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Abstract. We present a systematic way to generate (1) languages of (gener-
alised) regular expressions, and (2) sound and complete axiomatizations thereof,
for a wide variety of quantitative systems. Our quantitative systems include wei-
ghted versions of automata and transition systems, in which transitions are as-
signed a value in a monoid that represents cost, duration, probability, etc. Such
systems are represented as coalgebras and (1) and (2) above are derived in a mod-
ular fashion from the underlying (functor) type of these coalgebras.

In previous work, we applied a similar approach to a class of systems (without
weights) that generalizes both the results of Kleene (on rational languages and
DFA’s) and Milner (on regular behaviours and finite LTS’s), and includes many
other systems such as Mealy and Moore machines.

In the present paper, we extend this framework to deal with quantitative sys-
tems. As a consequence, our results now include languages and axiomatizations,
both existing and new ones, for many different kinds of probabilistic systems.

1 Introduction

Kleene’s Theorem [22] gives a fundamental correspondence between regular expres-
sions and deterministic finite automata (DFA’s): each regular expression denotes a lan-
guage that can be recognized by a DFA and, conversely, the language accepted by a DFA
can be specified by a regular expression. Languages denoted by regular expressions are
called regular. Two regular expressions are (language) equivalent if they denote the
same regular language. Salomaa [32] presented a sound and complete axiomatization
(later refined by Kozen in [23]) for proving the equivalence of regular expressions.

The above programme was applied by Milner in [26] to process behaviours and la-
belled transition systems (LTS’s). Milner introduced a set of expressions for finite LTS’s
and proved an analogue of Kleene’s Theorem: each expression denotes the behaviour
of a finite LTS and, conversely, the behaviour of a finite LTS can be specified by an ex-
pression. Milner also provided an axiomatization for his expressions, with the property
that two expressions are provably equivalent if and only if they are bisimilar.

Coalgebras provide a general framework for the study of dynamical systems such
as DFA’s and LTS’s. For a functor G:Set → Set, a G-coalgebra or G-system is a pair
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(S , g), consisting of a set S of states and a function g :S → GS defining the “transitions”
of the states. We call the functor G the type of the system. For instance, DFA’s can be
readily seen to correspond to coalgebras of the functor G(S) = 2× SA and image-finite
LTS’s are obtained by G(S) = Pω(S)A, where Pω is finite powerset.

Under mild conditions, functors G have a final coalgebra (unique up to isomorphism)
into which every G-coalgebra can be mapped via a unique so-called G-homomor-phism.
The final coalgebra can be viewed as the universe of all possible G-behaviours: the
unique homomorphism into the final coalgebra maps every state of a coalgebra to a
canonical representative of its behaviour. This provides a general notion of behavioural
equivalence: two states are equivalent iff they are mapped to the same element of the
final coalgebra. In the case of DFA’s, two states are equivalent when they accept the
same language; for LTS’s, behavioural equivalence coincides with bisimilarity.

For coalgebras of a large but restricted class of functors, we introduced in [7] a lan-
guage of regular expressions; a corresponding generalisation of Kleene’s Theorem; and
a sound and complete axiomatization for the associated notion of behavioural equiva-
lence. We derived both the language of expressions and their axiomatization, in a mod-
ular fashion, from the functor defining the type of the system.

In recent years, much attention has been devoted to the analysis of probabilistic be-
haviours, which occur for instance in randomized, fault-tolerant systems. Several differ-
ent types of systems were proposed: reactive [24, 29], generative [16], stratified [36, 38],
alternating [18, 39], (simple) Segala [34, 35], bundle [12] and Pnueli-Zuck [28], among
others. For some of these systems, expressions were defined for the specification of their
behaviours, as well as axioms to reason about their behavioural equivalence. Examples
include [1, 2, 4, 13, 14, 21, 25, 27, 37].

Our previous results [7] apply to the class of so-called Kripke-polynomial functors,
which is general enough to include the examples of DFA’s and LTS’s, as well as many
other systems such as Mealy and Moore machines. However, probabilistic systems,
weighted automata [15, 33], etc. cannot be described by Kripke-polynomial functors. It
is the aim of the present paper to identify a class of functors (a) that is general enough to
include these and more generally a large class of quantitative systems; and (b) to which
the methodology developed in [7] can be extended.

To this end, we give a non-trivial extension of the class of Kripke-polynomial func-
tors by adding a functor type that allows the transitions of our systems to take values in a
monoid structure of quantitative values. This new class, which we shall call quantitative
functors, now includes all the types of probabilistic systems mentioned above. We show
how to extend our earlier approach to the new setting. As it turns out, the main techni-
cal challenge is due to the fact that the behaviour of quantitative systems is inherently
non-idempotent. As an example consider the expression 1/2 · ε ⊕ 1/2 · ε′ representing a
probabilistic system that either behaves as ε with probability 1/2 or behaves as ε′ with
the same probability. When ε is equivalent to ε′, then the system is equivalent to 1 · ε

rather than 1/2 · ε. This is problematic because idempotency played a crucial role in our
previous results to ensure that expressions denote finite-state behaviours. We will show
how the lack of idempotency in the extended class of functors can be circumvented by
a clever use of the monoid structure. This will allow us to derive for each functor in
our new extended class everything we were after: a language of regular expressions;



148 F. Bonchi et al.

Table 1. All the expressions are closed and guarded. The congruence and the α-equivalence
axioms are implicitly assumed for all the systems. The symbols 0 and + denote, in the case of
weighted automata, the empty element and the binary operator of the commutative monoid S

while, for the other systems, denote the ordinary 0 and sum of real numbers. With a slight abuse
of notation, we write

⊕
i∈1···n pi · εi for p1 · ε1 ⊕ · · · ⊕ pn · εn .

Weighted automata – S × (SId)A

ε:: = ∅ | ε ⊕ ε | μx .ε | x | s | a(s · ε) where s ∈ S and a ∈ A

(ε1 ⊕ ε2) ⊕ ε3 ≡ ε1 ⊕ (ε2 ⊕ ε3) ε1 ⊕ ε2 ≡ ε2 ⊕ ε1 ε ⊕ ∅ ≡ ε
a(s · ε) ⊕ a(s ′ · ε) ≡ a((s + s ′) · ε) s ⊕ s ′ ≡ s + s ′ a(0 · ε) ≡ ∅
ε[μx .ε/x ] ≡ μx .ε γ[ε/x ] ≡ ε ⇒ μx .γ ≡ ε 0 ≡ ∅

Stratified systems – Dω(Id) + (B × Id) + 1

ε:: = μx .ε | x | 〈b, ε〉 | i∈1···n pi · εi | ↓ where b ∈ B , pi ∈ (0, 1] and i∈1...n pi = 1

(ε1 ⊕ ε2) ⊕ ε3 ≡ ε1 ⊕ (ε2 ⊕ ε3) ε1 ⊕ ε2 ≡ ε2 ⊕ ε1 (p1 · ε) ⊕ (p2 · ε) ≡ (p1 + p2) · ε
ε[μx .ε/x ] ≡ μx .ε γ[ε/x ] ≡ ε ⇒ μx .γ ≡ ε

Segala systems – Pω(Dω(Id))A

ε:: = ∅ | ε � ε | μx .ε | x | a({ε′}) where a ∈ A, pi ∈ (0, 1] and i∈1...n pi = 1
ε′:: = i∈1···n pi · εi

(ε1 � ε2) � ε3 ≡ ε1 � (ε2 � ε3) ε1 � ε2 ≡ ε2 � ε1 ε � ∅ ≡ ε ε � ε ≡ ε
(ε′1 ⊕ ε′2) ⊕ ε′3 ≡ ε′1 ⊕ (ε′2 ⊕ ε′3) ε′1 ⊕ ε′2 ≡ ε′2 ⊕ ε′1 (p1 · ε) ⊕ (p2 · ε) ≡ (p1 + p2) · ε
ε[μx .ε/x ] ≡ μx .ε γ[ε/x ] ≡ ε ⇒ μx .γ ≡ ε

Pnueli-Zuck systems – PωDωPω(Id)A

ε:: = ∅ | ε � ε | μx .ε | x | {ε′} where a ∈ A, pi ∈ (0, 1] and i∈1...n pi = 1
ε′:: = i∈1···n pi · ε′′i
ε′′:: = ∅ | ε′′ � ε′′ | a({ε})

(ε1 � ε2) � ε3 ≡ ε1 � (ε2 � ε3) ε1 � ε2 ≡ ε2 � ε1 ε � ∅ ≡ ε ε � ε ≡ ε
(ε′1 ⊕ ε′2) ⊕ ε′3 ≡ ε′1 ⊕ (ε′2 ⊕ ε′3) ε′1 ⊕ ε′2 ≡ ε′2 ⊕ ε′1 (p1 · ε′′) ⊕ (p2 · ε′′) ≡ (p1 + p2) · ε′′
(ε′′1 � ε′′2 ) � ε′′3 ≡ ε′′1 � (ε′′2 � ε′′3 ) ε′′1 � ε′′2 ≡ ε′′2 � ε′′1 ε′′ � ∅ ≡ ε′′ ε′′ � ε′′ ≡ ε′′

ε[μx .ε/x ] ≡ μx .ε γ[ε/x ] ≡ ε ⇒ μx .γ ≡ ε

a corresponding Kleene Theorem; and a sound and complete axiomatization for the
corresponding notion of behavioural equivalence.

In order to show the effectiveness and the generality of our approach, we apply it
to four types of systems: weighted automata; and simple Segala, stratified and Pnueli-
Zuck systems. For simple Segala systems, we recover the language and axiomatization
presented in [14]. For weighted automata and stratified systems, languages have been
defined in [9] and [38] but, to the best of our knowledge, no axiomatization was ever
given. Applying our method, we obtain the same languages and, more interestingly, we
obtain novel axiomatizations. We also present a completely new framework to reason
about Pnueli-Zuck systems. Table 1 summarizes our results.
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2 Background

In this section, we present the basic definitions for polynomial functors and coalgebras.
We recall, from [7], the language of expressions ExpG associated with a functor G, the
analogue of Kleene’s theorem and a sound and complete axiomatization of ExpG .

Let Set be the category of sets and functions. Sets are denoted by capital letters X ,Y , . . .

and functions by lower case f , g , . . . The collection of functions from a set X to a set Y

is denoted by Y X . We write g◦f for function composition, when defined. The product of

two sets X ,Y is written as X×Y , with projection functions X X × Y
π1�� π2 �� Y .

The set 1 is a singleton set written as 1 = {∗}. We define X +Y as the set X�Y �{⊥,�},

where � is the disjoint union of sets, with injections X
κ1 �� X � Y Y

κ2�� . Note
that the set X + Y is different from the classical coproduct of X and Y, because of the
two extra elements ⊥ and �. These extra elements are used to represent, respectively,
underspecification and inconsistency in the specification of systems.

Polynomial functors. In our definition of polynomial functors we will use constant
sets equipped with an information order. In particular, we will use join-semilattices. A
(bounded) join-semilattice is a set B endowed with a binary operation ∨B and a constant
⊥B ∈ B . The operation ∨B is commutative, associative and idempotent. The element ⊥B

is neutral w.r.t. ∨B . Every set S can be transformed into a join-semilattice by taking B

to be the set of all finite subsets of S with union as join.
We are now ready to define the class of polynomial functors. They are functors

G : Set → Set, built inductively from the identity and constants, using ×, + and
(−)A. Formally, the class PF of polynomial functors on Set is inductively defined by
putting:

PF � G:: = Id | B | G1 + G2 | G1 × G2 | GA

with B a finite join-semilattice and A a finite set. For a set S , Id(S) = S , B(S) = B ,
(G1 × G2)(S) = G1(S) × G2(S), (G1 + G2)(S) = G1(S) + G2(S) and GA(S) = {f |
f : A → G(S)} and, for a function f : S → T , Gf : GS → GT is defined as usual [31].

Typical examples of polynomial functors are D = 2 × IdA, M = (B × Id)A and
St = A× Id . These functors represent, respectively, the type of deterministic automata,
Mealy machines, and infinite streams.

Our definition of polynomial functors slightly differs from the one of [19, 30] in
the use of a join-semilattice as constant functor and in the definition of +. This small
variation plays an important technical role in giving a full coalgebraic treatment of the
language of expressions which we shall introduce later. The intuition behind these ex-
tensions becomes clear if one recalls that the set of classical regular expressions carries
a join-semilattice structure. Since ordinary polynomial functors can be naturally embed-
ded into our polynomial functors above (because every set can be naturally embedded
in the generated free join semilattice), one can use the results of Section 5 to obtain
regular expressions (and axiomatization) for ordinary polynomial functors.

Next, we give the definition of the ingredient relation, which relates a polynomial
functor G with its ingredients, i.e. the functors used in its inductive construction. We
shall use this relation later for typing our expressions. Let � ⊆ PF×PF be the least
reflexive and transitive relation, written infix, such that

G1 � G1 × G2, G2 � G1 × G2, G1 � G1 + G2, G2 � G1 + G2, G � GA.
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If F � G, then F is said to be an ingredient of G. For example, 2, Id , 2×Id , and 2×IdA

are the ingredients of the deterministic automata functor D .

Coalgebras. For an endofunctor G on Set, a G-coalgebra is a pair (S , f ) consisting
of a set of states S together with a function f : S → GS . The functor G, together with
the function f , determines the transition structure of the G-coalgebra [31]. Examples of
coalgebras include deterministic automata, Mealy machines and infinite streams, which
are, respectively, coalgebras for the functors D , M and St given above.

A G-homomorphism from a G-coalgebra (S , f ) to a G-coalgebra (T , g) is a function
h : S → T preserving the transition structure, i.e., such that g ◦ h = Gh ◦ f .

A G-coalgebra (Ω, ω) is said to be final if for any G-coalgebra (S , f ) there exists a
unique G-homomorphism behS : S → Ω. For every polynomial functor G there exists
a final G-coalgebra (ΩG , ωG) [31]. The notion of finality plays a key role in defining
bisimilarity. For G-coalgebras (S , f ) and (T , g) and s ∈ S , t ∈ T , we say that s and t

are (G-)bisimilar, written s ∼ t , if and only if behS(s) = behT (t).
Given a G-coalgebra (S , f ) and a subset V of S with inclusion map i : V → S

we say that V is a subcoalgebra of S if there exists g : V → GV such that i is a
homomorphism. Given s ∈ S , 〈s〉 ⊆ S denotes the subcoalgebra generated by s [31],
i.e. the set consisting of states that are reachable from s. We will write Coalglf (G) for
the category of G-coalgebras that are locally finite: objects are G-coalgebras (S , f ) such
that for each state s ∈ S the generated subcoalgebra 〈s〉 is finite; maps are the usual
homomorphisms of coalgebras.

2.1 A Language of Expressions for Polynomial Coalgebras

In order to be able to formulate the generalization of our previous work [7], we first
have to recall the main definitions and results concerning the language of expressions
associated to a polynomial functor G. Note that in [7] we actually treated Kripke poly-
nomial functors, as mentioned also in the present introduction. In order to give a more
uniform and concise presentation, we omit in this section the case of the finite powerset
Pω (thus, we only present polynomial functors), which can be recovered as a special
instance of the monoidal valuation functor (Section 3). We start by introducing an un-
typed language of expressions and then we single out the well-typed ones via an appro-
priate typing system, thereby associating expressions to polynomial functors. Then, we
present the analogue of Kleene’s theorem.

Let A be a finite set, B a finite join-semilattice and X a set of fixpoint variables. The
set of all expressions is given by the following grammar (where a ∈ A, b ∈ B):

ε :: = ∅ | ε ⊕ ε | x | μx .ε | b | l(ε) | r(ε) | l [ε] | r [ε] | a(ε)

An expression is closed if it has no free occurrences of fixpoint variables x . We denote
the set of closed expressions by Exp.

Intuitively, expressions denote elements of final coalgebras. The expressions ∅, ε⊕ ε

and μx . ε will play a role similar to, respectively, the empty language, the union of lan-
guages and the Kleene star in classical regular expressions for deterministic automata.
The expressions l(ε), r(ε), l [ε], r [ε] and a(ε) denote the left and right hand-side of prod-
ucts and sums and function application, respectively.
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Next, we present a typing assignment system that will allow us to associate with each
functor G the expressions ε that are valid specifications of G-coalgebras. The typing
proceeds following the structure of the expressions and the ingredients of the functors.
We type expressions ε using the ingredient relation, for a ∈ A, b ∈ B and x ∈ X , as
follows:

� ∅ : F � G � b : B � G � x : Id � G

� ε : G � G

� μx .ε : G � G

� ε1 : F � G � ε2 : F � G

� ε1 ⊕ ε2 : F � G

� ε : G � G

� ε : Id � G

� ε : F � G

� a(ε) : FA � G

� ε : F1 � G

� l(ε) : F1 × F2 � G

� ε : F2 � G

� r(ε) : F1 × F2 � G

� ε : F1 � G

� l [ε] : F1 + F2 � G

� ε : F2 � G

� r [ε] : F1 + F2 � G

Most of the rules are self-explanatory. The rule involving Id � G reflects the isomor-
phism of the final coalgebra: ΩG

∼= G(ΩG). It is interesting to note that the rule for the
variable x guarantees that occurrences of variables in a fixpoint expression are guarded:
they occur under the scope of expressions l(ε), r(ε), l [ε], r [ε] and a(ε). For further de-
tails we refer to [7].

The set of G-expressions of well-typed expressions associated with a polynomial
functor G is defined by ExpG = ExpG�G , where, for F an ingredient of G:

ExpF�G = {ε ∈ Exp | � ε : F � G} .

To illustrate this definition we instantiate it for the functor D = 2 × IdA.

Example 1 (Deterministic expressions). Let A be a finite set and let X be a set of fix-
point variables. The set ExpD of well-typed D-expressions is given by the BNF:

ε:: = ∅ | x | l(0) | l(1) | r(a(ε)) | ε ⊕ ε | μx .ε

where a ∈ A, x ∈ X , ε is closed and occurrences of fixpoint variables are within the
scope of an input action, as can be easily checked by structural induction on the length
of the type derivations.

Our derived syntax for this functor differs from classical regular expressions in the use
of action prefixing and fixpoint instead of sequential composition and star, respectively.
However, as we will soon see (Theorem 1), the expressions in our syntax correspond
to deterministic automata and, in that sense, they are equivalent to classical regular
expressions.

The language of expressions induces an algebraic description of systems. In [7],
we showed that such language is a coalgebra. More precisely, we defined a function
λF�G : ExpF�G → F (ExpG) and then set λG = λG�G , providing ExpG with a coalgebraic
structure. The function λF�G is defined by double induction on the maximum number of
nested unguarded occurrences of μ-expressions in ε and on the length of the proofs for
typing expressions. For every ingredient F of a polynomial functor G and ε ∈ ExpF�G ,
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Table 2. The function PlusF�G : F (ExpG) × F (ExpG) → F (ExpG ) and the constant
EmptyF�G ∈ F (ExpG)

EmptyId�G = ∅
EmptyB�G = ⊥B

EmptyF1+F2�G = ⊥
EmptyF1×F2�G = 〈EmptyF1�G ,EmptyF2�G〉
EmptyFA�G = λa.EmptyF�G

PlusId�G(ε1, ε2) = ε1 ⊕ ε2

PlusB�G(b1, b2) = b1 ∨B b2

PlusF1+F2�G(x ,�) = PlusF1+F2�G(�, x ) = �
PlusF1+F2�G(x ,⊥) = PlusF1+F2�G(⊥, x ) = x
PlusF1+F2�G(κi(ε1), κi(ε2)) = κi(PlusFi�G(ε1, ε2)), i ∈ {1, 2}
PlusF1+F2�G(κi(ε1), κj (ε2)) = � for i , j ∈ {1, 2} and i = j
PlusF1×F2�G(〈ε1, ε2〉, 〈ε3, ε4〉) = 〈PlusF1�G(ε1, ε3),PlusF2�G(ε2, ε4)〉
PlusFA�G(f , g) = λa. PlusF�G(f (a), g(a))

the mapping λF�G(ε) is given by :

λF�G(∅) = EmptyF�G

λF�G(ε1 ⊕ ε2)
= PlusF�G(λF�G(ε1), λF�G (ε2))

λG�G(μx .ε) = λG�G(ε[μx .ε/x ])
λId�G(ε) = ε for G �= Id
λB�G(b) = b

λF1×F2�G(l(ε)) = 〈λF1�G(ε),EmptyF2�G〉
λF1×F2�G(r(ε)) = 〈EmptyF1�G , λF2�G(ε)〉
λF1+F2�G(l [ε]) = κ1(λF1�G(ε))
λF1+F2�G(r [ε]) = κ2(λF2�G(ε))

λFA�G(a(ε)) = λa ′.
{

λF�G(ε) a = a ′

EmptyF�G otherwise

Here, ε[μx .ε/x ] denotes syntactic substitution, replacing every free occurrence of x in
ε by μx .ε. The auxiliary constructs Empty and Plus are defined in Table 2. Note that
we use λ in the right hand side of the equation for λFA�G(a(ε)) to denote lambda ab-
straction. This overlap of symbols is safe since when we use it in λF�G it is always
accompanied by the type subscript. It is interesting to remark that λG is the generaliza-
tion of the well-known notion of Brzozowski derivative [8] for regular expressions and,
moreover, it provides an operational semantics for expressions.

We now present the generalization of Kleene’s theorem.

Theorem 1 ([7, Theorem 4]). Let G be a polynomial functor.

1. For every locally finite G-coalgebra (S , g) and for any s ∈ S there exists an expres-
sion εs ∈ ExpG such that εs ∼ s.

2. For every ε ∈ ExpG , we can construct a coalgebra (S , g) such that S is finite and
there exists s ∈ S with ε ∼ s.

Note that εs ∼ s means that the expression εs and the (system with initial) state s have
the same behaviour. For instance, for DFA’s, this would mean that they denote and
accept the same regular language. Similarly for ε and s in item 2..

In [7], we presented a sound and complete axiomatization wrt bisimilarity for ExpG .
We will not recall it here because this axiomatization can be recovered as an instance
of the one presented in Section 4.
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3 Monoidal Valuation Functor

In the previous section we introduced polynomial functors and a language of expres-
sions for specifying coalgebras. Coalgebras for polynomial functors cover many inter-
esting types of systems, such as deterministic and Mealy automata, but not quantitative
systems. For this reason, we recall the definition of the monoidal valuation functor [17],
which will allow us to define coalgebras representing quantitative systems. In the next
section, we will provide expressions and an axiomatization for these.

A monoid M is an algebraic structure consisting of a set with an associative binary
operation + and a neutral element 0 for that operation. A commutative monoid is a
monoid where + is also commutative. Examples of commutative monoids include 2,
the two-element {0, 1} boolean algebra with logical “or”, and the set R of real numbers
with addition.

A property that will play a crucial role in the rest of the paper is idempotency: a
monoid is idempotent, if the associated binary operation + is idempotent. For example,
the monoid 2 is idempotent, while R is not. Notice that an idempotent commutative
monoid is a join-semilattice.

Given a function ϕ from a set S to a monoid M, we define support of ϕ as the set
{s ∈ S | ϕ(s) �= 0}.

Definition 1 (Monoidal valuation Functor). Let M be a commutative monoid. The
monoidal valuation functor M

−
ω :Set → Set is defined as follows. For each set S , M

S
ω

is the set of functions from S to M with finite support. For each function h : S → T ,
M

h
ω:MS

ω → M
T
ω is the function mapping each ϕ ∈ M

S
ω into ϕh ∈ M

T
ω defined, for every

t ∈ T , as
ϕh(t) =

∑

s′∈h−1(t)

ϕ(s ′)

Proposition 1. The functor M
−
ω has a final coalgebra.

Note that the (finite) powerset functor Pω(−) coincides with 2−
ω . This is often used

to represent non-deterministic systems. For example, (image-finite) LTS’s (with labels
over A) are coalgebras for the functor Pω(−)A. In the following, to simplify the notation
we will always write M

− instead of M
−
ω .

By combining the monoidal valuation functor with the polynomial functors, we can
model quantitative systems as coalgebras. As an example, we mention weighted au-
tomata.

Weighted Automata. A semiring S is a tuple 〈S, +,×, 0, 1〉 where 〈S, +, 0〉 is a com-
mutative monoid and 〈S,×, 1〉 is a monoid satisfying certain distributive laws.

Weighted automata [15, 33] are transition systems labelled over a set A and with
weights in a semiring S. Moreover, each state is equipped with an output value1 in
S. From a coalgebraic perspective weighted automata are coalgebras for the functor
S × (SId)A, where we use S to denote, the commutative monoid of the semiring S. More
concretely, a coalgebra for S × (SId)A is a pair (Q , 〈o, t〉), where Q is a set of states,

1 In the original formulation also an input value is considered. To simplify the presentation and
following [10] we omit it.
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o : Q → S is the function that associates an output weight to each state q ∈ Q and
t : Q → (SQ)A is the transition relation that associates a weight to each transition:
q

a,s→ q ′ ⇐⇒ t(q)(a)(q ′) = s.
Bisimilarity for weighted automata has been studied in [9] and it coincides with the

coalgebraic notion of bisimilarity. (For a proof, see [6].)

Proposition 2. Bisimilarity for S× (SId)A coincides with the weighted automata bisim-
ilarity defined in [9].

4 A Non-idempotent Algebra for Quantitative Regular Behaviours

In this section, we will extend the framework presented in Section 2 in order to deal with
quantitative systems, as described in the previous section. We will start by defining an
appropriate class of functors H , proceed with presenting the language ExpH of expres-
sions associated with H together with a Kleene like theorem and finally we introduce a
sound and complete axiomatization of ExpH .

Formally, the set QF of quantitative functors on Set is defined inductively by putting:

QF � H :: = G | M
H | (MH )A | M

H1
1 × M

H2
2 | M

H1
1 + M

H2
2

where G is a polynomial functor, M is a commutative monoid and A is a finite set. Note
that we do not allow mixed functors, such as G + M

H or G × M
H . The reason for this

restriction will become clear later in this section when we discuss the proof of Kleene’s
theorem. In Section 5, we will show how to deal with such mixed functors.

Every definition we presented in Section 2 needs now to be extended to quantitative
functors. We start by observing that taking the current definitions and replacing the
subscript F � G with F � H does most of the work. In fact, having that, we just need to
extend all the definitions for the case M

F � H .
We start by introducing a new expression m · ε, with m ∈ M, extending the set of

untyped expressions, which is now given by:

ε :: = ∅ | ε ⊕ ε | x | μx .ε | b | l(ε) | r(ε) | l [ε] | r [ε] | a(ε) | m · ε
The intuition behind the new expression is that there is a transition between the current
state and the state specified by ε with weight m .

The ingredient relation is extended with the rule H �M
H , the type system and λ

MF �H

with the following rules:

ε : F � H

m · ε : M
F � H

EmptyMF �H = λε′.0
PlusMF �H (f , g) = λε′.f (ε′) + g(ε′)

λMF �H (m · ε) = λε′.
{

m if λF�H (ε) = ε′

0 otherwise

where 0 and + are the neutral element and the binary operation of M. Recall that the
function λH = λH�H provides an operational semantics for the expressions. We will
soon illustrate this for the case of expressions for weighted automata (Example 2).

Finally, we introduce an equational system for expressions of type F�H . We will use
the symbol ≡⊆ ExpF�H × ExpF�H , omitting the subscript F � H , for the least relation
satisfying the following:



Deriving Syntax and Axioms for Quantitative Regular Behaviours 155

(Idempotency) ε ⊕ ε ≡ ε, ε ∈ ExpF�G

(Commutativity) ε1 ⊕ ε2 ≡ ε2 ⊕ ε1

(Associativity) ε1 ⊕ (ε2 ⊕ ε3) ≡ (ε1 ⊕ ε2) ⊕ ε3

(Empty) ∅ ⊕ ε ≡ ε

(FP) γ[μx .γ/x ] ≡ μx .γ
(Unique) γ[ε/x ] ≡ ε ⇒ μx .γ ≡ ε

(B − ∅) ∅ ≡ ⊥B (B −⊕) b1 ⊕ b2 ≡ b1 ∨B b2

(×− ∅ − L) l(∅) ≡ ∅ (×−⊕− L) l(ε1 ⊕ ε2) ≡ l(ε1) ⊕ l(ε2)
(×− ∅ − R) r(∅) ≡ ∅ (×−⊕− R) r(ε1 ⊕ ε2) ≡ r(ε1) ⊕ r(ε2)
(−A − ∅) a(∅) ≡ ∅ (−A −⊕) a(ε1 ⊕ ε2) ≡ a(ε1) ⊕ a(ε2)
(M− − ∅) (0 · ε) ≡ ∅ (M− −⊕) (m · ε) ⊕ (m ′ · ε) ≡ (m + m ′) · ε
(+ −⊕− L) l [ε1 ⊕ ε2] ≡ l [ε1] ⊕ l [ε2] (+ −⊕− R) r [ε1 ⊕ ε2] ≡ r [ε1] ⊕ r [ε2]
(α − equiv) μx .γ ≡ μy .γ[y/x ] (+ −⊕−�) l [ε1] ⊕ r [ε2] ≡ l [∅] ⊕ r [∅]

if y not free in γ

(Cong) If ε ≡ ε′ then ε ⊕ ε1 ≡ ε′ ⊕ ε1, μx .ε ≡ μx .ε′, l(ε) ≡ l(ε′), r(ε) ≡ r(ε′),
l [ε] ≡ l [ε′], r [ε] ≡ r [ε′], a(ε) ≡ a(ε′), and m · ε ≡ m · ε′.

We shall write Exp/≡ for the set of expressions modulo ≡.
Note that (Idempotency) only holds for ε ∈ ExpF�G . The reason why it cannot hold

for the remaining functors comes from the fact that a monoid is, in general, not idem-
potent. Thus, (Idempotency) would conflict with the axiom (M− −⊕), which allows us
to derive, for instance, (2 · ∅)⊕ (2 · ∅) ≡ 4 · ∅. In the case of an idempotent commutative
monoid M, (Idempotency) follows from the axiom (M− −⊕).

Lemma 1. Let M be an idempotent commutative monoid. For every expression ε ∈
Exp

MF �H , one has ε ⊕ ε ≡ ε.

Example 2 (Expressions for weighted automata). The syntax automatically derived from
our typing system for the functor W = S × (SId)A is the following.

ε :: = ∅ | ε ⊕ ε | x | μx .ε | l(s) | r(ε′)
ε′ :: = ∅ | ε′ ⊕ ε′ | a(ε′′)
ε′′ :: = ∅ | ε′′ ⊕ ε′′ | s · ε

where s ∈ S, a ∈ A and all the occurrences of x are guarded. The semantics of these ex-
pressions is given by the function λW�W (hereafter denoted by λW ) which is an instance
of the general λF�H defined above. It is given by:

λW (∅) = 〈0, λa.λε.0〉
λW (ε1 ⊕ ε2) = 〈s1 + s2, λa.λε.(f (a)(ε) + g(a)(ε))

where 〈s1, f 〉 = λW (ε1) and 〈s2, g〉 = λW (ε2)
λW (μx .ε) = λW (ε[μx .ε/x ])
λW (l(s)) = 〈s, λa.λε.0〉
λW (r(ε′)) = 〈0, λ(SId)A�W (ε′)〉

λ(SId)A�W (∅) = λa.λε.0

λ(SId)A�W (ε1 ⊕ ε2) = λa.λε.(f1(a)(ε) + f2(s)(ε))

where fi = λ(SId )A�W (εi), i ∈ {1, 2}
λ(SId)A�W (a(ε′′)) = λa ′.

{
λSId�W (ε′′) a = a ′

λε.0 oth.

λ(SId )�W (∅) = λε.0

λ(SId )�W (ε1 ⊕ ε2) = λε.(f1(ε) + f2(ε))

where fi = λ(SId)�W (εi), i ∈ {1, 2}
λ(SId )�W (s · ε) = λε′.

{
s ε = ε′

0 oth.
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The function λW assigns to each expression ε a pair 〈s, t〉, consisting of an output
weight s ∈ S and a function t : A → S

ExpW . For a concrete example, let S = R and
consider ε = μx .r(a(2 · x ⊕ 3 · ∅)) ⊕ l(1) ⊕ l(2). The semantics of this expression,
obtained by λW is described by the weighted automaton below.

ε

a,2

��

��

a,3 �� ∅
��

3 0

In Table 1 a more concise syntax for expressions for weighted automata is presented.
To derive that syntax from the one automatically generated, we first write ε′ as

ε′ :: = ∅ | ε′ ⊕ ε′ | a(s · ε)
using the axioms a(∅) ≡ ∅ and a(ε′′

1 ⊕ ε′′
2 ) ≡ a(ε′′

1 ) ⊕ a(ε′′
2 ). Similarly, using r(∅) = ∅

and r(ε′
1 ⊕ ε′

2) ≡ r(ε′
1) ⊕ r(ε′

2), we can write ε as follows.

ε :: = ∅ | ε ⊕ ε | x | μx .ε | l(s) | r(a(s · ε))
In Table 1, we abbreviate l(s) to s and r(a(s ·ε)) to a(s ·ε), without any risk of confusion.
Note that the axioms presented in Table 1 also reflect the changes in the syntax of the
expressions.

We are now ready to formulate the analogue of Kleene’s theorem for quantitative
systems.

Theorem 2 (Kleene’s theorem for quantitative functors). Let H be a quantitative
functor.

1. For every locally finite H -coalgebra (S , h) and for every s ∈ S there exists an
expression εs ∈ ExpH such that s ∼ εs .

2. For every ε ∈ ExpH , there exists a finite H -coalgebra (S , h) with s ∈ S such that
s ∼ ε.

The proof of the theorem can be found in [6], but let us explain what are the technical
difficulties that arise when compared with Theorem 1, where only polynomial functors
are considered.

In the proof of item 2. in Theorem 1, we start by constructing the subcoalgebra gen-
erated by ε, using the fact that the set ExpG has a coalgebra structure given by λG . Then,
we observe that such subcoalgebra might not be finite and, following a similar result
for classical regular expressions, we show that finiteness can be obtained by taking the
subcoalgebra generated modulo (Associativity), (Commutativity) and (Idempotency)

(ACI).
Consider for instance the expression ε = μx .r(a(x ⊕ x)) of type D = 2 × IdA. The

subcoalgebras generated with and without applying ACI are the following:

ε

a

��
ε

a �� ε ⊕ ε
a �� (ε ⊕ ε) ⊕ (ε ⊕ ε)

a �� . . .
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We cannot apply ACI in the quantitative setting, since the idempotency axiom does
not hold anymore. However, surprisingly enough, in the case of the functor M

H , we
are able to prove finiteness of the subcoalgebra 〈ε〉 just by using (Commutativity) and
(Associativity). The key observation is that the monoid structure will be able to avoid
the infinite scenario described above. In fact, for the functor M H one can prove that, if
ε ⊕ ε is one of the successors of ε then the successors of ε ⊕ ε will all be contained in
the set of direct successors of ε, which we know is finite . What happens is concisely
captured by the following example. Take the expression ε = μx .2·(x ⊕x) for the functor
R

Id . Then, the subcoalgebra generated by ε is depicted in the following picture:

ε
2 �� ε ⊕ ε

4

��

In this manner, we are able to deal with the base cases G (polynomial functor) and
M

H of the inductive definition of the set of quantitative functors. Moreover, the functors
M

H×M
H and M

H +M
H inherit the above property from M

H and do not pose any problem
in the proof of Kleene’s theorem. The syntactic restriction that excludes mixed functors
is needed because of the following problem. Take as an example the functor M

Id × IdA.
A well-typed expression for this functor would be ε = μx .r(a(x ⊕x ⊕ l(2 ·x)⊕ l(2 ·x))).
It is clear that we cannot apply idempotency in the subexpression x ⊕x ⊕ l(2 ·x)⊕ l(2 ·x)

and hence the subcoalgebra generated by ε will be infinite:

ε
a �� ε′ a ��

4

�� ε′ ⊕ ε′ a ��

8

�� (ε′ ⊕ ε′) ⊕ (ε′ ⊕ ε′)
a ��

16

		 . . .

with ε′ = ε ⊕ ε ⊕ l(2 · ε) ⊕ l(2 · ε). We will show in the next section how to overcome
this problem.

Let us summarize what we have achieved so far: we have presented a framework
that allows, for each quantitative functor H ∈ QF , the derivation of a language ExpH .
Moreover, Theorem 2 guarantees that for each expression ε ∈ ExpH , there exists a
finite H -coalgebra (S , h) that contains a state s ∈ S bisimilar to ε and, conversely,
for each locally finite H -coalgebra (S , h) and for every state in s there is an expression
εs ∈ ExpH bisimilar to s. The proof of Theorem 2, which can be found in [6], shows how
to compute the H -coalgebra (S , h) corresponding to an expression ε and vice-versa.

The axiomatization presented above is sound and complete:

Theorem 3 (Soundness and Completeness). Let H be a quantitative functor and let
ε1, ε2 ∈ ExpH . Then, ε1 ∼ ε2 ⇐⇒ ε1 ≡ ε2.

The proof of this theorem follows a similar strategy as in [7, 20] and can be found in [6].

5 Extending the Class of Functors

In the previous section, we introduced regular expressions for the class of quantitative
functors. In this section, by employing standard results from the theory of coalgebras,
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we show how to use such regular expressions to describe the coalgebras of many more
functors, including the mixed functors we mentioned in Section 4.

Given F and G two endofunctors on Set, a natural transformation α:F ⇒ G is a
family of functions αS :F (S) → G(S) (for all sets S ), such that for all functions h:T →
U , αU ◦ F (h) = G(h) ◦ αT . If all the αS are injective, then we say that α is injective.

Proposition 3. An injective natural transformation α:F ⇒ G induces a functor α ◦
(−) : Coalglf (F ) → Coalglf (G) that preserves and reflects bisimilarity.

This result (proof can be found in [6]) allows us to extend both regular expressions and
axiomatization to many functors. Indeed, consider a functor F that is not quantitative,
but that has an injective natural transformation α into some quantitative functor H . A
(locally finite) F -coalgebra can be translated into a (locally finite) H -coalgebra via the
functor α◦(−) and then it can be characterized by using expressions in ExpH (as we will
show soon, for the converse some care is needed). The axiomatization for ExpH is still
sound and complete for F -coalgebras, since the functor α ◦ (−) preserves and reflects
bisimilarity.

However, notice that Kleene’s theorem does not hold anymore, because not all the
expressions in ExpH denote F -regular behaviours or, more precisely, not all expressions
of ExpH are equivalent to H -coalgebras that are in the image of α◦(−). Thus, in order to
retrieve Kleene’s theorem, one has just to exclude such expressions. In many situations,
this is feasible by simply imposing some syntactic constraints on ExpH .

As an example, we recall the definition of the probability functor that, in the next
section, will allow us to derive regular expressions for probabilistic systems.

Definition 2 (Probability functor). A probability distribution over a set S is a function
d : S → [0, 1] such that

∑
s∈S

d(s) = 1. The probability functor Dω:Set → Set is defined
as follows. For all sets S , Dω(S) is the set of probability distributions over S with finite
support. For all functions h : S → T , Dω(h) maps each d ∈ Dω(S) into d h as defined in
Definition 1.

Now recall the functor R
Id from Section 3. Note that for any set S , Dω(S) ⊆ R

S since
probability distributions are also functions from S to R. Let ι be the family of inclusions
ιS :Dω(S) → R

S . It is easy to see that ι is a natural transformation between Dω and R
Id

(the two functors are defined in the same way on arrows). Thus, in order to specify Dω-
coalgebras, we can use ε ∈ Exp

RId which are the closed and guarded expressions given
by ε :: = ∅ | ε⊕ε | x | μx .ε | r ·ε, for r ∈ R. However, this language allows us to specify
R

Id-behaviours that are not Dω-behaviours, such as for example, μx .2 · x and μx .0 · x .
In order to obtain a language that specifies all and only the regular Dω-behaviours, it is
enough to restrict the syntax of Exp

RId , as follows:

ε :: = x | μx .ε |
⊕

i∈1...n

pi · εi for pi ∈ (0, 1] such that
∑

i∈1...n

pi = 1

where, with a slight abuse of notation,
⊕

i∈1...n
pi · εi denotes p1 · ε1 ⊕ · · · ⊕ pn · εn .

In the next section, we will use this kind of syntactic restrictions for defining regular
expressions of probabilistic systems.

For another example, consider the functors Id and Pω(Id). Let τ be the family of
functions τS : S → Pω(S) mapping each s ∈ S in the singleton set {s}. It is easy to see
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that τ is an injective natural transformation. With the above observation, we can also get
regular expressions for the functor M

Id × IdA that, as discussed in Section 4, does not
belong to our class of quantitative functors. Indeed, by extending τ , we can construct
an injective natural transformation M

Id × IdA ⇒ M
Id × Pω(Id)A.

In the same way, we can construct an injective natural transformation from the func-
tor Dω(Id)+(A×Id)+1 (that is the type of stratified systems) into R

Id +(A×Pω(Id))+1.
Since the latter is a quantitative functor, we can use its expressions and axiomatization
for stratified systems. But since not all its expressions define stratified behaviours, we
again have to restrict the syntax.

The procedure of appropriately restricting the syntax usually requires some inge-
nuity. We shall see that in many concrete cases, as for instance Dω above, it is fairly
intuitive which restriction to choose.

6 Probabilistic Systems

Many different types of probabilistic systems have been defined in literature: reactive,
generative, stratified, alternating, (simple) Segala, bundle and Pnueli-Zuck. Each type
corresponds to a functor, and the systems of a certain type are coalgebras for the cor-
responding functor. A systematic study of all these systems as coalgebras was made in
[5]. In particular, Fig.1 of [5] provides a full correspondence between types of systems
and functors. By employing this correspondence, we can use our framework in order
to derive regular expressions and axiomatizations for all these types of probabilistic
systems.

In order to show the effectiveness of our approach, we have derived expressions
and axioms for three different types of probabilistic systems: simple Segala, stratified
and Pnueli-Zuck. Table 1 shows the expressions and the axiomatizations that we have
obtained, after some simplification of the canonically derived syntax (which is often
verbose and redundant).

•

a ��
�� b

����������
a

�������

1/2

��
1/2

��
1/3

��
2/3

�� 1��
• • • • •

•
1/2

����
�� 1/2

���
��

�

•
1/3

����
�� 2/3

���
��

� •
a

��
•
a

��

•
b��

•

• •

•

�
�

����

1/3 2/3
1

a

���
��

�
a

��		
		 a

��







b

����
�� b ��

• • • • •

(i) (ii) (iii)

Fig. 1. (i) A simple Segala system, (ii) a stratified system and (iii) a Pnueli-Zuck system

Simple Segala systems. Simple Segala systems are coalgebras of type Pω(Dω(Id))A

(recall that Pω is the functor 2−). These are like labelled transition systems, but each
labelled transition leads to a probability distribution of states instead of a single state.
An example is shown in Fig.1(i).
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Table 1 shows expressions and axioms for simple Segala systems. In the following
we show how to derive these. As described in Section 5, we can derive the expressions
for Pω(RId)A instead of Pω(Dω(Id))A, and then impose some syntactic constraints on
ExpPω(RId )A in order to characterize all and only the Pω(Dω(Id))A behaviours. By simply
applying our typing systems to Pω(RId)A, we derive the expressions:

ε :: = ∅ | ε ⊕ ε | x | μx .ε | a(ε′)

ε′ :: = ∅ | ε′ ⊕ ε′ | 1 · ε′′ | 0 · ε′′

ε′′ :: = ∅ | ε′′ ⊕ ε′′ | p · ε
where a ∈ A, p ∈ R and 0 and 1 are the elements of the boolean monoid 2.

Now, observe that the syntax for ε′, due to the axiom 0 · ε′′ ≡ ∅ can be reduced to

ε′ :: = ∅ | ε′ ⊕ ε′ | 1 · ε′′

which, because of a(ε′
1)⊕a(ε′

2) ≡ a(ε′
1⊕ε′

2) and a(∅) ≡ ∅ is equivalent to the simplified
syntax:

ε :: = ∅ | ε ⊕ ε | x | μx .ε | a({ε′′})
Here, and in what follows, {ε′′} abbreviates 1 · ε′′. Note that the axiomatization would
have to include the axiom a({ε′′})⊕ a({ε′′}) ≡ a({ε′′}), as a consequence of (M− −⊕)

and (−A − ⊕). However, this axiom is subsumed by the (Idempotency) axiom, which
we add to the axiomatization, since it holds for expressions ε ∈ ExpPω (RId )A . This,
combined with the restrictions to obtain Dω out of R

Id , leads to the expressions and the
axiomatization in Table 1 where, in order to avoid confusion, we use � instead of ⊕,
making a clear distinction between the idempotent and non-idempotent sums.

As an example, the expression a({1/2 · ∅⊕1/2 · ∅})� a({1/3 · ∅⊕2/3 · ∅})� b({1 · ∅})
describes the simple Segala system in Fig.1(i).

Stratified systems. Stratified systems are coalgebras of the functor Dω(Id)+(B×Id)+

1. Each state of these systems either performs unlabelled probabilistic transitions or one
B-labelled transition or it terminates. To get the intuition for the syntax presented in
Table 1, note that the stratified system in Fig.1.(ii) would be specified by the expression
1/2 · (1/3 · 〈a, ↓〉 ⊕ 2/3 · 〈b, ↓〉) ⊕ 1/2 · 〈a, ↓〉. Again, we added some syntactic sugar to
our original regular expressions: ↓, denoting termination, corresponds to our expression
r [r [1]], while 〈b, ε〉 corresponds to r [l [l(b) ⊕ r({ε})]]. The derivation of the simplified
syntax and axioms follows a similar strategy as in the previous example and thus is
omitted here. As described in Section 5, we first derive expressions and axioms for
R

Id + (B × Pω(Id)) + 1 and then we restrict the syntax to characterize only Dω(Id) +

(B × Id) + 1-behaviours.

Pnueli-Zuck systems. These systems are coalgebras of the functor PωDω(Pω(Id))A.
Intuitively, the ingredient Pω(Id)A denotes A-labelled transitions to other states. Then,
Dω(Pω(Id))A corresponds to a probability distribution of labelled transitions and then,
each state of a PωDω(Pω(Id))A-coalgebra performs a non deterministic choice amongst
probability distributions of labelled transitions. The expression {1/3 ·a({∅})� a({∅})⊕
2/3 ·(b({∅})�a({∅}))}�{1 ·b({∅})} specifies the Pnueli-Zuck system in Fig.1 (iii). No-
tice that we use the same symbol � for denoting two different kinds of non-deterministic
choice. This is safe, since they satisfy the same axioms. Again, the derivation of the
simplified syntax and axioms is omitted here.
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7 Conclusions

We presented a general framework to canonically derive expressions and axioms for
quantitative regular behaviours. To illustrate the effectiveness and generality of our ap-
proach we derived expressions and equations for weighted automata, simple Segala,
stratified and Pnueli-Zuck systems.

We recovered the syntaxes proposed in [10, 14, 38] for the first three models and
the axiomatization of [14]. For weighted automata and stratified systems we derived
new axiomatizations and for Pnueli-Zuck systems both a novel language of expressions
and axioms. It should be remarked that [10, 14, 38] considered process calculi that are
also equipped with the parallel composition operator and thus they slightly differ from
our languages, which are more in the spirit of Kleene and Milner’s expressions. Also
[4, 13, 37] study expressions without parallel composition for probabilistic systems.
These provide syntax and axioms for generative systems, Segala systems and alternating
systems, respectively. For Segala systems our approach will derive the same language
of [13], while the expressions in [37] differ from the ones resulting from our approach,
since they use a probabilistic choice operator +p . For alternating systems, our approach
would bring some new insights, since [4] considers only expressions without recursion.

Acknowledgments. The authors are grateful to Catuscia Palamidessi for interesting dis-
cussions and pointers to the literature.
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