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Abstract. The Chomsky hierarchy plays a prominent role in the foundations of
theoretical computer science relating classes of formal languages of primary im-
portance. In this paper we use recent developments on coalgebraic and monad-
based semantics to obtain a generic notion of a T-automaton, where T is a monad,
which allows the uniform study of various notions of machines (e.g. finite state
machines, multi-stack machines, Turing machines, valence automata, weighted
automata). We use the generalized powerset construction to define a generic
(trace) semantics for T-automata, and we show by numerous examples that it
correctly instantiates for some known classes of machines/languages captured by
the Chomsky hierarchy. Moreover, our approach provides new generic techniques
for studying expressivity power of various machine-based models.

1 Introduction

In recent decades much interest has been drawn to studying generic abstraction devices.
These not only formally generalize various computation models and tools, but also iden-
tify core principles and reasoning patterns behind them. An example of this kind is given
by the notion of computational monad [22], which made an impact both on the theory
of programming (as an organization tool for denotational semantics [8, 24]) and on the
practice (e.g. being implemented as a programming language feature of Haskell [1] and
F# [36]). Another example is given by the theory of coalgebras [30], which provides a
uniform framework for concurrency theory and observational semantics of systems.

In this paper, we use previous work on monads and coalgebras to give a combined
(bialgebraic) perspective of the classical automata theory as well as of some less stan-
dard models such as weighted automata and valence automata. This does not only pro-
vided a unifying framework to study various computational models but also yields new
techniques to prove expressivity bounds.

We base our framework on the notion of a T-automaton, i.e. a coalgebra of the form

m : X → B × (TX)A,

where T is the functor part of a monad T, which we understand as a mathematical ab-
straction of a computational effect (in the sense of [22]) happening in conjunction with
state transitions of the automaton; A is the set of inputs; and B is the set of outputs. Ac-
cording to this view, e.g. nondeterminism is the underlying effect of nondeterministic
finite state machines. Analogously, we show that certain (nondeterministic) transforma-
tions of the pushdown store form the underlying effect of pushdown automata, etc. By
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instantiating the operational analysis of computational effects from [24] to our setting
we arrive at syntactic fixpoint expressions representing T-automata and prove a Kleene-
style theorem for them, thus generalizing previous work of the third author [34].

A crucial ingredient of our framework is the generalized powerset construction [35],
which serves as a coalgebraic counterpart of classical Rabin-Scott determinization algo-
rithm [26]. It allows us to define trace semantics of T-automata and fixpoint expressions
denoting their behavior.

We give a formal argument indicating that it is unlikely to capture languages be-
yond NTIME(n) using coalgebraic (trace) semantics in a straightforward way (i.e., in
our case, using the generalized powerset construction) — the phenomenon known be-
fore as a property of real-time machines [4]. The requirement to be real-time is an in-
herent coalgebraic phenomenon of reactivity (or productivity), which restricts the class
of behaviors that can be modeled. This led us to formulate a more general observa-
tional semantics, that allows us to take into account internal (or silent τ -)transitions
coalgebraically. The latter furthermore enabled us to capture recursively enumerable
languages by a special instance of T-automata called tape automata and that are very
similar to Turing machines. Capturing any kind of Turing complete formalism by coal-
gebras has been a long standing open problem, to which the present paper provides an
answer. This results brings us closer to having a coalgebraic Chomsky hierarchy and a
new abstract understanding of computability theory.

Related work. We build on previous work on coalgebraic modelling and monad-based
semantics. Most of the applications of coalgebra to automata and formal languages
however addressed rational models (regular languages, rational power series) from which
we note [31] (regular languages and finite automata), [12] (bialgebraic view of Kleene
algebra and regular expressions), [34, 21, 23, 3] (coalgebraic regular expressions). More
recently, some further generalizations were proposed. In recent work [39] a coalgebraic
model of context-free grammars is given, without however an analogous treatment of
push-down automata. In [10] some initial results on T-automata over stacks by the first
author were presented, which the present work extends considerably.

2 Preliminaries: Deterministic Moore Automata, Coalgebraicaly

In this section we recall the main definitions and existing results on coalgebraic mod-
elling of state machines. This material, as well as the material of the following sections,
uses the language of category theory, hence we assume readers to be familiar with basic
notions. We use Set as the main underlying category throughout. Further abstraction
from Set to a more general category, while possible (and often quite straightforward),
will not be pursued in this paper. The central notion in this paper is that of an F -
coalgebra is a pair (X, f : X → FX) where F is an endofunctor on Set called tran-
sition type, X is a set called the state space and f is a map called transition structure.
We shall occasionally identify a coalgebra with its state space if no confusion arises.

Coalgebras of a fixed transition type F form a category whose morphisms are maps
of the state spaces commuting with the transition structure: h : X → Y is a coalgebra
morphism from (X, f : X → FX) to (Y, g : Y → FY ) iff g ◦ h = Fh ◦ f . A final
object of this category (if it exists) plays a particularly important role and is called
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final coalgebra. We denote the final F -coalgebra by (νF, ι : νF → FνF ), and write
f̂ : X → νF for the unique homomorphism from (X, f) to (νF, ι).

Our core example is the standard formalization of Moore automata as coalgebras [30].
For the rest of the paper we fix a finite set A of actions and a set B of outputs. We call
the functor L = B × (--)A the language functor (over A, B). The coalgebras for L are
given by a set X of states with a transition structure on X given by maps

o : X → B and ∂a : X → X, (a ∈ A)

where the left-hand map, called the observation map, represents an output function
(e.g. an acceptance predicate if B = 2) and the right-hand maps, called a-derivatives,
are the next state functions indexed by input actions from A. Finite L-coalgebras are
hence precisely classical Moore automata. It is straightforward to extend a-derivatives
to w-derivatives with w ∈ A∗ by induction: ∂ε(x) = x; ∂aw(x) = ∂a(∂w(x)).

The final L-coalgebra νL always exists and is carried by the set of all formal power
series BA

∗
. The transition structure is given by o(σ) = σ(ε) and ∂a(σ) = λw.σ(aw)

for every formal power series σ : A∗ → B. The unique homorphism from an L-
coalgebra X to the BA

∗
assigns to every state x0 ∈ X a formal power series that we

regard as the (trace) semantics of X with x0 as an initial state. Specifically, if B = 2
then finite L-coalgebras are deterministic automata and BA

∗ ∼= P(A∗) is the set of
formal languages on A and the trace semantics assigns to every state of a given finite
deterministic automaton the language accepted by that state.

Definition 2.1 (Trace semantics, Trace equivalence). Given an L-coalgebra (X, f)
and x ∈ X , we write J−KX : X → BA

∗
for the unique L-coalgebra morphism.

For every x ∈ X we call JxKX the trace semantics of x (w.r.t. X). Trace equivalence
identifies exactly those x and y for which JxKX = JyKY (for possibly distinct coalgebras
X and Y ); this is denoted by x ∼ y.

The following result easily follows by definition.

Proposition 2.2. Given x ∈ X and y ∈ Y where X and Y are L-coalgebras, x ∼ y
iff for any w ∈ A∗, o(∂w(x)) = o(∂w(y)).

It is well-known that Moore automata, i.e. finite L-coalgebras, can be characterized in
terms of the formal power series occurring as their trace semantics (see e.g. [31]).

Definition 2.3 (Rational power series). A formal power series σ is called rational if
the set {∂w(σ) | w ∈ A∗} is finite.

Proposition 2.4. A formal power series is accepted by a Moore automaton if and only
if it is rational.

Remark 2.5. Rational formal power series as the semantics of precisely the finite L-
coalgebras are a special instance of a general coalgebraic phenomenon [2, 21]. Let F
be any finitary endofunctor on Set. Define the set %F to be the union of images of
all finite F -coalgebras (X, f : X → FX) under the final morphism f̂ : X → νF .
Then %F is a subcoalgebra of νF with an isomorphic transition structure map called
the rational fixpoint of F . It is (up to isomorphism) uniquely determined by either of
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the two following universal properties: (1) as an F -coalgebra it is the final locally finite
coalgebra and (2) as an F -algebra it is the initial iterative algebra. We refer to [2] for
more details.

The characteristic property of rational formal power series can be used as a definitional
principle. In fact, given a rational power series σ and assuming that A = {a1, . . . , an},
we can view {σ1, . . . , σk} = {∂w(σ) | w ∈ A∗} as the solution of a system of recursive
equations of the form

σi = a1.σi1 t · · · t an.σin t ci, i = 1, . . . , k, (2.1)

which should be read as follows: for all 1 ≤ i, j ≤ k, ∂aj (σi) = σij and σi(ε) = ci. The
system (2.1) uniquely determines σ1, . . . , σk: for every i it defines σi(ε) as ci and for
w = au it reduces calculation of σi(w) to calculation of some σj(u) — this induction
is obviously well-founded.

Any recursive equation (2.1) can be compactly written as

σi = µσi. (a1.σi1 t · · · t an.σin t ci) (2.2)

where µ is the fixpoint operator binding the occurrences of σi in the right term. One
can successively eliminate all the σi except σ using the equations (2.2) as assignments
and thus obtain a “solution” σ = t of (2.1) in σ where t is a closed term given by the
following grammar:

γ ::= µX. (a1.δ t · · · t an.δ t B) δ ::= X | γ (2.3)

Here X refers to an infinite stock of variables. Equation σ = t is then nothing but a
condensed representation of system (2.1) and as such it uniquely defines σ. On the other
hand, expressions of the form (2.3) suggest a far reaching generalization of classical
regular expressions and the fact that they capture exactly rational power series together
with Proposition 2.4 can be viewed as a coalgebraic reformulation of Kleene’s theorem.
This view has been advanced recently (in a rather more general form) in [34, 23] and is
of crucial importance for the present work.

Proposition 2.4 in conjunction with the presentation of rational formal power series
as expressions (2.3) suggest that every expression gives rise to a finite L-coalgebra
generated by it, whose state space consists of expressions. This is indeed true and can
be viewed as a coalgebraic counterpart of the classical Brzozowski’s theorem for regular
expressions [5]. Given an expression e = µx. (a1.e1 t · · · an.en t c), let

o(e) = c and ∂ai(e) = ei[e/x]. (2.4)

Proposition 2.6. Let e be a closed expression (2.3). Then the set {∂w(e) | w ∈ A∗}
forms a finite L-coalgebra under the transition structure (2.4).

3 Monads and Algebraic Theories

In the previous section we have presented a coalgebraic picture of deterministic Moore
automata, essentially capturing the Type-3 level of Chomsky hierarchy (modulo the
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generalization from languages to power series). In order to deal with other levels we
introduce (finitary) monads and algebraic theories as a critical ingredient of our for-
malization, thus building on top of the recent previous work [15, 35].

One way to give a monad is by giving a Kleisli triple.

Definition 3.1 (Kleisli triple). A Kleisli triple (T, η, --†) consists of an object assign-
ment T sending sets to sets, a family of maps ηX : X → TX and an operator, called
Kleisli lifting, sending any f : X → TY to f† : TX → TY . These data are subject to
the following axioms:

η† = id, f†η = f, (f†g)† = f†g†.

It is well-known that the definition of a monad as a Kleisli triple is equivalent to the
usual definition of a monad T as an endofunctor T equipped with natural transforma-
tions η : Id → T (unit) and µ : T 2 → T (multiplication). A T-algebra is given by a
set X and a map f : TX → X satisfying standard coherence conditions: fηX = idX
and µXTf = fµX , and a morphism of T-algebras is just a morphism of algebras
for the functor T (see [20]). The category of T-algebras and their morphisms is called
Eilenberg-Moore category of T and is denoted by SetT.

In what follows we occasionally use Haskell-style do-notation: for any p ∈ TX and
q : X → TY we write do x ← p; q(x) to denote q†(p) ∈ TY ; and p ∈ T (X × Y )
we write do 〈x, y〉 ← p; q(x, y). A monad T is finitary if the underlying functor T is
finitary, i.e., T preserves filtered colimits. Informally, T being finitary means that T is
determined by its action on finite sets. In addition, finitary monads admit an equivalent
presentation in terms of (finitary) algebraic theories as we now outline.

Definition 3.2 (Algebraic theory). An algebraic signature Σ consists of operation
symbols f , each of which comes together with its arity n, which is a nonnegative integer
— we denote this by f : n→ 1. Symbols of zero arity are also called constants. Terms
over Σ are constructed from operations and variables in the usual way. An algebraic
theory over Σ is given by a set of term equations closed under under inference of the
standard equational logic. As usual, an algebraic theory arises as the deductive closure
of a set of its axioms.

Given an algebraic theory E over Σ we can form a monad T as follows: TX is the
equivalence class of terms of the theory over free variables from X; ηX : X → TX
casts a variable to a term; given σ : X → TY and p ∈ TX , σ†(p) is the variable
substitution p[x 7→ σ(x)]. Conversely, we can pass from T to an algebraic theory E by
introducing an operation fa : n → 1 for each element a of Tn. Such an operation can
be interpreted as a map JfaK : TXn → TX by putting JfaK(t1, . . . , tn) = (λi. ti)

†(a).
This yields a semantics of algebraic terms over TX and we take as the algebraic theory
in question the class of all term equations valid over any TX . The above conversions
between finitary monads and algebraic theories are mutually inverse. In the sequel we
denote by ET the algebraic theory corresponding to T. Notably, T-algebras are then
exactly the models of the algebraic theory ET.

Example 3.3 (Monads, Algebraic theories). Standard examples of computationally
relevant monads include (cf. [22]):
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– The finite and unbounded powerset monads Pω and P . Only the first one is finitary
and corresponds to the algebraic theory of join-semilattices with bottom.
– The store monad over a store S. The functorial part given as X 7→ (X × S)S .
Typically, S is the set of maps L→ V from locations L to values V . As shown in [25],
if V is finite then the corresponding store monad can be captured by an algebraic theory
over operations {lookupl : V → 1}l∈L and {updatel,v : 1→ 1}l∈L,v∈V .
– The continuation monad. Given any set R, the assignment X 7→ (RX → R) yields
a monad under the following definitions:

η(x) = λf. f(x) and f†(k) = λc. k(λx. f(x)(c)).

This monad is known to be non-finitary, unless R = 1.

The following class of examples is especially relevant for the coalgebraic modelling of
state-based systems.

Example 3.4 (Semimodule monad, Semimodule theory). Given a semiring R, the
semimodule monad TR assigns to a set X the free left R-semimodule 〈X〉R over X .
Explicitly, 〈X〉R consists of all formal linear combinations of the form

r1 · x1 + · · ·+ rn · xn (ri ∈ R, xi ∈ X). (3.1)

Equivalently, the elements of 〈X〉R are maps f : X → R with finite support (i.e. with
|{x ∈ X | f(x) 6= 0}| < ω). The assignment X 7→ 〈X〉R extends to a monad, which
we call the (free) semimodule monad: ηX sends any x ∈ X to 1 · x and σ†(p) applies
the substitution σ : X → 〈Y 〉R to p ∈ 〈X〉R and renormalizes the result as expected.

The semimodule monad corresponds to the algebraic theory of R-semimodules.
Explicitly, we have a constant /0 : 0 → 1, a binary operation + : 2 → 1, and every
r ∈ R gives rise to a unary operation r̄ : 1 → 1. Terms of the theory are then build
over these operations and modulo the laws of commutative monoids for + and /0, plus
the following ones of a (left) action of R on a monoid:

r̄(x+ y) = r̄(x) + r̄(y) r̄(/0) = /0

r̄(x) + s̄(x) = r + s(x) 0̄(x) = /0

r̄(s̄(x)) = r · s(x) 1̄(x) = x

It can be shown that any term can by normalized to the form r̄1(x1) + · · ·+ r̄n(xn) and
the latter coherently represents the element (3.1) of 〈X〉R, which allows us to identify
them. Some notable instances of the semimodule monad TR for semirings R of interest
are the following:

– If R is the Boolean semiring {0, 1} then TR is (isomorphic to) the finite powerset
monad Pω .
– If R is the semiring of natural numbers then TR is the multiset monad: the elements
of 〈X〉R are in bijective correspondence with finite multisets over X .
– If R is the interval [0,+∞) then TR is the monad of finite valuations used for mod-
elling probabilistic computations [38]. Two other well-known monads of finite distri-
butions and finite subdistributions serving the same purpose embed into TR: the formal
sums (3.1) for them are requested to satisfy the additional constraints r1 + · · ·+ rn = 1
and r1 + · · ·+ rn ≤ 1, respectively.
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Finally, the following example is critical for modelling the push-down store.

Example 3.5 (Stack monad, Stack theory). Given a finite set of stack symbols Γ , the
stack monad (over Γ ) is the submonad T of the store monad (--×Γ ∗)Γ∗ for which the
elements 〈r, t〉 of TX ⊆ (X × Γ ∗)Γ∗ satisfy the following restriction: there exists k
depending on r, t such that for every w ∈ Γ k and u ∈ Γ ∗,

r(wu) = r(w) and t(wu) = t(w)u.

Intuitively, programs (represented by the elements of TX) are only allowed to read a
portion of the stack of a predeclared size regardless of the runtime content of the stack.

The stack theory w.r.t. Γ = {γ1, . . . , γn} consists of operations pop : n+ 1 → 1
and pushi : 1→ 1 (1 ≤ i ≤ n). The intuition behind these operations is as follows:

– pop(x1, . . . , xn, y) proceeds with y if the stack is empty; Otherwise it removes the
top element of it and proceeds with xi where γi ∈ Γ is the removed stack element.
– pushi(x) adds γi ∈ Γ on top of the stack and proceeds with x.

These operations are subject to the following axioms:

pushi(pop(x1, . . . , xn, y)) = xi

pop(push1(x), . . . , pushn(x), x) = x

pop(x1, . . . , xn, pop(y1, . . . , yn, z)) = pop(x1, . . . , xn, z)

As shown in [10] the stack theory is precisely the algebraic theory of the stack monad.

Finally we introduce a monad and the corresponding theory underlying the tape of
a Turing machine. We introduce the following notation: given an integer i ∈ Z, a
nonnegative integer k and a map σ : Z → Γ , we write σ =i±k σ′ (σ =i±k σ′) if
σ(j) = σ′(j) for all j such that |i− j| ≤ k (|i− j| > k).

Definition 3.6 (Tape monad, Tape theory). Let Γ be a finite set of tape symbols. The
tape monad (over Γ ) is the submonad T of the store monad (--×Z × ΓZ)Z×Γ

Z

for
which TX consists of exactly those maps 〈r, z, t〉 : Z× ΓZ → (X ×Z× ΓZ), which
satisfy restriction: there is k ≥ 0 such that for any i, j ∈ Z and σ, σ′ : Z → Γ if
σ =i±k σ

′ then

t(i, σ) =i±k t(i, σ
′), r(i, σ) = r(i, σ′), |z(i, σ)− i| ≤ k,

t(i, σ) =i±k σ, z(i, σ) = z(i, σ′), t(i, σ+j) = t(i+ j, σ)+j ,

r(i, σ+j) = r(i+ j, σ), z(i, σ+j) = z(i+ j, σ)− j.

where σ+j denotes σ ◦ (λi. i+ j). The tape signature w.r.t. Γ = {γ1, . . . , γn} consists
of the operations read : n → 1, writei : n → 1 (1 ≤ i ≤ n), lmove : 1 → 1,
rmove : 1→ 1, which we interpret over any TX as follows:

JreadK(p1, . . . , pn)(z, σ) = pσ(z)(z, σ) JlmoveK(p)(z, σ) = p(z − 1, σ)

JwriteiK(p)(z, σ) = p(z, σ[z 7→ γi]) JrmoveK(p)(z, σ) = p(z + 1, σ)

where σ[z 7→ γ] overwrites σ with the assignment z 7→ γ, that is: σ[z 7→ γ](z) = γ and
σ[z 7→ γ](z′) = σ(z′) for z′ 6= z. The tape theory w.r.t. Γ consist of all those equations
p = q in the tape signature, which are valid over every TX .
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In contrast to the stack theory the tape theory is given indirectly. We leave the question
of finding an appropriate complete axiomatization of the tape theory for future work.
Meanwhile, we report the following result:

Theorem 3.7. The tape theory is not finitely axiomatizable.

4 Reactive T-algebras and T-automata

As in Section 2 we consider a finite set of actions A.

Definition 4.1 (Reactive T-algebra). LetB andX be T-algebras. ThenX is a reactive
T-algebra ifX is an L-coalgebra for which ∂a : X → X and o : X → B are T-algebra
morphisms.

Remark 4.2. The definition of a reactive T-algebra is an instance of a more general
construction stemming from the seminal work of Turi and Plotkin [37]. Any endofunc-
tor F : Set → Set equipped with a distributive law δ : TF → FT is known to lift to
the Eilenberg-Moore category SetT. Under F = L there is a standard distributive law,
given by

δ(p) = 〈f(do 〈b, c〉 ← p; η(b)), λa. do 〈b, c〉 ← p; c(a)〉

where f : TB → B is the T-algebra structure onB. Then a reactive T-algebra is simply
a coalgebra in SetT for the lifting of L. Putting it yet differently, a reactive T-algebra
is a δ-bialgebra for the given δ [12] (see also [18]).

Given a T-algebraB, the set of all formal power seriesBA
∗

being the final L-coalgebra
can be viewed as a reactive T-algebra with the pointwise T-algebra structure, for which
∂a and o are easily seen to be T-algebra morphisms. Since any reactive T-algebra is an
L-coalgebra, reactive T-algebras inherit the general coalgebraic theory from Section 2.
In particular, we use for reactive T-algebras the same notions of trace semantics and
trace equivalence as for L-coalgebras.

Definition 4.3 (T-automaton). Suppose, T is finitary and B is finitely generated, i.e.
there is a finite set B0 of generators and a surjection TB0 → B underlying a T-algebra
morphism. A T-automaton m is given by a triple of maps

om : X → B, tm : A×X → TX, am : TB → B, (F)

where am is a T-algebra and X is finite. The first two maps in (F) can be aggregated
into a coalgebra transition structure, which we write as m : X → B × (TX)A slightly
abusing the notation.

Remark 4.4. We require the monad T in (F) to be finitary for the sake of computa-
tional feasibility of T-automata and to be able to represent them using finite syntax. For
technical reasons, it is sometimes convenient to drop this restriction (e.g. in Section 8
where T is the continuation monad). This is not in conflict with Definition 4.3, for since
we apply T to finite sets only it can be used interchangeably with its finitary coreflection
Tω whose object part is defined by TωX =

⋃
Y⊆X,|Y |<ω TY .
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A simple nontrivial example of a T-automaton is given by nondeterministic finite state
machines (NFSM) by taking B = {0, 1}, T = Pω and am (s ⊆ {0, 1}) = 1 iff 1 ∈ s.

In order to introduce the trace semantics of a T-automaton it suffices to convert it
into a reactive T-algebra, for the trace semantics of the latter is settled by Definition 2.1.
This conversion is called the generalized powerset construction [26] as it generalizes
the classical Rabin and Scott NFSM determinization [35]. Observe that LTX is a T-
algebra, since TX is the free T-algebra on X and L lifts to SetT (see Remark 4.2).
Therefore, given a T-automaton (F), m : X → B × (TX)A there exists a unique T-
algebra morphism m ] : TX → B × (TX)A such that m ]η = m . This m ] is a reactive
T-algebra on TX . Therefore, we define the trace semantics of (F) as follows:

JxKm = Jη(x)KTX .

Remark 4.5. Due to the 1-1-correspondence of m and m ] given by freeness of TX ,
T-automata bijectively correspond to reactive T-algebras whose carrier is a free algebra
on a finite set; but we find it useful to retain the distinction.

Note that the generalized powerset construction does not reduce a T-automaton to a
Moore automaton over TX as TX need not be finite, although when it is the case, e.g.
T = Pω , the semantics of a T-automaton falls within rational power series, which is
precisely the reason why the languages recognized by deterministic and nondeterminis-
tic FSM coincide. Surprisingly, all T-automata with a finite B have the same property,
which is a corollary of Theorem 8.1 we prove in Section 8.

Proposition 4.6. For every T-automaton (F) with finite B and x ∈ X , JxKm : A∗ →
B is rational.

We are now ready to introduce fixpoint expressions for T-automata similar to (2.3).

Definition 4.7 (Reactive expressions). Let Σ be an algebraic signature and let B0 be
a finite set. Reactive expressions w.r.t. these data are closed terms δ defined according
to the following grammar:

δ ::= x | γ | f(δ, . . . , δ) (x ∈ X, f ∈ Σ)

γ ::= µx. (a1.δ t · · · t an.δ t β) (x ∈ X)

β ::= b | f(β, . . . , β) (b ∈ B0)

where we assume A = {a1, . . . , an} and an infinite collection of variables X . Free
and bound variables here are defined in the standard way. We consider terms modulo
α-conversion.

Let T be a finitary monad, corresponding to an algebraic theory E over the signature
Σ and let B be a finitely generated T-algebra over a finite set of generators B0. Let
us denote by EΣ,B0

the set of all reactive expressions over Σ and B0. We define a
reactive T-coalgebra structure on EΣ,B0

. First, notice that EΣ,B0
is obviously a Σ-

algebra. Then we introduce the L-coalgebra structure on EΣ,B0
as follows: first notice

that expressions b according to the β-clause in Definition 4.7 are just Σ-terms on the
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q0 = a.q0 t b.q1 t ⊥
q1 = a.∅ t b.(q0+q2) t ⊥
q2 = a.q0 t b.∅ t >

q0start q1 q2

b
a

b
b

a

q0 = µx. (a.x t b.µy. (a.∅ t b.(x+µz. (a.x t b.∅ t >)) t ⊥) t ⊥)

Fig. 1. A Pω-automaton overA = {a, b},B = {>,⊥} as a system of recursive definitions (left);
as a nondeterministic FSM (right); as a reactive expression (bottom).

generators from B0; for every Σ-term t in n variables let tB : Bn → B denote the map
evaluating t in B and define

o(f(e1, · · · , en)) = fB(o(e1), . . . , o(en)),

∂ai(f(e1, · · · , en)) = f(∂ai(e1), . . . , ∂ai(en)),

o(µx. (a1.e1 t · · · t an.en t b)) = tB(b1, . . . , bk),

∂ai(µx. (a1.e1 t · · · t an.en t b)) = ei[µx. (a1.e1 t · · · t an.en t b)/x],

where b = t(b1, . . . , bk) with b1, . . . , bk ∈ B0.
We call on Definition 2.1 to endow EΣ,B0

with the trace semantics J−K : EΣ,B0
→

BA
∗

and with the trace equivalence relation ∼.

Theorem 4.8. The quotient EΣ,B0
/∼ is a reactive T-algebra whose L-coalgebra part

is inherited from EΣ,B0
and whose T-algebra part is a quotient of the Σ-algebra struc-

ture on EΣ,B0
.

Theorem 4.9 (Kleene theorem). For any expression e ∈ EΣ,B0
there is a correspond-

ing T-automaton (F) and x ∈ X such that JeK = JxKm ; and conversely for any T-au-
tomaton (F) and x ∈ X there is an expression e ∈ EΣ,B0

such that JeK = JxKm .

Fig. 1 depicts a simple instance of the general correspondence established by Theo-
rem 4.9 in the particular standard case of nondeterministic FSM.

5 T-automata: Examples

As indicated above, a nondeterministic FSM is a specific case of a T-automaton under
B = 2 and T = Pω . More generally, we have the following definition.

Definition 5.1 (Weighted T-automata). Weighted T-automaton is a T-automaton (F)
with T being the semimodule monad for the semiring R (see Example 3.4).

Let R be the underlying semiring of a semimodule monad T. Besides R = B = 2
in which case we obtain nondeterministic FSMs, we obtain standard weighted au-
tomata [7] under R = B = N (B is the free T-algebra finitely generated by {1}).

10



Weighted T-automata can be further generalized as follows. We call a monad ad-
ditive (cf. [6]) if the corresponding algebraic theory supports operations + : 2 → 1
and /0 : 0 → 1 subject to the axioms of commutative monoids. We call a T-automaton
additive if T is additive. Additive automata allow for a more relaxed syntax of reactive
expressions. Specifically, we define additive reactive expressions as closed guarded ex-
pressions over an additive theory given by the grammar

γ ::= b | x | µx. γ | a.γ | f(γ, . . . , γ), (5.1)

where guardedness means that for any subterm of the form µx. e (the recursive call of)
x is guarded in e, which is defined by induction over e as follows: x is guarded in b, in
any variable x′ 6= x, in any µx. e′ and in any a.e′; and x is guarded in f(e1, . . . , en)
whenever x is guarded in each of the ei.

Given a reactive expression we obtain an additive reactive expression by replacing
recursively each t with +. Conversely, any additive reactive expression can be trans-
formed to a reactive one. The latter transformation is inverse to the former modulo ∼.

Example 5.2 (Rabin’s probabilistic automata). Rabin’s probabilistic automata [27]
can be modelled as weighted T-automata over the semiring [0,∞) under the standard
arithmetic operations. As we mentioned in Example 3.4), finitary probability distribu-
tions form a monad, which allows for a slightly more elegant formalization: we take the
finitary distribution monad as T and B = [0, 1]. The algebraic theory of T defined over
the signature of binary operations +p : 2 → 1 with p ∈ [0, 1]. The expression x +p y
denotes probabilistic choice between x and y: the left branch is chosen with probability
p and the right branch is chosen with probability 1 − p. The axioms of this theory can
be found e.g. in [14].

We now give one example of an additive T-automaton, which is not a weighted T-
automaton.

Example 5.3 (Segala T-automata). (Simple) Segala systems [32, 33] are systems com-
bining probability and nondeterminism and are essentially coalgebras of transition type
P(D × A) ∼= (PD)A where D is a probability distribution functor. Although PD is
not a monad, as elaborated in [13], it can be modelled by a monad T whose functorial
part is the composition CM of two functors given as follows: for any X , MX are fi-
nite valuations over X (see Example 3.4); for any semimodule U , C(U) consists of all
subsets of U , which are convex and nonempty. Convexity of a set S here means that a
convex combination p1 · ξ1 + · · · + pn · ξn, i.e.

∑
i pi = 1, belongs to S once ξi ∈ S

for any i. Segala T-automata generalize non-deterministic automata by replacing the
powerset functor P with CM . Concretely, in the generic definition (F) we take B = 2
and T defined as above.

A radically different kind of examples is offered by submonads of the store monad.
A prominent instance of such is the stack monad (Example 3.5), which we use for
modelling push-down automata.

Definition 5.4 (Stack T-automaton). Stack T-automaton is a T-automaton (F) for
which

11



– T is the stack monad over Γ ;
– B is the set of predicates over Γ ∗ consisting of all those p ∈ 2Γ

∗
for each of which

there is k such that p(wu) = p(w) whenever |w| ≥ k;
– am : TB → B is given by evaluation; it restricts the morphism

(2Γ
∗
× Γ ∗)Γ

∗ evΓ
∗

−−−−−→ 2Γ
∗
,

where ev : 2Γ
∗ × Γ ∗ → 2 is the evaluation morphism: am (r, t)(s) = r(s)(t(s)).

Intuitively, om : X → B ⊆ 2Γ
∗

models the acceptance condition by final states and
the stack content. As B obeys essentially the same constraints as TX , scanning an
unbounded portion of the stack by om is disallowed; the role of the algebraic structure
am is roughly to trace acceptance conditions back along the transition structure tm .

In terms of algebraic theories, B is finitely generated over the set of generators
{0, 1} and as such is a quotient of T2 under additional laws: pushi(0) = 0 and
pushi(1) = 1.

Theorem 5.5. Let m be a stack T-automaton. Then for any x0 ∈ X and any γ0 ∈ Γ ,{
w ∈ A∗ |

q
x0

y
m (w)(γ0)

}
(5.2)

is a real-time deterministic context-free language. The converse is also true: for
any real-time deterministic context-free language L ⊆ A∗ there exists a stack T-
automaton (F) such that L can be represented as (5.2) with some x0 ∈ X , γ0 ∈ Γ .

As we shall see later, it is not difficult to obtain an analogous characterization of context-
free languages for which the “real-time” clause is dropped (essentially because for
push-down automata the restriction of being real-time is vacuous). However, as we
shall see in the next section (Theorem 6.5), this restriction, being somewhat inherent
for coalgebraic models, presents an actual boundary for capturing by T-automata for-
mal languages beyond the context-free ones.

6 Monad Tensors for Store and Nondeterminism

Tensors products of monads (resp. algebraic theories) have been introduced by Freyd [9]
in the context of universal algebra. Later, computational relevance of this operation has
been demonstrated by Hyland et al. [11]. Here, we use tensors of monads as a tool for
studying T-automata.

Definition 6.1 (Tensor). Let E1 and E2 be two algebraic theories. Then the tensor prod-
uct E = E1 ⊗ E2 is the algebraic theory, whose equations are obtained by joining the
equations of E1 and E2 and adding for any f : n → 1 of E1 and any g : m → 1 of E2
the following axiom

f(g(x11, . . . , x
1
m), . . . , g(xn1 , . . . , x

n
m)) = g(f(x11, . . . , x

n
1 ), . . . , f(x1m, . . . , x

n
m))

called the tensor laws. Given two finitary monads T1 and T2, their tensor product arises
from the algebraic theory ET1 ⊗ ET2 .

12



Intuitively, tensor product of two monads captures a noninterfering combination of the
corresponding computational effects. In the present work we shall use two kinds of
tensor products: (1) tensors with submonads of the store monad and (2) tensors with
semimodule monads.

It has been shown in [11] that tensoring with the store monad is equivalent to the
application of the store monad transformer sending any monad T to the store monad
transform TS whose functorial part is given by TSX = T (X ×S)S . Here we establish
a similar result about the stack monad (Example 3.5).

Proposition 6.2. Let S be the stack monad over Γ . Then for any finitary T, S⊗T is the
submonad R of the store monad transform of T with Γ ∗ as the store, for which

– p : Γ ∗ → T (X × Γ ∗) is in RX iff there exists m such that p(su) = do 〈x, s′〉 ←
p(s); η〈x, s′u〉 whenever |s| ≥ m;

– the monad structure is inherited from the monad transform.

One can thus combine two stacks by computing the tensor square of the stack monad.
Specifically, the resulting monad T has the following maps as inhabitants of TX:

〈r, t1, t2〉 : Γ ∗ × Γ ∗ → X × Γ ∗ × Γ ∗.

This allows one to define T-stack automata over two and more stacks analogously to
the one-stack case from Definition 5.4. Before we do this formally in Definition 6.4 we
discuss the perspectives of forming tensors with semimodule monads.

Proposition 6.3 (Freyd [9]). Tensor product of any finitary monad with a semimodule
monad is isomorphic to some semimodule monad.

Proposition 6.3 in conjunction with Proposition 6.2 offer two perspectives on machines
with memory and nondeterminism. E.g. we shall consider the tensor product of Pω
with the stack monad to model push-down automata. As Proposition 6.2 indicates, this
monad embeds into the monad with functorial part TX = Pω(X×Γ ∗)Γ∗ . On the other
hand, by Proposition 6.3, this tensor product is equivalent to a semimodule monad. A
rough intuition about this change of perspective can be gained from the isomorphism
P(X×Γ ∗)Γ∗ ∼= P(Γ ∗×Γ ∗)X relating “nondeterministic” stateful computations over
X and X-values weighted in the semiring of transition relations P(Γ ∗ × Γ ∗).

Definition 6.4 (Multi-stack nondeterministic T-automaton). A Multi-stack nonde-
terministic T-automaton is a T-automaton (F) for which

– T is the tensor of m copies of the stack monad and Pω;
– B is the set of m-ary predicates over Γ ∗ consisting of all those p ∈ 2Γ

∗×···×Γ∗ for
each of which there is a k such that if for any i, |wi| ≥ k then p(w1u1, . . . , wmum) =
p(w1 . . . , wm);

– for any s ∈ (Γ ∗)m, f : (Γ ∗)m → Pω(B × (Γ ∗)m) ∈ TB

am (f)(s) iff ∃s′ ∈ (Γ ∗)m.∃p ∈ B. f(s)(p, s′) ∧ p(s′).

We now obtain the following result.

13



Theorem 6.5. For any m let Lm be the following class of all languages{
w ∈ A∗ |

q
x0

y
m (w)(γ0, . . . , γ0)

}
with m ranging over nondeterministic multistack

T-automata with m stacks, x0 ranging over the state space of m and γ0 ranging over
Γ . Then

– L1 contains exactly context-free languages;
– for all m > 2, Lm contains exactly nondeterministic linear time languages, i.e.
Lm = NTIME(n);

– L2 sits properly between L1 and L3.

Theorem 6.5 shows, on the one hand, that the coalgebraic formalization of nondetermin-
istic pushdown automata as nondeterministic T-automata over one stack is adequate in
the sense that it recognizes the same class of languages. On the other hand, it indicates
the boundaries of the present model: it seems unlikely to capture languages beyond
NTIME(n) (e.g. all recursive ones) by a computationally feasible class of T-automata.
This is not surprising in view of the early work on (quasi-)real-time recognizable lan-
guages [4], which underlies the proof of Theorem 6.5. We return to this issue in Sec-
tion 8 where we provide an extension of the present semantics that allows us to capture
language classes up to recursively enumerable ones.

We conclude this section with an easy corollary of Theorem 6.5 and Proposition 2.2
contrasting the results in [21, 3].

Corollary 6.6. Trace equivalence of T-automata is Π0
1 -complete.

7 Context-free Languages and Algebraic Expressions

Throughout this section we assume that R is a semiring finitely generated by R0; B is
an R-semimodule finitely generated by B0; and TR is the semimodule monad for R.

By Proposition 6.3, a nondeterministic T-automaton over one stack is a specific case
of a weighted T-automaton (Definition 5.1). In this form it is rather similar to another
example of a machine previously studied in the literature (e.g. [28, 16]) and which we
also can formalize as a T-automaton. We present the corresponding algebraic theories
side by side.

Example 7.1 (Nondeterministic stack theory). The nondeterministic stack theory is
obtained by tensoring EPω with the stack theory. The result is a semimodule theory
generated by the scalars oi, ui and e such that popi = oi, pushi = ui and e = empty
(in the notation of Example 3.4). Here the unary operations popi and empty determine
the decomposition of pop

pop(x1, . . . , xn, y) = pop1(x1) + . . .+ popn(xn) + empty(y)

in accordance with the tensor law and are defined as follows: popi(x) = pop(/0, . . . , x,
. . . , /0, /0) (x is on the i-the position) and empty(x) = pop(/0, . . . , /0, x).

Example 7.2 (Nondeterministic polycyclic theory). The nondeterministic polycyclic
theory is obtained by tensoring EPω with the theory of polycyclic monoids. Equiva-
lently (see [11]), the nondeterministic polycyclic theory is the theory of the monad
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Pω(--×M) where M is a polycyclic monoid [19]. The latter means that M is the
monoid over a set of generators 0, g1, . . . , gk, . . . g

−1
1 , . . . , g−1k satisfying identities

0gi = gi0 = 0, gig
−1
i = 1, gig

−1
j = 0 (i 6= j).

The number k is called the rank of M .

The technical distinction between the nondeterministic stack theory and the nondeter-
ministic polycyclic theory is minor. On the one hand, the nondeterministic stack theory
uses the zero /0 of the semiring to model failure in computing the right inverse, while
the nondeterministic polycyclic theory has its own zero 0, which coexists with /0. On
the other hand, emptiness detection is natively available for stacks but not for monoids.

The common idea underlying monoid-based examples including Example 7.2 is to
use the monoid structure to model various kinds of stores (stack(s), counter(s), etc.).
The corresponding automata are called valence automata [28].

It is well-known that valence automata over polycyclic monoids of rank at least 2
recognize context-free languages. We would like to give a generic proof of this fact
applying both to Example 7.1 and to Example 7.2.

First, observe that if R is idempotent then B can be partially ordered by putting
b ≤ c iff b+ c = c. Given a TR-automaton m , and an initial state x0 ∈ X we can define
the language recognized by b ∈ B

{w ∈ A∗ | Jx0K(w) ≥ b}.

E.g. for the stack T-automata we typically chose as b ∈ 2Γ
∗

the predicate distinguishing
the initial stack configuration. For valence automata one standardly takes B = M and
b = 1.

Recall that the language of balanced parentheses, or Dyck language is a language
Dn ⊆ {(1, )1, . . . , (n, )n}∗ = A consisting of string of parentheses balanced in the
expected way.

The following result is a consequence of the classical Chomsky-Schützenberger
theorem.

Theorem 7.3. Let α be a monoid morphism from A to the multiplicative structure of
some idempotent R such that for some b0, b1 ∈ B, α(w) · b0 ≥ b1 iff w is balanced.
Suppose also, b1 has the property that for any c1, c2 if c1 + c2 ≥ b1 then either c1 ≥ b1
or c2 ≥ b1. Then for any context-free language L there is a TR-automaton recognizing
L by b1.

It is easy to check the conditions of Theorem 7.3 for Examples 7.1 with |Γ | > 1 and 7.2
with k > 1. Contrasting [16] we cannot replace the polycyclic monoid in Example 7.2
by a free group and conclude by Theorem 7.3 that automata with free group memory
recognize context-free languages. But as shown in [16] the latter is true once internal
transitions are allowed.

We now explore how to directly incorporate context-free grammars in our frame-
work as a generalized form of reactive expressions. Recall that for semimodule monads
one can use the syntax of additive reactive expressions (5.1). Note that the correspond-
ing algebraic signature contains w.l.o.g. besides the operations /0 and + only unary op-
erations (see Proposition 6.3). Following the convention of Example 3.4, we can write
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those unary operations as scalar coefficients. Thus, the resulting grammar for additive
reactive expressions takes the following form

γ ::= b | x | /0 | µx. γ | a.γ | r · γ | γ + γ (a ∈ A, b ∈ B0).

For example, for the nondeterministic stack theory this instantiates as follows:

γ ::= b | x | /0 | µx. γ | a.γ | oi · γ | ui · γ | e · γ | γ + γ (a ∈ A, b ∈ B0).

We generalize this further as follows.

Definition 7.4 (Algebraic expressions). Algebraic expressions w.r.t. B0 and R0 are
guarded closed expressions given by the following grammar:

γ ::= b | x | /0 | • | µx. γ | a.γ | r · γ | γ + γ | γ ? γ

with x ∈ X , a ∈ A, b ∈ B0 and r ∈ R where guardedness means that for any subterm
of the form µx. e, x is guarded in e and the latter is defined by induction in the same
way as for additive expressions plus the new clause stating that x is guarded in e ? e′

whenever it is guarded in e.
We call an algebraic expression primitive if it is generated by the same grammar but

with the clause r·γ replaced by the clauses r· · · · ·r·b. The set of •-closed expressions is
defined inductively: all the clauses except • and γ ? γ preserve •-closedness and e1 ? e2
is closed when e2 is closed.

The idea of the new operator ? is to model sequential composition of two expressions;
the role of • thereby is to mark the positions in the expression e1 which become replaced
by e2 when the composition e1 ? e2 is calculated.

We turn the set of algebraic expressions into an L-coalgebra by defining the transi-
tion structure maps o and ∂a as follows:

∂a(b) = /0 ∂a(/0) = /0 ∂a(•) = /0 ∂a(r · e) = r · ∂a(r)

o(b) = b o(/0) = /0 o(•) = /0 o(r · e) = r · o(e)

∂a(µx. e) = ∂a(e[µx. e/x]) ∂a(e1 + e2) = ∂a(e1) + ∂a(e2)

o(µx. e) = o(e[µx. e/x]) o(e1 + e2) = o(e1) + o(e2)

∂a(a. e) = e ∂a(a′. e) = /0 (a′ 6= a) o(a. e) = /0

∂a(e1 ? e2) = ∂a(e1) ? e2 + ō(e1) · ∂a(e2)

o(e1 ? e2) = ō(e1) · o(e2) + o(e1)

where ō is defined analogously to o except for two cases ō(•) = 1 and ō(b) = /0. The fact
that these definitions are well-founded easily follows from guardedness. The clauses
for e1 ? e2 resemble behavioural differential equations for formal power series [31].
As usual, the given definitions induce the notion of trace equivalence ∼ on the set
of all algebraic expressions, although we have to additionally assume •-closedness to
ensure that the induced trace semantics yields formal power series A∗ → B (and not
A∗ → B ×R).
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Proposition 7.5. The quotient of the set of •-closed algebraic expressions over B0, R
forms a reactive TR-algebra.

Algebraic expressions by definition generalize reactive expressions for weighted T-
automata, including the nondeterministic stack T-automata. On the other hand, being
more general than primitive algebraic expressions, they subsume context-free gram-
mars, which are known to be representable by fixpoint expressions of a very similar
form (this has been explored recently in a coalgebraic context in [39]).

8 CPS-transforms of T-automata and r.e.-languages

Theorem 6.5 suggests that the present trace semantics is unlikely to produce languages
beyond NTIME(n) under a computationally convincing choice of the components
of (F). The approach suggested by the classical formal language theory is to replace A
with the set Aτ = A ∪ {τ}, where τ is a new unobservable action, but use the formal
power series A∗ → B as the semantic domain instead of A∗τ → B. The new observa-
tional semantics is supposed to be obtainable from the standard one by “eliminating”
the unobservable action.

We argue briefly, why the general assumptions about the structure of a T-automaton
are not sufficient to define the observational semantics. Consider the Moore automa-
ton m : X → 2 × XAτ with A = {a} and B = {b0, b1}. The underlying
monad is the identity monad and am is the identity morphism. Let X = {x0, x1},
om = {〈x0, b0〉, 〈x1, b1〉}, tm = {〈x0, a, x0〉, 〈x0, τ, x1〉, 〈x1, a, x1〉, 〈x1, τ, x1〉}. Re-
moval of τ -transitions leads to a nondeterministic automaton having two a-transitions
from x0 to states marked with b0 and with b1 by om , which cannot be determinized un-
less we presuppose a monoid structure on B. Before we make use of this observation,
we introduce an important reformulation of our standard trace equivalence, which is of
independent interest.

Let a : TB → B be a T-algebra. We denote by TB the continuation monad
with TBX = BX → B. We can map T to TB by sending any p : TX to
κX(p) = λf. (a · Tf(p)) ∈ TBX . This κ : T → TB is a monad morphism; in fact,
Kelly [17, Prop. 22.4] showed that for any monad T on a category with powers there is
a bijective correspondence between Eilenberg-Moore algebras on B and monad mor-
phisms from T to TB .

Now, given a T-automaton (F), we define a TB-automaton3 m∗ : X → B ×
(TBX)A by om∗ = om , tm∗ = κXt

m , am∗ = λt. t(id) where it is easy to see that
am∗ : TBB → B is a T-algebra. We call this automaton the CPS-transform of (F).

Theorem 8.1. The trace semantics of a T-automaton and of its CPS-transform agree;
more precisely, for every T-automaton (F) and state x ∈ X we have:

q
x
y

m =
q
x
y

m∗ .

This theorem implies Proposition 4.6 announced previously in Section 4. Indeed, if B
in (F) is finite then, by definition, TBX is also finite. Thus, the generalized powerset
construction performed on the CPS-transform m∗ yields a Moore automaton, and hence
we obtain the desired result from Proposition 2.4.

We now proceed with the definition of the new semantics.
3 We abuse terminology here since TB is not finitary (see Remark 4.4).
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Definition 8.2 (ω-additive T-automata). A T-automaton (F) is ω-additive if B (be-
sides being T-algebra) is an algebra for the countably supported multiset monad.

In other words, for (F) to be ω-additive B needs to be a commutative monoid with
infinite summation. We call such a monoid ω-additive. For an ω-additive monoid we
denote by /0 the neutral element, by a+b the binary sum and by

∑
i ai the countable sum.

It is easy to see that the ω-additive monoid structure extends from B to TB pointwise.

Lemma 8.3. If B is an ω-additive monoid and a T-algebra then for any X , TBX is an
ω-additive monoid.

The ω-additive monoid structure on TBX allows us to define for any given T-automaton
over the alphabet Aτ a TB-automaton over A. To this end, we first form the CPS-
transform of the given T-automaton and then use infinite summation to get rid of un-
observable actions τ : given a T-automaton m : X → B × (TX)Aτ , we construct
mv : X → B × (TBX)A with amv = am∗ = λt. t(id) and with tmv , omv defined as

tmv (x0, a) =

∞∑
i=1

do x1 ← tm∗(x0, τ); . . . ;xi−1 ← tm∗(xi−2, τ); tm∗(xi−1, a),

omv (x0) = om∗(x0) +

∞∑
i=1

(
do x1 ← tm∗(x0, τ); . . . ; tm∗(xi−1, τ)

)
(om∗).

We define the observational trace semantics for m to be the trace semantics for mv .

Definition 8.4. Given a T-automaton (F) over input alphabet Aτ , let
q
x
yτ

m =
q
x
y

mv .

We proceed to define the class of T-automata corresponding to classical Turing ma-
chines, for which the introduced observational trace semantics yields precisely all re-
cursively enumerable languages.

Definition 8.5 (Tape T-automaton). A tape automaton is a T-automaton (F) for
which

– T is the tape monad over Γ ;
– B is the set of predicates over Z× ΓZ consisting of all those p ∈ 2Z×Γ

Z

for each
of which there is a k such that p(i, σ) = p(i, σ′) and p(i, σ+j) = p(i + j, σ) if
σ =i±k σ

′;
– am : TB → B is given by evaluation as in Definition 5.4.

It can be shown that tape T-automata over Aτ are equivalent to deterministic 2-tape
Turing machines with input alphabet A, where the first tape is a special read-only and
right-only tape holding the input word at the beginning of a computation. Thus, we
obtain that tape automata represent all the recursively enumerable languages.

Theorem 8.6. For every tape automaton m over Aτ , Γ with |Γ | ≥ 2 containing a
special blank symbol 2, and every state x ∈ X the following language is recursively
enumerable: {w ∈ A∗ | JxKτm (w)(0, σ2) = 1}, where σ2 is the constant function on
2. Conversely, every recursively enumerable language can be represented in this way.
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9 Conclusions and Future Work

In this paper, we have presented the first steps towards a coalgebraic Chomsky hierar-
chy. We have given a coalgebraic account of machines, languages and expressions and
presented several results of our theory including a generic Kleene-style theorem (Theo-
rem 4.9) and one-direction of a Chomsky-Schützenberger-style theorem (Theorem 7.3).
We have also given the first treatment of Turing machines in a coalgebraic setting: the
observational trace semantics of tape automata yields precisely the recursively enumer-
able languages.

There are several possible directions for future work. We plan to derive a sound cal-
culus of reactive expressions extending [3] and explore the boundaries for completeness
(by Corollary 6.6 completeness is only possible for specific choices of T); establish a
converse to Theorem 7.3;capture further language and complexity classes, such as the
context-sensitive languages (equivalently NSPACE(n)). Capturing various classes of
machines under the umbrella of coalgebra results in standard tools such as bisimulation
proof methods becoming available for those classes of machines and their language
semantics. Hence, further investigations into such proof principles are of interest.
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A Appendix

In this appendix we provide proofs for all the results of our paper.

A.1 Proof of Proposition 2.6

We only have to show that E = {∂w(e) | w ∈ A∗} is finite. Let S be the set of all
closed expressions uσ where u is a subexpression of e and σ is a substitution sending
free variables of u to closed subexpressions of e. Then, S is closed under a-derivatives,
for ∂ai(uσ) = uiσ[u/x] whenever u = µx. (a1.u1 t · · · an.un t c) and ∂a(uσ) =
∂a(σ(x)) if u is a variable x which lies in S by the previous case since σ(x) is a closed
subexpression of e and so must start with a µ-operator. By definition, e ∈ S, hence
E ⊆ S. Since S is finite, so is E. ut

A.2 Proof of Theorem 3.7

Observe that the following equation belongs to the tape theory

writei(lmove
k(writej(rmove

k(x)))) = lmovek(writej(rmove
k(writei(x))))

(A.1)
for any i, j, k.

Given a finite set of identities A belonging to the tape theory, we construct a model
M of A which does not satisfy (A.1) and therefore prove the claim.

Let m be larger than the number of instances of operations lmove and rmove in
any term from A occurring as the left- or the right-hand side of an identity. Our model
M is carried by the finite ring Zm of congruence classes modulo m. We interpret the
operations of the tape theory over the set of endomaps Zm × ΓZm → Zm × ΓZm as
follows:

JreadK(p1, . . . , pn)(z, σ) = pσ(z)(z, σ)
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JwriteiK(p)(z, σ) = p(z, σ[z 7→ γi])

JlmoveK(p)(z, σ) = p(z − 1, σ)

JrmoveK(p)(z, σ) = p(z + 1, σ)

where i ranges from 1 to n and + and − are arithmetic operations modulo m, i.e. the
operations of Zm.

Let p = q be an equation from A. Then for any z ∈ Z and any σ ∈ ΓZ,
JpKT1(z, σ) = JqKT1(z, σ). By assumption, both p and q can update at most m cells
in a row and the cells that are modified by p must agree with those ones modified by q.
Therefore, for any z there exist az, bz ∈ Z such that |az − bz| ≤ m, az ≤ z ≤ bz and
pr2(JpKT1(z, σ))(i) = pr2(JqKT1(z, σ))(i) = σ(i) for any σ ∈ ΓZ and any i outside the
interval [a, b]. Given ρ ∈ ΓZm and 0 ≤ z ≤ m− 1, let ρ∗ ∈ ΓZ be defined as follows:

ρ∗(i) = ρ(imodm) (az ≤ i ≤ bz)
ρ∗(i) = γn (otherwise)

Let JpKT1(z, ρ∗) = JqKT1(z, ρ∗) = 〈z′, ρ′∗〉. It is then easy to see that in M we have
JpK(z, ρ) = JqK(z, ρ) = 〈z′modm, ρ′〉 where ρ′(i) = ρ′∗(i), i = 0, . . . ,m. We have
thus shown thatA is valid over M . Now, if we take k = m in (A.1) we obtain for i 6= j
that

Jwritei(lmovem(writej(rmove
m(x))))K(0, σ)

= σ[0 7→ j]

6= σ[0 7→ i]

= Jlmovem(writej(rmove
m(writei(x))))K(0, σ)

and thus the proof is finished. ut

A.3 Proof of Theorem 4.8

Recall first that T-algebras, being the variety of Σ algebras satisfying the equations in
E , form a full subcategory of the category of Σ-algebras. We have seen that EΣ,B0 is a
coalgebra for the lifting of L to the category of Σ-algebras and that the final coalgebra
for the lifting is BA

∗
(its L-coalgebra structure is a Σ-algebra morphism since it is a

T-algebra morphism). Thus, the trace semantics map J−K : EΣ,B0
→ BA

∗
is a Σ-

algebra morphism. The quotient EΣ,B0
/∼ is obtained by taking its factorization into a

surjective followed by an injective Σ-algebra morphism:

EΣ,B0

q
// //EΣ,B0

/∼ // m //BA
∗
.
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Since (the lifting of) L preserves monos we obtain an L-coalgebra structure on the
quotient by diagonalization:

EΣ,B0

〈o,∂〉
//

q

����

L(EΣ,B0)

Lq

��

EΣ,B0/∼ //

m

��

L(EΣ,B0/∼)
��

Lm
��

BA
∗

〈o,∂〉
// L(BA

∗
)

More explicitly, theΣ-algebra structure on EΣ,B0
/∼ is given for any operation f : k →

1 in Σ by

JfKΣ
(
[t1]∼, . . . , [tk]∼

)
=
[
JfKΣ(t1, . . . , tk)

]
∼.

And the L-coalgebra structure on EΣ,B0
/∼ is given by

o([t]∼) = o(t) and ∂a([t]∼) = [∂a(t)]∼.

Now since BA
∗

is a T-algebra and EΣ,B0
/∼ is a sub-Σ-algebra of BA

∗
we see that

it is a sub-T-algebra of BA
∗

(since varieties are closed under subalgebras). Similarly,
L(EΣ,B0/∼) is a sub-T-algebra of L(BA

∗
). It then follows that the L-coalgebra struc-

ture on EΣ,B0/∼ is a T-algebra morphism since it is a restriction of the L-coalgebra
structure on BA

∗
. ut

A.4 Proof of Theorem 4.9

Let e ∈ EΣ,B0
and let us proceed with the definition of the corresponding T-automaton.

Recall that the grammar generating reactive expressions has γ- and δ-clauses and let us
call a not neccesarily closed expression a γ-expression if it matches the γ-clause.

We assume w.l.o.g. that µ-operators in e do not bind the same variable twice; this
can be ensured by α-conversion. Let {x1, . . . , xn} be the set of all variables occurring
in e. For every i = 1, . . . , n, let

ti = µxi. (a1.t
i
1θ
i
1 t · · · t an.t

i
nθ
i
n t bi)

be a subterm of e where the tij are Σ-terms and each θij substitutes every variable xk
free in tij with tk. Note that the ti, the θij and the tij are uniquely determined by e.

Starting with the pair

([ ], {ti | ti is a maximal γ-subexpression in e})

where [ ] denotes the empty substitution we successively define pairs of the form (σ, S)
where S is a set of γ-subexpressions of e and σ is a substitution replacing some vari-
ables xi with reactive expressions. Unless S is empty, the successor (σ′, S′) of (σ, S) is
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(nondeterministilly) defined as follows. Let ti ∈ S. Then σ′ is the completion of σ by
the clause xi 7→ tiσ and S′ is obtained by the removal of ti and addition of the maxi-
mal γ-subterms of ti. This procedure eventually terminates, for each step removes one
application of µ. In the end we obtain a map sending each xi to a closed γ-expression,
which we denote ei, i.e., σ = [e1/x1, . . . , en/xn].

We assume henceforth the representation

ei = µxi. (a1.e
i
1 t · · · t an.e

i
n t bi).

Observe that, by construction, ei = tiσ. Moreover, we have

ei = µxi. (a1.e
i
1 t · · · t an.e

i
n t bi)

= tiσ = µxi. (a1.t
i
1θ
i
1σ−i t · · · t an.t

i
nθ
i
nσ−i t bi)

where σ−i agrees with σ except that it leaves xi unchanged. For any i, j we obtain
that tijθ

i
jσ−i = eij and therefore eij [ei/xi] = tijθ

i
jσ. Recall that θij sends xk to tk and

tkσ = ek, which results in tijθ
i
jσ = tijσ. We have thus obtained

eij [ei/xi] = tij [e1/x1, . . . , en/xn].

This allows us to write the following definitions for o and ∂:

o(t(e1, . . . , en)) = tB(b1, . . . , bn),

∂aj (t(e1, . . . , en)) = t(t1j [e1/x1, . . . , en/xn], . . . , tnj [e1/x1, . . . , en/xn]),

for any Σ-term t. Let σaj = [t1j/x1, . . . , t
n
j /xn] and let by induction σε = id, σajw =

σajσw. By further induction we obtain

o(∂w(t(e1, . . . , en))) = (tσw)B(b1, . . . , bn). (A.2)

Suppose, e = s(en1
, . . . , enk) and let X = {s(xn1

, . . . , xnk), x1, . . . , xn}. We will
now turn TX into a reactive T-algebra. Notice that every element of TX can be writ-
ten as [t(x1, . . . , xn)]≡, where t is a Σ-term in the variables xi and [t]≡ denotes the
equivalence class in TX . Now define

o([t(x1, . . . , xn)]≡) = tB(b1, . . . , bn)),

∂aj ([t(x1, . . . , xn)]≡) =
[
t(t1j , . . . , t

n
j )
]
≡ .

It is not difficult to see that the T-algebra and the L-coalgebra structures interact prop-
erly, i.e. o and the ∂a are T-algebra morphisms; in fact, o = α ·Tf , where α : TB → B
is the T-algebra on B and the map f : X → B is defined by f(xi) = bi, i = 1, . . . , n;
and ∂aj = g†j where gj : X → TX is the map defined by gj(xi) = [tij ]≡.

We have ∂aj ([t]≡) = [tσaj ]≡, so an easy induction shows that

o(∂w([t(x1, . . . , xn)]≡)) = (tσw)B(b1, . . . , bn).

By comparing this to (A.2) we obtain by Proposition 2.2, Jt(e1, . . . , en)K =
Jt(x1, . . . , xn)K and in particular JeK = Js(xn1

, . . . , xnk)K. By Remark 4.5, the con-
structed reactive T-algebra is equivalent to a T-automaton.
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Let us show the converse implication. Suppose, we are given a T-automaton (F).
The generalized powerset construction introduces a reactive T-algebra over TX for
which

o([t(x1, . . . , xn)]≡) = tB(b1, . . . , bn)

∂aj ([t(x1, . . . , xn)]≡) =
[
t(t1j , . . . , t

n
j )
]
≡ (A.3)

where bi = om (xi) ∈ B, tij is a term representing tm (aj , xi) ∈ TX and [t]≡ denotes
the equivalence class of the Σ-term t in TX . Let ci be a Σ-term over B0 such that
bi = ev(ci), where ev is the map evaluating a Σ-term over B0 in B. We successively
build expressions un, . . . , u1 such that all free variables of each ui with i > 1 are in
{x1, . . . , xi−1} and u1 is closed. Let

un = µxn. (a1.t
n
1 t · · · t an.t

n
n t cn)

ui = µxi. (a1.t
i
1[ui+1/xi+1, . . . , un/xn] t · · · t an.t

i
n[ui+1/xi+1, . . . , un/xn] t ci)

for all i = n − 1, . . . , 1, and let e1 = u1. We now apply the same construction to
e1 that we applied to e in the first part of the proof. Notice that the Σ-terms tij in
the construction are precisely the tij from (A.3) that we used to define the expressions
ui. Now the construction yields further expressions ei, i = 2, . . . , n and for every i
expressions ei1, . . . , e

i
n satisfying the identities

ei = µxi. (a1.e
i
1 t · · · t an.e

i
n t bi),

eij [ei/xi] = tij [e1/x1, . . . , en/xn].

By the same argument as in the first part of the proof we obtain (A.2). On the other
hand, for the original reactive T-algebra, also

o(∂w([t(x1, . . . , xn)]≡)) = (tσw)B(b1, . . . , bn)

and therefore we are done by Proposition 2.2. ut

A.5 Additive reactive expressions

In this section, we prove the following claim, which appears just before Example 5.2.

Given a reactive expression we obtain an additive reactive expression by re-
placing recursively each t with +. Conversely, any additive reactive expres-
sion can be transformed to a reactive expression. The latter transformation is
inverse to the former modulo ∼.

Let RExp and AExp denote the sets of reactive and additive reactive expressions,
respectively.

First, we observe that AExp carries a Σ-algebra structure. Moreover it also carries
an L-coalgebra structure given by o : AExp → B and, for all a ∈ A, ∂a : AExp →
AExp:

o(b) = b o(µx. γ) = o(γ[µx.γ/x])
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o(a.γ) = /0 o(f(γ1, . . . , γn)) = fB(o(γ1), . . . , o(γn))

∂a(b) = /0
∂a(µx.γ) = ∂a(γ[µx.γ/x])

∂a(a′.γ) =

{
γ if a = a′

/0 otherwise
∂a(f(γ1, . . . , γn)) = f(∂a(γ1), . . . , ∂a(γn))

Clearly, o and ∂a are also Σ-algebra morphisms. The coalgebra structure on AExp al-
lows us to define semantics of these expressions by finality via J−K : AExp→ BA

∗
.

We now define the translation maps between RExp and AExp and show that these
translations preserve the semantics.

Let tr : RExp→ AExp be the map defined by

tr(f(γ1, . . . , γn)) = f(tr(γ1), . . . , tr(γn))

tr(µx. (a1.δ1 t · · · t an.δn t b)),= µx. (a1.tr(δ1) + · · ·+ an.tr(δn) + b) .

and tr : AExp→ RExp be the map defined by

tr(b) = µx. (a1. /0 t · · · t an. /0 t b),

tr(ai.γ) = µx. (a1. /0 t · · · t ai.tr(γ) t · · · t an. /0 t /0),

tr(f(γ1, . . . , γn)) = f(tr(γ1), . . . , tr(γn)),

tr(µx.γ) = µx. a1.tr(∂a1(µx.γ)) t · · · t an.tr(∂an(µx.γ)) t o(µx.γ).

We now show that JeK = Jtr(e)K, for e ∈ AExp and Je′K = Jtr(e′)K, for all e′ ∈ RExp.
It is sufficient to show that:

o(e) = o(tr(e)) o(e′) = o(tr(e′)) (A.4)

and
tr(∂a(e)) = ∂a(tr(e)) tr(∂a(e′)) = ∂a(tr(e′)) (A.5)

These equations state that tr and tr are L-coalgebra homomorphisms. Therefore, by
finality of BA

∗
we have

J−K = (AExp
tr //RExp

J−K
//BA

∗
) and J−K = (RExp

tr //AExp
J−K
//BA

∗
),

which completes the proof. Let us prove (A.4) and (A.5). This is done by structural
induction on e and e′, respectively.

o(tr(b)) = o(µx. a1. /0 t · · · t an. /0 t b) = b = o(b)
o(tr(ai.γ)) = o(µx. a1. /0 t · · · t ai.tr(γ) t · · · t an. /0 t /0)

= /0 = o(ai.γ)
o(tr(f(γ1, . . . , γn))) = o(f(tr(γ1), . . . , tr(γn)))

= fB(o(tr(γ1)), . . . , o(tr(γ1)))
= fB(o(γ1), . . . , o(γn))
= o(f(γ1, . . . , γn))

o(tr(µx.γ)) = o(µx. a1.tr(∂a1(µx.γ)) t · · · t o(µx.γ))
= o(µx.γ)
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o(tr(f(γ1, . . . , γn))) = o(f(tr(γ1), . . . , tr(γn)))
= fB(o(tr(γ1)), . . . , o(tr(γ1)))
= fB(o(γ1), . . . , o(γn))
= o(f(γ1, . . . , γn))

o(tr(µx. (a1.δ1 t · · · t an.δn t b))) = o(µx. (a1.tr(δ1) + · · ·+ an.tr(δn) + b))
= b = o(µx. (a1.δ1 t · · · t an.δn t b))

∂a(tr(b)) = /0 = tr(/0) = tr(∂a(b))
∂a(tr(ai.γ)) = ∂a(µx. a1. /0 t · · · ai.tr(γ) · · · t an. /0 t /0)

=

{
tr(γ) if a = ai
/0 otherwise

}
= tr(∂a(ai.γ))

∂a(tr(f(γ1, . . . , γn))) = ∂a(f(tr(γ1), . . . , tr(γn)))
= f(∂a(tr(γ1)), . . . , ∂a(tr(γ1)))
= f(γ1, . . . , γn)

∂a(tr(µx.γ)) = ∂a(µx. a1.tr(∂a1(µx.γ)) t · · · t o(µx.γ))
= tr(∂a(µx.γ))

∂a(tr(µx. (a1.δ1 t · · · t an.δn t b))) = ∂a(µx. (a1.tr(δ1) + · · ·+ an.tr(δn) + b))

=

{
tr(δi) if a = ai
/0 otherwise

}
= tr(∂a(µx. (a1.δ1 t · · · t an.δn t b)))

ut

A.6 Proof of Theorem 5.5

We begin the proof with a technical lemma. First we recall how the trace semantics for
T-automata are defined. Let ι : BA

∗ → B × (BA
∗
)A be the final L-coalgebra. We

obtain the following diagram:

X
η

//

m
��

TX
m̂] //

m]

yy

BA
∗

ι

��

B × (TX)A
id×(m̂])A

// B × (BA
∗
)A

(A.6)

where m̂ ] is the final coalgebra morphism. We obtain thus the semantics map

q
−

y
m =

(
X

η
//TX

m̂] //BA
∗
)
.

We shall need an explicit description of the action of this semantics map in terms of the
given data of a T-automaton.

Lemma A.1. Given any T-automaton (F), x ∈ X and w ∈ A∗ then
q
x
y

m (ε) = om (x)
q
x
y

m (a · u) = am (do y ← tm (a, x); η
q
y
y

m (u)
)
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Proof. Recall that the final coalgebra structure ι arises from o : BA
∗ → B and ∂a :

BA
∗ → BA

∗
with o(σ) = σ(ε) and ∂a(σ) = λw.σ(aw). The commutativity of (A.6)

can now equivalently be restated as the two equations

o(
q
x
y

m ) = om (x),

∂a(
q
x
y

m ) = m̂ ](tm (x, a)).

The first equation implies the first statement since o(
q
x
y

m ) =
q
x
y

m (ε). For the second
statement notice first that by freeness of TX we have that m̂ ] is the unique T-algebra
morphism extending

q
−

y
m . Thus, we have

m̂ ] = α · T
q
−

y
m ,

where α is the T-algebra structure on BA
∗
. Observe that α : T (BA

∗
)→ BA

∗
is given

pointwise, i. e. α is the unique morphism satisfying

evu · α = (T (BA
∗
)
T evu //TB

am
//B ),

for every u ∈ A∗, where evu : BA
∗ → B is the obvious evaluation at u ∈ A∗:

evu(f) = f(u). It follows that for every word u ∈ A∗ we have

m̂ ](−)(u) = (TX
T (J−Km (u))

//TB
am
//B );

indeed we have:

m̂ ](−)(u) = evu · m̂ ]

= evu · α · T
q
−

y
m

= am · T evu · T
q
−

y
m

= am · T (
q
−

y
m (u)).

Now we can compute:
q
x
y

m (au) = ∂a(
q
x
y

m )(u) definition of ∂a
= m̂ ](tm (x, a))(u) by (A.6)

= (am · T (
q
−

y
m )(u))(tm (x, a)).

And the last line is exactly the desired right-hand side of the second statement. ut

Now we proceed to the proof of Theorem 5.5. We recall that a deterministic push-
down automaton (dpda) M is determined by a transition function

δ : Q× (A+ {ε})×∆→ Q×∆∗ + {⊥}, (A.7)

an initial stack symbol 2 ∈ ∆, an initial state q0 ∈ Q and a set of final states F ⊆
Q. Here Q is a finite set of all states, A is a finite alphabet of actions and ∆ is a
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finite alphabet of stack symbols. The transition function δ is subject to the following
restrictions: for any x ∈ Q, γ ∈ ∆ (exclusively) either δ(x, ε, γ) 6= ⊥ or δ(x, a, γ) 6= ⊥
for all a ∈ A; whenever δ(x, a, γ) 6= ⊥ with a ∈ A + {ε}, the second component of
δ(x, a,2) has the form s′2. Automaton configurations and transitions over them are
defined in the standard way.

A word w is recognized by M if there is a chain of transitions over automaton
configurations that consumes w, starts at 〈x0,2〉 and finishes at some 〈xn, sn〉 with
xn ∈ F . A dpda M is called real-time if δ(x, ε, γ) = ⊥ for every x ∈ Q, γ ∈ ∆ and
it is called quasi-real-time if there is n such that the following chain of transition is not
admissible for any x1 ∈ Q, s1 ∈ ∆∗ and m > n:

〈x1, s1〉
ε−→ 〈x2, s2〉

ε−→ · · · ε−→ 〈xm, sm〉

We will make use of the fact that the classes of languages recognized by real-time dpda
and quasi-real-time dpda coincide [42].

Given (F) over a stack monad and a finite X , let us construct a quasi-real-time
dpda M as follows. For any x ∈ X and a ∈ A let nx,a be the smallest such n ≥ 1
that tm (x, a) : Γ ∗ → X × Γ ∗ sends any su with s, u ∈ Γ ∗, |s| = n to 〈y, s′u〉
where 〈y, s′〉 = tm (x, a)(s). Analogously, let nx be the smallest n ≥ 1 such that
om (x) : Γ ∗ → 2 returns equal results on words agreeing on the first n letters. (The
numbers nx,a and nx exist by the definition of the stack monad.) As the state space of
M we take

Q =
{
〈x, s2k〉 | x ∈ X, s ∈ Γ ∗, |s| ≤ m− k

}
,

where m = max{nx,maxa na,x}. Let ∆ = Γ + {2}. Then we define the transition
function δ as follows:

(i) δ(〈x, s〉, ε, γ) = 〈〈x, sγ〉, ε〉 if γ 6= 2 and |s| < m;
(ii) δ(〈x, s〉, ε,2) = 〈〈x, s2〉,2〉 if |s| < m;

(iii) δ(〈x, s2k〉, a, γ) = 〈〈y, ε〉, s′γ〉 for any a ∈ A if γ ∈ ∆ where s ∈ Γm−k and
〈y, s′〉 = tm (x, a)(s).

Finally, let

F = {〈x, s2k〉 ∈ Q | om (x)(s) = 1, s ∈ Γm−k}

be the set of accepting states of M . The intuitive motivation for the definition of M
comes from the need to save portions of the stack as parts of the state. This is needed to
model the behaviour of m , which unlike a standard pda can read several symbols from
the stack at once and not just the top one. For technical reasons it is convenient to as-
sume that we always can transfer m symbols from the stack to the state. We ensure that
by allowing the completion of the second component of the state with an appropriate
number of symbols 2 added from the right if the stack happens to be shorter than m.

Our goal is to show that for any w ∈ A∗,
q
x0

y
m (w)(γ0) = 1 iff w is accepted

by M with 〈x0, γ0〉 as the initial state. To that end we prove a (clearly) more general
statement: for any w ∈ A∗, x ∈ X and s ∈ Γ ∗,

q
x
y

m (w)(s) = 1 iff there is a chain of
transitions C over configurations of M corresponding to w, starting at 〈〈x, ε〉, s2〉 and
finishing in an accepting state. We proceed by induction over the length of w.
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– Let w = ε. Then by Lemma A.1
q
x
y

m (w)(s) = om (x)(s) = om (x)(s′) where s′ is
obtained from s by truncating the latter on the right down to the size not exceeding
m. Therefore,

q
x
y

m (w)(s) = 1 iff 〈x, s′2k〉 ∈ Q belongs to F with k = m− |s′|.
On the other hand, by (i)–(ii) any chain C of transitions corresponding to w = ε
and starting at 〈〈x, ε〉, s2〉 must be a prefix of the following chain:

〈〈x, ε〉, s2〉 ε−→ · · · ε−→ 〈〈x, s′2k〉, u2〉

where s = s′u and k = m− |s′|. Clearly, C leads to an accepting configuration iff
〈x, s′2k〉 is an accepting state.

– Let w = au. Then by Lemma A.1,
q
x
y

m (w)(s) = am (do y ← tm (x, a); η
q
y
y

m (u)
)

(s)

= let 〈y, s′〉 = tm (x, a)(s) in
q
y
y

m (u)(s′).

The latter is equal to 1 iff
q
y
y

m (u)(s′) = 1 where 〈y, s′〉 = tm (x, a)(s). By the
induction hypothesis

q
y
y

m (u)(s′) = 1 iff there is a chain of transitions C corre-
sponding to u, starting at 〈〈y, ε〉, s′2〉 and finishing in an accepting state. We shall
show that there is a chain of transitions C ′ starting in 〈〈x, ε〉, s2〉 and finishing
in an accepting state. There are two cases: (1) if |s| < m then we obtain C ′ by
prepending C with

〈〈x, ε〉, s2〉 ε−→ · · · ε−→ 〈〈x, s2k〉,2〉 a−→ 〈〈y, ε〉, s′2〉,

where k = m − |s|; (2) if |s| ≥ m let s = s′′w with |s′′| = m and let
tm (x, a)(s′′) = (ŷ, ŝ). Then since tm (x, a)(s′′u) = (ŷ, ŝu) holds by the proper-
ties of tm (x, a) : Γ ∗ → X × Γ ∗, we know that ŷ = y and ŝu = s′. So we obtain
C ′ by prepending C with

〈〈x, ε〉, s2〉 ε−→ · · · ε−→ 〈〈x, s′′〉, u2〉 a−→ 〈〈ŷ, ε〉, ŝu2〉 = 〈〈y, ε〉, s′2〉.

Conversely, given a chain of transitions C ′ for w from 〈〈x, ε〉, s2〉 and leading to
a final state, then it must be a chain C starting at 〈〈y, ε〉, s′2〉 prepended by one
of the above two prefixes (depending on |s|). This completes the induction and the
proof of the first part of the theorem.

In order to show the second part of the claim, suppose we are given a real-time determin-
istic pda M with a transition function (A.7), an initial state q0 ∈ Q, a set of accepting
states F ⊆ Q and an initial stack symbol 2. Let us define an T-automaton (F) with
X = Q+ {⊥} and T being a stack monad over ∆ as follows: for any q ∈ X , s ∈ ∆∗,
a ∈ A, om (q)(s) = 1 iff q ∈ F and

tm (q, a)(ε) = tm (⊥, a)(γs) = 〈⊥, ε〉
tm (q, a)(γs) =

(
let 〈q′, s′〉 = δ(q, a, γ) in 〈q′, s′s〉

)
(q 6= ⊥)

Let us show by induction over the length of w ∈ A∗ that for any q ∈ Q, s ∈ ∆∗ an
acceptable configuration is reachable from 〈q, s〉 by w iff JqKm (w)(s) = 1.
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– Let w = ε. Then 〈q, s〉 is acceptable iff q ∈ F iff om (q)(s) = 1. By Lemma A.1,
the latter is equivalent to JqKm (w)(s) = 1.

– Let w = au. Then an acceptable configuration is reachable from 〈q, s〉 iff 〈q, s〉 a−→
〈q′, s′〉 for some 〈q′, s′〉 from which an acceptable configuration is reachable by
u. By induction hypothesis and by definition of tm , an equivalent formulation is
as follows: Jq′Km (u)(s′) = 1 where 〈q′, s′〉 = tm (q, a)(s). On the other hand, by
Lemma A.1,

JqKm (w)(s) = am (do q′ ← tm (q, a); η
q
q′

y
m (u)

)
(s)

=
(
let 〈q′, s′〉 = tm (q, a)(s) inJq′Km (u)(s′)

)
,

i.e. also JqKm (w)(s) = 1 iff Jq′Km (u)(s′) = 1 where 〈q′, s′〉 = tm (q, a)(s).

As a result, the language recognized by M is equal to (5.2) where x0 = q0 and γ0 = 2.
ut

A.7 Proof of Proposition 6.2

Let us refer to the stack theory over Γ = {γ1, . . . , γn} as E and to the theory corre-
sponding to the monad T as T . We need to show that the category of (E ⊗ T )-algebras
in Set is isomorphic to the Eilenberg-Moore category SetR.

First we show that every T (X × Γ ∗)Γ∗ can be turned into a (E ⊗ T )-algebra by
putting

JpushiKRX(p)(s) = p(γis),

JpopKRX〈p1, . . . , pn, q〉(γis) = pi(s),

JpopKRX〈p1, . . . , pn, q〉(ε) = q(s),

JfKRX〈p1, . . . , pk〉(s) = fT (Γ∗×X)(p1(s), . . . , pk(s)),

where i ranges from 1 to n and f ranges over the operations of T . The axioms of E ⊗T
are verified routinely. E.g., for the first law of the stack theory we have

Jpushi popKRX〈p1, . . . , pn, q〉(s) = JpopKRX〈p1, . . . , pn, q〉(γis) = pi(s),

etc. The two tensor laws (for push and for pop) are verified analogously.
It is then easy to see that RX , which is by definition a subset of T (X × Γ ∗)Γ∗ , is

stable under the the operations of E ⊗ T and therefore itself forms a (E ⊗ T )-algebra.
For example, let us verify the stability of RX under pushi. Suppose, p ∈ RX is such
that for some m

p(su) = do 〈x, s′〉 ← p(s); η〈x, s′u〉 (A.8)

for all s ∈ Γ ∗ with |s| ≥ m. Then

JpushiKRX(p)(su)

= p(γisu)
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= do 〈x, s′〉 ← p(γis); η〈x, s′u〉
= do 〈x, s′〉 ← JpushiKRX(p)(s); η〈x, s′u〉

and hence JpushiKRX(p) ∈ RX .
We only need to prove that RX is the free (E ⊗ T )-algebra on X . First, we show

that it is reachable from X , i.e. that every element p ∈ RX is represented by a term
over X . Let m be such that (A.8) holds whenever |s| ≥ m and proceed by induction
over such m.

Suppose, m = 0. Then by taking s = ε in (A.8), we obtain for any u ∈ Γ ∗,
p(u) = do 〈x, s′〉 ← p(ε); η〈x, s′u〉. Note that p(ε) ∈ T (X × Γ ∗) can be represented
by a term over X × Γ ∗ in the theory T . Then it follows that p is representable by the
term

p(ε)[〈x, s〉 7→ pushs(x)]

where for any α1, . . . , αk ∈ Γ , pushα1···αk(x) encodes iterated application of push to
x: pushk(· · · push1(x) · · · ).

Suppose m > 0 and let for any γ ∈ Γ , pγ(s) = p(γs). Then, by (A.8) we have

pγ(su) = do 〈x, s′〉 ← pγ(s); η〈x, s′u〉

whenever |γs| ≥ m, i.e. |s| ≥ m−1. By induction, every pγ is representable by a term,
say tγ . It is now easy to see that p is representable by the term

pop
(
tγ1 , . . . , tγn , p(ε)[〈x, s〉 7→ pushs(x)]

)
.

Finally, let us show that RX is free. Let t and r be two terms such that JtKRX = JrKRX
and let us show E ⊗ T ` t = r. First we normalize t and r under the following rules:

pushi(pop(x1, . . . , xn, y))→ xi

pushi(f(x1, . . . , xk))→ f(pushi(x1), . . . , pushi(xk))

which are sound w.r.t. E ⊗ T . Observe that in the normalized terms pushi only occurs
applied to variables. We now proceed by induction over the number m of pop operators
in t and r.

Let m = 0. Then

t = u(pushs1(x1), . . . , pushsk(xk)) and r = h(pusht1(y1), . . . , pushtl(yl))

where u and h are terms in the signature of E and si, tj ∈ Γ ∗. Let t′ and r′ be obtained
from t and r by replacing any pushs(z) with 〈z, s〉. Since Jt′KT (X×Γ∗) = JtKRX(ε) =
JrKRX(ε) = Jr′KT (X×Γ∗), we have T ` t′ = r′ and therefore E ⊗ T ` t′ = r′ which
implies E ⊗ T ` t = r.

Let m > 0. For any i let us form ti by the application of pushi to t and further
normalization of the result by the above rewrite rules. It is easy to see that the number
of pop operators in any ti is at most m− 1. We also obtain a term tε as follows: we first
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rewrite t to the term t′ according to the above rules and the following one:

f(x1, . . . , xi−1, pop(y1, . . . , yn, y), xi+1, . . . , xk)
↓

pop
(
f(push1(x1), . . . , push1(xi−1), y1,
push1(xi+1), . . . , push1(xk)),

...
f(pushn(x1), . . . , pushn(xi−1), yn,
pushn(xi+1), . . . , pushn(xk)),

f(x1, . . . , xi−1, y, xi+1, . . . , xk)
)
.

That this rule is sound is proved as follows: first replace in the “left-hand” term

f(· · · , pop(· · · ), · · · )

each variable xj , j = 1, . . . , i−1, i+ 1, . . . , k, using the first axiom of the stack theory
by

pop(push1(xj), . . . , push(xj), xj);

then apply the tensor law (see Definition 6.1) to the resulting term

f(pop(· · · ), . . . , pop(· · · ))

to obtain the “right-hand” side of the rule.
Notice that t′ contains exactly the same number of pop as t. If t contains no pop

then let tε = t′; else t′ = pop(t′1, . . . , t
′
n, tε) (which we use as implicit definition of tε).

Now we obtain

E ⊗ T ` t = pop(t1, . . . , tn, tε);

indeed, if t contains pop we reason as follows:

t = pop(push1(t), . . . , pushn(t), t)

(by the 2nd axiom of the stack theory)
= pop(t1, . . . , tn, t

′)

(by rewriting)
= pop(t1, . . . , tn, pop(t

′
1, . . . , t

′
n, tε))

(using that t′ starts with pop)
= pop(t1, . . . , tn, tε)

(by the 3rd axiom of stack theory);

and if t does not contain pop we are finished after the first two steps above since t′ = tε.
Observe that tε (like t1, . . . , tn) contains at most m− 1 pop operators.

Analogously, we define r1, . . . , rn and rε to which the same reasoning applies.
Since, JtKRX = JrKRX then for any i, JtiKRX = JriKRX and thus, by induction,
E ⊗ T ` ti = ri. Also, it is easy to see that JtεKRX(ε) = JrεKRX(ε) and therefore
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E ⊗ T ` tε = rε (the proof is analogous to the proof of the induction base). In sum-
mary, we have

E ⊗ T ` t = pop(t1, . . . , tn, tε) = pop(r1, . . . , rn, rε) = r

and thereby the proof is completed. ut

A.8 Proof of Theorem 6.5

The proof is completely analogous to the proof of Theorem 5.5. We outline the main
distinctions. Instead of quasi-real-time deterministic pda we involve nondeterministic
push-down quasi-real-time (NPDQRT) machines from [4]. The transition function δ is
thus updated as follows:

δ : Q× (A+ {ε})×∆m → Pω(Q× (∆∗)m). (A.9)

This function is subject to the condition of being quasi-real-time, i.e. there is a global
bound for the lengths of transition chains over machine configurations labelled with
internal actions only.

Two acceptance conditions for NPDQRT are possible: (i) by final states and (ii)
by empty storage. It is standard to see that a language accepted by empty storage can
be accepted by final states. In fact, the construction for ordinary PDAs (see e.g. [?])
also works for NPDQRT: for a given PDA P one forms a PDA P ′ with a fresh initial
stack symbol γ′0 and a new inital state that pushes the original initial stack symbol on
all stacks and then proceeds to the initial state of P . In addition, P ′ has one final state
that can be reached from all states by an (internal) ε-transition if the stack content is
(γ′0, . . . , γ

′
0) (which corresponds to configuration of P with all stacks empty). Clearly,

this construction preserves quasi real-timeness.
Conversely, for any m (i) can be modelled by (ii), i.e. a language accepted by final

states can be accepted by empty stack: for m = 1, we obtain standard push-down
automata for which equivalence of (i) and (ii) is well-known [29]; for m = 2 this is
shown in [40]; for any m > 2 by [4] the languages recognized under (ii) are exactly
NTIME(n) and since for quasi-real-time machines the depths of all stacks is linearly
bounded, these can be purged in linear time when a final state is reached as required by
(i).

As shown in [41], the languages recognized by NPDQRT with m = 2 are properly
between context-free and NTIME(n).

We still need to show that for every m the languages recognized by nondeterminis-
tic multistack T-automata with m stacks are the same as the languages recognized by
NPDQRT with m stacks with the acceptance condition chosen at pleasure.

As in Theorem 5.5, given a nondeterministic multistack T-automaton m with m
stacks we identify a global bound n for the depths of the stack prefixes accessed at one
step and then model m by an NPDQRT M over the state space

Q =
{
〈x, s12k1 , . . . , sm2km〉 | x ∈ X, si ∈ Γ ∗, |si| ≤ n− ki

}
.
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The stack alphabet ∆ is Γ + {2}, the transition function is given as in Theorem 5.5 by
changing the number of elements in tuples Q and by allowing for nondeterminism. The
acceptance condition is chosen to be by final states, and the final states are:

F = {〈x, s12k1 , . . . , sm2km〉 ∈ Q | om (x)(s) = 1, si ∈ Γn−ki}.

It then follows along the same lines as in the proof of Theorem 5.5 that for any w ∈ A∗,q
x0

y
m (w)(γ0, . . . , γ0) = 1 iff w is accepted by M with 〈x0, γ0, . . . , γ0〉 as the initial

configuration.
In order to show the second part of the claim, assume that M is a NPDQRT with

m stacks, a transition function (A.9), an initial state q0 ∈ Q, a set of accepting states
F ⊆ Q and an initial stack symbol 2. According to [4], we assume that M is real-time,
that means that no internal transitions are present.

We define a nondeterministic T-automaton over m stacks with X = Q and with
stack symbols ∆ as follows: for any q ∈ X , si ∈ ∆∗, a ∈ A, om (q)(s1, . . . , sm) = 1
iff q ∈ F and

tm (q, a)(s1, . . . , sm) = /0 if si = ε for some i,
tm (q, a)(γ1s1, . . . , γmsm) = {〈q′, s′1s1, . . . , s′msm〉 |

〈q′, s′1, . . . s′m〉 ∈ δ(q, a, γ1, . . . γm)} if si = ε for no i.

A similar argument as in Theorem 5.5 then shows that for any w ∈ A∗, q ∈ Q
and s ∈ ∆∗ an accepting configuration is reachable from 〈q, s1, . . . , sm〉 by w iff
JqKm (w)(s1, . . . , sm) = 1. ut

A.9 Proof of Theorem 7.3

Let us denote Ωn = {(1, )1, . . . , (n, )n}. We remark that the existence of a homomor-
phism α from Ωn to A∗ required in the theorem is is still sufficient even in the case
of the fixed n = 2. To that end, following [45], we define a morphism γ : Ω∗n → Ω∗2
sending any (n to (n1 (2 and any )n to )n1 )2. As noted in [45], D2 = γ−1(Dn), which
means that if γ(w) ∈ Ωn is balanced then w is also balanced. Since the converse is
obvious, the composition α′ = αγ : Ω∗n → A∗ has the property that α(w) · b0 ≥ b1 iff
w is balanced whenever the same is true for some α : Ω∗2 → A∗.

By Chomsky-Schützenberger theorem, L = β(R ∩ Dn) where R is a regular lan-
guage and β is obtained by extending a map Ωn → A∗ to a semiring morphism in
the canonical way. We use the version of Chomsky-Schützenberger theorem from [44]
where it is shown that if L does not contain one-letter words then β can be chosen
non-erasing, i.e. β(g) = ε for no g ∈ Ωn. The assumption that L does not contain
one-letter words does not restrict generality, for if we could show for L′ = L \ A and
an expression e that L′ = {w ∈ A∗ | JeK(w) ≥ b1} then of course

L =
{
w ∈ A∗ |

q
e+

∑
a∈L∩A

a.b1
y
(w) ≥ b1

}
.

Therefore we assume that L∩A = /0 and β is non-erasing in the remainder of the proof.
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As we know from Proposition 4.6 and Definition 5.1, R can be given by a reactive
expression over the boolean semiring R = B = {0, 1}. We replace in this expression
any occurrence of the form g. t where g ∈ Ω∗n by

a1. · · · ak. α(g) · t

where a1 · · · ak = β(g) and all the occurrences of 1 ∈ B by b0. The resulting expres-
sion e is a reactive expression for the semiring monad TR. Note that the assumption
that β is nonerasing ensure that e remains guarded. It is then easy to check by definition
that

JeK(w) ≥ r · b0 iff ∃u ∈ R. r = α(u) ∧ w = β(u). (A.10)

Suppose, w ∈ L = β(R ∩ Dn). Then there is u ∈ R which is balanced and such that
w = β(u). By assumption of the theorem, α(u) · b0 ≥ b1 and by (A.10), JeK(w) ≥
α(u) · b0. Therefore, JeK(w) ≥ b1.

Let us show the converse. Suppose, JeK(w) ≥ b1. Note that JeK(w) must be repre-
sentable as a finite sum α(u1) ·b0+ . . .+α(uk) ·b0 such that w = β(ui) and ui ∈ R for
all i. By assumption of the theorem we obtain α(uj) · b1 ≥ b0 for some j and therefore
uj is balanced. Since w = β(uj), uj ∈ R and uj ∈ Dn then uj ∈ L and we are done.

ut

A.10 Proof of Proposition 7.5

The proof is completely analogous to the proof of Theorem 4.8. Let E be the set of
•-closed algebraic expressions over B0, R0. We have defined an L-coalgebra structure
on this set given by the functions o and ∂a. Let Σ be the signature of the algebraic
theory associated to the semimodule monad given by the semiring R, i.e. Σ contains
a constant /0 and binary operator + and unary operators r · − for every r ∈ R. The
corresponding syntactic operators according to the grammar in Definition 7.4 turn E
into a Σ-algebra such that o and ∂a (and hence the L-coalgebra structure on E) form
Σ-algebra morphisms. The rest of the proof is identical to the proof of Theorem 4.8
with E in lieu of EΣ,B0

. ut

A.11 Proof of Theorem 8.1

We will show that the following diagram commutes:

X
ηT

//

ηTB

&&

m
��

TX
κ //

m̂]

%%

m]

xx

TBX

m]∗
zz

m̂]∗ // BA
∗

ι

��

B × (TX)A
id
×κ
A

// B × (TBX)A
id×(m̂]∗)A // B × (BA

∗
)A

The left-hand triangle commutes by the definition of m ], the right-hand part by the
finality of BA

∗
(recall from (A.6) that m̂ ]

∗ denotes the unique coalgebra morphism)
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and the upper left-hand triangle since κ is a monad morphism. The upper right-hand
triangle commutes by the finality of BA

∗
as soon as we establish that the middle part

commutes. To see the latter we shall show that all morphisms in this part are T-algebra
homomorphisms and that this part commutes when precomposed with ηTX . Indeed, the
latter follows from the fact that the upper left-hand triangle commutes and since clearly

m∗ = (X
m //B × (TX)A

id×(κX)A
//B × (TBX)A ).

Now to see that all morphisms in the middle part are T-algebra homomorphism, recall
first that the monad morphism κ : T → TB induces a functor κ̄ from the category
of TB-algebras to the category of T-algebras given by (A,α) 7→ (A,α · κA). It is
easy to see that this functor maps (B, am∗) to (B, am ). Now let α and α∗, denote the
algebraic structures onB×(TX)A andB×(TXB)A, which are componentwise given
by the structures of the free algebras on X and by am and am∗ on B, respectively. Now
consider the four morphisms of the middle part of our diagram: (1) κX : TX → TBX
is easily seen to be a T-algebra homomorphism from the free algebra (TX, µT

X) to
(TBX,µ

TB
X · κTBX) (since κ is a monad morphism) and therefore (2) id×(κX)A is a

homomorphism from (B×(TX)A, α) to (B×(TBX)A, α∗ ·κB×(TBX)A); (3) m ] is by
definition a T-algebra homomorphism and (4) m ]

∗ is a TB-algebra morphism and hence
by applying the functor κ̄ we see it is also a T-algebra homomorphism as desired. ut

A.12 Proof of Lemma 8.3

This follows from the fact that B carries an Eilenberg-Moore algebra structure for the
countably supported multiset monad M . Equivalently, we have a monad morphism m :
M → TB (see [17, Prop. 22.4]). Thus, by forming (TBX,µ

TB
X ·mTBX) we obtain an

Eilenberg-Moore algebra structure for M on TBX , i.e., TBX is an ω-additive monoid.
ut

A.13 Proof of Theorem 8.6

First, we need a description similar to Lemma A.1 for the observational semantics
J−Kτm . Before we state and prove it we make some auxiliary observations.

Remark A.2. Notice that since κ : T → TB is a monad morphism we have for every
f : X → TY a commutative square

TX
f†

//

κX

��

TY

κY

��

TBX
(κY ·f)†

// TBY

which in the do-notation corresponds to the following equation:

κY (do x← p; f(x)) = do x← κX(p);κY · f(x). (A.11)
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Remark A.3. In the following we shall need two properties of the ω-additive monoid
structure on TBX .

(1) Sums commute with the Kleisli substitution:

do y ←
∞∑
i=1

pi; f(y) =

∞∑
i=1

do y ← pi; f(y) (A.12)

Indeed, this equation expresses that the outside of the following diagram commutes
for every f : X → TBY (here we abbreviate TB as T , and recall that M denotes
the countably supported multiset monad):

MTX
mX //

Mf†

��

TTX
µX //

Tf†

��

TX

f†

��

MTY
mY
// TTY

µY
// TY

And this diagram clearly commutes by the naturality of the monad morphism m :
M → TB , and since f† is a T -algebra morphism.

(2) Similarly, sums commute with the TB-algebra structure am∗ , i.e. the following
equation holds for every countable family of elements pi ∈ TBB:

am∗

( ∞∑
i=1

pi

)
=

∞∑
i=1

am∗(pi); (A.13)

in other words, am∗ is a morphism of ω-additive monoids from TBB to B. Indeed,
this follows from the commutativity of the following diagram (again we abbreviate
TB by T ):

MTB
mTB //

Mam∗

��

TTB

Tam∗

��

µB // TB

am∗

��

MB
mB

// TB
am∗

// B

Lemma A.4. Given a T-automaton (F), x0 ∈ X and u ∈ A∗ then

q
x0

yτ
m (ε) = om (x0) +

∞∑
i=1

am (do x1 ← tm (x0, τ); . . . ;xi ← tm (xi−1, τ); ηTB · om (xi)
)

q
x0

yτ
m (au) =

∞∑
i=1

am (do x1 ← tm (x0, τ); . . . ;xi ← tm (xi−1, a); ηTB ·
q
xi

yτ
m (u)

)
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Proof. We proceed by induction on the argument w ∈ A∗ of
q
x0

yτ
m . For w = ε we

obtain:
q
x0

yτ
m (ε) =

q
x0

y
mv (ε) by definition of

q
−

yτ
m

= omv (x0) by Lemma A.1

= om∗(x0) +
∞∑
i=1

(do x1 ← tm∗(x0, τ); . . . ; tm∗(xi−1, τ)) (om∗)

by definition of omv

= om (x0) +
∞∑
i=1

κX (do x1 ← tm (x0, τ); . . . ; tm (xi−1, τ)) (om )

by repeated application of (A.11) using om∗ = om and
tm∗ = κX · tm

= om (x0) +
∞∑
i=1

(am · Tom ) (do x1 ← tm (x0, τ); . . . ; tm (xi−1, τ))

by definition of κX

= om (x0) +
∞∑
i=1

am (do x1 ← tm (x0, τ); . . . ;xi ← tm (xi−1, τ); ηTB · om (xi)
)

property of do-notation.

For the induction step we consider w = au and compute:
q
x0

yτ
m (au) =

q
x0

y
mv (au) by definition of

q
−

yτ
m

= amv
(
do y ← tmv (x0, a); ηTB ·

q
y
y

mv (u)
)

by Lemma A.1

= am∗
(
do y ←

( ∞∑
i=1

do x1 ← tm∗(x0, τ); . . . ;xi−1 ← tm∗(xi−2, τ); tm∗(xi−1, a)

)
; ηTBB ·

q
y
y

mv (u)

)
by definition of tmv and since amv = am∗

= am∗
( ∞∑
i=1

do x1 ← tm∗(x0, τ); . . . ;xi−1 ← tm∗(xi−2, τ); y ← tm∗(xi−1, a); ηTBB ·
q
y
y

mv (u)

)
by (A.12)

= am∗
( ∞∑
i=1

κB

(
do x1 ← tm∗(x0, τ); . . . ;xi−1 ← tm∗(xi−2, τ); y ← tm∗(xi−1, a); ηTB ·

q
y
y

mv (u)
))

by (A.11) and since κ · ηTB = ηT

=
∞∑
i=1

am∗ · κB
(
do x1 ← tm∗(x0, τ); . . . ;xi−1 ← tm∗(xi−2, τ); y ← tm∗(xi−1, a); ηTB ·

q
y
y

mv (u)
)

by (A.13)

=
∞∑
i=1

am
(
do x1 ← tm∗(x0, τ); . . . ;xi−1 ← tm∗(xi−2, τ); y ← tm∗(xi−1, a); ηTB ·

q
y
y

mv (u)
)

since am∗ · κB = am

=
∞∑
i=1

am (do x1 ← tm (x0, τ); . . . ;xi ← tm (xi−1, a); ηTB ·
q
xi

yτ
m (u)

)
by definition of

q
−

yτ
m and renaming y to xi.

ut

We are now ready to turn to the proof of Theorem 8.6. To this end we will relate tape
automata and a special form of Turing machine called reactive Turing machines. Reac-
tive Turing machines were introduced by Baeten et al. [43] with the aim to equip TM’s
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with a notion of interaction and so bridge the gap between classical computation and
concurrency theory. However, their notion of reactive TM is non-deterministic, and the
semantics of reactive TM’s is defined in terms of bisimilarity and not in terms of the
more classical languages (or traces). So we start by introducing a notion of deterministic
reactive TM and its language semantics.

Definition A.5 (Reactive Deterministic Turing Machine (RDTM)). A deterministic
reactive Turing machine is a six-tuple M = (Q,A, Γ, δ, q0, F ), where Q is a finite set
of states A is the action (or input) alphabet Γ is the tape alphabet (assumed to contain
the special blank symbol 2), q0 is the initial state, F ⊆ Q is a set of final (or accepting)
states and

δ : Q× (A ∪ { τ })× Γ → Q× Γ × { L,N,R }

is the transition function.

The difference to an ordinary TM is that transitions do not only depend on the tape
contents but also on an input in the form of an action a ∈ A given by the user from the
outside during runtime of the machine, and there are also internal transitions, i.e. where
a silent action τ triggers the transition. So a configuration of an RDTMM is an element
of

Q×A∗ × (Z× ΓZ)

consisting of the current state q ∈ Q the remaining input actions w ∈ A∗ and a
pair (i, σ) consisting of the current position i of the read/write head and tape content
σ : Z → Γ . Computations (or runs) are then defined in the usual way as sequences of
configurations starting from the initial configuration (q0, w, (0, σ2)) where w ∈ A∗ is
the input word and σ2 denotes the constant function on 2. Notice that internal transi-
tions leave the remaining input actions untouched while otherwise the head symbol is
removed from w ∈ A∗ in a configuration.

Definition A.6 (Language of a RDTM). Let M be an RDTM. The formal language
accepted by M is the set of words w ∈ A∗ such that there exists a computation from
the initial configuration to a configuration (q, ε, (n, σ)) with q ∈ F .

More informally, a word is accepted by M if there is a computation that consumes all
the letters in A and leads to an accepting state. Notice that due to the internal actions
there may be several accepting computations of a word. So an RDTM is only determin-
istic in the sense that in any configuration there can be no two different moves consum-
ing the same input letter. But an internal transition can happen non-deterministically in
any configuration.

That RDTM’s are an appropriate model of computations is stated by the following
lemma.

Lemma A.7. The class of languages accepted by RDTM’s is the class of semi-
decidable languages.

Proof. We show that ordinary TM’s can be simulated by RDTM’s and vice versa.
(a) Given an RDTM M it can be simulated by a non-deterministic TM M̄ with two

tapes as follows: the first (input) tape of M̄ stores the input word w ∈ A∗ which is
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processed read-only from left to right, and the second tape of M̄ corresponds to the
tape of M . The NTM M̄ simulates M as follows: in each step M̄ non-deterministically
either performs an internal action of M or reads one symbol from the first tape (then
moving the head to the right by one position on this tape). In addition, M̄ has a special
accepting halting state qf , and it can non-deterministically decide to move to that state
from every accepting state of M whenever a blank symbol is read on the first tape; this
allows M̄ to halt and accept if M is in any accepting configuration after consuming its
input. It is then clear that M̄ and M accept the same language. We conclude that the
language accepted by any RDTM is semi-decidable.

(b) Conversely, suppose we have a deterministic TM with input alphabet A. Then
M can be simulated by an RDTM M̄ . The computation of M̄ has two phases: in the
first phase M̄ consumes its entire input and writes it on its tape. During this phase no
internal transitions happen. The first phase ends as soon as M̄ performs its first internal
action which starts the second phase. In this phase M̄ only performs internal actions in
the sense that all transitions consuming an input symbol a ∈ A lead to a non accepting
state that is never left again. At the beginning of the second phase M̄ then moves the
head to the first input symbol on its tape (if any). It then starts a simulation of the DTM
M using internal transitions only. WheneverM halts in a (non-)accepting state, then M̄
moves to a (non-)accepting state that it never leaves again. Again, M̄ clearly accepts the
same language as M . Thus, it follows that every semi-decidable language is accepted
by an RDTM. ut

Proof (Theorem 8.6). We give for a tape automaton m as in the statement of the theorem
an equivalent RDTM and vice versa.

(a) Given m , we define an RDTM M . For any x ∈ X and a ∈ A let kx,a be the
minimal natural number as in Definition 3.6 for

tm (x, a) = 〈r, z, t〉 ∈ TX.

Analogously, lx be the minimal natural number according to the second clause of Defi-
nition 8.5 for

om (x) : Z× ΓZ → 2.

The state set of M consists of the states X of m times a finite memory that can store a
finite portion of M ’s tape and is of the form

{−n, . . . , 0, . . . , n} × Γ 2n+1

where n = max{lx,maxa{kx,a}}. We say that a memory content (0, σ̄) restricts
(i, σ) ∈ Z × ΓZ if σ̄(j) = σ(i + j) for all j = −n, . . . , 0, . . . , n. The final states
of M are those states x ∈ X together with memory contents (0, σ̄) that restrict (i, σ)
with om (x)(i, σ) = 1; that this is well-defined follows from Definition 3.6. We now
describe informally how M simulates m . Since m can access several symbols from the
tape at once we need to simulate transitions of m by several steps of M . These steps
will make sure that the contents of M ’s finite memory always restricts its tape con-
tents. Hence, a transition of m given by tm (x, a)(i, σ) = (x′, i′, σ′) is simulated by
the following steps of M (where M starts in state x with the memory contents (0, σ̄)
restricting (i, σ) which is M ’s tape contents):
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(1) M performs a transition that consumes input letter a and changes the state to x′

and the memory content to the appropriate value (j, σ̄′) that reflects the values of
i′ and σ′, i.e. j = i′ − i and σ̄′(`) = σ′(i+ `) for every ` = −n, . . . , 0, . . . , n (this
is possible by Definition 3.6);

(2) now M replaces the 2n+ 1 tape cells around the current position of the read/write
head according to σ̄′ from the memory content and then the read/write head’s po-
sition is changed according to j (this uses a finite number of additional auxiliary
states);

(3) finally, the memory is overwritten with the 2n + 1 tape symbols around the new
position of the read/write head so that the computation of the m -transition ends in
state x′ with a memory content (0, σ̄) restricting the new tape content (i′, σ′).

Notice that all the above points except (1) are realized by internal transitions of M .
Now we need to prove that M accepts a word w ∈ A from the initial state x0

(with memory content (0, σ2) iff Jx0Kτm (w)(0, σ2) = 1. We will prove more generally
that for every state x0, we have Jx0Kτm (w)(z0, σ0) = 1 iff there exists an accepting
M -computation from state x0 starting with tape content (z0, σ0).

Before we proceed to the proof recall that the T-algebra structure am : TB → B
is given by evaluation. It follows that for every map f : X → TB the uncurrying of
am · f : X → B ⊆ 2S is

X × S
f ′
//B × S ⊆ 2S × S ev //2,

where S = Z× ΓZ and ev is the evaluation map.
Now we prove the desired statement by induction on w. For the base case observe

that, by Lemma A.4, Jx0Kτm (ε)(z0, σ0) = 1 iff om (x0)(i0, σ0) = 1 or there exists an
i ≥ 1 such that

am (do x1 ← tm (x0, τ); . . . ;xi ← tm (xi−1, τ);
ηTB · om (xi)

)
(z0, σ0) = 1.

In the first case x0 is a final state of M and so the empty (0-step) computation of M
is an accepting M -computation of ε. In the second case, let i be such that the above
equation holds. Equivalently, the following morphism

X × S // · · · //X × S om×S
//B × S ⊆ 2S × S ev //2 ,

where the unlabelled arrows form the i-fold composition of the uncurrying of tm (−, τ) :
X → (X × S)S , maps (z0, σ0) to 1. So equivalently, we have x1, . . . , xi and tape
configurations (zk, σk), 1 ≤ k ≤ i, such that tm (xk, τ)(zk, σk) = (xk+1, zk+1, σk+1)
for all 0 ≤ k < i, and om (xi)(zi, σi) = 1. Equivalently, we have an M -computation
that performs steps (1)–(3) above i times (simulating τ -steps of m ) and ends in the
accepting state xi with tape content (zi, σi).

In the induction step of our proof let w = au. By Lemma A.4, we have
Jx0Kτm (au)(z0, σ0) = 1 iff there exists an i ≥ 1 such that

am (do x1 ← tm (x0, τ); . . . ;xi ← tm (xi−1, a);

ηTB ·
q
xi

yτ
m (u)

)
(z0, σ0) = 1.
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By a similar argument as in the base case, this is equivalent to the existence of states
x1, . . . , xi and tape contents (zk, σk), 1 ≤ k ≤ i such that tm (xk, τ)(zk, σk) =
(xk+1, zk+1, σk+1) for all 0 ≤ k < i − 1, tm (xi−1, a)(zi−1, σi−1) = (xi, zi, σi) and
JxiKτm (u)(zi, σi) = 1. The last conditions corresponds, by induction hypothesis, bijec-
tively to an accepting M -computation from state xi with initial tape content (zi, σi).
And the rest corresponds bijectively to an M -computation that consists of i-iterations
of steps (1)–(4) simulating i − 1 many τ -steps and one a-step of the given tape au-
tomaton m starting in state x0 with tape content (z0, σ0) and ending in state xi with
tape content (zi, σi). Putting these two parts together, we obtain the desired bijective
correspondence to an accepting M -computation from state x0 with initial tape content
(z0, σ0).

(b) Conversely, given an RDTMM = (Q,A, Γ, δ, q0, F ) we construct an equivalent
tape automaton m . We take Q as the set of states and we let

om (q)(z, σ) = 1 iff q ∈ F

and
tm (q, a)(z, σ) = (q′, z′, σ′),

where q′ and (z′, σ′) are the state and the tape content, respectively, of M after per-
forming an a-transition in state q with tape content (z, σ). For internal transitions ofM ,
tm (q, τ) is defined in the same way.

We need to prove that M accepts a word w ∈ A iff Jq0Kτm (w)(0, σ2) = 1. More
generally, one proves that for every state q0 and tape content (z0, σ0) of M one has
Jq0Kτm (w)(z0, σ0) = 1 iff there exists an accepting M -computation from state q0 with
initial tape content (z0, σ0). This is proved by induction on w once again. The details
are similar (but slightly easier) than in part (a) of our proof, and so we leave them as an
easy exercise for the reader.

A.14 Tape monad

We show that the tape monad, from Definition 3.6, is well-defined as a submonad of
the store monad. Recall that σ =i±k σ

′ means that σ(j) = σ′(j) for all j such that
|i − j| ≤ k and σ =i±k σ′ means that σ(j) = σ′(j) for all j such that |i − j| > k.
Recall that 〈r, z, t〉 : Z × ΓZ → X × Z × ΓZ belongs to TX iff there exists k ≥ 0
such that for any i, j ∈ Z and any σ, σ′ : Z→ Γ such that σ =i±k σ

′

t(i, σ) =i±k t(i, σ
′) A©

r(i, σ) = r(i, σ′) B©

|z(i, σ)− i| ≤ k C©

t(i, σ) =i±k σ D©

z(i, σ) = z(i, σ′) E©

t(i, σ+j) = t(i+ j, σ)+j F©

r(i, σ+j) = r(i+ j, σ) G©

z(i, σ+j) = z(i+ j, σ)− j H©
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which we call the locality conditions for 〈r, z, t〉.
To prove that the above definition of submonad is correct, we will use the following

property of the relations =i+k and =i+k.

Lemma A.8. Suppose, for some σ, σ′, θ, θ′ : Z → Γ , m ≥ k, σ =i+m σ′, θ =i+k θ
′,

θ =i+k σ and θ′ =i+k σ′. Then θ =i+m θ′.

Proof. Let us depict the assumptions:

Observe that σ =i+m σ′ and m ≥ k imply that σ =i+k σ
′, as depicted above (wave

pattern).
We want to show that for all j such that |j − i| ≤ m we have θ(j) = θ′(j). We

break this into two cases.

– |j − i| ≤ m ≤ k: θ(j) = θ′(j) follows by the assumption θ =i+k θ
′ (polka dots in

the picture).

– k ≤ |j − i| ≤ m and −m ≤ |j − i| ≤ −k: θ(j) = θ′(j) follows using following
calculation.

θ(j) = σ(j) Chessboard pattern, θ =i+k σ
= σ′(j) Wave pattern, σ =i+m σ′

= θ′(j) Vertical stripes pattern, θ′ =i+k σ′

We have to show that the unit satisfies the locality conditions and that (2) for any p : TX
and f : X → TY , f†(p) ∈ TY .

Recall the definitions of the monad structure:

η(x)(i, σ) = 〈x, i, σ〉
f†(p)(i, σ) =f(r(i, σ))(z(i, σ), t(i, σ))

The unit obviously satisfies the locality conditions.
Let p ∈ TX and denote p(i, σ) = 〈r(i, σ), z(i, σ), t(i, σ)〉. Let f : X → TY and

and denote, for every x ∈ X , f(x) = 〈rx(i, σ), zx(i, σ), tx(i, σ)〉. Let us show that
f†(p) ∈ TY . Suppose, kp is the parameter of the locality condition for p. For any
σ =i±kp σ

′ we have that r(i, σ) = r(i, σ′), by A©, and hence f(r(i, σ)) = f(r(i, σ))
. Let kf be the the parameter for the locality condition for f(r(i, σ)). Finally let k =
kp + kf and let us show that this is precisely the parameter needed to prove conditions
A©- H© for f†(p).

Let

f†(p)(i, σ) = f(r(i, σ))(z(i, σ), t(i, σ))
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=〈rr(i,σ)(z(i, σ), t(i, σ)), zr(i,σ)(z(i, σ), t(i, σ)),

tr(i,σ)(z(i, σ), t(i, σ))〉
=〈rx(j, θ), zx(j, θ), tx(j, θ)〉

where we fix x = r(i, σ), j = z(i, σ) and θ = t(i, σ).
Similarly, let

f†(p)(i, σ′) = f(r(i, σ′))(z(i, σ′), t(i, σ′))

=〈rx′(j′, θ′), zx(j′, θ′), tx(j′, θ′)〉

where we fix x′ = r(i, σ′), j′ = z(i, σ′) and θ′ = t(i, σ′). Suppose, σ =i±k σ
′. Note

that this implies that σ =i±kp σ
′ and σ =i±kf σ

′ and therefore we can assume A©- H©
for both p (with kp) and f(r(i, σ)) = f(r(i, σ′)) (with kf ). This immediately gives us,
using B© and E© for p, that

x = x′, j = j′. (A.14)

Using the locality conditions A© and D© for f(r(i, σ)) = f(r(i, σ′)) we get: θ =i±kf θ
′,

θ =i±kf σ and θ′ =i±kf σ′. Hence, by Lemma A.8, we conclude θ =i±k θ′ and
therefore

θ =j±kf θ
′, (A.15)

which is due to the fact that according to locality condition C©, |i− j| ≤ kp.
Let us now show A©- H© for f†(p).

A© tx(j, θ) =i±k tx′(j
′, θ′)

From (A.15) we have θ =j±kf θ′. Therefore, using the locality conditions for
f(r(i, σ)) we get t(j, θ) =j±kf t(j, θ

′) (by A©), t(j, θ) =j±kf θ and t(j, θ′) =j±kf

θ′ (both by D©). Recall that |i − j| ≤ kp. Now since also θ =i±k θ
′ (where recall

k = kp+kf ) the last two equations imply that t(j, θ) and t(j, θ′) agree on positions
i− k, . . . , j − kf − 1 and on positions j + kf + 1, . . . , i+ k. Thus, together with
t(j, θ) =j±kf t(j, θ

′) we obtain the desired equation.
B© rx(j, θ′) = rx(j, θ′)

rx(j, θ) = rx(j, θ′) (A.15) and B© for f(x)
= rx′(j

′, θ′) (A.14)

C© |zx(j, θ)− i| ≤ k

|zx(j, θ)− i|
= |zx(j, θ)− z(i, σ) + z(i, σ)− i|
≤ |zx(j, θ)− z(i, σ)| − |z(i, σ)− i|
≤ kf + kp C© for f(x) and p
= k.
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D© tx(j, θ) =i±k σ

tx(j, θ)
=j±kf θ D© for f(x)
=i±kp θ

We need to show that for any τ, ρ: τ =i±kp ρ ⇒ τ =i±k ρ and τ =j±kf ρ ⇒
τ =i±k ρ. The first equality follows easily because kp ≤ k:

For the second one observe that

|i−m| > k
⇔ |i−m| − kp > kf
⇒ |i−m| − |j − i| > kf j = z(i, σ) and C© for p
⇔ |i−m| − |i− j| > kf |a| = | − a|
⇔ |i−m− i+ j| > kf |a| − |b| ≤ |a− b|
⇔ |j −m| > kf |a| − |b| ≤ |a− b|

This gives us that for all m such that |i − m| > k we have that |j − m| > kf .
Therefore, using τ =j±kf ρ we can conclude that τ(m) =i±k ρ(m).

E© zx(j, θ′) = zx(j, θ′)

zx(j, θ) = zx(j, θ′) (A.15) and D© for f(x)
= zx′(j

′, θ′) (A.14)

In the next three items we will use m instead of the index j that appears in the
formulation of F© - H© above, since we have set j = z(i, σ) at the beginning of this
proof.

F© tx(j, θm) = tx(j +m, θ)+m, where θ = t(i, σ) as before and θm = t(i, σ+m).

tx(j, θm)
= tx(j, θ+m) F© for p: t(i, σ+m) = t(i, σ)+m.
= tx(j +m, θ)+m F© for f(x).

G© rx(j, θm) = rx(j +m, θ)

rx(j, θm)
= rx(j, θ+m) F© for p: t(i, σ+m) = t(i, σ)+m.
= rx(j +m, θ) G© for f(x).

H© zx(j, θm) = zx(j +m, θ)−m

zx(j, θm)
= zx(j, θ+m) F© for p: t(i, σ+m) = t(i, σ)+m.
= zx(j +m, θ)−m H© for f(x).

ut
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A.15 T-algebras.

In Definitions 5.4, 6.4 and 8.5, we used T-algebras of the stack monad, nondeterministic
stack monad and the tape monad. Let us verify that these were correctly defined. First,
we show the following lemma for monads on Set.

Lemma A.9. Let T′ be a submonad of T and let α : T → P be a monad morphism.
Then α restricted to T′ induces a monad morphism α′ : T→ P such that

T′ α′ //� _

i

��

P′� _
j

��

T α // P

(A.16)

Proof. For every set X take the factorization of αX · iX into a surjective map α′X :
T ′X → P ′X followed by an injective map (inclusion) jX : P ′X → PX . Using the
diagonal fill-in property of image factorizations, it is easy to verify that α′ and j form
natural transformations. Define η′X : X → P ′X as the composition of ηX : X → T ′X
and α′X : T ′X → P ′X and µ′X : P ′P ′X → P ′X as the unique diagonal fill-in below:

T ′T ′X
(α′∗α′)X

//

µX

��

P ′P ′X

µPX ·(j∗j)X
��

µ′X

yy

P ′X
jX

// PX

Indeed, (α′ ∗ α′)X = T ′α′X · α′P ′X is surjective since T ′ preserves surjections, and the
outside square clearly commutes:

µPX · (j ∗ j)X · (α′ ∗ α′)X = µPX · ((αi) ∗ (αi))X = (αi) · µX .

Using the unique diagonal fill-in property, it is now an easy exercise to verify that η′

and µ′ are natural, that (P ′, η′, µ′) satisfies the monad laws and that α′ and j are monad
morphisms. ut

Corollary A.10. Let TS be the store monad over S and let RS be the reader monad
over S (i.e. RSX = XS). For any submonad T of TS , the monad morphism α sending
any f : S → X × S to π1f : S → X restricts to a submonad R of RS .

The stack monad being a submonad of the store monad over Γ ∗ induces the submonad
R of the reader monad over Γ ∗ for which RX consists of those r : Γ ∗ → X for which
there is k such that for any w ∈ Γ ∗ and any u ∈ Γ ∗, r(wu) = r(w) whenever |w| ≥ k.
In particular, this makes B = P2 in Definition 5.4 an R-algebra and hence a T-algebra.

Analogously, the tape monad (Definition 3.6) induces a submonad R of the reader
monad for which r : Z × ΓZ → X ∈ RX iff there is k such that for all i, j ∈ Z and
any σ, σ′ : Z→ Γ such that σ =i±k σ

′ we have

r(i, σ+j) = r(i+ j, σ) and r(i, σ) = r(i, σ′).

Therefore R2 used in Definition 8.5 forms an R-algebra and hence a T-algebra.
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Corollary A.11. Let TS be the nondeterministic store monad over S (i. e. TX =
(Pω(X × S))S) and let RS be the nondeterministic reader monad over S (i.e. RSX =
Pω(X)S). For any submonad T of TS , the monad morphism α sending any f : S →
Pω(X × S) to Pω(π1)f : S → Pω(X) restricts to a submonad of RS .

Recall that by Proposition 6.2, the tensor of Pω with m copies of the stack monad
over Γ ∗ is the submonad T of the nondeterministic store monad over (Γ ∗)m identified
by the following condition: f : (Γ ∗)m → Pω(X × (Γ ∗)m) ∈ TX iff whenever
|u1| ≥ k, . . . , |um| ≥ k then

f(u1w1, . . . , umwm)

= {〈x, u′1w1, . . . , u
′
mwm〉 | 〈x, u′1, . . . , u′m〉 ∈ f(u1, . . . , um)}.

This induces a submonad R of the nondeterministic reader monad over (Γ ∗)m identified
by the condition: f : (Γ ∗)m → Pω(X) ∈ TX iff whenever |u1| ≥ k, . . . , |um| ≥ k
then

f(u1w1, . . . , umwm) = f(u1, . . . , um)

The T-algebra used in Definition 6.4 is thus obtained by taking X = 1.
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