing so, we first get O × Ta = (2 2

3 2) and

O × Tb = (2 1
3 3). Note that O × Tb is not linearly independent from the other vectors: O × Tb = −(2 1 1) + 2(2 2

3 2). Thus

B1 = {(2 1 1), (2 2
3 2)}. In the second iteration, we compute (2 2

3 2) × Ta = (2 2
3 2) and (2 2

3 2) × Tb = (2 2
3 2) and thus

B2 = {(2 1 1), (2 2
3 2)} that is equal to B1.

The functionals represented by vectors in B1 are a basis of (≈L)o . As an example, let us check that x1 ≈L 3
2 x2 + 1

2 x3. To
this purpose, note that the difference vector x1 − 3

2 x2 − 1
2 x3 annihilates B1, that is⎡

⎣
⎛
⎝ 1

− 3
2

− 1
2

⎞
⎠ , u

⎤
⎦= 0

for each u ∈ B1, which is equivalent to x1 ≈L 3
2 x2 + 1

2 x3.

It is quite easy to give an upper bound on the cost of the backward algorithm, in terms of the number of required
elementary operations, that is sum and product operations in the underlying field.

A first, crude analysis is as follows. Let n be the dimension of V . Each time we join a new vector v = Ψ × Ta to the
basis B , we have a cost of O (n2) for vector–matrix multiplication, plus a cost of O (n3) for checking linear independence of
v from B , for a predominant cost of O (n3). Since the operation of joining a vector to the basis cannot be done more than
n times, we have a global cost of O (n4).

In fact, this complexity can be improved if we maintain the vectors in the basis B in canonical echelon form: this means
that, as columns, they can be arranged to form a matrix that can be augmented so as to become a lower triangular matrix
with 1 on the main diagonal (in other words, the first nonzero entry from the top of any column is 1 and lies below
the first nonzero entry of the column on its left). Checking that any vector v is linearly independent from B can be done
solving a system of n equations with k unknowns, where k is the current cardinality of B: exploiting the echelon canonical
form of B and using Gaussian elimination, this costs O (kn) operations. Moreover, in case v is linearly independent from B ,
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we can compute a new vector v ′ such that span(B ∪ {v ′}) = span(B ∪ {v}) and B ∪ {v ′} is still in canonical echelon form:
this v ′ , rather than v , is therefore joined to B . Using elementary linear algebra (see e.g. [36]), the computation of v ′ can be
done using again O (kn) operations. This modification takes the overall complexity of the algorithm to O (n3). This matches
the complexity of Schützenberger’s original minimisation algorithm, as analysed e.g. by Sakarovitch in [10, Chapter 4]. This
algorithm can also be used for deciding equality between two recognisable formal power series.

4.3. The final sequence and the forward algorithm

The theory of coalgebras also provides a way of constructing final coalgebras by means of final sequences (often referred
to in the literature as terminal sequences) [4]. Many important algorithms for computing behavioural equivalences (such
as [22]) can be abstractly described in terms of final sequences.

In this section, we describe the relationship between the forward algorithm (in Proposition 7) and the final sequence of
the functor L. The latter is the cochain

1 !←− L1 L!←− L21 L2!←−− · · ·
where Ln+11 is L ◦ (Ln1), L01 = 1 is the final vector space {0}, and ! is the unique morphism from L1 to 1.

Let A∗
n be the set of all words w ∈ A∗ with length smaller than n. For each n, Ln1 is isomorphic to KA∗

n , i.e., the space
of functions from A∗

n to K. Indeed, for n = 1, L1 is by definition K × 1A = K that is isomorphic to the space of functions
from A∗

1 = {ε} to K; and for n + 1, each 〈k, σ 〉 ∈ K × Ln(1)A = Ln+11 can be seen as a function A∗
n+1 → K mapping ε into

k and aw (for a ∈ A and w ∈ A∗
n) into σ(a)(w).

For σ : A∗
m → K and n � m, the n-restriction of σ is σ � n : A∗

n → K defined as σ , but in a restricted domain. The mor-
phism Ln! : Ln+11 → Ln1 maps each σ into σ � n.

The limit of this cochain is KA∗
together with the maps ζn : KA∗ → Ln1 that assign to each weighted language σ its

n-restriction σ � n.

KA∗
ζ2ζ1ζ0

1 L1
! L21

L! . . .L2!

Every L-coalgebra (V , 〈o, t〉) defines a cone !n : V → Ln1 as follows:

• !0 : V → 1 is the unique morphism to the final vector space 1,
• !n+1 : V → Ln+11 = L(!n) ◦ 〈o, t〉.

The latter can be more concretely defined for all v ∈ V and w ∈ KA∗
n+1 as

!n+1(v)(w) =
{

o(v), if w = ε;
!n(t(v)(a))(w ′), if w = aw ′.

Note that the final morphism �−�L
V : V → KA∗

(mapping each v ∈ V in the language that it recognises) is the unique
function such that for all n, ζn ◦ �−�L

V =!n .

KA∗
ζ2ζ1ζ0

1 L1
! L21

L! . . .L2!

V

�−�L
V

!2!1!0

Recall that the L-behavioural equivalence on (V , 〈o, t〉) is the kernel of �−�L
V . The forward algorithm computes it, by

iteratively computing the kernel of the morphisms !n .

Proposition 8. Let (V , 〈o, t〉) be an lwa. Let Rn be the relation computed by the forward algorithm (Proposition 7). Let !n : V → Ln1
be the morphisms described above. Then for all natural numbers n, Rn = ker(!n+1).

Proof. First of all, note that the kernel of !0 : V → 1 is the whole V . The kernel of !n+1 is the space composed of those
v ∈ V such that !n+1(v)(w) = 0 for all the words w ∈ A∗

n+1, i.e.,

ker
(!n+1)= {v ∈ V

∣∣ o(v) = 0 and ∀a ∈ A, t(v)(a) ∈ ker
(!n)}.

By induction on n, we prove that ker(!n+1) = Rn .
For n = 0, note that ker(!1) = {v ∈ V | o(v) = 0 and ∀a ∈ A, t(v)(a) ∈ ker(!0)}. Since ker(!0) = V , ker(!1) = {v ∈ V |

o(v) = 0} = R0.
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As induction hypothesis suppose that ker(!n) = Rn−1. Then ker(!n+1) = {v ∈ V | o(v) = 0 and ∀a ∈ A, t(v)(a) ∈
Rn−1} = Rn . �

This result can be seen as an alternative proof of the soundness of the forward algorithm. Indeed, if R j is the result of the
algorithm, for all k � j, Rk = R j , i.e., ker(!k) = ker(! j). Thus R j =⋂n ker(!n) and, by definition of !n ,

⋂
n ker(!n) = ker(�−�L

V ).

5. Weighted languages and rationality

We recall from Section 3 that a linear weighted automaton (lwa) is a coalgebra for the functor L = K × −A , i.e., it
consists of a vector space V and a linear map 〈o, t〉 : V → K × V A . We saw in Theorem 2 that the final homomorphism�−�L

V : V → KA∗

maps every vector v ∈ V to the weighted language �v �L
V that is accepted by v . Moreover, the kernel of this morphism is

weighted language equivalence (≈L) that, when V is finite dimension, can be computed via the linear partition-refinement
algorithm (shown in Section 4).

The languages in KA∗
that are accepted by lwa with finite dimension state spaces are called rational weighted lan-

guages (which are also known as rational formal power series) and they can be syntactically represented by a language of
expressions [38,33].

In this section, we shall directly characterise �−�L
V by showing the expression of �v �L

V for each v ∈ V (Theorem 5). Then
we shall employ this characterisation for computing ≈L .

We will first treat the special case of lwa’s over a one letter alphabet |A| = 1. Next we will show how to treat the
general case of an arbitrary (finite) alphabet.

We note that for the case of |A| = 1, the functor L is isomorphic to

L(V ) = K × V A ∼= K × V .

Moreover, the final L-coalgebra is isomorphic to the set of streams over the field K:

KA∗ ∼= Kω.

Therefore we shall proceed by recalling from [35] the basics of stream calculus and linear stream differential equations,
in Sections 5.1 and 5.2. Next we shall characterise the final homomorphism, for the case |A| = 1, in Section 5.3. Building
on [33], we shall finally generalise these results for finite alphabets, in Section 5.4.

5.1. Recalling the basics of stream calculus

We define the set of streams over the field K by

Kω = {σ | σ : N → K}
(where N is the set of natural numbers).

We often denote elements σ ∈ Kω by σ = (σ (0),σ (1),σ (2), . . .). We define the stream derivative of a stream σ by
σ ′ = (σ (1),σ (2),σ (3), . . .), and the initial value of σ by σ(0). This definition of initial value and derivative of streams forms
the basis for a calculus of streams, in close analogy to classical calculus in analysis. Below we present some of its basics;
we refer the reader to [34] for further details and motivations.

For k ∈ K, we define the constant stream

[k] = (k,0,0,0, . . .)

which we often denote again by k. Another constant stream is

X = (0,1,0,0,0, . . .).

For σ ,τ ∈ Kω and n ∈ ω, the operations of sum and (convolution) product are given by

(σ + τ )(n) = σ(n) + τ (n), (σ × τ )(n) =
n∑

i=0

σ(i) · τ (n − i)

(where, as usual · denotes product of K).
We call a stream π ∈ Kω polynomial if there are n � 0 and ai ∈ K such that

π = a0 + a1X + a2X 2 + · · · + anX n = (a0,a1,a2, . . . ,an,0,0,0, . . .)

where we write aiX i for [ai] × X i with X i the i-fold product of X with itself.
A stream σ with σ(0) �= 0 has a (unique) multiplicative inverse σ−1 in Kω , satisfying

σ−1 × σ = [1].
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As usual, we shall often write 1/σ for σ−1 and σ/τ for σ ×τ−1. Note that the initial value of the sum, product and inverse
of streams is given by the sum, product and inverse of their initial values.

We call a stream ρ ∈ Kω rational if it is the quotient ρ = σ/τ of two polynomial streams σ and τ with τ (0) �= 0.
One can compute a stream from its initial value and derivative by the so-called fundamental theorem of stream calcu-

lus [34]: for all σ ∈ Kω ,

σ = σ(0) + (X × σ ′) (4)

(writing σ(0) for [σ(0)]).
The fundamental theorem of stream calculus allows us to solve stream differential equations such as

σ ′ = 3 × σ , σ (0) = 1

by computing σ = σ(0) + (X × σ ′) = 1 + (X × 3 × σ), which leads to the solution

σ = 1/(1 − 3X ) = (1,3,32,33, . . .
)
.

5.2. Solving linear systems of stream differential equations

Using some elementary linear algebra notation (matrices and vectors), we next show how to solve linear systems of
stream differential equations. For notational convenience, we shall deal with linear systems of dimension 2, which can be
straightforwardly generalised to systems of higher dimensions. They are given by the following data:(

σ
τ

)′
= M ×

(
σ
τ

)
,

(
σ
τ

)
(0) = N (5)

where M is a 2 × 2-matrix and N is a 2 × 1-matrix over K:

M =
(

m11 m12
m21 m22

)
, N =

(
n1
n2

)

for mij,ni ∈ K. The above notation is really just a shorthand for the following system of two stream differential equations:

σ ′ = (m11 × σ) + (m12 × τ ), σ (0) = n1,

τ ′ = (m21 × σ) + (m22 × τ ), τ (0) = n2.

We can solve such a system of equations by using twice the fundamental theorem of stream calculus (Eq. (4) above), once
for σ and once for τ :

σ = σ(0) + (X × σ ′),
τ = τ (0) + (X × τ ′).

In matrix notation, the fundamental theorem looks like(
σ
τ

)
=
(

σ
τ

)
(0) + X ×

(
σ
τ

)′
.

Next we can solve our linear system (5) above by calculating as follows:(
σ
τ

)
=
(

σ
τ

)
(0) + X ×

(
σ
τ

)′
= N + X × M ×

(
σ
τ

)
.

This leads to(
I − (X × M)

)(σ
τ

)
= N

where I and X × M are given by

I =
(

1 0
0 1

)
, X × M =

(
m11 × X m12 × X
m21 × X m22 × X

)
.

Finally, we can express the unique solution of our linear system of stream differential equations as follows:(
σ
τ

)
= (I − (X × M)

)−1 × N.



Author's personal copy

F. Bonchi et al. / Information and Computation 211 (2012) 77–105 97

The advantage of the matrix notations above now becomes clear: we can compute the inverse of the matrix

(
I − (X × M)

)=
(

1 − (m11 × X ) −(m12 × X )

−(m21 × X ) 1 − (m22 × X )

)

whose values are simple polynomial streams, by standard linear algebra.
Let us look at an example. For

M =
(

0 1
−1 2

)
, N =

(
1
2

)

our linear system of stream differential equations (5) has the following solution:(
σ
τ

)
= (I − (X × M)

)−1 × N

=
(

1 −X
X 1 − 2X

)−1

×
(

1
2

)

=
( 1−2X

(1−X )2
X

(1−X )2

−X
(1−X )2

1
(1−X )2

)
×
(

1
2

)

=
( 1

(1−X )2

2−X
(1−X )2

)
.

We note that the solutions of linear systems of stream differential equations always consist of rational streams.

5.3. Characterising the final morphism: |A| = 1

It is easy to see that when |A| = 1, the final coalgebra for the functor L is (Kω, 〈(−)(0), (−)′〉) where (−)(0) : Kω → K
and (−)′ : Kω → Kω map each stream σ to its initial value σ(0) and to its stream derivative σ ′ . Let (K2, 〈o, t〉) be an lwa,
with linear maps o : K2 → K and t : K2 → K2 that are represented by a 1 × 2-matrix O and by a 2 × 2-matrix T . We will
now show how the final homomorphism

K2

〈o,t〉

�−�L
K2

Kω

〈(−)(0),(−)′〉

K × K2
idK×�−�L

K2

K × Kω

can be characterised in terms of rational streams. To this end, we define

σ =
�(

1
0

)�L

K2
, τ =

�(
0
1

)�L

K2
.

It follows from the commutativity of the diagram above that

σ ′ =
�(

T

(
1
0

))�L

K2
, σ (0) = O

(
1
0

)
,

τ ′ =
�(

T

(
0
1

))�L

K2
, τ (0) = O

(
0
1

)

and this can be concisely expressed by the following system:(
σ
τ

)′
= tT ×

(
σ
τ

)
,

(
σ
τ

)
(0) = t O

(where the superscript t indicates matrix transpose). These identities present σ and τ as the solution of a linear system of
stream differential equations. By the results from Section 5.2, it follows that(

σ
τ

)
= (I − (X × tT

))−1 × t O
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which leads to the following general formula for �−�L
K2 :�(

k1
k2

)�L

K2
= (k1 k2 ) × (I − (X × tT

))−1 × t O .

For instance, if

T =
(

0 −1
1 2

)
, O = (1 2 )

we find, using the example with M and N from Section 5.2, that�(
k1
k2

)�L

K2
= (k1 k2 ) × (I − (X × T t))−1 × O t

= (k1 k2 ) × (I − (X × M)
)−1 × N

= (k1 k2 ) ×
( 1

(1−X )2

2−X
(1−X )2

)

= (k1 + 2k2) − k2X
(1 − X )2

.

Note that the above expression fully characterises �−�L
K2 , in the sense that it maps each v ∈ K2 in the corresponding

rational stream.

Computing ≈L . We can employ the above characterisation in order to compute ≈L on (K2, 〈o, t〉). We use the fact that the
final homomorphism identifies precisely all equivalent states:

(
x1
x2

)
≈L

(
y1
y2

)
⇐⇒

�(
x1
x2

)�L

K2
=

�(
y1
y2

)�L

K2

⇐⇒
�(

x1 − y1
x2 − y2

)�L

K2
= 0

where the 0 on the right is the stream [0] = (0,0,0, . . .). The kernel of the final homomorphism can now be computed
using our characterisation above: for all k1,k2 ∈ K,�(

k1
k2

)�L

K2
= 0 ⇐⇒ (k1 + 2k2) − k2X

(1 − X )2
= 0

⇐⇒ (k1 + 2k2) − k2X = 0

⇐⇒ k1 = 0 and k2 = 0.

As a consequence, we find, for the present example:(
x1
x2

)
≈L

(
y1
y2

)
⇐⇒

(
x1
x2

)
=
(

y1
y2

)
.

5.4. Rational weighted languages

All the results presented above allow to characterise the final homomorphism for weighted automata over an alphabet
with a single letter. These results can be generalised in order to deal with alphabets of size greater than one.

Let A be an arbitrary finite alphabet. Recall from Section 3.3 that the final L-coalgebra is (KA∗
, 〈ε,d〉) where for all

σ ∈ KA∗
and a ∈ A,

ε(σ ) = σ(ε), d(σ )(a) = σa

and σa denotes the a-derivatives of the language σ .
The calculus presented in the previous section for one-variable power series (streams) can be generalised for multiple

variable series [33], which we will recall next.
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There are unique operators on series satisfying the following equations. For all k ∈ K, a,b ∈ A and σ ,τ ∈ KA∗
,

Derivative Initial value Name

ka = 0 k(ε) = k Constant
(Xa)a = 1, (Xa)b = 0 (b �= a) Xa(ε) = 0 Variable
(σ + τ )a = σa + τa (σ + τ )(ε) = σ(ε) + τ (ε) Sum
(σ × τ )a = (σa × τ ) + (σ (ε) × τa) (σ × τ )(ε) = σ(ε) × τ (ε) Convolution product
(σ−1)a = −(σ (ε)−1 × σa) × σ−1 (σ−1)(ε) = σ(ε)−1, if σ(ε) �= 0 Inverse

A weighted language is rational if it can be constructed from finitely many constants k ∈ K and variables Xa , by means
of the operators of sum, product, and inverse. Rational languages constitute the class of languages that are recognised by
finite-dimensional weighted automata.

As for streams, one can compute a series from its initial value and derivatives by the so-called fundamental theorem [33].
That is, for all weighted languages σ ∈ KA∗

:

σ = σ(ε) +
∑
a∈A

Xa × σa. (6)

The fundamental theorem allows us to solve equations, similar to what happened above for streams. As an example, take
A = {a,b} (weighted languages over two symbols coincide with infinite binary trees), and the following equations

σa = 3 × σ , σb = 3 × σ , σ (ε) = 1.

Applying the fundamental theorem we reason as follows:

σ = σ(ε) + (Xa × σa) + (Xb × σb)

⇔ σ = 1 + (3Xa × σ) + (3Xb × σ)

⇔ (1 − 3Xa − 3Xb)σ = 1

which leads to the solution σ = (1 − 3Xa − 3Xb)
−1, the tree depicted in the following picture.

Note that the above language is exactly the one recognised by the automaton in Fig. 1. It is also interesting to remark
the strong similarity with streams: the formula for the stream (1,3,9, . . .) is (1 − 3X )−1.

Now that we know how to compute the solution of a single equation, moving to systems of equations is precisely as for
streams. Again, for notational convenience, we shall exemplify with linear systems of dimension 2. The goal is to solve(

σ
τ

)
a
= Ma ×

(
σ
τ

)
,

(
σ
τ

)
(ε) = N

where, for each a ∈ A, Ma is a 2 × 2-matrix and N is a 2 × 1-matrix over K.
We now solve this system by calculating as follows (similar to the stream case), now using the fundamental theorem for

weighted languages, given in Eq. (6):(
σ
τ

)
=
(

σ
τ

)
(ε) +

∑
a∈A

Xa ×
(

σ
τ

)
a

= N +
∑
a∈A

Xa × Ma ×
(

σ
τ

)
.

This leads to(
I −

∑
a∈A

(Xa × Ma)

)(
σ
τ

)
= N

where I and Xa × Ma are as before.
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Finally, we can express the unique solution of our linear system as follows:(
σ
τ

)
=
(

I −
∑
a∈A

(Xa × Ma)

)−1

× N.

Hence, the only difference with the stream case is that instead of computing the inverse of the matrix I − (X × M) one
needs to compute the inverse of I −∑a∈A(Xa × M).

Some remarks on computing the inverse of I −∑a∈A(Xa × M) are now in order. Convolution product on power series is
not commutative as soon as A has more than one element (e.g., Xa ×Xb �= Xb ×Xa). Thus, the matrix above is a matrix with
entries stemming from a non-commutative ring. Traditional methods (Gaussian elimination, Cramer’s rule, . . .) to compute
the inverse of matrices are not applicable and thus one needs to resort to other (more complicated) techniques such as
quasi-determinants [14] or generalised LDU decomposition [9].

A function to compute the inverse of a matrix with non-commutative entries is provided in the Mathematica [26] package
NCAlgebra [30]. The algorithm implemented in the package is directly base in LDU decomposition [9]. The matrices we
show below were all obtained using the aforementioned package.

For instance, for A = {a,b, c}, if

Ma = Mc =
(

2 0
0 0

)
, Mb =

(
0 0.5
0 0.5

)
, N = (1 1 ) ,

then

I − Xa × Ma − Xb × Mb − Xc × Mc =
(

1 − 2Xa − 2Xc −0.5Xb
0 1 − 0.5Xb

)

and

(I − Xa × Ma − Xb × Mb − Xc × Mc)
−1 =

( 1
1−2Xa−2Xc

0.5 1
1−2Xa−2Xc

Xb
1

1−0.5Xb

0 1 − 0.5Xb

)
.

The final homomorphism �−�L
K2 is represented in the following diagram

K2

〈o,t〉

�−�L
K2

KA∗

〈ε,d〉

K × K2A

idK×�−�L
K2A

K × KA∗

where, as usual, o and t = {ta : K2 → K2}a∈A are linear mappings represented by the 1 × 2-row vector O and the 2 × 2-
matrices Ta , respectively.

We will show how the final homomorphism �−�L
K2 can be characterised in terms of rational weighted languages. To this

end, we again define

σ =
�(

1
0

)�L

K2
, τ =

�(
0
1

)�L

K2
.

It follows from the commutativity of the diagram above that

σa =
�(

Ta

(
1
0

))�L

K2
, σ (ε) = O

(
1
0

)
,

τa =
�(

Ta

(
0
1

))�L

K2
, τ (ε) = O

(
0
1

)

and this can be concisely expressed by the following system:(
σ
τ

)
a
= tTa ×

(
σ
τ

)
,

(
σ
τ

)
(ε) = t O .

It then follows that(
σ
τ

)
=
(

I −
(∑

a∈A

Xa × tTa

))−1

× t O
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which leads to the following general formula for �−�L
K2 :�(

k1
k2

)�L

K2
= (k1 k2 ) ×

(
I −

(∑
a∈A

Xa × tTa

))−1

× t O .

For instance, for A = {a,b, c} and

Ta = Tc =
(

2 0
0 0

)
, Tb =

(
0 0

0.5 0.5

)
, O = ( 1 1 )

we find, using the example above, that�(
k1
k2

)�L

K2
= (k1 k2 ) ×

(∑
a∈A

Xa × Ta
t
)−1

× O t

= (k1 k2 ) ×
(∑

a∈A

Xa × Ta

)−1

× N

= (k1 k2 ) ×
( 1

1−2Xa−2Xc
+ 0.5 1

1−2Xa−2Xc
Xb

1
1−0.5Xb

1
(1−0.5Xb)

)

= k1

1 − 2Xa − 2Xc
+ 0.5k1

1

1 − 2Xa − 2Xc
Xb

1

1 − 0.5Xb
+ k2

(1 − 0.5Xb)
.

By generalising the above arguments from K2 to any finite dimension vector space, we obtain the following theorem.

Theorem 5. Let (V , 〈o, t〉) be a linear weighted automaton with V finite dimension. Then, for all v ∈ V

�v �L
V = t v ×

(
I −

(∑
a∈A

Xa × tTa

))−1

× t O .

For an example with a three-dimensional state space, we consider the lwa corresponding to the automaton (V , 〈o, t〉) in
Fig. 5: �(k1

k2
k3

)	L

V

= (k1 k2 k3 ) ×
(

I −
(∑

a∈A

Xa × tTa

))−1

× t O

= (k1 k2 k3 ) ×
⎛
⎝I −

⎛
⎝Xa + Xb 0 0

Xa
3 0 Xb

3
Xa 3Xb 0

⎞
⎠
⎞
⎠

−1

×
(2

1
1

)

= (k1 k2 k3 ) ×
⎛
⎝1 − Xa − Xb 0 0

− Xa
3 1 − Xb

3
−Xa −3Xb 1

⎞
⎠

−1

×
(2

1
1

)
.

The inverse of the matrix in the middle is

M =

⎛
⎜⎜⎝

1
1−Xa−Xb

0 0

( 1
3 + Xb

3
1

1−X 2
b
(Xb + 1))Xa

1
1−Xa−Xb

1 + Xb
1

1−X 2
b

Xb
Xb
3

1
1−X 2

b

( 1
1−X 2

b
)(Xa + XbXa)

1
1−Xa−Xb

3 1
1−X 2

b
Xb

1
1−X 2

b

⎞
⎟⎟⎠

and

M ×
(2

1
1

)
=

⎛
⎜⎜⎝

2
1−Xa−Xb

( 1
3 + Xb

3
1

1−X 2
b
(Xb + 1))Xa

2
1−Xa−Xb

+ 1 + Xb
1

1−X 2
b

Xb + Xb
3

1
1−X 2

b

( 1
1−X 2

b
)(Xa + XbXa)

2
1−Xa−Xb

+ 3 1
1−X 2

b
Xb + 1

1−X 2
b

⎞
⎟⎟⎠=

(
ρ1
ρ2
ρ3

)
.
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Summarising�(k1
k2
k3

)	L

V

= (k1 k2 k3 ) ×
(

ρ1
ρ2
ρ3

)
. (7)

Note that the above expression fully characterises �−�L
V , in the sense that it maps each v ∈ V in the rational weighted

language that it accepts.

Computing ≈L . Now, we have a rational expression σ = k1ρ1 +k2ρ2 +k3ρ3 characterising the final homomorphism and we
would like to calculate for which values of k1, k2 and k3 this expression equals 0. As we have shown before, when |A| = 1,
this can be done by syntactically manipulating the rational expression in a standard way. In the general case, because of the
non-commutativity of the convolution product, this is not trivial at all.

Here, we choose to adopt the following approach: first we compute “some” derivatives σa, σb, σaa, σab, . . . and then we
check for which k1, k2 and k3 the initial values σ(ε),σa(ε),σb(ε),σaa(ε),σab(ε), . . . are equal to 0. The following lemma
(proved in [6,33]) ensures that we have to compute only finitely many derivatives.

Lemma 5. Rational weighted languages have finitely many linearly independent derivatives.

In our example, we start by taking the initial value of the expression σ itself obtaining σ(ε) = 2k1 + k2 + k3. Then we
take the a- and b-derivatives which give, respectively, the expressions

σa = k1(ρ1)a + k2(ρ2)a + k3(ρ3)a,

(
ρ1
ρ2
ρ3

)
a

=
⎛
⎜⎝

2
1−Xa−Xb

1
3

2
1−Xa−Xb

2
1−Xa−Xb

⎞
⎟⎠ (8)

and

σb = k1(ρ1)b + k2(ρ2)b + k3(ρ3)b,

(
ρ1
ρ2
ρ3

)
b

=

⎛
⎜⎜⎝

2
1−Xa−Xb

( 1
3

1
1−X 2

b
(Xb + 1))Xa

2
1−Xa−Xb

+ 1
1−X 2

b
Xb + 1

3
1

1−X 2
b

Xb(
1

1−X 2
b
)(Xa + XbXa)

2
1−Xa−Xb

+ Xa
1

1−Xa−Xb
+ 3Xb

1
1−X 2

b
Xb + 3 + Xb

1
1−X 2

b

⎞
⎟⎟⎠

which have initial values σa(ε) = 2k1 + 2
3 k2 + 2k3 and σb(ε) = 2k1 + 1

3 k2 + 3k3.
Now, note that the a-derivative, that is the rational expression (8), will now always generate the same derivatives for

a and b (since the derivatives of 2
1−Xa−Xb

are the expression itself again; intuitively, this expression represents an infinite
binary tree with 2’s in every node and hence has left and right subtrees equal to the whole tree). For the b-derivative, we
take another level of derivatives and obtain, respectively,

σba = k1(ρ1)ba + k2(ρ2)ba + k3(ρ3)ba,

(
ρ1
ρ2
ρ3

)
ba

=
⎛
⎜⎝

2
1−Xa−Xb

1
3

2
1−Xa−Xb

2
1−Xa−Xb

⎞
⎟⎠=

(
ρ1
ρ2
ρ3

)
a

and

σbb = k1(ρ1)bb + k2(ρ2)bb + k3(ρ3)bb,

(
ρ1
ρ2
ρ3

)
bb

=

⎛
⎜⎜⎝

2
1−Xa−Xb

( 1
3 Xb

1
1−X 2

b
(Xb + 1) + 1

3 )Xa
2

1−Xa−Xb
+ Xb

1
1−X 2

b
Xb + 1 + 1

3 Xb
1

1−X 2
b

( 1
1−X 2

b
)(Xa + XbXa)

2
1−Xa−Xb

+ 3 1
1−X 2

b
Xb + 1

1−X 2
b

⎞
⎟⎟⎠=

(
ρ1
ρ2
ρ3

)
.
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The a-derivative coincides with (8) and the b-derivative coincides with the original expression σ . Therefore, we have found
the system of equations we need to solve:

{
σ(ε) = 0,

σa(ε) = 0,

σb(ε) = 0
⇔

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2k1 + k2 + k3 = 0,

2k1 + 2

3
k2 + 2k3 = 0,

2k1 + 1

3
k2 + 3k3 = 0.

Solving it yields k1 = −2k3 and k2 = 3k3. Hence, the kernel of the final homomorphism is the space spanned by the vector(−2
3
1

)

which coincides with what was computed by the forward algorithm in Section 4.1.

6. Discussion

In this paper we proposed a novel coalgebraic perspective on weighted automata and their behavioural equivalences.
Weighted automata are W-coalgebras, for a functor W on Set, but they can also be regarded as linear weighted automata,
that are L-coalgebras for a functor L on Vect. The behavioural equivalence induced by W coincides with weighted bisimi-
larity, while the equivalence induced by L (≈L) with weighted language equivalence.

Weighted languages (i.e. formal power series) form the vector space KA∗
that carries the final L-coalgebra: for each

linear weighted automata (V , 〈o, t〉), the unique L-morphism �−�L
V into the final coalgebra maps each vector v ∈ V into

the weighted language in KA∗
that v accepts. The unique morphism �−�L

V is a linear map and its kernel coincides with ≈L
that, when V is finite dimension, can be computed in three different ways. It is important to remark here that the linearity
of �−�L

V is the key ingredient (in all the three approaches) to finitely compute the equivalence on an infinite state space
(represented as a vector space of finite dimension).

Theorem 5 provides an explicit characterisation of �−�L
V by assigning a syntactic expression denoting a rational weighted

language to each vector v ∈ V . This characterisation can be employed for computing ≈L but, in general terms, it seems
to be inconvenient to be implemented in an automatic prover. The backward algorithm, instead, is very efficient but its
presentation is a bit complex since it requires dual spaces and transpose maps. The forward algorithm is easier to explain
and we have shown it is closely related to the construction of the final coalgebra.

Our coalgebraic perspective has also extended the notions of weighted bisimulation and linear weighted bisimulation
(that were introduced in [8] and [7], respectively) to automata having infinite dimension state space. For these automata,
bisimilarity and language equivalence are not computable but still these different kinds of bisimulations might be useful as
proof techniques.

From fields to semirings. Weighted automata are usually defined on semirings rather than fields [29]. We discuss now that
part of the results presented in this paper can be extended to semirings.

Semirings can be though of as a generalisation of fields, where the product is not necessarily commutative and inverses
of sum and product are not required to exist. Semimodules on a semiring generalise the notion of vector spaces on a field.
Formally, a semiring S consists of a commutative monoid (S,+,0) and a monoid (S, ·,1) such that the product distributes
over sum (namely, s1 · (s2 + s3) = (s1 · s2) + (s1 · s3) and (s1 + s2) · s3 = (s1 · s3) + (s2 · s3)) and 0 annihilates with respect
to product (0 · s = 0 = s · 0). A semimodule on S is a commutative monoid (V ,+,0) equipped with an external action
(·) : S × V → V such that for all s, s1, s2 ∈ S and v, v1, v2 ∈ V (a) s · (v1 + v2) = (s · v1) + (s · v2), (b) (s1 + s2) · v =
(s1 · v) + (s2 · v) and (c) (s1 · s2) · v = s1 · (s2 · v). Linear maps between semimodules are defined in the same way as linear
maps between vector spaces, namely, as functions preserving + and (·). Semimodules and linear maps form the category
SMod which has product (V × W ) and exponent (V A ) defined as in Vect. Given a set X , a semimodule V and a function
f : X → V , the free semimodule generated by X (denoted by SX

ω) and the linearisation of f (denoted by f �) are defined as
for vector spaces.

With these ingredients, we can extend all the results of Sections 2 and 3 (apart from Section 3.4) to semirings. First of all,
we would define the semiring valuation functor S−

ω : Set → Set in the same way as the field valuation functor K−
ω : Set → Set

(Definition 2) and we would model weighted automata using the functor W = S × (S−
ω)A : Set → Set. In this way, W-

coalgebras are in one to one correspondence with weighted automata on S and all the proofs and results of Section 2
are still valid. Then, linear weighted automata (Definition 3) would be defined as coalgebras on SMod rather than on Vect.
More precisely, coalgebras for the functor L = S × −A : SMod → SMod. Given an S-weighted automata (X, 〈o, t〉) we can
build the linear weighted automata (SX

ω, 〈o�, t�〉), where SX
ω is the free semimodule generated by X and o� and t� are the

linearisations of o and t . It is easy to see that all the proofs and results of Section 3.3 are still valid.
The notion of linear relation (Definition 4) relies on the existence of minus operator “−” (the inverse of sum) and thus

the results of Section 3.4 cannot be naively extended to generic semirings. The forward algorithm could be extended (by
exploiting its relationship with the construction of final coalgebras), but the convergence in a finite number of iterations
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might be not guaranteed. The other two procedures strongly rely on the properties of fields and vector spaces (such as
the existence of the inverse multiplicative or the dual space). Therefore, it seems challenging to extend them to the case
of a generic semiring. If S is a semifield however, then all elements have a multiplicative inverse and further connections
could be explored. An important example of semifield is the tropical semiring [19] (for which, however, weighted language
equivalence is undecidable [23]). Further, when S is a commutative ring, annihilators and transpose maps can be generalised
as operations carried out within the dual module (i.e. linear maps from an S-module to S, seen as a module) [31]. We leave
these extensions as future work.

Initial weight. Besides the output weight o and the transition relation t , weighted automata are often equipped also with
a vector i, called initial weight [29]. Initial weights cannot be modelled in our coalgebraic approach and, more generally,
coalgebras are usually considered not suitable to model “initial states”. However, instead of the language of a weighted
automaton (X, 〈t,o, i〉) as in [29] we can equivalently consider the language recognised by vector i of the L-coalgebra
(KX

ω, 〈o�, t�〉). Unfortunately, this is possible for L-coalgebras but not for W-coalgebras, since the state spaces of the formers
are vector spaces, while those of the latters are just sets.

Related work. Our approach is closely related to the work presented in [8] whose weighted automata are equipped with
initial weights. When restricting the automata in [8] to those having a single initial state (i.e., the initial weight vector
contains one 1 and the others are 0s), these closely correspond to W-coalgebras: “forward bisimilarity” of [8] coincides with
the coalgebraic W-behavioural equivalence, “functional simulations” are W-homomorphisms and “aggregated automata” for
a bisimulation R are the W-coalgebras (X/R, 〈oX/R , t X/R〉) of Section 2.

In [8], there are also two notions of “backward bisimulation”, but none of them is related to the equivalences considered
in this work. In particular, they are not related to the backward algorithm, since the relations computed by such algorithm
are linear and they approximate the complement of language equivalence. Moreover, “backward bisimulation” can be defined
in any possible semiring while, as discussed above, the backward algorithm is possible only in some more specific cases.

Computing ≈L for finite-dimensional linear weighted automata implies the decidability of language equivalence for
finite state weighted automata over a field. This was already observed by Schützenberger [38] using a cubic reduction
algorithm [6]. By constructing a finite sequence of simulations, decidability of language equivalence for finite state weighted
automata over a field is studied in [5]. More recently, this decidability result has been extended to automata with weights
over a large class of semiring [12].

In this paper we have shown that an advantage of linear weighted automata is the existence of minimisation algorithms
for them. Minimisation algorithms have been extensively studied in the context of deterministic finite state weighted au-
tomata [27–29]. While minimisation is not well-defined for automata with weights on a general semiring, a simple and
practical algorithm that works for all division semirings, and thus also fields, is given in [11]. When considering only au-
tomata with weights over fields, our algorithms are more general, because, they can be used to minimise a non-necessarily
deterministic finite state weighted automaton by first determinising it to a linear weighted one.
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