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Abstract. We present a novel coalgebraic logic for deterministic Mealy
machines that is sound, complete and expressive w.r.t. bisimulation. Every
finite Mealy machine corresponds to a finite formula in the language.
For the converse, we give a compositional synthesis algorithm which
transforms every formula into a finite Mealy machine whose behaviour is
exactly the set of causal functions satisfying the formula.

1 Introduction

A Mealy machine (S, f ) consists of a set S of states and a transition function
f :S→ (B × S)A assigning to each state s ∈ S and input symbol a ∈ A a pair
〈b, s′〉, consisting of an output symbol b ∈ B and a next state s′ ∈ S. Typically
one writes

f (s)(a) = 〈b, s′〉 ⇐⇒ s
a|b // s′

One of the most important applications of Mealy machines is their use in
the specification of sequential digital circuits. Taking binary inputs and
outputs, there is the well-known correspondence between such binary
Mealy machines, on the one hand, and sequential digital circuits built out
of logical gates and some kind of memory elements, on the other. In present
day text books on logic design [9] — on the construction of sequential digi-
tal circuits — Mealy machines are still the most important mathematically
exact means for the specification of the intended behaviour of circuits.
There does not seem to exist, however, a generally accepted way of for-
mally specifying Mealy machines themselves. Typically they are “defined”
in a natural language such as English. This obviously leads to ambiguities,
inconsistencies and plain errors [3].
In this paper, we propose a simple but adequate and expressive logical
language for the specification of Mealy machines. Here adequate means
that the logical equivalence corresponds to a natural behavioral equiv-
alence on Mealy machines, whereas expressive means that every finite
Mealy machine can be represented by a (finite) formula. Finally, simple
means that the logic contains precisely what is needed to obtain this goal,
and nothing more. The latter point is an important distinguishing factor
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in comparison with some already existing formalisms in the literature,
discussed below.
Our approach is, in short, the coalgebraic methodology. Mealy machines
are a basic and well-understood family of coalgebras, of the functor M(S) =
(B × S)A. The crucial coalgebraic insight is that the properties of Mealy
machines (coalgebras) are fully dictated by (the shape of) their defining
functor M. This has led, for instance, to the identification of a final Mealy
machine, in [12], as the set of all causal stream functions from Aω to Bω.
Following the coalgebraic methodology, we apply general insights from
so-called coalgebraic modal logic (see e.g. [10, 2]) and define a logic whose
basic operations derive directly from the functor M. The equivalence in-
duced by the logic coincides with that induced by the functor M. Further,
the logic comes equipped with a proof system for reasoning about univer-
sal validity that we prove sound and complete.
From the automata-theoretic point of view, all finite Mealy machines can
be specified as a formula in the logic. The main technical contribution of
the paper is that we construct (synthesize), conversely, for every formula in
the logic a finite Mealy Machine whose behaviour is exactly characterised
by the formula.

1.1 Related work

Automata synthesis is a popular and very active research area [11, 13, 6, 3,
4]. Most of the work done on synthesis has as main goal to find a proper
and sufficiently expressive type of automata to encode a specific type of
logic (such as LTL [13] or µ-calculus [6]).
Technically, the synthesis of a µ-calculus formula consists in translating it
into an alternating automaton, reducing the latter into a non-deterministic
automaton that is then checked for non-emptiness [6]. The same process
has been recently generalized to F-coalgebras in [8]. In this paper, we use
a different approach. We construct a deterministic Mealy machine for a
formula directly, by considering the formula as a state of the automata
containing enough information about its successors.
Although Mealy machines are in one-to-one correspondence with sequen-
tial digital circuits, not much work has been done for their specification
and synthesis. In [13], a compositional algorithm for synthesizing Gener-
alized Mealy machines (GMMs) from LTL formulae is presented. GMMs
are a special class of non-deterministic Mealy machines that have the ac-
ceptance condition of generalized Büchi automata. In this paper, we will
remain in the world of deterministic Mealy machines, the one correspond-
ing to sequential digital circuits. Moreover, our work exploits the structure
of the Mealy machine and, therefore, the resulting logic is simpler than
LTL (but expressive enough for deterministic Mealy machines).
The logic most similar to ours is the one presented in [3]. There a logic for
formal specification of hardware protocols is presented, and an algorithm
for the synthesis of a Mealy machine is given. Their logic corresponds to
the conjunctive fragment of LTL. Their synthesis process is standard: first
a non-deterministic Büchi automaton is synthesized, secondly a powerset
construction is used to make the automaton deterministic and, finally, the
propositions on the states are used to determine the inputs and outputs



for each state of the Mealy machine. Because of our coalgebraic approach,
the equivalence induced by our logic is canonical, and the logic comes
with a proof system that is sound and complete. Further, our synthesis
process remains within standard Mealy machines and the behavior of the
synthesized automata is exactly characterized by the original formula.
Apart from [12, 4], where synthesis for a special case of 2-adic arithmetic
is treated, we did not find any other work on the direct synthesis for
deterministic Mealy machines. From these papers we inherit the basic
coalgebraic approach, that we use here to derive our expressive logical
specification language for Mealy machines.
In summary, the work presented in this paper distinguishes itself from all
existing work in the sense that our specification logic is derived directly
from the functor, which results in a very simple and consistent logic that
has exactly the operators needed to fully specify Mealy machines. Note
that being simple does not mean this logic has less expressive power than
others. In the context of applications (such as circuits logic design), this
logic has all the relevant operators.

Acknowledgements. We would like to thank Clemens Kupke, Helle Hvid
Hansen and Yde Venema for valuable suggestions and discussions.

2 Mealy machines

We give the basic definitions on Mealy machines and introduce the notions
of simulation and bisimulation.
First we recall the following definition. A (bounded) meet-semilattice is a
set B equipped with a binary operation ∧B and a constant >B ∈ B, such
that ∧B is commutative, associative and idempotent. The element >B is
neutral w.r.t. ∧B. As usual, ∧B gives rise to a partial ordering ≤B on the
elements of B:

b1 ≤B b2 ⇔ b1 ∧B b2 = b1

Every set S can be transformed into a meet-semilattice by taking the col-
lectionPS of all subsets of S with intersection as meet. We use semilattices
to represent data structures equipped with an information order: b1 ≤B b2

means that b1 is more concrete than b2.

Our running examples will all use the four element meet-semilattice:

>

CCC
C

{{{
{

B = 1 0

⊥

{{{{
CCCC

Here, the > element is used for abstracting (under-specification) from any
concrete data; the ⊥ element denotes inconsistency (over-specification) of
information; and the elements 0 and 1 are concrete output values.



Now let A be a finite set and let B be a (possibly infinite) meet-semilattice.
A Mealy machine (automaton) (S, f ) with inputs in A and outputs in B
consists of a set of states S together with a function

f :S→ (B × S)A

For a given state s ∈ S and an input a ∈ A, the function f returns a pair
f (s) = 〈b, s′〉, consisting of an output value b ∈ B and a state s′ ∈ S. Typically
we will write

f (s) = 〈s[a], sa〉

and call s[a] the (initial) output on input a and sa the next state on input a.
We shall also use the following convention for the representation of Mealy
machines:

f (s)(a) = 〈b, s′〉 ⇐⇒ s
a|b // s′

Machines where A is the two element set {0, 1} and B is the meet-semilattice
B are called binary, and they are fully-specified if only 0 or 1 are used as
output elements (and never ⊥ or >).
For an example, consider the following binary Mealy machine with S =
{s1, s2} and the transition function defined by the following picture.

s1
1|1 //

0|0

��
s2

1|0,0|1





This machine computes the two’s complement of a given binary number.
A Mealy machine (S, f ) is a coalgebra of the functor M:Set→ Set defined,
for any set X, as M(X) = (B × X)A.
A homomorphism from a Mealy machine (S, f ) to a Mealy machine (T, g) is
a function h: S→ T preserving initial outputs and next states:

h(s)[a] = s[a] and h(sa) = h(s)a

(which is equivalent to the condition that g ◦ h = M(h) ◦ f , where the
functor M is defined on functions as usual). Next we define the notion
of simulation, which can be used to obtain abstraction, and bisimulation,
which plays an important role in the minimization of Mealy machines.

Definition 1 ((Bi)simulation for Mealy). Let (S, f ) and (T, g) be two Mealy
machines. We call a relation R ⊆ S × T a simulation if for all (s, t) ∈ S × T and
a ∈ A

s R t ⇒ ( s[a] ≤B t[a] and sa R ta )

We call R a bisimulation relation if both R and its (relational) inverse R−1 are
simulations.

We write s . t (resp. s ∼ t) whenever there exists a simulation relation
(bisimulation relation) containing (s, t); and we call . and ∼ the similarity
and bisimilarity relations. By definition, we have . ∩ .−1=∼.



As an example, consider the following two binary Mealy machines:

q1
1|1 //

0|0

��
q2

1|0,0|1 // q3

1|0,0|1

��
r1

1|> //

0|0

��
r2

1|0,0|1





Observe that q3 and q2 are bisimilar, since R = {(q2, q3), (q3, q3)} is a bisimu-
lation. A minimal machine is obtained by identifying all bisimilar states,
yielding our two’s complement machine above.
Now, note that the rightmost machine can be simulated by any fully-
specified binary machine substituting either 0 or 1 as output for the abstract
> value in the transition from r1 to r2. For example, considering the above
two’s complement machine, we have s1 . r1 because S = {(s1, r1), (s2, r2)}
is a simulation relation.
Next we recall the construction of a final Mealy machine with inputs in A
and outputs in B. Finality plays an important role in minimization as well
as in the proof system (in Section 3).
Let Aω = { σ | σ:{0, 1, 2, . . .} → A }, the set of all infinite streams over A. For
a ∈ A and σ ∈ Aω, we define:

a:σ = (a, σ(0), σ(1), σ(2), . . .) σ′ = (σ(1), σ(2), σ(3), . . .)

We call a function f :Aω
→ Bω causal if for all σ ∈ Aω and n ≥ 0, the nth

output value f (σ)(n) only depends on the first n input values (σ(0), . . . , σ(n−
1)). Let

Γ = { f :Aω
→ Bω | f is causal }

The set Γ can be turned into a Mealy machine (Γ, γ) by defining γ(f )(a) =
〈f [a], fa〉 as follows:

f [a] = f (a:σ)(0) (where σ is arbitrary) fa(σ) = f (a:σ)′

(Note that by causality the value of f (a:σ)(0) only depends on a.) The
following theorem is a minor variation on [12, Prop.2.3 and Corr.2.3].

Theorem 2 (Finality of (Γ, γ)). For every Mealy machine (S, f ) there exists a
unique homomorphism h:S→ Γ. It satisfies, for all s, s′ ∈ S:

s . s′ ⇐⇒ h(s) . h(s′)

where on Γ, similarity coincides with the elementwise ordering induced by B:

f . g ⇐⇒ ∀σ ∈ Aω
∀n ≥ 0 . f (σ)(n) ≤B g(σ)(n)

Since the identity function is always a homomorphism, bisimilarity is
equality on Γ. As a consequence, the image h(S) of a Mealy machine S is
in fact its minimisation with respect to bisimilarity.



3 Mealy logic

We present a logic for Mealy machines and define its semantics and a
satisfaction relation.

Definition 3 (Mealy formulae). Let A be a set of input actions and let B be a
meet-semilattice of output actions. Furthermore, let X be a set of (recursion or)
fixed point variables. The set L of Mealy formulae is given by the following BNF
syntax. For a ∈ A, b ∈ B, and x ∈ X:

φ:: = tt | x | a(φ) | a↓b | φ ∧ φ | νx.ψ

where ψ ∈ Lg, the set of guarded formulae, which is given by:

ψ:: = tt | a(φ) | a↓b | ψ ∧ ψ | νx.ψ

We call a(φ) a transition formula and a↓b an output formula. Note that our
language does not include disjunction or negation. As we will discuss
in 3.2, this is a natural restriction and does not decrease the expressiveness
of our logic. Moreover, in the same section we will also point out the
reasons for only having one type of fixed point operator. Also note that
for every unguarded Mealy formula there exists an equivalent guarded
formula, as a consequence of [7, Theorem 2.1].
The modal fragment of our logic (i.e, the set of closed formulae without
the ν operator) is a special case of the coalgebraic logic obtained by a
Stone-type duality [1, 2].
In what follows, we shall concentrate on the set Lc

g of formulae that are
both guarded and closed, that is, without free occurrences of fixed point
variables x. We turn the set Lc

g into a Mealy machine (coalgebra)

λ : Lc
g → (B × Lc

g)A

by defining λ as follows. For a ∈ A and φ ∈ Lc
g, we write λ(φ) = 〈φ[a], φa〉

and we define φ[a] and φa by

tt[a] = >B

a(φ)[a′] = >B (for any a′ ∈ A)

(a↓b)[a′] =

{
b if a = a′

>B otherwise
(φ1 ∧ φ2)[a] = φ1[a] ∧B φ2[a]
(νx.ψ)[a] = (ψ[νx.ψ/x])[a]

tta = tt

(a(φ))a′ =

{
φ if a = a′

tt otherwise
(a↓b)a′ = tt (for any a′ ∈ A)
(φ1 ∧ φ2)a = (φ1)a ∧ (φ2)a

(νx.ψ)a = (ψ[νx.ψ/x])a

Here, ψ[νx.ψ/x] denotes syntactic substitution, replacing in ψ every free
occurrence of x by νx.ψ.
The above definition uses induction on the following complexity measure,
which is based on the number of nested unguarded occurrences of ν-
formulae:

N(tt) = N(a↓b) = N(a(φ)) = 0
N(φ1 ∧ φ2) = max{N(φ1), N(φ2)} + 1
N(νx.ψ) = 1 +N(ψ)



In order to see that the definition of φ[a] and φa is well-formed, note that
in the case of νx.ψ, we have:

N(ψ) = N(ψ[νx.ψ/x])

This can easily be proved by (standard) induction on the syntactic structure
of ψ, since ψ is guarded (in x).
Note that the (sub)machine generated by a formula φ ∈ Lc

g by repeatedly
applying λwill in general be infinite. In Section 4, an algorithm to produce
a finite Mealy machine from a formula φ ∈ Lc

g will be presented.
Having a Mealy coalgebra structure on Lc

g has two advantages. First, it
provides us, by finality of Γ, directly with a natural semantics because of
the existence of a (unique) homomorphism:

Lc
g

[[ · ]] //

λ

��

Γ

γ

��
(B × Lc

g)A

(id×[[ · ]])A
// (B × Γ)A

[[φ ]][a] = φ[a] and [[φ ]]a = [[φa ]]

It assigns to every formula φ a causal stream function [[φ ]]: Aω
→ Bω.

The second advantage of the Mealy coalgebra structure on Lc
g is that it lets

us use the notion of Mealy simulation to define when a Mealy machine
(S, f ) satisfies a formula φ ∈ Lc

g, by defining:

s |= φ ⇔ s . φ

Proving satisfaction then amounts to the construction of a simulation
relation R ⊆ S × Lc

g between (S, f ) and (L, λ) such that sRφ.
The above definition is equivalent to the following, more classical def-
inition of satisfaction. For every valuation η:Var → P(S), we define a
satisfaction relation |=η, by induction, as follows:

s |=η tt for all s
s |=η a(φ) iff sa |=η φ
s |=η a↓b iff s[a] ≤B b
s |=η φ1 ∧ φ2 iff s |=η φ1 and s |=η φ2

s |=η x iff s ∈ η(x)
s |=η νv.ψ iff ∃T ⊆ S.s ∈ T and ∀t ∈ T.t |=η[T/v] ψ

Note that in this definition single occurrences of x ∈ X are allowed. It
can be shown, by a fairly straightforward and not very instructive proof,
that the two definitions of satisfaction are equivalent. More precisely, if ∅
denotes the everywhere empty valuation, we have:

s . φ ⇔ s |=∅ φ

for every φ ∈ Lc
g. We omit the proof and will work in what follows with

the definition of satisfaction as simulation.
The following theorem shows that our logic is sufficiently expressive to
characterise bisimilarity.



Theorem 4.
(1) For all states s, s′ of a Mealy machine (S, f ),

s ∼ s′ iff ∀φ ∈ Lc
g . s |= φ⇔ s′ |= φ

(2) If S is finite then there exists for any s ∈ S a formula φs ∈ Lc
g such that

∀s′ ∈ S . s ∼ s′ iff s′ |= φs

Proof. (1) Because s ∼ s′ implies s . s′ and s′ . s we have, for any φ ∈ Lc
g,

s |= φ ⇐⇒ s . φ ⇐⇒ s′ . φ ⇐⇒ s′ |= φ

For the converse, note, for any s ∈ S, a ∈ A, and φ ∈ Lc
g, that s |= a↓s[a] and

sa |= φ ⇐⇒ sa . φ ⇐⇒ s . a(φ) ⇐⇒ s |= a(φ)

As a consequence, the following relation

R =
{
〈s, s′〉 ∈ S × S | ∀φ ∈ Lc

g . s |= φ⇔ s′ |= φ
}

and its inverse R−1 are simulation relations on S. Thus R is a bisimulation.
(2) It is sufficient to construct for a given s ∈ S a formula φs with s ∼ φs.
To this end, we associate with every state s ∈ S a variable xs ∈ X and a
formula φs = νxs. ψs defined by

ψs =
∧
a∈A

a(xsa ) ∧ a↓s[a]

Syntactically replacing free occurrences of xs′ by φs′ will ensure that all φs

will be in Lc
g. By construction, s ∼ φs. ut

Let us illustrate the last construction above. Recall the two’s complement
Mealy machine presented before:

s1
1|1 //

0|0

��
s2

1|0,0|1





We define φ1 = νx1. ψ1 and φ2 = νx2. ψ2 by

ψ1 = 0(x1) ∧ 0↓0 ∧ 1(x2) ∧ 1↓1 ψ2 = 0(x2) ∧ 0↓1 ∧ 1(x2) ∧ 1↓0

Substituting φ2 for x2 in ψ1 then yields

φ1 = νx1. 0(x1)∧ 0↓0∧ 1(φ2)∧ 1↓1 φ2 = νx2. 0(x2)∧ 0↓1∧ 1(x2)∧ 1↓0

By construction we have s1 ∼ φ1 and s2 ∼ φ2.



3.1 Proof system

We now introduce a proof system for assertions of the formφ1 ≤ φ2, where
≤ is the relation of logical entailment between the closed formulae φ1 and
φ2.

(refl) φ ≤ φ (top) φ ≤ tt
(∧ − e1) φ1 ∧ φ2 ≤ φ1 (∧ − e2) φ1 ∧ φ2 ≤ φ2

(trans)
φ1 ≤ φ2 φ2 ≤ φ3

φ1 ≤ φ3
(∧ − i)

φ ≤ φ1 φ ≤ φ2

φ ≤ φ1 ∧ φ2

(a↓ − >) tt ≤ a↓>B (a() − >) tt ≤ a(tt)
(a↓ − ∧) a↓b1 ∧ a↓b2 ≤ a↓(b1 ∧B b2) (a() − ∧) a(φ1) ∧ a(φ2) ≤ a(φ1 ∧ φ2)

(a↓− ≤)
b1 ≤B b2

a↓b1 ≤ a↓b2
(a()− ≤)

φ1 ≤ φ2

a(φ1) ≤ a(φ2)

(ν − i)
φ ≤ ψ[φ/x]

φ ≤ νx.ψ
(ν − e)

ψ[νx.ψ/x] ≤ φ

νx.ψ ≤ φ

The first group of axioms and rules gives to the set of formulae the structure
of a meet-semilattice. Further, there are axioms and rules for the two modal
operators, showing the interactions between the transition and output
formulae with the meet-semilattice structure. Finally, the last two rules
(ν − i) and (ν − e) can be explained as stating that the term νx.ψ is the
greatest postfixed point, when viewing the formula ψ as a (monotone)
map on formulae.
We write ` φ1 ≤ φ2 to indicate that the assertion φ1 ≤ φ2 is derivable from
the above axioms and rules. Note that the converse of (a↓−∧) is derivable
from (a↓− ≤) and (∧− i). Similarly, also the converses of (a↓ −>), (a()−>)
and (a() − ∧) are derivable.

Theorem 5 (Soundness). The above proof system is sound, that is, for closed
formulae φ1 and φ2, ` φ1 ≤ φ2 implies that for all Mealy machine (S, f ) if s |= φ1

then s |= φ2.

Proof. By induction on the length of proofs. ut

Next we turn to the completeness for the modal fragment Lm of our Mealy
logic L, where a modal formula is a formula with neither fixed point
operators nor variables. Note that the (Lindenbaum algebra of) Lm is a
meet-semilattice.
Let Θ be the set of all filters of (the Lindenbaum algebra of) Lm, where
a filter of a meet-semilattice is a non-empty upper closed subset F such
that if a, b ∈ F then also a ∧ b ∈ F . The set Θ can be turned into a Mealy
machine (Θ,θ) by defining, for F ∈ Θ and a ∈ A, θ(F)(a) = 〈F[a],Fa〉, where

F[a] =
∧
{b|a↓b ∈ F} Fa = {φ|a(φ) ∈ F} .



Note that in order F[a] to be well defined we assume B to be a finite
meet-semilattice. In case B is infinite, we would need B to be a complete
meet-semilattice.

Theorem 6. For every Mealy machine (S, f ) there exists a unique homomor-
phism kS:S→ Θ. In particular, the homomorphism kΓ:Γ→ Θ is an isomorphism.

As a consequence of Theorem 4, the isomorphism kΓ:Γ → Θ is also an
order isomorphism, where the order on Θ is subset inclusion. The logical
significance of the above result is that a finitary logic with only finite
conjunctions suffices to completely describe all Mealy machines up to
bisimilarity. In fact the modal fragment of our logic is a special case of
coalgebraic logic obtained by a Stone-type duality [1, 2].
Theorem 6 together with the next lemma gives a logical interpretation of
the final coalgebra: its elements correspond to canonical models (in the
logical sense) of the Mealy logic.

Lemma 7. For every modal formula φ and filter F ∈ Θ, F |= φ if and only if
φ ∈ F.

Proof. By induction on the structure of φ, using the fact that F is a filter
and the above definition of θ:Θ→ (B ×Θ)A. ut

We can finally prove the completeness of the modal fragment of our Mealy
logic.

Theorem 8 (Completeness). For modal formulae φ1 and φ2, if s |= φ1 implies
s |= φ2 for all Mealy machines (S, f ) and s ∈ S, then ` φ1 ≤ φ2.

Proof. Assume 0 φ1 ≤ φ2. It is enough to find a state s in a Mealy machine
(S, f ) such that s |= φ1 but s 6|= φ2. Define Fφ1 = {ψ | φ1 ≤ ψ}. It is not
very difficult to verify that Fφ1 is a filter, hence it is an element of Θ.
Clearly, φ1 ∈ Fφ1 but, by our assumption φ2 < Fφ1 . We can now conclude
by applying Lemma 7. ut

3.2 Adding negation

The logic we have considered so far contains no negation. Extending the
logic with negated formulae is not problematic as long as we consider
Mealy machines with outputs in a Boolean algebra B (like the two element
set). In this case, we can still turn the set of (possibly negated) formulae
into a Mealy coalgebra by extending our definition of λ at the beginning
of section 3 with

(¬φ)[a] = ¬B(φ[a]) (¬φ)a = ¬(φ)a .

It is easy to see that according to this definition negation distributes up
to bisimulation over conjunction (de Morgan law), and over the modal
operators (a sign that the machine is indeed deterministic). Further, nega-
tion is classical, meaning that ¬(¬φ) ∼ φ. More interestingly, we have
that ¬νx.ψ ∼ νx.¬ψ for all guarded formulae ψ, not necessarily positive.



Clearly, disjunctions and µ-recursive formulae can be defined as derived
operators.
From the logical point of view, this means that the Lindenbaum algebra of
the resulting logic with negation is the free Boolean algebra over the meet-
semilattice of the Mealy logic we considered here. In this case one can apply
the isomorphism UFilt(B(L)) � Filt(L) to obtain analogous soundness and
completeness results as above, where L is a meet-semilattice, B(L) is the
free Boolean algebra over L and UFilt(B(L)) is the set of ultrafilters of B(L).

4 Synthesis

We will now describe the synthesis process that will allow to produce a
Mealy machine from an arbitrary (closed and guarded) Mealy formula 4.
Each state of the resulting Mealy machine will be a formula constructed in
such a way that if s is the state corresponding to a formula φ, then s ∼ φ.
This implies that the semantics of s is exactly the set of causal functions
satisfying φ.

4.1 Formulae normalization

We have seen that the first group of six axioms and rules of our proof
system gives to the set of formulae the structure of a meet-semilattice. In
order to guarantee the termination of the synthesis process we will need
to identify formulae that are provably equivalent using only these axioms
and rules. For instance, the formulae

a(tt) ∧ a↓b ∧ tt ∧ a↓b and a(tt) ∧ a↓b

are equivalent.
To normalize a formulaφ, we need eliminate any redundancy present in the
formula: in a conjunction, tt can be eliminated and, by idempotency, the
conjunction of two syntactically equivalent formulae can be simplified.
The function norm encodes this procedure. We define it by induction on
the formula structure as follows:

norm(tt) = tt
norm(a(φ)) = a(norm(φ))
norm(a↓b) = a↓b
norm(φ1 ∧ φ2) = conj(rem(flatten(norm(φ1) ∧ norm(φ2))))
norm(νx.φ) = νx.(norm(φ)) .

Here, conj takes a list of formulae [φ1, . . . , φn] and returns the formula
φ1∧. . .∧φn (conj applied to the empty list yields tt), rem removes duplicates
in a list and flatten takes a formula φ and produces a list of formulae by
omitting brackets and replacing ∧-symbols by commas:

flatten(φ1 ∧ φ2) = flatten(φ1) · flatten(φ2)
flatten(tt) = []
flatten(φ) = [φ], φ ∈ {a↓b, a(φ1), νx.φ1}

4 The source code in H can be downloaded from www.cwi.nl/˜ams/mealy.



In this definition, · denotes list concatenation and [φ] the singleton list
containing φ. Note that an occurrence of tt in a conjunction is eliminated
because flatten(tt) = [].
For example, the normalization of the two formulae above will result in
the same formula – a(tt) ∧ a↓b.
Note that norm still distinguishes the formulae φ1 ∧ φ2 and φ2 ∧ φ1. For
simplifying the presentation of the normalization algorithm, we decided
not to identify these formulae, since this will not influence termination.
However, in the implementation, in order to reduce the number of states,
those formulae are identified. In the examples below this situation will
never occur.
The norm function satisfies the equalities norm(norm(φ)) = norm(φ) and
norm(norm(φ)∧norm(ψ)) = norm(φ∧ψ), which we will use later for proving
termination.

4.2 Synthesis

We first describe what happens in a single step of the synthesis process.
The function δ, which does one-step synthesis for a single formula, takes a
formula φ ∈ Lc

g and produces a partial Mealy machine. Below, δ will be
used in the function ∆, which synthesises the total Mealy machine.
The function δ is defined, by induction on the complexity measure N
defined in Section 3, as follows:

δ(tt)(a) = 〈>B, tt〉

δ(a′(φ))(a) =

{
〈>B,norm(φ)〉 a = a′

〈>B, tt〉 otherwise

δ(a′↓b)(a) =

{
〈b, tt〉 a = a′

〈>B, tt〉 otherwise
δ(φ1 ∧ φ2)(a) = δ(φ1)(a) u δ(φ2)(a)
δ(νx.φ)(a) = 〈b,norm(φ′)〉 where 〈b, φ′〉 = δ(φ[νx.φ/x])(a)

where u is defined as: 〈b1, φ1〉 u 〈b2, φ2〉 = 〈b1 ∧B b2,norm(φ1 ∧ φ2)〉.
Note that this function is very similar to the function λ presented in
Section 3. In fact, the difference is the normalization that is now being
applied to the formulae so that a finite machine will be produced.
As an example, consider the formula φ = 1↓0 ∧ (νx.1(x)), specifying a
binary Mealy machine. We can easily compute that δ(φ)(0) = 〈>B, tt〉 and

δ(φ)(1) = δ(1↓0)(1) u δ(νx.1(x))(1)
= 〈0, tt〉 u 〈>B, νx.1(x)〉
= 〈0, νx.1(x)〉

So, δ(φ) is a (partial) finite function represented by the following diagram.

φ
1|0 //

0|>B

��

νx.1(x)

tt
To compute the entire Mealy machine that satisfies φ, we need to apply δ
to the new states generated at each step repeatedly until all states in the
automata have their transitions/outputs fully defined.



We implement this procedure with the auxiliary function D. The argu-
ments of this function are two sets of states: sts ⊆ Lc

g, the states that still
need to be processed and vis ⊆ Lc

g, the states that already have been vis-
ited (synthesized). For each φ ∈ sts, D computes δ(φ) and produces an
intermediate transition function (possibly partial) by taking the union of
all those δ(φ). Then, it collects all new states appearing in this step and
recursively computes the transition function for those.

D(sts, vis) =
{
∅ sts = ∅
trans ∪D(newsts, vis′) otherwise

where trans = {〈φ, δ(φ)〉 | φ ∈ sts}
sts′ = collectStates(trans)
vis′ = sts ∪ vis
newsts = sts′ \ vis′

The function∆ takes a Mealy formula φ ∈ Lc
g and returns a Mealy machine

that satisfies φ:

∆(φ) = (dom(f ), f ) where f = D({norm(φ)}, ∅)

The function dom returns the domain of a finite function. The finiteness
and termination of the synthesis algorithm will be proved in appendix B.
Let us look at an example. For the formulaφ presented above∆(φ) = (S, f ),
where S = {tt, φ, νx.1(x)} and f is represented by the following diagram.

φ
1|0 //

0|>B

��

νx.1(x)

1|>B

��

0|>B

wwooooooooooooo

tt

1|>B ,0|>B

MM

Note that the Mealy machine produced by ∆ is not minimal. In this exam-
ple, the states tt and νx.1(x) are bisimilar and could be identified.
The (special) output value >B allows us to define underspecified machines:
if a given formula does not contain information about the output value
for a given input a, then we do not return as output a concrete value but
instead >B. If >B is replaced by any other element b ∈ B the resulting
machine will still satisfy φ.
Let us see a few other examples of the synthesis process. To simplify
the presentation, we consider again binary machines and, moreover, the
formulae presented below will only have information for the input 1.
Therefore, for the 0 input δ will always return 〈>B, tt〉.
Let us start with φ1 = 1(1↓0) ∧ (νx.1(x)). We have:

δ(φ1)(1) = δ(1(1↓0))(1) u δ(νx.1(x))(1)
= 〈>B, 1↓0〉 u 〈>B, νx.1(x)〉
= 〈>B, 1↓0 ∧ (νx.1(x))〉

We now repeat the process for 1↓0 ∧ (νx.1(x)), which will yield δ(1↓0 ∧
(νx.1(x)))(1) = 〈0, νx.1(x)〉. Finally, we calculate δ(νx.1(x))(1) = 〈>B, νx.1(x)〉.



The complete Mealy machine is represented in the following diagram:

φ1
1|>B //

0|>B

��

1↓0 ∧ (νx.1(x))

1|0

��

0|>B

vvllllllllllllllll

tt

1|>B ,0|>B

MM νx.1(x)

1|>B

LL
0|>Boo

Now, take φ2 = νx.1(1↓0) ∧ 1(x). Because 1(1↓0) has no x’s one could be
tempted to assume that the automaton for φ2 would be the same as the
one for φ1. However, that is not the case. The synthesis algorithm will
produce the following automaton for φ2.

φ2
1|>B //

0|>B

��

1↓0 ∧ φ2

0|>B

vvnnnnnnnnnnnnnn

1|0

��

tt

1|>B ,0|>B

MM

As a last example, let φ3 = νx.1(x ∧ (νy.1(y) ∧ 1↓0)). We have:

δ(φ3)(1) = δ(1(φ3 ∧ (νy.1(y) ∧ 1↓0)))(1)
= 〈>B, φ3 ∧ (νy.1(y) ∧ 1↓0)〉

and

δ(φ3 ∧ (νy.1(y) ∧ 1↓0))(1)
= δ(φ3)(1) u δ(νy.1(y) ∧ 1↓0)(1)
= 〈>B, φ3 ∧ (νy.1(y) ∧ 1↓0)〉 u 〈0, νy.1(y) ∧ 1↓0〉
= 〈0,norm(φ3 ∧ (νy.1(y) ∧ 1↓0) ∧ (νy.1(y) ∧ 1↓0))〉
= 〈0, φ3 ∧ (νy.1(y) ∧ 1↓0)〉

Note that if norm would not have been applied, the resulting state φ3 ∧

(νy.1(y) ∧ 1↓0) ∧ (νy.1(y) ∧ 1↓0) would be regarded as a new state, even
though it is equivalent to φ3 ∧ (νy.1(y) ∧ 1↓0). Moreover, applying δ to
this state (for input 1) would yield again an equivalent but (syntactically)
different state, namely φ3∧ (νy.1(y)∧1↓0)∧ (νy.1(y)∧1↓0)∧ (νy.1(y)∧1↓0).
This illustrates that the functionλ, defined in Section 3, generally produces
an infinite machine. However, the identifications made by norm ensure
the termination of the synthesis process, which we will formally prove in
appendix B.

5 Conclusions and future work

We have given a coalgebraic account of Mealy machines, focussing on a
logical specification language for them. Despite its simplicity, the logic is
expressive in the sense that all Mealy machines can be characterized by fi-
nite formulae, but also in the sense that logical equivalence corresponds to
bisimulation. Further, the logic is sound and the modal fragment complete
for all Mealy machines.



The specification language is finitary and includes a fixed point operator.
Other temporal operators can be defined as derived operators. Interest-
ingly, the language is already expressive enough to characterize all Mealy
machines even without negation and disjunction. Even stronger, for binary
Mealy machines the addition of negation does not increase the expressive
power of the logic. This situation is typical also of deterministic finite
automata: the addition of negation in regular expressions does not in-
crease the class of languages that they characterize, even though regular
languages are closed under complement.
Our main result is an algorithm for the synthesis of a Mealy machine
from a formula. Our synthesis algorithm is compositional, in the sense
that the semantics of the Mealy machine synthesized from a formula can
be obtained by suitably composing the semantics of the Mealy machines
synthesized from sub-formulae.
In this paper we have explored the synthesis of one particular type of
automata, the Mealy machines. With a small variation of the logic one
can easily obtain a similar result for Moore automata. More generally,
different type of automata can be obtained by varying the functor under
consideration on the category of sets. It would be interesting to generalize
the present result in order to synthesize coalgebras for different functors.
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A Proof of Theorem 6

We will present the proof of Theorem 6, presented in section 3.1.

Proof (Theorem 6). For a Mealy machine (S, f ), we define the function kS:S→
Θ by k(s) = {φ | s |= φ}, for s ∈ S. It is easy to verify that k(s) is a filter. Next
we show that k is an homomorphism. In fact, for each a ∈ A, we have

k(s)[a] =
∧
{b|a↓b ∈ k(s)} definition of (Θ,θ)

=
∧
{b|s |= a↓b} definition of k(s)

=
∧
{b|s[a] ≤ b}

= s[a]

and also

k(s)a = {φ|a(φ) ∈ k(s)} definition of (Θ,θ)
= {φ|s |= a(φ)} definition of k(s)
= {φ|sa |= φ}
= k(sa)

It remains to prove uniqueness. Let g:S→ Θ be another homomorphism,
and let s ∈ S. We prove that φ ∈ g(s) if and only if φ ∈ k(s) by induction on
the structure of φ. We consider only two cases, as the others follow easily
because both g(s) and k(s) are filters. We start with the case φ ≡ a↓b.

a↓b ∈ g(s) ⇔ g(s)[a] ≤ b def. of (Θ,θ)
⇔ s[a] ≤ b g is an homomorphism
⇔ s |= a↓b
⇔ a↓b ∈ k(s)

In case φ ≡ a(ψ) we have:

a(ψ) ∈ g(s) ⇔ ψ ∈ g(s)a def. of (Θ,θ)
⇔ ψ ∈ g(sa) g is an homomorphism
⇔ ψ ∈ k(sa) induction hypothesis
⇔ a(ψ) ∈ k(s)

The fact that kΓ:Γ → Θ is an isomorphism follows from the uniqueness
(up to isomorphism) of final coalgebras. ut

B Proof of termination

We prove that our synthesis algorithm will always deliver a finite automa-
ton for a given closed and guarded Mealy formula.

Definition 9. For any φ ∈ Lc
g we define the closure of φ as the smallest set cl(φ)

satisfying the following conditions:

φ ∈ cl(φ)
φ1 ∧ φ2 ∈ cl(φ)⇒ φ1, φ2 ∈ cl(φ)
a(φ1) ∈ cl(φ)⇒ φ1 ∈ cl(φ)
νx.φ1 ∈ cl(φ)⇒ φ1[νx.φ1/x] ∈ cl(φ)



One can easily prove that the set cl(φ) is finite for any formula φ (as is
well-known from [5]). We can also prove that φ′ ∈ cl(φ)⇒ cl(φ′) ⊆ cl(φ).

Definition 10. For any φ ∈ Lc
g we define the super-closure of φ as

supercl(φ) =

norm(
∧
ψ∈S

ψ) | S ∈ P(cl(φ))


where

∧
{ψ1, . . . , ψn} = ψ1 ∧ . . .∧ψn. Because cl(φ) is finite, then supercl(φ)

is also finite.
Note that ifφ1, φ2 ∈ supercl(φ), then norm(φ1∧φ2) ∈ supercl(φ). This follows
directly from the fact that if S1 and S2 are subsets of cl(φ) then S1 ∪ S2 also
is and that norm(norm(φ1) ∧ norm(φ2)) = norm(φ1 ∧ φ2).
Also note that the formula tt will always be an element of the super-closure,
corresponding to the empty conjunction.

Theorem 11. Let φ ∈ Lc
g , a ∈ A and δ(φ)(a) = 〈b, ψ〉. Then ψ ∈ supercl(φ).

Proof. We will use induction on the complexity measure N (defined in
Section 3).
If N(φ) = 0, then φ ∈ {tt, a↓b, a(φ′)}. The result follows directly from the
definition of δ and supercl(φ).
Now, suppose that N(φ) = k + 1. Then φ ∈ {φ1 ∧ φ2, νx.φ′}.
For φ = φ1 ∧ φ2, let δ(φ)(a) = 〈b, ψ〉 and δ(φi)(a) = 〈bi, ψi〉, i = 1, 2. Then:

ψ = norm(ψ1 ∧ ψ2) definition of δ

By the induction hypothesis, ψi ∈ supercl(φi) ⊆ supercl(φ). This implies
ψ1 ∧ ψ2 ∈ supercl(φ) and thus norm(ψ1 ∧ ψ2) ∈ supercl(φ).
For φ = νx.φ′, let δ(φ)(a) = 〈b, ψ〉 and δ(φ′[νx.φ′/x])(a) = 〈b′, ψ′〉. Then:

ψ = norm(ψ′) definition of δ

By the induction hypothesis, ψ′ ∈ supercl(φ′[νx.φ′/x]) ⊆ supercl(φ). This
implies that ψ′ ∈ supercl(φ) and thus norm(ψ′) ∈ supercl(φ).

ut

Theorem 12. For a given formula φ ∈ Lc
g, D({φ}, ∅) terminates.

Proof. We know that δ(φ)(a) ∈ supercl(φ) and for all ψ ∈ supercl(φ) ⇒
supercl(ψ) ⊆ supercl(φ). Therefore, we have an upper bound for the number
of states that will need to be processed. Since D guarantees that no state
is processed twice, the set newsts will eventually be empty and, therefore,
D({φ}, ∅) terminates. ut

This theorem (together with the fact that the function dom terminates)
concludes the proof that ∆ terminates and that our synthesis algorithm
will always return a finite machine for a given closed and guarded formula.
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