
A Coalgebraic Perspective on Minimization and
Determinization

Jiřı́ Adámek1, Filippo Bonchi2, Mathias Hülsbusch3, Barbara König3, Stefan Milius1,
Alexandra Silva4

1 Technische Universität Braunschweig 2CNRS - ENS Lyon
2 Universität Duisburg-Essen 4 Centrum Wiskunde & Informatica

Abstract. Coalgebra offers a unified theory of state based systems, including
infinite streams, labelled transition systems and deterministic automata. In this
paper, we use the coalgebraic view on systems to derive, in a uniform way, ab-
stract procedures for checking behavioural equivalence in coalgebras, which per-
form (a combination of) minimization and determinization. First, we show that
for coalgebras in categories equipped with factorization structures, there exists
an abstract procedure for equivalence checking. Then, we consider coalgebras in
categories without suitable factorization structures: under certain conditions, it is
possible to apply the above procedure after transforming coalgebras with reflec-
tions. This transformation can be thought of as some kind of determinization. We
will apply our theory to the following examples: conditional transition systems,
(non-deterministic) automata and linear weighted automata.

1 Introduction

Finite automata are one of the most basic structures in computer science. One partic-
ularly interesting problem is that of minimization: given a (non-)deterministic finite
automaton is there an equivalent one which has a minimal number of states?

Given a regular language L, minimal deterministic automata (DA) can be thought of
as the canonical acceptors of the given language L. A minimal automaton is universal,
in the sense that given any automaton which recognizes the same language (and where
all states are reachable) there is a unique mapping into the minimal one. Similar notions
exist for other kinds of transition systems such as Mealy machines or labelled transition
systems. However, in many interesting cases, such as for non-deterministic automata
(NDA) or for weighted automata, what it means to be a minimal system is not yet clear.
Typically, for NDA one first determinizes the automaton and then minimizes it, since
for DA minimization algorithms are well-known ([17]).

It is the main aim of this paper to find a general notion of canonicity for a large class
of transition systems, in a uniform manner. This encompasses two things: (i) casting
the automata and the intended equivalence in a general framework; and (ii) using the
general framework to devise algorithms to minimize (and determinize) the automata,
yielding a canonical representative. To study all the types of automata mentioned above
(and more) in a uniform setting, we use coalgebras.

For a functor F : C→ C, on a category C, an F -coalgebra is a pair (X,α), where
X is an object of C representing the “state space” of the system and α : X → FX is
a morphism of C defining the “transitions” of the states. For instance, given an input
alphabet A, DAs are coalgebras for the functor 2 × (−)A : Set → Set and NDAs are
coalgebras for the functor A× (−) + 1: Rel→ Rel, where Set is the category of sets
and functions and Rel the category of sets and relations.

The strength of the coalgebraic approach lies in the fact that many important no-
tions, such as behavioural equivalence, are uniquely determined by the type of the
system. Under mild conditions, functors F have a final coalgebra (unique up to iso-
morphism) into which every F -coalgebra can be mapped via a unique homomorphism.
The final coalgebra can be viewed as the universe of all possible behaviours: the unique
homomorphism into the final coalgebra maps every state of a coalgebra to its behaviour.
This provides a general notion of behavioural equivalence: two states are equivalent iff
they are mapped to the same element of the final coalgebra. In the case of DAs, the
final coalgebra is P(A∗) (the set of all languages over input alphabet A) and the unique
homomorphism is a function mapping each state to the language that it accepts. In the
case of NDAs, as shown in [14], the final coalgebra isA∗ (the set of all finite words over
A) and the unique homomorphism is a relation linking each state with all the words that
it accepts. In both cases, the induced behavioural equivalence is language equivalence.
The base category chosen to model the system plays an important role in the obtained
equivalence. For instance, NDAs can alternatively be modelled as coalgebras for the
functor 2×P(−)A : Set→ Set, where P is the powerset functor, but then the induced
behavioural equivalence is bisimilarity (which is finer than language equivalence).

For a functor F on Set, the image of an F -coalgebra under the unique morphism
is its minimal representative (with respect to the induced behavioural equivalence) that,
in the finite case, can be computed via ordinary partition refinement algorithms. For
functors on categories not equipped with proper image factorization structures (such
as Rel, for instance) the situation is less clear-cut. This observation instantiates to the
well-known fact that for every DA there exists an equivalent minimal automaton, while
for NDAs the uniqueness of minimal automata is not guaranteed.

It is our aim to, on the one hand, offer a procedure to perform ordinary partition re-
finement for categories with suitable factorization structures (such as Set, wherein DAs
are modelled), yielding the minimization of a coalgebra. On the other hand, we want to
offer an alternative procedure for categories without proper factorization structures: we
describe a general setting for determinizations and show how to obtain a single algo-
rithm that does determinization and minimization simultaneously. It is worth to note
that the latter approach holds for functors for which a final coalgebra does not exist.

Our work was motivated by several examples, considering coalgebras in various
underlying categories. In this paper, we take one example in Set and three examples in
K`(T), the Kleisli category for a monad T . More precisely, we consider DAs in Set
and NDAs in Rel, which is K`(P), where P is the powerset monad. Moreover, we
consider linear weighted automata (LWA), over vector spaces for a field F, which can
also be seen as a Kleisli category. For DAs, we recover the usual Hopcroft minimization
algorithm [17]. Instantiation to NDAs gives us (a part of) Brzozowski’s algorithm [7]:
the obtained automata coincide with átomata, that are a new kind of “canonical” NDAs
recently introduced in [8]. For LWAs, we obtain Boreale’s minimization algorithm [6].

Conditional Transition Systems (CTS). To better illustrate our work, we employ transi-
tion systems labelled with conditions that have similarly been studied in [15, 10]. Con-
sider the following transition system where transitions are decorated with conditions
a, ā, where intuitively ā stands for “not a”. Labelled transitions are either present or
absent, depending on whether a or ā hold. Unlabelled transitions are always present

2

(they can be thought of as two transitions labelled a and ā).

1

�� ��

2
a ��

3
ā ��

4 5

6

~~

7
a

~~

ā

8

9 10

(1)

The environment can make one choice, which can not be changed later: it decides
whether to take either a or ā. Regardless of the specific choice of the environment, the
two states 1 and 6 in (1) above will be bisimilar. If a holds then the systems above would
be instantiated to the transition system on the left below. Instead if a does not hold then
the systems we obtain the system on the right. In both cases, the instances of the states
1 and 6 are bisimilar.

a1

�� ��

a2
��

a3

a4 a5

a6
�� !!

a7
��

a8

a9 a10

ā1

�� ��

ā2 ā3
��

ā4 ā5

ā6
�� !!

ā7

!!

ā8

ā9 ā10

(2)

This shows that one possible way to solve the question whether two states are always
bisimilar consists in enumerating all conditions and to create suitably many instantia-
tions of the transition system. Then the resulting transition system can be minimized
with respect to bisimilarity. This is analogous to the steps of determinization and mini-
mization for NDAs. Indeed, the base category of coalgebras of CTSs, as Rel for NDAs,
has no suitable factorization structures. In order to minimize (both NDAs and CTSs),
coalgebras should be transformed via reflections that, in the case of NDAs means deter-
minizing, while for CTS, means instiantiating the automata for all the conditions.

In this work, we will study both constructions in a general setting and also show how
they can be combined into a single algorithm. For CTSs this mean that we will provide
an algorithm that checks if two states are bisimilar under all the possible conditions,
without performing all the possible instantiations.

Now, what would be a canonical representative of the systems above? In other
words, is there a system into which CTS (1) can be mapped? In the example above,
it is relatively easy to see that system would be the transition system consisting of states
x, y, z in (3) below. One would map both 1 and 6 to x, 7 to y, 4, 5, 9 and 10 to z. What
about 2 and 3? We want to map 2 to y whenever a holds and to z whenever ā holds,
dually for 3. In order to do that we need to work in a category where we can represent
such conditional maps. As we will show in the sequel, by modelling CTS as coalgebras
in a Kleisli category this will be possible. The full mapping is represented below.

1

�� ��

// x

��

��

6

�� ��

oo

2
a ��

a ((

ā

3
ā ��

ā //

a
--

y

��

7
a
��

ā
��

oo 8

4 88 ::5 22 z 9oo 10ggee

(3)

3

2 Background material on coalgebras

We assume some prior knowledge of category theory (categories, functors, monads,
limits and adjunctions). Definitions can be found in [2]. However, to establish some no-
tation, we recall some basic definitions. We denote by Ord the class of all ordinals. Let
Set be the category of sets and functions. Sets (and other objects) are denoted by capital
letters X,Y, . . . and functions (and other morphisms) by lower case f, g, . . . , α, β, . . .
We write ∅ for the empty set, 1 for the singleton set, typically written as 1 = {•}, and 2
for the two elements set 2 = {0, 1}. The collection of all subsets of a set X is denoted
by P(X) and the collection of functions from a set X to a set Y is denoted by Y X .
We write g ◦ f for function composition, when defined. The product of two sets X,Y
is written as X × Y , while the coproduct, or disjoint union, as X + Y . These opera-
tions, defined on sets, can analogously be defined on functions, yielding (bi-)functors.
A category C is called concrete if a faithful functor U : C→ Set is given.
Definition 2.1 (Coalgebra). Given an endofunctor F : C → C an (F -)coalgebra is
a pair (X,α), where X is an object of C and α : X → FX a morphism in C. A
(coalgebra) homomorphism f : (X,α) → (Y, β) between two coalgebras α : X →
FX and β : Y → FY is a C-morphism f : X → Y such that Ff ◦ α = β ◦ f .

An F -coalgebra (Ω,ω) is final if for any F -coalgebra (X,α) there exists a unique
homomorphism behX : (X,α) → (Ω,ω). If C is concrete we can define behavioural
equivalence. Given an F -coalgebra (X,α) and x, y ∈ UX , we say that x and y are
behaviourally equivalent, written x ≈ y, if and only if there exist an F -coalgebra (Z, γ)
and a homomorphism f : (X,α) → (Z, γ) such that Uf(x) = Uf(y). If a final F -
coalgebra exists, we have a simpler characterization of behavioural equivalence: x ≈ y
iff UbehX(x) = UbehX(y).

Example 2.2. (DA) A deterministic automaton over the alphabet A is a pair (X,α),
where X is a set of states and α : X → 2 × XA is a function that to each state x
associates a pair α(x) = 〈ox, tx〉, where ox, the output value, determines if a state
x is final (ox = 1) or not (ox = 0); and tx, the transition function, returns for each
a ∈ A the next state. DAs are coalgebras for the functor FX = 2 × XA on Set. The
final coalgebra for this functor is (P(A∗), ω) where P(A∗) is the set of languages over
A and, for a language L, ω(L) = 〈εL, La〉, where εL determines whether or not the
empty word is in the language (εL = 1 or εL = 0, resp.) and, for each input letter a,
La is the derivative of L: La = {w ∈ A∗ | aw ∈ L}. From any DA (X,α), there is a
unique homomorphism behX into P(A∗) which assigns to each state its behaviour (that
is, the language that the state recognizes). Two states are behaviourally equivalent iff
they accept the same language.

Take A = {a, b} and consider the DAs on the right. We call the topmost (X,α)
where X = {x, y, z} and α : X → 2×XA maps x
to the pair 〈1, {a 7→ x, b 7→ y}〉, y to 〈0, {a 7→
y, b 7→ x}〉 and z to 〈1, {a 7→ z, b 7→ y}〉.
The bottom one is (Z, γ) where Z = {3,2} and
γ : Z → 2 × ZA maps 3 to 〈1, {a 7→ 3, b 7→ 2}〉
and 2 to 〈0, {a 7→ 2, b 7→ 3}〉. As an example of a

x

a

++

b
$$

yboo

a

ss z

a
��

boo

3

a

++

b
$$

2
boo

a

ss

coalgebra homomorphism, take the function e : X → Z mapping x, z to 3 and y to 2.

4

Non-deterministic automata (NDA) can be described as coalgebras for the functor
2 × P(−)A (on Set): to each input in A, we assign a set of possible successors states.
Unfortunately, the resulting behavioural equivalence is not language equivalence (as for
DAs), but bisimilarity (i.e., it only identifies states having the same branching structure).
In [25, 14], it is shown that in order to retrieve language equivalence for NDAs, one
should consider coalgebras in a Kleisli category. In what follows, we introduce Kleisli
categories, in which we model NDAs, LWAs and CTSs as coalgebras. While objects in
a Kleisli category are sets, morphisms are generalized functions that incorporate side
effects, such as non-determinism, specified by a monad (see Appendix A or [2, 14, 20]).
Definition 2.3 (Kleisli Category). Let (T : Set → Set, η, µ) (or simply T) be a
monad on Set. Its Kleisli category K`(T) has sets as objects and a morphism X → Y
in K`(T) is a function X → TY . The identity idX is ηX and the composition g ◦ f of
f : X → Y , g : Y → Z (i.e., functions f : X → TY , g : Y → TZ) is µZ ◦ Tg ◦ f .

In the following we will employ overloading and use the same letter to both denote a
morphism in K`(T) and the corresponding function in Set. Furthermore, note that Set
can be seen as a (non-full) subcategory of K`(T), where each function f : X → Y
is identified with ηY ◦ f . Every Kleisli category K`(T) is a concrete category where
UX = TX and Uf = µX ◦ Tf for an object X and a morphism f : X → Y .

To define coalgebras over Kleisli categories we need the notion of lifting of a func-
tor, which we define here directly, but could otherwise be specified via a distributive
law (for details see [14, 23]): a functor F : K`(T) → K`(T) is called a lifting of
F : Set→ Set whenever it coincides with F on Set, seen as a subcategory of K`(T).

Since F and F coincide on objects, F -coalgebras in K`(T) are of the form X →
TFX , where intuitively the functor F describes the explicit branching, i.e. choices
which are visible to the observer, and the monad T the implicit branching, i.e. side-
effects, which are there but cannot be observed directly. In this way, the implicit branch-
ing is part of the underlying category and is also present in the morphism from any
coalgebra into the final coalgebra. As in functional programming languages such as
Haskell, the idea is to “hide” computational effects underneath a monad and to separate
them from the (functional) behaviour as much as possible.
Example 2.4. (NDA) Consider the powerset monad TX = P(X), fully described in
Example A.2 (Appendix A). The Kleisli category K`(P) coincides with the category
Rel of sets and relations. As an example of a lifting, take FX = A×X+1 in Set (with
1 = {•}). The functor F lifts to F in Rel as follows: for any f : X → Y in Rel (that is
f : X → P(Y) in Set), Ff : A×X + 1→ A× Y + 1 is defined as Ff(•) = {•} and
Ff(〈a, x〉) = {〈a, y〉 | y ∈ f(x)}. Non-deterministic automata over the input alphabet
A can be regarded as coalgebras in Rel for the functor F . A coalgebra α : X → FX
is a function α : X → P(A ×X + 1), which assigns to each state x ∈ X a set which
contains • if x is final and 〈a, y〉 for all transitions x a−→ y.
For instance, the automaton on the right is the coal-
gebra (X,α), where X = {1, 2, 3} and α : X →
P({a, b} ×X + {•}) is defined as follows:

1a,b
((b // 2

b
$$

a
��

3a
oo b

hh

α(1) = {〈a, 1〉, 〈b, 1〉, 〈b, 2〉}, α(2) = {〈a, 2〉, 〈b, 3〉} and α(3) = {•, 〈a, 2〉, 〈b, 3〉}. In
[14], it is shown that the final F -coalgebra (in Rel) is the set A∗ of words. For an NDA
(X,α), the unique coalgebra homomorphism behX into A∗ is the relation that links
every state in X with all the words in A∗ that it accepts.

5

Example 2.5. (CTS) We shortly discuss how to specify the example from the introduc-
tion in a Kleisli category. All the details can be found in Appendix C.

We use the input monad TX = XA, whereA is a set of conditions or inputs (for the
example of the introduction A = {a, ā}). Given a function f : X → Y , Tf : TX →
TY is fA : XA → Y A defined for all g ∈ XA and a ∈ A as fA(g)(a) = f(g(a)).

Note that a morphism f : X → Y in the Kleisli category over the input monad is
a function f : X → Y A. For instance, the dashed arrows in the introduction describe a
morphism in K`(T): state 2 is mapped to y if condition a holds and to z if ā holds.

We will use the countable powerset functor FX = Pc(X) as endofunctor, which is
lifted to K`(T) as follows: a morphism f : X → Y in K`(T), which is a function of the
form f : X → Y A, is mapped to Ff : Pc(X)→ Pc(Y) with Ff(X ′)(a) = {f(x)(a) |
x ∈ X ′} for X ′ ⊆ X , a ∈ A. Hence, CTS (1) from the introduction is modelled by a
morphism α : X → Pc(X) in K`(T) (i.e., a function α : X → Pc(X)A), where X =

{1, . . . , 10} and A = {a, ā}. For instance
α(1)(a) = α(1)(ā) = {2, 3}, α(2)(a) =
{4}, α(2)(ā) = ∅. The entire coalgebra α
is represented by the matrix on the right.

α 1 2 3 4 5 6 7 8 9 10

a {2, 3} {4} ∅ ∅ ∅ {7, 8} {9} ∅ ∅ ∅
ā {2, 3} ∅ {5} ∅ ∅ {7, 8} {10} ∅ ∅ ∅

Note that the above α : X → Pc(X)A can be seen as a coalgebra for the functor
FX = Pc(X)A in Set, which yields ordinary A-labelled transition systems. However,
the resulting behavioural equivalence (that is, ordinary bisimilarity) would be inade-
quate for our intuition, since it would distinguish the states 1 and 6. In Appendix C, we
prove that behavioural equivalence of F -coalgebras coincides with the expected one.

3 Minimization via (E,M)-Factorizations

We now introduce the notion of minimization of a coalgebra and its iterative construc-
tion that generalizes the minimization of transition systems via partition refinement.
This notion is parametrized by two classes E and M of morphisms that form a factor-
ization structure for the considered category C.

Definition 3.1 (Factorization Structures). Let C be a category and let E, M be classes
of morphisms in C. The pair (E,M) is called a factorization structure for C whenever

– E and M are closed under composition with isos.
– C has (E,M)-factorizations of morphisms, i.e., each morphism f of C has a fac-

torization f = m ◦ e with e ∈ E and m ∈M. A
e // //

f ��

B
g��

C //
m // D

A
e // //

f ��

B
g��

d

yy
C //

m // D
– C has the unique (E,M)-diagonalization

property: for each commutative square as shown
on the left-hand side with e ∈ E and m ∈ M there exists a unique diagonal, i.e., a
morphism d such that the diagram on the right-hand side commutes (i.e., d ◦ e = f and
m◦d = g). If all morphisms in E are epis we call (E,M) a right factorization structure.

In any category with an (E,M)-factorization structure, the classes E,M are closed
under composition and factorizations of morphisms are unique up to iso (see [2]). For
Set we always consider below the factorization structure (E,M) with E = epimorphims
(surjections) and M = monomorphisms (injections); for the category Setop we take
the corresponding structure (M,E), i.e., where the epic part consists of functions that
in Set are monomorphisms, analogously with E. Morphisms from E are drawn using

6

double-headed arrows A � B, whereas morphisms from M are depicted using arrows
of the form A � B. Whenever the endofunctor F preserves M-morphisms, which we
assume in the following, the factorization structure can be straightforwardly lifted to
coalgebra homomorphisms (see Lemma G.1 in Appendix G or [19]).

Assumption 3.2 We assume that C is a complete category with a right (E,M)-factori-
zation structure and C is E-cowellpowered, i. e., every object X only has a set of E-
quotients (i.e., E-morphisms with domain X up to isomorphism of the codomains). We
also assume that F : C→ C is a functor preserving M, i. e., if m ∈M then Fm ∈M.

Definition 3.3 (Minimization). The minimization of a coalgebra α : X → FX is the
greatest E-quotient coalgebra. More precisely, the minimization is a coalgebra (Z, γ)
with a homomorphism e : (X,α) � (Z, γ) with e ∈ E such that for any other coalgebra
homomorphism e′ : (X,α) � (Y, β) with e′ ∈ E there exists a (necessarily) unique
coalgebra homorphism h : (Y, β)→ (Z, γ) such that e = h ◦ e′.

X

α

��

e // //

e′
++ ++

Z

γ

��

Y
β��

h

33

FY Fh
++

FX
Fe

//

Fe′ 33

FZ

Remark 3.4. (1) Since C is E-cowellpowered and E consists of epimorphisms, the E-
quotient coalgebras of a coalgebra (X,α) form a pre-ordered set: a quotient coalgebra
e′ : (X,α) � (Y ′, β′) is larger than e : (X,α) � (Y, β) iff there exists a coalgebra
homomorphism h : (Y, β) → (Y ′, β′) with e′ = h ◦ e; notice that h is uniquely deter-
mined and h ∈ E by the properties of factorization systems. Thus, the minimization is
simply the greatest element in the pre-order of E-quotient coalgebras of (X,α).
(2) While in Set the minimization is also determined by the strict minimality of the
number of states, this is not necessarily true for other categories, as we will show in
Example 4.10.
(3) We often speak about (Z, γ) (without explicitly referring to the morphism e) or even
just the object Z as the minimization of the given coalgebra.

Theorem 3.8 will show that under Assumption 3.2 the minimization always exists, even
when there is no final coalgebra. When the final coalgebra exists, minimization is the
quotient of the unique morphism.
Proposition 3.5 (Minimization and Final Coalgebra). If the final coalgebra ω : Ω →
FΩ exists, then – for a given coalgebra α : X → FX – the minimization γ : Z → FZ
can be obtained by factoring the unique coalgebra homomorphism behX : (X,α) →
(Ω,ω) into an E-morphism and an M-morphism.

X
α ��

e
// //

behX

++Z
γ��

//
m

// Ω
ω��

FX
Fe //

FbehX

33FZ //
Fm // FΩ

Note that whenever the concretization functor U : C → Set maps M-morphisms to
injections, x, y ∈ UX are behaviourally equivalent (x ≈ y) iff Ue(x) = Ue(y).

7

Example 3.6 (DA, Minimal Automata). Recall that DAs are coalgebras for the functor
FX = 2 × XA on Set (Example 2.2). In this case, minimization corresponds to the
well known minimization of deterministic automata. For instance, the minimization of
the top automaton (X,α) in Example 2.2 yields the automaton (Z, γ) (on the bottom).
We now describe a construction that – given a coalgebra (X,α) – obtains the mini-
mization γ without going via the final coalgebra. This closely resembles the partition
refinement algorithm for minimizing deterministic automata or for computing bisimi-
larity. Whenever the construction below becomes stationary, we obtain the minimiza-
tion. In many examples the constructed sequence might even become stationary after
finitely many steps. The construction is reminiscent of the construction (in the dual set-
ting) of the initial algebra by Adámek [1], for the coalgebraic version see Worrel [29]
and Adámek and Koubek [3]. As in those papers, our construction works for ordinals
beyond ω. Hereafter 1 denotes the final object of C.

Construction 3.7 Recall the final chain W : Ord→ C given by

W0 = 1, Wi+1 = FWi, Wj = lim
i<j

Wj (j a limit ordinal.)

This is the unique chain, up to natural isomorphism, whose connecting morphisms wi,j
fulfil (a) wi+1,j+1 = Fwi,j and (b) for limit ordinals they form a limit cone.

As we do not assume that F has a final coalgebra, the chain W need not con-
verge. Every coalgebra α : X → FX defines a unique canonical cone (αi : X →
Wi)i∈Ord on W with the property that αi+1 = Fαi ◦ α : X → FWi = Wi+1.
Let ei : X � Ei, mi : Ei � Wi be an (E,M)-
factorization of αi. Then, we obtain an ordinal indexed
chain (Ei) of quotients of X with the connecting mor-
phisms ej,i obtained by diagonalization for i < j, as de-
picted on the right.

Xei
wwww

ej
((((

Ei��
mi ��

Ej
�� nj��

ej,i
oooo

Wi Wjwj,i

oo

Theorem 3.8. For every F -coalgebra (X,α), its minimization isEi, for some i ∈ Ord.

More precisely, there exists an ordinal i such that Ei carries a coalgebra structure
ε : Ei → FEi such that ei : (X,α) → (Ei, ε) is the minimization; for details see
the proof of Theorem 3.8 in Appendix G.

By the above theorem, minimizations always exist even when there is no final coal-
gebra. Worrell [29] shows that for a finitary functor F : Set→ Set, the final chain Wi

converges at the final coalgebra in ω+ω iterations. The chain Ei, instead, converges at
the minimization in ω iterations.

Theorem 3.9. Let F : Set → Set be a finitary functor. Then for every F -coalgebra
(X,α), its minimization is Eω .

In our examples, we will use the following construction which is closer to the stan-
dard minimzation algorithm and to any reasonable implementation of Construction 3.7.
Theorem 3.10. The chain (Ei)i∈Ord of Construction 3.7 can also be defined as follows:

(a) Factor the unique morphism d0 : X → 1 into e0 : X � E0 and n0 : E0 � 1.
(b) Given ei : X � Ei, factor di+1 = Fei ◦ α into ei+1 : X � Ei+1 and

ni+1 : Ei+1 � FEi.
(c) For a limit ordinal j, form a limit of the preceding chain (Ei)i<j , obtaining

Êj and êj : X → Êj as mediating morphism. Then factor êj into ej : X � Ej and
nj : Ej � Êj .

8

By instantiating the above construction to the case of DAs, we obtain the standard
minimization algorithm by Hopcroft [17], as will be illustrated in Appendix D.
Example 3.11. (LWA) We study automata with weights taken from a field (linear
weighted automata, see [6]). Consider the Kleisli category K`(T) for the monad
T : Set → Set where TX = (FX)ω , where (FX)ω denotes the set of all mappings
fromX into F with finite support. For a function f : X → Y in Set define Tf : TX →
TY as follows: let a ∈ (FX)ω , then Tf(a)(y) =

∑
{a(x) | x ∈ X, f(x) = y}. If

we restrict to finite sets, we obtain the category of finite-dimensional vector spaces: a
Kleisli morphism X → Y for finite sets X,Y is a matrix with entries from F, where
the columns are indexed by X and the rows are indexed by Y . If we view a Kleisli
morphism as a function TX → TY we obtain exactly the linear maps from an |X|-
dimensional vector space into a |Y |-dimensional vector space (both over F).

For a set A of labels we take the endofunctor FX = A×X + 1 on Set where • –
denoting termination – stands for the only element of 1. We lift F to K`(T) as follows:
a morphism f : X → Y in K`(T), which is a function of the form f : X → (FY)ω ,
is mapped to Ff : A × X + 1 → A × Y + 1 with Ff(〈a, x〉)(〈a, y〉) = f(x)(y),
Ff(•)(•) = 1 and 0 otherwise. Hence transitions carry labels from A (for the explicit
branching) and weights (for the implicit branching).

An example LWA forA = {a} and F = R is shown below (graphical representation
on the right and coalgebra α : X → (RA×X+1)ω , in matrix form, on the left):

〈a, 1〉
〈a, 2〉
〈a, 3〉
•

1 2 3
3/2 0 1/2
1/2 1 1/2
−3/2 0 −1/2

2 2 2


1a,1/2

~~

a,−3/2

��

//

a,3/2

��

2

2

a,1

HH

//
2 2 3

a,1/2

ee

a,1/2

ii

a,−1/2

VV

oo

As factorization structure we use as E-morphisms the matrices of full row rank (i.e.,
the monos) and as M-morphisms the matrices of full column rank (i.e., the epis). Let E
be the morphism (matrix) into the minimization: two vectors x,y satisfy Ex = Ey iff
they are equivalent in the sense of [6] (see Appendix F for an elaboration of this claim
and for an example minimization involving the automaton above).

4 Determinization via Reflections
For several categories there are no suitable factorization structures. This can for in-
stance be observed in Rel, wherein we model non-deterministic automata as coalge-
bras. It is known that minimization of non-deterministic automata is not unique. The
usual procedure is to first construct the corresponding deterministic automaton (via the
powerset construction), which is then minimized in a second step. In this section, we
will give a general framework for determinization-like constructions in the form of re-
flections, which can also be applied to other settings, such as conditional transition sys-
tems. For non-deterministic automata we will obtain an automaton which is “backward-
deterministic”, i.e., for every state and each letter there is exactly one predecessor. Then
we will show how reflections can be combined with the minimization.

9

Definition 4.1 (Reflective Subcategory). Let S be a subcategory of C. Let X be an
object of C. An S-reflection for X is a morphism ηX : X → X ′, where X ′ is an S-
object, such that for every other morphism f : X → Y with Y in S there exists a unique
S-morphism f ′ : X ′ → Y such that f = f ′ ◦ ηX . S is called a reflective subcategory
of C whenever each C-object has an S-reflection.

This definition is equivalent to saying that the functor embedding S into C has a left
adjoint L : C→ S called reflector. The morphisms ηX form the unit of this adjunction.
In our examples in K`(T), the unit η of the reflection will not coincide with the natural
transformation η of the monad T . It is well-known that for a monad T : Set→ Set the
category Set is coreflective in K`(T), whereas here we need a reflective subcategory.

Example 4.2. (NDA) The category Setop is a reflective subcategory of Rel. The re-
flector L is the contravariant powerset functor, i.e., for a relation R : X → Y we have
L(R) : P(X)→ P(Y) in Setop where L(R) maps Y ′ ⊆ Y toR−1(Y ′). The reflection
ηX : X → P(X) relates an element x ∈ X with X ′ ⊆ X if and only if x ∈ X ′.

(CTS) For K`(T) where T is the input monad, we have the following situation:
since every function f : X → Y A corresponds to a function f ′ : A × X → Y by
currying, the category K`(T) is isomorphic to the co-Kleisli category over the comonad
V X = A × X on Set. Hence, Set is both reflective and coreflective in K`(T). The
reflection is the Kleisli morphism ηX : X → A × X with ηX(x)(a) = 〈a, x〉. The
reflector L coincides with V on objects and takes the product of the state set X with
the label set A. More concretely, for a morphism f : X → Y in K`(T) we obtain a
morphism Lf : A×X → A× Y in Set with Lf(〈a, x〉) = 〈a, f(x)(a)〉.

Definition 4.3 (Reflection of Coalgebras). Let S be a reflective subcategory of a cat-
egory C and let L : C → S be the reflector. Assume that S is preserved by the endo-
functor F . Then, given a coalgebra α : X → FX in C we reflect it into S, obtaining a
coalgebra α′ : LX → FLX by the following construction:

X
α //

ηX ��

FX
ηFX ��

FηX
))

LX
Lα //

α′
44LFX

ζX // FLX

Note that the existence of a unique morphism ζX is guaranteed by Definition 4.3,
since F preserves S and hence FLX is an object of S.

That the above construction indeed gives a reflection of coalgebras for F is a special
instance of a known result (see for instance Hermida and Jacobs [16], Corollary 2.15).
In Appendix G we give a proof for the convenience of the reader.

Proposition 4.4. Let S be a reflective subcategory of C, which is preserved by the
endofunctor F . The category of F -coalgebras in S is a reflective subcategory of the
category of F -coalgebras in C.

A limit in a reflective subcategory S is also a limit in C. Hence, if the final coalgebra
exists in the subcategory S, it is also the final coalgebra in C. In particular, whenever S
is complete, the chain (Wi) (Construction 3.7) in S will coincide with the chain in C.

10

Example 4.5. (NDA) We will first study the effect of a reflection on a non-deterministic
automaton, for which we use the reflective subcategory Setop of Rel (see Exam-
ple 4.2). The effect of the reflection on coalgebras is a powerset automaton which
is however “backwards-deterministic”: more specifically, given a coalgebra α : X →
A × X + 1 in Rel, the reflected coalgebra α′ : P(X) → A × P(X) + 1 is a relation
which lives in Setop and, when seen as a

13 123

a,b

ii
b //boo

a
��

23
a

kk

a
��

b // 3

1a,b
((b //

b 66

a
OO

12 2 ∅a,b
((

a
OOfunction, maps 〈a,X ′〉 with X ′ ⊆ X to

{x ∈ X | ∃x′ ∈ X ′ : 〈a, x′〉 ∈ α(x)}
(the set of a-predecessors of X ′) and • to
{x ∈ X | • ∈ α(x)} (the set of final states,
the unique final state of the new automaton). For instance, the reflection of the NDA
(X,α) in Example 2.4 is the above backwards-deterministic automaton. Note that the
above automaton has a single final state (consisting of the set of final states of the orig-
inal automaton) and every state has a unique predecessor for each alphabet letter. For
this reason, it can be seen as a function α′ : A × Y + 1 → Y (i.e., an algebra for the
functor FY = A× Y + 1). Note that Set is not a reflective subcategory of Rel – it is
instead coreflective – and hence both categories have different final coalgebras. How-
ever for the reflective subcategory Setop, we have exactly the same final coalgebra as
for Rel, which, as shown in [14], is the initial algebra in Set.

(CTS) Now we come back to the Kleisli category K`(T) over the input monad T
(see Example 2.5) and coalgebras with endofunctor Pc. As discussed in Example 4.2,
Set is a reflective subcategory of K`(T). On coalgebras reflection has the following
effect: given a coalgebra α : X → Pc(X) in K`(T) we obtain a reflected coalgebra
α′ : A × X → Pc(A × X) in Set with α′(〈a, x〉) = {〈a, x′〉 | x′ ∈ α(x)(a))}. That
is, we generate the disjoint union of |A| different transition systems, each of which de-
scribes the behaviour for some a ∈ A. For instance, the reflection of CTS (1) (formally
introduced in Example 2.5, see also the introduction) is CTS (2) from the introduction.

We now consider other forms of factorizations that do not conform to Definition 3.1.

Definition 4.6 (Pseudo-Factorization). Let C be a category and let S be a reflective
subcategory with a factorization structure (E,M). Let f : X → Y be a morphism of C
where Y is an object of S. Take the unique morphism
f ′ : LX → Y with f ′ ◦ ηX = f (which exists due to the
reflection) and factor f ′ = m ◦ e with m ∈ M, e ∈ E.
Then the decomposition f = m ◦ c with c = e ◦ ηX is
called the (E,M)-pseudo-factorization of f .

XηX
vv

f

((
LX

f ′
//

e
22 22

Y

,,
m

AA

Example 4.7. (NDA) Consider Setop as the reflective subcategory of Rel (Exam-
ple 4.2). Given a relation R : X → Y , let Z = {R−1(y) | y ∈ Y } ⊆ P(X) be the
set of pre-images of elements of Y under R. Now define relations Rc : X → Z with
Rc(x) = {Z ∈ Z | x ∈ Z} and Rm : Z→ Y with Rm(Z) = {y ∈ Y | Z = R−1(y)}.
Note that Rm lies in E, and Rm ◦ Rc =
R. As an example consider the relation R
between sets X = {a, b, c, d} and Y =
{1, 2, 3, 4, 5} visualized on the left (where
R(a) = R(b) = {1, 2}, R(c) = {3},
R(d) = {3, 4}). Its pseudo-factorization

a 1

b 2

c 3

d 4

5

a 1

b {a, b} 2

c {c, d} 3

d {d} 4

∅ 5

11

into Rc and Rm is shown on the right. Here Rm lies in E, mapping elements of Y to
their preimage under R in P(X).

(CTS) For Set, the reflective subcategory of K`(T), where T is the input monad, we
use the classical factorization structure with surjective and injective functions. Given a
morphism f : X → Y in K`(T), seen as a function f : X → Y A, we define Y ′ = {y ∈
Y | ∃x ∈ X, a ∈ A : f(x)(a) = y}. Then fc : X → Y ′A with fc(x)(a) = f(x)(a)
and fm : Y ′ → Y A with fm(y)(a) = y for all a ∈ A, i.e., fm is simply an injection
without side-effects. Note that fm ◦ fc = f in K`(T).

Note that pseudo-factorizations enjoy the diagonalization property as in Defini-
tion 3.1 whenever g is a morphism of S (see Lemma G.5 in Appendix G). However
pseudo-factors are not necessarily closed under composition with the isos of C.

Assumption 4.8 We assume that S is a reflective subcategory of C. We also assume
that an endofunctor F of C is given preserving S. And S and F fulfil Assumption 3.2.

Theorem 4.9. Given a coalgebra α : X → FX in C, the following four constructions
obtain the same result (we also call this result the minimization):
(i) Apply Construction 3.7 using the (E,M)-pseudo-factorizations of Definition 4.6.

(ii) Reflect α into the subcategory S according to Definition 4.3 and then apply Con-
struction 3.7 using (E,M)-factorizations.

(iii) Apply the construction of Theorem 3.10 using (E,M)-pseudo-factorizations.
(iv) Reflect α into the subcategory S and then apply the construction of Theorem 3.10

using (E,M)-factorizations.

Note that we do not have to require here that C is complete. As will become clear
in the proof of Theorem 4.9 (see Appendix G) Construction 3.7 and the construction
in Theorem 3.10 can be straightforwardly adapted to pseudo-factorizations instead of
factorizations: The quotients Ei and the chain ej,i of connecting morphisms obtained
in variants (i)–(iv) are identical and live in the subcategory S. Since S is reflective in C
we obtain the same results when taking the limit in C or in S, respectively.

Variant (iii) allows to tightly integrate minimization with a determinization-like con-
struction, i.e., to do both simultaneously instead of sequentially. For practical purposes
it is usually the most efficient solution, since it avoids building the final chain of Con-
struction 3.7 and the reflected coalgebra of Definition 4.3 which both usually involve
significant combinatorial explosion.

Example 4.10. (NDA) Theorem 4.9 suggests two ways to build the minimization of an
NDA (and thus checking the equivalence of its states). We first apply Construction (iv)
to the NDA (X,α) in Example 2.4 and then we illustrate Construction (iii).

123

a,b

��
b // 23

a

��
b // 3 ∅

a,b

��
aoo

Recall that the reflection of (X,α) into
Setop is (P(X), α′) in Example 4.5. By ap-
plying Construction 3.7 (with the factoriza-
tion structure of Setop), we remove from
(P(X), α′) the states that are not related to any word in the final coalgebra or, in other
words, those states from which there is no path to the final state. Intuitively, we per-
form a backwards breadth-first search and the factorizations make sure that unreachable
states are discarded. The resulting automaton is illustrated above.

12

Construction (iii) can be understood as an efficient implementation of Construc-
tion (iv): we do not build the entire (P(X), α′), but we construct directly the above
automaton by iteratively adding states and transitions. We start with state 3, then we
add 23 and ∅ and finally we add 123. All the details are shown in Appendix E.

The minimized NDA can be thought of as a canonical representative of its equiv-
alence class. The quest for canonical NDAs (also referred to as “universal”) started in
the seventies and, recently, an interesting kind of canonical NDAs (called átomata) has
been proposed in [8]. In Appendix B, we show that our minimized NDAs coincide with
átomata of [8]. This provides a universal property that uniquely characterizes átomata
(up to isomorphism), namely the átomaton of a regular language is the minimization of
any NDA accepting the language.

It is worth noting that the automaton obtained above is precisely the automaton
in the third step of the well-known Brzozowski algorithm for minimization of non-
deterministic automata [7], which, in a nutshell, works as follows: 1) given an NDA
reverse it, by reversing all arrows and exchanging final and initial states; 2) determinize
it, using the subset construction, and remove unreachable states; 3) reverse it again;
4) determinize it, using the subset construction, and remove unreachable states. In our
example, we are doing steps 1)–3) but without the explicit reversal. Our automata do
not have initial states, but steps 1)–3) are independent on the specific choice of initial
states, because of the two reversals.

Example 4.11. (CTS) Recall the coalgebraic description of CTS given in Example 2.5:
the base category is K`(T), where T is the input monad and F = Pc is the count-
able powerset functor. CTS (1) of the introduction is the coalgebra α : X → Pc(X)
represented by the table in Example 2.5.

We describe the algorithm in Theorem 4.9(iii) with the pseudo-factorization of Ex-
ample 4.7 (Construction (iv) only consists in the standard minimization of the reflected
coalgebra α′, that is CTS (2) of the introduction). We start by taking the unique mor-
phism d0 : X → 1 into the final object of K`(T), that is 1 = {•}. At the iteration i, we
obtain ei via the pseudo-factorization of di = ni◦ei, and then we build di+1 = Fei◦α.
The iterations of the algorithm are shown in the following tables below.

d0 : X → 1 = {•} = E0

d0, e0 1 2 3 4 5 6 7 8 9 10

a • • • • • • • • • •
ā • • • • • • • • • •

d2 : X → Pc(E1), E2 = {∅, {∅}, {∅, {•}}}
d2, e2 1 2 3 4 5 6 7 8 9 10

a {∅, {•}} {∅} ∅ ∅ ∅ {∅, {•}} {∅} ∅ ∅ ∅
ā {∅, {•}} ∅ {∅} ∅ ∅ {∅, {•}} {∅} ∅ ∅ ∅

d1 : X → Pc(E0) = {∅, {•}} = E1

d1, e1 1 2 3 4 5 6 7 8 9 10

a {•} {•} ∅ ∅ ∅ {•} {•} ∅ ∅ ∅
ā {•} ∅ {•} ∅ ∅ {•} {•} ∅ ∅ ∅

d3 : X → Pc(E2), E3 = {∅, {∅}, {∅, {∅}}}
d3, e3 1 2 3 4 5 6 7 8 9 10

a {∅, {∅}} {∅} ∅ ∅ ∅ {∅, {∅}} {∅} ∅ ∅ ∅
ā {∅, {∅}} ∅ {∅} ∅ ∅ {∅, {∅}} {∅} ∅ ∅ ∅

Each table represents both di and ei : X � Ei (the morphisms ni such that di = ni ◦ei
are just the obvious injections). At the iterations 0 and 1, E0 = 1 and E1 = Pc(E0). At
the iteration 2 instead, E2 6= Pc(E1), since nothing maps to {{•}} ∈ Pc(E1).

13

The algorithm reaches a fixed-point at iteration 3, since there is an iso ι : E2 → E3.
The minimization (E3,Pc(ι) ◦ n3) is depicted below.

{∅, {∅}} // 66{∅} // ∅

It is easy to see that the above transition system is isomorphic to the one from the
introduction having states x, y, z. Moreover, the coalgebra morphism e3 : (X,α) �
(E3,Pc(ι) ◦ n3), illustrated in the table above, corresponds to the dashed arrow of the
introduction, where 2 is mapped to {∅} (= y) if a holds, and to ∅ (= z) if ā holds.

5 Conclusion, Related and Future Work

In this work, we have introduced a notion of minimization, which encompasses several
concepts of “canonical” systems in the literature, and abstract procedures to compute it.
Our approach only relies on (pseudo-)factorization structures and it is completely in-
dependent of the base category and of the endofunctor F . Together with appropriate re-
flections, this allows to compute minimizations of interesting types of systems that, for
the purpose of minimization, cannot be regarded as coalgebras over Set, such as non-
deterministic automata, linear weighted automata and conditional transition sytems.

For non-deterministic automata, which we model as coalgebras in Rel follow-
ing [14], the result of the proposed algorithm coincides with the one of the third step
of Brzozowski’s algorithm [7]. The resulting automata are not minimal in the num-
ber of states (it is well-known that there exists no unique minimal non-deterministic
automata), but they correspond to átomata, recently introduced in [8] (as shown in Ap-
pendix B).

The construction of linear weighted automata as coalgebras in a Kleisli category is
new, while the resulting algorithm coincides with the one in [6]. The example of condi-
tional transition systems is completely original, but it has been motivated by the work in
[15, 10], which introduces notions of bisimilarity depending on conditions (which are
fixed once and for all). The setting of [10] is closer to ours, but no algorithm is given
there. Our algorithm can be made more efficient by considering CTSs where condi-
tions are boolean expressions. We already have a prototype implementation performing
the fixed-point iteration based on binary decision diagrams. Moreover, our coalgebraic
model of CTSs provides a notion of quantitative bisimulations (Definition C.2 in Ap-
pendix C) that can be seen as a behavioural (pseudo-)metric. We plan to study how our
approach can be integrated to define and compute behavioural metrics.

As related work, we should also mention that the notion of minimization general-
izes simple [26] and minimal [13] coalgebras in the case where the base category is
Set with epi-mono factorizations. Moreover, several previous studies (e.g. [19, 9, 28])
have pointed out the relationship between the construction of the final coalgebra (via
the final chain [29, 3]) and the minimization algorithm. For instance, in case of regular
categories the chain of quotients ei : X � Ei (Construction 3.7) corresponds to the
chain Ki � X × X of their kernel pairs, which is precisely the relation refinement
sequence of Staton [?, Section 5.1]. However, none of these works employed reflec-
tions for determinization-like constructions, that is exactly what allows us to minimize

14

coalgebras in categories not equipped with a proper factorization structure, such as non-
deterministic automata and conditional transition systems.

In future work we will study general conditions ensuring finite convergence: it is
immediate to see that for any functor on Set with epi-mono factorizations, the sequence
Ei of a finite coalgebra converges in a finite number of iterations. However, discovering
general conditions encompassing all the examples of this paper seems to be non-trivial.

Preliminary research suggests that by integrating our approach with well-pointed
coalgebras [4], we might obtain an explicit account of initial states. Indeed, given the
reachable part of a pointed coalgebra for a set functor (which is defined through the
canonical graph of Gumm [12]), the result of its minimization is a well-pointed coalge-
bra, i. e., a pointed coalgebra with no proper subcoalgebra and no proper quotient.
Acknowledgements. We would like to thank Ana Sokolova, Paolo Baldan and Walter
Tholen for answering our questions and giving generous feedback.

References

1. J. Adámek. Free algebras and automata realizations in the language of categories. Com-
ment. Math. Univ. Carolin., 15:589–602, 1974.

2. J. Adámek, H. Herrlich, and G.E. Strecker. Abstract and Concrete Categories – The Joy of
Cats. Wiley, 1990.

3. J. Adámek and V. Koubek. On the greatest fixed point of a set functor. TCS, 150:57–75,
1995.

4. J. Adámek, S. Milius, L. S. Moss, and L. Sousa. Well-pointed coalgebras. In Proc. of
FOSSACS ’12. Springer, 2012. LNCS, to appear.

5. M. Boreale. Weighted bisimulation in linear algebraic form. In Proc. of CONCUR ’09, pages
163–177. Springer, 2009. LNCS 5710.

6. J. A. Brzozowski. Canonical regular expressions and minimal state graphs for definite events.
In Mathematical Theory of Automata, volume 12(6), pages 529–561. Polytechnic Press, NY,
1962.

7. J.A. Brzozowski and H. Tamm. Theory of átomata. In Proc. of DLT ’11, pages 105–116.
Springer, 2011. LNCS 6795.

8. G.L. Ferrari, U. Montanari, and E.Tuosto. Coalgebraic minimization of HD-automata for the
pi-calculus using polymorphic types. TCS, 331(2–3):325–365, 2005.

9. M. Fitting. Bisimulations and boolean vectors. In Advances in Modal Logic, volume 4, pages
1–29. World Scientific Publishing, 2002.

10. H.P. Gumm. From T -coalgebras to filter structures and transition systems. In Proc. of
CALCO ’05, pages 194–212. Springer, 2005. LNCS 3629.

11. H.P. Gumm. On minimal coalgebras. Applied Categorical Structures, 16:313–332, 2008.
12. H.P. Gumm. Copower functors. TCS, 410(12-13):1129–1142, 2009.
13. I. Hasuo, B. Jacobs, and A. Sokolova. Generic trace semantics via coinduction. LMCS,

3(4:11):1–36, 2007.
14. M. Hennessy and H. Lin. Symbolic bisimulations. TCS, 138(2):353–389, 1995.
15. C. Hermida and B. Jacobs. Structural induction and coinduction in a fibrational setting.

Information and Computation, 145:107–152, 1998.
16. J.E. Hopcroft, R. Motwani, and J.D. Ullman. Introduction to Automata Theory, Languages,

and Computation (3rd Edition). Wesley, 2006.
17. B. Klin. Structural operational semantics for weighted transition systems. In Semantics and

Algebraic Specification, pages 121–139. Springer, 2009. LNCS 5700.

15

18. A. Kurz. Logics for Coalgebras and Applications to Computer Science. PhD thesis,
Ludwigs-Maximilians-Universität München, 2000.

19. S. Mac Lane. Categories for the Working Mathematician. Springer, 1971.
20. J. MacDonald and W. Tholen. Decomposition of morphisms into infinitely many factors.

In Proc. of Category Theory – Applications to Algebra, Logic and Topology, number 962 in
Lecture Notes in Mathematics, pages 175–189. Springer, 1981.

21. R. Milner and D. Sangiorgi. Barbed bisimulation. In Proc. of ICALP ’92, pages 685–695.
Springer, 1992. LNCS 623.

22. P.S. Mulry. Lifting theorems for Kleisli categories. In Proc. of MFPS ’93, pages 304–319.
Springer, 1993. LNCS 802.

23. J. Power and D. Turi. A coalgebraic foundation for linear time semantics. In Proc. of CTCS
’99, volume 29 of ENTCS, pages 259–274, 1999.

24. J.J.M.M. Rutten. Universal coalgebra: a theory of systems. TCS, 249:3–80, 2000.
25. S. Staton. Relating coalgebraic notions of bisimulation. In Proc. of CALCO ’09, pages

191–205. Springer, 2009. LNCS 5728.
26. S. Staton. Relating coalgebraic notions of bisimulation. LMCS, 7(1), 2011.
27. J. Worrell. On the final sequence of a finitary set functor. TCS, 338(1-3):184–199, 2005.

16

This paper is equipped with an extended appendix, where we provide some addi-
tional (but standard) definitions and back up some of the claims made in the main text
of the paper, especially concerning the correspondence to related formalisms (átomata
and linear weighted automata – LWA). Furthermore we present more minimization ex-
amples, for DAs, NDAs and LWAs, and give the proofs for all the results in the paper.
The appendix is simply an addendum, which is not strictly necessary to understand the
main part of the paper.

In more detail, we present in Appendix A additional definitions, especially the (stan-
dard) notion of monad. Then in Appendix B we discuss the relationship between our
notion of canonicity with the átomata of [8]. In Appendix C we work out the example
on conditional transition systems in more detail and show that the coalgebraic notion of
behavioural equivalence coincides with the intuitive notion of the introduction. Then in
Appendices D, E and F we will spell out in detail the minimization construction for three
examples (deterministic automata, non-deterministic automata and linear weighted au-
tomata). In Appendix F we additionally show that the equivalence arising in our setting
coincides with the one of [6]. Finally, we give the proofs in Appendix G.

A Additional Definitions (Monad)

We will now formally define the notion of monad (see also [2, 14, 20]).

Definition A.1 (Monad). A monad on Set is an endofunctor T : Set→ Set together
with two natural transformations:

– a unit natural transformation η : Id ⇒ T , that is morphisms ηX : X → TX for
each set X satisfying suitable naturality conditions;

– a multiplication natural transformation µ : T 2 ⇒ T , that is morphisms µX : TTX →
X for each set X again satisfying suitable naturality conditions.

The unit and multiplication have to satisfy the follow compatibility conditions:

TX
ηTX //

id &&

T 2X
µX
��

TX
TηXoo

id

xx

TX

T 3X
TµX //

µTX ��

T 2X
µX
��

T 2X
µX

// TX

Example A.2. In the running examples of this paper we use the following monads:
(LWA) Monad assigning weights from a field: let F be a field and define T : Set→

Set with TX = (FX)ω , which is the set of all mappings from X to F of finite support,
i.e., only finitely many function values may be different from 0. For a function f : X →
Y in Set define Tf : (FX)ω → (FY)ω as follows: let a ∈ (FX)ω , where a has finite
support, then

Tf(a)(y) =
∑
{a(x) | x ∈ X, f(x) = y}

The unit morphisms are ηX : X → (FX)ω with

ηX(x)(y) =

{
1 if x = y
0 otherwise

17

Furthermore, the multiplication morphisms have the form µX :
(
F(FX)ω

)
ω
→ (FX)ω

with
µX(g)(x) =

∑
f∈(FX)ω

g(f) · f(x)

for a function g ∈
(
F(FX)ω

)
ω

. This definition implies that morphism composition in
the corresponding Kleisli category corresponds to matrix multiplication.

(NDA) Powerset monad: let T : Set → Set be the powerset monad with TX =
P(X) for a setX . Furthermore T acts on a function f : X → Y as follows: Tf : P(X)→
P(Y) with Tf(X ′) = {y ∈ Y | ∃x ∈ X ′ : f(x) = y}.

The unit morphisms are ηX : X → P(X) with ηX(x) = {x}. Furthermore the
multiplication morphisms have the form µX : P(P(X))→ P(X) with

µX(Z) =
⋃
Z∈Z

Z, Z ⊆ P(X)

i.e., we take the union of all the sets contained in Z.

It is interesting to remark that the monad T of LWA can be defined also on a semir-
ing S (in place of the field F). The coalgebraic models that we have developed for F,
could be extended to S (but in some cases, the algorithm will not be guaranteed to termi-
nate anymore). By considering more general structures, such as commutative monoids
or semilattices, we could still define endofunctors on Set [11, 18], but the lack of mul-
tiplicative structures forbids to define (the multiplication of) a monad. Coalgebras for
such functors on Set are (some kind of) weighted transition systems, but the associ-
ated notion of equivalence keeps into account the branching structure [11, 18], while
for LWA we are interested in (weighted) language equivalence.

B Canonical NDA, Minimization and Átomata

Given a regular language L over an alphabet A, minimal deterministic automata can be
thought of as canonical acceptors of the given language L. Does an analogous notion
of canonicity exist for non-deterministic automata? Several works (starting in the sev-
enties) have tried to answer this question and recently a new kind of canonical NDA has
been introduced in [8]. In this appendix, we show that the coalgebraic notion of min-
imization instantiated to NDAs (discussed in Example 4.10) provides the same notion
of canonicity as [8].

First, we report the notion of atoms and átomata from Section 3 of [8].
For a non-empty regular language L, let L1, L2 . . . , Ln be the quotients of L (recall

that for any word w ∈ A∗, the quotient of L w.r.t. w is w−1L = {u ∈ A∗ | wu ∈ L}
and, moreover, each regular language has finitely many different quotients). An atom of
L is a language of the form L̂1∩ L̂2∩· · ·∩ L̂n (where L̂i is either Li or its complement
Li) such that (1) it is non-empty and (2) at least one of the L̂i is not complemented. It
is easy to prove that there exists exactly one atom containing ε.

18

Definition B.1 (Átomata). Let L be a regular language and L1, L2, . . . , Ln be its
atoms. The átomaton of L (AL) is the non-deterministic automaton having the atoms as
states. The transition relation is defined (for all a ∈ A and atoms Li, Lj) as Li

a→ Lj
iff aLj ⊆ Li and the final state is the only atom containing ε.

In order to describe the correspondence between átomata and our notion of mini-
mization for NDA, it is convenient to first observe the following property of reflections
of NDAs (described in Example 4.5).

Lemma B.2. Let (P(X), α′) be the reflection of an NDA (X,α). For all Y ∈ P(X),
the language recognized by Y is

behP(X)(Y) =
⋂
x′∈Y

behX(x′) ∩
⋂
x′′ /∈Y

behX(x′′)

where behX(x′) is the language recognized by x′ and behX(x′) is its complement.

Proof. Recall that the unit ηX : X → P(X) (of the reflection) relates x to all the
sets Y ∈ P(X) containing x. Moreover observe that ηX is a coalgebra morphism
ηX : (X,α) → (P(X), α′). Since there is a unique morphism into a final coalgebra,
then behP(X) ◦ ηX = behX . This means that for all words w ∈ A∗ and states x′ ∈ X:
(1) if w ∈ behX(x′), then exists Y ∈ P(X) such that x′ ∈ Y and w ∈ behP(X)(Y),
(2) if w /∈ behX(x′), then for all Y ∈ P(X) such that x′ ∈ Y , w /∈ behP(X)(Y).
Then observe that since behP(X) is a morphism in Setop, each word w ∈ A∗ is recog-
nized by exactly one state in P(X). More formally, for all w ∈ A∗,
(3) there exists Y ∈ P(X) such that w ∈ behP(X)(Y);
(4) for all Y,Z ∈ P(X), if w ∈ behP(X)(Y) and w ∈ behP(X)(Z) then Y = Z.
Suppose that w ∈

⋂
x′∈Y behX(x′) ∩

⋂
x′′ /∈Y behX(x′′). By (3) there exists a Z ∈

P(X) such that w ∈ behP(X)(Z). Since w ∈
⋂
x′∈Y behX(x′), by (1), we have that

Y ⊆ Z. Since w ∈
⋂
x′′ /∈Y behX(x′′), by (2), we have that Z ⊆ Y . That is w ∈

behP(X)(Y).
If w ∈ behP(X)(Y) then, by (2), w ∈

⋂
x′∈Y behX(x′).

If w ∈ behX(x′′) for some x′′ /∈ Y , then by (1), there exists a Z such that x′′ ∈ Z
and w ∈ behP(X)(Z). Since Z 6= Y , by (4), we have that w /∈ behP(X)(Y). This
means that, if w ∈ behP(X)(Y) then w ∈

⋂
x′′ /∈Y behX(x′′). ut

For an example, consider the NDA (X,α) and its reflection (P(X), α′), depicted
below on the left and right, respectively.

1a,b
((b // 2

b
$$

a
��

3a
oo b

hh 13 123

a,b

ii
b //boo

a
��

23
a

kk

a
��

b // 3

1a,b
((b //

b 66

a
OO

12 2 ∅a,b
((

a
OO

The languages recognized by the states of (P(X), α′) can be computed from the lan-
guages recognized by the states of (X,α). For instance, behP(X)(3) = {ε} = behX(3)∩
behX(1) ∩ behX(2) and behP(X)(23) = a∗b = behX(2) ∩ behX(3) ∩ behX(1).

19

As we have shown in Example 4.10, the minimization of an NDA (X,α) can be
obtained from the reflection (P(X), α′), just by removing those states that accept the
empty language (i.e., those states that cannot reach the final state). For instance, the
minimization of the NDA above is depicted below.

123

a,b

��
b // 23

a

��
b // 3 ∅

a,b

��
aoo

It is easy to see that in a minimization all the states accept different languages (actually
disjoint languages) and therefore we can safely identify states of a minimization with
the language that they recognize. Intuitively, the states of a minimization are all the
atoms plus the state ∅ that recognizes the language behP(X)(∅) =

⋂
x′′∈X behX(x′′)

(that is the complement of all the languages recognized by all the states of the original
NDA). Note that this language is not an atom by condition (2) of the definition of atom.

Hereafter, we formalize the above intuition. Recall that we model NDA with alpha-
bet A as relation α : X → A×X + 1 where (1) X is the set of states, (2) 1 = {•} and
• ∈ α(x) iff x ∈ X is a final state, and (3) (a, xj) ∈ α(xi) iff xi

a→ xj .

Proposition B.3. Let (X,α) be an NDA with states x1, x2, . . . , xn accepting the lan-
guages L1, L2, . . . , Ln, respectively. Let Z = {z1, . . . zm} be the set of non-empty lan-
guages of the form L̂1∩L̂2∩· · ·∩L̂n where L̂i is either Li or Li. Let γ : Z → A×Z+1
be the relation defined as (1) • ∈ γ(zi) iff ε ∈ zi and (2) (a, zj) ∈ δ(zi) iff azj ⊆ zi.

Then (Z, γ) is the minimization of (X,α).

Proof. According to Example 4.10, the minimization of an NDA (X,α) can be built
by the reflection (P(X), α′) by simply removing those states Y ∈ P(X) that accept the
empty language. Let us call (Z ′, δ′) the resulting automaton, i.e., Z ′ ⊆ P(X) and δ′ is
equal to α′ restricted to Z ′.

By Lemma B.2, each Y ∈ Z ′ recognizes a non-empty language of the form L̂1 ∩
L̂2 ∩ · · · ∩ L̂n and since all these languages are distinct, we can identify each state
Y ∈ Z ′ with the language that it recognizes. More precisely, for each Y ∈ Z ′ ⊆ P(X)
there is a corresponding (non-empty) language in Z defined as

behZ′(Y) =
⋂
xi∈Y

Li ∩
⋂
xj /∈Y

Lj

Analogously, each z ∈ Z is a language such that z = L̂1 ∩ L̂2 ∩ · · · ∩ L̂n that
corresponds to a set of states in Z ′ ⊆ P(X) defined as

Yz = {xi | L̂i = Li in z}

It is easy to see that this correspondence defines an isomorphism between Z and Z ′,
that is

behZ′(Yz) = z YbehZ′ (Y) = Y

Let us now check that also the relations δ and δ′ are isomorphic. Recall that δ′ is just
the restriction (on Z ′) of α′ defined as in Example 4.5, that is

20

(1) • ∈ δ′({x ∈ X | • ∈ α(x)}),
(2) 〈a, Y ′〉 ∈ δ′({x ∈ X | ∃x′ ∈ Y ′ s.t. 〈a, x′〉 ∈ α(x)}).

Let z ∈ Z be a language of the shape L̂1 ∩ L̂2 ∩ · · · ∩ L̂n.
Then, • ∈ δ′(Yz) iff Yz = {x ∈ X | • ∈ α(x)}, that is iff Yz is the set of all and

only the final states. By definition of Yz this means that all those xi with L̂i = Li are
final, while all those xj with L̂j = Lj are not final. Thus ε ∈ Li (for L̂i = Li) and
ε /∈ Lj (for L̂j = Lj) which means ε ∈ z (i.e., • ∈ δ(z)).

Finally, we should prove that 〈a, Y ′〉 ∈ δ′(Yz) iff 〈a, behZ′(Y ′)〉 ∈ δ(z).
Observe that, by hypothesis, 〈a, behZ′(Y ′)〉 ∈ δ(z) iff a(behZ′(Y

′)) ⊆ z. There-
fore, we show that if 〈a, Y ′〉 ∈ δ′(Yz) then a(behZ′(Y

′)) ⊆ z. The other direction
can be proved analogously. Suppose that 〈a, Y ′〉 ∈ δ′(Yz), then Yz is the set of all
states xi such that xi

a→ x′ ∈ Y ′. Now, suppose that w ∈ behZ′(Y ′) then, by Lemma
B.2, for all x′ ∈ Y ′, w ∈ behX(x′) and for all x′′ /∈ Y ′, w /∈ behX(x′′). Therefore,
aw ∈ behX(xi) for all xi ∈ Yz . Analogously we can prove that aw /∈ behX(xj) for all
xj /∈ Yz: observe that for all xj /∈ Yz , xj

a→ x′j iff x′j /∈ Y ′ (otherwise xj ∈ Yz) and
thus w /∈ behX(x′j). By Lemma B.2, this means that aw ∈ behZ′(Yz) = z. ut

Now what is the exact relationship between AL (that is the átomaton of L) and our
minimization?

Let DL be the minimal DA corresponding toL: its states are the quotientsL1, . . . , Ln
of L and each state Li recognizes itself. Let NL be the (NDA) minimization of DL. By
virtue of Proposition B.3, the states of NL are exactly the atoms of L (with the extra
state

⋂
i∈1...n Li corresponding to ∅ in the construction of Example 4.10). Since tran-

sition relation and final states are defined in the same way, NL is AL (plus the extra
state).

C Conditional Transition Systems, in detail

In the introduction, we have given an intuitive description of conditional transition sys-
tems (CTSs). In this appendix, we first give a formal definition of CTSs and their be-
havioural equivalence and then we show all the details of their coalgebraic modelling.

Given a set of conditions A, a conditional transition system consists of a set of
states X and a transition function α : X → Pc(X)A. Intuitively x′ ∈ α(x)(a) (written
x

a→ x′) means that x can make a transition into x′ if the condition a ∈ A holds. Two
states x and y are behaviourally equivalent if they are bisimilar under all the possible
conditions a ∈ A. This can be formalized by defining the instantiation of a CTS (X,α)
as the “unlabeled” transition function

α′ : A×X → Pc(A×X)

such that α′(a, x) = {(a, x′) | x a→ x′}. We write (a, x) → (a, x′) to mean that
(a, x′) ∈ α′(a, x).

Definition C.1. A relation R ⊆ X ×X is a bisimulation under the condition a ∈ A if
whenever (x, y) ∈ R:

21

– if (a, x)→ (a, x′) then there exists y′ ∈ X such that (a, y)→ (a, y′) and (x′, y′) ∈
R;

– if (a, y)→ (a, y′) then there exists x′ ∈ X such that (a, x)→ (a, x′) and (x′, y′) ∈
R.

We say that x and y are bisimilar under the condition a (written x ∼a y) if there exists
a bisimulation R under a such that (x, y) ∈ R. We say that x and y are instantiated
equivalent (written x ≈i y) iff for all conditions a ∈ A, x ∼a y.

It is interesting to note that this kind of definition is analogous to the one of barbed
congruence of [22]: first, one defines bisimilarity and then take the intersection with
respect to all possible contexts (that in the case of CTS are all the possible conditions).

As an example consider the following CTS (X,α) for A = {a, ā} (unlabeled tran-
sition can be thought of two transitions labeled with a and ā).

1

�� ��

2

a
��

3

ā
��

4 5

6

~~

7
a

~~

ā

8

9 10

The instantiation of the above is the following α′ : A×X → Pc(A×X).

a1

�� ��

a2
��

a3

a4 a5

ā1

�� ��

ā2 ā3
��

ā4 ā5

a6
�� !!

a7
��

a8

a9 a10

ā6
�� !!

ā7

!!

ā8

ā9 ā10

Note that 1 ∼a 6 and 1 ∼ā 6 and thus 1 ≈i 6. Moreover 2 ∼a z, but 2 6∼ā 7.
We can give also an alternative “more efficient” characterization of≈i that avoids to

instantiate the CTS w.r.t. all the conditions. We make use of conditional relations, that
are functions R : X ×X → P(A). Intuitively R assigns to each pair of states (x, y) the
set of conditions under which x and y are equivalent. By looking at ordinary relations
as functions R : X ×X → 2, it is easy to see that they are a special case of conditional
relations where |A| = 1. Moreover, we can generalize the notion of equivalence as
follows. A conditional equivalence is a conditional relation R : X ×X → P(A) such
that for all x, y, z ∈ X and a ∈ A: (1)R(x, x) = A (reflexivity), (2)R(x, y) = R(y, x)
(symmetry) and (3) if a ∈ R(x, y) and a ∈ R(y, z), then a ∈ R(x, z) (transitivity).

Definition C.2. A conditional equivalence R : X ×X → P(A) is a conditional bisim-
ulation if for all x, y ∈ X and a ∈ R(x, y):

– if x a→ x′ then there exists y′ ∈ X such that y a→ y′ and a ∈ R(x′, y′);
– if y a→ y′ then there exists x′ ∈ X such that x a→ x′ and a ∈ R(x′, y′).

We say that x and y are conditionally bisimilar (written x ≈c y) if there exists a condi-
tional bisimulation R such that R(x, y) = A.

22

For instance, the following table (where “. . . ” is an abbreviation for for 4, 5, 8, 9, 10)
shows a conditional bisimulation for the CTS α above:

R 1 2 3 . . . 6 7

1 {a, ā} ∅ ∅ ∅ {a, ā} ∅
2 ∅ {a, ā} ∅ {ā} ∅ ∅
3 ∅ ∅ {a, ā} ∅ ∅ {ā}
. . . ∅ {ā} {a} {a, ā} ∅ ∅
6 {a, ā} ∅ ∅ ∅ {a, ā} ∅
7 ∅ {a} {ā} ∅ ∅ {a, ā}

Since R(1, 6) = {a, ā} = A, then 1 ≈c 6.
It is interesting to observe that, differently from Definition C.1, Definition C.2 is

really coinductive and indeed, as we will show later, conditional bisimulations are in
close correspondence with coalgebra morphisms. Definition C.1 instead consists in first
instantianting the CTSs and then considering the ordinary bisimilarity. We will show
that ≈c coincides with ≈i and thus, in order to check them, we could either consider
conditional bisimulations or first instantiate and then compute ordinary bisimilarity. In-
tuitively, these correspond to the Constructions (iii) and (iv) of Theorem 4.9. Hereafter,
we will prove that ≈c = ≈i by showing that the behvaioural equivalence (≈) induced
by our coalgebraic construction coincides with both.

The input monad. For a given set A of conditions (inputs) define T : Set → Set with
TX = XA for a setX . For a function f : X → Y in Set define Tf = fA : XA → Y A

with fA(ϕ)(a) = f(ϕ(a)) for all ϕ : A→ X and a ∈ A.
The unit arrows are ηX : X → XA with ηX(x)(a) = x for all a ∈ A. Further-

more the multiplication µX : (XA)A → XA is defined as µX(ϕ)(a) = ϕ(a)(a) for all
functions ϕ : A→ XA.

The Kleisli category for the input monad. The Kleisli category K`(T) over the input
monad T has sets as objects and morphisms f : X → Y are functions f : X → Y A.
The identity is the unit η described above and the composition of morphisms is defined
as follows: for all morphisms f : X → Y and g : Y → Z (i.e., functions f : X → Y A

and g : Y → ZA), g ◦ f : X → Z is the function of the shape X → ZA such that
g ◦ f(x)(a) = g(f(x)(a))(a), for all x ∈ X and a ∈ A. The following dashed arrow
describes a morphism in K`(T): the state 2 is mapped to y if condition a holds and to
z if ā holds.

1

�� ��

{a,ā}
// x

��

��

6

�� ��

{a,ā}
oo

2
a
��

a))

ā

3
ā ��

ā //

a

--

y

��

7
a

��

ā

��

{a,ā}
oo 8

4

{a,ā}

66885 {a,ā} 11 z 9
{a,ā}
oo 10

{a,ā}
hh

{a,ā}

gg

23

F -coalgebras. Consider the endofunctor F : K`(T) → K`(T) defined as follows: for
all sets X , FX = Pc(X) and for all arrows f : X → Y in K`(T), Ff : Pc(X) →
Pc(Y) is

Ff(X ′)(a) = {f(x)(a) | x ∈ X ′}

for all X ′ ⊆ X , a ∈ A. It is easy to see that each F -coalgebra α : X → FX corre-
sponds to a CTS and viceversa each CTS corresponds to an F -coalgebra.

Proposition C.3. F -coalgebras are in one-to one correspondence with CTSs.

A homomorphism betweenF -coalgebras (X,α) and (Y, β) is a morphisms f : X →
Y in K`(T) such that the following diagram commutes in K`(T).

X

α
��

f
// Y

β
��

F (X)
Ff

// F (Y)

By spelling out the definition of Ff and ◦, we have that a function f : X → Y A is a
F -homomorphism iff

β(f(x)(a))(a) = {f(x′)(a) | x′ ∈ α(x)(a)}.

For instance, the dashed arrow above is an F -homomorphism.
Given a morphism f : X → Y in K`(T), we can define the conditional equivalence

Rf : X ×X → P(A) as R(x, y) = {a | f(x)(a) = f(y)(a)}.

Proposition C.4. If f is a F -homomorphism, then Rf is a conditional bisimulation.

Proof. We check that Rf satisfies the conditions of Definition C.2.
For all x, y ∈ X and a ∈ Rf (x, y) (i.e., such that f(x)(a) = f(y)(a)), we have

that {f(x′)(a) | x′ ∈ α(x)(a)} = β(f(x)(a))(a) = β(f(y)(a))(a) = {f(y′)(a) |
y′ ∈ α(y)(a)}, because f is a F -homomorphism.

Since {f(x′)(a) | x′ ∈ α(x)(a)} ⊆ {f(y′)(a) | y′ ∈ α(y)(a)}, then if x a→ x′ then
exists y′ ∈ X such that y a→ y′ and f(x′)(a) = f(y′)(a), that means a ∈ Rf (x′, y′).

Since {f(y′)(a) | y′ ∈ α(y)(a)} ⊆ {f(x′)(a) | x′ ∈ α(x)(a)}, then if y a→ y′ then
exists x′ ∈ X such that x a→ x′ and f(x′)(a) = f(y′)(a), i.e., a ∈ Rf (x′, y′). ut

Viceversa, given a conditional bisimulation R, there exists a F -homomorphism εR.
Given x ∈ X and a ∈ A, let [x]aR be the set {y | a ∈ R(x, y)}. Let X/R be the set
{[x]aR | x ∈ X, a ∈ A} and εR : X → (X/R)A be the function defined as εR(x)(a) =
[x]aR for all x ∈ X and a ∈ A. Finally, consider αR : (X/R) → (X/R)A defined as
αR([x]aR)(b) = {[x′]aR | x

a→ x′} if a = b and ∅ otherwise.

Proposition C.5. If R is a conditional bisimulation, then εR : (X,α)→ (X/R,αR) is
a F -homomorphism.

24

Proof. We first prove that αR is well defined, i.e., that for all y ∈ [x]aR, αR([x]aR)(b) =
αR([y]aR)(b). If b 6= a, then trivially both are equal to ∅. If b = a, then αR([y]aR)(a) =

{[y′]aR | y
a→ y′}. Since a ∈ R(x, y) and R is a conditional bisimulation, then

{[x′]aR | x
a→ x′} = {[y′]aR | y

a→ y′}. The fact that εR is a F -homomorphism
follows immediately from the fact that αR([x]aR)(a) = {[x′]aR | x

a→ x′}. ut

With the two above propositions, it is easy to see that the coalgebraic definition of
behavioural equivalence (≈) coincides with conditional bisimilarity (≈c).
Theorem C.6. ≈ = ≈c
Proof. If x ≈ y, then there exists an F -coalgebra (Z, γ) and an F -homomorphism
f : (X,α)→ (Z, γ) such that f(x) : A→ Z and f(y) : A→ Z are the same function.
Therefore, by definition, Rf (x, y) = A and, by Proposition C.4, Rf is a conditional
bisimulation. This means x ≈c y.

If x ≈c y, then there exists a conditional bisimulation R such that R(x, y) = A. By
Proposition C.5, εR : (X,α) → (X/R,αR) is a F -homomorphism. Since R(x, y) =
A, εR(x) : A→ X/R and εR(y) : A→ X/R are the same function, i.e., x ≈ y. ut

Reflection. As explained after Definition 2.3, Set can be regarded as a subcategory of
K`(T). For this aim, consider the embedding functor J : Set → K`(T) mapping all
sets X in J(X) = X and all functions f : X → Y in J(f) : X → Y = µY ◦ f (that
is the function J(f) : X → Y A such that J(f)(x)(a) = f(x)). Intuitively a morphism
f : X → Y in Kleisli is also a morphism in Set iff it ignores the inputs in A.

K`(T)
L

((
⊥ Set
J

ii

The embedding J has a left adjoint L : K`(T) → Set mapping all sets X in L(X) =
A × X and all arrows f : X → Y in K`(T) in the arrow Lf : A × X → A × Y in
Set with Lf(〈a, x〉) = 〈a, f(x)(a)〉. The unit of the adjunction is the Kleisli arrow
ηX : X → A × X with ηX(x)(a) = 〈a, x〉. Note that this has nothing to do with the
unit of the input monad described above. For all Kleisli arrows f : X → Y , the unique
arrow f ′:A×X → Y (in Set) such that the following diagram commutes (in K`(T))
is f ′(〈a, x〉) = f(x)(a).

X
ηX //

f

��

A×X

J(f ′)
{{

Y

Reflecting Coalgebras. Recall the endofunctor F : K`(T)→ K`(T) introduced above.
It is easy to see that if a Kleisli morphism f is a morphism in Set (i.e., it ignores the
inputs inA) then also Ff is a morphism in Set. This means that F preserves the reflec-
tive subcategory Set and thus we can apply the construction shown in Definition 4.3
in order to reflect F -coalgebras. Given a Kleisli arrow α : X → Pc(X), we can get the
function

α′ = A×X Lα // A× Pc(X)
ζX // Pc(A×X)

25

where ζX is the unique function such that the following diagram commutes in K`(T),

Pc(X)
ηPc(X)

//

FηX
��

A× Pc(X)

J(ζX)
ww

Pc(A×X)

that is, for all X ′ ⊆ X and a ∈ A

ζX(〈a,X ′〉) = FηX(X ′)(a) = {ηX(x)(a) | x ∈ X ′} = {〈a, x〉 | x ∈ X ′}.

Since Lα(〈a, x〉) = 〈a, α(x)(a)〉 for all a ∈ A and x ∈ X , then

α′(〈a, x〉) = {〈a, x′〉 | x′ ∈ α(x)(a)}

that is α′ is exactly the instantiation defined at the beginning of this section.

Theorem C.7. ≈ = ≈i

Proof. Since Set is a reflective subcategory of K`(T), then a final colagebra of Pc in
Set is a final coalgebra for F in K`(T). We can build the unique morphism from a
generic F -coalgebra (X,α) to a final coalgebra as follows: first we take the coalgebra
morphism ηX : (X,α)→ (A×X,α′) (where α′ is the reflection of α) and then we take
the unique morphism behA×X from α′ to a final coalgebra. Therefore, two states x, y ∈
X are in ≈ iff that is for all a ∈ A, behA×X(ηX(x)(a))(a) = behA×X(ηX(y)(a))(a).
By definition of ηX , this just means that behA×X(a, x)(a) = behA×X(a, y)(a) for all
a ∈ A. We can think of behA×X as a morphism in Set (that ignores the second input
parameter a) and thus the above condition becomes behA×X(a, x) = behA×X(a, y)
for all a. By standard results in coalgebras, we know that the unique morphism into a
final coalgebra for the endofunctor Pc equates all and only the “bisimilar” states (where
by “bisimilar” we mean in the standard sense). Thus, x ≈ y iff (a, x) is “bisimilar” to
(a, y) for all a ∈ A. ut

D Additional Examples: Deterministic Automata

Example D.1. (DA) We apply the construction of Theorem 3.10 to the DA (X,α) of
Example 2.2, depicted below.

x

a

++

b
$$

yboo

a

ss z

a
��

boo

At the beginning, we take d0 : X → 1 as the unique function into the final object
1 = {•} (it maps x, y, z to the singleton •). By factoring d0, we obtain e0 : X � 1
and n0 : 1 � 1 (both uniquely defined). The surjection e0 corresponds to the partition
{x, y, z} (where all the states are equivalent).

26

Then, d1 : X → 2 (= 2 × 1A) maps x and z to 1 (since both states are final) and
y to 0. By factoring d1, we obtain e1 : X � {3,2} (mapping x, z to 3 and y to 2)
and ni : {3,2} � 2. The surjection ei corresponds to the partition {x, z}, {y} (i.e.,
the partition equating x and z).

Finally, d2 : X → 2 × {3,2}A, maps x and z to the pair 〈1, {a 7→ 3, b 7→ 2}〉
and y to 〈0, {a 7→ 2, b 7→ 3}〉. By factoring d2, we obtain e2 : X � {3,2} (mapping
x, z to 3 and y to 2) and n2 : {3,2} � 2 × {3,2}A. The coalgebra ({3, 2}, n2)
is depicted below.

3

a

++

b
$$

2
boo

a

ss

Note that n2 is exactly the function γ of Example 2.2 and thus ({3, 2}, n2) is the DA
(Z, γ) which, as shown in Example 3.6, is the minimization of (X,α).

E Additional Examples: Non-deterministic Automata

Example E.1. (NDA) We are considering the non-deterministic automaton of Exam-
ple 2.4. We are working in the category K`(P) = Rel and FX = A×X + 1. We will
in the following denote a relation α : X → A×X+1 by a Boolean matrix with column
indices fromX and row indices fromA×X+1. Composition of morphisms is done via
matrix multiplication (using logical or for addition and logical and for multiplication).
In our specific example α looks as follows. Note that 〈a, 1〉 is abbreviated by a1, etc.

α =

1 2 3
a1
b1
a2
b2
a3
b3
•



1 0 0
1 0 0
0 1 1
1 0 0
0 0 0
0 1 1
0 0 1


The final object of Rel is the empty set ∅ and hence d0 = e0 is a 0 × 3-matrix. In the
next step we obtain d1 : X → 1 (= A× ∅+ 1).

d1 = Fe0 ◦ α =
1 2 3

•
(
0 0 1

)
We compute the pseudo-factorization (see Example 4.7) and obtain e1 = d1. In the

next step we get d2 : X → A× 1 + 1.

d2 = Fe1 ◦ α =

a1 b1 a2 b2 a3 b3 •
a•
b•
•

 0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

 ◦ α =

1 2 3
a•
b•
•

0 0 0
0 1 1
0 0 1


Again, via the pseudo-factorization we obtain e2 = d2. By iterating again, we obtain
d3 : X → A× (A× 1 + 1) + 1.

27

d3 = Fe2 ◦ α =

1 2 3
aa•
ba•
ab•
bb•
a•
b•
•



0 0 0
0 0 0
0 1 1
1 1 1
0 0 0
0 1 1
0 0 1


=

2×3 ◦
aa•
ba•
ab•
bb•
a•
b•
•



1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1


◦

1 2 3
0 0 0
0 1 1
1 1 1
0 0 1


2

×
3

◦

= n3 ◦ e3

By iterating the construction once again we obtain d4 : X → A×{2,×, �, ◦}+ 1. Via
pseudo factorization we obtain n4, e4 with e4 = e3, i.e., we have reached the fixed-
point.

d4 = Fe3 ◦ α =

1 2 3
a2
b2
a×
b×
a3
b3
a◦
b◦
•



0 0 0
0 0 0
0 1 1
1 1 1
1 1 1
1 1 1
0 0 0
0 1 1
0 0 1


=

2×3 ◦
a2
b2
a×
b×
a3
b3
a◦
b◦
•



1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1


◦

1 2 3
0 0 0
0 1 1
1 1 1
0 0 1


2

×
3

◦

= n4 ◦ e4

The morphism n4 = γ gives us the following minimization (compare with the automa-
ton in Example 4.10).

3

a,b

��
b // ×

a

��
b // ◦ 2

a,b

��
aoo

Intuitively, we are performing a breadth-first backwards search, starting from the set of
final states.

F Additional Examples: Linear Weighted Automata

Example F.1. (LWA) We come back to Example 3.11 and consider the following linear
weighted automaton from [6] with X = {1, 2, 3}, A = {a} and F = R (graphical
representation on the right and coalgebra α : X → (RA×X+1)ω , in matrix form, on the

28

left):

〈a, 1〉
〈a, 2〉
〈a, 3〉
•

1 2 3
3/2 0 1/2
1/2 1 1/2
−3/2 0 −1/2

2 2 2


1a,1/2

~~

a,−3/2

��

//

a,3/2

��

2

2

a,1

HH

//
2 2 3

a,1/2

ee

a,1/2

ii

a,−1/2

VV

oo

There is only a single label a, hence we omit labels in the following.
The final object is the empty set and hence d0 = e0 is a 0 × 3-matrix. In the next

step, we obtain:

d1 = Fe0 ◦ α =
1 2 3

•
(
2 2 2

)
The morphism d1 is a matrix of full row rank (i.e., an element of E) and hence e1 = d1.
In the next step we obtain:

d2 = Fe1 ◦ α =
1 2 3

◦
•

(
1 2 1
2 2 2

)
Note that d2 is an element of E, since its row vectors are linearly independent and hence
e2 = d2. In the next step we obtain:

d3 = Fe2 ◦ α =

1 2 3
�
2

•

1 2 1
1 2 1
2 2 2


Note that d3 is not of full row rank, since it contains two identical row vectors. We
factor out a morphism of M as follows:

d3 =

� 2
�
2

•

1 0
1 0
0 1

 ◦ 1 2 3(
1 2 1
2 2 2

)
�
2

= n3 ◦ e3

Since e3 = e2, we have reached a fixed-point and set γ = n3. The corresponding
transition system looks as follows:

0 �oo a,1
//

a,1

��

2 //
1

This linear weighted automaton is equivalent to the one obtained in [6].

Comparison to Boreale’s Linear Weighted Automata
We will compare the setting of Example 3.11 with the linear weighted automata of

Boreale [6], where we use the reals as field.

29

Definition F.2 (Weighted Automaton in Linear Form [6]). A linear weighted au-
tomaton (LWA for short) is a triple L = (V, {Ta}a∈A, ϕ), where V is a (finite-dim-
ensional) vector space over R, and Ta : V → V , for a ∈ A, and ϕ : V → R are linear
maps.

We assume in the following that the vector space has as elements mappings of the
form X → R for a finite set X , i.e., vectors are elements of TX in the notation of
Example 3.11.

First, we show how to convert LWAs into coalgebras and vice versa. Given an LWA
L we define the following coalgebra α : X → TFX , where TFX = (RA×X+1)ω:

α(x)(〈a, y〉) = Ta(ηX(x))(y)

α(x)(•) = ϕ(ηX(x))(•)

Note that ηX(x), where ηX is the unit of the monad, stands for the function that maps
x to 1 and all other elements to 1. It corresponds to a unit vector.

Given a coalgebra α : X → TFX we define an LWA with vector space (RX)ω ,
Ta(u)(y) = (α · u)(〈a, y〉) and ϕ(u) = (α · u)(•). Here we abuse the notation and
interpret α as a matrix where columns are indexed by X and rows by A×X + 1. Then
α · u denotes the multiplication of matrix α with vector u.

Definition F.3 (Weighted L-Bisimulation [6]). A relation R on V is called weighted
L-bisimulation whenever
1. R is linear, i.e., there exists a subspace U of V such that for u,v ∈ V it holds that

uRv ⇐⇒ u− v ∈ U .
2. Whenever uRv for u,v ∈ V , then

(a) ϕ(u) = ϕ(v)
(b) Ta(u)RTa(v) for all a ∈ A.

Two vectors u,v are L-bisimilar (u sinL v) if there exists an L-bisimulation R with
uRv.

Instead of using the definition above, an alternative definition is to require an LWA
L′ on a vector space V ′ and a linear map f : V → V ′, such that:
(i) ϕ′(f(u)) = ϕ(u);

(ii) f ◦ Ta = T ′a ◦ f .
Then two vectors u, v are in relation if they have the same image under f .

Given such a linear map f , one can construct the subspace U in Definition F.3 as
the kernel of f and show that it has the required properties. On the other hand, if we
are given an L-bisimulation R, one can construct f as a surjective linear mapping that
has U as its kernel. Then one defines the linear weighted automaton L′ via T ′a(f(u)) =
f(Ta(u)) and ϕ′(f(u)) = ϕ(u). Due to the conditions of Definition F.3 one can show
that T ′a and ϕ′ are well-defined.

Now Conditions (i) and (ii) above correspond to the condition for coalgebra mor-
phisms, requiring that Ff ◦ α = α′ ◦ f , where α is the coalgebra for L and α′ the
coalgebra for L′.

It is straightforward to show that two vectors are L-bisimilar iff their images in the
minimization coincide. Finally, note that Boreale’s algorithm computes the orthogonal
complement U⊥ rather than U itself, similar to our algorithm.

30

G Proofs

Lemma G.1. Assume that the functor F preserves M-morphisms. Then (E,M) is a
factorization structure for the category of F -coalgebras, whenever this holds for the
underlying category C.

Proof. We check that the conditions of Definition 3.1 are satisfied. Note that the isos
in the underlying category agree with the isos in the category of F -coalgebras. Hence
closure under composition with isos follows trivially.

The factors of a coalgebra morphism f : (X,α)→ (Z, γ) are obtained by factoring
f : X → Z into f = m ◦ e with e : X → Y , m : Y → Z. Since F preserves M-
morphisms Fm ∈M and hence the coalgebra β can be obtained as the unique diagonal
morphism.

X
α��

e // // Y
β��

// m // Z
γ
��

FX
Fe // FY //

Fm // FZ

Finally, take a commuting square in the category of coalgebras as depicted below and
show that there is a diagonal morphism.

X
α ��

e // //

f
��

Y
β��

//
g
//

d

��

Z
γ
��

FX
Fe //

Ff
��

FY //
Fg
//

Fd

��

FZ

U
δ��

@@
m

@@

FU
@@

Fm

@@

The morphism d is obtained as the unique diagonal morphism for the upper square
consisting of e, g, f,m. Note that Fdmakes the lower square commute. It is left to show
that everything commutes, specifically that δ ◦ d = Fd ◦ β. Consider the commuting
square (γ ◦ g) ◦ e = Fm ◦ (Ff ◦ α) in the underlying category. It can be checked that
both δ◦d and Fd◦β are diagonals for this square and hence they coincide. Specifically:

(δ ◦ d) ◦ e = δ ◦ (d ◦ e) = δ ◦ f = Ff ◦ α
(Fd ◦ β) ◦ e = Fd ◦ (β ◦ e) = Fd ◦ Fe ◦ α

= F (d ◦ e) ◦ α = Ff ◦ α
Fm ◦ (δ ◦ d) = (Fm ◦ δ) ◦ d = γ ◦m ◦ d = γ ◦ g
Fm ◦ (Fd ◦ β) = F (m ◦ d) ◦ β = Fg ◦ β = γ ◦ g

This shows that the factorization structure of the underlying category can be lifted to
the category of F -coalgebras. ut

Lemma G.2. Let h : (X,α) → (Y, β) be a coalgebra homomorphism. Then for the
canonical cones αi : X →Wi and βi : Y →Wi we have

αi = (X
h //Y

βi //Wi) for every i ∈ Ord.

31

Proof. Easy by transfinite induction on i. ut

Remark G.3. Observe that, by transfinite induction, each Wi is an F -algebra via
wi+1,i : FWi = Wi+1 → Wi. Moreover it is not difficult to prove that for every F -
coalgebra (X,α) the morphisms αi : A → Wi are the unique coalgebra-to-algebra
homomorphisms, i. e., for every ordinal i, αi is unique such that αi = wi+1,i ◦Fαi ◦α.

Theorem 3.8.
For every F -coalgebra (X,α), its minimization is Ei, for some i ∈ Ord.

Remark G.4. More explicitly, there exists an ordinal number i such that Ei carries the
structure of an F -coalgebra such that ei : X � Ei is the greatest quotient coalgebra,
i. e., for every coalgebra homomorphism e′ : X � Y in E there exists a unique coalge-
bra homomorphism h : Y → Ei such that ei = h ◦ e′.

Proof. Since C is E-cowellpowered the chain (Ei) of quotients stabilizes, i. e., for some
ordinal i the quotients ei and ei+1 are the same (more precisely, ei+1,i : Ei+1 � Ei is
an isomorphism). We obtain a commutative square

X

α

��

ei+1
// // Ei+1

mi+1

��

d

��

FX

Fei
��

FEi //
Fmi

// FWi

(4)

and since Fmi ∈ M and ei+1 ∈ E we obtain the unique diagonal d. Thus, we have an
F -coalgebra

ε = (Ei
e−1
i+1,i
//Ei+1

d //FEi) (5)

such that ei : X � Ei is a homomorphism

ε ◦ ei = d ◦ ei+1 = Fei ◦ α. (6)

Observe that the canonical cone εj : Ei → Wj (j ∈ Ord) of the coalgebra Ei is
formed by

εj = mj ◦ ei,j for all j ≤ i and by εj = mj ◦ e−1
j,i for all j ≥ i. (7)

Now let β : Y → FY be a coalgebra with a homomorphism e′ : X � Y in E. Then
the canonical cone βi : Y → Wi satisfies βi ◦ e′ = αi by Lemma G.2. By diagonaliza-
tion we obtain h : Y → Ei:

X
e′ // //

ei

��

Y

βi

��

h

}}

Ei // mi

// Wi

(8)

32

We prove that h is a coalgebra homomorphism:

ε ◦ h = Fh ◦ β.

Indeed, this follows from e′ being an epimorphism:

(ε ◦ h) ◦ e′ = ε ◦ ei by (8)
= Fei ◦ α by (6)
= Fh ◦ Fe′ ◦ α by (8)
= (Fh ◦ β) ◦ e′ e′ homomorphism.

ut

Theorem 3.9. Let F : Set → Set be a finitary functor. Then for every F -coalgebra
(X,α), its minimization is Eω .

Proof. We only need to prove that eω+1,ω:Eω+1 → Eω is an isomorphism. Indeed,
Worrell [29] proved that the connecting morphismwω+1,ω : Wω+1 →Wω is a monomor-
phism. Thereforewω+1,ω◦mω+1 is a monomorphism and we obtain by diagonalization:

X
eω // //

eω+1

��

Eω

mω

��

d

ww

Eω+1
//
wω+1,ω◦mω+1

// Wω

It is easy to show that d is an isomorphism with inverse eω+1,ω . ut

Theorem 3.10. The chain (Ei)i∈Ord of Construction 3.7 can also be defined as follows:
(a) Factor the unique morphism d0 : X → 1 into e0 : X � E0 and n0 : E0 � 1.
(b) Given ei : X � Ei, factor di+1 = Fei ◦ α into ei+1 : X � Ei+1 and

ni+1 : Ei+1 � FEi.
(c) For a limit ordinal j, form a limit of the preceding chain (Ei)i<j , obtaining

Êj and êj : X → Êj as mediating morphism. Then factor êj into ej : X � Ej and
nj : Ej � Êj .

Proof. We will denote the arrows and objects obtained in the alternative construction
by e′i, ni, E

′
i. More specifically e′0 : X � E′0, n0 : E′0 � 1 are obtained by factoring

the unique morphism X → 1 and e′i+1 : X � E′i+1, ni : E
′
i+1 � FE′i are obtained by

factoring Fe′i ◦ α.
(a) Clearly since e′0, n0 and e0,m0 arise by factoring the same arrow, we can choose

e′0 = e0.
(b) We now proceed by induction: we have mi+1 ◦ ei+1 = αi+1 = Fαi ◦ α =

F (mi ◦ ei) ◦ α = Fmi ◦ Fei ◦ α = Fmi ◦ Fe′i ◦ α = Fmi ◦ ni+1 ◦ e′i+1. Since

33

F preserves M-morphisms and M-morphisms compose we have that Fmi ◦ ni+1 is
contained in M. Factorizations are unique and so we can choose e′i+1 = ei+1.

(c) Take Êj as the limit of the preceding chain and obtain êj : X → Êj , m̂j : Êj →
Wj as mediating morphisms (for the limit of the Ei and the limit of the Wi (i < j)
respectively). Now both arrows αj = mj ◦ ej and m̂j ◦ êj are mediating morphisms
for the cone (αi)i<j of X over the chain (Wi)i<j . Hence, due to uniqueness mj ◦ ej =
m̂j ◦ êj .

Next, consider the category Mor(C), whose objects are morphisms of C and ar-
rows are commuting squares. In Mor(C), m̂j is the limit object of the ω-chain

m0 ← m1 ← m2 ← · · · ← mi ← . . .

where each morphism mi+1 → mi consists of a pair of morphisms of C: ei+1,i and
wi+1,i. (The fact that m̂j is the limit can be shown by standard diagram chasing.) It is
known from [21] that the full subcategory of M-arrows (seen as objects) is a reflective
subcategory of Mor(C). Hence m̂j as the limit object is in M. Note however that êj
is not necessarily contained in E. But by factoring êj into an E-morphisms e′j and an
M-morphism, we obtain e′j = ej . ut

Proposition 4.4. Let S be a reflective subcategory of C, which is preserved by the
endofunctor F . The category of F -coalgebras in S is a reflective subcategory of the
category of F -coalgebras in C.

Proof. The reflection morphism is constructed as described in Definition 4.3. Note es-
pecially that FLX is an object of S, since F preserves S, and hence the morphism ζX
exists.

As in Definition 4.3 let α′ = ζX ◦ Lα. Now assume that f : (X,α) → (Y, β) with
β : Y → FY is a coalgebra morphism where β is an morphism of S.

X
α //

ηX
��f

FX

ηFX
��

Ff

��

FηX

&&

LX
Lα //

f ′

zz

LFX
ζX //

g

yy

FLX

Ff ′tt
Y

β
// FY

Let f ′ be the unique morphism in S for which f ′ ◦ ηX = f and let g be the unique
morphism in S such that g ◦ ηFX = Ff . We have to show that Ff ′ ◦ α′ = β ◦ f , i.e.,
f is indeed a coalgebra morphism.

We first show that the square consisting of Lα, g, f ′, β commutes: it holds that
(g ◦Lα)◦ηX = g ◦ηFX ◦α = Ff ◦α = β ◦f = (β ◦f ′)◦ηX . Since ηX is the unit of
a reflection and by uniqueness of the mediating morphism we obtain g ◦ Lα = β ◦ f ′.

Next we show that the triangle consisting of the morphisms g, ζX , Ff commutes:
g ◦ ηFX = Ff = Ff ′ ◦ FηX = (Ff ′ ◦ ζX) ◦ ηFX . With the same argument as above
(but for the unit ηFX) it follows that g = Ff ′ ◦ ζX .

Hence Ff ′ ◦ α′ = Ff ′ ◦ ζX ◦ Lα = g ◦ Lα = β ◦ f ′. ut

34

Lemma G.5 (Diagonalization for Pseudo-Factorizations). Let S be a reflective sub-
category of C and let (E,M) be a factorization structure for S. Assume a commuting
diagram in C as shown on the left below where c = e ◦ ηX with e ∈ E and m ∈ M.
Furthermore let g be a morphism of S.

A
c // //

f ��

B
g
��

C //
m // D

A
c // //

f ��

B
g
��

d

yy
C //

m // D

Then there exists a unique diagonal morphism d which is contained in S and which
makes the two triangles commute.

Proof. In more detail the diagrams above look as follows:

A
ηX //

f ��

A′
e // //

f ′

yy

B
g
��dttC //

m
// D

Now C is an object of S, since m is a morphism in S, which implies the existence of a
unique morphism f ′ : A′ → C in S with f ′ ◦ ηX = f .

It holds that (g ◦ e)◦ηX = m◦f = (m◦f ′)◦ηX . Since both g ◦ e and m◦Ff ′ are
contained in S, it holds that g ◦ e = m ◦ f ′ (uniqueness of mediating morphisms). This
commuting diagram lives in S and hence there exists a unique morphism d : B → C
with d ◦ e = f ′ and m ◦ d = g.

Assume there is another diagonal d′ with d′ ◦ e ◦ ηX = f and m ◦ d′ = g. Since
d′ ◦ e ◦ ηX = f ′ ◦ ηX and since C is an object of S we have d′ ◦ e = f ′. Uniqueness
follows from the uniqueness requirement of factorization structures in S. ut

Theorem 4.9. Given a coalgebra α : X → FX in C, the following four constructions
obtain the same result (we also call this result the minimization):
(i) Apply Construction 3.7 using the (E,M)-pseudo-factorizations of Definition 4.6.

(ii) Reflect α into the subcategory S according to Definition 4.3 and then apply Con-
struction 3.7 using (E,M)-factorizations.

(iii) Apply the construction of Theorem 3.10 using (E,M)-pseudo-factorizations.
(iv) Reflect α into the subcategory S and then apply the construction of Theorem 3.10

using (E,M)-factorizations.

Proof. We start by showing that variant (i) and variant (ii) coincide if we use Construc-
tion 3.7.

First note that the diagonal morphisms required in Construction 3.7 (variant (i))
exist due to Lemma G.5. The final sequence lives in S, hence all morphisms wji are in
S. Furthermore mj is an M-morphism and hence in S. This means that wji ◦mj is an
S-morphism and the conditions of Lemma G.5 are satisfied.

Assume that we apply Construction 3.7 (variant (i)) using the pseudo-factorizations,
obtaining morphisms αi : X →Wi, ci : X → Ei, mi : Ei �Wi.

35

Now let α′ : LX → FLX with α′ = ζX ◦ Lα be the reflection of α into the
subcategory. We call the morphisms arising in Construction 3.7 (variant (ii)) α′i, e

′
i,m

′
i.

We will show that we can choose the arrows in such a way that αi = α′i ◦ ηX , ci =
e′i ◦ ηX ,mi = m′i. This is true for i = 0 since α0 is the unique morphism from X to
1 and α′0 ◦ ηX : X → 1. Now in order to obtain the pseudo-factorization of α0 we first
construct α′0 and factor α′0 = m′0 ◦ e′0. Hence c0 = e′0 ◦ ηX and m0 = m′0.

We assume by the induction hypothesis that αi = α′i ◦ ηX , ci = e′i ◦ ηX ,mi = m′i.
For the induction step note that the diagram below commutes: the left-hand part

arises from the reflection of α and the rightmost triangle commutes since it results from
applying F to αi = α′i ◦ ηX .

X
α //

ηX ��

FX
ηFX��

FηX
��

Fαi

%%

LX
Lα //

α′
44LFX

ζX // FLX
Fα′i // FE

Hence αi+1 = Fαi ◦ α = Fα′i ◦ α′ ◦ ηX = α′i+1 ◦ ηX . Now, as argued above, the
pseudo-factorization of αi+1 is obtained by factoring α′i+1 in the subcategory and hence
αi+1 = α′i+1 ◦ ηX , ci+1 = e′i+1 ◦ ηX and mi+1 = m′i+1.

In both cases the diagonal morphisms ej,i agree and for limit ordinals we take limits
of the same diagrams. Since S is a reflective subcategory of C those limits coincide.
Hence we get the same chain of Ei’s and an isomorphic minimization.

From Theorem 3.10 it follows that Construction 3.7 and the construction from
Theorem 3.10 coincide if we first reflect α into S and then minimize using (E,M)-
factorizations (variants (ii) and (iv)).

Now it is left to show that we have a correspondence of the following two construc-
tions: reflect first into S and then use the construction of Theorem 3.10 (variant (iv))
or use the construction of Theorem 3.10 with pseudo-factorizations (variant (iii)). The
proof is more or less analogous to the proof above, the only critical case is construction
step (c) (taking the limit for an ordinal j).

As above, in both cases we take limits of the same diagrams. In the case of pseudo-
factorizations we obtain ĉj : X → Êj as mediating morphism and in the other case we
obtain êj : LX → Êj as mediating morphism. It can be shown that êj ◦ ηX is also a
mediating morphism from X and hence ĉj = êj ◦ ηX . Hence by factoring êj = nj ◦ ej
and pseudo-factoring ĉj = nj◦cj with cj = ej◦ηj we can continue the correspondence.

ut

36

