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Abstract

Haskell’s type system with multi-parameter constructor classes and
functional dependencies allows static (compile-time) computations
to be expressed by logic programming on the level of types. This
emergent capability has been exploited for instance to model arbi-
trary-length tuples (heterogeneous lists), extensible records, func-
tions with variable length argument lists, and (homogenous) lists of
statically fixed length (vectors).

We explain how type-level programming can be exploited to de-
fine a strongly-typed model of relational databases and operations
on them. In particular, we present a strongly typed embedding of
a significant subset of SQL in Haskell. In this model, meta-data is
represented by type-level entities that guard the semantic correct-
ness of database operations at compile time.

Apart from the standard relational database operations, such as
selection and join, we model functional dependencies (among ta-
ble attributes), normal forms, and operations for database transfor-
mation. We show how functional dependency information can be
represented at the type level, and can be transported through opera-
tions. This means that type inference statically computes functional
dependencies on the result from those on the arguments.

Our model shows that Haskell can be used to design and proto-
type typed languages for designing, programming, and transform-
ing relational databases.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; E.1 [Data Struc-
tures]: Records; H.2.1 [Database Management]: Logical design—
Data models, normal forms, Schema and subschema; H.2.3 [Data-
base Management]: Languages—Data manipulation languages,
Query languages
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1. Introduction

A database schema specifies the well-formedness of a relational
database. It tells us, for example, how many columns each table
must have and what the types of the values in each column should
be. Furthermore, some columns may be singled out as keys, some
may be allowed to take null values. Constraints can be declared for
specific columns, and foreign key constraints can be provided to
prescribe relationships between tables.

Operations on a database should preserve its well-formedness.
The responsibility for checking that they do lies ultimately with
the database management system (DBMS). Some operations are re-
jected statically by the DBMS, during query compilation. Insertion
of oversized rows, or access to non-existing columns fall into this
category. Other operations can only be rejected dynamically, during
query execution, simply because the actual content of the database
is involved in the well-formedness check. Removal of a row from
a table, for instance, might be legal only if it is currently not ref-
erenced by another row. The division of labour between static and
dynamic checking of database operations is constrained by the de-
gree of precision with which types can be assigned to operations
and their sub-expressions.

In this paper, we show that more precise types can be assigned to
database operations than is commonly done by the static checking
components of DBMSs. For instance, we will capture key meta-
data in the types of tables, and transport that information through
the operators from argument to result table types. This allows us
to assign a more precise type, for instance to the join operator
when joining on keys. Joins that are ill-formed with respect to
key information can then be rejected statically. For example, the
following (inner) joins on a table T with foreign key T.FK and a
table S with primary key S.PK may all be legal SQL:

on T.FK=S.PK
on T.FK=S.Z
on T.Z=S.PK
on T.FK=S.PK and T.FK=S.Z

select X,Y from T join S
select X,Y from T join S
select X,Y from T join S
select X,Y from T join S
But the latter three, which mis-specify the join conditions, can be
statically rejected when assigning more precise types.

But further well-formedness criteria might be in vigor for a
particular database that are not captured by the meta-data provided
in its schema. Prime examples for such criteria are the various
normal forms of relational databases that have been specified in
the literature [25, 17, 6, 9]. Such normal forms are defined in terms
of functional dependencies' between (groups of) columns that are
or are not allowed to be present [2]. We will show that functional
dependency information can be captured in types as well, and

I Below we will use functional dependencies between parameters of type
classes. These are similar, but not to be confused with functional dependen-
cies among table attributes in database theory after which they are named.



can be transported through operations. Thus, the type-checker will
infer functional dependencies on the result tables from functional
dependencies on the argument tables. For example, if we assume
T.PK is the primary key of table T, then the first of the joins above
can include additional functional dependencies in its result type,
such as:

T.PK -> S.PK S.PK -> T.FK

Furthermore, normal-form constraints can be expressed as type
constraints, and normal-form validation can be done by the type
checker.

It would be impractical to have the query compiler of a DBMS
perform type checking with such precision. The type-checking
involved would delay execution, and a user might not be present to
review inferred types or reported type errors. Rather, we envision
that stronger types can be useful in off-line situations, such as
database design, development of database application programs,
and database migration. In these situations, more type precision
will allow a more rigorous and ultimately safer approach.

Plan of the paper

Our model of relational databases is specified in Haskell, using
a technique called type-class-based programming, or type-level
programming. For self-containement, Section 2 explains the basics
of Haskell and the technique. We make essential use of the Haskell
HLIST library, which offers arbitrary-length tuples and extensible
polymorphic records with first-class labels and subtyping [14]. The
essentials of this library are introduced in the same section.

In Section 3, we present the first part of our model: a type-
ful reconstruction of statements and clauses of the SQL language.
This part of the model provides static type checking and inference
of well-formedness constraints normally specified in a schema. In
Section 4, we turn to the second part of the model, which con-
cerns functional dependencies and normal forms. In particular, we
show how a new level of operations can be defined on top of the
SQL level where functional dependency information is transported
from argument tables to results. Finally, in Section 5 we go beyond
database modeling and querying, by addressing database transfor-
mations, such as normalization and migration. Related work is dis-
cussed in Section 6 and Section 7 concludes.

2. Type-level programming

Haskell is a non-strict, higher-order, typed functional programming
language [23]. The syntax of Haskell is quite light-weight, resem-
bling mathematical notation. It employs currying, a style of nota-
tion where function application is written as juxtaposition, rather
than with parenthesized lists of comma-separated arguments, i.e.
f x y is favored over f(x,y). Functions may be applied partially
such that for example f x is equivalent to Ay — f x y.

We will introduce further Haskell-specific notations as they are
used throughout the paper, but we start with an explanation of a
language construct, a programming style, and a library of which
we will make extensive use.

2.1 Type classes

Haskell offers nominal algebraic datatypes that may be specified
for example as follows:

data Bool = True | False
data Tree a = Leaf a | Fork [Tree a)

Here [a] denotes list type construction. The datatype constructors
can be used to specify complex types, such as Tree (Tree Bool)
and the data constructors can be used in pattern matching or case
discrimination:

depth :: Tree a — Int
depth (Leaf a) =0
depth (Fork ts) = 1 + maximum (0 : (map depth ts))

Here maximum and map are standard list processing functions.

Data types for which functions with similar interface (signature)
can be defined may be grouped into a type class that declares an
overloaded function with that interface. The type variables of the
class appear in the signature of the function. For particular types,
instances of the class provide particular implementations of the
functions. For instance:

class Show a where
show :: a — String
instance Show Bool where
show True = "True"
show False = "False"
instance (Show a, Show b) = Show (a, b) where
show (a,b) =" (" H show a H "," H show b+ ")"

The second instance demonstrates how classes can be used in type
constraints to put a bound on the polymorphism of the type vari-
ables of the class. A similar type constraint occurs in the inferred
type of the show function, which is Show a = a — String.

Type classes can have more than a single type parameter:

class Convert a b | a — b where
convert::a — b

instance Show a = Convert a String where
convert = show

instance Convert String String where
convert = id

The clause | @ — b denotes a functional dependency among type
parameters (similar to, but not to be confused with functional de-
pendencies among table attributes in database theory) which de-
clares that the parameter a uniquely determines the parameter b.
This dependency is exploited for type inference by the compiler:
when type a is instantiated, the instantiation of type b is inferred.
Note also that the two instances above are overlapping in the sense
that a particular choice of types can match both instances. The com-
piler will select the most specific instance in such cases. Both multi-
parameter type-classes with functional dependencies and permis-
sion of overlapping instances go beyond the Haskell 98 language
standard, but these extensions are commonly used, supported by
compilers, and well-understood semantically [24].

2.2 Classes as type-level functions

Single-parameter type classes can be seen as predicates on types,
and multi-parameter type classes as relations between types. And
interestingly, when some subset of the parameters of a multi-
parameter type class functionally determines all the others, type
classes can be interpreted as functions on the level of types [10].
Under this interpretation, Show Bool expresses that booleans are
showable, and Convert a b is a function that computes the type b
from the type a. The computation is carried out by the type checker!
The execution model for type-level predicates and functions is sim-
ilar to that of logic programming languages, such as Prolog.

Thus, in type-level programming, the class mechanism is used
to define functions over types, rather than over values. The argu-
ments and results of these type-level functions are types that model
values, which may be termed type-level values. As an example,
consider the following model of natural numbers on the type level:

data Zero; zero = L :: Zero
data Succ n; succ = L ::n — Succn



class Nat n
instance Nat Zero
instance Nat n = Nat (Succ n)

class Add abc|ab— cwhereadd::a — b —c

instance Add Zero b b where add a b = b

instance (Add a b ¢) = Add (Succ a) b (Succ c) where
add a b = succ (add (pred a) b)

pred :: Succn — n

pred = L

The types Zero and Succ generate type-level values of the type-
level type Nat, which is a class. The class Add is a type-level
function that models addition on naturals. Its member function add,
is the equivalent on the ordinary value-level. Note the use of the
undefined value L, inhabiting any Haskell type, to create dummy
values for types on which we intend to do static computations only.

2.3 The HLIST library

Type-level programming has been exploited by Kiselyov et al. to
model arbitrary-length tuples, or heterogeneous lists* [14]. These
lists, in turn, are used to model extensible polymorphic records
with first-class labels and subtyping. We will use these lists and
records as the basis for our model of relational databases. In fact,
the authors were motivated by application to database connectivity
and already reported progress in that direction (see Section 6).
The following declarations form the basis of the library:

data HNil = HNil
data HCons el = HCons e |

class HList |
instance HList HNil
instance HList | = HList (HCons e I)

myTuple = HCons 1 (HCons True (HCons "foo" HNil))

The datatypes HNil and HCons represent empty and non-empty
heterogeneous lists, respectively. The HList class, or type-level
predicate, establishes a well-formedness condition on heteroge-
neous lists, viz. that they must be built from successive applications
of the HCons constructor, terminated with HNil. Thus, heteroge-
neous lists follow the normal cons-list construction pattern on the
type-level. The myTuple example shows that elements of various
types can be added to a list.

Records can now be modeled as heterogeneous lists of pairs of
labels and values.

myRecord
= Record (HCons (zero, "foo") (HCons (one, True) HNil))
one = succ zero

All labels of a record should be pairwise distinct on the type level,
and a type-level predicate is supplied to enforce this. Here we use
type-level naturals as labels, but other possibilities exist, as we will
show later. A datatype constructor Record is used to distinguish
lists that model records from other lists.

The library offers numerous operations on heterogeneous lists
and records of which we list a few that we use later:

class HAppend 1" I” | 11" — I” where
hAppend :: 1 — I — 1"

class HZipxy I | xy — [,] — x y where
hZip ::x —y — 1
hUnzip :: 1 — (x,y)

2We will use the terms ‘arbitrary-length tuple’ and ‘heterogeneous list’
interchangeably. They are fundamentally different from normal, ‘homoge-
nous lists’, which hold elements of a single type only.

class HasField [ r v | [ r — v where
hLookupByLabel ::1 — r — v

Here, hAppend concatenates two heterogeneous lists, the functions
hZip and hUnzip, respectively, turn two lists into a list of pairs
and vice versa, and hLookupByLabel returns the value in a record
corresponding to a given label.

Syntactic sugar is provided by infix operators and an infix type
constructor synonym, allowing prettier syntax e.g. for myRecord:

type (:x:) e [ = HCons e [
e.x.l=HConsel

l.=v=(v)
1.\.v = hLookupByLabel | v
myRecord = Record (zero .=. "foo" .. one .=. True .x. HNil)

We have extended the library with some further operations for
deleting and retrieving record values, for updating one record with
the content of another, and for modifying the value at a given label:

class DeleteMany Is r vs | Is r — vs where
deleteMany :: ls — r — vs

class LookupMany Is r vs | Is r — vs where
lookupMany :: ls — r — vs

class UpdateWith r s where
updateWith ::r — s — r

class ModifyAtLabel [vV' r ¥ |l rv' — v ' where
modifyAtLabel :: 1 — (v — V') —r — 1

These elements together are sufficient to start the construction of
our strongly typed model of relational databases.

3. The SQL layer

The Structured Query Language (SQL) [8, 1] is the most widely
used language for programming relational databases. It offers a
declarative language, based on relational algebra, that allows infor-
mation to be retrieved from and stored into tables. We will present
our model of the SQL language in two steps: representation of
databases, and operations on them.

3.1 Representation of databases

A naive representation of databases, based on heterogeneous col-
lections, could be the following:

data HList row = Table row = Table (Set row)
data TableList t = RDB t = RDB t

class TableList t
instance TableList HNil
instance (HList v, TableList t) = TableList (HCons (Table v) t)

Thus, each table in a relational database would be modeled as a set
of arbitrary-length tuples that represent its rows. A heterogeneous
list in which each element is a table (as expressed by the TableList
constraint) would constitute a relational database.

Such a representation is unsatisfactory for several reasons.
Firstly, schema information is not represented. This implies that
operations on the database may not respect the schema and can not
take advantage of it, unless separate schema information would be
fed to them. Secondly, the choice of Ser to collect the rows of a
table does not do justice to the fact that database tables are in fact
mappings from key attributes to non-key attributes.

Tables with attributes

For these reasons, we prefer a more sophisticated representation
that includes schema information and employs a Map datatype:



data HeaderFor h k v = Table h k v = Table h (Map k v)
class HeaderFor hkv | h — kv
instance (
AttributesFor a k, AttributesFor b v,
HAppend a b ab, NoRepeats ab, Ord k
) = HeaderFor (a,b) kv

Thus, each table contains header information 4 and a map from
key values to non-key values, each with types dictated by that
header. The well-formedness of the header and the correspondence
between the header and the value types is guarded by the constraint
HeaderFor. It states that a header contains attributes for both the
key values and the non-key values, and that attributes are not
allowed to be repeated. The dependency 4 — k v indicates that
the key and value types of the map inside a table are uniquely
determined by its header.

To represent attributes, we define the following datatype and
accompanying constraint:

data Attribute t name
attr = L :: Attribute t name

class AstributesFor av | a — v

instance AttributesFor HNil HNil

instance AttributesFor a v

= AttributesFor (HCons (Attribute t name) a) (HCons t v)

The type argument ¢ specifies the column type for that attribute.
The type argument name allows us to make attributes with iden-
tical column types distinguishable. Note that ¢ and name are so-
called phantom type arguments, in the sense that they occur on the
left-hand side of the definition only (in fact, the right-hand side is
empty). Given this type definition we can for instance create the
following attributes and corresponding types:

data 1ID;  atID = attr :: Attribute Int  (PEOPLE ID)
data NAME; atName = attr :: Attribute String (PEOPLE NAME)

data PEOPLE a; people = L :: PEOPLE ()

Note that no values of the attributes’ column types (Int and String)
need to be provided, since these are phantom type arguments. Since
we intend to have several tables with similar attributes, we have
used a single-argument type constructor to have qualified names.
Using these attributes and a few more, a valid example table can be
created as follows®:

myHeader = (atID .x. HNil, atName .x. atAge .. atCity .x. HNil)
myTable = Table myHeader $
insert (12 .x. HNil) ("Ralf" .. 23 .x. "Seattle" .x. HNil) $
insert (67 .x. HNil) ("0leg" .. 17 .x. "Seattle" .x. HNil) $
insert (50 .x. HNil) ("Dorothy" .x.42 .x. "0z" .x. HNil) $
Map .empty

The various constraints on the header of myTable are enforced by
the Haskell type-checker, and the type of all components of the
table is inferred automatically. For example, any attempt to insert
values of the wrong type, or value lists of the wrong length will
lead to type check errors. We will encounter such situations below.
In SQL, attributes can be declared with a user-defined DEFAULT
value, and they can be declared not to allow NULL values. Our
data constructor Artribute actually corresponds to attributes without
user-defined default that do not allow null. To model the other
variations, we have defined similar datatypes called AttrNull and
AttrDef with corresponding instances for the AttributesFor class.

3 The $ operator is just function application with low binding force; it allows
us to write fewer parentheses.

data AtrNull t nm
data ArtrDef t nm = Default t

instance AttributesFor a v =
AttributesFor (HCons (AttrDef t nm) a) (HCons t v)
instance AttributesFor a v =
AttributesFor (HCons (AttrNull t nm) a) (HCons (Maybe t) v)

For brevity, we omit attributes that can both be null and have a
declared default.

In SQL, there are also attributes with a system default value.
For instance, integers have as default value 0. To represent these
attributes, we define the following class and instances:

class Defaultable x where defaultValue :: x
instance Defaultable Int where defaultValue = 0
instance Defaultable String where defaultValue = ""

Examples of such attributes will appear below.

Foreign key constraints

Apart from headers of individual tables, we need to be able to rep-
resent schema information about relationships among tables. The
FK type is used to specify foreign keys:

data FK fk t pk = FK fk t pk

Here fk is the list of attributes that form a (possibly composite)
foreign key, ¢ and pk are the name of the table to which it refers and
the attributes that form its (possibly composite) primary key. As an
example, we can introduce a table that maps city names to country
names, and specify a foreign key relationship with myTable:

data COUNTRY;

atCity’ = attr :: Attribute String (CITIES CITY)
atCountry :: AttrDef String (CITIES COUNTRY)
atCountry = Default "Afghanistan"

data CITIES g; cities = L :: CITIES ()

yourHeader = (atCity’ .x. HNil, atCountry .x. HNil)
yourTable = Table yourHeader $
insert ("Braga" .x. HNil) ("Portugal" .x. HNil) $
Map.empty
myFK = FK (atCity .x. HNil) cities (atCity’ .. HNil) .. HNil

Thus, the myFK constraint links the arCity attribute of myTable to
the primary key atCity’ of yourTable. Note that arCountry is an
attribute with declared default.

To wrap up the example, we put the tables and constraint to-
gether into a record, to form a complete relational database:

myRDB = Record $
cities .=. (yourTable, HNil) .x.
people .=. (myTable, myFK .x. HNil) .x. HNil

Figure 1 depicts myRDB’s schema. Thus, we model a relational
database as a record where each label is a table name, and each
value is a tuple of a table and the list of constraints of that table.
Naturally, we want databases to be well-formed. On the schema
level, this means we want all attributes to be unique, and we want
foreign key constraints to refer to existing attributes and table

PEOPLE CITIES

ID G~ Cty G
Name Country

Age

City

Figure 1. Example database schema diagram.




names of the appropriate types. On the data instance level, we
want referential integrity in the sense that all foreign keys should
exist as primary keys in the related table. Such well-formedness can
be captured by type-level and value-level predicates (classes with
boolean member functions), and encapsulated in a data constructor:

class CheckRI rdb where
checkRI :: rdb — Bool
class NoRepeatedAttrs rdb

data (NoRepeatedAttrs rdb, CheckRI rdb)
= RDB rdb = RDB rdb

For brevity, we do not show the instances of the classes, nor the
auxiliary classes and instances they use. The source distribution
of the paper can be consulted for details. The data constructor
RDB encapsulates databases that satisfy our schema-level well-
formedness demands, and on which the checkRI predicate can be
run to check for dangling references.

The database myRDB defined above meets our well-formedness
demands at the type level, since there are no repeated attributes and
the foreign key refers to an existing primary key. However, at the
value level, the predicate checkRI returns False, because the cities
Seattle and Oz do not appear in yourTable.

3.2 Table operations

Given the database representation defined above, we can turn our
attention to operations on database tables. There are several main
challenges to be met.

Firstly, operations that involve more than a single table type will
require additional constraints or type-level functions to properly
relate or derive the types involved. In the case of projection, for
example, the type of the result table must be computed from the
type of the input table and the selected column types.

Secondly, a faithful modeling of the SQL language will require
a certain degree of ‘intelligence’ regarding input parameters. When
performing insertion of values into a table, for example, the list
of supplied values does not necessarily correspond 1-to-1 with the
columns of the table. Values may be missing, and a list of column
specifications may be provided to guide the insertion. We will need
to make use of various auxiliary heterogeneous data structures and
type-level functions to realize the required sophistication.

Thirdly, the interface provided by the SQL language shields off
the distinction between key attributes and non-key attributes which
is present in the underlying tables. This distinction is relevant for
the behaviour of constructs like join, distinct selection, grouping,
and more. But at the language level, rows are presented as flat tuples
without explicit distinction between keys and non-keys. As a result,
we will need to ‘marshal’ between pairs of lists and concatenated
lists, again on the type level.

The WHERE clause

Various SQL statements can contain a WHERE clause that specifies
a predicate on rows. Only those rows that satisfy the predicate are
taken into account. The predicate can be formulated in terms of a
variety of operators that take row values as operands. These row
values are accessed via their corresponding column names.

We can model value access with record lookup. To this end, we
model a row as a record that has attributes as its labels. A predicate
is then a boolean function over that record. To compute the type
of the record from the table header, we employ the following type-
level function:

class Row h kv r | h — kv r where
row:h—k—v—r
unRow :: h — r — (k,v)

instance (
HeaderFor (a,b) k v, HAppend a b ab, HAppend k v kv,
HZip ab kv |, HBreak kv k v
) = Row (a,b) kv (Record 1)
where
row (a,b) kv = Record $ hZip (hAppend a b) (hAppend k v)
unRow (a,b) (Record 1) = hBreak $ snd $ hUnzip [

Here, HBreak is the inverse of HAppend and breaks a list into two
pieces. Thus, the record type is computed by zipping (pairing up)
the attributes with the corresponding column types. The value-level
function row takes a header and corresponding key and non-key
values as argument, and zips them into a row. The converse unRow
is available as well.

For the Dorothy entry in myTable, for example, the following
row would be derived:

Record $
atlD .=.50 . x . atName .=. "Dorothy" . * .
atAge .=. 42 . x . atCity .=. "0z" . x . HNil

And a predicate over such a row might look as follows:
isOzSenior = A\r — (r.l. atAge) > 65 A (r .!. atCity) = "0z"
The type of the predicate is inferred automatically:

isOzSenior :: (
HasField (Attribute Int AGE) r Int,
HasField (Attribute String CITY) r String
) = r — Bool

Interestingly, this type is valid for any row that has the arAge and
atCity in any order. If other columns are joined or projected away,
the predicate will still type-check and behave correctly.

The DELETE statement

Now that the WHERE clause is in place, we can turn to our first
statement. The DELETE statement removes all rows from a table
that satisfy the predicate in its WHERE clause, e.g. delete from
PEOPLE where Age>65 and City="0z". We model deletion via
the library function filterWithKey for maps:

delete (Table h m) p = Table h m'
where
m' = filterWithKey keep m
keep kv == (pS$rowhkv)
filterWithKey :: Ord k = (k — a — Bool) — Map k a — Map k a

Only rows that fail the predicate pass through to the result map.

The UPDATE statement

The UPDATE statement involves a SET clause that assigns new val-
ues to selected columns, e.g. update PEOPLE set City="0z"
where Name="Dorothy". A record is again an appropriate struc-
ture to model these assignments. Updating of a row according to
column assignments then boils down to updating one record with
the values from another, possibly smaller record. The record oper-
ation updateWith (defined in Section 2.3) can be used for this.

update (Table h m) s p = Table h (foldWithKey upd empty m)
where
upd k v
| pr=insert k' v/
| otherwise = insert k v
where r = row h kv
(k',v") = unRow h $ updateWith r s

foldWithKey :: (k —a — b —b) - b— Mapka—b



Here we use the library function foldWithKey on maps, and we
use Haskell’s guarded equation syntax to define a helper function
upd. Thus, when a row satisfies the predicate, an update with new
values is applied to it, and the updated row is inserted into the result.
Note that updateWith enforces that the list of assignments only sets
attributes present in the header, and sets them to values of the proper
types. Assignment to an attribute that does not occur in the header
of the table, or assignment of a value of the wrong type will lead to
a type check error.

The INSERT statement

A single row can be inserted into a table by specifying its values
in a VALUES clause. Multiple rows can be inserted by specifying
a sub-query that delivers a list of suitable rows. In either case,
a list of columns can be specified to properly align the values
for each row, e.g. insert CITIES (Country, City) values
("USA","Portland"). If for certain columns no values are sup-
plied, a default value or NULL is inserted if the attribute concerned
has been declared with a default or to allow null, e.g. the query
insert CITIES values ("Amsterdam") would insert the row
("Amsterdam","Afghanistan") in the table. We have defined a
type-level function LineUp to perform such alignment and padding:

class LineUp hr kv i’ | h r — kv r’ where
lineUp ::h — r — (kv,¥")

Here, lineUp takes meta-information & and a row r created from a
column specification and values to be inserted, and it produces a
pair kv of reordered and padded lists of keys and values, together
with possibly remaining row fragment . The lineUp function is
careful not to perform padding in keys, and for some specific types
it can insert system-level defaults, such as the empty string for
String and 0 for integers.
Now, the single-row variant of INSERT can be specified:

insertValues (Table h m) a x = Table h m’
where
m' = insertkvm
(k,v) = fst $ lineUp h (Record $ hZip a x)

Here the hZip function is used to pair up the list of columns with the
list of values. The lineUp function permutes and padds the resulting
list of column-value pairs into a properly ordered row for the given
table.

Any attempt to insert values of the wrong type, or value lists of
the wrong length will lead to type check errors, as we can see in
the following examples:

insertValues yourTable (atCity’ . x . atCountry . x . HNil)
("Paris" .*."France".x.13.x.HNil)

insertValues myTable (atID . x . atName . * . atAge . * . HNil)
(L.%."Joe".x*.62.%.HNil)

insertValues yourTable (atCity’ . x . atCountry . x . HNil)
("Paris".*.11.*.HNil)

All of these examples fail to type-check, as they should.

The multi-row insert accepts as argument the result list of a
nested SELECT query. Though selection itself will be defined only
in the next section, we can already reveal the type of result lists.

data AttributesFor a x = ResultList a x = ResultList a [x]

Thus, a result list is a list of rows augmented with the meta-data of
that row. Unlike our Table datatype, result lists make no distinction
between keys and values, and rows may occur more than once.

Now, multi-row insertion can be specified as a list fold over the
rows in a ResultList:

insertResultList thl as (ResultList a v)
= foldr (A\vs t — insertValues t as vs) tbl v

Note that the meta-information of the inserted result list is ignored.
The specified column list is used instead.

The SELECT statement

Several kinds of functionality are bundled into the SELECT state-
ment. The main ones are projection (column selection) and carte-
sian product (exhaustive combination of rows from several tables).
In addition to these, clauses may be present for filtering, joining,
grouping, and ordering.

Cartesian product on maps can be defined with two nested folds:

productM :: (HAppend k k' k"', HAppend v v' V', Ord v'")
= Map kv — Map k' vV — Map k" V"'
productM m m’
= foldWithKey (\k v m" — foldWithKey add m" m') empty m
where
add k' v' m" = insert (hAppend k k') (hAppend v v') m"

As the hAppend invocations indicate, the key tuples of the argu-
ment maps are appended to each other, and so are the non-key
tuples. This operation can be lifted to tables:

productT (Table (a,b) m) (Table (a',b') m') = Table K’ m"
where
h" = (hAppend a a', hAppend b b")
m'" = product’ m m’

Since the SELECT statement allows any number of tables to be in-
volved in a cartesian product, we lift the binary product to a product
over an arbitrary-length tuple of tables, using a type-level function:

class Products ts t | ts — t where
products :: ts — t
instance Products (t :x: HNil) t where
products (HCons t _) =t
instance (...)
= Products ((Table (a,b) k v) x: (Table (a’,b") k' V') x: ts) t
where
products (HCons t ts) = productT t (products ts)

Thus, the binary product is applied successively to pairs of tables.
For brevity, we elided the lengthy but straightforward type con-
straints of the second instance of Products.

Now that cartesian product over lists of tables is in place, we
can specify selection:

select distinct a ts p b = ResultList a $ uniq $ sort $ proj $ fitr m
where
Table h m = products ts
Sfltr = filterWithKey (Ak v — p $ row h k v)
proj = foldWithKey fit [ ]
flt kv 1 = lookupMany a (row h k v) :1
sort = if isEmpty b then id else (gsort o cmp) b
cmpbvv =lkpv<lkpV
where lkp x = lookupMany b (Record $ hZip a x)
uniq = if distinct then rmDbls else id

class IsEmpty | where isEmpty :: | — Bool
rmDbls :: [a] — [a]
gsort :: (a — a — Bool) — [a] — [a]

The first argument corresponds to the presence of the DISTINCT
keyword, and determines whether duplicates will be removed from
the result. The second argument are the specified columns, to be
used in projection. The third argument represents the FROM clause,
from which the products function computes a table with type



Table h k v. The fourth argument represents the WHERE clause,
which contains a predicate on rows from that table. This is ex-
pressed by the Row constraint. Also, the selected columns must
be present in these rows, which is guaranteed by the lookupMany
function for multiple label lookup from a record. The last argu-
ment represents the ORDER BY clause, in which attributes can be
specified by which the list of results should be sorted.

As can be gleaned from the body of the select function, the
cartesian product is computed first. Then filtering is performed
with the predicate. The filtered map is folded into a list where
each row is subjected to flattening (from pair of keys and non-
key values to a flat list of values), and to projection. The resulting
list of tuples is passed through sort and unig, which default to the
do-nothing function id. However, if distinct rows were requested,
unig removes duplicates, and if columns were specified to order by,
then sort invokes a sorting routine that compares pairs of rows after
projecting them through these columns (with lookupMany).

As an example of using the select operation in combination with
insertResultList, consider the following nested query:

insertResultList

(atCity’ .x. HNil)

(select True (atCity .x. HNil)
(myTable .x. HNil)
isOzJunior HNil)

yourTable

This produces the following table:

Table (CITY .*. HNil, COUNTRY .x. HNil)
{Braga .x. HNil := Portugal .x. HNil,
Oz .x. HNil  := Afghanistan .x. HNil }

Note that the result list produced by the nested select is statically
checked and padded to contain appropriate columns to be inserted
into yourTable. If the attribute AGE would be selected, for instance,
the type-checker would complain. Since the nested select yields
only cities, the declared default gets inserted in the country column.

The JOIN clause

The SQL language allows tables to be joined in several different
ways, in addition to the cartesian product. Here we will show the
inner join, where values in one table are linked to primary keys of
a second table, e.g. select * from PEOPLE join CITIES on
PEOPLE.City=CITIES.City. On maps, the definition is as fol-
lows:

joinM :: (HAppend k' v' kv', HAppend v kv' vkv', Ord k, Ord k'
)= (k—v—k') —> Map kv — Map k' v/ — Map k vkv'
joinM on m m' = foldWithKey worker Map.empty m
where
worker kv m" = maybe m" add (lookup k' m")
where

K =onkv

add V' = insert k (hAppend v (hAppend k' v')) m"
lookup :: Ord k = k — Map k a — Maybe a

As the types and constraints indicate, the resulting map inherits
its key type from the first argument map. Its value type is the
concatenation of the value type of the first argument, and both key
and value type of the second argument. A parameter on specifies
how to obtain from each row in the first table a key for the second.
The joined table is constructed by folding over the first. At each
step, a key for the second table is computed with on. The value for
that key (if any) is appended to the two keys, and stored.
The join on maps is lifted to tables, as follows:

join (Table h@Q(a,b) m) (Table (a’,b’) m') on = Table "' m"
where
h" = (a, hAppend b (hAppend a' b))
m"” = joinM (\k v — rstrct $
lineUp (', HNil) (on $ row h k v)) m m'
rstret ((k', HNil), Record HNil) = k'

The header of the resulting table is constructed by appending the
appropriate header components of the argument tables. The on
function operates on a row from the first table, and produces a
record that assigns a value to each key in the second table. Typi-
cally, these assignments assign a foreign key to a primary one, as
follows:

myOn = Ar — ((atPK . = . (r .\. atFK)) . % . HNil))

In case of compound keys, the record would hold multiple assign-
ments. The type of myOn is inferred automatically, and checked
for validity when used to join two particular tables. In particular,
the ON clause is checked to assign a value to every key attribute of
the second table, and to refer only to keys or values from the first ta-
ble. Thus, our join is typed more precisely than the SQL join since
join conditions are not allowed to underspecify or overspecity the
row from the second table.

The following example shows how joins are used in combina-
tion with selects:

seniorAmericans
= select False (atName .. atCountry .x. HNil)
((myTable ‘join‘ yourTable
(A\r — atCity’" .=. (r ). atCity) .x. HNil))
. HNil)
(Ar — (r.1. atAge) > 65 A (r.\. atCountry) = "USA")

Recall that arCity’ is the sole key of yourTable. The type-checker
will verify that this is indeed the case. The last line represents a
where clause that accesses columns from both tables.

Note that our join is used as a binary operator on tables. This
means that several joins can be performed by nesting join invoca-
tions. In fact, the join and cartesian product operators can be mixed
to create join expressions beyond SQL’s syntactic limits. This is an
immediate consequence from working in a higher-order functional
language.

The GROUP BY clause and aggregation functions

When the SELECT statement is provided with a GROUP BY clause,
it can have aggregation functions such as COUNT and SUM in its
column specification, and it may have a HAVING clause, which
is similar to the WHERE clause but gets applied after grouping.
For example, the query select City,count(*) from PEOPLE
group by City would calculate the number of persons that live
in each city.

On the level of maps, a general grouping function can be de-
fined:

groupByM :: (
Ord k,Ord k'
)= (k—v—k')— (Mapkv—a) — Mapkv— Map k' a
groupByM g f m = Map.map f $ foldWithKey grp Map.empty m
where
grp k v = insertWith Map.union (g k v) (Map.singleton k v)
Map.map :: (a — b) — Map k a — Map k b

The parameter g serves to compute from a map entry a new key
under which to group that entry. The parameter f is used to map
each group to a single value.

To represent aggregation functions, we define a data type AF:



data AF ra b = AF ([a] — b) (r — a)

data AVG; arAVG = L :: Attribute t n — Attribute Float (AVG, n)
data COUNT; atCOUNT = L :: n — Attribute Int (COUNT, n)

myAFs = atAVG atAge .=. AF avg (.l.atAge) .x.
atCOUNT () .=. AF length (const ()) .x. HNil

Each aggregation function is a map-reduce pair of functions, where
the map function of type r — a computes a value from each
row, and the reduce function of type [a] — b reduces a list of
such values to a single one. As exemplified by myAF's, aggregation
functions are stored in an attribute-labeled record to be passed as
argument to a select with grouping clause.

These ingredients are sufficient to add grouping and aggregation
behaviour to the select statement. For brevity we do not present the
resulting function selectG in full, but the interested reader can find
details in the source distribution of this paper.

Database operations

We can lift the operations we defined on tables to work on entire
relational databases. These operations then refer by name to the ta-
bles they work on. For example, the following models the SELECT
INTO statement that performs a select, and stores the result list into
a named table:

selectinto rdb d a tns w o tn a’ = modifyAtLabel tn f rdb
where
ts = fst $ hUnzip $ lookupMany tns rdb
f (t,fk) = (insertResultList a' (select d a ts w 0) t,fk)

Note that the argument tables are fetched from the database before
they are supplied to the select function. The modifyAtLabel func-
tion is a utility on records that applies a given function on the value
identified by a given label.

The source distribution of the paper contains liftings of the other
table operations as well. Also, database-level implementations are
provided of data definition statements, such as CREATE, ALTER,
and DROP TABLE.

4. Functional dependencies

In the preceding sections we have shown how information about
the types, labels, and key-status of table columns can be captured
at the type-level. As a consequence, static type-checks guarantee
the safety of our tables and table operations with respect to these
kinds of meta-data. In this section, we will go a step further. We
will show how an important piece of database design information,
viz. functional dependencies, can be captured and validated at the
type level.

DEFINITION 1. Given a table header H and X, Y subsets of H,
there is a functional dependency (FD) between X andY (X—Y)
iff X fully determines Y (orY is functionally dependent on X ).

Functional dependencies play an important role in database
design. Database normalization and de-normalization, for instance,
are driven by functional dependencies. FD theory is the kernel of
the classical relational database design theory developed by Codd
[6], it has been thoroughly studied [2, 12], and is part of standard
database literature [17, 25, 9].

A type-level representation of functional dependencies is given
in Section 4.1. We proceed in Section 4.2 with type-level predicates
that capture the notions of key and superkey with respect to func-
tional dependencies. These predicates are building blocks for more
complex predicates that test whether a given set of functional de-
pendencies adheres to particular normal forms. In Section 4.3 type-
level predicates are defined for Boyce-Codd normal form and third

normal form. Finally, in Section 4.4 we explore how functional de-
pendency information associated to particular tables can carry over
from the argument tables to the result tables of table operations.
In particular, we will show that the functional dependencies of the
result tables of projections and joins can be computed at the type-
level from the functional dependencies on their arguments.

4.1 Representation

To represent functional dependencies, we transpose Definition 1
into the following datatype and constraints:

data FunDep xy = FDxy=FDxy

class FunDep x y
instance (AttrList x, AttrList y) = FunDep x y

class AttrList ats
instance AttrList HNil
instance ArtrList | = AttrList (HCons (Attribute v n) )

Thus, a functional dependency basically holds two lists of at-
tributes, of which one represents the antecedent and the other the
consequent of the dependency.

A list of functional dependencies for a particular table should
only mention attributes from that table. This well-formedness con-
dition can be expressed by the following type-level predicate:

class FDListFor fds h

instance (
Contains fds (FD a b), FDList fds, AttrListFor fds ats,
HAppend a b ab, ContainsAll ats ab
) = FDListFor fds (a, b)

Here the functional dependency from a table’s keys to its values,
which holds ‘by construction’ is required to be in the list of FDs.
Further, the FDList predicate constrains the list to contain func-
tional dependencies only, and the type level function A#trListFor
computes the attributes used in a given list of FDs.

4.2 Keys and superkeys

In section 3.2, we distinguished key attributes from non-key at-
tributes of a table. There is an analogous concept for relations with
associated functional dependencies F'.

DEFINITION 2. Let H be a header for a relation and F' the set of
functional dependencies associated with it. Every set of attributes
X C H, such that X—H can be deduced from F and X is
minimal, is a key. X is minimal if for no proper subset Y of X
we can deduce Y — H from F.

An essential ingredient into this definition is the set of all func-
tional dependencies that can be derived from an initial set. This is
called the closure of the FD set. This closure is expensive to com-
pute. But, we can tell whether a given dependency X —Y is in the
FD closure by computing the set of attributes that can be reached
from X via dependencies in F'. This second closure is defined as
follows.

DEFINITION 3. Given a set of attributes X, we define the closure
X of set X (with respect to a set of FDs F) as the set of attributes
A that can be determined by X (i.e., X — A can be deduced from
F).

The algorithm used to implement the computation of such clo-
sure is described in [25, p.338]. We implemented it on the type level
with a constraint named Closure.

Another ingredient in the definition of keys is the minimality of
a possible key. We define a predicate that expresses this:



class Minimal x h fds b | x h fds — b
instance (ProperSubsets x xs, IsNotInFDClosure xs h fds b)
= Minimal x h fds b

Thus, we compute the proper subsets of X and check (with IsNot-
InFDClosure — implementation not shown) that none of these sets
Y issuch that Y —H.

With all ingredients defined, we proceed to the specification of
the constraint that tests whether a given set of attributes is a key:

class IsKey x hfds b | x h fds — b
instance (
Closure h x fds cl, Minimal x h fds b"
ContainedEq h cl b’ ,HAnd b’ b" b
) = IsKey x h fds b

There may be more than one key for a relation. So, when we use the
term candidate key we are referring to any minimal set of attributes
that fully determine all attributes.

For the definition of normal forms, we additionally need the
concept of a super key, which is defined as follows:

DEFINITION 4. X C H, is a superkey for a relation with header
H, if X is a superset of a key (i.e., Ax+ X' isakey N X' C X).

This concept can be expressed as follows.

class IsSuperKey s all fds b | s all fds — b
instance (

PowerSet s ss, FilterEmptySet ss ss', MaplsKey ss all fds b
) = IsSuperKey s all fds b

Note that the power set computation involved here implies consid-
erable computational complexity! We will comment on optimiza-
tion in our concluding remarks.

4.3 Normal forms

There are several normal forms, but we will only discuss the most
significant ones — third normal form (NF) and Boyce-Codd NF. For
simplicity we will assume that FDs are represented with a single
attribute in the consequent.

Boyce Codd normal form

A table with header H is in Boyce Codd NF with respect to a set
of FDs if whenever X — A holds and A is not in X then X is a
superkey for H.

This means that in Boyce-Codd normal form, the only non-
trivial dependencies are those in which a key determines one or
more other attributes [25]. More intuitively, no attribute in H is
transitively dependent upon any key of H.

Let us start by defining the constraint for a single FD.

class BoyceCoddNFAtomic check h x fds b | check h x fds — b
instance BoyceCoddNFAtomic HFalse h x fds HTrue
instance IsSuperKey x h fds b

= BoyceCoddNFAtomic HTrue h x fds b

The type-level boolean check is included because we just want to
check if X is a superkey when Y is not in X. Now, we can extrap-
olate this definition to a set of FDs :

class BoyceCoddNF h fds b | h fds — b

instance BoyceCoddNF h HNil HTrue

instance BoyceCoddNF' h (HCons e l) (HCons e I) b
= BoyceCoddNF h (HCons e I) b

class BoyceCoddNF' h fds allfds b | h fds allfds — b
instance BoyceCoddNF' h HNil fds HTrue

instance (
HMember y x bb, Not bb bYnotinX,
BoyceCoddNFAtomic bYnotinX h x fds b,
BoyceCoddNF' h fds' fds b"', HAnd b’ b b
) = BoyceCoddNF' h (HCons (x, HCons y HNil) fds") fds b

Examples of verification of this normal form can be found else-
where [25].

Third normal form

Before defining third normal form we need to define the notion of
prime attribute [17].

DEFINITION 5. Given an header H with a set of FDs F' and an
attribute A in H, A is prime with respect to F' if A is member of
any key in H.

The encoding of this definition is as follows.

class IsPrime at all fds b | at all fds — b
instance (Keys all fds Ik, MemberOfAnyKey at Ik b)
= IsPrime at all fds b

A table with header H is in third NF with respect to a set of FDs
if whenever X — A holds and A is not in X then X is a superkey
for H or A is a prime attribute. Notice that this definition is very
similar to Boyce-Codd NF except for the clause “or A is prime”.
This NF can therefore be seen as a weakening of Boyce-Codd NF.
Intuitively, in third NF we are just demanding that no nonprime
attributes are transitively dependent upon a key on H.

As in the previous NF, we start by defining a constraint for a
single FD:

class Is3rdNFAtomic check h x y fds b | check h x y fds — b
instance Is3rdNFAtomic HFalse h x y fds HTrue

instance (IsSuperKey x h fds sk, IsPrime y h fds pr, HOr sk pr D)
= Is3rdNFAtomic HTrue h x y fds b

This single-FD constraint is lifted to a constraint on a set of FDs,
just as we did in the case of the Boyce-Codd NF.

Using these normal form definitions in the form of type constraints,
normal form checking can be carried out by the type checker.

4.4 Transport through operations

When we perform an operation over one or more tables that have
associated FD information, we can compute new FDs associated to
the resulting table. We will consider project and join as examples.
But first we define a representation for tables with associated FD
information:

data TableWithFD fds h k v
= Table' h k v fds = Table' h (Map k v) fds

class (HeaderFor h k v, FDListFor fds h) = TableWithFD fds h k v

Thus, we have an extra component fds which is constrained to be
a valid set of FDs for the given table. The dependency FD k v that
holds ‘by construction’ is always present in that set.

Project

When we project a table with associated FDs F' through a list of
attributes B, for every X —Y € F' we can do the following rea-
soning. If there is an attribute A, such that A € X and A ¢ B then
X —Y will not hold in the new set of FDs. Otherwise, we compute
Y’ =Y N B and we have X —Y" holding in the new set of FDs.
This simple algorithm is encoded as follows.

class ProjectFD b fds fds' | b fds — fds' where
projectFD :: b — fds — fds'



instance ProjectFD b HNil HNil where

projectFD _ _ = hNil
instance (

FunDep x y, Difference x b x',

HEq x' HNil bl, ProjectFD' bl b (HCons (FD x y) fds) fds'
) = ProjectFD b (HCons (FD x y) fds) fds'
where

projectFD b (HCons (FD x y) fds)

= projectFD' bl b (HCons (FD xy) fds)
where x' = difference x b; bl = hEq x' HNil

The constraint HEq x” HNil bl is used to check that X only con-
tains attributes that are in B, which is equivalent to verifying the
equality X—B = {}. The resulting boolean value is passed as
argument to an auxiliary function that either will eliminate the FD
from the new set or will compute the new FD.

class ProjectFD' bl b fds fds' | bl b fds — fds' where

projectFD' :: bl — b — fds — fds'
instance (FunDep x y, ProjectFD b fds fds')
= ProjectFD’ HFalse b (HCons (FD x y) fds) fds'
where projectFD' _ b (HCons (FD x y) fds) = projectFD b fds
instance (FunDep x y, Intersect by y', ProjectFD b fds fds")
= ProjectFD’ HTrue b (HCons (FD x y) fds)

(HCons (FD xy') fds")

where

projectFD’ _ b (HCons (FD x y) fds)

= HCons (FD x (intersect b y)) (projectFD b fds)

This type-level calculation can be linked to a value-level projection
operation that restricts a table to a list of selected attributes:

projectValues b’ (Table' (a,b) m fds)
= Table' (a,b’) m’ (projectFD b’ fds)
where m’ = Map.map (fst o lineUp b') m

Thus, this function provides a restricted projection operation that
preserves keys, and transports all relevant functional dependencies
to the result table. Such operations can be useful in database trans-
formation scenarios, as we will explain below.

Join

When we join two tables with associated FDs F' and F”, then in
the new table all the FDs f € F'U F’ will hold. In addition, the at-
tributes from the second table will become functionally dependent

on the keys of the first table. This calculation can be simply linked
to the function join described in Section 3.2:

join' (Table' h m fds) (Table' h' m' fds") r = Table’ h" m" fds"
where
Table h" @(a,ba'b’) m" = join (Table h m) (Table k' m') r
fds" = HCons (FD a ba'b") (union fds fds')

When using this augmented join on the first query example of the
introduction (i.e. select X,Y from T join S on T.FK=S.PK),
the result table will include the functional dependency T.PK->S.PK
mentioned there. To also obtain the other dependency, S.PK->T.FK
a further restriction is needed, as we will see below.

5. Database Transformation

‘We have shown how strong types, capturing meta-data such as table
headers and foreign keys, can be assigned to SQL databases and
operations on them. Moreover, we have shown that these types
can be enriched with additional meta-information not explicitly
present in SQL, namely functional dependencies. We will briefly
discuss some scenarios beyond traditional database programming
with SQL, in which strong types pay off.

Normalization and denormalization

Normalization and denormalization are database transformation
operations that bring a database or some of its tables into normal
form, or vice versa. Such operations can be defined type-safely with
the machinery introduced above.

We have defined an operation compose that denormalizes tables
that are in third normal form.

compose fk pk t1Q(Table’ hl ml fdsI) t2Q(Table' h2 m2 fds2)
= (Table’ h m ((FD pk fk) .x. fds), Table' h2 m' fds2)
where
on = (Ar — Record $ hZip pk $ lookupMany fk r)
Table’ h m fds = join' t1 12 on
ResultList _ ks = select True fk (Table hl mlI) (const True)
m' = mapDeleteMany ks m2

In fact, the compose operation is a further restricted variant of
join'. Rather than using a ‘free-style’ ON clause, which assigns
values computed from the first table to primary key attributes of
the second, compose explicitly exploits a foreign key relationship,
provided as argument. This allows us to add a further functional
dependency to the composed table, which expresses that the foreign
keys from the first table will become functionally dependent on the
primary keys from the second table.

Note also that we return a slimmed down copy of the second
table. The copy keeps any rows that are not involved in the compo-
sition, to make denormalization data-preserving.

Conversely, the normalization operation decompose can be used
to bring tables into third normal form. It accepts a functional de-
pendency as argument, which subsequently gets encoded in the
database as meta-data of one of the new tables produced. Also,
an appropriate foreign key declaration is introduced between the
decomposed tables.

Thus, compose produces functional dependency information
that can be used by decompose to revert to the original database
schema. In fact, our explicit representation of functional depen-
dencies allows us to define database transformation operations that
manage meta-data in addition to performing the actual transforma-
tions.

Data cleaning and migration

The SQL language is insufficiently expressive for purposes of data
cleaning or data migration, and several extensions to the language
are provided by specific vendors. Recently, a domain-specific lan-
guage (DSL) for data migration, called DTL, has been defined and
implemented in the Data Fusion tool [5]. A key innovation of DTL
is a mapper operation that allows the definition of one-to-many data
transformations. On the basis of the reconstruction of SQL of Sec-
tion 3 we have implemented a type-safe mapper (included in the
source distribution) in a handful of lines. This demonstrates that
Haskell can be used to design and prototype DSLs for database
cleaning and migration.

The code of compose, decompose, and mapper is included in the
source distribution of this paper, together with further database
transformation operations. The small set of operations that we
defined so far can be extended to construct complete and highly
expressive operator suites that cover specific scenarios such as
migration, cleaning, and more. These operator suites can be useful
by themselves, or can serve as prototypes for strongly typed DSLs.

6. Related work

We are not the first to provide types for relational databases, and
type-level programming has other applications besides type check-
ing SQL. We will briefly discuss related approaches.



Machiavelli

Ohori et al. extended an ML-like type system to include database
programming operations such as join and projection [21]. The ex-
tension is necessary to provide types for labeled records, which are
used to model databases. They demonstrate that the type inference
problem for the extended system remains solvable. Based on this
type system, the experimental Machiavelli language for database
programming was developed [22, 4].

Our language of choice, Haskell, can be considered to belong
to the ML-family of languages that offer higher-order functions,
polymorphism and type inference. But, type-class bounded poly-
morphism is not a feature shared by all members of that family. In
fact, Ohori et al. do not assume this feature. This explains why they
must develop a dedicated type system and language, while we can
stay inside an existing language and type system.

Haskell/DB and HL1ST-based database connectivity

Leijen er al. present a general approach for embedding domain-
specific compilers in Haskell, and its application to the implemen-
tation of a typeful SQL binding, called Haskell/DB [16]. They con-
struct an embedded domain-specific language (DSL) that consists
of sub-languages for basic expressions, relational algebra expres-
sions, and query comprehension. Strong types for the basic expres-
sion language are provided with phantom types in data constructors
to carry type information. For relational algebra expressions, the
authors found no solution of embedding typing rules in Haskell,
citing the join operator as especially difficult to type. The query
comprehension language is strongly typed again, and is offered as
a safe interface to the relational algebra sub-language.

From DSL expressions, Haskell/DB generates concrete SQL
syntax as unstructured strings, which are used to communicate
with an SQL server via a foreign function interface. The DSL
shields users from the unstructured strings and from low-level
communication details.

The original implementation of Haskell/DB relies on an experi-
mental extension of Haskell with extensible records supported only
by the Hugs interpreter. A more portable improvement uses a dif-
ferent model of extensible records [3], which is more restricted,
but similar in spirit to the HLIST library of [14] that we rely on.
Conversely, the authors of the HLIST library report on the appli-
cation of their extensible records to database connectivity, which
“adopt[s] concepts from Leijen [ef al]’s embedding approach”.

The most important difference between these approaches and
ours is that their tables are stored externally, as is the purpose
of database connectivity, while ours are stored internally, as mo-
tivated by our wish to model relational databases inside Haskell.
Furthermore, the level of typing realized by the database connec-
tivity approaches does not include information to distinguish keys
from non-key attributes, nor functional dependencies. Permutation
and padding of records to approximate SQL’s handling of some
arguments also seems to be unique to our approach. For the rela-
tional algebra sub-language of Haskell/DB, which includes restric-
tion (filter), projection, product, and set operators, only syntactic
well-formedness checks are offered. These operators are strongly
typed in our approach.

Type-level programming and lightweight dependent types

McBride [18] and Hallgren [10] pioneered the use of Haskell’s type
system as static logic programming language. Apart from heteroge-
neous collections [14], the technique has been used for lightweight
dependently typed programming [18], implicit configurations [15],
variable-length argument lists, formatting [11], and more.

OOHaskell

Kiselyov et al. have developed a model of object-oriented program-
ming inside Haskell [13], based on their HLIST library of extensi-
ble polymorphic records with first-class labels and subtyping [14].
The model includes all conventional object-oriented features and
more advanced ones, such as flexible multiple inheritance, implic-
itly polymorphic classes, and many flavours of subtyping.

We have used the same basis (HLIST records) and the same
techniques (type-level programming) for modeling a different
paradigm, viz. relational database programming. Both models rely
non-trivially on type-class bounded and parametric polymorphism,
and care has been taken to preserve type inference in both cases.

There are also notable differences between the object-orientation
model and the relational database model. Our representation of ta-
bles separates meta-data from normal data values and resorts to
numerous type-level predicates and functions to relate these. In the
OOHASKELL library, labels and values are mostly kept together
and type-level programming is kept to a minimum. Especially our
representation of functional dependencies explores this technique
to a much further extent.

Point-free relational algebra

Necco et al. have developed models of relational databases in
Haskell and in Generic Haskell [19, 20]. The model in Haskell
is weakly typed in the sense that fixed types are used for val-
ues, columns, tables, and table headers. Arbitrary-length tuples and
records are modeled with homogeneous lists. Well-formedness of
tables and databases is guarded by ordinary value-level functions.
Generic Haskell is an extension of Haskell that supports polytypic
programming. The authors use these polytypic programming capa-
bilities to generalize from the homogeneous list type constructor to
any collection type constructor. The elements of these collections
are still of a single, fixed type.

Apart from modeling relational algebra operators the authors
provide a suite of calculation rules for database transformation.

Our model of relational databases can be seen as a successor to
the Haskell model of Necco et al. where well-formedness checking
has been moved from the value level to the type level.

Two-level data transformation

Cunha et al. [7] use Haskell to provide a strongly typed treatment
of two-level data transformation, such as data mappings and format
evolution, where a transformation on the type level is coupled with
transformations on the term level. The treatment relies on general-
ized algebraic datatypes (GADT). In particular, a GADT is used to
safely represent types at the term level. Examples are provided of
information-preserving and information-changing transformations
of databases represented by finite maps and nested binary tuples.
Our representation of databases is similar in its employment
of finite maps. However, the employment of type-level indexes to
model table and attribute names in headers, rows, and databases
goes beyond the maps-and-tuples representation, allowing a nomi-
nal, rather than purely structural treatment. On the other hand, our
representation is limited to databases, while Cunha et al. also cover
hierarchical data structures, involving e.g. sums, lists, recursion.
The SQL ALTER statements and our database transformation
operations for composition and decomposition have counterparts
as two-level transformations on the maps-and-tuples representa-
tion. In fact, Cunha et al. present two sets of rules, for data map-
pings and for format evolution, together with generic combinators
for composing these rules. We have no such generic combinators,
but instead are limited to normal function application on the value
level, and to logical composition of constraints at the type level. On
the other hand, we have shown that meta-information such as at-
tribute names, nullability and defaults, primary keys, foreign keys,



and functional dependencies, can be transported through database
transformation operations.

7. Concluding remarks

Our model of SQL is not complete. The covered set of features,
however, should convince the reader that a comprehensive model is
within reach. The inclusion of functional dependency information
in types goes beyond SQL, as do operations for database transfor-
mation. Below we highlight future directions.

Future work

Ohori et al. model generalized relational databases and some fea-
tures of object-oriented databases [21, 4]. It would be interesting to
see if our approach can be generalized in these directions as well.

The approach of Cunha et al. to two-level data transformation
and our approach to relational database representation and manip-
ulation have much in common, and their mutual reinforcement is a
topic of ongoing study. For instance, our type-level programming
techniques could be employed to add sophistication to the GADT
and thus allow a more faithful, but still safe representation of rela-
tional databases on the term level.

We share a number of concerns regarding usability and perfor-
mance with the authors of the OOHASKELL library. In particu-
lar, the readability of inferred types and the problem-specificity
of reported type errors, at least using current Haskell compilers,
leaves room for improvement. Performance is an issue when type-
level functions implement algorithms with non-trivial computa-
tional complexity or are applied to large types. Our algorithm for
computing the transitive closure of functional dependencies is an
example. Encoding of more efficient data structures and algorithms
on the type-level might be required to ensure scalability of our
model.

Availability

The source distribution that supports this paper is available from
the homepages of the authors, under the name CODDFISH. Apart
from the source code shown here, the distribution includes a vari-
ety of relational algebra operators, further reconstructions of SQL
operations, database migration operations, and several worked-out
examples. CODDFISH lends itself as a sandbox for the design of
typed languages for modeling, programming, and transforming re-
lational databases.
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