
Information and Computation 208 (2010)578–593

Contents lists available at ScienceDirect

Information and Computation

j ourna l homepage: www.e lsev ie r .com/ loca te / i c

A coinductive calculus of binary trees

Alexandra Silva a ,∗,1, Jan Rutten a,b

a Centrum voor Wiskunde en Informatica (CWI), The Netherlands
b Vrije Universiteit Amsterdam (VUA), The Netherlands

A R T I C L E I N F O A B S T R A C T

Article history:

Received 23 November 2007

Revised 19 August 2008

Available online 4 January 2010

We study the set TA of infinite binary trees with nodes labelled in a semiring A from a

coalgebraic perspective. We present coinductive definition and proof principles based on

the fact that TA carries a final coalgebra structure. By viewing trees as formal power series,

we develop a calculus where definitions are presented as behavioural differential equa-

tions. We present a general format for these equations that guarantees the existence and

uniqueness of solutions. Although technically not very difficult, the resulting framework

has surprisingly nice applications, which is illustrated by various concrete examples.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Infinite data structures are often used to model problems and computing solutions for them. Therefore, reasoning tools

for such structures have become more and more relevant. Coalgebraic techniques turned out to be suited for proving and

deriving properties of infinite systems.

In [8], a coinductive calculus of formal power series was developed. In close analogy to classical analysis, the definitions

were presented as behavioural differential equations and properties were proved in a calculational (and very natural) way.

This approach has shown to be quite effective for reasoning about streams [8,9] and it seems worthwhile to explore its

effectiveness for other data structures as well.

In this paper, we shall take a coalgebraic perspective on a classical data structure – infinite binary trees, and develop a

similar calculus, using the fact that binary trees are a particular case of formal power series.

The contributions of thepresent paper are: a coinductive calculus, basedon thenotionof derivative, to define and to reason

about trees and functions on trees; a set of illustrative examples and properties that show the usefulness and expressiveness

of such calculus; the formulation of a general format that guarantees the existence anduniqueness of solutions of behavioural

differential equations; theviewof infinitebinary treesasgeneralizationsofotherwell-knowndata-structures, namely infinite

streams and bi-infinite streams and a discussion of the notion of rational tree including a comparison with existing notions

of rationality in the literature.

Infinite trees arise in several forms in other areas. Formal tree series (functions from trees to an arbitrary semiring) have

been studied in [4], closely related to distributive �-algebras. The work presented in this paper is completely different

since we are concerned with infinite binary trees and not with formal power series over trees. In [6], infinite trees appear

as generalisations of infinite words and an extensive study of tree automata and topological aspects of trees is made. We

have not yet addressed the relation of our work with automata theory. Here, we emphasize coinductive definition and proof

principles for defining and reasoning about (functions on) trees.

∗
Corresponding author.

E-mail addresses: ams@cwi.nl (A. Silva), janr@cwi.nl (J. Rutten).
1 Partially supported by the Fundação para a Ciência e a Tecnologia, Portugal, under Grant No. SFRH/BD/27482/2006.

0890-5401/$ - see front matter © 2009 Elsevier Inc. All rights reserved.

doi:10.1016/j.ic.2008.08.006

http://www.sciencedirect.com/science/journal/08905401
http://www.elsevier.com/locate/ic

A. Silva, J. Rutten / Information and Computation 208 (2010) 578–593 579

At the end of the paper, in Section 8, the novelty of our approach is discussed further. Also several directions for further

applications are mentioned there.

2. Trees and coinduction

We introduce the set TA of infinite node-labelled binary trees, show that TA satisfies a coinduction proof principle and

illustrate its usefulness.

The set TA of infinite node-labelled binary trees, where to each node is assigned a value in A, is the final coalgebra for the

functor FX = X × A × X and can be formally defined by:

TA = {t | t : {L, R}* → A}
The set TA carries a final coalgebra structure consisting of the following function:

〈l, i, r〉 : TA → TA × A × TA
t �→ 〈λw.t(Lw), t(ε), λw.t(Rw)〉

where l and r return the left and right subtrees, respectively, and i gives the label of the root node of the tree. Here, ε denotes

the empty word and, for b ∈ {L, R}, bw denotes the word resulting from prefixing the word w with the letter b.

These definitions of the set TA and the respective coalgebra map may not seem obvious. The follow reasoning justifies its

correctness:

• It is well known from the literature [5] that the final system for the functor G(X) = A × XB is (AB*
,π), where

π : AB* → A × (AB*
)B

π(φ)=〈φ(ε), λb v. φ(bv)〉
• The functor F is isomorphic to H(X) = A × X2.

• Therefore, the set A2*
is the final coalgebra for the functor F . Considering 2 = {L, R} we can derive the definition of 〈l, i, r〉

from the one presented above for π .

The fact that TA is a final coalgebra means that for any arbitrary coalgebra 〈lt, o, rt〉 : U → U × A × U, there exists a

unique f : U → TA, such that the following diagram commutes:

The existence part of this statement gives us a coinductive definition principle. Every triplet of functions lt : U → U,

o : U → A and rt : U → U defines a function h : U → TA, such that:

i(h(x)) = o(x) l(h(x)) = h(lt(x)) r(h(x)) = h(rt(x))

We will see a more general formulation of this principle in Section 3, where the right-hand side of the above equations

will be more general.

Taking A = R we present the definition of the elementwise sum as an example.

f g

c
a

d e

b +
w x

t
r

u v

s =
f+w g+x

c+t

a+r

d+u e+v

b+s

By the definition principle presented above, taking o(〈σ , τ 〉) = i(σ) + i(τ), lt(〈σ , τ 〉) = 〈l(σ), l(τ)〉 and rt(〈σ , τ 〉) =
〈r(σ), r(τ)〉 there is a unique function + : TR × TR → TR satisfying:

i(σ + τ) = i(σ) + i(τ) l(σ + τ) = l(σ) + l(τ) r(σ + τ) = r(σ) + r(τ)

Note that in the first equation above we are using + to represent both the sum of trees and the sum of real numbers.

580 A. Silva, J. Rutten / Information and Computation 208 (2010) 578–593

Now that we have explained the formal definition for the set TA and how one can uniquely define functions into TA,

another important question is still to be answered: how do we prove equality on TA? In order to prove that two trees σ and

τ are equal it is necessary and sufficient to prove

∀w∈{L,R}* σ(w) = τ(w) (1)

The use of induction on w (prove that σ(ε) = τ(ε) and that whenever σ(w) = τ(w) holds then σ(aw) = τ(aw) also

holds, for a ∈ {L, R}) clearly is a correct method to establish the validity of (1). However, we will often encounter examples

where there is not a general formula for σ(w) and τ(w). Instead, we take a coalgebraic perspective on TA and use the

coinduction proof principle in order to establish equalities. This proof principle is based on the notion of bisimulation. A

bisimulation on TA is a relation S ⊆ TA × TA such that, for all σ and τ in TA,

(σ , τ) ∈ S ⇒ σ(ε) = τ(ε) ∧ (l(σ), l(τ)) ∈ S ∧ (r(σ), r(τ)) ∈ S

We will write σ ∼ τ whenever there exists a bisimulation that contains (σ , τ). The relation ∼, called the bisimilarity

relation, is the union of all bisimulations (one can easily check that the union of bisimulation is itself a bisimulation).

The definition of bisimulation presented above follows directly from instantiating the notion of F-bisimulation [7] to the

functor FX = X × A × X .

Also in [7] a general formulation of the coinduction proof principlementioned above is presented. The following theorem

is the instantiation of such principle to infinite binary trees.

Theorem 1 (Coinduction). For all trees σ and τ in TA, if σ ∼ τ then σ = τ.

Proof. Consider two trees σ and τ in TA and let S ⊆ TA × TA be a bisimulation relation which contains the pair (σ , τ). The
equality σ(w) = τ(w) now follows by induction on the length ofw. We have that σ(ε) = τ(ε), because S is a bisimulation.

If w = Lw′, then

σ(Lw′)= l(σ)(w′) (Definition of l)

= l(τ)(w′) (S is a bisimulation and induction hypothesis)

= τ(Lw′) (Definition of l)

Similarly, ifw = Rw′, then σ(Rw′) = r(σ)(w′) = r(τ)(w′) = τ(Rw′). Therefore, for allw ∈ {L, R}*, σ(w) = τ(w). This
proves σ = τ . �

Thus, in order to prove that two trees are equal, it is sufficient to show that they are bisimilar.We shall see several examples

of proofs by coinduction below.

As a first simple example, let us prove that the pointwise sum for trees of real numbers defined before is commutative.

Let S = {〈σ + τ , τ + σ 〉 | σ , τ ∈ TR}. Since i(σ + τ) = i(σ) + i(τ) = i(τ + σ) and

l(σ + τ) = l(σ) + l(τ) Sl(τ) + l(σ) = l(τ + σ)
r(σ + τ) = r(σ) + r(τ) Sr(τ) + r(σ) = r(τ + σ)

for any σ and τ , S is a bisimulation relation on TR. The commutativity property follows by coinduction.

Letusproceedwithanapparentlymore complexexample. For a function f : R → R with f (a + b) = f (a) + f (b), ∀a,b ∈
R, we show that

mapf (σ + τ) = mapf (σ) + mapf (τ)

wheremapf applies a function f to every node of a given tree and is defined coinductively as

i(mapf (σ))= f (i(σ))

l(mapf (σ))=mapf (l(σ))

r(mapf (σ))=mapf (r(σ))

Similarly to what we did before, let S be a relation defined as follows:

S = {〈mapf (σ + τ), mapf (σ) + mapf (τ)
〉 | σ , τ ∈ TR}

with f preserving sums, as described above. Because

i(mapf (σ + τ)) = f (i(σ + τ)) = f (i(σ)) + f (i(τ))
= i(mapf (σ)) + i(mapf (τ))
= i(mapf (σ) + mapf (τ))

and, for t ∈ {l, r}

A. Silva, J. Rutten / Information and Computation 208 (2010) 578–593 581

t(mapf (σ + τ)) = mapf (t(σ + τ)) = mapf (t(σ) + t(τ))
S mapf (t(σ)) + mapf (t(τ))
= t(mapf (σ)) + t(mapf (τ))
= t(mapf (σ) + mapf (τ))

we can conclude that S is a bisimulation. Therefore, the desired equality follows by coinduction.

Although this example seemed more complex than the first, the final proof has a similar complexity. The bisimulation

that witnesses the equality was constructed in a similar way and without great effort. This illustrates the power of proofs by

coinduction – one can reduce the proof of laws about infinite structures to the construction of a relation that can be finitely

described.

3. Behavioural differential equations

In this section, we shall view trees as formal power series. Following [8], coinductive definitions of operators into TA and

constant trees then take the shape of so-called behavioural differential equations. We shall prove a theorem guaranteeing the

existence of a unique solution for a large family of systems of behavioural differential equations.

Formal power series are functions σ : X * → k from the set of words over an alphabet X to a semiring k. If A is a semiring,

TA, as defined in Section 2, is the set of all formal power series over the alphabet {L, R} with coefficients in A. In accordance

with the general notion of derivative of formal power series [8] we shall write σL for l(σ) and σR for r(σ). We will often refer

to σL , σR and σ(ε) as the left derivative, right derivative and initial value of σ .

Following [8], we will develop a coinductive calculus of infinite binary trees. From now on coinductive definitions will

have the shape of behavioural differential equations. Let us illustrate this approach by a simple example – the coinductive

definition of a tree, called one, decorated with 1’s in every node.

1 1

1

1

1 1

1

A formal definition of this tree consists the following behavioural differential equations:

Differential equations Initial value

oneL = one
oneR = one

one(ε) = 1

The fact that there exists a unique tree that satisfies the above equations will follow from the theorem below, which

presents a general format for behavioural differential equations guaranteeing the existence and uniqueness of solutions.

Behavioural differential equations will be used not just to define single constant trees but also functions on trees. We

shall see examples below. Before we present the main result of this section, we need one more definition. We want to be

able to view any element n ∈ A as a tree (which we will denote by [n]):

0 0

0

n

0 0

0

The tree [n] is formally defined as

[n](ε) = n

[n](w) = 0 w /= ε

Nextwepresent a syntax describing the format of behavioural differential equations thatwewill consider. Let� be a set of

function symbols, eachwith an arity r(f) ≥ 0 for f ∈ �. (As usualwe call f a constant if r(f) = 0.) LetX = {x1, x2, . . .}be a set
of (syntactic) variables, and let XL = {xL | x ∈ X}, XR = {xR | x ∈ X}, [X(ε)] = {[x(ε)] | x ∈ X} and X(ε) = {x(ε) | x ∈ X}
be sets of notational variants of them. The variables x ∈ X will play the role of place holders for trees τ ∈ TA. Variables xL , xR,

and [x(ε)] will then act as place holders for the corresponding trees τL , τR and [τ(ε)] in TA, while x(ε) (without the square

582 A. Silva, J. Rutten / Information and Computation 208 (2010) 578–593

brackets) will correspond to τ ’s initial value τ(ε) ∈ A. We call a system of behavioural differential equations for a function

symbol f ∈ � with arity r = r(f) well-formed if it is of the form

Differential equations Initial value

f (x1, . . . , xr)L = p
f (x1, . . . , xr)R = q

(f (x1, . . . , xr)) (ε) = c(x1(ε), . . . , xr(ε))

where c : Ar → A is a given function, and where p and q are terms built out of function symbols in � and variables in

{x1, . . . , xr} and their corresponding notational variants in XL , XR and [X(ε)]. A well-formed system of equations for � will

then consist of one well-formed equation for each f ∈ �. A solution of such a system of equations is a set of tree functions

�̃ =
{
f̃ : (TA)

r → TA | f ∈ �
}

satisfying, for all f ∈ � with arity r and for all τ1, . . . , τr ∈ TA,(
f̃ (τ1, . . . , τr)

)
(ε) = c(τ1(ε), . . . , τr(ε))

and (
f̃ (τ1, . . . , τr)

)
L
= p̃ and

(
f̃ (τ1, . . . , τr)

)
R

= q̃

where the tree p̃ ∈ TA (and similarly for q̃) is obtained from the term p by replacing (all occurrences of) xi by τi, (xi)L by (τi)L ,
(xi)R by (τi)R, and [xi(ε)] by [τi(ε)], for all i = 1, . . . , r, and all function symbols g ∈ � by their corresponding function g̃.

Theorem 2. Let� be a set of function symbols. Everywell-formed system of behavioural differential equations for� has precisely

one solution of tree functions �̃.

Proof. Consider a well-formed system of differential equations for �, as defined above. We define a set T of terms t by the

following syntax:

t ::= τ (τ ∈ TA) | f
(
t1, . . . , tr(f)

)
(f ∈ �)

where for every tree τ ∈ TA the set T contains a corresponding term, denoted by τ , andwhere new terms are constructed by

(syntactic) composition of function symbols from� with the appropriate number of argument terms. Note that T is disjoint

from the set of terms p, q as described above. The latter have no constants, while the elements of T have no variables.

Next we turn T into an F-coalgebra by defining a function 〈l, o, r〉 : T → (T × A × T) by induction on the structure of

terms, as follows. First we define o : T → A by

o(τ) = τ(ε)
o

(
f (t1, . . . tr(f))

) = c
(
o(t1), . . . , o(tr(f))

)
(where c is the function used in the equations for f). Next we define l : T → T and r : T → T by l(τ) = τL and r(τ) = τR,
and by

l (f (t1, . . . tr)) = p and r (f (t1, . . . tr)) = q

Here, the terms p and q are obtained from the terms p and q used in the equations for f , by replacing (every occurrence

of) xi by ti, (xi)L by l(ti), (xi)R by r(ti), and [xi(ε)] by [o(t)], for i = 1, . . . , r. Because TA is a final F-coalgebra, there exists a

unique homomorphism h : T → TA. We can use it to define tree functions f̃ : (TA)
r → TA, for every f ∈ �, by putting, for

all τ1, . . . , τr ∈ TA,

f̃ (τ1, . . . , τr) = h
(
f

(
τ1, . . . , τr

))

This gives us a set �̃ of tree functions. One can prove that it is a solution of our systemof differential equations by coinduction,

using the facts that h(τ) = τ , for all τ ∈ TA, and

h (f (t1, . . . , tr)) = f̃ (h(t1), . . . , h(tr))

for all f ∈ � and ti ∈ T . This solution is unique because, by finality of TA, the homomorphism h is. �

Let us illustrate the generality of this theorem by mentioning a few examples of systems of differential equations that

satisfy the format above. As a first example, take � = {one} consisting of a single constant symbol (with arity 0) and X = ∅.
We observe that the differential equations for one mentioned at the beginning of this section satisfy the format of the

theorem. For a second example, let � = {+,×} with arities r(+) = r(×) = 2 and let X = {σ , τ }. Consider the following

equations:

Differential equations Initial value

(σ + τ)L = σL + τL
(σ + τ)R = σR + τR

(σ + τ)(ε) = σ(ε) + τ(ε)

A. Silva, J. Rutten / Information and Computation 208 (2010) 578–593 583

Differential equations Initial value

(σ × τ)L = (σL × τ) + ([σ(ε)] × τL)
(σ × τ)R = (σR × τ) + ([σ(ε)] × τR)

(σ × τ)(ε) = σ(ε) × τ(ε)

These equations define the operations of sum and convolution product of trees, to be further discussed in Section 4. Note that

the right-hand side of the equation for (σ × τ)L (and similarly for (σ × τ)R) is a good illustration of the general format: it

is built from the functions + and ×, applied to (a subset of) the variables on the left (τ), their derivatives (σL and τL), and
their initial values viewed as trees ([σ(ε)]).

Clearly there are many interesting instances of well-formed differential equations. Note, however, that the format does

impose certain restrictions. The main point is that in the right-hand sides of the equations, only single L and R derivatives

are allowed. The following is an example of a system of equations that is not well-formed and that does not have a unique

solution. Let � = {f }, with arity r(f) = 1, and let X = {σ }. The equations for f are

Differential equations Initial value

f (σ)L = f (f (σLL))
f (σ)R = [0] f (σ)(ε) = σ(ε)

This system is not well-formed because in the right-hand side of the equation for f (σ)L the variable σ appears in a non-

allowed notational variantσLL (it should only appear asσ ,σL ,σR orσ(ε)). Both g(σ) = [σ(ε)] + (L × [σLL(ε)]) and h(σ) =
[σ(ε)] + (L × [σLL(ε)] + L2 × (1 − L)−1) are solutions.

All the examples of systems of behavioural differential equations that will appear in the rest of this document fit into the

format of Theorem 2. Therefore, in each case there exists a unique solution.

In the next section, we will define operators on trees, based on some general operators on formal power series [8].

4. Tree calculus

In this section, we present operators on trees, namely sum, convolution product and inverse, and state some elementary

properties, which we will prove using coinduction.

The sum of two trees is defined as the unique operator satisfying:

Differential equations Initial value

(σ + τ)L = σL + τL
(σ + τ)R = σR + τR

(σ + τ)(ε) = σ(ε) + τ(ε)

Note that this is a generalisation of the sum on trees of real numbers defined in Section 2 and that again we are overloading

the use of + to represent both sum on trees and sum on the elements of the semiring.

Sum satisfies some desired properties, easily proved by coinduction, such as commutativity or associativity:

Theorem 3. For all σ , τ and ρ in TA, σ + 0 = σ , σ + τ = τ + σ and σ + (τ + ρ) = (σ + τ) + ρ.

Here, we are using 0 as a shorthand for [0]. We shall use this convention (for all n ∈ A) throughout this document.

Proof. Easy exercise in coinduction. The equalities follow, respectively, from the fact that the relations {〈σ + 0, σ 〉 | σ ∈ TA},{〈σ + τ , τ + σ 〉 | σ , τ ∈ TA} and {〈σ + (τ + ρ), (σ + τ) + ρ〉 | σ , τ , ρ ∈ TA} are bisimulations. �

We define the convolution product of two trees as the unique operation satisfying:

Differential equations Initial value

(σ × τ)L = (σL × τ) + (σ (ε) × τL)
(σ × τ)R = (σR × τ) + (σ (ε) × τR)

(σ × τ)(ε) = σ(ε) × τ(ε)

Note that in the above definitionwe use× for representing bothmultiplication on trees and on the elements of the semiring.

Following the convention mentioned above σ(ε) × τL and σ(ε) × τR are shorthands for [σ(ε)] × τL and [σ(ε)] × τR. We

shall also use the standard convention of writing στ for σ × τ .
The general formula to compute the value ofσ × τ according to a path given by awordw ∈ {L, R}* is given by (σ ⊗ τ)(w)

where:

(σ ⊗ τ)(w) = ∑
w=u·v

σ(u) × τ(v)

where · denotes word concatenation. The fact that these two definitions of product coincide follows by coinduction because

the following relation is a bisimulation:

584 A. Silva, J. Rutten / Information and Computation 208 (2010) 578–593

S = {〈σ1 × τ1 + · · · + σn × τn, σ1 ⊗ τ1 + · · · + σn ⊗ τn〉 | σi, τi ∈ TA}
To give the reader some intuition about this operation wewill give a concrete example. Take A to be the Boolean semiring

B = {0, 1}, with operations+ = ∨ and× = ∧. Then, a tree τ ∈ TA corresponds to a language L(τ) over the alphabet {L, R}
given by

L(τ) = {w ∈ {L, R}* | τ(w) = 1} (2)

The product of trees corresponds then to concatenation of languages:

L(τ × σ) = L(τ) × L(σ)

The following theorem states some familiar properties of the convolution product.

Theorem 4. For all σ , τ , ρ in TA and a, b in A

σ × 1 = 1 × σ = σ
σ × 0 = 0 × σ = 0

σ × (τ + ρ) = (σ × τ) + (σ × ρ)
σ × (τ × ρ) = (σ × τ) × ρ
[a] × σ = σ × [a], if A is a commutative ring

[a] × [b] = [a × b]
Proof. An exercise in coinduction. In [9], these properties are proved for streams. �

Note that the convolution product is not commutative. Before we present the inverse operation, let us introduce two

(very useful) constants, which we shall call left constant L and right constant R. They will have an important role in the tree

calculus that we are about to develop and will turn out to have interesting properties when interacting with the product

operation. The left constant L is a tree with 0’s in every node except in the root of the left branch where it has a 1:

0 0

0

0

0 0

1L =

It is formally defined as

L(w) = 1 if w = L

L(w) = 0 otherwise

Similarly, the right constant R is only different from 0 in the root of its right branch:

0 0

1

0

0 0

0R =

and is defined as

R(w) = 1 if w = R

R(w) = 0 otherwise

These constants have interesting properties when multiplied by an arbitrary tree. L × σ produces a tree whose root and

right subtrees are null and the left branch is σ :

0 0

0

0

0 0

1 X
f g

c

a

d e

b =

0

f g

c

a

d e

b 0

0

0

A. Silva, J. Rutten / Information and Computation 208 (2010) 578–593 585

Dually, R × σ produces a tree whose root and left subtrees are null and the right branch is σ :

0 0

1

0

0 0

0 X
u v

r

p

s t

q =

0

u v

r

p

s t

q0

0

0

As before, if we see L and σ as languages and the product as concatenation, we can gain some intuition on the meaning

of this operation. L × σ will prefix every word of σ with the letter L, meaning that no word starting by Rwill be an element

of L × σ , and thus, L × σ has a null right branch. Similar for R × σ .

As we pointed out before, the product operation is not commutative. For example, σ × L /= L × σ and σ × R /= R × σ .

In fact, multiplying a tree σ on the right with L or R is interesting in itself. For instance, σ × L satisfies

(σ × L)(w) =
{
σ(u) w = uL

0 otherwise

which corresponds to the following transformation:

0 0

0

0

0 0

1X
f g

c

a

d e

b =

0

a

d 0

b

e 0

0

0

f 0

c

g 0

0

Similarly, σ × R produces the following tree:

0 0

1

0

0 0

0X
f g

c

a

d e

b =

0

0

0 d

0

0 e

b

a

0 f

0

0 g

c

Again, if you interpret these operations in the language setting, what is being constructed is the language that has all

words of the form uL and uR, respectively, such that σ(u) /= 0.

We define the inverse of a tree as the unique operator satisfying:

Differential equations Initial value

(σ−1)L = σ(ε)−1 × (−σL × (σ−1))

(σ−1)R = σ(ε)−1 × (−σR × (σ−1))
σ−1(ε) = σ(ε)−1

We are using −σL and −σR as shorthands for [−1] × σL and [−1] × σR, respectively. In this definition, we require A to

be a ring, in order to have additive inverses. Moreover, the tree σ is supposed to have also a multiplicative inverse for its

initial value.

The inverse of a tree has the usual properties:

Theorem 5. For all σ and τ in TA :
σ−1 is the unique tree s.t. σ × σ−1 = 1 (3)

(σ × τ)−1 = τ−1 × σ−1 (4)

Proof. For the existence part of (3), note that

(1) (σ × σ−1)(ε) = σ(ε) × σ(ε)−1 = 1

(2) (σ × σ−1)L = (σL × σ−1) + (σ (ε) × (σ (ε)−1 × (−σL × σ−1))) = 0

(3) (σ × σ−1)R = (σR × σ−1) + (σ (ε) × (σ (ε)−1 × (−σR × σ−1))) = 0

586 A. Silva, J. Rutten / Information and Computation 208 (2010) 578–593

So, by uniqueness (using the behavioural differential equations that define 1) we have proved that σ × σ−1 = 1. Now,

for the uniqueness part of (3), suppose that there is a tree τ such that σ × τ = 1. We shall prove that τ = σ−1. Note that

from the equality σ × τ = 1 we derive that

(1) τ(ε) = σ(ε)−1

(2) τL = σ(ε) × (−σL × τ)
(3) τR = σ(ε) × (−σR × τ)

Thus, by uniqueness of solutions for systems of behavioural differential equations, τ = σ−1.

For (4), note that (σ × τ) × τ−1 × σ−1 = σ × (τ × τ−1) × σ−1 = 1. Therefore, using the uniqueness property of (3),

(σ × τ)−1 = τ−1 × σ−1. �

5. Applications of tree calculus

We will illustrate the usefulness of our calculus by looking at a series of interesting examples.

Throughout this section we will use different semirings. When we do not specify the semiring, the example is valid for

an arbitrary semiring.

In order to compute closed formulae for trees we will be using the following theorem, that will enable us to solve

behavioural differential equations in an algebraic manner.

Theorem 6. For all σ ∈ TA, σ = σ(ε) + (L × σL) + (R × σR).

Proof. The theorem follows by coinduction from the fact that

S = {〈σ , σ(ε) + (L × σL) + (R × σR)〉 | σ ∈ TA} ∪ {(σ , σ) | σ ∈ TA}
is a bisimulation. �

We will now show how to use this theorem to construct a closed formula for a tree.

Recall our first system of behavioural differential equations:

Differential equations Initial value

oneL = one
oneR = one

one(ε) = 1

There we saw that the unique solution for this systemwas the tree with 1’s in every node. Alternatively, we can compute

the solution using Theorem 6 as follows:

one = one(ε) + (L × oneL) + (R × oneR)

⇔ one = 1 + (L × one) + (R × one)

⇔(1 − L − R)one= 1

⇔ one = (1 − L − R)−1

Therefore, the tree one can be represented by the (very compact) closed formula (1 − L − R)−1. Note the similarity of

this closed formula with the one obtained for the stream (1, 1, . . .) in [9]: (1 − X)−1.

Let us see a few more examples. In the following two examples we will work with A = R.

The tree where every node at level k is labelled with the value 2k , called pow,

4 4

2

1

4 4

2

is defined by the following system:

Differential equations Initial value

powL = 2 × pow
powR = 2 × pow

pow(ε) = 1

A. Silva, J. Rutten / Information and Computation 208 (2010) 578–593 587

We proceed as before, applying Theorem 6:

pow = pow(ε) + (L × powL) + (R × powR)

⇔ pow = 1 + (2L × pow) + (2R × pow)

⇔(1 − 2L − 2R)pow= 1

⇔ pow = (1 − 2L − 2R)−1

which gives us a nice closed formula for pow. Again, there is a strong similarity with streams: the closed formula for the

stream (1, 2, 4, 8, . . .) is (1 − 2X)−1.

The tree with the natural numbers

6 7

3

1

4 5

2

is represented by the following system of differential equations:

Differential equations Initial value

natL = nat + pow
natR = nat + (2 × pow)

nat(ε) = 1

Applying Theorem 6, we have:

nat = nat(ε) + (L × natL) + (R × natR)

⇔ nat = 1 + (L × (nat + pow)) + (R × (nat + 2pow))

⇔(1 − L − R)nat= 1 + L(1 − 2L − 2R)−1 + 2R(1 − 2L − 2R)−1

⇔(1 − L − R)nat= (1 − L) × (1 − 2L − 2R)−1

⇔ nat = (1 − L − R)−1 × (1 − L) × (1 − 2L − 2R)−1

⇔ nat = one × (1 − L) × pow

The Thue–Morse sequence [1] can be obtained by taking the parities of the counts of 1’s in the binary representation of

non-negative integers.Alternatively, it canbedefinedby the repeatedapplicationof the substitutionmap {0 → 01; 1 → 10}:
0 → 01 → 0110 → 01101001 → . . .

We can encode this substitution map in a binary tree, called thue, which at each level k will have the first 2k digits of the

Thue–Morse sequence:

1 0

1

0

0 1

0

In this example, we take for A the Boolean ring 2 = {0, 1} (where 1 + 1 = 0). The following system of differential equations

defines thue:

Differential equations Initial value

thueL = thue
thueR = thue + one

thue(ε) = 0

Note that thue + one equals the (elementwise) complement of thue. Applying Theorem 6 to thue, we calculate:

thue = (L × thue) + (R × (thue + one))
⇔ (1 − L − R) × thue = R × one

⇔ thue = (1 − L − R)−1 × R × one

588 A. Silva, J. Rutten / Information and Computation 208 (2010) 578–593

which then leads to the following pretty formula for thue:

thue = one × R × one

It is interesting to compare this formula with the regular expression that describes the corresponding language L(thue) ∈
{L, R}* (cf. Eq. (2)), which is given by

L(thue) = {w ∈ {L, R}* | thue(w) = 1 }
Putting

M = L(thue), N = L(thue + one)

the above equations for the tree thue (together with Theorem 6) lead to the following language equation for M:

M=(L × M) + (R × N)

where × denotes language concatenation, + denotes language union, and 1 = {ε}.
Similarly, computing left and right derivatives for thue + one leads to a language equation for N:

N=(L × N) + (R × M) + 1

Solving these equations as usual – notably using

A = (B × A) + C ⇒ A = B* × C

for languages A, B, C such that ε �∈ B —we find the following regular expression for M:

M = (L + (R × L* × R))* × R × L*

Somehow the tree expression for thue above is simpler and nicer.

The Cantor space is the collection of all infinite sequences over a two element set. Typically, this set is {0, 1}, but to avoid

confusion with the semiring units we will take {a, b}. The Cantor space can be represented as a tree:

ba bb

b

aa ab

a

In this example, we take for A the semiring of languages over a two-letter alphabet 2{a,b}*
, where 1 = {ε}, 0 = ∅, + and ×

are, respectively, language union and concatenation. Note that each node of the above tree denotes in fact not a word but the

language containing a singleton element.

The following system of differential equations defines cantor:

Differential equations Initial value

cantorL = a × cantor
cantorR = b × cantor

cantor(ε) = 1

Applying Theorem 6 to cantor, we have:

cantor = (L × a × cantor) + (R × b × cantor)
⇔ (1 − aL − bR) × cantor = 1

⇔ cantor = (1 − aL − bR)−1

which gives us a very compact and pleasant closed formula for cantor.

Note that in this example there are two alphabets at stake, the one denoting the tree branches {L, R} and the one for the

words in the language {a, b}. The interplay between this two alphabets is clearly reflected in the closed formula obtained.

Let us present another example – a substitution operation, which given two trees σ and τ , replaces the left subtree of σ
by τ .

()

L R
=subst () ,

()

R

A. Silva, J. Rutten / Information and Computation 208 (2010) 578–593 589

It is easy to see that the equations that define this operation are:

Differential equations Initial value

subst(σ , τ)L = τ
subst(σ , τ)R = σR

subst(σ , τ)(ε) = σ(ε)

Then, we apply Theorem 6 and we reason:

subst(σ , τ)= σ(ε) + (L × τ) + (R × σR)

⇔subst(σ , τ)= σ − (L × σL) + (L × τ)

⇔subst(σ , τ)= σ − L(σL − τ)

Note that in the second step, we applied Theorem 6 to σ . Moreover, remark that the final closed formula for subst(σ , τ)
gives us the algorithm to compute the substitution:

()

0 R

+
0

0

- 0

L 0

()

L R
=subst () ,

()

R

We can now wonder how to define a more general substitution operation that has an arbitrary path P ∈ {L, R}+ as an

extra argument and replaces the subtree of σ given by this path by τ . It seems obvious to define it as

subst(σ , τ , P) = σ − P(σP − τ)

where, in the right-hand side, P = a1a2 . . . an is interpreted as a1 × a2 × . . . × an and the derivative σP is defined as

σP =
{
σδ P = δ
(σδ)P′ P = δ.P′

with δ being either L or R.

Let us check that our intuition is correct. First, we present the definition for this operation:

Differential equations Initial value

subst(σ , τ , P)δ =
⎧⎨
⎩
τ P = δ
subst(σδ , τ , P

′) P = δ.P′
σδ P = δ′.P′ subst(σ , τ , P)(ε) = σ(ε)

where δ′ /= δ. Now, observe that

S = {〈subst(σ , τ , P), σ − P(σP − τ)〉 | σ , τ ∈ TR, P ∈ {L, R}+}
∪ {〈σ , σ 〉 | σ ∈ TR}

is a bisimulation relation because:

(1) (σ − P(σP − τ))(ε) = σ(ε) = subst(σ , τ , P)(ε)
(2) For δ ∈ {L, R},

(σ − P(σP − τ))δ =σδ − Pδ(σP − τ)

=
⎧⎨
⎩
τ P = δ
σδ − P′((σδ)P′ − τ) P = δ.P′
σδ P = δ′.P′

590 A. Silva, J. Rutten / Information and Computation 208 (2010) 578–593

S

⎧⎨
⎩
τ P = δ
subst(σδ , τ , P

′) P = δ.P′
σδ P = δ′.P′

=subst(σ , τ , P)δ

Therefore, by Theorem 1, subst(σ , τ , P) = σ − P(σP − τ).
Using this formula, we can now prove properties about this operation. For instance, one would expect that

subst(σ , σP , P) = σ

and

subst(subst(σ , τ , P), σP , P) = σ

The first equality follows easily: subst(σ , σP , P) = σ − P(σP − σP) = σ .

For the second one we have:

subst(subst(σ , τ , P), σP , P)= subst(σ − P(σP − τ), σP , P) (Definition of subst)

= σ − P(σP − τ) − P((σ − P(σP − τ))P − σP) (Definition of subst)

= σ − P(σP − τ) − P(τ − σP) ((σ − P(σP − τ))P = τ)
= σ

Remark that this operation is a standard example in introductory courses on algorithms and data structures. It is often

presented either as a recursive expression (very much in the style of our differential equations) or as a contrived iterative

procedure. This example shows that our compact formulae constitute a clear way of presenting algorithms and that they can

be used to eliminate recursion. Moreover, the differential equations are directly implementable algorithms (in functional

programming) and our calculus provides a systematic way of reasoning about such programs.

6. Infinite trees as generalizations of (bi-)infinite streams

Infinite binary trees can be seen as generalizations of other well-known data structures. In this section, wewill show how

the sets of infinite and bi-infinite streams can be seen as special instances of TA.

Let A be a semiring. The set of infinite streams over A is formally defined as

Aω = {s | s : ω → A}
The set Aω carries a final coalgebra structure for the functor GX = A × X consisting of the following pair of functions:

〈h, t〉 : Aω → A × Aω , s �→
〈
s(0), s′

〉

These assign to a stream s = (s0, s1, s2, . . .) its initial value s(0) = s0 ∈ A and its derivative s′ = (s1, s2, . . .) ∈ Aω .

We can now define the embedding of Aω into TA:

f : Aω → TA
f (s)(ε) = s(0)
f (s)L = f (s)R = f (s′)

For a given stream s, f (s) is a tree where every node at level k is labelled by s(k). Defining an appropriate transition

structure on Aω for the functor FX = X × A × X , we can prove that f is a coalgebra homomorphism, i.e, the following

diagram commutes:

Thus, S = f (Aω)∼=Aω is a subcoalgebra of TA, i.e., one can define a transition structure on S such that the inclusion map

i : S → TA is a coalgebra homomorphism. In this case, the above diagram shows that the required transition map on S is

simply the restriction of 〈l, i, r〉 to S.

Moreover, S can also be characterised as the greatest subcoalgebra �P contained in the following predicate P:

P = {σ ∈ TA | σL = σR}
Proposition 1. S = �P.

A. Silva, J. Rutten / Information and Computation 208 (2010) 578–593 591

Proof. The inclusion S ⊆ �P follows from the fact that S is a subcoalgebra and that S ⊆ P:

σ ∈ S ⇔ ∃s∈Aω σ = f (s)
⇒ σL = f (s)L = f (s)R = σR⇔ σ ∈ P

To prove the inclusion �P ⊆ S let us first spell out what it means that σ ∈ �P:

σ ∈ �P ⇔ σw = σ ′
w for all w, w′ ∈ {L, R}* s.t. |w| = |w′|

where | · | returns the length of a given word. This pointwise characterization of �P comes from unfolding the definition of

what it means to be a greatest subcoalgebra contained in P:

σ ∈ �P ⇔ σ ∈ P and σL, σR ∈ �P

⇔ σL = σR and σL ∈ P, σR ∈ P and σLL, σLR, σRL, σRR ∈ �P

⇔ σL = σR and σLL = σLR and σRL = σRR and · · ·
...

Formally, one still has prove that the set

P1 =
{
σ ∈ TA | σw = σ ′

w for all w, w′ ∈ {L, R}* s.t. |w| = |w′|
}

is indeed the greatest subcoalgebra contained in P. The proof that P1 ⊆ P and that P1 is a subcoalgebra follows easily from

the definitions. Proving that is the greatest subcoalgebra follows also easily by induction on |w|.
Now,define s ∈ Aω , for agivenσ ∈ �P, by s(n) = σ(w), for anyw such that |w| = nandobserve that f (s) = σ . Therefore,

σ ∈ S. �

Next we give a similar such characterisation for bi-infinite streams.

The set of bi-infinite streams over A, for a given semiring A, is formally defined as

AZ = {s | s : Z → A}
The set AZ has a dynamics given by the following three maps:

These assign to a bi-infinite stream b =
(
. . . , b−1, b0, b1, . . .

)
its initial value b(0) = b0 ∈ A, its left shift sl(b) =

(
. . . b−1,

b0, b1, b2, . . .
)

∈ AZ and its right shift sl(b) =
(
. . . b−2, b−1, b0, b1, . . .

)
∈ AZ. Note that the maps sl and sr have the property

sl ◦ sr = sr ◦ sl = id.

We can now define the embedding of AZ into TA:

g : AZ → TA
g(b)(ε) = b(0)
g(b)L = g(sl(b))
g(b)R = g(sr(b))

The map g is a coalgebra homomorphism, i.e, the following diagram commutes:

Thus, B = f (AZ)∼=AZ is a subcoalgebra of TA.

Moreover, B can be characterised as the greatest subcoalgebra �Q contained in the following predicate Q :

Q = {σ ∈ TA | σLR = σ = σRL}
Proposition 2. B = �Q .

Proof. The proof that B = �Q is similar to the corresponding proof for infinite streams.

The inclusion B ⊆ �Q follows from the fact that B is a subcoalgebra and that B ⊆ Q :

592 A. Silva, J. Rutten / Information and Computation 208 (2010) 578–593

σ ∈ B ⇔ ∃b∈AZ σ = g(b)
⇒ σRL = (g ◦ sr ◦ sl)(b) = g(b) = (g ◦ sl ◦ sr)(b) = σLR⇔ σ ∈ Q

To prove the inclusion �Q ⊆ B we spell out what it means that σ ∈ �Q :

σ ∈ �Q ⇔ σw = σ ′
w for all w, w′ ∈ {L, R}* s.t |w|a = |w′|a , a ∈ {L, R}

where | · |a returns the number of occurrences of a in a given word. As before, the formal proof that this pointwise

characterization of �Q is correct is omitted. The intuition behind it is similar to the one presented above for �P.

Now, define b ∈ AZ, for a givenσ ∈ �Q , by b(z) = σ(w), for anywsuch that |w|R − |w|L = z andobserve that g(b) = σ .

Therefore, σ ∈ B. �

7. Rational binary trees

We introduce the family of rational trees. Rational trees are important because they are exactly the trees that can be

represented by closed formulae.We compare our definition of rationality with existing notions.We prove that our definition

of rationality is more expressive than the one presented in [6] and that it coincides with the one given for formal power

series in [3].

All the examples presented so far are rational trees.

We define the set R of rational trees as the smallest subset of TA (for a ring A) such that:

(1) [n] ∈ R, for all n ∈ A

(2) L, R ∈ R
(3) For all σ and τ in R, σ + τ , σ × τ are also in R
(4) For all σ in R, such that σ(ε) is invertible in A, σ−1 is also in R

The expressions in R are given by the following grammar:

σ , τ ::= [n], n ∈ A | L | R | σ + τ | στ | σ−1 (σ (ε) invertible in A)

Next, we recall two existing notions of rationality from the literature.

Definition 1 ([6, p. 424]). A tree t is rational if it has only a finite number of different subtrees.

Our definition of rational is more general than this one. As an example take the tree nat of natural numbers. Obviously, it has

an infinite number of different subtrees and it is still rational in our setting.

Definition 2 ([3, p. 6]). A formal power series is rational if it is an element of the rational closure of k 〈X〉.
k 〈X〉 is the set of polynomials (formal power series with finite support) over X with coefficients in k. By finite support we

mean that for σ ∈ k 〈X〉 there is a finite number of words w ∈ X* such that σ(w) /= 0. The rational closure of k 〈X〉 is the

smallest set containing k 〈X〉 that is closed under the rational operations: sum, product, external products and star. There

are two external product operations of k on k 〈X〉 defined, for a ∈ k, as (aσ)(w) = a × σ(w) and (σa)(w) = σ(w) × a.

The star operator is defined as σ * = ∑
n≥0 σ n. This definition is only valid for formal power series σ such that σ(ε) = 0

(because in this case the family (σ n)n≥0 is locally finite and summable [3]).

If we restrict definition 2 to formal power series over two variables, one can prove that the rational closure of A 〈{L, R}〉,
which we will denote by RBR, is given by the following syntax:

σ , τ ::= [n], n ∈ A | L | R | σ + τ | στ | σ * (σ (ε) = 0)

The following theorem states the relation between this notion of rationality and ours.

Theorem 7. The set of rational trees R coincides with the set of rational formal power series over two variables, as defined in [3].

Proof. We will prove this theorem by induction on the syntax of the expressions. In fact, the syntax definitions for R and

RBR are very similar. They only differ in the use of star and inverse.

It easy to see that [n], L, R, σ + τ , στ ∈ R ⇔ [n], L, R, σ + τ , στ ∈ RBR. Therefore, in order to conclude that R and RBR

are equal, we only have to show that:

σ * ∈ RBR⇒ σ * ∈ R (5)

σ−1 ∈ R ⇒ σ−1 ∈ RBR (6)

For (5), observe that, if A is a ring then σ * is the inverse of 1 − σ and, for σ ∈ R, (1 − σ)−1 ∈ R. To see that σ * is the inverse

of 1 − σ note that

A. Silva, J. Rutten / Information and Computation 208 (2010) 578–593 593

σ *(1 − σ) = σ * − σ *σ = σ * − (σ * − 1) = 1

Here, we use the fact that σ *σ = σ+ = ∑
n≥1 σ n = σ * − 1 (for a more detailed proof we refer to [3]).

For (6), note that applying Theorem 6 to σ−1, we have

σ−1=σ−1(ε) +
(
L × (σ−1)L

)
+

(
R × (σ−1)R

)

=σ(ε)−1 +
(
L × −σ(ε)−1 × σL × σ−1

)
+

(
R × −σ(ε)−1 × σR × σ−1

)

=σ(ε)−1 +
((

L × −σ(ε)−1 × σL

)
+

(
R × −σ(ε)−1 × σR

))
σ−1

Now, because
((

L × −σ(ε)−1 × σL

)
+

(
R × −σ(ε)−1 × σR

))
(ε) = 0, we know (using [3, Lemma 4.1]) that the solution

for theequationσ−1 = σ(ε)−1 +
((

L × −σ(ε)−1 × σL

)
+

(
R × −σ(ε)−1 × σR

))
σ−1 is σ−1 =

((
L × −σ(ε)−1 × σL

)

+
(
R × −σ(ε)−1 × σR

))*
σ(ε)−1, which is an element of RBR. �

8. Discussion

We have modelled binary trees as formal power series and, using the fact that the latter constitute a final coalgebra, this

has enabled us to apply some coalgebraic reasoning. Technically, none of this is very difficult. Rather, it is an application of

well-known coalgebraic insights. As is the case with many of such applications, it has the flavour of an exercise. At the same

time, the result contains several new elements that have surprised us. Although technically Theorem 2 is an easy extension

of a similar such theorem for streams, the resulting format for differential equations for trees is surprisingly general and

useful. It has allowed us to define various non-trivial trees by means of simple differential equations, and to compute rather

pleasant closed formulae for them. We have also illustrated that based on this, coinduction is a convenient proof method

for trees. As an application, all of this is new, to the best of our knowledge. (Formal tree series, which have been studied

extensively, may seem to be closely related but are not: here we are dealing with differential equations that characterise

single trees.)

In addition to the illustrations of the present differential calculus for trees, we see various directions for further appli-

cations: (i) The connection with (various types of) automata and the final coalgebra TA of binary trees needs further study.

For instance, every Moore automaton with input in 2 = {L, R} and output in A has a minimal representation in TA. It would

also be interesting to study systematically the relation between tree expressions and, in the case A = {0, 1}, the regular

expressions for the correspondent languages (we saw an example of this for the thue tree). (ii) The closed formula that

we have obtained for the (binary tree representing the) Thue–Morse sequence suggests a possible use of coinduction and

differential equations in the area of automatic sequences [2]. Typically, automatic sequences are represented by automata.

The present calculus seems an interesting alternative, in which properties such as algebraicity of sequences can be derived

from the tree differential equations that define them. (iii) Finally, the closed formulae that we obtain for tree substitution

suggest many further applications of our tree calculus to (functional) programs on trees, including the analysis of their

complexity.

Acknowledgments

We thank Clemens Kupke, Paulo Oliva and the anonymous referee for valuable suggestions and discussions.

References

[1] J.-P.Allouche, J. Shallit, TheubiquitousProuhet–Thue–Morse sequence, in:C.Ding, T.N.H.Helleseth (Eds.), SequencesandTheirApplicationsProceedings
of SETA’98, Springer, Berlin, 1999, pp. 1–16.

[2] J.-P. Allouche, J. Shallit, Automatic Sequences: Theory, Applications, Generalizations, Cambridge University Press, Cambridge, 2003..
[3] J. Berstel, C. Reutenauer, Rational Series and Their Languages, Springer, New York, NY, 1988..
[4] Z. Ésik, W. Kuich, Formal tree series, Journal of Automata, Languages and Combinatorics 8 (2) (2003) 219–285.
[5] E.G. Manes, M.A. Arbib, Algebraic Approaches to Program Semantics, Springer, New York, NY, 1986..
[6] D. Perrin, J.-E. Pin, Infinite Words, Pure and Applied Mathematics, vol. 141, Elsevier, Amsterdam, 2004, ISBN: 0-12-532111-2.
[7] J.J.M.M. Rutten, Universal coalgebra: a theory of systems, Theoretical Computer Science 249 (1) (2000) 3–80.
[8] J.J.M.M. Rutten, Behavioural differential equations: a coinductive calculus of streams, automata, and power series, Theoretical Computer Science 308

(1–3) (2003) 1–53.
[9] J.J.M.M. Rutten, A coinductive calculus of streams, Mathematical Structures in Computer Science 15 (1) (2005) 93–147.

	Introduction
	Trees and coinduction
	Behavioural differential equations
	Tree calculus
	Applications of tree calculus
	Infinite trees as generalizations of (bi-)infinite streams
	Rational binary trees
	Discussion
	References

