
A specification language for Reo connectors

Alexandra Silva1

Centrum Wiskunde & Informatica

Abstract. Recent approaches to component-based software engineer-
ing employ coordinating connectors to compose components into soft-
ware systems. Reo is a model of component coordination, wherein com-
plex connectors are constructed by composing various types of primi-
tive channels. Reo automata are a simple and intuitive formal model of
context- dependent connectors, which provided a compositional seman-
tics for Reo.

In this paper, we study Reo automata from a coalgebraic perspective.
This enables us to apply the recently developed coalgebraic theory of gen-
eralized regular expressions in order to derive a specification language,
tailor-made for Reo automata, and sound and complete axiomatizations
with respect to three distinct notions of equivalence: (coalgebraic) bisim-
ilarity, the bisimulation notion studied in the original papers on Reo
automata and trace equivalence. The obtained language is simple, but
nonetheless expressive enough to specify all possible finite Reo automata.
Moreover, it comes equipped with a Kleene-like theorem: we provide al-
gorithms to translate expressions to Reo automata and, conversely, to
compute an expression equivalent to a state in a Reo automaton.

1 Introduction

The holy grail of component-based software engineering is to develop truly
reusable software components that can be sold off-the-shelf and reused to build
software systems [24]. Research on software composition plays a key role in
this quest, as it offers flexible ways of plugging together components. Chan-
nel based-languages, where ‘channels’ or ‘connectors’ are used to compose com-
ponents into a system [5, 13, 1, 12], play a prominent in the world of software
composition. These ‘languages’ express various coordination patterns exhibit-
ing combinations of synchronisation, mutual exclusion, non-deterministic choice,
context-dependent and state-dependent behaviour. A number of component con-
nector models exist, including Reo [1], Ptolemy [17, 18], MoCha [13], Manifold [2],
BIP [6] and an algebra of stateless connectors [10].

In this paper, we focus on the coordination language Reo and in a particular
semantic model thereof: Reo automata [8, 9]. We present a specification language
for Reo automata, together with a Kleene-like theorem and sound and complete
axiomatizations with respect to three notions of equivalence which enable alge-
braic reasoning on specifications. In order to achieve this, we make use of the
coalgebraic view on systems.



In the last decades, coalgebra has arisen as a prominent candidate for a math-
ematical framework to specify and reason about computer systems. Coalgebraic
modeling works, on the surface, as follows: the basic features of a system, such
as non-determinism or probability, are collected and combined in the appropri-
ate way, determining the type of the system. This type (formally, a functor) is
then used to derive a suitable equivalence relation and a universal domain of
behaviors, which allow to reason about equivalence of systems. The strength of
coalgebraic modeling lies in the fact that many important notions are parameter-
ized by the type of the system. Recently, in [23] the coalgebraic view on systems
enabled the development of a framework wherein specification languages and
axiomatizations can uniformly be derived for a large class of systems.

In this paper, we apply the general coalgebraic framework of [23] to Reo
automata. The main contributions of the paper are the following:
1. A coalgebraic characterization of Reo automata and of the bisimulation con-

sidered in [8].
2. A tailor-made language to specify Reo automata.
3. An analogue of Kleene’s theorem for Reo automata, yielding algorithms to

convert expressions to equivalent automata and vice-versa.
4. A sound and complete axiomatization of the language with respect to three

different types of equivalence (bisimilarity, trace semantics and the bisimu-
lation considered in [8]).

The items 2. − 4. partially stem from the general framework of [23]. However,
the only axiomatization derived from the general framework of [23] is that of
bisimilarity. The other two are completely new.

The paper is organized as follows. In Section 2 we present Reo, Reo automata
and basic notions of coalgebraic modeling. We conclude the section by showing
how to recast Reo automata in coalgebraic terms. We proceed in Section 3 to
presenting a language of regular expressions for Reo automata and in Section 4
an analogue of Kleene theorem in this setting. Section 5 contains sound and
complete axiomatizations with respect to bisimilarity and trace equivalence. In
Section 5.1, we tie the whole story with the notion of equivalence considered in
the papers on Reo automata [8, 9], which we characterize coalgebraically, and
we present a sound and complete axiomatization thereof. Section 6 contains an
extensive discussion on future and related work.

2 Preliminaries

Reo Reo is a channel-based coordination model wherein so-called connectors
are used to coordinate (i.e., control the communication among) components or
services exogenously (from outside of those components and services). In Reo,
complex connectors are compositionally built out of primitive channels. Channels
are atomic connectors with exactly two ends, which can be either source or
sink ends. Source ends accept data into, and sink ends dispense data out of
their respective channels. Reo allows channels to be undirected, i.e., to have
respectively two source or two sink ends.
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Fig. 1. Some basic Reo channels

Figure 1 shows the graphical representations of some basic channel types.
The Sync channel is a directed, unbuffered channel that synchronously reads
data from its source end and writes it to its sink end. The LossySync channel
behaves similarly, except that it does not block if the party at the sink end
is not ready to receive data. Instead, it just loses the data item. FIFO1 is an
asynchronous channel with a buffer of size one. The SyncDrain channel differs
from the other channels in that it has two source ends (and no sink end). If there
is data at both ends, this channel consumes (and loses) both items synchronously.

Channels can be joined together using nodes. A node can have one of three
types: source, sink or mixed node, depending on whether all ends that coincide on
the node are source, sink or a combination of both. Source and sink nodes, called
boundary nodes, form the boundary of a connector, allowing interaction with its
environment. Source nodes act as synchronous replicators, and sink nodes as
mergers. A mixed node combines both behaviors by atomically consuming a
data item from one sink end and replicating it to all of its source ends.

a b c d

Fig. 2. LossyFIFO1

An example connector is depicted in Fig-
ure 2. It reads a data item from a, buffers it in
a FIFO1 and writes it to d. The connector loses
data items from a if and only if the FIFO1 buffer is already full. This construct,
therefore, behaves as a connector called (overflow) LossyFIFO1.
Semantics: Reo Automata In this section, we recall Reo Automata [9], an au-
tomata model that provides a compositional operational semantics for Reo con-
nectors. Intuitively, a Reo Automaton is a non-deterministic automaton whose
transitions have labels of the form g|f , where g is a guard (boolean condition)
and f a set of nodes that fire synchronously. A transition can be taken only
when its guard g is true.

We recall some facts about Boolean algebras. Let Σ = {σ1, . . . , σk} be a set
of symbols that denote names of connector ports, σ be the negation of σ, and
BΣ be the free Boolean algebra generated by the following grammar:

g :: = σ ∈ Σ | > | ⊥ | g ∨ g | g ∧ g | g
We refer to the elements of the above grammar as guards and in its representation
we frequently omit ∧ and write g1g2 instead of g1∧g2. Given two guards g1, g2 ∈
BΣ , we define a (natural) order ≤ as g1 ≤ g2 ⇐⇒ g1 ∧ g2 = g1. The intended
interpretation of ≤ is logical implication: g1 implies g2. An atom of BΣ is a guard
a1 . . . ak such that ai ∈ Σ ∪Σ with Σ = {σi | σi ∈ Σ}, 1 ≤ i ≤ k. We can think
of an atom as a truth assignment. We denote atoms by Greek letters α, β, . . .
and the set of all atoms of BΣ by AtΣ . Given S ⊆ Σ, we define Ŝ ∈ BΣ as the
conjunction of all elements of S. For instance, for S = {a, b, c} we have Ŝ = abc.

Definition 1 (Reo Automaton [9]). A Reo Automaton is a triple (Σ,Q, δ)
where Σ is the set of nodes, Q is the set of states, δ ⊆ Q×BΣ × 2Σ ×Q is the

transition relation such that for each q
g|f−−→ q′ ∈ δ:

(i) g ≤ f̂ (reactivity)
(ii) ∀g ≤ g′ ≤ f̂ · ∀α ≤ g′ · ∃q g′′|f−−−→ q′ ∈ δ · α ≤ g′′ (uniformity)
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Fig. 3. Automata for basic Reo channels

In Reo Automata, for sim-
plicity we abstract data con-
straints [4] and assume they

are true. We use arrows q
g|f−−→

q′ for 〈q, g, f, q′〉 ∈ δ. If there is
more than one transition from
a state q to the same state q′ we often just draw one arrow and separate their
labels by commas. In Figure 3 we depict the Reo Automata for the basic channel
types listed in Figure 1.

Intuitively, a transition q
g|f−−→ q′ in an automaton corresponding to a Reo

connector conveys the following notion: if the connector is in state q and the
boundary requests present at the moment, encoded by an atom α, are such
that α ≤ g, then the nodes f fires and the connector evolves to state q′. Each
transition labeled by g|f satisfies two criteria: (i) reactivity—data flow only
through those nodes where a request is pending, capturing Reo’s interaction
model; and (ii) uniformity—which captures two properties: (a) the request set
corresponding precisely to the firing set is sufficient to cause firing, and (b)
removing additional unfired requests from a transition will not affect the (firing)
behavior of the connector [9].

Composing Reo connectors We now model at the automata level the com-
position of Reo connectors. We define two operations: product, which puts two
connectors in parallel, and synchronization, which models the plugging of two
nodes. These two operations can be used to obtain the automaton of a Reo
connector by composing the automata of its primitive connectors.

We first define the product operation for Reo Automata. This definition dif-
fers from the classical definition of (synchronous) product for automata: our
automata have disjoint alphabets and they can either take steps together or
independently. In the latter case the composite transition in the product au-
tomaton explicitly encodes that one of the two automata cannot perform a step
in the current state, using the following notion:

Definition 2. Given a Reo Automaton A = (Σ,Q, δ) and q ∈ Q we define

q] = ¬
∨
{ g | q g|f−−→ q′ ∈ δ }.

This captures precisely the condition under which A cannot fire in state q.

Definition 3 (Product). Given two Reo Automata A1 = (Σ1, Q1, δ1) and
A2 = (Σ2, Q2, δ2) such that Σ1 ∩ Σ2 = ∅, we define the product of A1 and
A2 as A1 ×A2 = (Σ1 ∪Σ2, Q1 ×Q2, δ) where δ consists of:

{(q, p) gg′|ff ′−−−−→ (q′, p′) | q g|f−−→ q′ ∈ δ1 ∧ p
g′|f ′−−−→ p′ ∈ δ2}

∪ {(q, p) gp]|f−−−→ (q′, p) | q g|f−−→ q′ ∈ δ1 ∧ p ∈ Q2}

∪ {(q, p) gq]|f−−−→ (q, p′) | p g|f−−→ p′ ∈ δ2 ∧ q ∈ Q1}

Here and throughout, we use ff ′ as a shorthand for f ∪ f ′. The first term in
the union, above, applies when both automata fire in parallel. The other terms



apply when one automaton fires and the other is unable to (indicated by p] and
q], respectively). Note that the product operation is closed for Reo Automata,
since it preserves reactivity and uniformity [9]. Figure 4 shows an example of
the product of two automata.

q × e f = (q, e) (q, f)
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Fig. 4. Product of LossySync and FIFO1 and the synchronization of nodes b and c

We now define a synchronization operation that corresponds to joining two
nodes in a Reo connector. In order for this operation to be well-defined we need
that every guard in a transition label in the automata is a conjunction of literals.
Note that in the automata presented in Figure 3 for basic Reo channels this is
already the case. It is always possible to transform any guard g into this form, by
taking its disjunctive normal form (DNF) g1∨. . .∨gk and splitting the transition
g|f into the several gi|f , for i = 1, . . . , k. Given a transition relation δ we call
norm(δ) the normalized transition relation obtained from δ by putting all of its
guards in DNF and splitting the transitions as explained above.

When synchronizing two nodes a and b (which are then made internal), in the
resulting automaton, only the transitions where either both a and b or neither a
nor b fire are kept — this is what it means for a and b to synchronize. In order to
propagate context information (pending requests), we require that every guard
contains either a or b, expressed by the condition g 6≤ ab below. This condition
roughly corresponds to the notion of an internal node acting like a self-contained
pumping station [1], which implies that an internal node cannot store data nor
actively block behavior.

Definition 4 (Synchronization). Given a Reo Automaton A = (Σ,Q, δ), we
define the synchronization for a, b ∈ Σ as ∂a,bA = (Σ,Q, δ′) where

δ′ = {q g\ab|f\{a,b}−−−−−−−−→ q′ | q g|f−−→ q′ ∈ norm(δ) s.t. g 6≤ ab and a ∈ f ⇔ b ∈ f}

Here and throughout, g\ab is the guard obtained from g by deleting all occur-
rences of a and b. It is worth noting that synchronization preserves reactivity
and uniformity.

Figure 4 depicts the product of LossySync and FIFO1, together with the result
of synchronizing nodes b and c. This synchronized result provides the semantics
for the LossyFIFO1 example in Figure 2.

Compositionality Given two Reo Automata A1 and A2 over the disjoint al-
phabets Σ1 and Σ2, {a1, . . . , ak} ⊆ Σ1 and {b1, . . . , bk} ⊆ Σ2 we construct
∂a1,b1∂a2,b2 · · · ∂ak,bk(A1 × A2) as the automaton corresponding to a connector



where node ai of the first connector is connected to node bi of the second con-
nector, for all i ∈ {1, . . . , k}. Note that the ‘plugging’ order does not matter
because ∂ is commutative and it interacts well with product. These properties
are captured in the following lemma.

Lemma 1 (Compositionality). For Reo Automata A1 = (Σ1, Q1, δ1) and
A2 = (Σ2, Q2, δ2):
1. ∂a,b∂c,dA1 = ∂c,d∂a,bA1, if a, b, c, d ∈ Σ1.
2. (∂a,bA1)×A2 ∼R ∂a,b(A1 ×A2), if a, b /∈ Σ2

The notion of equivalence ∼R used above, presented in [9], is defined as follows.

Definition 5. Given the Reo Automata A1 = (Σ,Q1, δ1) and A2 = (Σ,Q2, δ2),
we call R ⊆ Q1 ×Q2 a ∼R-bisimulation iff for all (q1, q2) ∈ R:

If q1
g|f−−→ q′1 ∈ δ1 and α ∈ AtΣ, α ≤ g, then there exists a transition

q2
g′|f−−→ q′2 ∈ δ2 such that α ≤ g′ and (q′1, q

′
2) ∈ R and vice-versa.

We say that two states q1 ∈ Q1 and q2 ∈ Q2 are equivalent if there exists a
relation containing the pair (q1, q2) and we write q1 ∼R q2. Two automata A1

and A2 are ∼R-bisimilar, written A1 ∼R A2, if there exists a ∼R-bisimulation
relation such that every state of A1 is related to some state of A2.1

A coalgebra primer For the purpose of this paper, viewing Reo automata as
coalgebras enables us to apply the generic framework presented in [23] in order
to derive a tailor-made language and a sound and complete axiomatization with
respect to bisimilarity.

We will introduce next the basic notions of coalgebraic modelling: coalgebra,
final coalgebra, bisimilarity and generated subcoalgebra. We also present the
notion of trace equivalence for non-deterministic automata which we will use
later in order to derive a trace semantics for Reo automata.

A G-coalgebra is a pair (S, f) consisting of a set of states S together with
a function f : S → GS, where G is a functor. The functor G, together with the
function f , determines the transition structure or dynamics of theG-coalgebra [21].
Classical examples of coalgebras are deterministic automata, infinite streams and
non-deterministic automata, which are, respectively, coalgebras for the functors
D(X) = 2 × XA, St(X) = R × X and N = 2 × P(X)A, where P denotes the
finite powerset functor.

A G-homomorphism from a G-coalgebra (S, f) to a G-coalgebra (T, g) is a
function h : S → T preserving transitions, i.e., such that g ◦ h = Gh ◦ f .

A G-coalgebra (Ω,ω) is said to be final if for any G-coalgebra (S, f) there
exists a unique G-homomorphism behS : S → Ω.

Let (X, f) and (Y, g) be two G-coalgebras. We say that the states x ∈ X and
y ∈ Y are bisimilar, written x ∼G y, if and only if they are mapped into the
same element in the final coalgebra, that is behX(x) = behY (y).
1 In [9], the authors used the terminology bisimulation for what we here call ∼R-

bisimulation. We make this distinction, which will be further discussed in Section 5.1,
because the notion of bisimulation, which is defined in coalgebraic terms below, does
not immediately coincide with the notion of bisimulation considered in [8, 9].



In certain contexts, other equivalences different than bisimilarity, such as
trace equivalence, are interesting to consider. Trace equivalence is of particular
interest when the system under consideration has some form of non-determinism.

X
{·} //

f
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P(X)

f]zzttt
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t

L //___ 2A
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// 2× (2A
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Coalgebraically, trace semantics has been
studied in [14] and, more recently, in [22]. The
latter contains a generalization of the classi-
cal powerset construction to a more general
class of systems. We recall on the right coal-
gebraically the powerset construction and below the definition of trace equiv-
alence for non-deterministic automata. In the diagram above: (X, f) is a non-
deterministic automaton; (P(X), f ]) is the determinization of the latter, where
f ] is uniquely defined from f as f ](S) = 〈b, λa.Sa〉, with b = 1 if f(s) = 1
for some s ∈ S (b = 0, otherwise) and Sa =

⋃
s∈S

f(s)(a); and L is the unique

homomorphism into the final coalgebra of the functor D(X) = 2 × XA which
computes the language recognized by a state of a deterministic automaton.

We then say that two states x and y in a non-deterministic automaton are
trace equivalent, and we write x ∼tr y, iff L({x}) = L({y}).

Given a G-coalgebra (S, f) and a subset V of S with inclusion map i : V → S
we say that V is a subcoalgebra of S if there exists g : V → GV such that i is a
homomorphism. Given s ∈ S, 〈s〉 ⊆ S denotes the subcoalgebra generated by s,
i.e. the set of states that are reachable from s.

A relation R ⊆ A × B can be seen as a function f : B → P(B). Hence, the
transition relation of each Reo automaton can be seen as a function f : X →
P(X ×BΣ × 2Σ), or equivalently, f : X → P(X)BΣ×2Σ .

A Reo automaton can then be conveniently characterized as a coalgebra for
the functor R(X) = P(X)BΣ×2Σ . It should be noted that we are not modeling
the (unifomity) and (reactivity) conditions. In other words, every Reo automaton
is an R-coalgebra but not every R-coalgebra is a Reo automaton. Only those
coalgebras which satisfy the aforementioned conditions.

Also, as remarked in [9], to obtain a trace (language) semantics for Reo
automata we need to consider that all states are accepting. For this purpose, we
can also see Reo automata as coalgebras of the functor R(X) = 2×P(X)BΣ×2Σ ,
where every state is set to be final.

3 A specification language for Reo

In this section, we instantiate the generic framework presented in [23] yielding
a language to specify and to reason about Reo automata.

Definition 6 (Expressions for Reo automata). Given sets of ports Σ and
variables X, the set Exp of expressions for Reo automata is given by the closed
expressions contained in the following BNF, for g ∈ BΣ, f ∈ 2Σ and x ∈ X:

ε :: = ∅ | ε⊕ ε | µx.γ | x | g↑f(σ)
γ :: = ∅ | γ ⊕ γ | µx.γ | g↑f(σ)
σ:: = ∅ | σ ∪ σ | {ε}



The operator µ in the expression µx.γ functions as a binder for all the occur-
rences of the variable x in γ. Note that the only difference between γ and ε is the
occurrence of x (γ is an expression where x occurs guarded, that is only inside
an expression of the shape g↑f(−)). An expression ε is closed if all variables
x ∈ X occurring in ε are bounded.

Intuitively, the expressions ∅, ⊕ and µx.γ are the counterpart of the empty
expression, + and star expressions in classical regular expressions, where they
denoted the empty language, language union and iteration. In our context, the
reader can think of ∅ as the specification of a deadlocked channel, of ⊕ as putting
the specifications of two channels in parallel and of µx.γ as the specification of
a channel with recursive behavior (or in other words, a persistent channel).
Remark. As mentioned above, the conditions of (reactivity) and (uniformity)
are not modeled in the functor determining the type of Reo automata. Hence,
they also do not appear in the definition of the expressions. However, they can
easily be taken into account by defining a notion of well-formed expressions where
only expressions specifying reactive and uniform Reo automata are allowed. For
simplicity, we abstract away from this in this paper and we will work it in full
detail in a future extended version.

Example 1. Even before providing semantics to the expressions above, in order
to give the reader a feeling for which expressions specify Reo channels, we include
in Figure 5 the expressions equivalent to the Reo automata of Figure 3.
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µx.ab↑ab({x}) µx.ab↑ab({x})⊕ ab↑a({x})) µx.ab↑ab({x}) e = µx.a↑a(b↑b({x}))
f = µx.b↑b(a↑a({x}))

Fig. 5. Expressions corresponding to the automata for basic Reo channels
We now proceed to provide the set of expressions with a coalgebraic structure,
which will provide operational semantics to the expressions. More precisely, we
will define below a function δ : Exp → P(Exp)BΣ×2Σ . This will allow us to de-
termine when a state s of a system and an expression ε are bisimilar, s ∼ ε, or
trace equivalent s ∼tr ε.
Definition 7 (Operational semantics). We define δ : Exp → P(Exp)BΣ×2Σ

by induction on the number of nested ocurrences of µ (and structural induction)
as follows:

δ(∅)(〈g, f〉) = ∅
δ(ε1 ⊕ ε2)(〈g, f〉) = δ(ε1)(g, f) ∪ δ(ε2)(g, f)
δ(µx.γ) = δ(γ[µx.γ/x])

δ(g↑f(σ))(〈g′, f ′〉) =

{
δ(σ) f = f ′&g = g′

∅ otherwise

δ(∅) = ∅ δ(σ1 ∪ σ2) = δ(σ1) ∪ δ(σ2) δ({ε}) = {ε}



Note that δ simply interprets each σ, a syntactical representation of a set of
specifications, as the corresponding set.

Having a coalgebra structure on the set of expressions has two advantages:
it provides immediately a natural semantics, using the unique homomorphism
into the final coalgebra (which can be thought of as the universe of behaviors),
and it enables an easy definition on when a state s of a Reo automaton and an
expression ε are bisimilar, s ∼ ε, or trace equivalent s ∼tr ε.

4 A Kleene theorem for Reo automata

In this section, we present the analogue of Kleene’s theorem for Reo automata.
More precisely, we show how to convert each expression into a Reo automaton
and, conversely, how to compute an expression equivalent to a state of a Reo
automaton.
From Reo automata to expressions We start by proving that for each
state of a Reo automaton it is possible to compute a bisimilar expression. The
expression is built in a similar way as in the classical case of regular expressions
and deterministic automata, by solving a system of equations describing the
transition structure of each state. In the proof of the theorem we formalize such
system of equations and we present an example below in which the similarities
with the classical case are more evident.

Theorem 1 (Kleene’s theorem for Reo automata (part I)). For every
Reo automaton (S, ξ), if S is finite then there exists for any s ∈ S an expression
εs ∈ Exp such that s ∼ εs.

Proof. Let S = {s1, . . . , sn}. We construct for a given s ∈ S an expression εs
with s ∼ εs. To this end, we associate with every state si ∈ S a variable xi ∈ X
and an expression Ai = µxi.ψi, with ψi defined by

ψi =
⊕

〈g, f〉 ∈ BΣ × 2Σ

ξ(si)(〈g, f〉) 6= ∅

g↑f
 ⋃
sj∈ξ(si)(〈g,f〉)

{xsj}


Then we define A0

i = Ai, Ak+1
i = Aki {Akk+1/xk+1} (for k = 0, . . . , n − 1)

and we set εi = Ani . Here, A{A′/x} denotes syntactic replacement (that is,
substitution without renaming of bound variables in A which are free in A′).
This seemingly complicated definition is the analogue of computing the regu-
lar expression denoting the language recognized by a state of a deterministic
automaton from a system of equations. Below, in an example, the similarities
between the system of equations we solve here (using fixed points) in the Reo au-
tomaton case and the one for deterministic automata will become more evident.
It should be remarked that above we are implicitly considering the argument set
of
⊕

and
⋃

to be ordered. The ordering is not important, since ⊕ and ∪ can
be proved to be an associative, commutative and idempotent operator.

Note that the term Ani = (µxi.ψi){A0
1/x1} . . . {An−1

n /xn} is closed, due to
the fact that, for every j = 1, . . . , n, the term Aj−1

j contains at most n − j



free variables in the set {xj+1, . . . , xn}. Moreover, for any 〈g, f〉 ∈ BΣ × 2Σ

δ(Ani )(〈g, f〉) = {Anj | sj ∈ ξ(si)(〈g, f〉)} (proof in appendix).
As a consequence of the above we have that the relation R = {〈s, εs〉 | s ∈ S}

is a bisimulation and thus s ∼ εs, for all s ∈ S.

e f

a|a

b|b

Let us illustrate the construction above. We recall on the left
one of the Reo automata presented in Figure 3. We associate
with e and f the variables x1 and x2, respectively, and we
define the expressions A1 = µx1.ψ1 and A2 = µx2.ψ2, where

ψ1 = a↑a({x2}) and ψ2 = b↑b({x1}).Then, we compute A1
1 = A0

1 = A1, A2
1 =

A1
1{A1

2/x2}, A1
2 = A0

2{A0
1/x1} = A2{A1/x1} and A2

2 = A1
2. This yields the

expressions

ε1 = A2
1 = µx1.a↑a({µx2.b↑b({µx1.a↑a({x2})})})

ε2 = A2
2 = µx2.b↑b({µx1.a↑a({x2})})

By construction we have e ∼ ε1 and f ∼ ε2. Note that the expression computed
here is slightly different than the one presented in Figure 5. They are however
equivalent as can be proved using the axioms we shall introduce later or by just
directly constructing a bisimulation. Moreover, we note that computing all the
Aij is not really needed. In general, one can solve the system of equations by
eliminating variables in a more convenient way, but we decided in this example
to follow exactly the formalization which we presented above.

s1 s2
a|a a|a

b|b

All the Reo automata we have seen so far were de-
terministic. For the reader to get the intuition of what
happens in the truly non-deterministic case expression-
wise we show the construction above for the automaton on the right. We associate
with s1 and s2 the variables x1 and x2, respectively, and we define A1 = µx1.ψ1

and A2 = µx2.ψ2, where ψ1 and ψ2 are given by
ψ1 = a↑a({x1} ∪ {x2}) ψ2 = b↑b({x1})

Then, we compute A1
1 = A0

1 = A1, A2
1 = A1

1{A1
2/x2}, A1

2 = A0
2{A0

1/x1} =
A2{A1/x1} and A2

2 = A1
2. This yields the expressions

ε1 = A2
1 = µx1.a↑a({x1} ∪ {ε2})}) ε2 = A2

2 = µx2.b↑b({µx1.a↑a({x1} ∪ {x2})})
As before, we have, by construction, s1 ∼ ε1 and s2 ∼ ε2.

From expressions to Reo automata The coalgebra structure (Exp, δ) also
provides us with a way of constructing a Reo automaton from an expression ε ∈
Exp, by considering the subcoalgebra 〈ε〉 (intuitively, 〈ε〉 denotes the unraveling
of the automaton generated starting in ε by applying δ). The synthesis of a Reo
automaton from an expression ε ∈ Exp is what we need to be able to state and
prove the second half of Kleene’s theorem for Reo automata.2

Theorem 2 (Kleene’s theorem for Reo automata (part II)). For every
expression ε ∈ Exp, there exists a Reo automaton (S, ξ) with S finite and s ∈ S
such that s ∼ ε.
2 For those readers familiar with the analogue situation for regular expressions we

remark the following. For a regular expression r, it is the case that 〈r〉 will in general



Proof. Let ε ∈ Exp. We define (S, ξ) = 〈ε〉, where 〈ε〉 denotes the smallest
subcoalgebra generated by ε. We just need to prove that S is finite, since we
already know that there exists a state in S, namely ε, which is trivially bisimilar
to ε. We present the proof of finiteness in appendix.

Let us illustrate the construction of the theorem above. Consider the expres-
sion ε1 = µx.ab↑ab({x}∪ {µy.ab↑ab({y})}). Applying δ we obtain the following:

δ(ε1)(〈g, f〉) = δ(ab↑ab({ε1} ∪ {µy.ab↑ab({y})}))(〈g, f〉)
= δ({ε1} ∪ {µy.ab↑ab({y})}))
= {ε1, µy.ab↑ab({y})}

The first step of the unraveling then yields the automaton on the left below,
where ε2 = µy.ab↑ab({y}). Applying δ to the new state ε2 = µy.ab↑ab({y}) then
completes the automaton, which we depict below on the right.

ε1 ε2

ab|ab
ab|ab

ε1 ε2

ab|ab
ab|ab ab|ab

5 Sound and complete axiomatizations

We present next an equational system for expressions in Exp. We define the
relation ≡ ⊆ Exp×Exp, written infix, as the least reflexive and transitive relation
containing the following identities:

1. (Exp,⊕, ∅) is a join-semilattice
ε⊕ ε ≡ ε (Idemp) ε1 ⊕ ε2 ≡ ε2 ⊕ ε1 (Commut)
ε1 ⊕ (ε2 ⊕ ε3) ≡ (ε1 ⊕ ε2)⊕ ε3 (Assoc) ∅ ⊕ ε ≡ ε (Empty)

2. µ is the unique fixed-point.
γ[µx.γ/x] ≡ µx.γ (FP) γ[ε/x] ≡ ε⇒ µx.γ ≡ ε (Unique)

3. The join-semilattice structure propagates through the expressions.
g↑f(∅) ≡ ∅ (Zero) g↑f(σ1 ∪ σ2) ≡ g↑f(σ1)⊕ g↑f(σ2) (Dist)

4. ≡ is a congruence.
ε1 ≡ ε2 ⇒ ε[ε1/x] ≡ ε[ε2/x] if x is free in ε (Cong)

5. α-equivalence
µx.γ ≡ µy.γ[y/x] if y is not free in γ (α− equiv)

be infinite, yielding infinite subcoalgebras like:

?>=<89:;r a // ONMLHIJKr + r
a //?> =<89 :;(r + r) + (r + r)

a // . . .

In the general framework of [23] this situation also occurred for some of the functors
considered and it was solved in a similar fashion to what happens in classical regular
expressions. In the functor we are considering in this paper, for Reo automata, this
difficulty does not show because of the semilattice structure of P which is taken into
account in the definition of δ for the expression ε1 ⊕ ε2.



Theorem 3 (Soundness and Completeness (bisimilarity)). The axioma-
tization presented above is sound and complete with respect to bisimilarity, that
is: ε1 ∼ ε2 ⇔ ε1 ≡ ε2

It is interesting to remark that in the axiomatization above one cannot derive
g↑f(ε1 ⊕ ε2) ≡ g↑f(ε1) ⊕ g↑f(ε2). This is similarly to what happens in, for
instance, CCS, where the axiom a.(P + Q) = a.P + a.Q is not valid. It is also
the key point in order to distinguish bisimilarity from trace equivalence.

An interesting observation, which was not at all considered in the general
framework of [23], is that the axiomatization above can be extended with the
axiom above and yield a sound and complete axiomatization for trace semantics.
This is reminiscent of what Rabinovich [20] showed for a fragment of CCS, where
adding to the axiomatization of Milner for bisimilarity the axiom a.(P + Q) =
a.P + a.Q resulted in a sound and complete axiomatization for trace semantics.
The proof of the theorem below follows a similar structure to that of Rabinovich’s
and, for space reasons, we omit it here.

Theorem 4 (Soundness and Completeness (trace semantics)). The ax-
iomatization presented above, augmented with the axiom

g↑f({ε1 ⊕ ε2}) ≡ g↑f({ε1})⊕ g↑f({ε2}) (D1)

is sound and complete with respect to trace semantics, that is:

ε1 ∼tr ε2 ⇔ ε1 ≡ ε2

An interesting feature of the axiomatization(s) above is that ⊕ enables the defi-
nition of a natural order on expressions: ε1 ≤ ε2 ⇔ ε1 ⊕ ε2 ≡ ε2. This opens the
door to study refinement of specifications of Reo automata (or, at the automaton
level notions of simulation).
5.1 Coalgebraic characterization of ∼R

The definition of bisimulation, which we denote ∼R, considered in [8, 9] (Defini-
tion 5) is different than the notion of coalgebraic bisimilarity which one obtains
from the functor of Reo automata. The definition of ∼R involved atoms and,
in fact, in [9] they showed a two step construction, where in the first step the
automaton is determinized (using the powerset construction, which we recalled
in the preliminaries) and in the second step each transition labeled by g|f in the
automaton is replaced by n transitions labeled by αi|f , using the fact that each
guard g is always equivalent to a disjunction of atoms α1 ∨ . . . ∨ αn. The con-
struction described above had as goal to show that the set 2(AtΣ×Σ)∗ of guarded
strings is the counterpart of formal languages for Reo automata.

It is the aim of this section to show that the definition of ∼R can be recovered
coalgebraically and that the axiomatization above (the one for trace semantics)
can be augmented with two axioms yielding a sound and complete axiomati-
zation with respect to the bisimulation of [8, 9]. The key observation is that
the bisimulation of [8, 9] can be characterized coalgebraically by the following
diagram



X
{·} //

f

��

P(X)

f]uullllllllllllll

f†

��

L //_______ 2(AtΣ×Σ)∗

��
2× P(X)BΣ×2Σ

2×c
// 2× P(X)AtΣ×2Σ

2×LA
// 2× (2(AtΣ×Σ)∗)A

where c performs the replacement of g|f by αi|f as explained above. It is easy
to show now that the bisimulation of [8, 9] which we recalled in Definition 5 and
denoted by ∼R can be recovered from the above diagram

q1 ∼R q2 ⇔ L({q1}) = L({q2})

Moreover, by analyzing the construction above we discovered which axioms
we have to add to our previous axiomatization.

Theorem 5 (Soundness and Completeness). The axiomatization presented
in the previous section for trace semantics plus the axioms

(b1 ∨ b2)↑f(σ) ≡ b1↑f(σ)⊕ b2↑f(σ) (∨) (⊥↑f)(σ) ≡ ∅ (⊥)

is sound and complete with respect to ∼R, that is ε1 ∼R ε2 ⇔ ε1 ≡ ε2.

To wrap up this section, we observe that the three equivalences considered in
this paper are related by an inclusion: ∼ ⊆ ∼tr ⊆ ∼R. This means that the
Kleene theorem we presented above for bisimilarity is also valid for the other
two equivalences.

6 Discussion
We have presented a framework to reason about Reo automata, a simple and
compositional model of the coordination language Reo. The framework consists
of (i) a specification language, together with (ii) a Kleene theorem or, more
precisely, algorithms to translate expressions to automata and vice-versa and
(iii) axiomatizations which enable equational reasoning on expressions. We con-
sidered three axiomatizations which are sound and complete with respect to,
respectively, bisimilarity, trace equivalence and the bisimulation of [8, 9].

The framework presented in this paper is still in its early stages: there are
improvements needed to turn it into a practical language. However, we believe
it sets the base of an interesting framework for Reo, which will allow the use
of powerful existing tools, in order to perform verification, synthesis and model-
checking of Reo circuits. For instance, the general framework of [23] was recently
implemented in the automatic theorem prover Circ [19, 7]. In [7], the authors
proved that it is always possible to automatically decide if two expressions are
bisimilar. This enables automatic reasoning on the language presented in this
paper. We would like to (i) integrate the framework of [7] in the Eclipe tool-suite
of Reo; (ii) extend the Circ framework of [7] in order to also automatically prove
different equivalences of expressions, such as trace equivalence.

Another research direction is to investigate how to model composition of con-
nectors at the expression level. We have preliminary results on this which suggest
that this is not only possible but also not very difficult. Once the composition
operator is part of the language it is a natural question whether it is possible to



easily prove (algebraically or coalgebraically) interesting properties such as, for
instance, that the Sync channel is an identity element for the composition. Fur-
ther, casting the framework we presented in this paper in a bialgebraic setting
would enable adding new operators, specified by structural operational semantic
rules, to the language. Also introducing syntactic sugar would improve the us-
ability of the language (for example, b� a could denote b only fires if a also fires
and would be translated to a long expression containing all the possible firings
containing ab or only a).

Recently, Reo was extended with stochastic information and a quantitative
version of Reo automata was proposed as an operational model. Extending the
language in order to incorporate stochastic values is an interesting research path,
as well as studying if Circ can be used to perform quantitative analysis or to
model check quantitative Reo.

Encoding translation of other models into the language could also yield useful
results. For instance, properties such as the one mentioned above, of Sync being
identity in the composition, could then be automatically checked in Circ for
several semantic models of Reo.

We are also interested in studying and axiomatizing weak (bi)similarity for
Reo automata. A prototypical example where this notion of equivalence plays a
role is in the two connectors below:

a b c d e f a b c d

The connector on the right accepts two data items and only then starts loosing
items, whereas the connector on the left may loose some data item while the
first accepted token moves from one buffer to other. This phenomenon is rem-
iniscent of what happens in process calculi with τ transitions. In the previous
papers of Reo automata eliminating τ transitions was not considered in detail.
If this elimination is well understood we hope to be able to also axiomatize weak
(bi)similarity. We conjecture (and believe) that the connectors above should not
be weakly bisimilar but the one on the right weakly simulates the one on the
left. This conjecture is based on the fact that weakly bisimilarity is usually not
a congruence and having the above connector equivalent indicates otherwise.

Related work There has been work on specification, verification and model
checking of Reo circuits [5, 15, 16, 3]. The work presented in [5, 16] have a strong
connection with our work in the sense that the languages presented stem from
process algebra. However, their focus is different: in both of the papers issues
as axiomatizations and Kleene theorem do not arise and they do not consider
different equivalence relations, as we do in the present paper. In [16], they take
advantage of an existing powerful tool to implement verification of Reo circuits.
An eventual integration of Circ into the Eclipse tools with certainly benefit from
the research carried in the aforementioned paper. A full comparison, discussing
the (dis)advantages of each approach, between the approach of [16] and what we
present in this paper is left as future work. The main difference with the work
presented in [15, 3] is that they consider Büchi like automata (and thus, infinite
traces). Also, in [3], only connectors which are not context dependent are taken
into account (since they base their results on the constraint automata model).
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A Proofs

Proof of Theorem 1 (cont.) We show here that for any 〈g, f〉 ∈ BΣ × 2Σ

δ(Ani )(〈g, f〉) = {Anj | sj ∈ ξ(si)(〈g, f〉)}.

δ(Ani )(〈g, f〉)
= δ(µxi.ψi){A0

1/x1} . . . {An−1
n /xn})(〈g, f〉)

= δ(µxi.ψi{A0
1/x1} . . . {Ai−2

i−1/xi−1}{Aii+1/xi+1} . . . {An−1
n /xn})(〈g, f〉)

(i)
= δ(ψi{A0

1/x1} . . . {Ai−2
i−1/xi−1}{Aii+1/xi+1} . . . {An−1

n /xn}[Ani /xi])(〈g, f〉)
(ii)
= δ(ψi{A0

1/x1} . . . {Ai−2
i−1/xi−1}{Aii+1/xi+1} . . . {An−1

n /xn}{Ani /xi})(〈g, f〉)
(iii)
= δ(ψi{A0

1/x1} . . . {Ai−2
i−1/xi−1}{Ani /xi}{Aii+1/xi+1} . . . {An−1

n /xn})(〈g, f〉)

(iv)
= δ

(( ⊕
sj∈ξ(si)(〈g,f〉)

{xsj}

)
{A0

1/x1} . . . {Ai−2
i−1/xi−1}{Ani /xi}{Aii+1/xi+1} . . . {An−1

n /xn}

)
= {xj{Aj−1

j /xj} . . . {An−1
n /xn} | sj ∈ ξ(si)(〈g, f〉)}

= {Anj | sj ∈ ξ(si)(〈g, f〉)}

Here, note that (i) follows by definition of δ; (ii) because [Ani /xi] = {Ani /xi},
sinceAni has no free variables; (iii) follows because xi is not free inAii+1, . . . , A

n−1
n ;

(iv) is a consequence of the definition of δ and:

{Ani /xi}{Aii+1/xi+1} . . . {An−1
n /xn}

= {Ai−1
i {A

i
i+1/xi+1} . . . {An−1

n /xn}/xi}{Aii+1/xi+1} . . . {An−1
n /xn}

= {Ai−1
i /xi}{Aii+1/xi+1} . . . {An−1

n /xn} (1)

Equation (1) uses the syntactic identity

A{B{C/y}/x}{C/y} = A{B/x}{C/y} (2)

Proof of Theorem 2 (cont.) Let 〈ε〉 = (S, ξ), for some ε ∈ Exp. We prove
that S is contained in a finite set, namely the set cl(ε) ∪ {∅}, where the closure
cl(ε) of ε, which is the set containing all subexpressions and unfoldings of ε, is
defined as the smallest set satisfying

cl(∅) = {∅}
cl(ε1 ⊕ ε2) = {ε1 ⊕ ε2} ∪ cl(ε1) ∪ cl(ε2)
cl(g↑f(σ)) = {g↑f(σ)} ∪ cl(σ)
cl(µx.ε) = {µx.ε} ∪ cl(ε[µx.ε/x])
cl(x) = {x}

cl(∅) = {∅}
cl(σ1 ∪ ε2) = {σ1 ∪ σ2} ∪ cl(σ1) ∪ cl(σ2)
cl({σ}) = {{σ}} ∪ cl(σ)



The set cl(ε) is finite, because the number of different unfoldings of µ-expressions
is finite. We only need to prove that for any 〈g, f〉 ∈ BΣ × 2Σ

δ†(ε)(〈g, f〉) ∈ cl(ε)

and, for any ε′ ∈ cl(ε), δ†(ε′)(〈g, f〉) ∈ cl(ε). Because ε ∈ cl(ε), the first equa-
tion is actually a special case of the second which we prove below by induction
on N(ε′).

N(∅)=N(g↑f(σ))=0 N(ε1⊕ε2)=max{N(ε1), N(ε2)}+1 N(µx.γ)=N(γ)+1

δ(∅)(〈g, f〉) = ∅ ∈ cl(ε)
δ(ε1 ⊕ ε2)(〈g, f〉) = δ(ε1) ∪ δ(ε2)(〈g, f〉) ∈ cl(ε1) ∪ cl(ε2) (induction hypothesis)
δ(µx.ε1)(〈g, f〉) = δ(ε1[µx.ε1/x])(〈g, f〉) ∈ cl(ε) (induction hypothesis)
δ(g′↑f ′(ε1))(〈g, f〉) = ∅ (if g 6= g′ or f 6= f ′)
δ(g′↑f ′(ε1))(〈g, f〉) = δ(ε1) ∈ cl(ε) (if g = g′ and f = f ′)

For the last step note that δ(ε1) ⊆ cl(ε1) ⊆ cl(ε).


