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Abstract

We present CoCaml, a functional programming language extending
OCaml, which allows us to define functions on coinductive datatypes pa-
rameterized by an equation solver. We provide numerous examples that
attest to the usefulness of the new programming constructs, including op-
erations on infinite lists, infinitary λ-terms and p-adic numbers.
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1 Introduction

Infinite datatypes and functions on infinite datatypes offer interesting challenges
in the design of programming languages. While most programmers feel com-
fortable with inductive datatypes and functions on them, coinductive datatypes
are often considered difficult to handle, and many programming languages do
not even offer the constructs to define them.

OCaml offers the possibility of defining coinductive datatypes, but the means
to define recursive functions on them are limited. Often the obvious definitions
do not halt or provide the wrong solution.

Let us provide some motivation using an example of a function over what
has been referred to as the simplest coinductive datatype: infinite lists. The
type of finite and infinite integer lists can be specified in OCaml by

type list = N | C of int * list

Infinite lists can now be defined coinductively using the let rec construct:

let rec ones = C(1, ones)

let rec alt = C(1, C(2, alt))

The first example defines the infinite sequence of ones 1, 1, 1, 1, . . . and the second
the sequence 1, 2, 1, 2, . . . .
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The let rec construct allows us to build only regular lists, that is, those
that are ultimately periodic. Such lists always have a finite representation in
memory. The coinductive elements we consider are always regular, i.e., they
have a finite but possibly cyclic representation. This is different from a setting
in which infinite elements are represented lazily and can be computed on the
fly. A few of our examples, like substitution on infinitary λ-terms or mapping a
function on an infinite list, could be computed by lazy evaluation, but most of
them, for example free variables, cannot.

Although the let rec construct allows us to specify (finite representations
of) infinite structures, further investigation reveals a major shortcoming. For
example, suppose we wanted to define a function that, given an infinite list,
returns the set of its elements. For the lists ones and alt, the function should
return the sets {1} and {1, 2}, respectively. One would like to write a func-
tion definition using the obvious equations which pattern-match on the two
constructors of the list datatype:

let set l = match l with

| N -> N

| C(h, t) -> insert h (set t)

where insert inserts an element in a set, represented by a finite list without
duplicates. However, this function will not halt in OCaml on the lists ones and
alt, even though it is clear what the answers should be. Note that this is not
a corecursive definition, as we are not asking for a greatest solution or a unique
solution in a final coalgebra, but rather a least solution in a different ordered
domain from the one provided by the standard semantics of recursive functions.
The standard semantics of recursive functions gives us the least solution in the
flat Scott domain with bottom element ⊥ representing nontermination, whereas
we would like the least solution in a different CPO, namely (P(Z),⊆) with
bottom element ∅.

In this paper, we present CoCaml, an extension of OCaml in which func-
tions defined by equations, like the one above, can be supplied with an extra
parameter, namely a solver for the given equations. For instance, the example
above would be almost the same in CoCaml:

let corec[iterator(N)] set l = match l with

| N -> N

| C(h, t) -> insert h (set t)

The construct corec with the parameter iterator(N) specifies to the compiler
that the equations above should be solved using an iterator—in this case a least
fixpoint computation—starting with the initial element N. For the infinite list
alt, which can abstractly be thought of as the circular structure

•

1 •

2

the compiler will generate two equations:
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set(x) = insert 1 (set(y))

set(y) = insert 2 (set(x))

then solve them using the specified solver iterator, which will produce the
intended set {1, 2}.

For another example, consider the map function, which applies a given func-
tion to every element of a given list. Again, the obvious definition, when applied
to a circular structure, will not halt in OCaml. In CoCaml, we can specify that
we want to get a solution with the same structure as the argument; more ab-
stractly, we actually compute the solution in the final coalgebra. Again, the
definition looks very much like the standard one:

let corec[constructor] map arg = match arg with

| f, N -> N

| f, C(h, t) -> C(f(h), map(f,t))

As desired, applications to circular structures halt and produce the expected
result. For instance, map plusOne alt will produce the infinite list 2, 3, 2, 3, . . .
as represented by the circular structure

•

2 •

3

Another motivating example from [11] is the set of free variables of an in-
finitary λ-term (λ-coterm). For ordinary well-founded λ-terms, the following
definition works:

type term =

| Var of string

| App of term * term

| Lam of string * term

let rec fv = function

| Var v -> C(v,N)

| App (t1,t2) -> union (fv t1) (fv t2)

| Lam (x,t) -> remove x (fv t)

However, if we call the function on an infinite coterm, say

let rec t = App (Var "x", App (Var "y", t))

•

x •

y
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then the function will diverge. However, CoCaml can compute the desired
solution {x, y} using the iterator(N) solver as in the example above involving
elements of an infinite regular list.

The paper is organized as follows. In §2, we describe coinductive types in
the context of a functional language and the theoretical framework on which
our new language constructs are based. We also describe capsule semantics,
a heap-free mathematical semantics for higher order functional and imperative
programs, which provides the foundation for our implementation. In §3, we
discuss the subtleties of equality on cyclic data structures and show how to
implement it to ensure termination. In §4, we dive into the details behind
the implementation. In §5, we give several detailed examples illustrating the
use of the new constructs, including functions on finite and infinite lists, p-adic
numbers, and infinitary λ-terms. In §6, we mention limitations of the framework
and direction for future work. In §7, we discuss relevant related work, and in
§8 we give concluding remarks.

2 Framework

In this section, we present the basics of coinductive types and the theoretical
foundations on well-definedness of functions on coinductive types, which we will
use to define the new language constructs. We also describe capsule semantics,
a heap-free mathematical semantics for higher order functional and imperative
programs, on which our implementation is based.

2.1 ML with Coalgebraic Datatypes

Coalgebraic (coinductive) datatypes are very much like algebraic (inductive)
datatypes in that they are defined by recursive type equations. The set of
algebraic objects form the least (initial) solution of these equations and the set
of coalgebraic objects the greatest (final) solution.

Algebraic types have a long history going back to the initial algebra seman-
tics of Goguen and Thatcher [7]. They are very well known and are heavily used
in modern applications, especially in the ML family of languages. Coalgebraic
types, on the other hand, are the subject of more recent research and are less
well known. Not all modern functional languages support them—for example,
Standard ML and F# do not—and even those that do support them do not do
so adequately.

The most important distinction is that coalgebraic objects can have infinite
paths, whereas algebraic objects are always well-founded. Regular coalgebraic
objects are those with finite (but possibly cyclic) representations. We would
like to define recursive functions on coalgebraic objects in the same way that
we define recursive functions on algebraic data objects, by structural recursion.
However, whereas functions so defined on well-founded data always terminate
and yield a value under the standard semantics of recursion, this is not so with
coalgebraic data because of the circularities.
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A more subtle distinction is that in call-by-value languages, constructors
can be interpreted as functions under the algebraic interpretation, as they are
in Standard ML, but not under the coalgebraic interpretation as in OCaml. In
Standard ML, a constructor is a function:

- SOME;

val it = fn : ’a -> ’a option

Since it is call-by-value, its arguments are evaluated, which precludes the for-
mation of coinductive objects. In OCaml, a constructor is not a function. To
use it as a function, one must wrap it in a lambda:

# Some;;

Error: The constructor Some expects 1 argument(s),

but is applied here to 0 argument(s)

# fun x -> Some x;;

- : ’a -> ’a option = <fun>

This allows the formation of coinductive objects:

# type t = C of t;;

type t = C of t

# let rec x = C x;;

val x : t = C (C (C ...

Despite these differences, inductive and coinductive data share some strong
similarities. We have mentioned that they satisfy the same recursive type equa-
tions. Because of this, we would like to define functions on them in the same
way, using constructors and destructors and writing recursive definitions using
pattern matching. However, to do this, it is necessary to circumvent the stan-
dard semantics of recursion, which does not necessarily halt on cyclic objects.
It has been argued in [11] that this is not only useful, but feasible. In [11], new
programming language features that would allow the specification of alternative
solutions and methods to compute them were proposed, and a mock-up imple-
mentation was given that demonstrated that this approach is feasible. In this
paper, we take this a step further and provide a realistic implementation in an
OCaml-like language. We also give several new examples of its usefulness in
addition to the examples of [11].

For full functionality in working with coalgebraic data, mutable variables
are essential. Current functional languages in the ML family do not support
mutable variables; thus true coalgebraic data can only be constructed explicitly
using let rec, provided we already know what they look like at compile time.
Once constructed, they cannot be changed, and they cannot be created pro-
grammatically. This constitutes a severe restriction on the use of coalgebraic
datatypes. One workaround is to simulate mutable variables with references,
but this is ugly; it corrupts the algebraic typing and forces the programmer to
work at a lower pointer-based level.
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2.2 Theoretical Foundations

A very general picture of the situation is given by the commuting diagram

C

FC

A

FA

h

γ

Fh

α (1)

describing how a recursive function h : C → A is defined. Here F is a functor
that determines the structure of the base cases and the recursive calls. The
function γ : C → FC on input x ∈ C tests for the base cases, and in the
recursive case, prepares the arguments for the recursive calls. The function
Fh : FC → FA performs the recursive calls. The function α : FA → A takes
the return values from the recursive calls and assembles them into the return
value h(x).

Ordinary recursively defined functions on well-founded datatypes fall into
this framework. For example, the factorial function

let rec fact = function

| 0 -> 1

| n -> n * fact(n-1)

has the diagram

N N

1 + N× N 1 + N× N

fact

γ

id1 + idN × fact

α

where the functor is FX = 1+ N×X and γ and α are given by:

γ(0) = ι0() α(ι0()) = 1

γ(n+ 1) = ι1(n+ 1, n) α(ι1(c, d)) = cd

where the ι0 and ι1 are injectors into the coproduct. The fact that there is
one recursive call is reflected in the functor by the single X occurring on the
right-hand side. The destructor γ determines whether the argument is a base
case, and if not, prepares the recursive call. The constructor α combines the
result of the recursive call with the input value by multiplication. In this case
we have a unique solution, which is precisely the factorial function.

This general idea has been well studied [1, 2, 4, 6, 15]. Most of that work is
focused on conditions ensuring unique solutions, primarily when the domain C
is well-founded or when the codomain A is a final coalgebra.

Ordinary recursion over inductive datatypes corresponds to the case in which
C is well-founded. In this case, the solution h always exists and is unique.
However, if C is not well-founded, then the solution may not be unique, and
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the one given by the standard semantics of recursive functions is usually not the
one we want. Nevertheless, the diagram (1) can still serve as a valid definitional
scheme, provided we are allowed to specify an alternative solution method.

The free variables example from §1 fits this scheme with the diagram

Term P(Var)

F (Term) F (P(Var))

fv

γ

idVar + fv2 + idVar × fv

α

where FX = Var +X2 + Var×X and

γ(Var x) = ι0(x) α(ι0(x)) = {x}
γ(App (t1, t2)) = ι1(t1, t2) α(ι1(u, v)) = u ∪ v
γ(Lam (x, t)) = ι2(x, t) α(ι2(x, v)) = v \ {x}.

Here the domain (regular λ-coterms) is not well-founded and the codomain
(sets of variables) is not a final coalgebra, but the codomain is a complete CPO
under the usual set inclusion order with bottom element ∅, and the desired
solution is the least solution in this order; it is just not the one that would
be computed by the standard semantics of recursive functions. Our language
allows the programmer to specify an alternative solution method in such cases.

2.3 Capsule Semantics

Our implementation is based on capsule semantics [10], a heap-free mathe-
matical semantics for higher order functional and imperative programs. This
semantics admits mutable let-bound variables a la Scheme. In its simplest form,
a capsule is a pair 〈e, σ〉, where e is a λ-term and σ is a partial map with finite
domain from variables to λ-terms such that

• FV (e) ⊆ dom σ, and

• for all x ∈ dom σ, FV (σ(x)) ⊆ dom σ

where FV (e) denotes the set of free variables of e. (In practice, a capsule also
contains local typing information, which we have suppressed here for simplicity.)

In capsule semantics, coinductive types and recursive functions are defined
in the same way. There is a special uninitialized value <> for each type. The
capsule evaluation rules consider a variable to be irreducible if it is bound to this
value. The variable can be used in computations as long as there is no attempt
to deconstruct it; any such attempt results in a runtime error. “Deconstruction”
here means different things for different types. For a coinductive type, it means
applying a destructor. For int, it would mean attempting to perform arithmetic
with it. But it can be used as the argument of a constructor or can appear
on the left-hand side of an assignment without error, as these do not require
deconstruction. This allows coalgebraic values and recursive functions to be
created a uniform way via backpatching (aka Landin’s knot). Thus
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let rec x = d in e

is syntactic sugar for

let x = <> in (x := d);e

which in turn is syntactic sugar for

(fun x -> (x := d);e) <>

For example,

let rec x = (x,x) in snd (snd x)

becomes

let x = <> in (x := (x,x)); snd (snd x)

During the evaluation of (x,x), the variable x is bound to <>, so x is not
reduced. (Actually, this is not quite true—a fresh variable is substituted for
x by α-conversion first. But we ignore this step to simplify the explanation.)
The value of the expression is just (x,x). Now the assignment x := (x,x) is
performed, and x is rebound to the expression (x,x) in the environment. We
have created an infinite coinductive object, namely an infinite complete binary
tree. Evaluating snd (snd x) results in the value (x,x).

Note that we never need to use placeholders or substitution to create cycles,
as we are using the binding of x in the environment for this purpose. This is a
major advantage over previous approaches [9, 13, 14, 17]. Once x is rebound to
a non-<> value, it can be deconstructed after looking it up in the environment.

The variable x also gives a handle into the data structure that allows it to be
manipulated dynamically. For example, here is a program that creates a cyclic
object of length 3, then extends it to length 4:

type t = C of t

let rec x = C(C(C(x))) in x := C(x)

Any cycle must always contain at least one such variable. Note that these
two cyclic data objects actually represent the same infinite object, namely the
infinite term C(C(C(... . Two elements of a coalgebraic type are considered
equal iff they are bisimilar (see §3). For this reason, coalgebraic types are not
really the same as the circular data structures as studied in [9, 13, 14].

A downside to this approach is that the presence of the value <> requires a
runtime check on value lookup. This is a sacrifice we have made to accommodate
functional and imperative programming styles in a common framework, which
is one of the main motivating factors behind capsules. For a basic introduction
to capsule semantics, see [10], and for a full account of capsule semantics in the
presence of coalgebraic types, see [12].
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3 Corecursive Equality

Equality of values, and in particular equality of cyclic data structures, plays
a central role in the process of generating the equations corresponding to the
call of a recursive function. A new equation is generated for each recursive call
whose argument has not been previously seen. To assess whether the argument
has been previously seen, a set of objects previously encountered is maintained.
At each new recursive call, the argument is tested for membership in this set by
testing equality with each member of the set. To ensure termination, equality
on values that are observationally equivalent must return true.

Unfortunately, OCaml’s documentation tells us that “equality between cyclic
data structures may not terminate.” In practice, the OCaml equality test re-
turns false if it can find a difference in finite time, otherwise continues looping
forever. In short, it never returns true when the arguments are cyclic and
bisimilar.

# let rec zeros = 0 :: zeros and ones = 1 :: ones;;

val zeros : int list = [0; 0; 0; 0; 0; 0; 0; ...]

val ones : int list = [1; 1; 1; 1; 1; 1; 1; ...]

# zeros = ones;;

- : bool = false

# zeros = zeros;; (* does not terminate *)

# let rec zeros2 = 0 :: 0 :: zeros2;;

val zeros2 : int list = [0; 0; 0; 0; 0; 0; 0; ...]

# zeros = zeros2;; (* does not terminate *)

We would like to create a new equality, simply denoted =, that would work
the same as in OCaml on every value except cyclic data structures. On cyclic
data structures, this equality should correspond to observational equality, so
that both calls zeros = zeros and zeros = zeros2 above should return true.
Note that the OCaml physical identity relation == is not suitable: zeros ==

zeros2 would return false. More importantly, even two instances of a pair of
integers formed at different places in the program would not be equal under ==,
although they are observationally equivalent.

To allow cyclic data structures and recursive functions, values are repre-
sented internally with capsules. We are thus interested in creating observa-
tional equality on capsules. Let us describe the algorithm on a simplification
of our language where value expressions can only be variables, literal integers,
injections into a sum type or tuples.

Let Cap be the set of capsules. The domain of this equality is the set of
pairs of capsules, defining the coalgebra Cap2 = Cap × Cap. The codomain is
the two-element Boolean algebra 2. The diagram (1) is instantiated to

Cap2 2

2 + Cap2 + list (Cap2) 2 + 2 + list 2

h

γ

id2 + h+ map h

α
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where the functor is FX = 2 + X + list X, list X denotes lists of elements of
type X, and the map function iterates a function over a list, returning a list of
the results.

The function γ matches on the first component of each capsule. If either
one is a variable, it looks up its value in the corresponding environment. If they
are both literal integers, it returns ι1(true) if they are equal and ι1(false)
otherwise. If they are injections of e1 and e2, it returns ι2(e1, e2). If they are
tuples, it creates a list l of pairs whose nth element is the pair of the nth elements
of the first and second tuple and returns ι3(l). The function α is the identity on
the first two projections, and on ι3(l) returns true if all the elements of l are
true, false otherwise.

In [11], we gave an OCaml functor allowing us to generate h, given a solver
and an equality on C. We use this functor. The solver must return false if an
ι1(false) was ever encountered, true otherwise. It is a simple iteration over
the equations.

The only remaining question is equality on C. We are asking whether a
capsule has already been seen, and here we can revert to physical equality
==. Because the pairs that form the capsules are destructed and reconstructed
throughout the algorithm, equality needs to be:

let equal ((s1, o1), (t1, p2)) ((s2, o2), (t2, p2)) =

s1 == s2 && o1 == o2 && t1 == t2 && p1 == p2

The generated function behaves as desired:

> zeros = ones;;

- : bool = false

> zeros = zeros;;

- : bool = true

> zeros = zeros2;;

- : bool = true

This is the last time we use the system described in [11]. In a sense, by
allowing us to program equality, that system allows us to bootstrap CoCaml.

4 Implementation

When a function f is defined using the corec keyword, it is first typed as an
ordinary recursive function, using the Hindley–Milner type inference algorithm,
as is usual in ML. If this type check succeeds, f is bound in the current environ-
ment. For simplicity, we impose the restriction that f take only one argument
(by forbidding curried definitions with the corec keyword). This is a mild
restriction, as this argument can be a tuple. Also, because of how functions
defined with corec are evaluated, we disallow nested recursive calls to f.

The interesting part occurs when the function f is called on an argument
a0. Since our language is call-by-value, a0 is first evaluated and bound in the
current environment. We then proceed to generate the recursive equations that
the value of f(a0) must satisfy.
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4.1 Generating Equations

The equations for f(a0) will involve a finite number of recursive calls to f

on the arguments a0, a1, . . . , an. To generate the equations, we first create
variables x0, x1, . . . , xn. These variables are unknowns denoting the values of
f(a0), f(a1), . . . , f(an), respectively. When partially evaluating the body of f

applied to some ai, we might encounter some calls to some f(aj), and we re-
place each such call by the variable xj. This gives a set of equations of the form
xi = ei, where ei is a partially evaluated expression involving the variables
x0, x1, . . . , xn. This system of equations is then passed to a solver (see §4.3).

Of course, the arguments a0, a1, . . . , an are not known in advance, as we only
know a0. Therefore, in the partial evaluation, a new xi is generated whenever a
new ai is encountered. This is achieved by keeping track of all the ai that have
been seen so far, along with their associated unknowns xi.

4.2 Partial Evaluation

Partial evaluation is much like normal evaluation except when encountering a
recursive call to f. When such a recursive call f(aj) is encountered, we have
seen that its argument is evaluated, and the call is replaced by a variable xj
corresponding to aj. The variable xj might be fresh if aj had not been seen
before, or it might be the one already associated with aj.

Coming back up the abstract syntax tree, some operations cannot be per-
formed. If the condition of an if statement was only partially evaluated, we
cannot know which branch to evaluate next; the same thing happens for the
condition of a while loop or an argument that is pattern-matched.

Particular care must be taken when evaluating the && and || constructs.
These are usually implemented lazily. If the first argument of && evaluates to
false, then it should return false. But if it only partially evaluates, then
due to laziness, the second argument cannot be evaluated. However, we choose
to partially evaluate it anyway, in case it contains recursive calls; thus our
implementations of && and || in the partial evaluator are not strictly lazy.

4.3 Solvers

A solver receives a set of equations. These equations have right-hand sides that
are partially evaluated abstract syntax trees and contain unknowns. Depending
on the solver chosen, it manipulates these abstract syntax trees to find a solution.
We currently have five solvers implemented, of which four are quite versatile and
can be used in many different applications. These solvers are described along
with examples of their use in §5.

5 Examples and Solvers

In this section, we show several examples of functions on coinductive types,
including finite and infinite lists, a library for p-adic numbers, and infinitary
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λ-terms.

5.1 Finite and Infinite Lists

We present one of our main solvers through examples on lists, one of the simplest
examples of coinductive types. Through these examples, we show how easy it
is to create recursive functions on coinductive datatypes, as the process is very
close to creating recursive functions on inductive datatypes.

5.1.1 Test of Finiteness and the appears Solver

We would like to be able to test whether a list is finite or infinite. The most
intuitive way of doing this is to write a function like:

let rec is_finite l = match l with

| N -> true

| C(h, t) -> (is_finite t)

Of course, this does not terminate on infinite lists under the standard semantics
of recursive functions. However, if we use the corec keyword, the equations
generated for C(0, N) will look like

is_finite(C(0, N)) = is_finite(N)

is_finite(N) = true

and the result will be true. For the infinite list ones, the only equation will
look like

is_finite(ones) = is_finite(ones)

and we expect the result to be false. Intuitively, the result of solving the
equations should be true if and only if the expression true appears on the
right-hand side of one of the equations. This is what the solver solver(e) does:
it returns true if and only if the expression e appears on the right-hand side of
one of the equations.

Our test of finiteness thus becomes:

let corec[appears(true)] is_finite l = match l with

| N -> true

| C(h, t) -> (is_finite t)

An alternative approach for this example would use the iterator solver of
§5.1.3.

5.1.2 Mapping a Function and the constructor Solver

The constructor solver can be used when a function tries to build a data
structure that could be cyclic, representing a regular element of a final coalgebra.
The map function on lists takes a function f and a list l, applies f on every
element h of l, and returns the list of the results f h. The constructor solver
can be used to create a map functions that works on all lists, finite or infinite.
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let corec[constructor] map arg = match arg with

| f, N -> N

| f, C(h, t) -> C(f(h), map (f,t))

The constructor solver takes care of building the new data structure, even
if it turns out to be circular. Internally, constructor first checks that the
right-hand side of every equation is a value (an integer, float, string, boolean,
unit, tuple on values or unknowns, injection on a value or unknown). Then it
replaces the unknown variables on the right-hand sides with normal variables
and adds them to the environment, thus creating the capsule representing the
desired data structure.

5.1.3 Sets of Elements and the iterator Solver

In many cases the set of equations can be seen as defining a fixpoint of a mono-
tone function. For example, when the codomain is a CPO, and the operations
on the right-hand sides of the equations are monotone, then the Knaster–Tarski
theorem ensures that there is a least fixpoint. Moreoever, if the CPO is finite or
otherwise satisfies the ascending chain condition (ACC), then the least fixpoint
can be computed in finite time by iteration, starting from the bottom element
of the CPO.

The iterator solver takes an argument b representing the initial guess for
each unknown. In the case of a CPO, this would typically be the bottom element.

We can apply this to creating a function set that computes the set of all
elements appearing in a list. A regular list, even if it is infinite, has only finitely
many elements. If α is the type of the elements, the codomain of set is the CPO
(P(α),⊆) with bottom element ∅. Restricted to subsets of the set of variables
appearing in the list, it satisfies the ACC.

For the implementation, we represent a set as an ordered list. The function
insert inserts an element in an ordered list without duplicating it if it is already
there. The function set can be defined as:

let corec[iterator(N)] set l = match l with

| N -> N

| C(h, t) -> insert h (set t)

Internally, a guess is made for each unknown, initially b. At each iteration, a
new guess is computed for each unknown by evaluating the corresponding right-
hand side, where the unknowns have been replaced by current guesses. When all
the new guesses equal the old guesses, we stop, as we have reached a fixpoint.
The right-hand sides are evaluated in postfix order, i.e., in the reverse order
of seeing and generating new equations, because it usually makes the iteration
converge faster.

Note that this iterator solver is closely related to the least fixpoint solver
described in [11], but it can also be used in applications where the desired
fixpoint is not necessarily the least.
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5.1.4 List exists

Given a Boolean-valued function f that tests a property of elements of a list l,
we would like to define a function that tests whether this property is satisfied
by at least one element of l. This can be simply programmed using either the
appears or iterator solver:

let corec[appears(true)] exists arg = match arg with

| f, N -> false

| f, C(h, t) -> f(h) || exists (f, t)

Note that for this function to work, it is critical that the “or” operator || be
lazy, so that the partial evaluation of the expression f(h) || exists (f, t)

can return true directly whenever f(h), even if the result of evaluating exists

(f, t) is not known.

5.1.5 The Curious Case of Filtering

Given a Boolean-valued function function f and a list l, we would like to define
a function that creates a new list l1 by keeping only the elements of l that
satisfy f. The first approach is to use the constructor solver and do it as if
the list were always finite:

let corec[constructor] filter_naive arg = match arg with

| f, N -> N

| f, C(h, t) -> if f(h) then C(h, filter_naive(f, t))

else filter_naive(f, t)

However, this does not quite work. For example, if called on the function fun
x -> x <= 0 and the list ones, it generates only one equation

filter_naive(ones) = filter_naive(ones)

and it is not clear which solution is desired by the programmer. However, it is
clear that in this particular case, the set N should be returned. The problem
arises whenever the function is called on an infinite list l such that no element
of l satisfies f. Rather than modify the solver, our solution is to be a little bit
more careful and return N explicitly when needed:

let corec[constructor] filter arg = match arg with

| f, N -> N

| f, C(h, t) -> if f(h) then C(h, filter(f, t))

else if exists(f, t) then filter(f, t)

else N

5.1.6 Printing and the separate Solver

In both OCaml and CoCaml, the default printer for lists prints up to some
preset depth, printing “. . . ” when this depth is exceeded. This will always
happen if the list is circular.

let rec ones = C(1, ones);;

val ones : lis = C (1, C (1, C (1, C (1, ... ))))
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This is not very satisfying. Often it may appear as if some pattern is repeat-
ing, but what if for example a 2 appears in 50th position and is not printed? A
better solution might be to print the non-repeating part normally, followed by
the repeating part in parenthesis. For example, the list C(1, C(2, N)) might
be printed as 12 and the list C(1, C(2, ones)) would be printed as 12(1).
This can be achieved by creating a special solver separate, which from the
equations defining the lists outputs two finite lists, the non-repeating part and
the repeating part. From there it is easy to finish.

The function extracts the equations defining the list and passes them to the
solver. The solver expects equations with right-hand sides that are injections of
I1 and I2 and returns an injection of I3 containing both lists.

type sep = I1 | I2 of int * sep | I3 of lis * lis’

let corec[separate] separate i = match i with

| N -> I1

| C(i, t) -> I2(i, separate t)

Internally, the equations given to the solver are a graph representing the list.
A simple cycle-detection algorithm allows us to solve the equations as desired.

However, this example is not completely satisfying. The function shown
above seems to not do anything, and all the work is done in the solver. As such,
the solver is quite ad hoc, which contrasts greatly with the solvers we have seen
so far. Moreover, the type sep we have introduced exists merely to make the
type checker happy. Conceptually, the solver takes a list as an argument and
returns a pair of lists. This example shows the limits of the typing mechanism
as applied to functions on coinductive data.

5.1.7 Other Examples

We have presented a few examples of functions on infinite lists. Some of them
are inspired by classic functions on lists supported by the List module of OCaml.
Some functions of the List module, like sorting, do not make sense on infinite
lists. But most other functions of the List module can be implemented in similar
ways. We refer to the implementation [5] for more details.

Other examples involving probabilistic protocols, finite automata, and ab-
stract interpretation are given in [11].

5.2 A Library for p-adic Numbers

In this section we present a library for p-adic numbers and operations on them.

5.2.1 The p-adic Numbers

The p-adic numbers [3, 16] are a well-studied mathematical structure with appli-
cations in several areas of mathematics. For a fixed prime p, the p-adic numbers
Qp form a field that is the completion of the rationals under the p-adic metric
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in the same sense that the reals are the completion of the rationals under the
usual Euclidean metric. The p-adic metric is defined as follows. Define | · |p by

• |0|p = 0;

• if x ∈ Q, write x as x = apn/b, where n, a and b are integers and neither
a nor b is divisible by p. Then |x|p = p−n.

The distance between x and y in the p-adic metric is |x− y|p. Intuitively, x and
y are close if their difference is divisible by a high power of p.

Just as a real number has a decimal representation with a finite number of
nonzero digits to the left of the decimal point and a potentially infinite number
of nonzero digits to the right, a p-adic number has a representation in base p
with a finite number of p-ary digits to the right and a potentially infinite number
of digits to the left. Formally, every element of Qp can be written in the form∑∞

i=k dip
i, where the di are integers such that 0 ≤ di < p and k is an integer,

possibly negative. An important fact is that this representation is unique (up to
leading zeros), in contrast to the decimal representation, in which 1 = 0.999 . . . .
If dk = 0 for k < 0, then the number is said to be a p-adic integer. If b is not
divisible by p, then the rational number a/b is a p-adic integer. Finally, p-
adic numbers for which the sequence (dk)k is regular (ultimately periodic) are
exactly the rational numbers. This is similar to the decimal representations of
real numbers. Since our lists must be regular so that they can be represented
in finite memory, these are the numbers we are interested in. We fix the prime
p (written p in programs) once and for all, for example as a global variable.

5.2.2 Equality and Normalization

We represent a p-adic number x =
∑∞

i=k dip
i as a pair of lists:

• the list d0, d1, d2, . . . in that order, which we call the integer part of x and
which can be finite of infinite; and

• if k < 0 and dk 6= 0, the list containing d−1, d−2, . . . , dk, which we call the
fractional part of x and which is always finite.

Since the representation x =
∑∞

i=k dip
i is unique up to leading zeros, the

only thing we have to worry about when comparing two p-adic integers is that
an empty list is the same as a list of zeros, finite or infinite. The following
function equali uses the appears solver and compares two integer parts of
p-adic numbers for equality:

let corec[appears(false)] equali_aux x = match x with

| N, N -> true

| C(h1, t1), C(h2, t2) -> h1 = h2 && equali_aux (t1, t2)

| C(0, t1), N -> equali_aux (t1, N)

| N, C(0, t2) -> equali_aux (t2, N)

| _ -> false

let equali x = not (equali_aux x)
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The two arguments are not equal if and only if false appears on the right-hand
side of one of the equations. This is not the same as if true does not appear,
thus the necessity of an auxiliary function.

Interestingly, comparing the fractional parts is almost the same code, with
the rec keyword instead of the corec keyword, and no auxiliary function.

let rec equalf x = match x with

| N, N -> true

| C(h1, t1), C(h2, t2) -> h1 = h2 && equalf (t1, t2)

| C(0, t1), N -> equalf (t1, N)

| N, C(0, t2) -> equalf (t2, N)

| _ -> false

let equal x1 x2 = match x1, x2 with

(i1, j1), (i2, j2) -> equali (i1, i2) && equalf (j1, j2)

This happens quite often: if one knows how to do something with inductive
types, the solution for coinductive types often involves only changing the rec

keyword to corec and some other minor adjustments. However, one must take
care, as there are exceptions to this rule. In this example, since here equali

also works on inductive types, we could have used equali instead of equalf in
equal.

Now that we have equality, normalization of a p-adic integer becomes easy
using the constructor solver:

let corec[constructor] normalizei i =

if equali(i, N) then N

else match i with C(i, t) -> C(i, normalizei t)

The function normalizei only requires equality with zero (represented as N),
which is much easier than general equality. We can now write a normalization
on the fractional parts as a simple recursive function (once again, with the same
code), or just use normalizei, which also works on the fractional parts.

5.2.3 Conversion from a Rational

We wish to convert a given rational a/b with a, b ∈ Z to its p-adic representation.
Let us first try to convert x = a/b into a p-adic integer if b is not divisible by p.
Since x is a p-adic integer, we know that x can be written x =

∑∞
i=0 dip

i, thus
multiplying both sides by b gives

a = b

∞∑
i=0

dip
i.

Taking both sides modulo p, we get a = bd0 mod p. Since b and p are relatively
prime, this uniquely determines d0 such that 0 ≤ d0 < p, which can be found
by the Euclidean algorithm. We can now substract bd0 to get

a− bd0 = b

∞∑
i=1

dip
i.
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This can be divided by p by definition of d0, which leads to the same kind of
problem recursively.

This procedure defines an algorithm to find the digits of a p-adic integer.
Since we know it will be cyclic, we can use the constructor solver:

let corec[constructor] from_rationali (a,b) =

if a = 0 then N

else let d = euclid p a b in

C(d, from_rationali ((a - b*d)/p, b))

where the call euclid p a b is a recursive implentation of a (slightly modified)
Euclidean algorithm for finding d0 as above.

If b is divisible by p, it can be written pnb0 where b0 is not divisible by p,
and we can first find the representation of a/b0 as an integer, then shift by n
digits to simulate division by pn.

5.2.4 Conversion to a Float and the gaussian Solver

Given a p-adic integer x =
∑∞

i=0 dip
i, define xk =

∑∞
i=0 dk+ip

i. Then for all
k ≥ 0, xk = dk + pxk+1. If the sequence (dk)k is regular, so is the sequence
(xk)k, thus there exist n,m > 0 such that xk+m = xk for all k ≥ n. It follows
that

x = x0 =

n−1∑
i=0

dip
i + pnxn xn =

m−1∑
i=0

dn+ip
i + pmxn,

and further calculation reveals that x = a/b, where

a =

n+m−1∑
i=0

dip
i −

n−1∑
i=0

dip
m+i b = 1− pm.

But even without knowing m and n, the programmer can write a function that
will automatically construct a system of m+n linear equations xk = dk +pxk+1

in the unknowns x0, . . . , xm+n−1 and solve them by Gaussian elimination to
obtain the desired rational representation.

To accomplish this, we create a gaussian solver that solves equations when
the right-hand sides are linear functions. Our Gaussian elimination is on floats
and returns a float (thus an approximation), but we could as well have returned
a fraction. The equations are created with the following function:

let corec[gaussian] to_floati i = match i with

| N -> 0.

| C(d, t) -> (float_of_int d) +. (float_of_int p) *. (to_floati t)

This function returns the floating point representation of a given p-adic integer.
It is interesting to note that, apart from the mention of corec[gaussian], this
is exactly the function we would have written to calculate the floating-point
value of an integer written in p-ary notation using Horner’s rule.

A similar program can be used to convert the floating part of a p-adic number
to a float. Adding the two parts gives the desired result.
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5.2.5 Addition

Adding two p-adic integers is suprisingly easy. We can use (a slight adaptation
of) the primary school algorithm of adding digit by digit and using carries.
A carry might come from adding the floating parts, so the algorithm really
takes three arguments, the two p-adic integers to add and a carry. Using the
constructor solver, this gives:

let corec[constructor] addi arg = match arg with

| N, N, c -> if c = 0 then N

else C(c mod p, addi (N, N, c/p))

| C(h, t), N, c -> addi (C(h, t), C(0, N), c)

| N, C(h, t), c -> addi (C(0, N), C(h, t), c)

| C(hi, ti), C(hj, tj), c ->

let res = hi + hj + c in

C(res mod p, addi (ti, tj, res / p))

Once again, once we have addition on p-adic integers, it is easy to program
addition on general p-adic numbers.

5.2.6 Multiplication and Division

The primary school algorithm and the constructor solver can also be used
for multiplication. However, we need to proceed in two steps. We first create
a function mult1 that takes a p-adic integer i, a digit j, and a carry c, and
calculates i*j+c. We then create a function multi that takes two p-adic integers
i and j and a carry c and calculates i*j+c.

let corec[constructor] mult1 arg = match arg with

| N, d, c -> if c = 0 then N

else C(c mod p, mult1 (N, d, c/p))

| C(hi, ti), d, c ->

let res = hi * d + c in

C(res mod p, mult1 (ti, d, res / p))

let corec[constructor] multi arg = match arg with

| n1, N, c -> c

| n1, C(h2, t2), c ->

(match (addi (mult1 (n1, h2, 0), c, 0)) with

| N -> C(0, multi (n1, t2, 0))

| C(hr, tr) -> C(hr, multi (n1, t2, tr)) )

To extend this to general p-adic numbers, we can multiply both i and j by suit-
able powers of p before applying multi, then divide the result back as necessary.

Division of p-adic integers can be done with only one function using a
constructor solver in much the same way as addition or multiplication. The
algorithm also uses the euclid function and is closely related to from_rational.

5.3 Equality Revisited

Now that we have recursive functions on coinductive types, we might ask whether
it would be easier to program equality as defined in §3. The answer is yes.
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The function is built in much the same way as the equali function, with the
appears(false) solver and an auxiliary function. This is a general trend for
coinductive equality: two elements are equal unless there is evidence that they
are unequal. This definition corresponds perfectly to the use of the appears(false)
solver.

The code can be found below, with the small simplification of having ex-
pressions on pairs instead of general tuples.

type expr =

| Var of string

| Int of i

| Inj of string * expr

| Pair of expr * expr

let corec[appears(false)] equal_aux arg = match arg with

| (Var x1, env1), (Var x2, env2) ->

equal_aux ((assoc x1 env1, env1), (assoc x2 env2, env2))

| (Var x1, env1), s2 -> equal_aux ((assoc x1 env1, env1), s2)

| s1, (Var x2, env2) -> equal_aux (s1, (assoc x2 env2, env2))

| (Int i1, env1), (Int i2, env2) -> i1 = i2

| (Inj (inj1, e3), env1), (Inj (inj2, e4), env2) ->

inj1 = inj2 && equal_aux ((e3, env1), (e4, env2))

| (Pair(e1, e2), env1), (Pair(e3, e4), env2) ->

equal_aux ((e1, env1), (e3, env1)) &&

equal_aux ((e1, env1), (e3, env1))

| _ -> failwith "type error"

let equal arg = not (not_equal arg)

5.4 Other Examples

Besides the examples presented here, we have ported the examples presented in
[11] to CoCaml. Among those, substitution in a infinite λ-term (λ-coterm) and
descending sequences can be implemented with the constructor solver; free
variables of a λ-coterm and abstract interpretation of while loops can be im-
plemented using the iterator solver; and the examples involving probabilistic
protocols, like calculating the probability of heads of a coin-flip protocol or the
expected number of flips, can be implemented using the gaussian solver.

To complement the example of in §1 involving the free variables of a λ-
coterm, we show another non-well-founded example on λ-coterms, namely the
substitution of a term t for all free occurrences of a variable y. A typical
implementation would be

let rec subst t y = function

| Var x -> if x = y then t else Var x

| App (t1,t2) -> App (subst t y t1, subst t y t2)

where fv is the free variable function defined in the introduction. (For simplicity,
we have omitted the case of function abstraction, since it is not relevant for the
example.)
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x x

(a)

•

x •

y

(b)

•

x •

•

x x

(c)

Figure 1: A substitution example.

For example, to replace y in Fig. 1(b) by the term of Fig. 1(a) to obtain
Fig. 1(c), we would call subst (App x x) y t, where t is the term of Fig. 1(b),
defined by let rec t = App x (App y t).

The usual semantics would infinitely unfold the term on the left, attempting
to generate

•

x •

• •

x x •

. . .. . .

•

x x

This computation would never finish.
A minor adaptation of the definition of subst above results in the desired

function:

let corec[constructor] subst arg = match arg with

| x, t, Var v -> if v = x then t else Var v

| x, t, App(t1, t2) -> App(subst (x, t, t1), subst (x, t, t2))

6 Limitations and Future Work

In the current implementation, solvers are implemented directly in the inter-
preter. As versatile as these solvers are, we would like to provide means for
programmers to define their own solvers. For that we need to provide tools to
manipulate the abstract syntax tree. This is necessary because in general, the
right-hand side of an equation is only partially evaluated, thus can be an ex-
pression that is not a value. Along with giving this power to the user, we must
also provide static checks that can be performed on a solver and its associated
functions to ensure that the computation stays safe. Right now most of the
checks are dynamic.
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As of this writing, the interpreter only allows recursive functions on coalge-
braic datatypes that take one argument. Since this argument can be a tuple, this
is not much of a limitation, but it would still be nice to remove this restriction.

Typing recursive functions on coalgebraic objects as if they were normal
recursive functions seems natural. However, the example of §5.1.6 suggests that
the type of the solver may need to be taken into account. However, a solver
that transforms abstract syntax trees is not a CoCaml function in the normal
sense. We would like to study what it means for it to be well-formed and have
a type, and how this type should be used.

Finally, we would like to develop methods for proving the correctness of the
implementation of recursive functions on coalgebraic data.

7 Related Work

Syme [14] describes the “value recursion problem” and proposes an approach
involving laziness and substitution, eschewing mutability. He also gives a for-
mal calculus for reasoning about the system, along with several examples. One
major concern is with side effects, but this is not a particular concern for us.
His approach is not essentially coalgebraic, as bisimilar objects are not consid-
ered equal. Whereas he must perform substitution on the circular object, we
can use variable binding in the environment, as this is invisible with respect
to bisimulation, which is correspondingly much simpler. He also claims that
“compelling examples of the importance of value recursion have been missing
from the literature,” a gap that we have tried to fill in [11] and here.

Sperber and Thiemann [13] propose replacing ref cells with a safe pointer
mechanism for dealing with mutable objects. Again, this is not really coalge-
braic. They state that “ref cells, when compared to mechanisms for handling
mutable data in other programming languages, impose awkward restrictions on
programming style,” a sentiment with which we wholeheartedly agree.

Hirschowitz, Leroy, and Wells [9] suggest a safe initialization method for
cyclic data structures. Again, their approach is not coalgebraic and uses substi-
tution, which precludes further modification of the data objects once they are
created.

The closest to our work is the recent paper by Widemann [17], which is
explicitly coalgebraic. He uses final coalgebras to interpret datatype definitions
in a heap-based model with call-by-value semantics. Circular data objects are
represented by cycles of pointers created by substitution. The main focus is
low-level implementation of evaluation strategies, including cycle detection, and
examples are mainly search problems. He also proposes a “front-end language”
constructs as an important problem for future work, which is one of the issues
we have addressed here.

The question of equality of circular data structures in OCaml has been sub-
ject of investigation in, e.g, [8], where the cyclist can be found. The cyclist

library provides some functions on infinite lists in OCaml. However, this is
limited to lists and does not handle any other coinductive type.
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8 Conclusions

Coalgebraic (coinductive) datatypes and algebraic (inductive) datatypes are
similar in many ways. They are defined in the same way by recursive type
equations, algebraic types as least (or initial) solutions and coalgebraic types
as greatest (or final) solutions. Because of this similarity, one would like to
program with them in the same way, by defining functions by structural re-
cursion using pattern matching. However, because of the non-well-foundedness
of coalgebraic data, it must be possible for the programmer to circumvent the
standard semantics of recursion and specify alternative solution methods for
recursive equations. Up to now, there has been little programming language
support for this.

In this paper we have presented CoCaml, an extension of OCaml with new
programming language constructs to address this issue. We have shown though
numerous examples that coalgebraic types can be useful in many applications
and that computing with them is in most cases no more difficult than com-
puting with algebraic types. Although these alternative solution methods are
nonstandard, they are quite natural and can be specified in succinct ways that
fit well with the familiar style of recursive functional programming.
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[1] Jǐŕı Adámek, Dominik Lücke, and Stefan Milius. Recursive coalgebras of
finitary functors. Theoretical Informatics and Applications, 41:447–462,
2007.
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