
M U LT I - VA L U E D I S T R I B U T E D K E Y- VA L U E S T O R E S

ricardo jorge tomé gonçalves

The MAP-i Doctoral Program in Computer Science of the Universities of

Minho, Aveiro and Porto

December 2017

Ricardo Jorge Tomé Gonçalves: Multi-Value Distributed Key-Value Stores,
The MAP-i Doctoral Program in Computer Science of the Universities
of Minho, Aveiro and Porto, © December 2017

People think that computer science is the art of geniuses,
but the actual reality is the opposite,

just many people doing things that build on each other,
like a wall of mini stones.

— Donald Knuth

A C K N O W L E D G E M E N T S

I would like to express my special gratitude to Professor Paulo Sérgio
Almeida, for being my advisor and supporting my work with great
advise and encouragement. Also a special thanks to Professors Car-
los Baquero and Vitor Fonte, both heavily involved in this work. To
all of them, thank you for the continuous support and encouragement
throughout this work and for the counseling provided. I learned a lot.
Without their guidance and dedication this thesis would not have been
possible.

Thanks to my all of my colleagues and friends at the HASLab labo-
ratory, for the great work environment created. Additionally, a special
thanks to my Ana and my family, for all the love and support given,
and for always having confidence in me.

Finally, this work was funded by National Funds through the FCT —
Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science
and Technology) , with the research grant SFRH/BD/86735/2012.

iii

A B S T R A C T

Many large scale distributed data stores rely on optimistic replication to
scale and remain highly available in the face of network partitions. Man-
aging data without strong coordination results in eventually consistent
data stores that allow for concurrent data updates. To allow writing ap-
plications in the absence of linearizability or transactions, the seminal
Dynamo data store proposed a multi-value API in which a get returns
the set of concurrent written values. In this scenario, it is important to
be able to accurately and efficiently identify updates executed concur-
rently. Logical clocks are often used to track data causality, necessary
to distinguish concurrent from causally related writes on the same key.
However, in traditional mechanisms there is a non-negligible metadata
overhead per key, which also keeps growing with time, proportional to
the node churn rate. Another challenge is deleting keys while respect-
ing causality: while the values can be deleted, per-key metadata cannot
be permanently removed in current data stores.

These systems often use anti-entropy mechanisms (like Merkle Trees)
to detect and repair divergent data versions across nodes. However,
in practice hash-based data structures are not suitable to a store using
consistent hashing and create too many false positives.

Also, highly available systems usually provide eventual consistency,
which is the weakest form of consistency. This results in a program-
ming model difficult to use and to reason about. It has been proved that
causal consistency is the strongest consistency model achievable if we
want highly available services. It provides better programming seman-
tics such as sessions guarantees. However, classical causal consistency
is a memory model that that is problematic for concurrent updates, in
the absence of concurrency control primitives. Used in eventually con-
sistent data stores, it leads to arbitrating between concurrent updates
which leads to data loss.

v

We propose three novel techniques in this thesis. The first is Dotted
Version Vectors: a solution that combines a new logical clock mecha-
nism and a request handling workflow that together support the tra-
ditional Dynamo key-value store API while capturing causality in an
accurate and scalable way, avoiding false conflicts. It maintains concise
information per version, linear only on the number of replicas, and in-
cludes a container data structure that allows sets of concurrent versions
to be merged efficiently, with time complexity linear on the number of
replicas plus versions.

The second is DottedDB: a Dynamo-like key-value store, which uses
a novel node-wide logical clock framework, overcoming three funda-
mental limitations of the state of the art: (1) minimize the metadata per
key necessary to track causality, avoiding its growth even in the face
of node churn; (2) correctly and durably delete keys, with no need for
tombstones; (3) offer a lightweight anti-entropy mechanism to converge
replicated data, avoiding the need for Merkle Trees.

The third and final contribution is Causal Multi-Value Consistency: a
novel consistency model that respects the causality of client operations
while properly supporting concurrent updates without arbitration, by
having the same Dynamo-like multi-value nature. In addition, we ex-
tend this model to provide the same semantics with read and write
transactions. For both models, we define an efficient implementation
on top of a distributed key-value store.

vi

R E S U M O

Várias bases de dados de larga escala usam técnicas de replicação otimista
para escalar e permanecer altamente disponíveis face a falhas e par-
tições na rede. Gerir os dados sem coordenação forte entre os nós
do servidor e o cliente resulta em bases de dados "inevitavelmente co-
erentes" que permitem escritas de dados concorrentes. Para permitir
que aplicações escrevam na base de dados na ausência de transações
e mecanismos de coerência forte, a influente base de dados Dynamo
propôs uma interface multi-valor, que permite a uma leitura devolver
um conjunto de valores escritos concorrentemente para a mesma chave.
Neste cenário, é importante identificar com exatidão e eficiência quais
as escritas efetuadas numa chave de forma potencialmente concorrente.
Relógios lógicos são normalmente usados para gerir a causalidade das
chaves, de forma a detetar escritas causalmente concorrentes na mesma
chave. No entanto, mecanismos tradicionais adicionam metadados cujo
tamanho cresce proporcionalmente com a entrada e saída de nós no
servidor. Outro desafio é a remoção de chaves do sistema, respeitando
a causalidade e ao mesmo tempo não deixando metadados permanentes
no servidor.

Estes sistemas de dados utilizam também mecanismos de anti-entropia
(tais como Merkle Trees) para detetar e reparar dados replicados em difer-
entes nós que divirjam. No entanto, na prática estas estruturas de dados
baseadas em hashes não são adequados para sistemas que usem hashing
consistente para a partição de dados e resultam em muitos falsos posi-
tivos.

Outro aspeto destes sistemas é o facto de normalmente apenas su-
portarem coerência inevitável, que é a garantia mais fraca em termos
de coerência de dados. Isto resulta num modelo de programação difícil
de usar e compreender. Foi provado que coerência causal é a forma
mais forte de coerência de dados que se consegue fornecer, de forma

vii

a que se consiga também ser altamente disponível face a falhas. Este
modelo fornece uma semântica mais interessante ao cliente do sistema,
nomeadamente as garantias de sessão. No entanto, a coerência causal
tradicional é definida sobre um modelo de memória não apropriado
para escritas concorrentes não controladas. Isto leva a que se arbitre
um vencedor quando escritas acontecem concorrentemente, levando a
perda de dados.

Propomos nesta tese três novas técnicas. A primeira chama-se Dot-
ted Version Vectors: uma solução que combina um novo mecanismo de
relógios lógicos com uma interação entre o cliente e o servidor, que per-
mitem fornecer uma interface multi-valor ao cliente similar ao Dynamo
de forma eficiente e escalável, sem falsos conflitos. O novo relógio lógico
mantém informação precisa por versão de uma chave, de tamanho lin-
ear no número de réplicas da chave no sistema. Permite também que
versão diferentes sejam corretamente e eficientemente reunidas.

A segunda contribuição chama-se DottedDB: uma base de dados sim-
ilar ao Dynamo, mas que implementa um novo mecanismo de relógios
lógicos ao nível dos nós, que resolve três limitações fundamentais do es-
tado da arte: (1) minimiza os metadados necessários manter por chave
para gerir a causalidade, evitando o seu crescimento com a entrada e
saída de nós; (2) permite remover chaves de forma permanente, sem
a necessidade de manter metadados indefinidamente no servidor; (3)
um novo protocolo de anti-entropia para reparar dados replicados, de
modo a que todas as réplicas na base de dados convirjam, sem que seja
necessário operações dispendiosas como as usadas com Merkle Trees.

A terceira e última contribuição é Coerência Causal Multi-Valor: um
novo modelo de coerência de dados que respeita a causalidade das oper-
ações efetuadas pelos clientes e que também suporta operações concor-
rentes, sem que seja necessário arbitrar um vencedor entre as escritas,
seguindo o espírito da interface multi-valor do Dynamo. Adicional-
mente, estendemos este modelo para fornecer transações de escritas ou
leituras, respeitando a mesma semântica da causalidade. Para ambos
os modelos, definimos uma implementação eficiente em cima de uma
base de dados distribuída.

viii

C O N T E N T S

1 introduction 1

1.1 Problem Statement and Objectives 3

1.2 Contributions and Results 6

1.3 Outline . 8

2 background 9

2.1 Consistency . 9

2.1.1 Linearizability . 10

2.1.2 PRAM . 10

2.1.3 Causal Consistency 11

2.1.4 Eventual Consistency 11

2.2 Data Synchronization . 12

2.2.1 Bloom Filters . 12

2.2.2 Merkle Trees . 12

2.2.3 Read Repair . 14

2.3 Logical Clocks for Causality Tracking 14

2.3.1 Single-Object Logical Clocks 14

2.3.2 Multi-Object Logical Clocks 18

2.4 Weakly-Consistent Data Stores 19

2.4.1 Architecture . 20

2.4.2 Causally Consistency Data Stores 22

2.5 Discussion . 26

3 dotted version vectors 29

3.1 System Model and Data Store API 29

3.2 Current Approaches . 30

3.2.1 Last Writer Wins . 32

3.2.2 Causal Histories . 32

3.2.3 Version Vectors . 32

3.2.4 Version Vectors with Id-per-Client 33

ix

x contents

3.2.5 Version Vectors with Id-per-Server 33

3.3 Dotted Version Vectors . 34

3.3.1 Definition . 34

3.3.2 Partial Order . 35

3.4 Dotted Version Vector Sets 36

3.4.1 From a Set of Clocks to a Clock for Sets 36

3.4.2 Definition . 38

3.5 Using DVV and DVVS in Distributed Key-Value Stores . . 38

3.5.1 Serving a Get . 40

3.5.2 Serving a Put . 40

3.5.3 Maintaining Local Conciseness 41

3.5.4 Dotted Version Vectors 42

3.5.5 Dotted Version Vector Sets 43

3.6 Complexity and Evaluation 44

3.6.1 Evaluation . 45

3.7 Discussion . 47

4 node-wide intra-object causality management 49

4.1 System Overview . 50

4.1.1 System Model . 50

4.1.2 Partial Replication 50

4.1.3 Client API . 50

4.2 Node-wide Dot-based Clocks Framework 51

4.2.1 The Node Clock . 52

4.2.2 Per-Object Clock . 53

4.2.3 Node State . 54

4.2.4 Serving Client Requests 55

4.2.5 Auxiliary Operations 56

4.2.6 Background Tasks . 58

4.3 Fault Tolerance . 59

4.3.1 Transitive Anti-Entropy Repair 60

4.3.2 Node Failures . 60

4.4 Experimental Evaluation . 61

4.4.1 DottedDB . 61

4.4.2 MerkleDB . 62

contents xi

4.4.3 Configuration . 62

4.4.4 Object Logical Clock 62

4.4.5 Anti-Entropy . 66

4.4.6 Replication via Anti-Entropy 71

4.4.7 Client Request Latency 74

4.5 Node-wide Dot-based Clocks Without Fill 75

4.5.1 Algorithms . 76

4.5.2 NDC versus NDC-NF 79

4.6 Discussion . 80

5 causal multi-value consistency 83

5.1 Causal Multi-Value Memory 83

5.1.1 Ordering . 84

5.1.2 Causal Multi-Value Histories 85

5.1.3 Causal Multi-Value with per-Location Versioning
Histories . 87

5.2 Feasibility of CMVM for Key-Value Stores 88

5.2.1 Enforcing Read-Last-Write Property 89

5.2.2 Garbage Collecting Metadata 91

5.2.3 CMVM-GV vs CMVM-LV after GC 92

5.2.4 Consistency Models Comparison 93

5.2.5 Discussion . 97

6 a distributed causal multi-value data store 99

6.1 Basic Reference Design . 99

6.1.1 System Model . 99

6.1.2 Causality Metadata 100

6.1.3 Client-Server API . 102

6.1.4 Client Library . 103

6.1.5 Client Library Algorithms 104

6.1.6 Server Node State . 105

6.1.7 Server Algorithms 107

6.2 Optimized Design with Garbage Collection 111

6.2.1 Metadata Pruning . 111

6.2.2 Client Library with GC 114

xii contents

6.2.3 Server Algorithms with GC 115

6.3 Alternative Designs . 118

6.3.1 Derived Object Histories 119

6.3.2 Key-less Dependencies 121

6.4 Fault-Tolerance . 122

6.5 Discussion . 123

7 transactional causal multi-value consistency 125

7.1 Motivation . 127

7.1.1 Read-only Transactions 127

7.1.2 Write-only Transactions 127

7.2 Transactional Causal Multi-Value Memory 129

7.2.1 Ordering . 129

7.2.2 Transactional Causal Multi-Value Histories 130

7.2.3 Transactional Causal Multi-Value with per-Location
Versioning Histories 132

7.2.4 Transactional CMV versus Non-Transactional CMV
Memories . 133

7.3 Distributed Transactional Causal Multi-Value Data Store . 133

7.3.1 Client Library . 133

7.3.2 Server Algorithms 135

7.4 Discussion . 142

7.4.1 Fault-Tolerance . 143

8 conclusion 145

8.1 Future Work . 146

a mathematical notation 149

a.1 Sets . 149

a.1.1 Maximal Elements in a Partially Ordered Set 149

a.1.2 Pre-defined Sets . 149

a.2 Maps . 149

a.2.1 Bottom Values . 150

a.2.2 Domain and Range 150

a.2.3 Domain Subtraction 150

a.2.4 Map Subtraction . 150

contents xiii

a.2.5 Domain Restriction 150

a.2.6 Merging Maps . 151

a.2.7 Partial Map . 151

a.3 Pairs . 151

bibliography 153

L I S T O F F I G U R E S

Figure 2 Two Merkle trees that represent the state of the
objects replicated by nodes A (left) and B (right).
In a level-by-level exchange of the Merkle tree,
these two nodes end up exchanging the hashes:
{A0, B0, A1,1, B1,1, A1,2, B1,2, A2,1, B2,1, A2,2, B2,2}.
Node A misses an object on leaf A2,2, present in
the corresponding B’s leaf B2,2. Node B has a
conflicting object version on leaf B2,1, when com-
paring to A’s leaf A2,1. 13

Figure 3 Logical Ring for Consistent Hashing with Repli-
cation Factor of 3. 22

Figure 4 Example execution for one key: Peter writes a
new value v1 (A), then reads from Replica (ctxA).
Next, Mary writes a new value v2 (B) and finally
Peter updates v1 with v3 (C). 31

Figure 5 Generic execution paths for operations get and put. 38

Figure 6 Peter and Mary interleave read-write cycles. 46

Figure 7 Results of running two interleaved clients with 50

writes each. 46

Figure 8 Average number of entries in object clocks writ-
ten to storage, for two different replication fac-
tors, with node churn. 63

Figure 9 CDF (Cumulative Distribution Function) of time
needed to strip the causal past in an object’s clock,
after the update at the coordinating node. 64

Figure 10 Number of objects in storage over time. Initially
50 000 objects, serving 100 ops/s, 50% writes and
50% deletes. 65

xiv

List of Figures xv

Figure 11 CDF of time it takes to remove an object from
storage, since the delete was issued at the coordi-
nating node. 66

Figure 12 CDF of the hit ratio of the anti-entropy protocol. . 68

Figure 13 Metadata per node used by the anti-entropy pro-
tocol. 69

Figure 14 Average network traffic used by the anti-entropy
protocol. 70

Figure 15 Relative proportions of object data, metadata and
sync metadata exchanged in anti-entropy rounds. 71

Figure 16 CDFs of the replication latency: the time from the
moment a node coordinates an update, until the
object is stored at another replica. 72

Figure 17 Replication Latency for various AE intervals. . . . 73

Figure 18 Relative proportions of object data, metadata and
sync metadata exchanged in very-fast anti-entropy
rounds. 74

Figure 19 Average network traffic used in very-fast anti-
entropy rounds. 75

Figure 20 CDFs for the latency of client Update requests. . . 76

Figure 21 The process order and the writes-into order for
all operations from processes i, j and k, on keys
x, y and z. 93

Figure 22 The process order and x’s writes-into order for all
operations from processes i, j and k, on keys x, y
and z. 95

Figure 23 Ana makes several updates to a particular photo
and its access level. Two friends, Mark and Carl,
try to see the photo and check the access level in
different orders, and both see a sensitive photo
from Ana with public access. 126

xvi List of Figures

Figure 24 Ana makes several updates to a particular photo
and its access level. Both Mark and Carl perform
a read transaction and obtain different results, al-
beit both acceptable and consistent with Ana’s
operations. 128

L I S T O F TA B L E S

Table 1 The table shows the replica (r) state after write
from Peter (p) and Mary (m), and the context re-
turned by Peter’s read. We use the metadata :

value(s) notation, except for DVVS which has its
own internal structure. 31

Table 2 Space and time complexity, for different causal-
ity tracking mechanisms. U: updates; C: writing
clients; R: replica servers; V : (concurrent) ver-
sions; Sr and Sw: number of servers involved in a
GET and PUT, respectively. 44

Table 3 Parameter choices used when evaluating Anti-
Entropy. Objects per Leaf applies only to MerkleDB. 67

Table 4 The average, the 95th and the 99th latencies for
client Update requests. The best result per line is
in bold. 75

Table 5 The result of the last read by process i on key x,
as in Figure 21, using different consistency models. 94

Table 6 A list of data structures, their purpose and when
they can be removed. 112

xvii

L I S T O F A L G O R I T H M S

1 Client API at Node i. 55

2 Strip and Fill Operations at Node i. 56

3 Auxiliary Operations at Node i. 57

4 Anti-Entropy Protocol at Node i. 58

5 Causality Stripping at Node i. 59

6 GET Operation at Node i with NDC-NF. 77

7 Auxiliary Operations at Node i with NDC-NF. 78

8 Background Tasks at Node i with NDC-NF. 79

9 Client Library Operations. 104

10 Read request at Node i. 107

11 Write Request at Node i. 108

12 Anti-Entropy Protocol at Node i. 109

13 Auxiliary Procedures at Node i. 110

14 Client Library with Garbage Collection support. 115

15 Garbage Collection operation in the Client Library. 115

16 Read request with GC support at Node i. 116

17 Updated Store procedure at Node i. 116

18 Metadata GC operations at Node i. 117

19 Anti-Entropy Protocol with GC support at Node i. 118

20 Watermark Gossip Operations at Node i. 119

21 Client Library for Transactional Operations. 134

22 Read Transaction at Node i. 136

23 Update operation with TOC support at Node i. 137

24 Garbage Collection for TOC at Node i. 137

25 Write-only Transaction API at Node i. 139

26 Auxiliary Operations for Write-only Transactions at Node i. 140

27 Anti-Entropy Operation with Quarantine Writes at Node i. 141

xviii

LIST OF ALGORITHMS xix

28 Metadata GC operations with Quarantine Writes GC sup-
port at Node i. 142

A C R O N Y M S

CAP Consistency-Availability-Partition Tolerance

CH Causal Histories

VC Vector Clocks

VV Version Vector

DVV Dotted Version Vectors

DVVS Dotted Version Vector Sets

CRDT Conflict-free Replicated Data Types

AE Anti-Entropy

DC Data-Center

NDC Node-wide Dot-based Clocks

NDC-NF Node-wide Dot-based Clocks Without Filling

CM Causal Memory

CC Causal Consistency

CMV Causal Multi-Value

CMVM Causal Multi-Value Memory

TxCMV Transactional Causal Multi-Value

TxCMVM Transactional Causal Multi-Value Memory

xx

1
I N T R O D U C T I O N

Internet-scale distributed systems are typically put together as a mix of
different applications and sub-systems [59], often combining different
trade-offs with respect to choices of consistency and availability in the
face of partitions [12, 20].

Dynamo [15] popularized the distributed data store with high avail-
ability and weaker consistency. The shopping cart was one of the use
cases presented by the Amazon team to motivate the need for high-
availability systems. If a user chose an item that was said to be in
stock and later in the checkout it was not available, Amazon would sim-
ply apologize to the user. This was preferred to the alternative, where
demanding strong consistency would cause more unresponsiveness or
downtime to the Amazon site, which would result in less revenue.

Nowadays, many distributed data stores [15, 29, 33] depart from
the stronger consistency guarantees that can be provided in relational
databases; instead, they offer scalable solutions and choose to stay avail-
able rather than consistent, accepting the impact of data divergence
when partitions occur. Moreover, they allow low latency responses even
when nodes are geographically spread. These properties were a strong
motivation in the industry to migrate some applications that had lower
consistency requirements compounded by higher availability and tim-
ing concerns, while leaving others in classic relational solutions or en-
listing services that provided stronger coordination [25].

These systems allow writing concurrently on different nodes and
reading possibly stale data. This avoids the need for global coordina-
tion to totally order writes, but possibly creates data divergence. To

1

2 introduction

deal with conflicting versions for the same key, generated by concur-
rent writes, they can either use the last-writer-wins rule [26], which only
keeps the “last” version (according to a wall-clock timestamp for ex-
ample) and discard the other versions, therefore losing data, or we can
properly track each key causal history with logical clocks [34], which
track a partial order on all writes for a given key, to detect concurrent
writes.

Accurate tracking of concurrent data updates can be achieved by a
careful use of well established causality tracking mechanisms [10, 34,
46, 52, 53]. In particular, for data storage systems, Version Vectors [46]
enable the system to compare any pair of replica versions and detect
if they are equivalent, concurrent or if one makes the other obsolete.
However, they lack the ability to accurately represent concurrent values
when used with server ids, or are not scalable when used with client
ids.

However, even with accurate tracking of write conflicts, nodes still
can diverge due to message loss or temporary network partitions. Anti-
entropy protocols are often used as a background process that detects
and repairs data inconsistencies. Merkle Trees [43] are the most used
structure to detect data differences in distributed databases (e.g., Cas-
sandra [33]and Riak [29]). However, as we will show here, Merkle Trees
are not suitable to be used together with the normally used consistent
hashing, and lead to weak anti-entropy performance.

Although many distributed data stores only offer the weakest form
of consistency — eventual consistency —, causal consistency [1] is one
of the stronger consistency models that still allows for high availability
[6, 39]. It is an attractive model for distributed data stores, because it
guarantees that a data item only becomes visible to the client after satis-
fying all of its dependencies. This eliminates many anomalies found in
systems that only implement eventual consistency, the weakest consis-
tency model used in practice. Causal consistency also allows the client
to write in any node that replicates the data item and avoids having
serialization bottlenecks in the system, lowering the latency seen in op-
erations when compared to stronger models.

1.1 problem statement and objectives 3

However, in classic causal memory, a read returns a single value. For
shared-memory concurrent programming in multi-cores, even when
weak memory models are offered, synchronization primitives can be
used to, e.g., prevent data-races or enforce mutual-exclusion. In a dis-
tributed data store, without providing programs with synchronization
primitives, having the classic single-value memory API will result in lost
updates, when several processes concurrently perform a read-compute-
write update to the same location. This happens in most systems that
offer causal consistency, such as COPS [36] and Eiger [37].

1.1 problem statement and objectives

Multi-Value from Write-Write Conflicts

Distributed data stores that choose to sacrifice data consistency for greater
availability have to support clients that concurrently write to the same
object. There are two main approaches to detect these write-write con-
flicts: wall-clock timestamps and logical clocks.

Timestamps are easier to implement, but rely on globally synchro-
nized physical clocks. Even with perfect physical clocks, which cannot
be achieved in practice [44], they would still fail to capture the causal-
ity [34] between updates. Two clients can read the same object, with a
given key, and each write an updated version to some server node. A to-
tally ordered timestamp cannot express this concurrent update pattern.
With timestamps, a last-writer-wins policy is typically used, causing an
arbitrary loss of all but one of the concurrent updates.

Logical clocks capture causality between object versions. We use the
term logical clock to denote any non-physical clock (not only Lamport
scalar clocks [34], but also, e.g., vector clocks [19, 42]). Version Vec-
tors [46] would detect the update conflict above, since updates origi-
nated from the same object and diverged independently. Logical clocks
can either have server-based ids or client-based ids. The latter are pro-
hibitive (with many clients), while node-ids have a space complexity
linear with the number of active nodes over an object’s lifetime. There-

4 introduction

fore, logical clocks may induce significant metadata costs and require
further optimization in order to compete with the space efficiency of
wall-clock timestamps.

Logical Clocks and Node Churn

When a node is retired or crashes permanently, its node-id remains
present in logical clocks for object replicas in other live-nodes. It is also
propagated to replicas in the new replacement nodes, which themselves
will introduce a new node-id. Over time, the size of version-vector-like
logical clocks will increase with the total number of nodes ever used.
In Dynamo and early versions of Riak there is a limit to the size of
the vector, that when reached induces a removal of entries via a LRU
policy. However, removing entries is not safe in general and can lead to
false conflicts: wrongly identifying two versions as causally concurrent,
when in fact one happened-before [34] the other, becoming obsolete.

Distributed Deletes

Given a delete request, completely removing an object and correspond-
ing logical clock information from storage is normally not possible with-
out losing causality information, which may lead to that object resurfac-
ing via delayed replication messages or synchronization with outdated
nodes. In current schemes, the payload of the key can be removed, but
the key must continue to map to the current logical clock paired with
a tombstone, to ensure that causality is respected across replica nodes.
The extra metadata required per deleted key results in space consump-
tion which is linear with the number of deleted keys, leading to signif-
icant waste over time. It would be desirable to have an alternative that
does not require metadata for deleted keys. This is important for small
payloads where the relative cost of keeping tombstones is higher.

1.1 problem statement and objectives 5

Efficient Anti-Entropy

The network is unreliable [7] and often replication messages are lost or
nodes are simply partitioned and cannot communicate. This precludes
write operations from disseminating the written data (and metadata)
to all replicas. Over time, for any given pair of nodes, the replicas
corresponding to the subset of keys in common diverge and must be
repaired towards convergence. This is typically done periodically, in
bulk, by Anti-Entropy protocols [16] running as a background task.

The most used anti-entropy protocol in distributed databases involves
hashing objects into a Merkle Tree [43] and then comparing trees to
detect differences. This approach makes a tradeoff between tree size
(branching factor and tree depth) and false positives in objects that must
be repaired. Communication costs can be high in both cases: with a
large tree, we exchange a lot of metadata to learn which objects must be
repaired; with a small tree, we exchange a large amount of key-object
hashes, even with a few updates. The impact is so significant that anti-
entropy is turned off by default in some systems, with convergence
limited to read-repair: relevant replicas are updated when nodes detect
inconsistencies while serving a client read.

Multi-Value Causal Consistency

Another common complaint about these systems is their lack of guar-
antees from the client’s perspective. This is something that certainly
harms the adoption of fully distributed data stores and we think that
something like session guarantees [56] makes a big difference in what
the client can expect from the data store, without going to a fully consis-
tent design. However, there are no consistency models that preserve the
high-availability nature of distributed data stores and properly support
concurrent writes, as mentioned before.

Defining a protocol implementing causal consistency that is efficient
and scalable with its use of dependencies, is a well known research chal-
lenge, with multiple takes found in the literature [5, 17, 18, 36, 37, 55,

6 introduction

62]. Some systems require data to fit in a single machine, while oth-
ers ignore the problem of concurrent operations executed by multiples
clients. In general they all use a single-value memory model.

In this work, our objective is to develop a causal consistency model,
mechanisms and algorithms exposing a multi-value API (in the spirit
of Dynamo), to provide highly available, scalable and distributed data
stores that allow concurrent updates without losing data.

1.2 contributions and results

Over the course of this thesis, we make several contributions to the
state-of-the-art of distributed data stores. These contributions can be
divided in three parts: an improved logical clock for causality tracking;
a new framework for distributed data stores with an anti-entropy proto-
col, distributed deletes, and scalable metadata for causality tracking; a
new causal consistency model with support for concurrent values and
an extension of that model for read and write transactions.

Dotted Version Vector Sets (DVVS) are a new logical clock that sup-
ports encoding multiple concurrent writes originated from clients, while
using server-based identifiers. This mechanism differs from previous
mechanisms because it enables clients to independently resolve a sub-
set of the concurrent writes. The result is a logical clock that has better
space and time complexity that previous state-of-the-art mechanisms.

Node-wide Dotted-based Clocks (NDC) is a novel framework for dis-
tributed data stores that uses per-node logical clocks to uniquely tag ev-
ery new write to the system. The node logical clock represents exactly
what writes are present at that node, or were overwritten by current
writes. With this information, it provides a lightweight anti-entropy
protocol for detecting and repairing stale data. Another benefit of hav-
ing the node logical clock is smaller and scalable causality metadata
for objects, taking inspiration from DVVS. Finally, it enables distributed
deletes to execute without leaving permanent metadata behind (this
metadata is often called tombstones). We provide two competing ver-
sions of NDC, one that removes and restores metadata from objects and

1.2 contributions and results 7

another that only removes metadata from objects. The former has bet-
ter support for multiple node failures, while the latter is more efficient
and simpler. Another contribution from this work is DottedDB, our
distributed data store that implements both versions of NDC.

Lastly, we propose and formalize a new consistency model: Causal
Multi-Value Memory (CMVM). Causal consistency is often said to be
the strongest consistency model that supports a highly-available sys-
tem. CMVM provides the same semantics as causal consistency but
supports concurrent write operations while avoiding the need to arbi-
trate which write wins in the presence of conflicts, by allowing a read to
return a set of values. We also provide a reference implementation for
CMVM in a distributed data store, building on NDC as a foundation. In
addition, we extend CMVM to support read-only and write-only trans-
actions, along with an appropriate reference implementation.

publications Some of the work described in this thesis was pub-
lished in several international conferences:

• Scalable and Accurate Causality Tracking for Eventually Consis-
tent Stores. Paulo Sérgio Almeida, Ricardo Gonçalves, Carlos Ba-
quero Moreno, Vitor Fonte. IFIP International Conference on Dis-
tributed Applications and Interoperable Systems (DAIS), 2014.

• Concise Server-Wide Causality Management for Eventually Con-
sistent Data Stores. Ricardo Gonçalves, Paulo Sérgio Almeida, Car-
los Baquero Moreno, Vitor Fonte. IFIP International Conference
on Distributed Applications and Interoperable Systems (DAIS),
2015.

• DottedDB: Anti-Entropy without Merkle Trees, Deletes without
Tombstones. Ricardo Gonçalves, Paulo Sérgio Almeida, Carlos
Baquero Moreno, Vitor Fonte. IEEE International Symposium on
Reliable Distributed Systems (SRDS), 2017.

8 introduction

1.3 outline

The rest of this thesis is organized as follows:

• Chapter 2 gives a brief presentation on the necessary background
and some of the state of the art literature relevant to the rest of the
thesis;

• Chapter 3 presents Dotted Version Vector Sets, a strictly-better
alternative to version vectors for managing data versions in dis-
tributed key-value stores;

• Chapter 4 presents Node-wide Dot-based Clocks, a framework
for distributed key-value stores that provides a lightweight anti-
entropy protocol, support for distributed deletes and space-efficient
version tracking;

• Chapter 5 presents Causal Multi-value Consistency, a new consis-
tency model that supports causality while providing a multi-value
API. It also defines an reference implementation for a distributed
key-value store supporting causal multi-value consistency;

• Chapter 6 presents and extension to the causal multi-value model
defined in the previous chapter, introducing read-only and write-
only transactions. We define the extended memory model and its
implementation in a distributed key-value store;

• Chapter 7 is the conclusion of the thesis with some remarks about
future work directions.

2
B A C K G R O U N D

This chapter focuses on providing the necessary background for work
described in the subsequent chapters. Central to this thesis work is the
notion of data consistency, which ranges from the strong consistency
models like linearizability to weak consistency models such as eventual
consistency. Given our focus on weaker consistency models for higher
availability, scalability and fault-tolerance, we also explore state of the
art solutions to data synchronization for replicated data and data ver-
sioning with logical clocks. We also discuss the typical architecture for
distributed weakly consistent key-value stores.

2.1 consistency

If we look at two replicated nodes at any given time, they will proba-
bly be in different states since writes are applied first in one node, and
replicated to others next. This delay is inevitable no matter the underly-
ing replication mechanism (e.g.: single-master or leaderless replication)
and creates windows of opportunity for clients to observe inconsistent
states.

Furthermore, even with zero latency replication, failures can halt or
delay communication between replica nodes, which forces the system to
choose between staying consistent by possibly rejecting client requests,
or accept all requests, but accepting that data may diverge to incon-
sistent states. This choice was popularized by the CAP theorem [12,
20], with the catch-phrase: given Consistency, Availability and Partition-
Tolerance, chose 2 of the 3.

9

10 background

Although the theorem implies that are three combinations, a dis-
tributed system cannot simply not choose partition-tolerance as they
are part of failures that will happen. Therefore, the real design choice is
between CP systems (consistent) and AP systems (available). Also, con-
sistency here only means Linearizability, where in fact the distributed
systems literature offers several consistency models that offer a spec-
trum of guarantees and their trade-offs.

We will now briefly describe some of the relevant consistency models.

2.1.1 Linearizability

Linearizability [24] (also called Atomic Consistency, Immediate Consistency,
External Consistency or Strong consistency) is the strongest form of con-
sistency which, informally explained, gives the clients the illusion of
accessing objects with a single variable with atomic operations.

It provides the abstraction of a global total order for all operations,
however, clashes with physical reality, imposing delays (blocking oper-
ations) on each participant, hindering spatial scalability.

There are costs with linearizability: availability in face of failures (like
network partitions) and performance. The latter can be also seen even
in tightly coupled systems such as multi-processors: for performance
reasons, variables across threads in different CPU cores are not guaran-
teed linearizability, since it would slow down the CPU [45].

2.1.2 PRAM

PRAM [35] (Pipelined RAM) memory model only ensures that the writes
of each process are seen in program order by other processes (but al-
lowing writes from different processes to be seen in different orders at
different processes). This is simple to achieve but overly weak, as it
admits many executions which are confusing to programmers.

2.1 consistency 11

2.1.3 Causal Consistency

Causal memory [1] only ensures that causally related operations are seen
correctly ordered by every process (allowing concurrent operations to
be seen in different orders). Enforcing causal relations is an interesting
point in the consistency spectrum: it is the strongest consistency that
can be achieved without compromising availability [6, 39], while still
performing better than linearizability (since it is less sensitive to net-
work delays). More generally, it does not impose delays proportional to
the system spatial span, as causality propagation is limited to the speed
of light, and distant “space-like” events cannot be causally related, and
do not need to be ordered. This, together with the intuitive appeal to
programmers, has made causal consistency increasingly pursued as the
consistency model to offer in distributed key-value stores which aim for
availability.

causal+ consistency Causal+ Consistency was defined by Loyd
et al. in [36] and it is an extension of traditional causal consistency with
an additional rule that states that objects must deterministically con-
verge at every replica node. Although it is expected that nodes should
communicate and exchange data in order to converge their replicated
data, the original causal memory definition did not explicitly state that
different replicas should converge, allowing different processes to see
different values forever. In Causal+, concurrent writes to the same key
must be eventually resolved to a deterministic result.

2.1.4 Eventual Consistency

Eventual Consistency [60] is what most databases offer as the weakest
consistency level. It states that if writes to the database stop, eventually
(i.e., after some unspecified time) the replicated state will be consis-
tent, returning the same value to every process. Implicitly, there is the
assumption that data aims to be stored, ruling out vacuous implemen-
tations which returned the same value forever.

12 background

This consistency model can be thought simply as convergence guar-
antee, without any time guarantee.

2.2 data synchronization

The normal client request handling workflow may leave several repli-
cas with different versions, either because of message loss or network
partitions. There must be a further mechanism by which the system
can self-heal and achieve consistency, even if no more client requests
arrive: outdated objects should be replaced by newer ones, new ob-
jects should be present in all relevant nodes and deletes should remove
the corresponding replicas in all relevant nodes. Such a mechanism is
called an anti-entropy protocol [16], typically being run periodically be-
tween pairs of nodes. The two most common data structures used to
repair replicated data are Bloom Filters [11] and Merkle Trees [43]. Most
Dynamo-like systems today use a protocol based on Merkle trees to
compute the differences between nodes, since bloom filters are not as
efficient for large data-sets [30]

2.2.1 Bloom Filters

Bloom filter are well known for their useful semantics, low overhead
and probabilistic answers. There are many types of bloom filters. In
general, all of them allow an item to be tested as belonging to a set,
which is represented by the bloom filter. The classical bloom filter may
give false positives but never false negatives, i.e., for a given item, a
bloom filter can answer that it is probably in the set, or not in the set.

2.2.2 Merkle Trees

A Merkle tree is tree data structure where: each inner node stores the
hash of its children hashes; the leaf nodes store a list of key-hash pairs
and the hash of that list. Since peers may not replicate the same set of
keys, due to partial replication, each server node maintains one Merkle

2.2 data synchronization 13

A1,1

A0

A1,2

A2,1 A2,2 A2,3 A2,4

B1,1

B0

B1,2

B2,1 B2,2 B2,3 B2,4

Different Hash

Missing Key

Node BNodeA Equal Key-Hash

Equal Hash

Different Key-Hash

Figure 2: Two Merkle trees that represent the state of the objects replicated
by nodes A (left) and B (right). In a level-by-level exchange of the
Merkle tree, these two nodes end up exchanging the hashes: {A0, B0,
A1,1, B1,1, A1,2, B1,2, A2,1, B2,1, A2,2, B2,2}. Node A misses an object
on leaf A2,2, present in the corresponding B’s leaf B2,2. Node B has
a conflicting object version on leaf B2,1, when comparing to A’s leaf
A2,1.

tree per replica group: a set of peers that replicates a common subset
of keys. Each new object is hashed and inserted in the appropriate
leaf node, according to its key-hash. The hash of the leaf node is then
updated, as are all parent nodes until the root.

To compare the state of two nodes, they exchange the corresponding
Merkle trees by levels, only descending further down the tree if the
corresponding hashes are different. If two corresponding leaf nodes
have different hashes, then there are objects which must be repaired.
The list of (key,hash) pairs is then exchanged and the final list of objects
in need of repair is computed.

Figure 2 shows an example of two Merkle trees representing the same
set of objects replicated in two different nodes. Node A has an object
in leaf A2,1 that has a different hash on node B, while Node B has an
object in leaf B2,2 that is missing from Node A. Both nodes start by
comparing the root node and confirm that the hash is different, so they
exchange and compare the next level of the tree. On the second level,
only one node has a hash mismatch, and the protocol continues only
for its children.

accuracy versus metadata There is a fundamental trade-off in
Merkle trees, between the tree size and the accuracy of the detection of

14 background

outdated keys. The size of the tree, given by the number of children per
node (branching factor) and number of levels (height of the tree) should
not be considered in absolute terms but relative to the number of keys
that are stored. An appropriate metric to evaluate accuracy-versus-size
is the number of keys per leaf node.

The optimal setting for accuracy would be a key/leaf ratio around 1,
where ideally all leaf nodes would be used, storing the hash of only one
object, and therefore being always accurate. However, this is impracti-
cal for large datasets, as it would imply a large tree size, even with a
dynamically sized tree [30].

2.2.3 Read Repair

Although Read Repair does not repair data in bulk as do Merkle Trees
or Bloom Filters, it is a simple mechanism of detecting inconsistent data
when a client performs a read that asks more that one replica node for
its content, as usual in quorum-based systems. Since the coordinator of
the read request receives several copies for the same key, it can compare
them and issue update requests to outdated replicas.

The issue with read repair is that rarely read objects may be inconsis-
tent for a long time. However, this is a passive mechanism that can be
used with other proactive mechanisms that run in the background.

2.3 logical clocks for causality tracking

The role of causality in distributed systems was introduced by Lamport
[34], establishing the foundation for the subsequent mechanisms and
theory [10, 13, 34, 46, 52, 53].

2.3.1 Single-Object Logical Clocks

Replicated objects may diverge when multiple clients concurrently up-
date the same key. When a node receives an object to store and it already

2.3 logical clocks for causality tracking 15

has another version, it must decide how it will choose between them or
if it will keep both.

2.3.1.1 Physical Timestamps

Some systems like Cassandra [33] tag each version of an object with a
physical timestamp and use a last-writer-wins (LWW) policy. With times-
tamps, each node keeps the version with the newest timestamp. Al-
though extremely simple to implement and use, there are a couple of
problems with this approach: first, we have to trust the entity issuing
the timestamps; clients can maliciously lie about their timestamp to su-
persede other versions, machine clocks can drift apart, the NTP server
could be offline, etc. Second, even if the timestamps were perfect, it
still would not capture the true nature of the concurrent client updates,
since by definition only one would survive, and the other would be lost
(without the client noticing).

2.3.1.2 Per-Object Logical Clocks

Others systems use the notion of causality [34] to tag versions with
some logical clock, which does not rely on real time, and allows de-
tecting when two updates are concurrent. This enables preserving both
versions to be reconciled later by a deterministic algorithm or by the
client.

A drawback is that each per-object logical clock has a size linear with
the replication factor (ignoring logarithmic factors). While this may not
seem problematic with the usual small replication factors (e.g., 3 repli-
cas), node churn is a natural occurrence in distributed systems, with
new nodes replacing failed nodes over time. This in turn will pollute
the logical clock with more and more entries over time. The normal
approach to overcome this problem is to remove “old” metadata, but
this breaks causality and introduces false concurrency into the system.

causal histories Causal Histories [53] (CH) are simply described
by sets of unique write identifiers. These identifiers can be generated
with a unique identifier and a monotonic counter. Let idn be the no-

16 background

tation for the nth event of the entity represented by id. The crucial
point is that identifiers have to be globally unique to correctly represent
causality. The partial order of causality can be precisely tracked by com-
paring these sets under set inclusion. Two CH are concurrent if neither
includes the other: A ‖ B iff A 6⊆ B and B 6⊆ A. CH correctly track
causality relations, but have a major drawback: they grow linearly with
the number of writes.

version vectors Version Vectors (VV) are an efficient representa-
tion of CH provided that the CH has no gaps in each id’s event se-
quence. A VV is a mapping from identifiers to counters, and can be
written as a set of pairs (id, counter); each pair represents a set of CH
events for that id: {idn | 0 < n 6 counter}. In terms of partial order,
A 6 B iff ∀(i, ca) ∈ A · ∃(i, cb) ∈ B · ca 6 cb. Again, A ‖ B iff A 66 B

and B 66 A. Whether client or server identifiers are used in VV has major
consequences, as we’ll see next.

variability in the number of entities The basic vector based
mechanisms can be generalized to deal with a variable number of nodes
or replicas. The common strategy is to map identifiers to counters and
handle dynamism in the set of identifiers. Additions depend on the
generation of unique identifiers. Removals can require communication
with several other servers [21], or to a single server [3, 47]. Interval
Tree Clocks [3] are specifically designed to track causality in dynamic
scenarios but scalability depends on recovery of identifiers.

The Dependency Sequences [48] mechanism assumes a scenario where
dynamic, weakly-connected sets of entities (mobile hosts) communicate
through designated proxy entities chosen from a stable, well-connected
(mobile service stations) network. The mechanism maintains informa-
tion about the causal predecessors of each event.

conditional writes Some systems just detect the concurrent put

operations from different clients and reject the update (e.g. version con-
trol systems such as CVS and subversion) or keep the updates but do
not allow further accesses until the conflict is solved (e.g. original ver-

2.3 logical clocks for causality tracking 17

sion of Coda [28]). In these cases, using version vectors (VV) with one
entry per server is sufficient, as a concurrent version can be detected in a
server if the VV obtained by the client when reading the data is different
from the VV when it executes the put. However, these solutions sacri-
fice write availability which is a key “feature” of modern geo-replicated
databases.

compacting the representation In general, using a format
that is more compact than the set of independent entities that can reg-
ister concurrency, leads to lossy representation of causality [13]. Plausi-
ble clocks [58] condense event counting from multiple replicas over the
same vector entry, resulting in false concurrency. The resulting order
does not contradict causality but some concurrent events are perceived
as causally related, because counters are effectively shared between pro-
cesses. In fact, the previously mentioned Lamport clocks [34] are a
notable example of plausible clocks.

Several approaches for removing entries that are not necessary have
been proposed, some being safe but requiring running consensus (e.g.
Roam [51]), and others fast but unsafe (e.g. Dynamo [15]) potentially
leading to causality errors.

extensions and added expressiveness In Depot [38], the VV

associated with each update only includes the entries that have changed
since the previous update in the same node. However, each node still
needs to maintain VV that include entries for all clients and servers; in
a similar scenario, the same approach could be used as a complement
to our solution. Other systems explore the fact that they manage a
large number of objects to maintain less information for each object.
WinFS [41] maintains a base VV for all objects is the file system, and for
each object it maintains only the difference for the base in a concise VV.

Cimbiosys [50] uses the same technique in a peer-to-peer system.
These systems, as they maintain only one entry per server, cannot gener-
ate two VV for tagging concurrent updates submitted to the same server
from different clients, as discussed in Section 3.2 with VVserver.

18 background

WinFS includes a mechanism to deal with disrupted synchronizations
that allows encoding non sequential causal histories by registering ex-
ceptions to the events registered in VV; e.g. {a1,a2,b1, c1, c2, c4, c7} could
be represented by {(a, 2), (b, 1), (c, 7)} plus exceptions {c3, c5, c6}.

Wang et. al. [61] have proposed a variant of VV with O(1) comparison
time (like our own DVV), but the VV entries must be kept ordered, which
prevents constant time for other operations.

2.3.2 Multi-Object Logical Clocks

While the basic usage of logical clocks involves treating each object in-
dependently, to overcome the per-object metadata size overhead, a pow-
erful idea is to factor out knowledge common to the whole node into a
Node Logical Clock to supplement each object logical clock, making the
per-object clock smaller.

Ladin et al. [31] developed Lazy Replication with node logical clocks
and a Lamport clock [34] per write, but the metadata compaction de-
pends on loosely-synchronized clocks and the availability of client repli-
cas.

Bayou [57] attaches writes with a Lamport clock and stores them in
three different logs, each with its own logical clock: the tentative writes,
the committed writes and the undo writes. This works because it totally
orders writes with a primary server, in order to store only the maximum
counter per replica.

Eiger [37] focus is on causal consistency [1] by using one Lamport
clock per node, to issue globally unique ids to updates, but it does not
support concurrent versions, nor does it address anti-entropy repair.

Concise Version Vector (CVV) [41] uses a node clock to repair replicas
in a distributed file system, but it does not address how to deal with
distributed deletes, does not provide a detailed algorithm to identify
which keys are missing, their object logical clock is not bounded by the
replication factor, and it lacks support for concurrent versions.

Vector Sets [40] improve on CVV by placing an upper-bound on the
size of object logical clocks, dividing the objects in sets that can be rep-

2.4 weakly-consistent data stores 19

resented by a single compact version vector, instead of a single node
logical clock.

Cimbiosys [50] also builds upon CVVs to build a peer-to-peer partial
replication platform, but also fails to support concurrent values, and its
anti-entropy is inefficient since it sends all potential missing keys to a
replica.

2.4 weakly-consistent data stores

Amazon’s Dynamo system [15] was an important influence to a new
generation of databases, such as Cassandra [32, 33] and Riak [29], focus-
ing on partition tolerance, write availability and eventual consistency.
The underlying rationale to these systems stems from the observation
that when faced with the three concurrent goals of consistency, availabil-
ity and partition-tolerance only two of those can be achievable in the same
system [12, 20]. Facing geo-replication operation environments where
partitions cannot be ruled out, consistency requirements are inevitably
relaxed in order to achieve high availability.

These systems follow a design where the data store is always writable:
replicas of the same data item are allowed to temporarily diverge and to
be repaired later on. A simple repair approach followed in Cassandra, is
to use wall-clock timestamps to know which concurrent updates should
prevail. This last writer wins (LWW) policy may lead to lost updates. An
approach which avoids this, must be able to represent and maintain
causally concurrent updates until they can be reconciled.

Accurate tracking of concurrent data updates can be achieved by a
careful use of well established causality tracking mechanisms [10, 34, 46,
52, 53]. In particular, for data storage systems, version vectors (VV) [46]
enable the system to compare any pair of replica versions and detect
if they are equivalent, concurrent or if one makes the other obsolete.
However, VV lack the ability to accurately represent concurrent values
when used with server ids, or are not scalable when used with client
ids.

20 background

Weakly-consistent data stores provide consistency guarantees weaker
than linearizability, but remain available in the presence of arbitrary
network partitions.

2.4.1 Architecture

The data store is replicated across R nodes and its uses a leaderless repli-
cations strategy, which means that each node is independent from the
others and it can serve at any time a read or write request to a key that
it replicates. Nodes communicate via message passing and messages
can be delayed, lost and reordered. The key-range is also partitioned
in several ranges for scalability. This is typically done with consistent
hashing, where nodes are placed in a position in an abstract ring. Keys
are also hashed to a position in the ring and the first R nodes after that
position, are the replica nodes for that key.

partial replication with partial overlapping Distributed
key-value stores may serve many thousands of clients, and need to store
large data-sets spread over many (e.g., hundreds) nodes, each data item
stored in several (e.g., three) replicas. This means that each node has
only some part of all data (partial replication). Also, keys are placed
usually by consistent hashing, and the replication scheme (e.g., in Riak
[29]) may result in no two nodes storing the same set of keys (partial
overlapping). This combination of partial replication and partial over-
lapping is challenging for providing causal consistency (i.e., cross-object
causality), contrary to a an implementation assuming full replication
(such as in the original causal memory paper [1]).

anti-entropy Since weakly-consistent systems allow nodes to op-
erate without strong coordination with other nodes, data can become
out-of-sync given failures (e.g. message loss, network partitions, node
crashes, etc.). Given this reality, the system must provide a mechanism
to repair data that is out-of-sync between nodes.

2.4 weakly-consistent data stores 21

Read repair is a technique where the node coordinating a read request
detects if nodes responded with outdated data and sends the newer
data to it. That helps, but is not enough since it only repairs nodes that
were contacted for the read request and most importantly only repairs
data when it is read.

Anti-entropy protocols are background mechanisms that run on ev-
ery node and are responsible for keeping data synchronized between
replica nodes, ensuring data convergence. Most data stores use Merkle
Trees for this task, a topic already discussed previously.

multi-value memory In classic (single-value) memory, a read re-
turns a single value. For shared-memory concurrent programming in
multi-cores, even when weak memory models are offered, program-
mers have a toolset of synchronization primitives that can be used to,
e.g., prevent data-races or enforce mutual-exclusion.

In a distributed setting aiming for high-availability, namely a dis-
tributed key-value store, such strong synchronization primitives are
missing. Having the classic single-value memory API will result in lost
updates, when several processes concurrently perform a read-compute-
write update to the same location. This happens in most systems that
offer causal consistency, such as COPS [36] and Eiger [37].

Dynamo [15] was seminal in exposing a multi-value memory API,
in which a read returns the set of values concurrently written. This
allow writing applications in which such concurrency is detected, and
either some ad-hoc reconciliation is performed upon a read, or general
CRDTs [54] with well defined merge operations are used. Dynamo,
however, does not provide causal consistency, making life difficult for
programmers.

partitioning Consistent hashing [27] is one of the most popular
algorithms employed in distributed data stores to partition keys across
several nodes, since it randomly spreads the load across the nodes and
it minimizes data migration when we change the cluster’s size.

Riak for example, uses consistent hashing to assign keys to virtual
nodes (vnodes), which in turn are mapped to physical nodes. One physi-

22 background

Ring of Nodes

hash(key) location

Figure 3: Logical Ring for Consistent Hashing with Replication Factor of 3.

cal node can have several vnodes. When a key is hashed, it gives a value
that maps to a circular ring of vnodes. That key is replicated by the vn-
ode responsible for that value in the hash, plus the next N-1 vnodes in
the ring, where N is the replication factor of that key.

2.4.2 Causally Consistency Data Stores

Causal Consistency is the strongest model that still enables high-availability,
which makes it one of the most useful consistency models that are part
of the broader “weakly-consistent” category. We will briefly describe
some of the most well known causally consistent systems in the litera-
ture.

2.4.2.1 COPS

COPS and its variant COPS-GT [36] are both causally consistency geo-
replicated data stores. The latter also provides read transactions to the
client. Each data-center (DC) is a linearizable system with a complete
copy of the database and causal consistent is only provided between
data-centers. Each data version has a Lamport clock that is used to
track explicit causal dependencies. However, it does not support con-
current updates without losing data, since it uses a physical timestamp
to choose the latest version.

2.4 weakly-consistent data stores 23

Data replication to other DCs blocks until all dependencies are met at
the destiny location. This way the data between DCs is always causally
consistent, but performance suffers. Inside a single DC, it avoids block-
ing to wait for dependencies, because a client session is only valid in
one DC at a time, and since each DC is a linearizable system, local
dependencies are always met.

2.4.2.2 Eiger

Eiger [37] is the successor of COPS that introduces a new column-family
data model (instead of key-value from COPS), write transactions and
instead of using data versions as dependencies, it uses operations as
dependencies. It still suffers from the same problems as COPS, but has
better performance due coalesce the dependency of multiple data items
into one operations dependency, when transactions are used. Write
transactions are achieved with a modified two-phase commit protocol
that functions differently depending if it is running on the DC that ac-
cepted the operation initially or in a remote DC.

2.4.2.3 Orbe

Orbe [17] offers causal-consistency by using data versions as dependen-
cies like COPS, but instead of Lamport clocks it uses version vectors that
are encoded in a sparse matrix. It has a extension to the protocol that
allows for read transactions that added physical timestamps to the de-
pendency matrix. It does not support partial replication or concurrent
writes with a multi-value API. Client sessions are also bound to the
DC they are running. It also suffers from the same problem as COPS
and Eiger regarding data replication, since it needs to apply updates
in causal order, thus potentially blocking replication until dependencies
arrive.

2.4.2.4 GentleRain

GentleRain [18] is the successor to the Orbe system by the same au-
thors. The key difference is the usage of physical timestamps to track
dependencies and enforce causal consistency. Each node stores a set

24 background

of objects that have a timestamp associated with the current timestamp.
Then, each node keeps track of the local stable timestamp (LST), which
means that objects with timestamps older than LST have been fully
replicated. There is also a global stable timestamp (GST) for the entire
system, computed by exchanging LSTs using a deterministic tree over-
lay (using node IDs total order) from leafs nodes to the root and back
downs with the final GST. This information is used to garbage collected
older objects kept around for transactions and is used to know when
objects stored in remote DCs are safe to be read.

A key requirement for this system design is that physical must be
monotonically increasing. Also, clock skew between nodes in the sys-
tem must be kept to a minimum, since GentleRain relies on the GST
value to garbage collect metadata a decide when certain objects are safe
to be visible. They could have used Lamport clocks instead of times-
tamps, but logical clocks increment independently (usually increment
by one for every write) which makes it difficult synchronize different
logical clocks to compute the GST. Thus, using Lamport clocks would
solve the clock skew issue, but would either introduce coordination, or
the difference between the GST and all LST’s would be greater, leading
to objects taking longer to be visible to clients and metadata would also
take longer to remove.

2.4.2.5 SwiftCloud

SwiftCloud [62] provides causal consistency with a focus on edge com-
puting, where clients have a local process scouts with caching that act
as a middle-man between the client and the server. These scouts can ex-
ecute client operations without necessarily contacting the server. This
is because objects are CRDTs which makes them mergeable and con-
vergent, and therefore they are guaranteed to not fail (i.e. conflict) at
the server, regardless of other clients operations. This also means that
non-deterministic operations are not supported.

DCs exchange data using causal broadcast, which ensures that each
DC applies new writes in their causal order, maintaining causal con-
sistency. Since each DC is causally consistent, scouts can transparently

2.4 weakly-consistent data stores 25

change to other DCs while maintaining causal consistency, because they
cache the client operation results and they only make objects in other
DC’s visible to the client if they are K-replicated, where K can be config-
ured by the system administrator.

2.4.2.6 Bolt-On

Bolt-on [8] implements a middleware between clients and a eventually
consistent data store. The middleware enforces causal consistency for
different clients, caching results of calls to the underlying data store.
The interesting aspect of Bolt-on is that is can be implemented on top
of existing eventually consistent data stores.

However, the implementation uses extensive metadata to provide the
causal consistency semantics at the middleware layer. To mitigate this,
they focus on the fact that applications can distinguish from explicit
causality (only related operations at the application level should be writ-
ten in the same causal session) and potential causality (every operation
from a client is causally related), being the latter much smaller and pro-
ducing less metadata.

2.4.2.7 Lazy Replication

Lazy Replication [31] is a technique developed by Ladin et al. to pro-
vide causal consistency in a fully replicated data store. This means that
the entire state must fit in the smallest machine in the cluster. The
system offers linearizable operations, and also has support for client-
side replicas, which makes the garbage collection of causal metadata
more difficult, since they are required to safely prune metadata but
they can disconnect without warning. The garbage collection also relies
on loosely-synchronized physical clocks. Clients can define themselves
the dependencies of an operation using specific application logic. Each
write operation is tagged with a Lamport clock and nodes keep track
of the current local state using a version vector. The primary node re-
sponsible for each object must serialize a log to exchange data between
nodes.

26 background

2.4.2.8 PRACTI

The PRACTI [9] system provides causal consistency with support par-
tial replication, i.e., does do not have to store the entire state. However,
one drawback is that any dependencies of an object must also reside
on the same node, thus related data cannot be partitioned and the pro-
cess partitioning data in some cases cannot be automatic (e.g. if data
relationships are not known in advance).

Nodes can exchange information not in causal order, but each node
serializes the exchange information for the objects that it is primary
node in a log to exchange with other replicas. Concurrent writes are
also not supported, relying in physical timestamps to choose the latest
object. Another scalability problem with with PRACTI is that nodes
maintain VVs with client IDs, which can grow unbounded.

2.5 discussion

Our focus on this thesis is in highly available distributed data stores,
categorized as “AP” systems in the CAP terminology. Many data stores
in this space fall in two subcategories: eventually consistent data stores,
or causally consistent data stores. They share most of their architecture,
but differing on the guarantees provided by their client API. In either
case, the data store may or may not support the Dynamo-style multi-
value API, regardless of the exact data model used by the data store
(key-values, column-families, documents, etc.).

We will use a bottom-up approach on this thesis, to tackle the differ-
ent challenges present in these systems. We will tackle first the correct
causally tracking on multi-value eventually consistent data stores. Then
we will research ways of improving the scalability of these systems,
namely the space-complexity of logical clocks to track causality and the
efficiency of anti-entropy protocols for systems that track causality.

Finally, we want to improve on those results and implement them on
cross-key causally consistent data stores. However, most of the state-
of-the-art data stores do not support the multi-value API necessary to

2.5 discussion 27

support write concurrency, which will also be a main part of our re-
search.

3
D O T T E D V E R S I O N V E C T O R S

We present a new and simple causality tracking solution, Dotted Ver-
sion Vectors (briefly introduced in [49]), that overcomes the limitations
of traditional version vectors, allowing both scalable (using server ids)
and fully accurate (representing same server concurrent writes) causal-
ity tracking. It achieves this by explicitly separating a new write event
identifier from its causal past, which has the additional benefit of al-
lowing causality checks between two clocks in constant time (instead of
linear with the size of version vectors).

Besides fully describing Dotted Version Vectors (DVV), here we make
two novel contributions. First, we propose a new container (DVV Sets
or DVVS) that efficiently compacts a set of concurrent DVV’s in a single
data structure, improving on two DVV limitations: (1) DVVS have a single
common representation of causality, for all concurrent values, not linear
in the number of values; (2) comparing and synchronizing two replica
servers for each single key is linear with the number of concurrent val-
ues, instead of quadratic.

The other contribution is a general framework that clearly defines a
set of functions that logical clocks need to implement to correctly track
causality in eventually consistent systems. We implement both DVV and
DVVS using this framework.

3.1 system model and data store api

We consider a standard Dynamo-like key-value store interface that ex-
poses two operations: get(key) and put(key, value, context). get re-

29

30 dotted version vectors

turns a pair (value(s), context), i.e., a value or set of causally concur-
rent values, and an opaque context that encodes the causal knowledge
in the value(s). put submits a single value that supersedes all values
associated to the supplied context. This context is either empty if we
are writing a new value, or some opaque data structure returned to the
client by a previous get, if we are updating a value. This context en-
codes causal information, and its use in the API serves to generate a
happens-before [53] relation between a get and a subsequent put.

We assume a distributed system where nodes communicate by asyn-
chronous message passing, with no shared memory. The system is com-
posed by possibly many (e.g., thousands) clients which make concur-
rent get and put requests to server nodes (in the order of, e.g., hun-
dreds). Each key is replicated in a typically small subset of the server
nodes (e.g., three nodes), which we call the replica nodes for that key.
These different orders of magnitude of clients, servers and replicas play
an important role in the design of a scalable causality tracking mecha-
nism.

We assume: no global distributed coordination mechanism, only that
nodes can perform internal concurrency control to obtain atomic blocks;
no sessions or any form of client-server affinity, so clients are free to read
from a replica server node and then write to a different one; no byzan-
tine failures; server nodes have stable storage; nodes can fail without
warning and later recover with their last state in the stable storage.

As in this chapter we do not aim to track causality between different
keys, in the remainder of the chapter we will focus on operations over a
single key, which we leave implicit; namely, all data structures in servers
that we will describe are per key. Techniques as in [41] can be applied
when considering groups of keys and can introduce additional savings;
this we leave for subsequent chapters.

3.2 current approaches

To simplify comparisons between different mechanisms, we will intro-
duce a simple execution example between clients Mary and Peter, and a

3.2 current approaches 31

Mary

Peter

Replica

{} : v1

PUT

A

GET

ctxA : v1

{} : v2

PUT

B

ctxA : v3

PUT

C

Figure 4: Example execution for one key: Peter writes a new value v1 (A), then
reads from Replica (ctxA). Next, Mary writes a new value v2 (B) and
finally Peter updates v1 with v3 (C).

LWW CH VVclient VVserver DVV DVVS

A 17h00 : v1 {r1} : v1 {(p,1)} : v1 {(r,1)} : ((r,1), {}) : v1 {(r,1, [v1])}

{v1}

ctxA {} {r1} {(p,1)} {(r,1)} {(r,1)} {(r,1)}

B 17h03 : v2 {r1} : v1 {(p,1)} : v1 {(r,2)} : ((r,1), {}) : v1 {(r,2, [v2, v1])}

{r2} : v2 {(m,1)} : v2 {v1, v2} ((r,2), {}) : v2

C 17h07 : v3 {r2} : v2 {(m,1)} : v2 {(r,3)} : ((r,2), {}) : v2 {(r,3, [v3, v2])}

{r1, r3} : v3 {(p,2)} : v3 {v1, v2, v3} ((r,3),

{(r,1)}) : v3

Table 1: The table shows the replica (r) state after write from Peter (p) and
Mary (m), and the context returned by Peter’s read. We use the
metadata : value(s) notation, except for DVVS which has its own in-
ternal structure.

single replica node. In this example, presented in Figure 4, Peter starts
by writing a new object version v1, with an empty context, which re-
sults in some server state A. He then reads server state A, returning
current version v1 and context ctxA. Meanwhile, Mary writes a new ver-
sion v2, with an empty context, resulting in some server state B. Since
Mary wrote v2 without reading state A, state B should contain both
v1 and v2 as concurrent versions, if causality is tracked. Finally, Peter
updates version v1 with v3, using the previous context ctxA, resulting
in some state C. If causal relations are correctly represented, in state C
we should only have v2 and v3, since v1 was superseded by v3 and v2
is concurrent with v3. We now discuss how different causality tracking
approaches address this example, which are summarized in Table 1.

32 dotted version vectors

3.2.1 Last Writer Wins

In systems that enforce a Last Writer Wins (LWW) policy, such as Cassan-
dra, concurrent updates are not represented in the stored state and only
the last update prevails. Under LWW, our example would result in the
loss of v2. Although some specific application semantics are compati-
ble with a LWW policy, this simplistic approach is not adequate for many
other application semantics. In general, a correct tracking of concurrent
updates is essential to allow all updates to be considered for conflict
resolution.

3.2.2 Causal Histories

Causal Histories (CH) [53] are simply described by sets of unique write
identifiers. These identifiers can be generated with a unique identifier
and a monotonic counter. In our example, we used server identifiers
r, but client identifiers could be used as well. The crucial point is that
identifiers have to be globally unique to correctly represent causality.
Let idn be the notation for the nth event of the entity represented by
id. The partial order of causality can be precisely tracked by comparing
these sets under set inclusion. Two CH are concurrent if neither includes
the other: A ‖ B iff A 6⊆ B and B 6⊆ A. CH correctly track causality
relations, as can be seen in our example, but have a major drawback:
they grow linearly with the number of writes.

3.2.3 Version Vectors

Version Vectors (VV) are an efficient representation of CH, provided that
the CH has no gaps in each id’s event sequence. A VV is a mapping from
identifiers to counters, and can be written as a set of pairs (id, counter);
each pair represents a set of CH events for that id: {idn | 0 < n 6 counter}.
In terms of partial order, A 6 B iff ∀(i, ca) ∈ A · ∃(i, cb) ∈ B · ca 6 cb.
Again, A ‖ B iff A 66 B and B 66 A. Whether client or server identifiers
are used in VV has major consequences, as we’ll see next.

3.2 current approaches 33

3.2.4 Version Vectors with Id-per-Client

Version Vectors with Id-per-Client (VVclient) uses VV with clients as unique
identifiers. An update is registered in a server by using the client identi-
fication issued in a put. This provides enough information to accurately
encode the concurrency and causality in the system, since concurrent
client writes are represented in the VVclient with different ids. However,
it sacrifices scalability, since VVclient will end up storing the ids of all the
clients that ever issued writes to that key. Systems like Dynamo try to
compensate this by pruning entries in VVclient at a specific threshold, but
it typically leads to false concurrency and further need for reconcilia-
tion. The higher the degree of pruning, the higher is the degree of false
concurrency in the system.

3.2.5 Version Vectors with Id-per-Server

If causality is tracked with Version Vectors with Id-per-Server (VVserver),
i.e., using VV with server identifiers, it is possible to correctly detect con-
current updates that are handled by different server nodes. However,
if concurrent updates are handled by the same server, there is no way
to express the concurrent values — siblings — separately. To avoid over-
writing siblings and losing information (as in LWW), a popular solution
to this is to group all siblings under the same VVserver, losing individual
causality information. This can easily lead to false concurrency: either
a write context causally dominates the server VVserver, in which case
all siblings are deemed obsolete and replaced by the new value; or this
new value must be added to the current siblings, even if some of them
were in its causal past.

Using our example, we finish the execution with all three values
{v1, v2, v3}, when in fact v3 should have obsoleted v1, like the other
causally correct mechanisms in Table 2 (expect for LWW).

With VVserver, false concurrency can arise whenever a client read-write
cycle is interleaved with another concurrent write on the same server.
This can become especially problematic under heavy load with many

34 dotted version vectors

clients concurrently writing: under high latency, if a read-write cy-
cle cannot be completed without interleaving with another concurrent
write, the set of siblings will keep on growing. This will make messages
grow larger, the server load heavier, resulting in a positive feedback
loop, in what can be called a sibling explosion.

3.3 dotted version vectors

We now present an accurate mechanism that can be used as a substitute
for classic version vectors (VV) in eventually consistent stores, while still
using only one Id per replica node. The basic idea of Dotted Version
Vectors (DVV) is to take a VV and add the possibility of representing an in-
dividual causal event — dot1 — separate from the rest of the contiguous
events. The dot is kept separate from the causal past and it globally and
uniquely identifies a write. This allows representing concurrent writes,
on the same server, by having different dots.

In our example from Figure 4, we can see that state B is represented
with a unique dot for both v1 and v2, even-though they both were writ-
ten with an equally empty context. This distinction in their dots is
what enables the final write by Peter to correctly overwrite v1, since the
context supersedes its dot (and DVV), while maintaining v2 which has
a newer dot than the context. In contrast, VVserver loses this distinction
gained by separating dots by grouping every sibling in one VV and thus
cannot know that v1 is outdated by v3.

3.3.1 Definition

A DVV consists in a pair (d, v), where v is a traditional VV and the dot
d is a pair (i,n), with i as a node identifier and n as an integer. The
dot uniquely represents a write and its associated version, while the VV

represents the causal past (i.e. its context). The causal events (or dots)

1 The term dot denotes an isolated event “over” a version vector, as a diacritic dot is
placed over an “ı” to form an “i”.

3.3 dotted version vectors 35

represented by a DVV can be generated by a function CH that translates
logical clocks to causal histories (CH can be viewed as sets of dots):

CH(((i,n), v)) = {in}∪ CH(v),

CH(v) =
⋃

(i,n)∈v
{im | 1 6 m 6 n},

where in denotes the nth dot generated by node i, and CH(v) is
the same function but for traditional VV. With this definition, the CH

{a1,b1,b2, c1, c2, c4} that cannot be represented by VV, can now be repre-
sented by the DVV ((c, 4), {(a, 1), (b, 2), (c, 2)}).

3.3.2 Partial Order

The partial order on DVV can be defined in terms of inclusion of CH; i.e.:

X 6 Y ⇐⇒ CH(X) ⊆ CH(Y),

Given that each dot is generated as a globally unique event, the partial
order on possible DVV values becomes:

((i,n),u) < ((j,m), v)⇐⇒ n 6 v[i] ∧ u 6 v,

where the traditional point-wise comparison of VV is used: u 6 v ⇐⇒
∀(i,n)∈u. n 6 v[i].

An important consequence of keeping the dot separate from the causal
past is that, if the dot in X is contained in the causal past of Y, it means
that Y was generated causally after X, thus Y also contains the causal
past of X. This means that there is no need for the comparison of the
VV component and the order can be computed as an O(1) operation
(assuming access to a map data structure in effectively constant time),
simply as:

36 dotted version vectors

((i,n),u) < ((j,m), v)⇐⇒ n 6 v[i].

3.4 dotted version vector sets

Dotted Version Vectors (DVV), as presented in the previous section, allow
an accurate representation of causality using server-based ids. Still, a
DVV is kept for each concurrent version: {(dvv1, v1), (dvv2, v2), . . .}. We
can go further in exploring the fact that operations will mostly handle
sets of DVV, and not single instances.

We propose now that the set of (dvv, version) for a given key in a
replica node is represented by a single instance of a container data
type, a Dotted Version Vector Set (DVVS), which describes causality for
the whole set. DVVS factorizes out common knowledge for the set of DVV
described, and keeps only the strictly relevant information in a single
data structure. This results in not only a very succinct representation,
but also in reduced time complexity of operations: the concurrent val-
ues will be indexed and ordered in the data structure, and traversal will
be efficient.

3.4.1 From a Set of Clocks to a Clock for Sets

To obtain a logical clock for a set of versions, we will explore the fact
that at each node, the set of DVV as a whole can be represented with a
compact VV. Formally this invariant means that, for any set of DVV S, for
each node id i, all dots for i in S form a contiguous range up to some
dot. Note that we can only assume to have this invariant, if we follow
some protocol rules enforced by our framework, described in detail in
section 3.5.3.

Assuming this invariant, we obtain a logical clock for a set of (dvv,
version) by performing a two-step transformation of the sets of versions.
In the first step, we compute a single VV for the whole set — the top
vector — by the pointwise maximum of the dots and VV in the DVV’s;

3.4 dotted version vector sets 37

additionally, for each DVV in the set, we discard the VV component. As
an example, the following set:

{(((r, 4), {(r, 3), (s, 5)}), v1),

(((r, 5), {(r, 2), (s, 3)}), v2),

(((s, 7), {(r, 2), (s, 6)}), v3)},

generates the top vector {(r, 5), (s, 7)} and is transformed to a set of
(dot, version):

{((r, 4), v1), ((r, 5), v2), ((s, 7), v3)}.

This first transformation has incurred in a loss of knowledge: the
specific causal past of each version. This knowledge is not, however,
needed for our purposes. The insight is that, to know whether to dis-
card or not a pair (dot,version) (d, v) from some set when comparing
with another set of versions S, we do not need to know exactly which
version in S dominates d, but only that some version does; if version v
is not present in S, but its dot d is included in the causal information
of the whole S (which is now represented by the top vector), then we
know that v was obsolete and can be removed.

In the second step, we use the knowledge that all dots for each server
id, form a contiguous sequence up to the corresponding top vector en-
try. Therefore, we can associate a list of versions (siblings) to each entry
in the top vector, where each dot is implicitly derived by the correspond-
ing version position in the list. In our example, the whole set is then
simply described as:

{(r, 5, [v2, v1]), (s, 7, [v3])},

where the head of each list corresponds to the more recently gener-
ated version at the corresponding node. The first version has the dot

38 dotted version vectors

Writing Reading
Client

ReplicaA

ReplicaB

ReplicaC

PUT

discard event

sync

sync

GET sync join

Figure 5: Generic execution paths for operations get and put.

corresponding to the maximum of the top vector for that entry, the sec-
ond version has the maximum minus one, and so on.

3.4.2 Definition

A DVVS is a set of triples (i,n, l), each containing a server id, an integer,
and a list of concurrent versions. It describes a set of versions and their
dots, implicitly given by the position in the list. It also describes only
the knowledge about the collective causal history, as given by the VV

derived from the pairs (i,n).

3.5 using dvv and dvvs in distributed key-value stores

In this section we show how to use logical clocks — in particular DVV

and DVVS— in modern distributed key-value stores, to accurate and effi-
ciently track causality among writes in each key. Our solution consists
in a general workflow that a database must use to serve get and put

requests. Towards this, we define a kernel of operations over logical
clocks, on top of which the workflow is defined. We then instantiate
these operations over the logical clocks that we propose, first DVV and
then DVVS.

We support both get and put operations, performing possibly several
steps, as sketched in Figure 5. Lets first define our kernel operations.

3.5 using dvv and dvvs in distributed key-value stores 39

function sync The function sync takes two sets of clocks, each de-
scribing a set of siblings, and returns the set of clocks for the siblings
that remain after removing obsolete ones. It can have a general defi-
nition only in terms of the partial order on clocks, regardless of their
actual representation: Equation 1.

function join The join function takes a set of clocks and returns
a single clock that describes the collective causal past of all siblings in
the set received. An actual implementation of join is any function that
corresponds to performing the union of all the events (dots) in the CH

corresponding to the set, i.e., that satisfies Equation 2.

function discard The discard function takes a set of clocks S (rep-
resenting siblings) and a clock C (representing the context), and dis-
cards from S all siblings that are obsolete because they are included in
the context C. Similar to sync, discard has a simple general definition
only in terms of the partial order on clocks: Equation 3.

function event The event function takes a set of clocks S (repre-
senting siblings), a clock C (representing the context) and a replica node
identifier r; it returns a new clock to represent a new version, given by a
new unique event (dot) generated at r, and having C in the causal past.
An implementation must respect Equation 4.

sync(S1,S2) = {x ∈ S1 | @y ∈ S2. x < y}∪

{x ∈ S2 | @y ∈ S1. x < y} (1)

CH(join(S)) =
⋃

{CH(x) | x ∈ S} (2)

discard(S,C) = {x ∈ S | x 66 C} (3)

CH(event(C,S, r)) = CH(C)∪ {next(C,S, r)} (4)

Function next denotes the next new unique event (dot) generated with
r, which can be deterministically defined given C, S and r.

40 dotted version vectors

3.5.1 Serving a Get

Functions sync and join are used to define the get operation: when a
server receives a get request, it may ask to a subset of replica nodes
for their set of versions and clocks for that key, to be then “merged”
by applying sync pairwise; however, the server can skip this phase if it
deems it unnecessary for a successful response. Having the necessary
information ready, it returns to the client both the values stripped from
causality information and the context as a result of applying join to
the clocks. sync can also be used at other times, such as anti-entropy
synchronization between replica nodes.

3.5.2 Serving a Put

When a put request is received, the server forwards the request to a
replica node for the given key, unless the server is itself a replica node.
A non-replica node for the key being written could coordinate a put

request if VVclient were used, because it could use the client Id to update
the clock and then propagate the result to the replica nodes. However,
clocks using server Ids like VVserver, DVV and DVVS need the coordinating
node to generate a unique event in the clock, using its own Id. Not
forwarding the request to replica nodes, would mean that non-replica
nodes Ids would be added to clocks, making them linear with the total
number of servers (e.g. hundreds) instead of only the replica nodes (e.g.
three).

When a replica node r, containing the set of clocks Sr for the given
key, receives a put request, it starts by removing obsolete versions from
Sr, using function discard, resulting in S ′r; it also generates a new clock
u for the new version with event; finally, u is added to the set of non-
obsolete versions S ′r, resulting in S ′′r .

The server can then save S ′′r locally, propagate it to other replica
nodes and successfully inform the client. The order of these three steps
depends on the system’s durability and replication parameters. Each

3.5 using dvv and dvvs in distributed key-value stores 41

replica node that receives S ′′r , uses function sync to apply it against its
own local versions.

For each key, the steps at the coordinator (discarding versions, gener-
ating a new one and adding it to the non-obsolete set of versions) must
be performed atomically when serving a given put. This can be triv-
ially obtained by local concurrency control, and does not prevent full
concurrency between local operations on different keys. For operations
over the same key, a replica can pipeline the steps of consecutive put

for maximizing throughput (note that some steps already need to be
serialized, such as writing versions to stable storage).

3.5.3 Maintaining Local Conciseness

As previously stated, both DVV and DVVS have a crucial invariant that
servers must maintain, in order to preserve their correctness and con-
ciseness:

Invariant 1. (Local Clock Conciseness) Every key at any server has locally
associated with it a set of version(s) and clock(s), that collectively can be log-
ically represented by a contiguous set of causal events (e.g., represented as a
VV).

To enforce this invariant, we made two design choices: (rule 1) a
server cannot respond to a get with a subset of the versions obtained
locally and/or remotely, only the entire set should be sent; (rule 2) a
coordinator cannot replicate the new version to remote nodes, without
also sending all local concurrent versions (siblings).

Without the first rule, clients could update a key by reading and writ-
ing back a new value with a context containing arbitrary gaps in its
causal history. Neither DVV nor DVVS would be expressive enough to
support this, since DVV only supports one gap (between the contiguous
past and the dot) and DVVS does not support any.

Without the second rule, DVVS would clearly not work, since writes
can create siblings, which cannot be expressed separately with this
clock. It could work with DVV, however it would eventually result in
some server not having a local concise representation for a key (e.g., the

42 dotted version vectors

network lost a previous sibling), which in turn would make this server
unable to respond to get without contacting other servers (see rule 1); it
would degrade latency and in case of partitions, availability could also
suffer.

3.5.4 Dotted Version Vectors

Functions sync and discard for DVV can be trivially implemented accord-
ing to their general definitions, by using the partial order for DVV, al-
ready defined in Section 3.3.2.

We will make use of some two functions: function ids returns the set
of identifiers of a pair from a VV, a DVV or a set of DVV; the maxdot function
takes a DVV or set of DVV and a server id and returns the maximum
sequence number of the events from that server:

ids((i, _)) = {i},

ids(((i, _), v)) = {i}∪ ids(v),

ids(S) =
⋃
s∈S

ids(s).

maxdot(r, ((i,n), v)) = max({n | i = r}∪ {v[r]}),

maxdot(r,S) = max({0}∪ {maxdot(r, s) | s ∈ S}).

Function join returns a simple VV, which is enough to accurately ex-
press the causal information. Function event can be defined as simply
generating a new dot and using the context C, which is already a VV, for
the causal past.

join(S) = {(i,maxdot(i,S)) | i ∈ ids(S)}.

event(C,S, r) = ((r,maxdot(r,S) + 1),C).

3.5 using dvv and dvvs in distributed key-value stores 43

3.5.5 Dotted Version Vector Sets

With DVVS, we need to make slight interface changes: functions now
receive a single DVVS, instead of a set of clocks; and event now inserts
the newly generated version directly in the DVVS.

For clarity and conciseness, we will assume R to be the complete set of
replica nodes ids, and any absent id i in a DVVS, is promoted implicitly
to the element (i, 0, []). We will make use of the functions: first(n, l), that
returns the first n elements of list l (or the whole list if it has less than
n elements, or an empty list for non-positive n); |l| for the number of
elements in l, [x | l] to append x at the head of list l; and function merge:

merge(n, l,n ′, l ′) =

first(n−n ′ + |l ′| , l), if n > n ′,

first(n ′ −n+ |l| , l ′), otherwise.

Function discard takes a DVVS S and a VV C, and discards values in
S obsoleted by C. Similarly, sync takes two DVVS and removes obsolete
values. Function join simply returns the top vector, discarding the lists.
Function event is now adapted to not only produce a new event, but
also to insert the new value, explicitly passed as parameter, in the DVVS.
It returns a new DVVS that contains the new value v, represented by a
new event performed by r and, therefore, appended at the head of the
list for r. The context is only used to propagate causal information to
the top vector, as we no longer keep it per version.

sync(S,S ′) = {(r, max(n,n ′),merge(n, l,n ′, l ′)) |

r ∈ R, (r,n, l) ∈ S, (r,n ′, l ′) ∈ S ′},

join(S) = {(r,n) | (r,n, l) ∈ S},

discard(S,C) = {(r,n, first(n−C(r), l)) | (r,n, l) ∈ S},

event(C,S, r, v) = {(i,n+ 1, [v | l]) | (i,n, l) ∈ S | i = r}∪

{(i, max(n,C(i)), l) | (i,n, l) ∈ S | i 6= r}

44 dotted version vectors

LWW CH VVclient VVserver DVV DVVS

Space Õ(1) Õ(U) Õ(C×V) Õ(R+V) Õ(R×V) Õ(R+V)

Ti
m

e

event − Õ(1) Õ(1) Õ(1) Õ(V) Õ(R)

join − Õ(U×V) Õ(C×V) Õ(1) Õ(R×V) Õ(R)

discard − Õ(U×V) Õ(C×V) Õ(R) Õ(V) Õ(R+V)

sync − Õ(U×V2) Õ(C×V2) Õ(R+V) Õ(V2) Õ(R+V)

PUT Õ(1) Õ(Sw×U×V2) Õ(Sw×C×V2) Õ(Sw×(R+V)) Õ(Sw×V2) Õ(Sw×(R+V))

GET Õ(1) Õ(Sr×U×V2) Õ(Sr×C×V2) Õ(Sr×(R+V)) Õ(R×V+Sr×V2) Õ(Sr×(R+V))

Causally 7 3 3 7 3 3

Correct

Table 2: Space and time complexity, for different causality tracking mecha-
nisms. U: updates; C: writing clients; R: replica servers; V: (con-
current) versions; Sr and Sw: number of servers involved in a GET and
PUT, respectively.

3.6 complexity and evaluation

Table 2 shows space and time complexities of each causality tracking
mechanism, for a single key. Lets consider U the number of updates
(writes), C the number of writing clients, R the number of replica servers,
V the number of concurrent versions (siblings) and Sw and Sr the num-
ber of replicas nodes involved in a put and get, respectively. Note that
U and C are generally several orders of magnitude larger than R and
V . The complexity measures presented assume effectively constant time
in accessing or updating maps and sets. We also assume ordered map-
s/sets that allow a pairwise traversal linear on the number of entries.
LWW is constant both in time and space, since it does not track causality

and ignores siblings. Space-wise, CH and VVclient do not scale well, be-
cause they grow linearly with writes and clients, respectively. DVV scales
well given that typically there is little concurrency per key, but it still
needs a DVV per sibling. From the considered clocks, DVVS and VVserver

have the best space complexity, but the latter is not causally accurate.
Following our framework (Section 3.5), the time complexities are2:

2 For simplicity of notation, we use the bigO variant: Õ, that ignores logarithmic factors
in the size of integer counters and unique ids.

3.6 complexity and evaluation 45

• put is Õ(discard+ event+ Sw × sync) and get is Õ(join+ Sr ×
sync);

• event is effectively Õ(1) for CH, VVclient and VVserver; is linear with
V for DVV, because it has to check each value’s clock; and is Õ(R)
for DVVS because it also merges the context to the local clock;

• join is constant for VVserver, since there is already only one clock;
for CH, VVclient and DVV it amounts to merging all their clocks into
one; for DVVS, join simply extracts the top vector from the clock;

• discard is only linear with V in DVV, because it can check the
partial order of two clocks in constant time; as for CH and VVclient,
they have to compare the context to every version’s clock; VVserver

and DVVS always compare the context to a single clock, and in
addition, DVVS has to traverse lists of versions;

• sync resembles discard, but instead of comparing a set of versions
to a single context, it compares two sets of versions. Thus, CH,
VVclient and DVV complexities are similar to discard, but quadratic
with V instead of linear. Since VVserver and DVVS have only one
clock, the complexity of sync is linear on V .

3.6.1 Evaluation

We implemented both DVV and DVVS in Erlang 3, and integrated it with
our fork of the NoSQL Riak datastore 4. To evaluate the causality track-
ing accuracy of DVVS, and its ability to overcome the sibling explosion
problem, we setup two equivalent 5 node Riak clusters, one using DVVS

and the other VVserver.
We then ran a script5 equivalent to the following: Peter (P) and Mary

(M) write and read 50 times each to the same key, with read-write cycles
interleaved (P writes then reads, next M writes then reads, in alterna-
tion). Figure 7 shows the growth in the number of siblings with every

3 https://github.com/ricardobcl/Dotted-Version-Vectors
4 https://github.com/ricardobcl/riak_kv/tree/dvvset
5 https://gist.github.com/ricardobcl/4992839

https://github.com/ricardobcl/Dotted- Version-Vectors
https://github.com/ricardobcl/riak_kv/tree/dvvset
https://gist.github.com/ricardobcl/4992839

46 dotted version vectors

Mary

Peter

Replica
PUT GET

PUT GET

PUT GET

PUT

. . .

. . .

Figure 6: Peter and Mary interleave read-write cycles.

 20

 40

 60

 80

 100

 120

 140

 20 40 60 80 100

C
on

cu
rr

en
t V

er
si

on
s

Writes

Version Vectors
Dotted Version Vector Sets

Figure 7: Results of running two interleaved clients with 50 writes each.

new write. The cluster with VVserver had an explosion of false concur-
rency: 100 concurrent versions after 100 writes. Every time a client
wrote with the its latest context, the clock in the server was already
modified, thus generating and adding a sibling. However, with DVVS,
although each write still conflicted with the latest write from the other
client, it detected and removed siblings that were causally older (all the
siblings present at the last read by that client). Thus, the cluster with
DVVS had only two siblings after the same 100 writes: the last write from
each client.

Finally, DVVS has already seen early adoption in the industry, namely
in Riak, where it is the default logical clock mechanism in the latest
release. As expected, it overcame the sibling explosion problem that
was affecting real world Riak deployments, when multiple clients wrote
on the same key.

3.7 discussion 47

3.7 discussion

We have presented Dotted Version Vectors, a novel solution for track-
ing causality among update events. The base idea is to add an extra
isolated event over a causal history. This is sufficiently expressive to
capture all causality established among concurrent versions (siblings),
while keeping its size linear with the number of replicas.

We then proposed a more compact representation — Dotted Version
Vector Sets — which allows for a single data structure to accurately
represent causal information for a set of siblings. Its space and time
complexity is only linear with the number of replicas plus siblings, bet-
ter than all current mechanisms that accurately track causality.

Finally, we introduced a general workflow for requests to distributed
data stores. It abstracts and factors the essential operations that are
necessary for causality tracking mechanisms. Using DVV with its sys-
tem workflow, at most a single update event that is outside the VV is
needed, and thus a single dot per version is enough. DVVS goes further,
by condensing all causal information in a VV, while being able to keep
multiple implicit dots. This ensures just enough expressiveness to allow
any number of concurrent clients and still avoids the size complexity
of encoding a generic non sequential CH. Additionally, by isolating the
dot that identifies the version, causality can be checked in O(1) time for
DVV instead of O(n) time.

One could be led to think that the conciseness obtained using server-
based ids would contradict Charron-Bost minimality result [13], which
states that vector clocks VC [19, 42] are the most concise characterization
of causality among process events. Such is not the case because, not
only the problems addressed by VC and VV are different [2], but essen-
tially because the present scenario does not involve direct client-to-client
interaction: all interactions are intermediated by servers.

4
N O D E - W I D E I N T R A - O B J E C T C A U S A L I T Y
M A N A G E M E N T

In this chapter we introduce a novel node-wide logical clock framework,
Node-wide Dot-based Clocks (NDC), overcoming three fundamental
limitations of the state of the art: (1) minimize the metadata per key
necessary to track causality, avoiding its growth even in the face of
node churn; (2) correctly and durably delete keys, with no need for
tombstones; (3) offer a lightweight anti-entropy mechanism to converge
replicated data, avoiding the need for Merkle Trees.

We evaluate DottedDB, a Dynamo-like key-value store which we im-
plemented, based on the NDC framework, against MerkleDB, an oth-
erwise identical database, except that it uses standard per-key logi-
cal clocks and Merkle Trees for anti-entropy, to ensure a fair compar-
ison with the state-of-the-art and precisely measure the impact of the
novel approach. Results show that: causality metadata per object al-
ways converges rapidly to only one id-counter pair; distributed deletes
are correctly achieved without global coordination and with constant
metadata; divergent nodes are synchronized faster, with less memory-
footprint and with less communication overhead than using Merkle
Trees.

49

50 node-wide intra-object causality management

4.1 system overview

4.1.1 System Model

The database is composed by a set of nodes, each with its own storage.
Each node has a unique id and can only communicate with other nodes
via asynchronous message passing. Messages can be lost and reordered.
Nodes can crash and restart with stable storage, or can fail entirely and
be replaced by a new node with a new id and an empty storage.

4.1.2 Partial Replication

Objects are replicated across a set of nodes. The number of replicas
can be customized across the entire server or on a per-object basis. It
is typically much smaller (e.g., 3) than the number of nodes (e.g., 100).
Nodes that share replicas of some object are called peer nodes. In general,
the common set of objects replicated by two peer nodes is only a small
subset of the objects stored at either one.

4.1.3 Client API

The database is a key-value store, where objects are accessed through
their key. A client can issue requests to any node in the server. If the
contacted node does not hold a replica of the requested key, it forwards
the request to one of the replica nodes for that key. These operations
are available:

(values, context)← get (key)

bool← put (key, value, context)

bool← delete (key, context)

When the client fetches an object by key, a list of objects is returned,
reflecting possible concurrent updates, together with an opaque causal
context. This causal context plays a role in maintaining the causal his-
tory of individual objects by allowing the client to link a get to a sub-

4.2 node-wide dot-based clocks framework 51

sequent update operation, either put or delete, which takes the causal
context as an extra parameter.

Typically, a client wanting to perform a read-modify-update operation
will perform a get, modify the value(s) returned and issue a put, pass-
ing the new value together with the causal context from the get.

4.2 node-wide dot-based clocks framework

Node-wide Dot-based Clocks (NDC) is a general framework for distributed,
partitioned and replicated databases. It assumes a master-less collection
of nodes, any of which can handle client requests, without distributed
locking or global coordination. It aims to: (a) reduce to a minimum
the amount of causality metadata stored per object, even with node
churn; (b) provide a causally-safe way to delete objects with no need for
tombstones; (c) provide a lightweight anti-entropy protocol exploiting
the logical clocks. To achieve this, it makes use of some key ideas:

every update has a globally unique identifier (dot) Ev-
ery time a node coordinates a client request that updates a local object
(including deletes), it generates a new globally unique identifier, by pair-
ing the node id with a node-wide monotonically increasing counter; we
call this pair a dot. Since every version of an object in the system has a
unique dot, nodes can summarize their knowledge of updates in a sin-
gle data structure: the node clock. It contains all dots generated locally
or received from peer nodes via replication or anti-entropy.

object metadata migrates to the node clock Since the node
clock summarizes the local storage history, causality metadata for each
object version (i.e., dots representing its causal past) can eventually be
omitted when saving to storage or when sending to another node, using
the strip operation. When an object is fetched from storage, its causal
past can be recovered through the node clock, using the fill operation.

52 node-wide intra-object causality management

churn rate does not affect object metadata size This fill-
strip mechanism allows metadata in objects to remain effectively con-
stant in size, even when new nodes keep entering the system to replace
old nodes over time. This is because the dots from retired nodes are
eventually included in the node clock and therefore stripped from ob-
jects.

the node clock is the delete tombstone In distributed data
stores without coordination, client deletes only remove the payload of
an object, leaving the causal metadata as a tombstone. This is done to
avoid anomalies, such as receiving an older version of a deleted object
via replication or anti-entropy, which will make the object reappear or
even supersede recent writes.

However, the node clock can act as the tombstone for all deleted ob-
jects, since it eventually summarizes all metadata. Thus, deleted objects
can be safely removed from storage, since they will be restored (i.e.
filled) to the corresponding tombstone when read.

nodes can synchronize by comparing node clocks The
anti-entropy protocol responsible for detecting and repairing obsolete
data, can now simply compare node clocks, to learn which dots from
one node are missing from another node.

4.2.1 The Node Clock

The node clock represents which update events this node has seen, di-
rectly (coordinated by itself) or transitively (received from others). In
abstract, it represents the set of dots corresponding to those updates.

Concretely, the node clock groups dots per peer node, factoring out
the node id part from the dots. Also, each set of counters associated
with a node id, can be greatly compacted by exploiting the fact that dots
are generated with consecutive counters. For each node, the node clock
represents the set of counters in two parts: a base counter representing

4.2 node-wide dot-based clocks framework 53

the contiguous sequence starting from 1 (as in Version Vectors), and a
set of non-contiguous counters.

Since the latter typically represents a small range of dots (the gaps in
non-contiguous sets are filled in anti-entropy runs), it can be efficiently
encoded as a bitmap, as in our implementation in DottedDB.

4.2.2 Per-Object Clock

An object internally encodes a logical clock by tagging every value
(there can be multiple concurrent values) with a dot and storing causal-
ity information about all current and past versions also as dots. We
call the former versions and the latter causal context. Dots are removed
(stripped) from the causal context if they are included in the node clock.
The dot in a version is never removed, since it is used to test if another
object obsoletes that version.

Because dot generation is per-node instead of per-key, it is unlikely
that dots in the causal context are contiguous. To solve this issue, we
will use the notion of an extrinsic set, first defined by the authors of
[41]. The following definition improves and generalizes the original
definition (note that an event can be seen as a write made to a particular
key):

Definition 4.2.1 (Extrinsic). A set of events E1 is said to be extrinsic to
another set of events E2, if the subset of E1 events involving keys that
are also involved in events from E2, is equal to E2.

This definition means that all gaps can be filled with extra dots, pro-
ducing the extrinsic set of the original. Those extra dots are from ver-
sions of other keys, since an object containing a version with a dot (n, c),
must have seen all prior versions coordinated by node n with a dot
smaller than (n, c). Thus, the context can be represented only by the
largest dot per node id, like a Version Vector, without sacrificing cor-
rectness.

54 node-wide intra-object causality management

4.2.3 Node State

The NDC framework requires each node to maintain five data-structures:

1. Node Clock (NC): all dots from current and past versions seen by
this node;

2. Dot-Key Map (DKM): maps dots of locally stored versions to keys.
This is required by the anti-entropy protocol to know which key
corresponds to a missing dot that needs to be sent to another node.
Entries are removed when dots are known by every peer node;

3. Watermark (WM): a cache of node clocks from every peer (includ-
ing itself). It is used to know when a dot is present in all peers,
enabling the removal of that entry in the DKM. It is updated in
every anti-entropy round, taking advantage of the node clock ex-
change. In practice, only the base counter of every node clock
entry is saved, resulting in a more compact representation as a
matrix, although slightly delaying the garbage collection of DKM;

4. Non-Stripped Keys (NSK): the keys of local objects with a non-
empty causal context. When an object is saved to storage, it may
have entries in the causal context that are not included in the node
clock. To guarantee that every object is eventually stripped of its
causal context, this list is periodically iterated to check if the causal
context can be completely removed;

5. Storage (ST): maps keys to objects.

The definition of these data-structures is as follows:

NC : I ↪→ P(N)

DKM : (I×N) ↪→ K

WM : I ↪→ I ↪→ N

NSK : P(K)

ST : K ↪→ Object

Object : ((I×N) ↪→ V)× (I ↪→ N)

4.2 node-wide dot-based clocks framework 55

Algorithm 1: Client API at Node i.
1 procedure GET(k : K,quorum[= 1] : N):
2 O := ∅
3 parallel for j ∈ replica_nodes(k) do
4 O := O∪ rpc(j, fetch, 〈k〉)
5 await(size(O) > quorum)
6 (vers, cc) := (∅, ∅)
7 for o ∈ O do
8 (vers, cc) := merge((vers, cc),o)
9 return (ran(vers), cc)

10

11 procedure PUT(k : K, v : V, cc : I ↪→ N):
12 c := max(NCi[i]) + 1
13 NCi[i] := NCi[i]∪ c
14 ver := ((i, c), v)
15 o := update(k, ({ver}, cc))
16 for j ∈ replica_nodes(k) do
17 async_rpc(j, update, 〈k,o〉)
18

19 procedure DELETE(k : K, cc : I ↪→ N):
20 PUT(k, null, cc)

4.2.4 Serving Client Requests

Algorithm 1 describes the three operations are available to a client: GET,
PUT, and DELETE.

get To read an object, the client specifies the key and optionally the
quorum size for the number of replicas to fetch. Any node can coordi-
nate a read; it first requests replica nodes for that key; when it obtains a
sufficient number of replicas, it merges them; the resulting causal con-
text is returned, along with all concurrent values.

put The coordinator node generates a new dot that together with the
new value, forms the new version of this object. That version, together
with the client context (with the new dot) forms a temporary object that
is used to update the local object, merging them. Finally, the object is
sent to other nodes that replicate that key.

56 node-wide intra-object causality management

Algorithm 2: Strip and Fill Operations at Node i.
1 function strip((vers, cc) : Object,NC : I ↪→ P(N)):
2 for j ∈ dom(cc) do

// function base returns the greatest counter b in some collection C, where

∀i ∈ [1,b]. i ∈ C

3 if cc[j] 6 base(NC[j]) then
4 cc := {j}�− cc

5 return (vers, cc)
6

7 function fill(k : K, (vers, cc) : Object,NC : I ↪→ P(N)):
8 for j ∈ replica_nodes(k) do
9 cc[j] := max(cc[j], base(NC[j]))

10 return (vers, cc)

delete The DELETE API is exactly like a write, but without a new
value. The new dot is associated with a null value and the PUT op-
eration is called. It is important to note that if the client context does
not include the dot of some locally stored version, such version will
not be deleted. This is the desired behavior because such version is
causally concurrent with the delete. This respects causality and avoids
anomalies, like clients unknowingly deleting a concurrent update from
another client, or a slowly propagated delete removing future object
updates.

4.2.5 Auxiliary Operations

The already discussed fill and strip operations are defined in Algorithm
2. There are four other auxiliary operations defined in Algorithm 3:
fetch, store, update, merge.

Reading an object with fetch fills the context with the current node
clock base, restoring causality information. The restored context can be
larger than the original one without affecting correctness, because all
new causal information is either from older versions of this key or from
dots of others keys.

The store operation first strips the object. Then, if the causal context
is empty and there are only null values, the object is removed from
storage; otherwise, the object is saved to storage. In addition, it: (a)

4.2 node-wide dot-based clocks framework 57

Algorithm 3: Auxiliary Operations at Node i.
1 function fetch(k : K):
2 return fill(k,STi[k],NCi)
3

4 procedure store(k : K,o : Object):
5 (vers, cc) := strip(o,NCi)

// remove object if no values and cc is empty

6 if { val ∈ ran(vers) | val 6= null } = ∅ ∧ cc = ∅ then
7 STi := {k}�−STi

8 else STi[k] := (vers, cc)
9 for (j, c) ∈ dom(vers) do

10 NCi[j] := NCi[j]∪ {c}
11 DKMi[(j, c)] := k
12 if cc = ∅ then NSKi := NSKi \ {k}

13 else NSKi := NSKi ∪ {k}
14

15 function merge((v1, cc1) : Object, (v2, cc2) : Object):
16 v := v1 ∩ v2
17 v1 := { (dot, val) ∈ v1 | dot 6∈ cc2 }
18 v2 := { (dot, val) ∈ v2 | dot 6∈ cc1 }
19 return (v∪ v1 ∪ v2, cc1 ∪ cc2)
20

21 function update(k : K,o : Object):
22 (vers, cc) := merge(o, fetch(k))

// make sure that the context covers the current version dots

23 for (j, c) ∈ dom(vers) do
24 cc[j] := max(cc[j], c)
25 store(k, (vers, cc))
26 return (vers, cc)

adds all version dots to the node clock and to the dot-key map, (b) adds
the key to the non-stripped key set if the causal context is not empty, or
removes the key from the set otherwise.

The merge function takes two objects, and returns a new object with
the causal contexts merged (taking the maximum counter for common
node ids) and the versions of each object not obsoleted by the other.
An object version (dot, val) is obsoleted by another object (vers, cc), if
(dot, val) 6∈ vers and dot ∈ cc. Finally, the update operation merges the
receiving object with the local object and then stores and returns the
result.

58 node-wide intra-object causality management

Algorithm 4: Anti-Entropy Protocol at Node i.
1 process anti_entropy():
2 loop forever
3 j := random(peers(i) \ {i})
4 async_rpc(j, sync_clock, 〈i,NCi〉)
5 sleep(sync_interval)
6

7 procedure sync_clock(p : I,NC : I ↪→ P(N)):
8 K := {k | ((j, c),k) ∈ DKMi ∧ c 6∈ NC[j] ∧ p ∈ replica_nodes(k) }
9 O := { (k,STi[k]) | k ∈ K }

10 async_rpc(p, sync_repair, 〈i,NCi,O〉)
11

12 procedure sync_repair(p : I,NC : I ↪→ P(N),O : K×Object):
13 for (k,o) ∈ O do
14 update(k, fill(k,o,NC))

// merge p’s node clock entry to close gaps

15 NCi[p] := NCi[p]∪NC[p]
16 update_watermark(p,NC)
17 gc_dkm()

18

19 procedure update_watermark(p : I,NC : I ↪→ P(N)):
// update the WM with new i and p clocks

20 for j ∈ dom(NC)∩ peers(i) do
21 WMi[p][j] := max(WMi[p][j], base(NC[j]))
22 WMi[i][p] := base(NCi[p])

23

24 procedure gc_dkm():
25 for (j, c) ∈ dom(DKMi) do
26 if min({WMi[p][j] | p ∈ peers(j) }) > c then
27 DKMi := {(j, c)}�−DKMi

4.2.6 Background Tasks

There are two background processes running at every node: the anti-
entropy and the causality stripping. Both assume the definition of the
function peers(i) that returns the node IDs of all peers of node i, includ-
ing i.

anti-entropy Algorithm 4 describes the anti-entropy background
process running in every node. Periodically, the anti-entropy process in
a node i chooses a random peer j to sync with, and sends its node clock.

4.3 fault tolerance 59

Algorithm 5: Causality Stripping at Node i.
1 process strip_causality():
2 loop forever
3 for k ∈ NSKi do store(k,STi[k])
4 sleep(strip_interval)

Node j collects all keys whose dots in the dot-key map are not present
in node i history, while ignoring keys that are not replicated by i. It
then fetches all local objects corresponding to those keys and sends
them to i, along with all dots in j’s history that were generated locally.
Every object is read directly from storage without being filled, to save
bandwidth; they are later filled at node i.

Upon receiving the missing objects, i updates all local objects with the
received information. Additionally, it: (a) merges j’s node clock entry
into i’s node clock, closing any gap from dots of j not replicated by i;
(b) updates the watermark with the base of i’s and j’s node clock (using
the update_watermark procedure); (c) removes any entry in the dot-key
map, if the dot is known by all peers (using the gc_dkm procedure)1.

causality strip Algorithm 5 defines the periodic process run at
every node to strip causality from objects. Periodically, the node iter-
ates the non-stripped keys, reading each one directly from storage and
storing them back. The store operation already takes care of the strip-
ping and updates the NSK accordingly.

4.3 fault tolerance

NDC makes few system assumptions, in order to tolerate as many fail-
ures as possible. Temporary network partitions or message loss simply
delay the rate of convergence to a consistent state, since anti-entropy
eventually repairs replicated data. Node churn temporarily increases
metadata in all structures, since both the old and new node entries
must be maintained, until the old entries can be safely removed from

1 The last two functions could be separated in two different processes with their own
interval.

60 node-wide intra-object causality management

every structure. The node clock maintains the entire node history, in-
cluding for retired nodes, in a compact way (retired nodes eventually
are represented as entries in a version vector).

4.3.1 Transitive Anti-Entropy Repair

Tracking every peer’s state in the watermark and keeping dot-key pairs
even for objects coordinated by other peers, enables nodes to transitively
exchange and repair objects with each other. If communication between
some peers A and B is down, or they are not online at the same time,
they can still be kept synchronized if a third peer C can communicate
with both.

4.3.2 Node Failures

All NDC data structures and objects are updated in memory and peri-
odically saved to durable storage to maintain consistency. Objects are
saved first and if no failures occurred, then the node clock and other
auxiliary structures are saved atomically to disk. Whether a node restarts
and only loses its in-memory state, or also loses its storage, it should
always obtain a new node id before resuming activity. Node ids must
enable peers to identify the new node as a replacement for the old one.
This can be done by having node ids made up of two components: one
which identifies the key space covered and another being a globally
unique id, over a total order.

A node with a new node id can immediately serve new client requests,
since new dots are guaranteed to be globally unique. In the background,
the node performs normal anti-entropy with all peers to recover any
missing data.

When a node detects a new node id being used, it will start tracking
how many rounds of anti-entropy were done for each peer. After per-
forming anti-entropy with all of them, there cannot be missing objects
(and corresponding dots) from the old node. Therefore, any gaps in the
local node clock from the old node entry, are not relevant anymore and

4.4 experimental evaluation 61

they can be closed as if an anti-entropy run with the old node had been
performed. This leaves a single integer in the node clock entry, and it
guarantees that objects can always be stripped (or deleted form storage),
even under node churn.

If a retired node comes back online and is allowed to perform anti-
entropy with its peers, this can possibly result in some objects from the
retired node to be deleted. The reason is that some dots could have been
manually inserted into node clocks from current peers (as explained
above), without having the corresponding objects locally stored. Since
missing dots that are not stored locally are considered deletes, an anti-
entropy round would delete those object in the retired node. Therefore,
if a new node is added to the cluster, it is safe to assume that any data
that only the old node had is lost, even if it comes back online.

Upon detecting a new node id, the node must also add a new node id
entry to every relevant node clock in the watermark, as soon as possible.
This is because computing the minimum common knowledge depends
on having information about every participant, in this case all current
peers. The old peer entry can be removed from the watermark as soon
as there are no more dots from that old node in the dot-key map, since
that is the purpose of the watermark.

4.4 experimental evaluation

To evaluate NDC against the state of the art, we implemented two dis-
tributed databases: DottedDB and MerkleDB. They share the exact same
codebase, but diverge in the way they handle anti-entropy, object causal-
ity and distributed deletes.

4.4.1 DottedDB

We implemented a distributed database named DottedDB that uses the
NDC framework both as its anti-entropy mechanism and to respect per-
object causality.

62 node-wide intra-object causality management

DottedDB was implemented in Erlang, using the distributed systems
framework Riak Core [29]. It runs on a cluster of physical machines,
each having multiple instances of an abstraction called a virtual node
(vnode). Each vnode is completely independent and isolated, with its
own storage and memory, much like our definition of nodes in the sys-
tem model. They only communicate via message passing and run client
requests sequentially. Vnodes are totally ordered in a ring and assigned
to physical machines sequentially.

Data is replicated with consistent hashing [27]: the hash of a key
maps to a specific ring position, and then the key/object is replicated to
the next n vnodes in the ring, where n is the desired replication factor.

4.4.2 MerkleDB

We also implemented MerkleDB, a clone of DottedDB in every way,
except that it uses Merkle Trees for its anti-entropy mechanism, and
Dotted Version Vectors as the logical clock to track each object causality.
This mimics the current industry state of the art for distributed key-
value stores that track causality, as in Riak 2.0 and later versions.

4.4.3 Configuration

We ran both DottedDB and MerkleDB in a cluster of 5 physical ma-
chines, divided in 64 independent vnodes. An additional machine
was used to ran YCSB [14], a benchmark tool for NoSQL distributed
databases. Every run is made after a loading phase of the entire key-set.
All machines used for these experiments have an Intel i3 CPU at 3.1GHz,
8GB of main memory, a 7200 RPM SATA disk, and are interconnected
by a switched Gigabit network.

4.4.4 Object Logical Clock

In both systems, we used a logical clock to track object causality. MerkleDB’s
clock is a Dotted Version Vector, while DottedDB uses NDC for this pur-

4.4 experimental evaluation 63

0 200 400 600 800 1000 1200

Time (s)

0

2

4

6

8

10

12

14

#
 E

n
tr

ie
s

p
e
r

O
b
je

ct
 C

lo
ck

MerkleDB, Replication=3

MerkleDB, Replication=6

DottedDB, Replication=3

DottedDB, Replication=6

Figure 8: Average number of entries in object clocks written to storage, for two
different replication factors, with node churn.

pose. We’ll evaluate the scalability of the logical clock per object, how
fast DottedDB can strip the clock and how that translates to actual dis-
tributed deletes.

4.4.4.1 Object Clock Scalability

Figure 8 shows the average number of entries in object clocks written to
store over time. To simulate node churn, one node is replaced every 4

seconds. (This aggressive churn rate allows a short run to depict what
would normally happen over a longer period.) Update requests are
issued 150 times per second for 5000 keys, and we take a measure every
time we write objects to storage.

MerkleDB never removes entries from the object clock; therefore, this
number is proportional to the number of nodes that have ever been
replica nodes for the key. Figure 8 clearly shows that with node churn,
the average size of the object clock keeps growing, with new updates
adding the new node ids to the clock.

In DottedDB, even under an aggressive churn rate and continuous
updates over the key range, we can see that with a replication factor
of 3 we have between 1 and 2 entries per clock written to storage on

64 node-wide intra-object causality management

0 5 10 15 20

Time from update to strip (s)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

10s Strip Interval, 100% Replication Loss

10s Strip Interval, 10% Replication Loss

1s Strip Interval, 100% Replication Loss

1s Strip Interval, 10% Replication Loss

0.1s Strip Interval, 100% Replication Loss

0.1s Strip Interval, 10% Replication Loss

Figure 9: CDF (Cumulative Distribution Function) of time needed to strip the
causal past in an object’s clock, after the update at the coordinating
node.

average. This figure grows to an average of 3 entries per object for a
replication factor of 6. Importantly, this figures do not grow over time.
New node ids from node churn do not pose a problem; entries are
summarized by the node clock shorty after.

4.4.4.2 Strip Latency

Figure 9 shows the cumulative distribution of the time it takes for an
object to have its entire context stripped in DottedDB, for a sync interval
(time between anti-entropy runs) of 100 ms. We use different strip in-
tervals (the time between each attempt to strip objects), either identical
(0. 1 sec) or slower (1 and 10 sec) than the sync interval; and two failure
rates of replication messages when serving client requests (either 10%,
or 100% – in which case replica propagation is only by anti-entropy).
Even with a strip interval of 10 sec, after 20 sec almost all objects are
stripped. Strip intervals of 100 ms or 1 sec give identical results: 90% of
objects are stripped in less than 5 sec. Replication message loss when
serving client requests did not have significant effect.

4.4 experimental evaluation 65

0 200 400 600 800 1000 1200
Time (s)

0

10000

20000

30000

40000

50000

#
 O

b
je

ct
s

in
 S

to
ra

g
e

MerkleDB

DottedDB

Ideal

Figure 10: Number of objects in storage over time. Initially 50 000 objects, serv-
ing 100 ops/s, 50% writes and 50% deletes.

4.4.4.3 Distributed Deletes

MerkleDB does not remove the logical clock associated with an object
that was deleted, keeping it stored as a tombstone. In DottedDB, as soon
as we strip the object clock and no value remains, the entry can be safely
removed from storage; i.e., remaining causally correct (due to the node
clock) without the overhead of storing tombstones.

Figure 10 shows the total number of objects stored in a system pre-
populated with 50 000 objects and serving 100 requests per second, 50%
updates and 50% deletes. DottedDB correctly removes entries, with-
out global coordination, in very little time. There is only a small delay
between DottedDB and the Ideal scenario (immediate removal from stor-
age). We have observed this delay to be proportional to the strip interval
used, which in this run was 2.5 seconds.

Figure 11 show the cumulative distribution for the delay between a
delete request and the actual removal from storage. Unsurprisingly, it
is identical to Figure 9, since the pre-condition to remove an object is to
strip its clock.

66 node-wide intra-object causality management

0 5 10 15 20

Time from update to delete (s)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

10s Strip Interval, 100% Replication Loss

10s Strip Interval, 10% Replication Loss

1s Strip Interval, 100% Replication Loss

1s Strip Interval, 10% Replication Loss

0.1s Strip Interval, 100% Replication Loss

0.1s Strip Interval, 10% Replication Loss

Figure 11: CDF of time it takes to remove an object from storage, since the
delete was issued at the coordinating node.

4.4.5 Anti-Entropy

We compare the anti-entropy used by MerkleDB and DottedDB in four
aspects: (1) hit ratio: percentage of the objects exchanged that were truly
needed; (2) node metadata used by each mechanism; (3) network usage
while performing anti-entropy; (4) replication latency: the delay between
an object being written by the coordinator and the object being stored
in all replicas.

We evaluated 20 minute runs in a database with 500 000 keys, do-
ing 2500 updates/s (each client update includes reading an object before
writing back an updated version), in different scenarios according to a
combination of three parameters, each being either High or Low, with
the values in Table 3: objects per Leaf (applying only to MerkleDB), ei-
ther 1000 or one; percentage of objects updated between anti-entropy
runs, either 10% or 1%; and replication message loss, either 100% (mak-
ing anti-entropy do all the work) or 10%. We evaluated 8 configurations
for MerkleDB and 4 for DottedDB, each denoted with a sequence of let-
ters, H or L, corresponding to each parameter choice, in the order they
appear on the table. For example, MerkleDB HHL uses 1000 objects per

4.4 experimental evaluation 67

Table 3: Parameter choices used when evaluating Anti-Entropy. Objects per
Leaf applies only to MerkleDB.

Objects per Leaf State Changed Message Loss

High 1000 10% 100%
Low 1 1% 10%

leaf, performs anti-entropy when 10% of local storage has changed and
loses 10% of replication messages when serving updates.

4.4.5.1 Hit Ratio

An anti-entropy mechanism should ideally only send objects to synchro-
nize if they are really missing or outdated in the other node. We define
hit ratio as the percentage of the objects sent via anti-entropy that were
needed on the receiving side (i.e., not redundantly transmitted). For
MerkleDB, we consider the number of key-hashes exchanged (relevant
because in many cases object payloads are small, and the key-hash pair
is a non-negligible part of the total size).

Figure 12 show the CDF of the hit ratio for all configurations. In most,
MerkleDB has a hit ratio below 5%, with the exception of MerkleDB LLL
with a hit ratio around 50%, which means that only in a most favorable
scenario, the false positives for missing objects were relatively low. Dot-
tedDB exhibits a high hit ratio in all configurations, especially when
syncing more frequently.

4.4.5.2 Metadata Size

MerkleDB uses only Merkle trees, but since peers do not replicate the
same subset of keys, each node needs one Merkle tree per peer. Us-
ing consistent hashing and a replication factor of 3, each node needs 3

Merkle trees. The space used per Merkle tree is linear with the number
of objects (key-hash lists in leaf nodes), plus the size of the tree itself,
which is fixed upon bootstrap. The expected size of a single Merkle tree
is:

68 node-wide intra-object causality management

0 20 40 60 80 100

Hit Ratio (%)

0.0

0.2

0.4

0.6

0.8

1.0

MerkleDB, HHH

MerkleDB, HHL

MerkleDB, HLH

MerkleDB, HLL

MerkleDB, LHH

MerkleDB, LHL

MerkleDB, LLH

MerkleDB, LLL

DottedDB, HH

DottedDB, HL

DottedDB, LH

DottedDB, LL

Figure 12: CDF of the hit ratio of the anti-entropy protocol.

Tree = (Hash + MD)×
Height∑

i=0

BFi

Lists =
#Keys×RF

#Nodes
× (Hash + MD + Key)

BF is the tree branching factor; Height is the tree height; Hash and MD
are the sizes of hash and additional metadata per hash, respectively;
RF is the replication factor; #Keys is the total number of keys in the
database; #Nodes is the number of nodes; Key is the average key size.
The total metadata per node in MerkleDB is given by (Tree + Lists)× 3.

In DottedDB, metadata consists of the node clock, the dot-key map,
the watermark and the non-stripped keys. In a quiescent state, the dot-
key map and the non-stripped keys are both empty, and the node clock
is simply a version vector. The watermark has constant size.

Figure 13 shows the node metadata over time for the same configu-
rations as before. Since the entire key-set was preloaded, the number
of objects is constant and thus the merkle tree is also constant. Having
fewer keys per leaf (L** configurations) results in larger trees.

4.4 experimental evaluation 69

0 200 400 600 800 1000

Time (s)

0

1000

2000

3000

4000

5000

6000
S
iz

e
 (

K
B

)

MerkleDB, HHH

MerkleDB, HHL

MerkleDB, HLH

MerkleDB, HLL

MerkleDB, LHH

MerkleDB, LHL

MerkleDB, LLH

MerkleDB, LLL

DottedDB, HH

DottedDB, HL

DottedDB, LH

DottedDB, LL

Figure 13: Metadata per node used by the anti-entropy protocol.

In DottedDB metadata is more dynamic, since certain structures grow
and shrink depending on the system load and the sync interval. If the
sync interval is small (configurations LH and LL) metadata is roughly
constant and very small (< 10KB); but even in cases where syncs are
infrequent, metadata remains mostly constant and much smaller than
in merkle trees. While metadata in DottedDB depends mostly on the
divergence, which can be kept small by frequent syncs, in MerkleDB it
depends on the number of keys per node, which can be large.

4.4.5.3 Network Usage

MerkleDB sends each level of a Merkle tree in rounds, as necessary. If
it reaches a leaf node, it sends all key-hashes in that leaf segment, to
compare the hashes and see which objects are missing. DottedDB sends
a combination of the node clock, watermark and missing objects.

Figure 14 shows the average network usage in runs for all configura-
tions as before, segmented by object data (the key-value(s)), object meta-
data (object logical clock) and sync metadata (whatever was transferred
by the protocol, excluding the object data and metadata). It can be seen
that DottedDB is considerably more efficient in terms of network usage

70 node-wide intra-object causality management

Figure 14: Average network traffic used by the anti-entropy protocol.

for all configurations. It is much more efficient in the most realistic
*L scenarios, where network usage is much less than when all replica-
tion is through anti-entropy; comparatively, MerkleDB does not show
such a decrease for **L scenarios when compared with **H ones, and
sometimes the usage even increases, as from HLH to HLL.

Figure 15 shows the relative size between these three components
(sync metadata, object metadata and object data), for a better assess-
ment of their relative costs. Both systems have less anti-entropy over-
head relative to object data+metadata when anti-entropy runs involve
larger sets of objects in bulk, either because all replication is through
anti-entropy (*H and **H configurations) or because a longer sync in-
terval is used (H* and *H* configurations). In any case, for each corre-
sponding scenario, the relative overhead in DottedDB is much less than
in MerkleDB.

4.4.5.4 Replication Latency

Replication latency is the time between the initial write of a value in the
coordinating node and the time the object is stored at another replica
node. For 3 replicas per object each update request gives 2 different

4.4 experimental evaluation 71

Figure 15: Relative proportions of object data, metadata and sync metadata
exchanged in anti-entropy rounds.

times (the coordinator, always a replica node for the object, is excluded
as its time would be 0). Figure 16 shows the CDFs for replication la-
tency, where DottedDB is much faster at repairing data in every sce-
nario. When replication message loss is 100% (replication exclusively
by anti-entropy) and the sync interval is low (Figure 16c), DottedDB
repairs 99% of missing data in less than 20 seconds, while MerkleDB
takes 20 times more.

4.4.6 Replication via Anti-Entropy

As an experiment, we disabled normal replication in DottedDB where
nodes receive client writes and send the new object to other replica
nodes. Instead, anti-entropy is run in fast intervals, being the only
source of data replication.

We experimented with four different anti-entropy intervals: 1 ms, 10

ms, 100 ms and 1000 ms. Every other configuration is equal to the
anti-entropy experiments run before.

72 node-wide intra-object causality management

0 200 400 600 800
Time from request to storage (s)

0.0

0.2

0.4

0.6

0.8

1.0

MerkleDB, HHH
MerkleDB, LHH
DottedDB HH

(a) HH: High number of objects
missing per anti-entropy (10%);
High replication loss (100%).

0 50 100 150
Time from request to storage (s)

0.0

0.2

0.4

0.6

0.8

1.0

MerkleDB, HHL
MerkleDB, LHL
DottedDB, HL

(b) HL: High number of objects
missing per anti-entropy (10%);
Low replication loss (10%).

0 100 200 300 400 500 600 700
Time from request to storage (s)

0.0

0.2

0.4

0.6

0.8

1.0

MerkleDB, HLH
MerkleDB, LLH
DottedDB, LH

(c) LH: Low number of objects miss-
ing per anti-entropy (1%); High
replication loss (100%).

0 10 20 30 40 50 60
Time from request to storage (s)

0.0

0.2

0.4

0.6

0.8

1.0

MerkleDB, HLL
MerkleDB, LLL
DottedDB, LL

(d) LL: Low number of objects miss-
ing per anti-entropy (1%); Low
replication loss (10%).

Figure 16: CDFs of the replication latency: the time from the moment a node
coordinates an update, until the object is stored at another replica.

4.4.6.1 Replication Latency

Figure 17 shows the CDF for the replication latency with varying anti-
entropy intervals. As expected, data is replicated faster with more fre-
quent anti-entropy rounds. In particular, 1 ms and 10 ms have very
similar and fast replication latency profiles.

4.4.6.2 Network Usage

Figure 18 shows the relative usage of the network for the anti-entropy
protocol. The metadata for the anti-entropy grows relative to other data
with shorter intervals, since each round has less data to exchange. Also,
the slower interval has the larger object metadata, which is probably

4.4 experimental evaluation 73

0 5 10 15 20

Time from request to storage (s)

0.0

0.2

0.4

0.6

0.8

1.0

DottedDB, Sync Interval=1ms
DottedDB, Sync Interval=10ms
DottedDB, Sync Interval=100ms
DottedDB, Sync Interval=1000ms

Figure 17: Replication Latency for various AE intervals.

a result of tying the node clock exchange for garbage collection with
the anti-entropy rounds for data synchronization/replication. This sug-
gests that it may be interesting to decouple the metadata exchange used
to garbage collect data from the anti-entropy rounds, so that they can
execute at different time intervals.

Figure 19 shows the network usage for the varying intervals tested.
The fastest interval (1 ms) exchanges almost the same amount of meta-
data as the actual data it replicates, indicating that it may not be ideal
for most scenarios, unless data freshness is the only consideration and
the network is not overloaded. Using a 100 ms interval seems to yield
few advantages when compared to 10 ms in terms of network usage,
while using 10 ms has a much faster replication latency, as discussed
previously. Doing anti-entropy rounds in 1 second intervals seems to
be the less taxing in terms of network usage, which is expected since
data is exchanged in larger batches, avoiding additional metadata and
false positives.

74 node-wide intra-object causality management

Figure 18: Relative proportions of object data, metadata and sync metadata
exchanged in very-fast anti-entropy rounds.

4.4.7 Client Request Latency

Although neither system was particularly optimized for raw perfor-
mance, we compared both in terms of client-perceived latency, using
the same tests in the previous section.

Figure 20 shows the cumulative distribution for client request latency.
DottedDB has a better latency curve all-around, except the tail latency
with slower anti-entropy (H*). Through empirical observations, we
know that these higher latencies are due to our implementation of anti-
entropy, which exchanges objects in bulk, in combination with the fact
that our nodes are single-threaded. This is detrimental to tail latencies
when the number of objects to transfer is large (e.g. H*). MerkleDB
uses Riak’s merkle tree implementation, which exchanges key lists in
separate leaf nodes independently, alleviating this problem. It’s impor-
tant to note that this is a limitation of our implementation and not an
inherent limitation of our NDC framework.

Table 4 confirms the results by showing the average, the 95th and
the 99th percentile for the same tests. The fast synchronization version
of DottedDB (L*) is 33% faster on average than the fastest version of
MerkleDB, and 86% faster on the 99th percentile.

4.5 node-wide dot-based clocks without fill 75

Figure 19: Average network traffic used in very-fast anti-entropy rounds.

Table 4: The average, the 95th and the 99th latencies for client Update requests.
The best result per line is in bold.

DottedDB MerkleDB

HH HL LH LL HHH HHL HLH HLL LHH LHL LLH LLL

Avg. 19.8 16.4 4.8 5.1 7.0 9.3 6.7 8.1 6.4 8.9 7.0 8.0
95th

64 39 8 7 8 11 8 10 8 11 8 10

99th
460 394 66 79 137 173 128 155 123 163 143 149

4.5 node-wide dot-based clocks without fill

There is an alternative approach to the NDC framework that never fills
the object context with the node clock, in exchange for a slightly delayed
garbage collection. We call this variant NDC Without Fill (NDC-NF) and
the main idea is that if all current versions of the object are in all replica
nodes, then the old object versions represented in the context have been
removed everywhere. Thus, the context has served its purpose of elim-
inating older versions when exchanging and merging objects, and can
be removed entirely.

All data structures are the same as NDC, except for NSK that is no
longer needed. Objects will be stripped when the dots of their current
versions are removed from the DKM.

76 node-wide intra-object causality management

100 101 102 103

Update Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

MerkleDB HHH
MerkleDB LHH
DottedDB HH

(a) HH: High number of objects
missing per anti-entropy (10%);
High replication loss (100%).

100 101 102 103

Update Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

MerkleDB HHL
MerkleDB LHL
DottedDB HL

(b) HL: High number of objects
missing per anti-entropy (10%);
Low replication loss (10%).

100 101 102 103

Update Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

MerkleDB HLH
MerkleDB LLH
DottedDB LH

(c) LH: Low number of objects miss-
ing per anti-entropy (1%); High
replication loss (100%).

100 101 102 103

Update Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

MerkleDB HLL
MerkleDB LLL
DottedDB LL

(d) LL: Low number of objects miss-
ing per anti-entropy (1%); Low
replication loss (10%).

Figure 20: CDFs for the latency of client Update requests.

4.5.1 Algorithms

Algorithm 6 shows the client API for NDC-NF. The put and delete oper-
ations are the same, but the get operation must explicitly add the dots
of the object versions to the causal context returned to the client. With-
out this, a stripped object with no context would send an empty context
to the client, that if used in a subsequent update to the same key, would
not dominate the versions previously read by the client.

Algorithm 7 defines the auxiliary operations for NDC-NF. Notably,
the fill operation is removed, as it is no longer used in this version of
NDC. Also, the merge operation remains the same.

The strip operation now only strips the causal context of an object if
the version dots are known by all replica nodes of that key. When this

4.5 node-wide dot-based clocks without fill 77

Algorithm 6: GET Operation at Node i with NDC-NF.
1 procedure GET(k : K,quorum[= 1] : N):
2 O := ∅
3 parallel for j ∈ replica_nodes(k) do
4 O := O∪ rpc(j, fetch, 〈k〉)
5 await(size(O) > quorum)
6 for o ∈ O do
7 (vers, cc) := merge((vers, cc),o)

// add current dots to causal context for the client

8 return (ran(vers), cc∪ dom(vers))

9

10 procedure PUT(. . .):
// the same

11 procedure DELETE(. . .):
// the same

happens, it means that the causal context has reached all replica nodes,
and therefore removed all possible older versions present in the causal
context.

The fetch operations now returns the object directly from storage,
without the need to fill any causal context.

update The update operation now checks if all versions from the
received object are already known by the node clock. If there is nothing
new, then this object serves no purpose and it is ignored, returning the
local object.

This new test in the update operation is not necessary in NDC but it
is in NDC-NF, because nodes now are vulnerable to older objects that
for some reason reach a node after the newer object is in all nodes; this
should be extremely rare, but can happen with network reordering/de-
lays.

The problem with older objects being replicated after removing the
context of the current object is due to the assumption that every older
object is now deleted. This is not relevant with NDC, since the context
is always restored whenever the object is read from storage.

Versions of the incoming object that are already known by the local
node are discarded before merging to the local object to avoid the reap-
pearence of obsolete versions.

78 node-wide intra-object causality management

Algorithm 7: Auxiliary Operations at Node i with NDC-NF.
1 function fetch(k : K):

// return the object as-is, without filling

2 return STi[k]

3

4 procedure store(k : K,o : Object):
5 for (j, c) ∈ dom(vers) do
6 NCi[j] := NCi[j]∪ {c}
7 DKMi[(j, c)] := k
8 STi[k] := o

9

10 function merge(. . .):
// the same

11

12 function update(k : K, (vers, cc) : Object):
13 if dom(vers) ⊆ NCi then return fetch(k)
14 vers := { (d, v) ∈ vers | d 6∈ NCi }

15 (vers, cc) := merge((vers, cc), fetch(k))
16 for (j, c) ∈ dom(vers) do cc[j] := max(cc[j], c)
17 store(k, (vers, cc))
18 return (vers, cc)
19

20 function strip((vers, cc) : Object):
// test if all current dots are in all replica nodes

21 for (j, c) ∈ dom(vers) do
22 if min({WMi[p][j] | p ∈ peers(j) }) < c then
23 return (vers, cc)
24 return (vers, ∅)
25

26 function����fill(. . .):
// not needed anymore

store The store operation is now simplified to only update the node
clock and the dot-key map and finally save the new object to storage.
The process of stripping was delegated to another function that is called
after anti-entropy rounds and the NSK is no longer needed.

4.5.1.1 Background Processes

Algorithm 8 shows the new definitions for NDC-NF background pro-
cesses. The strip_causality process is removed, since the equivalent strip-
ping process can be made by the gc_dkm procedure. When a dot is

4.5 node-wide dot-based clocks without fill 79

Algorithm 8: Background Tasks at Node i with NDC-NF.
1 process(((((

(((strip_causality():
// not needed anymore

2 process anti_entropy():
// the same

3 procedure sync_clock(. . .):
// the same

4

5 procedure sync_repair(p : I,NC : I ↪→ P(N),O : K×Object):
// the same

6

7 procedure update_watermark(p : I,NC : I ↪→ P(N)):
// the same

8

9 procedure gc_dkm():
// remove entries known by all peers

10 for ((j, c),k) ∈ DKMi do
11 if min({WMi[p][j] | p ∈ peers(j) }) > c then
12 DKMi := {(j, c)}�−DKMi

13 (vers, cc) := strip(STi[k])
14 if { val ∈ ran(vers) | val 6= null } = ∅ ∧ cc = ∅ then
15 STi := {k}�−STi

16 else if cc = ∅ then
17 STi[k] := (vers, ∅)

known by all replica nodes, it is the perfect time to check if the corre-
sponding object can be stripped, because if that dot corresponds to the
only version of the object, then that object is in all replica nodes and
the context will be removed. This also the reason that the NSK data
structure is no longer needed.

4.5.2 NDC versus NDC-NF

There are two disadvantages with the NDC-NF approach:

1. Object stripping is slightly slower than NDC, because the con-
text is only removed when all versions are known to be in all
replica nodes; in NDC, entries are removed independently when
included in the node clock, which happens before that information
is known by other peers;

80 node-wide intra-object causality management

2. The stripping depends on having information about all peer nodes,
which makes the strip operation less fault-tolerant than the NDC
version.

The main advantages of NDC-NF are the following:

1. The node clock can be safely garbage collected, because older en-
tries from retired nodes are not used to fill objects;

2. The is no fill operation every time an object is read from storage,
requiring less computation;

3. Objects in the local storage are all completely independent from
the node clock, because they never require it for filling the causal
context, which means that the node clock is not a single point of
failure like in NDC and can be lost without affecting the context
of the local objects;

4. The non-stripped keys are implicitly tracked by the dot-key map,
and the stripping is only attempted when the chance of success is
very high; thus, there is no need for an extra background process
that constantly attempts to strip non-stripped keys.

4.6 discussion

Merkle Trees are very efficient digests when the changes they track ex-
hibit spatial locality, such as when used for a hierarchical file-system.
Not surprisingly, but apparently unnoticed, this efficiency goes away
in systems that use consistent hashing to spread key allocation across
nodes, as this destroys any locality patterns in the key space. Surpris-
ingly, modern distributed key-value stores still adhere to this odd com-
bination of techniques – maybe for the lack of an alternative. We have
shown that consistent hashing and Merkle trees should not be used to-
gether; provided an alternative, based on tracking node-wide causality
metadata; and demonstrated that it significantly improves the perfor-
mance of currently used anti-entropy protocols.

4.6 discussion 81

An interesting outcome from the evaluation is the observation that,
contrary to Merkle Trees, where there is a tradeoff between bandwidth
overhead and repair latency, with the NDC framework using very fre-
quent synchronizations is a win-win situation both in terms of band-
width and latency. This opens up the possibility of discarding the tra-
ditional replication when serving client requests and leaving all replica-
tion to the anti-entropy mechanism.

In modern distributed key-value stores there has always been a ten-
sion among timestamp-based approaches, using last-writer-wins poli-
cies (e.g., Cassandra), and approaches that capture causality and rep-
resent concurrent updates for reconciliation (e.g., Riak). The former
approach is often chosen due to its speed, simplicity and low metadata
footprint, but this comes at the cost of arbitrary loss of updates under
concurrency, given the lack of read-update-write transactions. The lat-
ter is more complex and incurs a much higher metadata cost. We have
shown how to significantly reduce this cost, presenting a framework
that minimizes the per-object metadata, without compromising accu-
rate detection of concurrent updates. Our approach exhibits other two
important benefits: allows correct distributed deletes with no need for
permanent tombstones; works under node churn, while maintaining
low metadata cost.

5
C A U S A L M U LT I - VA L U E C O N S I S T E N C Y

In distributed non strongly-consistent data stores today we have either
classic single-value causal consistency, leading to lost updates, or multi-
value memory API but with weaker consistency. In this chapter we
define causal multi-value memory – causal memory having a multi-
value API – under two variants (one more pure but unrealistic to im-
plement, and another having per-location versioning). We discuss the
feasibility of practical implementations of each variant, and compare
each with other consistency models commonly used in distributed key-
value stores.

5.1 causal multi-value memory

Let P = {pi | i ∈ I} be the set of processes that access the memory. Let
Hi the history of operations issued by process pi, and H = {Hi | i ∈ I}
the global history, for some arbitrary run. Operations can be either:

• wmi (x, v): a write to location x of value v, being the mth operation
by pi;

• rmi (x,V): a read from location x, returning a set of values V , being
the mth operation by pi.

We omit the process or sequence number if irrelevant for the context,
or use a generic o for an operation which is either a read or a write.
E.g., omi is the mth operation of process pi, and w(x, v) is some write of
value v to location x.

83

84 causal multi-value consistency

In a causal multi-value (CMV) memory a read returns a set of values:
an empty set if no write precedes it (i.e., for not yet initialized locations),
and possibly more than one value if several concurrent writes precede
it. For presentation simplicity, we consider each value written to be
globally unique. (In an actual implementation, as we present below, if
two writes use the same value, the memory must ensure that each value
is uniquely tagged.)

A causality order of operations in H is determined by the program
order in each process, and a writes-into order that associates a write
operation with read operations that return the written value.

5.1.1 Ordering

5.1.1.1 Process Order

Process Order
pi−→ is a binary relation on operations of the execution

history Hi of process pi, according to pi local time:

omi
pi−→ oni

.
= m < n

The global process order relation
p−→ is the union of the process orders

of all processes:

p−→ .
=
⋃
i∈I

pi−→

5.1.1.2 Writes-Into Order

Writes-into order is a binary relation induced by history H, relating
writes and reads on the same location, defined by:

w(x, v) w−→ r(y,V) .
= x = y ∧ v ∈ V

5.1.1.3 Causality Order

Causality Order (c−→) is the relation formed by the transitive closure of

the union of process order (
p−→) and writes-into order (w−→):

5.1 causal multi-value memory 85

c−→ .
=
(w−→ ∪ p−→

)+
i.e., o c−→ o ′ is true only if at least one of the following properties

holds:

1. o
p−→ o ′ : o was executed before o ′ in the same process;

2. o w−→ o ′ : o ′ reads a set containing the value written by o;

3. ∃o ′′. o c−→ o ′′
c−→ o ′ : transitive closure.

If o and o ′ in H are two operations such that o 6 c−→ o ′ and o ′ 6 c−→ o, then
we say that they are concurrent operations.

5.1.1.4 Causal Past

The causal past of an operation o for some location x can be defined by
the function Cx(o), which returns the set of operations that accounts for
all values written to x before o, according to the causality order:

Cx(o) .
= {w(x, _) | w(x, _) c−→ o }

The entire causal past of an operation o is defined by the union of the
causal past of o for all locations:

C(o) .
=
⋃
x∈L

Cx(o)

5.1.2 Causal Multi-Value Histories

A history H is Causal Multi-Value (CMV) if and only if it respects the
following three properties:

• No cycles: c−→ induced by H is a strict partial order;

• Read Some Write:

r(x,V) ∈ H⇒ ∀v ∈ V.w(x, v) ∈ H

86 causal multi-value consistency

• Read Last Writes: presented bellow in two variants.

The first condition forbids c−→ cycles, preventing “reads from the fu-
ture”, or out of thin air values, which explain themselves in a causal loop.
The second condition ensures that each value in the set returned by a
read comes from some write to the corresponding location. The third
condition dictates which values a read operation must return. There
are two variants of this condition: a global versioning and a per-location
versioning.

5.1.2.1 Causal Multi-Value with Global Versioning Histories

A history is Causal Multi-Value with Global Versioning (CMV-GV) if in
addition to the first two conditions, it respects the following:

• Read Last Writes with Global Versioning:

o = r(x,V)⇒ V = { v | w(x, v) ∈ max(Cx(o), c−→) } (5)

It states that for a given operation o that reads from some location
x, given the set of operations that write to x that are in the past of o
according to the causality order, then omust return all values written by
the maximal elements of that set. An element of a set is maximal under
a given order, if it is not smaller than any other element, according to
that order:

max(S,<) .
= { e ∈ S |6 ∃e ′ ∈ S. e < e ′ }

In essence, the Read Last Writes dictates what values must be returned
by a read, by defining what are the “current” and “old” values (or
writes) at that point in history. Condition 5 provides global versioning,
because it uses the global causality order c−→ to compute the maximal el-
ements of past writes. Since c−→ is the transitive closure between process
order and writes-into order, it relates all locations in different processes
by a single read on some location by one process from another.

5.1 causal multi-value memory 87

causal multi-value with global versioning memory A
memory is CMV-GV if it only admits CMV-GV histories.

To define Causal Multi-Value with per-Location Versioning (CMV-LV)
histories, we have to introduce a new per-location writes-into order and
a per-location history order.

5.1.3 Causal Multi-Value with per-Location Versioning Histories

5.1.3.1 Per-Location Writes-Into Order

Writes-into order for a specific location x is a binary relation induced by
history H, relating writes and reads on x, defined by:

w(y, v) wx

−−→ r(z,V) .
= x = y = z ∧ v ∈ V

The union of writes-into order for all locations in L is equal to the
global writes-into order defined previously:

⋃
x∈L

wx

−−→ =
w−→

5.1.3.2 Per-Location History Order

History Order for some location x (h
x

−→) is the relation formed by the

transitive closure of the union of process order (
p−→) and writes-into or-

der for x (w
x

−−→):

hx

−→ .
=
(wx

−−→ ∪ p−→
)+

Since wx

−−→ is a subset of w−→, each location’s history order is also a
subset of the causality order:

hx

−→ ⊆ c−→

88 causal multi-value consistency

5.1.3.3 Location History

The history of an operation o for some location x can be defined by
the function Hx(o), which returns the set of operations in the global
history that accounts for all values on x written before o, according to
x’s history order:

Hx(o) .
= {w(x, _) | w(x, _) hx

−→ o }

Note that, in the same way that the history order is a subset of the
causality order, the history of an operation o for some location x, Hx(o),
is a subset of the causal past of that operation for that location Cx(o).

5.1.3.4 Causal Multi-Value with per-Location Versioning Histories

A history is Causal Multi-Value with per-Location Versioning (CMV-LV)
if in addition to the previously defined No cycles and Read Some Write
properties, it respects the following:

• Read Last Writes with per-Location Versioning:

o = r(x,V)⇒ V = { v | w(x, v) ∈ max(Cx(o), h
x

−→) } (6)

The difference between global versioning (Condition 5) and per-location
versioning (Condition 6) is that the former takes the maximal elements
of the causal past of a read according to the causality order, while the
latter takes the maximals of the same causal past, but according to the
location’s history order.

causal multi-value with per-location versioning memory

A memory is CMV-LV if it only admits CMV-LV histories.

5.2 feasibility of cmvm for key-value stores

Consider a distributed key-value store that partially replicates a set of
keys at multiple server nodes, which clients can read from and write
to. Clients are the processes and keys are the locations of our model.

5.2 feasibility of cmvm for key-value stores 89

Clients do not communicate directly, only with the server. To imple-
ment CMVM, both the clients and the server should track metadata
such as the causality order and the history order, depending on the ver-
sioning model used (global or per-location).

metadata transitivity Conceptually, a client starts with an empty
metadata state, which is updated with every operation. A write oper-
ation updates the client state. That new state is also added to the key
replica in the server, along with the new value. The key replica merges
the new metadata state with its own state (which also starts empty).

A read operation uses both the client state and the key state to decide
what to return to the client. The key state is returned and merged to
the client state.

This metadata state lifecycle between the nodes in the server and
clients provides the causality transitivity necessary between clients, since
they do not communicate directly.

write-only partial orders Each new write operation must be
uniquely identifiable, while reads operations may not, since they do
not produce new values or change the server state. A read operation
only inflates the metadata state of a client session, in the same way that
a read operation in the CMV memory model only introduced a new
writes-into order between two subgraphs. Both the causality order and
history order graphs can be accurately represented by write operations
only, provided that all transitive relations between writes created by
reads are present.

5.2.1 Enforcing Read-Last-Write Property

The values returned by a read operation must respect Property 5 or
Property 6, for CMVM-GV or CMVM-LV, respectively.

90 causal multi-value consistency

5.2.1.1 Global Versioning

The metadata necessary to enforce Property 5 is only the causality order.
This order serves two purposes: (a) it provides the causal past C(o); (b)
it provides the partial order necessary to compute the maximal elements
of the causal past. Therefore, each client and each key replica in a server
node should maintain the causality order, necessary to enforce CMVM-
GV.

Each write operation is added to the causality order as being in the
future of every previous operation (representing the process order). The
resulting causality graph is merged with the key’s causality graph at the
node performing the write operation. A read operation sends the client
causality graph to the server, which is merged with the key causality
graph to compute what values (corresponding to individual write oper-
ations in the graph) must be returned to the client. The merged causal-
ity graph is saved as the current client causality graph (representing the
writes-into order).

5.2.1.2 Per-Location Versioning

To enforce Property 6, the metadata should include the causality order
and the history order per key. The former is used solely to give the
causal past of the read operation C(o), while the latter is used to com-
pute the maximals of that causal past, according to the key’s history
order.

The process for updating the causality order is the same as in the
Global Versioning. However, the history order is tracked separately per-
key. Similarly to the causality graph, a new write operation is added to
the history graph of that key, as being in the future of every other write
in the graph. Both graphs are sent to the server in a write operation, to
be merged and saved in that key replica.

A read operation sends both graphs to the server, which the key
merges with its own graphs to compute: (a) the values in the causal
past using the causality graph, and (b) the maximals of the writes in
the causal past to return to the client. In addition to receiving the set

5.2 feasibility of cmvm for key-value stores 91

of values, the client receives and saves the merged causality and history
graph.

5.2.2 Garbage Collecting Metadata

As discussed, the key metadata has two roles in the process of comput-
ing the maximal values to return in a read operation. The first role is
to compute the causal past of that key, and the second role is to take
that result and apply a partial order over it to compute the maximal
elements. In other words, the causal past demands the visibility of a set
of writes on that key, and the partial order selects the obsolete writes for
this key replica in that set, so that only non-obsolete writes are returned
to the client.

causal past The causal past represents the potential write opera-
tions to be seen by a read operation. But if a write in the causal past is
present in all replicas of the corresponding key, it is already guaranteed
that that write will be considered and potentially returned by a read op-
eration. Thus, each write in a causal past can be individually removed
if it is present in all replicas of the corresponding key:

GC(C(o)) = {o ′(k, _) ∈ C(o) | o ′ is not in all replicas of k }

partial order for maximals The partial order (either the causal-
ity order or the history order) is used to determine the maximal ele-
ments of the causal past. In others words, it is used to guarantee that
no old value is returned alongside a newer value. If the maximals for a
given replica key are present in all other replicas, then all non-maximals
(older values) of that key have been removed in the server. Thus, non-
maximal elements are no longer necessary to be maintained in the par-
tial order. However, the maximals of all keys in the partial order are
always necessary to identify the current values, which must be obso-
leted if for example a client reads a key and then writes to another key
in the partial order.

92 causal multi-value consistency

For example, consider a server with CMVM-GV semantics containing
a replica of the key x, which stores the causality order with the maxi-
mals w(x, 4) and w(y, 3). If a client reads that replica of x and then
writes w(y, 4), that new write should be in the future of the maximals
of y, which were returned by the previous read on x. Without storing
the maximals for all keys in the causality order in every replica of every
key, the client would not have known that w(y, 3) was the current max-
imal for y, and the w(y, 4) would then be considered concurrent with
it.

5.2.3 CMVM-GV vs CMVM-LV after GC

Accounting for the garbage collection described previously, it becomes
clear that CMVM-LV requires much less metadata to be stored in the
server (and in the clients, if they also perform GC). While the causal
past is equally garbage collected by both, CMVM-LV only stores, per
key replica, maximals of the history order for that key, while CMVM-
GV stores, per key replica, the maximals for all the keys in the causality
order.

Thus, in a quiescent system where every possible metadata was garbage
collected, implementing local versioning only requires keys to identify
their maximal writes, corresponding to their current values. The space
complexity for this case is O(1), since typically most keys only have one
value.

Implementing global versioning requires keys to identify the maxi-
mals of all keys in their causal past, which tends to grow, as keys are
increasingly related by new client read operations. The space complex-
ity in this case is O(K), where K is the number of keys in the causal past
(with enough operations, K contains all keys).

In conclusion, CMVM-LV is the scalable variant to implement CMVM
semantics in a distributed data store. From a client’s perspective, the
only difference is that CMVM-LV requires clients to read a key before
updating it, while in CMVM-GV all keys in the client causal past are

5.2 feasibility of cmvm for key-value stores 93

wj(x, 2)

wj(x, 4)

wj(z, 1)

ri(x, 2)

ri(y, 1)

wi(x, 3)

ri(z, 1)

ri(x,)

wk(y, 1)

wk(x, 1)

pk−→

wy

−−→

pi−→

pi−→

pi−→

pi−→

wx

−−→pj−→

pj−→

wz

−−→

Figure 21: The process order and the writes-into order for all operations from
processes i, j and k, on keys x, y and z.

updated implicitly by new writes, without necessarily having read them
before.

5.2.4 Consistency Models Comparison

To aid in our comparison, consider the example illustrated in Figure 21.
We have there processes (i, j,k) making read and write operations to
three keys: x, y, z. The result of the last read by i on x is defined on
Table 5, for various types of consistency.

5.2.4.1 CMVM with Global Versioning

The causal past of the last read by i on x is:

94 causal multi-value consistency

Table 5: The result of the last read by process i on key x, as in Figure 21, using
different consistency models.

Model Result for the last read ri(x,V)

CMVM-GV V = {3, 4}

CMVM-LV V = {1, 3, 4}

CM V ∈ {3, 4}

EC w/ per-key CC V ∈ { s ∈ P(1, 2, 3, 4) | {2, 3} 6⊆ s ∧ {2, 4} 6⊆ s }

EC w/o per-key CC V ∈ {⊥, 1, 2, 3, 4 }

Cx(r(x,V)) = {w(x, 1),w(x, 2),w(x, 3),w(x, 4)}

According to the causality order, value 3 is in the future of value 1,
and both values 3 and 4 are in the future of value 2:

w(x, 1) c−→ w(x, 3) ∧ w(x, 2) c−→ w(x, 3) ∧ w(x, 2) c−→ w(x, 4)

Therefore, values 3 and 4 are the maximals of the causal past, which
are returned to the client. Notice that process i never read w(x, 1)
directly, but because it read w(y, 1) which had w(x, 1) in its causal
past, the subsequent write w(x, 3) introduced an order between the two
writes, which made w(x, 1) a past version of w(x, 3).

5.2.4.2 CMVM with Local Versioning

The causal past of the last read by i on x is the same as in global ver-
sioning:

Cx(r(x,V)) = {w(x, 1),w(x, 2),w(x, 3),w(x, 4)}

However, according to the x’s history order (see Figure 22), the only
relations between writes on x are:

w(x, 2) hx

−→ w(x, 3) ∧ w(x, 2) hx

−→ w(x, 4)

5.2 feasibility of cmvm for key-value stores 95

wj(x, 2)

wj(x, 4)

wj(z, 1)

ri(x, 2)

ri(y, 1)

wi(x, 3)

ri(z, 1)

ri(x,)

wk(y, 1)

wk(x, 1)

pk−→

pi−→

pi−→

pi−→

pi−→

wx

−−→pj−→

pj−→

Figure 22: The process order and x’s writes-into order for all operations from
processes i, j and k, on keys x, y and z.

Therefore, the maximals of the causal past according to x’s history or-
der are the values 1, 3 and 4. Notice that the difference between GV and
LV is that LV does not considers the writes-into orders for other keys
to decide the maximals of a given key. In other words, with CMVM-LV,
the client only introduces order between writes to the same key if it
reads those writes directly. In this example, process i never read w(x, 1)
directly, which means that its write w(x, 3) is not in the future of w(x, 1)
according to x’s history order:

w(x, 1) c−→ w(x, 3) ∧ w(x, 1) 6 h
x

−→ w(x, 3)

96 causal multi-value consistency

5.2.4.3 Causal Memory

Causally consistent distributed data stores implement Causal Memory
(CM) [1]. They capture the causality order like CMVM, but do not per-
form global or per-location versioning. They instead arbitrate a “win-
ning” write if there is more than one causal maximal. This can be imag-
ined as having an arbitration total order for concurrent writes. The
arbitration can be made with Lamport Clocks [34] or wall-clock times-
tamps, for example. With timestamps, the latest write according to the
timestamp wins, also called the last-write-wins rule. Thus, with CM
semantics writes can be silently lost.

In our example, the result of the last read could be either value 3 or
4, but not both. Assuming that w(x, 4) had a higher timestamp than
w(x, 3), value 3 written by i would be essentially overwritten by j, with-
out j ever knowing of its existence.

5.2.4.4 Eventual Consistency with Per-Key Causal Consistency

Some distributed key-value stores that offer eventually consistency use
per-key causal consistency, which can be implemented with logical clocks
like Dotted Version Vectors [4]. It is analogous to the local versioning
made by CMVM-LV, without the causality order.

In this example, the only thing that can be guaranteed is that the
set of values returned by the last read cannot have versions that are
not concurrent. I.e., if either value 3 or value 4 is returned by the read,
value 2 cannot be returned, because the logical clock represents a partial
order that says that w(x, 2) is in the past of those two writes. Any other
combination is possible, including an empty set, since the replica of x
can be in any state, including not having seen any write for x yet.

5.2.4.5 Eventual Consistency without Per-Key Causal Consistency

Distributed key-value stores that do not implement per-key causal con-
sistency, arbitrate what write to return in a read, typically by choosing
the value with the highest timestamp. Therefore, any individual value
can possibly be returned, including a “not found”, since the replica of
x can be in any state, including not having seen any write for x yet.

5.2 feasibility of cmvm for key-value stores 97

5.2.5 Discussion

5.2.5.1 Causal vs Eventual

One observation that can be made regarding the previous example
is that eventually consistent systems provide very little guarantees to
clients. For example, a client can update a key and later read an older
version of that key. Another example is a client reading a version of
a key and later reading a past version of that key. Causal models
(CM/CMVM) on the other hand, provide Session Guarantees [56] to
clients, which prohibit these anomalies and others. They provide the
following four properties:

• Read Your Writes: read operations reflect previous writes;

• Monotonic Reads: successive reads reflect a non-decreasing set of
writes;

• Monotonic Writes: writes are propagated after writes that logically
precede them;

• Writes Follows Reads: writes are propagated after reads on which
they depend.

5.2.5.2 Causal Models

There are many causally consistent systems that have scalable imple-
mentations [17, 18, 36, 37]. There are two main reasons for this. One
is the fact that CM systems don’t need to store maximal elements of a
partial order, because they arbitrate the winner by some deterministic
algorithm. As previously mentioned, this ultimately can cause silent
data loss.

Another way to make CM scalable is by blocking write operations,
until they are certain that the client causal past is present in all replicas.
This is a pessimist approach to enforce causality, slowing writes until
remote dependency checks are made. They however avoid having to
store the dependencies at the server at any time. This approach could
also be used with CMVM, but in our view the latency penalty is not

98 causal multi-value consistency

worthwhile, given that CMVM-LV has a small metadata footprint. Also,
it goes against the writes-always-available Dynamo spirit, given that
partitions occur, even inside single datacenters.

In conclusion, CMVM-LV can be seen as the best of both worlds: it
has the metadata scalability of CM systems, enforces causal relation-
ships, as CMVM-GV, and supports concurrent writes while avoiding
data loss.

6
A D I S T R I B U T E D C A U S A L M U LT I - VA L U E D ATA
S T O R E

In this chapter we provide a distributed implementation in the form of a
key-value store supporting partial replication with partial overlapping.
We introduce a basic reference design for such system and then proceed
to optimize the algorithms, such that it can scale with increasing data
and nodes. We also discuss some alternative design choices that can be
made when implementing a CMVM-LV data store.

6.1 basic reference design

We will now define an implementation of a distributed key-value store
that provides CMVM-LV semantics without the complexity of garbage
collection. This is a simpler implementation to explain initially, but
would not be practical since metadata tends to grow unbounded. The
implementation with garbage collection will be defined in a next sec-
tion.

6.1.1 System Model

We consider a partially replicated master-less key-value store, where
every node in the system is available to serve client requests for keys
that it replicates. Nodes are totally independent from each other and
have their own local storage. Nodes communicate via message passing,
which can be delayed, reordered and lost by the network.

99

100 a distributed causal multi-value data store

A node that receives a client request for a key that is not replicated
locally, forwards the request to one of the replica nodes of that key. The
replica node that receives the request is called the coordinator node. The
coordinator may or may not need to contact other nodes to satisfy the
client request. Nodes that replicate a common (not empty) set of keys
are called peer nodes.

Clients can create, read, update and delete single objects, which are
identified by a unique key. An object can have one or more values, as
defined by a causal multi-value memory. Deletes write are associated
with special null values.

6.1.2 Causality Metadata

As discussed in the previous chapter, to support CMVM-LV, both clients
and the server should keep track of some metadata to enforce the causal-
ity order and local key versioning. We will define how to uniquely
identify writes, how to represent the causal past and the history order.

6.1.2.1 Dot: Unique Write ID

Each client write associates a value with a key (deletes are treated as
writes in our system). To uniquely identify this value to this key, the
coordinator node upon receiving a new write request, associates the
value with a new globally unique identifier, which we call dot: a pair
made up of an identifier of the coordinator node and a unique counter
for that coordinator. Its definition is as follows:

D
.
= I×N

We call each (dot,value) pair a version of an object or key.

6.1.2.2 Causal Past

As already discussed, the causal past is needed to enforce causality
order. Both clients and objects associated with keys track the causal
past, which flows from clients to server with writes, and from server to

6.1 basic reference design 101

clients with reads. Since each write is associated with a new dot, the
causal past can be a collection of dots. Since it is useful to know which
key some dot refers to, the causal past definition also maps key to dots
representing writes made to that key:

C
.
= K ↪→ P(D)

Because the causal past of a dot (representing a write operation) is
conceptually a set of dots, the causal past of any replica object o is the
union of the causal pasts of all writes Wo made to that object:

C(o) .
=

⋃
w∈Wo

C(w)

The causal past of a client c at any given time is the union of causal
past for all operations Oc that it executed:

C(c) =
⋃
o∈Oc

C(o)

We can also call the causal past the dependencies of the object or the
client, a term commonly used in causally consistency systems.

6.1.2.3 Per-Key History

Since we are implementing CMVM with per-Location Versioning, the
system also has to capture the per-key history order. However, what
is actually needed by CMVM-LV is to distinguish maximals from non-
maximals elements of the causal past according to the per-key history
order. To satisfy a read request, the coordinator node takes the union of
the client causal past and the object causal past, and returns the values
whose dots are from that key and are not in the history of that object.
The current maximals read are joined with the key history by the client,
for future writes.

We can represent the history order of the key as a collection of dots,
representing all non-maximals of the history order. It is defined as fol-
lows:

102 a distributed causal multi-value data store

H
.
= P(D)

For simplicity we are representing an object’s history as a set of dots,
but it could be represented as a compact version vector, similar to other
systems such as DottedDB [22].

The history of an object o of key x is equal to the union of the location
histories for x of all writes Wo made to that object:

Hx(o) =
⋃

w∈Wo

Hx(w)

6.1.3 Client-Server API

The servers allows clients to read, write or delete values associated with
keys. Deleting is a particular write case with a special null value. The
two public operations have the following signature type:

Get(K×C) → (D ↪→ V)×C×H

Put(K×V×C×H)→ D

A write operation sends a new value for the key and sends its current
dependencies and the history for that key. A delete operation can be
accomplished by mapping it to a write operation with a null value,
which reads can later filter out. Write operations create a new version
of that key, which has associated a new dot created by the coordinator
node. That dot is returned to the client to add it to the dependencies
and to the history of that key.

The read operation sends to the server the current dependencies of
the client. The history of the key in the client is not sent, because it is
information that objects in the server already have. As for the result
of a read request, the coordinator returns the set of causally concurrent
versions, its dependencies and its history.

6.1 basic reference design 103

6.1.4 Client Library

Given the necessity of handling causality metadata at the client side,
clients should use a lightweight client library to interface with the data
store. This library uses the client-server API discussed before, but takes
care of managing the necessary metadata between operations to main-
tain CMVM-LV semantics.

Clients can run multiple independent “processes”, encapsulating each
state in a session object. The metadata necessary for a session is: (a) the
session dependencies; (b) the history per key used in operations in the
session. A session object can be defined as follows:

Session .
= C× (K ↪→ H)

As previously stated, the causal past of a session is equal to the union
of the causal past of all operations in that session. The session also
stores the most recent key history for each key read or written in the
session.

A session is initialized with an empty set of dependencies and an
empty map of key histories: (∅, ∅). Sessions can even be merged to
create a new session object that has both causal pasts and histories. The
operations available in the client library are the following:

Read(Session×K) → Session×P(V)

Write(Session×K×V) → Session

Delete(Session×K) → Session

Merge(Session× Session)→ Session

Although we defined an explicit session object to be maintained by
the client, it could be abstracted away in the client library by a mecha-
nism (e.g., using thread-local storage), that automatically manages the
session object lifecycle.

104 a distributed causal multi-value data store

Algorithm 9: Client Library Operations.
1 procedure Read((C,H) : Session,k : K):
2 (V ,C ′,H ′) := rpc(k,Get, 〈k,C[k]〉)
3 C := CtC ′
4 H[k] := H[k]∪H ′ ∪ dom(V)
5 return ((C,H), { v ∈ ran(V) | v 6= null })
6

7 procedure Write((C,H) : Session,k : K, v : V):
8 d := rpc(k,Put, 〈k, v,C,H[k]〉)
9 C[k] := {d}∪C[k]

10 H[k] := {d}∪H[k]
11 return (C,H)
12

13 procedure Delete((C,H) : Session,k : K):
14 return Write((C,H),k,null)
15

16 procedure Merge((C1,H1) : Session, (C2,H2) : Session):
17 return (C1 tC1,H1 tH2)

6.1.5 Client Library Algorithms

Algorithm 9 defines the operations that the client library exposes to the
client. All operations explicitly receive a session and return the updated
session.

auxiliary functions We assume the definition of the functions
rpc / async_rpc(target, fun, args). rpc executes synchronously, while async_rpc
executes asynchronously. Both receive a target, a procedure to execute
and a list of arguments. The target can be: 1) a key: it routes the mes-
sage to one of the replica nodes of that key; 2) a node id: it routes the
message to that node; 3) keyword random: it routes the message to a
random node of the data store. Also we assume the definition of the
function replicas(k), which returns the set of replica nodes for the key k.

read The read operation takes a session object and a key, and calls
the Get operation on some replica node of the key, sending the depen-

6.1 basic reference design 105

dencies corresponding to that key. The server returns an object associ-
ated with that key.

An object has a set of versions — dot-value pairs — which represents
the maximals of this object. In addition to the current versions, an
object stores its dependencies and history. A special value null is used
in versions created by delete operations. An object is defined as follows:

Object .
= (D ↪→ V)×C×H

The maximal versions returned by the server respects both client and
the object causality and history order. The dependencies and history of
the object are added to the session metadata, and the maximal values
are returned (except for null values from delete operations).

write/delete A write operation receives the session object, the
key and the new value. It calls the Put operation on some replica node
of the key, sending all session dependencies and the history of that key.
The server returns the dot of the new value, to be added to the session
dependencies and to the key history. The Delete operation is simply
mapped to the corresponding Write operation with a null value.

merging sessions Merging two sessions can be accomplished by
the point-wise union of the dependencies and the histories from each
session.

6.1.6 Server Node State

In addition to a unique identifier and a local object storage, each node
will also maintain a node history and a map to allow finding which key
correspond to a given dot.

6.1.6.1 Storage

Each node has its own durable object storage. The storage is defined as
a map from keys to objects, as follows:

106 a distributed causal multi-value data store

STi : K ↪→ Object

6.1.6.2 Node History

The node history is a data structure that contains the union of the his-
tories of all object stored locally, in addition to all the current versions.
The node history is used to generate new unique dots, and is also used
by the anti-entropy protocol to synchronize nodes by comparing node
histories. The history of some node i is defined as follows:

NHi : H

The node history for some node i must respect Invariant 1, which
states that at any time, the node history must be extrinsic (see Definition
4.2.1) to the history and the current version dots of all objects stored
locally. All other events contained in the node history that are not part
of the right hand side of the invariant are events from other keys not
stored by the node.

Node History Invariant 1.

NHi is extrinsic to
⋃
{H∪ dom(V) | (V ,C,H) ∈ ran(STi) }

For simplicity, the node history is represented here as a set of dots,
but more compact data structures are available, such as the combination
of a version vector for contiguous dots and bitmaps for sparse dots
(similar to [22]).

6.1.6.3 Dot-Key Map

Each node also stores a mapping from dots of objects stored locally
to the corresponding keys, so that the anti-entropy protocol can know
which objects to read and send to another node that is missing those
dots. We call this data structure the Dot-Key Map (DKM), and it is de-
fined as follows:

DKMi : D ↪→ K

6.1 basic reference design 107

Algorithm 10: Read request at Node i.

1 procedure Get(k : K,Ck : P(D)):
2 (V ,C,H) := fetch(k)
3 while (Ck ∪C[k]) 6⊆ H do
4 o := rpc(k, fetch, 〈k〉)
5 (V ,C,H) := update(k,o)
6 return (V ,C,H)

state initialization A node server i is initialized with an empty
node history, an empty storage and an empty dot-key map:

Init(i) = (NHi := ∅,DKMi := ∅, STi := ∅)

6.1.7 Server Algorithms

Each node will implement the client-server API in addition to a back-
ground anti-entropy process to exchange metadata between nodes and
provide data convergence.

6.1.7.1 Reads

Algorithm 10 shows the definition of the Get operation at some node i.
After reading the local object, the object history is used to check if the
object and the client dependencies are locally met. Only dependencies
of the key being read are relevant to the result of the operation.

If not all dependencies are locally met, then other replicas of this key
are fetched, until all dependencies are met. Here, for simplicity, we
fetch from a random replica node, but we could use the node id inside
the missing dependencies to decide what replica node to contact first.
Fetched objects update the current local object (if they have new ver-
sions). After having all the dependencies, the current object is returned
to the client.

There is a possibility of getting in an infinite cycle of dependency
fetching, since newer objects can have still have dependencies not lo-
cally met. This could only happen if other clients were continuously
updating the same key. It is unlikely that long cycles of fetching would

108 a distributed causal multi-value data store

Algorithm 11: Write Request at Node i.
1 procedure Put(k : K, v : V,C : C,H : H):
2 c := max({ c | (j, c) ∈ NHi ∧ j = i })
3 d := (i, c+ 1)
4 C[k] := {d}∪C[k]
5 o := update(k, ({(d, v)},C,H))
6 for j ∈ replicas(k) do
7 async_rpc(j, update, 〈k,o〉)
8 return d

occur, but if that was a concern, nodes could temporarily cache obso-
leted versions to satisfy read dependencies without introducing newer
dependencies from concurrent client updates.

6.1.7.2 Writes

Algorithm 11 defines the Put operation. Using the node history, a new
unique dot is generated to be associated with the new value. The new
dot is added to the dependencies sent by the client, which, together
with client history and the new version, forms a new temporary object.
This object is then merged with the local stored object and the result is
stored and asynchronously replicated. Finally, the new dot is returned
to the client.

6.1.7.3 Anti-Entropy Protocol

Given the assumption that messages between nodes can be lost, nodes
can become out-of-sync and have unbounded stale data. To address this,
nodes periodically run an anti-entropy protocol to repair missing/stale
data across nodes. The main idea is to compute the set difference of the
node histories from each pair of peers. This gives the exact set of dots
that are missing from one node that the other can provide.

Algorithm 12 shows the definition of the anti-entropy process, which
continuously runs in the background on each node i. In fixed intervals,
it starts an anti-entropy round with a random peer node j, sending its
history to compute the missing data.

6.1 basic reference design 109

Algorithm 12: Anti-Entropy Protocol at Node i.
1 process AntiEntropy():
2 loop forever
3 j := random(peers(i))
4 async_rpc(j, SyncHistory, 〈i,NHi〉)
5 sleep(∆)
6

7 function SyncHistory(p : I,H : H):
8 K := {k | (d,k) ∈ DKMi ∧ d 6∈ H ∧ p ∈ replicas(k) }
9 O := { (k, fetch(k)) | k ∈ K }

10 Hi := { (j, c) ∈ NHi | j = i }
11 async_rpc(p, SyncRepair, 〈i,Hi,O〉)
12

13 procedure SyncRepair(p : I,Hp : H,O : K ↪→ Object):
14 for (k,o) ∈ O do
15 update(k,o)
16 NHi := NHi ∪Hp

Node j collects all keys whose dots in the dot-key map are not present
in node i history, while ignoring keys that are not replicated by i. It then
fetches all local objects corresponding to those keys and sends them to
i, along with all dots in j’s history that were generated locally.

Finally, node i receives the missing objects and updates its local stor-
age accordingly. All dots generated by j are added to i’s node history,
to close any gap from dots of objects generated at j but not replicated
by i (necessary for a compact representation like a version vector).

Although node j sends to node i all of its local objects missing from i,
j’s entire history cannot be merged with i’s history, because of possible
partial overlapping in replication: j’s history can contain some dots by
a third node k whose keys are not replicated by j, but are replicated
by i; in that case, merging the j’s entire history into i’s history, would
indicate that i received those writes from k; however, that would be
false because j does not replicate those keys and thus could not have
sent them to i.

110 a distributed causal multi-value data store

Algorithm 13: Auxiliary Procedures at Node i.
1 function fetch(k : K):
2 if k ∈ dom(STi) then
3 return STi[k]
4 else
5 return (∅, ∅, ∅)
6

7 procedure store(k : K, (V ,C,H) : Object):
8 NHi := NHi ∪H
9 for d ∈ dom(V) do

10 NHi := NHi ∪ {d}
11 DKMi[d] := k

12 STi[k] := (V ,C,H)
13

14 function merge((V1,C1,H1) : Object, (V2,C2,H2) : Object):
15 V1 := { (d, _) ∈ V1 | d 6∈ H2 }
16 V2 := { (d, _) ∈ V2 | d 6∈ H1 }
17 return (V1 t V2,C1 tC2,H1 ∪H2)
18

19 procedure update(k : K, (V ,C,H) : Object):
20 o := fetch(k)
21 if dom(V) 6⊆ NHi then
22 o := merge((V ,C,H),o)
23 store(k,o)
24 return o

6.1.7.4 Local Operations

In addition to the client-server API and the anti-entropy protocol, each
node also defines the following local operations (see Algorithm 13):

• fetch: if the key has an object in storage, that object is returned;
otherwise, an empty object is returned;

• store: receives an object to save to storage; it also adds the dots of
the object versions to the node history and to the dot-key map (for
future anti-entropy rounds); the object history is also added to the
node’s history, to maintain the Node History Invariant;

• merge: receives two objects to be merged into a new one. The
dependencies and histories are simply merged together. Versions

6.2 optimized design with garbage collection 111

whose dots are present in the other object’s history are removed,
since it makes them obsolete;

• update: receives an object to update the local storage. It first checks
if the received object has in fact new information. If not, the node
has already seen all versions of that object, and thus the current
local object is returned; otherwise, the new object is merged with
the local object, stored locally and then returned.

6.2 optimized design with garbage collection

We defined a framework for a distributed key-value store that provides
causal multi-value consistency with local versioning. The downside of
this implementation is that metadata is always increasing with new op-
erations. Even if sessions are short-lived and their metadata is tem-
porary, the server metadata keeps increasing and more dependencies
means larger client-server messages.

We will now discuss the garbage collection of metadata on both the
client and server. This will enable a truly scalable implementation of
CMVM-LV, where object metadata is kept at a minimum and deleted
objects are actually deleted.

6.2.1 Metadata Pruning

The node history is the only data structure that cannot be pruned in
any form, since it accurately describes which object versions were seen
by the node. It can however be represented in a compact form, by
a version vector together with bitmaps, which are kept small, due to
the gap-filling by anti-entropy (as in DottedDB [22]). The other data
structures can be completely removed given the right conditions.

Table 6 briefly describes the data structures in our framework that
can be safely removed or compacted. Notice that for those that can
be removed, the common knowledge required for their removal is to
know when a version is replicated in all replica nodes for that key. This
happens when the corresponding dot is in the node history of all those

112 a distributed causal multi-value data store

Table 6: A list of data structures, their purpose and when they can be removed.

Structure Scope Purpose When to Remove

Node History Per node Represent local ob-
ject version history,
as an extrinsic set

Never, but can be con-
tinuously compressed into
constant-sized VV, plus some
bitmaps to encode recent
writes

Dot-Key Map Per node Used in anti-entropy
to know which key a
missing dot refers to

An entry can be removed
when the dot is in all replica
nodes for that key

Dependencies Per object
/ session

Represent the causal
past of the object or
session

The non-maximal elements
per key are not needed; any
dependency can be removed
when its dot is known by all
replica nodes for that key

Key History Per object
/ Per key
in session

Represents the write
history of that key

The history is not longer
necessary when all current
version dots (maximals) are
known by all replica nodes
for that key

Object Per key Contains the current
versions, their depen-
dencies and history

When the object only has null
values, has no dependencies
and no history, it can be
deleted from storage

replica nodes. We will now describe how to learn this information, in
order to remove unnecessary metadata.

6.2.1.1 Stable Logical Time

Node histories describe what the current local knowledge is. If each
node caches information in the the node history received during anti-
entropy from their peers in what concerns dots generated by itself, they
can compute their Stable Logical Time (SLT): the highest counter c of dots
from node i (i.e., dots (i, c)) that every peer has, such that they also have
every other dot from i with a smaller counter1.

Conceptually, the SLTi of some node i is the highest counter c, such
that (i, c) ∈ NHi and the following property holds:

1 This is stronger than needed. A dot is fully replicated if it is present in all replica
nodes of its key. For simplicity and performance, we chose rather to check if a dot in
present in all peers.

6.2 optimized design with garbage collection 113

(
c⋃
k=1

(i,k)

)
⊆

 ⋂
p∈peers(i)

NHp

To compute the stable logical time, a node i needs to know, for each

peer p, the maximum counter c, such that p has in its history all dots
from i up to c (i.e., dots (i, 1), . . . , (i, c)). To that end, the node state
stores a new data structure SLT that maps peer ids to the respective
maximum counter. This structure is defined for some node i as follows:

SLTi : I ↪→ N

The stable logical time for some node i can now be computed as:
min(ran(SLTi)).

6.2.1.2 Causal Watermark

In addition to maintaining the SLT data structure, each node gossips its
stable logical time (i.e., the minimum counter) around the server, such
that every node maintains a cache of stable logical times of all other
nodes. We call this global view the Causal Watermark (WM), defined for
some node i as:

WMi : I ↪→ N

This data structure basically stores a lower-bound of the SLT for all
nodes N in the server, such that:

∀i, j ∈ N. WMi[j] / min(ran(SLTj))

The staleness of the WM in relation to the real SLT depends on many
factors such as the write throughput, the network conditions, the gossip
interval and the anti-entropy interval.

114 a distributed causal multi-value data store

6.2.2 Client Library with GC

The client library provides a Session object that encapsulates the context
of a client session, enabling the client to execute multiple sessions in
parallel without mixing dependencies.

The current definition of a session has a collection of dependencies
(indexed by keys) and a map from keys to their history. As stated in Ta-
ble 6, each dependency can be removed individually when it is present
in all replica nodes, while non-maximals dependencies per key can also
be removed. The history of a key can be removed when the maximals
of that key are known by all replica nodes, but the maximals must be
kept to be used in a subsequent write operation as the history of that
write.

Therefore, a session now separates the maximals from the history, for
the most recent read object for each key. A session object is redefined
as follows:

Session .
= C× (K ↪→ (H×H))

Algorithm 14 shows the updated operations in the client library. On
the read operation, the only difference is the separation of the maximal
dots and history of the object. Notice that the prior history information
is overwritten by new reads, since the new history returned cannot be
smaller than previous histories read (i.e., the client cannot read an older
object after a newer object was returned in the same session).

The write operation first has to join the maximals with the history
of the key, since the write will produce a new maximal element. The
server returns a new dot that is added to the dependencies and placed
in the key history as the new maximal. The key history is updated with
the prior maximals and dependencies that are not maximals for that
key are also removed, since it is sufficient to depend on the maximals
elements to ensure that those versions are “visible” in a read operation.

Additionally, the client library has now an internal procedure to garbage
collect a client session (see Algorithm 15). It first asks some random

6.2 optimized design with garbage collection 115

Algorithm 14: Client Library with Garbage Collection support.
1 procedure Read((C,H) : Session,k : K):
2 (V ,C ′,H ′) := rpc(k,Get, 〈k,C[k]〉)
3 C := CtC ′
4 H[k] := (dom(V),H ′)
5 return ((C,H), { v ∈ ran(V) | v 6= null })
6

7 procedure Write((C,H) : Session,k : K, v : V):
8 Hk := fst(H[k])∪ snd(H[k])
9 d := rpc(k,Put, 〈k, v,C,Hk〉)

10 C[k] := {d}∪C[k] \Hk
11 H[k] := ({d},Hk)
12 return (C,H)

Algorithm 15: Garbage Collection operation in the Client Library.
1 function GC((C,H) : Session):
2 WM := rpc(random,GetWatermark, 〈〉)
3 for (k,Ck) ∈ C do
4 C[k] := { (j, c) ∈ Ck | c > WM[j] }

5 for (k, (Hk, _)) ∈ H do
6 if { (j, c) ∈ Hk | c > WM[j] } = ∅ then
7 H[k] := (Hk, ∅)
8 return (C,H)

node for its causal watermark. It then removes dependencies from the
session that are now obsolete because they are in every node that repli-
cates them. And finally, removes the history of any key whose current
maximals are known by all replica nodes.

6.2.3 Server Algorithms with GC

In addition to the previous node state definition, each node now has: (a)
a stable logical time SLT to represent the maximum contiguous knowl-
edge of local dots in every peer; (b) a causal watermark WM to track a
lower-bound, for each node, of its stable logical time; (c) a set NSK of
non-stripped keys for local objects that still have non-stable causal history.

A server node state is initialized as follows:

116 a distributed causal multi-value data store

Algorithm 16: Read request with GC support at Node i.
1 procedure Get(k : K,Ck : P(D)):
2 (V ,C,H) := fetch(k)
3 while (Ck ∪C[k]) 6⊆ NHi do
4 o := rpc(k, fetch, 〈k〉)

// the ‘update‘ function updates the node history

5 (V ,C,H) := update(k,o)
6 return (V ,C,H)

Algorithm 17: Updated Store procedure at Node i.
1 procedure store(k : K, (V ,C,H) : Object):
2 NHi := NHi ∪H
3 for d ∈ dom(V) do
4 NHi := NHi ∪ {d}
5 DKMi[d] := k

6 STi[k] := (V ,C,H)
7 NSKi := NSKi ∪ {k}

Init(i) = (NHi := ∅,DKMi := ∅, STi := ∅,

SLTi := ∅,WMi := ∅,NSKi := ∅)

6.2.3.1 Reads

Algorithm 16 shows the modified Get procedure with support for object
garbage collection. The only change is in the loop condition, where the
object history was replaced by the node history. The reason for this is
that the object history is now removed when the current versions are in
all replica nodes. Therefore, to test if the object and client dependencies
are met by the local object, we must use the node history, which contains
the exact history of the object, as stated by Invariant 1.

6.2.3.2 Writes

Regarding writing new versions, the only change from previous opera-
tions is in the store procedure in Algorithm 17, which now has a new
last instruction to add the key to the NSK for later garbage collection.

6.2 optimized design with garbage collection 117

Algorithm 18: Metadata GC operations at Node i.
1 process StripCausality():
2 loop forever
3 for k ∈ NSKi do
4 objGC(k)
5 sleep(δs)
6

7 procedure objGC(k : K):
8 o := fetch(k)
9 (V ,C,H) := o

10 for (k ′,Ck) ∈ C do
11 C[k ′] := { (j, c) ∈ Ck | c > WM[j] }
12 if { (j, c) ∈ dom(V) | c > WM[j] } = ∅ then
13 H := ∅
14 if C∪H = ∅ then
15 NSKi := {k}�−NSKi
16 if (ran(V) \ {null})∪C∪H = ∅ then
17 STi := {k}�− STi
18 else if (V ,C,H) 6= o then
19 STi[k] := (V ,C,H)

6.2.3.3 Object Garbage Collection

Algorithm 18 defines the object GC procedure objGC and the background
process StripCausality, responsible for periodically iterating all keys in
the NSK, calling objGC for each one.

The objGC procedure fetches the object from local storage and re-
moves all dependencies of the object that are present in all replica nodes.
It also removes the history if the current version dots are in all replica
nodes. If the object does not have dependencies or history anymore, the
key is removed from the NSK. Additionally, if there are only null values
in the current versions and the dependencies and history are already re-
moved, the object can be safely removed from storage. Otherwise, the
local object is updated if anything changed.

6.2.3.4 Anti-Entropy

Algorithm 19 shows the modified procedures for the anti-entropy proto-
col. All the previous functionality is still present, but SyncHistory now

118 a distributed causal multi-value data store

Algorithm 19: Anti-Entropy Protocol with GC support at Node i.
1 function SyncHistory(p : I,H : H):
2 K := {k | (d,k) ∈ DKMi ∧ d 6∈ H ∧ p ∈ replicas(k) }
3 O := { (k, fetch(k)) | k ∈ K }

4 Hi := { (j, c) ∈ NHi | j = i }
// compute the maximum contiguous counter c from a p’s dot in i’s history

5 c := max({ c | c ′ 6 c⇒ (p, c ′) ∈ NHi })
6 async_rpc(p, SyncRepair, 〈i,Hi, c,O〉)
7

8 procedure SyncRepair(p : I,Hp : H, c : N,O : K ↪→ Object):
9 for (k,o) ∈ O do

10 update(k,o)
11 NHi := NHi ∪Hp

// update the Stable Logical Time and the Causal Watermark

12 SLTi[p] := c
13 WMi[i] := min(ran(SLTi))

computes the highest counter corresponding to a dot from the asking
node, in which the local node has that dot and all smaller dots in its
history. This counter is sent to the node that initiated the anti-entropy
protocol and is used in SyncRepair to first update the SLT map and then
to recompute the causal watermark for local node entry.

6.2.3.5 Watermark Gossip

Algorithm 20 defines two operations for gossiping the watermark in the
server. The GossipWatermark definition uses the simplest form of gossip-
ing: randomly choose some node and send it the causal watermark.
The receiving node updates the watermark by a pointwise maximum
with the received watermark. Additionally, dots that are present in all
replica nodes can be removed from the DKM, since they are not missing
in any node and thus will not be used in future anti-entropy rounds.

6.3 alternative designs

In this section, we discuss some alternative design decisions, along with
their advantages and disadvantages.

6.3 alternative designs 119

Algorithm 20: Watermark Gossip Operations at Node i.
1 process GossipWatermark():
2 loop forever
3 async_rpc(random,ReceiveWatermark, 〈WMi〉)
4 sleep(δg)
5

6 procedure ReceiveWatermark(W : I ↪→ N):
7 for j ∈ dom(W) do
8 WMi[j] := max(WMi[j],W[j])

// remove DKM entries known by all peers

9 for (j, c) ∈ dom(DKMi) do
10 if WMi[j] > c then
11 DKMi := {(j, c)}�−DKMi

6.3.1 Derived Object Histories

An alternative implementation would not store the object history in the
object itself and instead rely on the node history. The object would only
contain the current versions (maximals) and the dependencies (causal
past), as follows:

Object := (D ↪→ V)×C

As stated in the Invariant 1, the node history is extrinsic to the union
of all local objects history and current maximals. But the node history
can only be represented in a compact way if it does not segment the
histories per key, enabling compact representations like in DottedDB
[22]. By not segmenting the node history per key, it loses the ability to
find out what is the history of a particular key amongst the node history.
For local operations, this is not a problem, since the additional histories
from other keys do not interfere in the per-key versioning process, as
object histories for different keys do not share dots.

Sending an object, either for replication or for a client read, becomes a
problem, because the object history is absent from the object itself, being
only diluted in the node history, but it should be attached to the object
to be sent. Sending the node history attached to an object that is going
to be replicated in another node (directly to that node or indirectly via

120 a distributed causal multi-value data store

clients) is not a solution, because the receiving node cannot add the
entire node history attached to the object to its own node history, since
it would add versions of other objects that were not sent, violating the
Node History Invariant 1.

What is needed is a way to derive the exact object history. If we take
any object and only consider the dependencies on its key, the history of
that object must be included in it, but not the other way around. How-
ever, if we intersect those self-dependencies with the node history, the
result must be the exact history for that object, because the dependen-
cies that were not part of the object history cannot be part of the node
history, by definition. Therefore, we can use the object dependencies of
its own key, to isolate dots in the node history that are from that object.

The derived history Hd of an object o = (V ,C), associated with the key
k, and stored at node i, is defined as:

Hd(k, (V ,C)) = NHi ∩C[k]

We can now attach the derived history to an object sent to another
node or to the client.

6.3.1.1 Garbage Collection with Derived Histories

Since an object no longer stores its history, the only object garbage col-
lection needed is for its dependencies. In our previous implementation
with explicit object histories, dependencies had two mechanisms to be
removed: (1) only store the maximals of each key in the dependencies;
(2) remove any individual dependency when they are present in every
replica node for that key. The history was removed entirely when the
maximals were known by all replica nodes.

But now, we use part of the dependencies in an object to derive its
history. This means that removing those dependencies is semantically
the same as removing the history. Therefore, for the object dependencies
of its key, they must adopt the more pessimistic garbage collection rule
of either dependencies and history, which is the latter.

For some object (V ,C) associated with the key k, C[k] is only removed
when all current maximal dots dom(V) are in all replica nodes. The

6.3 alternative designs 121

other dependencies C[k ′],k ′ 6= k, have the same GC mechanism as be-
fore.

advantages The main advantage for using derived object histories
is that each object never stores its history, relying on the (compact) node
history. In our implementation, an object history is temporarily stored
until it is garbage collected.

disadvantages One disadvantage of this approach is that the his-
tory of the object must be computed every time the object must be sent
elsewhere. Also, the dependencies on its key cannot be garbage col-
lected as fast as other dependencies, similar to the object history in the
current implementation. This can actually be worse in some cases for
space usage, because the history can be represented compactly as a ver-
sion vector linear with the number of replica nodes, while dependencies
must be individually represented, being unbounded in their number.

6.3.2 Key-less Dependencies

Although dependencies were defined as dots with a matching key, the
latter is not mandatory: the dot uniquely identifies the version of an
object that is a dependency for some client or object. Having the corre-
sponding key allows, both the client library and the node serving a read
request, knowing exactly what are the dependencies that correspond to
versions of the key being read.

This can significantly reduces the amount of dependencies sent to the
server when reading a key, or reduces the retrieved dependencies when
a node serves a read request. The downside is the space that storing
multiple keys may take, even-though we expect that dependencies will
be garbage collected, using frequent anti-entropy and watermark gossip
rounds.

Not storing the corresponding keys with dependencies allow for smaller
metadata, but we lose the ability to precisely select dependencies of a
particular key. As an alternative, we can filter dots in dependencies

122 a distributed causal multi-value data store

whose node ids are from replica nodes of the target key. The result is
obviously larger than the previous key filtering, but none-the-less can
substantially reduce the amount of dependencies sent in a read request,
or fetched by a node to serve a read request.

The alternative key-less dependencies are defined as follows:

C
.
= P(D)

In general, the modifications necessary to use key-less dependencies
are: (a) implement dependencies as a set of dots instead of a map from
keys to dots; (b) every time the dependencies where filtered for some
key using C[k], replace it with {(j, c) ∈ C | j ∈ replicas(k)}.

6.4 fault-tolerance

Given that our implementation uses a master-less design, there is no
node that is a single point of failure. The replication factor R can be as
large as desired, supporting R− 1 faults for every replication group: the
set of nodes that replicate a common subset of keys. Clients can also
fail without impacting the server or other clients.

Write operations always succeed if at least one replica node of the key
is available to write. For a read operation on some key k, for every past
dependency on that key, there must be at least one reachable node that
has (or had) that dependency. Frequent anti-entropy rounds reduce the
chance of some version not being available because some node failed or
the network is partitioned.

Although not implemented, the server could take even further action
to mitigate this problem, by tracking how many replicas of each version
are there in the server. Thus, a version is only made visible to the client
if it is K-replicated, where K is the number of replica nodes that have
acknowledge to have that version. The downside of this approach is
that it increases the latency for client write/delete operations.

6.5 discussion 123

6.5 discussion

We presented a distributed key-value store implementing Causal Multi-
Value Consistency with Local-Versioning, allowing partial-replication
with partial-overlapping, aiming for write-availabilty.

Most causally consistent data stores are designed to block on writes
until the new object can be safely applied (i.e., the system is still causally
consistent after the write). Our implementation took a different and
less pessimistic approach, where writes never block and instead we rely
on read operations to enforce causal consistency. This enables smaller
client operation latency overall, since when a subsequent read is made
to some node, that object could already be causally consistent. In ex-
change, some metadata must be temporarily attached to objects stored
in the data store.

Our implementation frequently exchanges metadata, in order to garbage
collect dependencies and other metadata as fast as possible. The imple-
mentation is based on our previous work Node-wide Dot-based Clocks.
We expect that a real implementation of our new consistency model to
perform well, given the results of the evaluation of DottedDB.

7
T R A N S A C T I O N A L C A U S A L M U LT I - VA L U E
C O N S I S T E N C Y

Although causal consistency provides client-friendly session guarantees,
there are cases where its not enough to execute a sequence of operations
in a causal session and obtain a correct outcome. Specifically, multiple
read operations executed in sequence have no guarantees about what
can happen between them, opening the door for having an inconsis-
tent state as a whole, even though the individual reads respect causality.
Multiple writes have the same problem, where a client wants to write
two items that only make sense when presented together. Writing the
items in sequence in a causally consistent manner is not enough, be-
cause after the first write returns (but before the second is performed),
another client can read the first write and then read an older version of
the second item.

To solve these issues, we now extend the Causal Multi-Value Mem-
ory to support two additional operations: read-only transactions and
write-only transactions. We first provide specific examples where read-
only and write-only transactions are needed, then we formally define
the extended consistency model and finally provide an implementation,
which extends our previous implementation.

125

126 transactional causal multi-value consistency

wi(access, public)

wi(access, private)

wi(photo, sensitive)

wi(photo, null)

wi(access, public)

rj(photo, sensitive)

rj(access, public)

rk(access, public)

rk(photo, sensitive)

k : Mark i : Ana j : Carl

pi−→

pi−→

pi−→

pi−→

w−→

w−→
pj−→

w−→

w−→pk−→

ti
m

e

Figure 23: Ana makes several updates to a particular photo and its access level.
Two friends, Mark and Carl, try to see the photo and check the
access level in different orders, and both see a sensitive photo from
Ana with public access.

7.1 motivation 127

7.1 motivation

7.1.1 Read-only Transactions

Consider a scenario where Ana is using a social network and has an al-
bum of photos and associated with that album an access control setting.
Figure 23 shows a scenario where Ana does several operations: setting
the album private, uploading a sensitive photo, deleting the sensitive
photo and setting the access to public again. Also represented are two
of Ana’s friends that logged in and want to see updates to Ana’s album.
The two friends do the same read operations (read the access control
setting and read a photo), but in different order. As we can see, there
is no order in which the social network application could access Ana’s
operation history that guarantees not returning the sensitive photo with
a public access.

This particular example could be solved with read transactions for
both Carl and Mark. In Carl’s case, reading the latest public access con-
trol, ensured that it had a dependency on the latest photo write, which
makes the transaction return a null photo. In Mark’s case, reading the
sensitive photo ensures that it has a dependency on the private access
write, making the read transaction return that access control and not a
previous one. Figure 24 shows the same scenario with read transactions
and the two different, but consistent, outcomes.

7.1.2 Write-only Transactions

Write-only transactions have many applications. Continuing in our so-
cial network example, if a user updates a photo and updates its de-
scription, we want both updates to depend on each other. Without a
write transaction, a write order must be chosen and depending on that,
another user can see one update without necessarily seeing the other.
Another example is friendship requests, where a write transaction guar-
antees that if A is seen as a friend of B, then B must be seen as a friend
of A, and vice-versa.

128 transactional causal multi-value consistency

wi(access, public)

wi(access, private)

wi(photo, sensitive)

wi(photo, null)

wi(access, public)

Rj(photo, null;
access, public)

Rk(access, private;
photo, sensitive)

k : Mark i : Ana j : Carl

pi−→

pi−→

pi−→

pi−→
w−→

w−→

w−→

w−→

ti
m

e

Figure 24: Ana makes several updates to a particular photo and its access level.
Both Mark and Carl perform a read transaction and obtain different
results, albeit both acceptable and consistent with Ana’s operations.

7.2 transactional causal multi-value memory 129

7.2 transactional causal multi-value memory

This model is an extension, or a generalization, of the previous Causal
Multi-Value Memory. There are now four types of operations available:

• wmi (x, v): a write to location x of value v, being the mth operation
by pi;

• rmi (x,V): a read from location x, returning a set of values V , being
the mth operation by pi;

• Rmi (Sr): a read transaction containing a map Sr associating each
key read to the set of values returned, being the mth operation by
pi;

• Wm
i (Sw): a write transaction containing a map Sw associating each

key to the written value, being the mth operation by pi;

A read operation can be seen as a specific case of a read transaction
with a singe read operation: r(x,V) ⇔ R({x 7→ V}). A write operation
can also be seen as a specific case of a write transaction containing only
that write: w(x, v) ⇔ W({x 7→ v}). Thus, hereafter we will focus on the
more general case, involving the transactional operations.

7.2.1 Ordering

7.2.1.1 Process Order

Process Order
pi−→ is a binary relation on operations of the execution

history Hi of process pi, according to pi local time:

omi
pi−→ oni

.
= m < n

The global process order relation
p−→ is the union of the process orders

of all processes:

p−→ .
=
⋃
i∈I

pi−→

130 transactional causal multi-value consistency

7.2.1.2 Writes-Into Order

Writes-into order is a binary relation induced by history H, relating
writes and reads on the same location, defined by:

W(Sw)
w−→ R(Sr)

.
= ∃(x, v) ∈ Sw. v ∈ Sr[x]

7.2.1.3 Causality Order

Causality Order (c−→) is the relation formed by the transitive closure of

the union of process order (
p−→) and writes-into order (w−→):

c−→ .
=
(w−→ ∪ p−→

)+
7.2.1.4 Causal Past

The causal past of an operation o for some location x can be defined by
the function Cx(o), which returns the set of operations that explain all
values written to x before o, according to the causality order:

Cx(o) .
= {W(Sw) |W(Sw)

c−→ o ∧ x ∈ dom(Sw) }

The entire causal past of an operation o is defined by the union of the
causal past of o for all locations:

C(o) .
=
⋃
x∈L

Cx(o)

7.2.2 Transactional Causal Multi-Value Histories

A history H is Transactional Causal Multi-Value (TxCMV) if and only if it
respects the following three properties:

• No cycles: c−→ induced by H is a strict partial order;

• Read Some Write:

R(Sr) ∈ H⇒ ∀(x,V) ∈ Sr. ∀v ∈ V. ∃W(Sw) ∈ H. (x, v) ∈ Sw

7.2 transactional causal multi-value memory 131

• Read Last Writes: presented bellow in two variants.

The first condition forbids c−→ cycles, preventing “reads from the fu-
ture”, or out of thin air values, which explain themselves in a causal loop.
The second condition ensures that each value in the set returned by a
read comes from some write to the corresponding location. The third
condition dictates which values a read operation must return. There
are two variants of this condition: a global versioning and a per-location
versioning.

7.2.2.1 Transactional Causal Multi-Value with Global Versioning Histories

A history is Transactional Causal Multi-Value with Global Versioning
(TxCMV-GV) if in addition to the first two conditions, it respects the
following:

• Read Last Writes with Global Versioning:

o = R(Sr)⇒ ∀(x,V) ∈ Sr. V = {Sw[x] |W(Sw) ∈ max(Cx(o), c−→) }

(7)

It states that for a given operation o that reads from some locations,
for each such location x, given the set of operations that write to x that
are in the past of o according to the causality order, then o must return
all values written to x by the maximal elements of that set.

transactional causal multi-value with global version-
ing memory A memory is TxCMV-GV if it only admits TxCMV-GV
histories.

To define Transactional Causal Multi-Value with per-Location Ver-
sioning (TxCMV-LV) Histories, we have to introduce a new per-location
writes-into order and the resulting per-location history order.

132 transactional causal multi-value consistency

7.2.3 Transactional Causal Multi-Value with per-Location Versioning Histo-
ries

7.2.3.1 Per-Location Writes-Into Order

Writes-into order for a specific location x is a binary relation induced by
history H, relating writes and reads on x, defined by:

W(Sw)
wx

−−→ R(Sr)
.
= ∃v. (x, v) ∈ Sw ∧ v ∈ Sr[x]

The union of writes-into order for all locations in L is equal to the
global writes-into order defined previously:

⋃
x∈L

wx

−−→ =
w−→

7.2.3.2 Per-Location History Order

History Order for some location x (h
x

−→) is the relation formed by the

transitive closure of the union of process order (
p−→) and writes-into or-

der for x (w
x

−−→):

hx

−→ .
=
(wx

−−→ ∪ p−→
)+

Since wx

−−→ is a subset of w−→, each location’s history order is also a
subset of the causality order:

hx

−→ ⊆ c−→

7.2.3.3 Transactional Causal Multi-Value with per-Location Versioning His-
tories

A history is Transactional Causal Multi-Value with per-Location Version-
ing (TxCMV-LV) if in addition to the previous two No cycles and Read
Some Write, it respects the following:

7.3 distributed transactional causal multi-value data store 133

• Read Last Writes with per-Location Versioning:

o = R(Sr)⇒ ∀(x,V) ∈ Sr. V = {Sw[x] |W(Sw) ∈ max(Cx(o), h
x

−→) }

(8)

The difference between global versioning (Condition 7) and per-location
versioning (Condition 8) is that the former takes the maximal elements
of the causal past of a read according to the global causality order, while
the latter takes the maximals of the same causal past, but according to
the location’s history order.

transactional causal multi-value with per-location ver-
sioning memory A memory is TxCMV-LV if it only admits TxCMV-
LV histories.

7.2.4 Transactional CMV versus Non-Transactional CMV Memories

It can be seen that if all operations in a TxCMV memory are to a sin-
gle location, its definition corresponds exactly to what was previously
defined in CMV memories.

7.3 distributed transactional causal multi-value data store

We now define an implementation of Transactional CMV-LV memory
in a distributed key-value store. This implementation is an extension
of the previous implementation of CMV-LV memory, preserving all its
operations unless redefined hereafter.

7.3.1 Client Library

Algorithm 21 shows the two new operations available in the client li-
brary.

134 transactional causal multi-value consistency

Algorithm 21: Client Library for Transactional Operations.
1 procedure ReadTx((C,H) : Session,K : P(K)):
2 CK := { (k,D) ∈ C | k ∈ K }

3 O := rpc(random,GetTransaction, 〈K,CK〉)
4 for (k, (V ,C ′,H ′)) ∈ O do
5 C := CtC ′
6 H[k] := (dom(V),H ′)
7 O[k] := { v ∈ ran(V) | v 6= null }
8 return ((C,H),O)
9

10 procedure WriteTx((C,H) : Session,W : K ↪→ V):
11 for (k, v) ∈W do
12 W[k] := (v, fst(H[k])∪ snd(H[k]))
13 (t,D) := rpc(random,PutTxPrepare, 〈W,C〉)
14 while ok 6= AwaitTxCommit(t) do
15 rpc(random,PutTxCommit, 〈t, dom(W),CtD〉)
16 for (k, {d}) ∈ D do
17 Hk := snd(W[k])

18 C[k] := {d}∪C[k] \Hk
19 H[k] := ({d},Hk)
20 return (C,H)

read transactions The read transaction (ReadTx) takes a set of
keys and returns a set from objects consistent with TxCMV-LV, i.e., the
server cannot return objects that have future versions either in the ses-
sion dependencies or in the dependencies of any object returned. The
client library only sends to the server the dependencies that correspond
to the keys being read. The server returns a map of keys to objects.
All object dependencies and histories are added to the session meta-
data. The current versions dots are separated from the object history, to
enable future garbage collection.

write transactions The write transaction (WriteTx) takes a map
from keys to values and writes to the server. A key can also map to a
special null value to represent a delete. All new object versions created
in the server will have dependencies on each other. All session depen-
dencies are sent to the server, as well as histories of the keys being
written.

7.3 distributed transactional causal multi-value data store 135

The client library first calls PutTxPrepare at some server node to act as
the coordinator that asks for new dots for every write in the transaction.
When the coordinator has a new dot for each write, it returns the unique
transaction ID and the new dependencies. This intermediate result is
for fault-tolerance only, because it enables the client library to retry the
commit phase of the transaction in the server, without repeating the
prepare phase and creating new dots.

The client waits for the confirmation that all writes were “committed”
using the function AwaitTxCommit(t), that returns ok when everything
is done for transaction t or it gives a timeout, which makes the client
retry the commit phase to another server node, using the PutTxCommit
operation. When the confirmation is successful, the new dependen-
cies are added to the session and the histories are updated similarly to
single-key write operations.

7.3.2 Server Algorithms

7.3.2.1 Read-only Transaction

In a read transaction, we ideally want to retrieve the exact object ver-
sions corresponding to the missing dependencies/dots, to avoid read-
ing newer versions which can themselves have other newer dependen-
cies. To that end, we introduce a new data structure that temporarily
stores objects corresponding to dots that were obsoleted. This gives an
opportunity to running read transactions of fetching the exact version
of an object. This structure is called Temporary Object Cache (TOC), map-
ping dots to a tuple containing the object and the timestamp of when
they were “removed”. It is defined as follows:

TOC : D ↪→ (Object×N)

Algorithm 22 defines the read transaction and the auxiliary function
fetch_dot. A read transaction maintains two main variables: H - repre-
sents both the history and maximals of current read objects; C - rep-
resents the client dependencies plus the current objects’ dependencies.
While the dependencies in C are not met in H, the transaction keeps

136 transactional causal multi-value consistency

Algorithm 22: Read Transaction at Node i.
1 function GetTransaction(K : P(K),C : C):
2 O := ∅ ;H := ∅
3 while C 6v H do
4 parallel for (k,D) ∈ (C−H) do
5 (o,D ′) := rpc(k, fetch_dot, 〈k,D〉)
6 (_,C ′,H ′) := o
7 H[k] := H[k]∪H ′ ∪D ′
8 C := CtC ′

∣∣
K

9 O[k] := merge(O[k],o)
10 return O
11

12 function fetch_dot(k : K,D : P(D)):
13 o := (∅, ∅, ∅)

// try to read old objects for the requested dots

14 for d ∈ D∩ dom(TOCi) do
15 (o ′, _) := TOCi[d]
16 o := merge(o,o ′)

// if there are no old objects, read the current one

17 if o = (∅, ∅, ∅) then
18 o := fetch(k)

// return the object and the dots known by this node

19 return (o,D∩NHi)

trying to fetch the exact versions for missing dependencies, using the
function fetch_dot.

This function tries to return an object that reflects the exact dots asked
using the TOC, to avoid introducing additional dependencies. If the
asked dots are not in the TOC, it is because they are still the current ver-
sions, therefore the local object is returned. Additionally, the function
returns the dots that the node knows about in its history, in case the
object history was already garbage collected.

To support the new TOC data structure, the update function was mod-
ified to add any object whose current version was removed to the TOC.
The new definition can be found in Algorithm 23.

gc for temporary object cache A new background process
named TOC_GC was introduce to garbage collect the cache of old ob-

7.3 distributed transactional causal multi-value data store 137

Algorithm 23: Update operation with TOC support at Node i.
1 procedure update(k : K, (V ,C,H) : Object):
2 o := fetch(k)
3 if dom(V) 6⊆ NHi then
4 (V ,C,H) := merge((V ,C,H),o)

// save objects whose dots where obsoleted

5 for (d, v) ∈ { ver ∈ fst(o) | ver 6∈ V } do
6 TOCi[d] := (o, now())
7 o := (V ,C,H)
8 store(k,o)
9 return o

Algorithm 24: Garbage Collection for TOC at Node i.
1 process TOC_GC():
2 loop forever
3 TOCi := { (d, (o, ts)) ∈ TOCi | (now() − ts) < δr }
4 sleep(δr)

jects, when they are too old. Its definition is found in Algorithm 24.
The δr value should match the maximum time a read transaction can
run.

7.3.2.2 Write-only Transaction

Ideally, a replica node of one of the keys in the write set should be the
transaction coordinator, but any node can coordinate. The coordinator
receives a map from keys to values and histories to write, in addition
to the client dependencies. This operation must ensure that each new
object depends on all other versions created by this transaction.

The coordinator will execute a protocol similar to two-phase commit
[23], except that cohorts (replica nodes of keys involved in the trans-
action) always reply positively with a new dot. The main idea is to
divide the transaction in two phases: (1) prepare: create a transaction
ID, send the new values to replica nodes of that key and receive a new
dot for every write in the transaction; (2) commit: send the new dots to
all replica nodes of keys in the transaction to commit the new objects,
making them visible to read operations.

138 transactional causal multi-value consistency

Before being committed, cohort nodes keep the new transaction state
in a new data structure called Quarantine Writes (QW): a map from a
transaction ID to another map from keys to their new values, new dots
and their corresponding histories. This structure is defined as follows:

QW : D ↪→ K ↪→ (D×V×H)

The transaction ID is defined as dot, which is generated using a new
node Transaction Counter (TXC): an incremental counter starting at zero
for every node.

prepare The PutTxPrepare procedure in Algorithm 25 executes the
prepare phase of the write transaction. The coordinator first creates a
new unique transaction ID using the TXC counter. Then, for each write
it sends the transaction ID, the key, new value and the history to one
replica node, using the prepare operation. This is done is parallel since
each request can be made independently.

The prepare operation (defined in Algorithm 26) in a replica node first
tests if the transaction ID and the key are already present in the quar-
antine writes. If this was the first time a prepared was issued by the
coordinator for this transaction and key, the entry will not exist and the
node will create a new dot for the information received. However, be-
cause clients can retry the prepare phase, the entry for this transaction
and this key can already exist in the node. In that case, the node simple
reuses the already generated dot.

The dot, along with the transaction information for that write, are
sent to all replica nodes for that key to execute the prepared function,
which first tests if it has already seen this transaction ID/key pair. If
not, it just adds that information for a future commit message. If the
node already has the that entry in the QW, then it must choose which
entry to keep in a deterministic way, to avoid having inconsistent entries
across replica nodes.

The coordinator upon receiving a new dot for each key in the trans-
action, sends the transaction ID and the new dependencies to the client
to enable it to retry the commit phase later, without repeating the pre-

7.3 distributed transactional causal multi-value data store 139

Algorithm 25: Write-only Transaction API at Node i.
1 procedure PutTxPrepare(W : K ↪→ (V×H),C : C):
2 TXCi := TXCi + 1
3 t := (i,TXCi)
4 D := ∅
5 parallel for (k, (v,H)) ∈W do
6 d := rpc(k, prepare, 〈t,k, v,H〉)
7 D[k] := {d}

8 send_client(t,D)
9 PutTxCommit(t, dom(W),CtD)

10

11 procedure PutTxCommit(t : D,K : P(K),C : C):
12 for j ∈

⋃
{ replicas(k) | k ∈ K } do

13 async_rpc(j, commit, 〈t,C〉)
14 return ok

pare phase. This is strictly for fault-tolerance. Finally, the coordinator
executes the second phase, calling the PutTxCommit procedure with the
transaction ID, the keys involved in the transaction and the updated
dependencies.

commit The PutTxCommit procedure in Algorithm 25 executes the
second phase of the write transaction. The coordinator asynchronously
calls the commit operation with the transaction ID and the updated de-
pendencies, for every node who is a replica node of at least one key in
the transaction.

The commit procedure in Algorithm 26 on a replica node takes every
entry in the QW for that transaction ID and updates the local storage
with the new information. Each updated object has a dependency for
all other new versions created by that transaction. After all entries are
updated and merged to local “non-quarantine” objects, the transaction
ID entry can be removed from the QW and it can return a successful
acknowledgement. If the node did not have quarantine writes for the
received transaction ID, it returns an unsuccessful acknowledgement to
the coordinator.

140 transactional causal multi-value consistency

Algorithm 26: Auxiliary Operations for Write-only Transactions at
Node i.

1 procedure prepare(t : D,k : K, v : V,H : H):
2 if t 6∈ dom(QWi) ∨ k 6∈ dom(QWi[t]) then
3 d := (i, max({ c | (n, c) ∈ NHi ∧ n = i }) + 1)
4 NHi := NHi ∪ {d}
5 else

// reuse the dot genererated from previous attempts of prepare

6 (d, _, _) := QWi[t][k]

7 for j ∈ replicas(k) do
8 async_rpc(j, prepared, 〈t,k,d, v,H〉)
9 return d

10

11 procedure prepared(t : D,k : K,d : D, v : V,H : H)):
12 if t 6∈ dom(QWi) ∨ k 6∈ dom(QWi[t]) then
13 QWi[t][k] := (d, v,H)
14 else

// if there is already an entry for this transaction, deterministically choose

the same winning dot using a total order on the node IDs

15 (d ′, _, _) := QWi[t][k]
16 if fst(d) > fst(d ′) then
17 QWi[t][k] := (d, v,H)
18

19 procedure commit(t : D,C : C):
20 if t 6∈ dom(QWi) then return error
21 for (k, (d, v,H)) ∈ QWi[t] do
22 update(k, ({(d, v)},C,H))
23 QWi := {t}�−QWi

24 return ok

anti-entropy with quarantine writes New dots are created
and added to the node history for quarantine writes that are not yet
normal objects ready to replicate. Therefore, the anti-entropy protocol
must be careful in sending the node history to another node, because
in the current implementation, the receiving node i assumes that all
dots from j sent by j in a anti-entropy round without a corresponding
object also sent, are from keys not replicated by i and adds those dots to
i’s node history explicitly, closing any gaps in node history for j’s dots
which enables a compact node history representation.

7.3 distributed transactional causal multi-value data store 141

Algorithm 27: Anti-Entropy Operation with Quarantine Writes at
Node i.

1 function SyncHistory(p : I,H : H):
2 K := {k | (k,d) ∈ DKMi ∧ d 6∈ H ∧ p ∈ replicas(k) }
3 O := { (k, fetch(k)) | k ∈ K }

4 Hi := { (j, c) ∈ NHi | j = i }
// remove dots from quarantine versions from the set Hi

5 Hi := Hi \
⋃
{ {d | (k, (d, v,H)) ∈W } | (t,W) ∈ QWi }

6 c := max({ c | c ′ 6 c⇒ (p, c ′) ∈ NHi })
7 async_rpc(p, SyncRepair, 〈i,Hi, c,O〉)

This is incorrect for quarantine writes, since some of those dots with-
out associated objects sent from j may be from the quarantine writes
in j that are not yet objects and thus are not present in the DKM. If i
added the dots from quarantine writes in j to its node history, those
dots would not be requested in future AE rounds.

The solution is to filter dots that correspond to quarantine writes in
QW from the node history sent to i, as defined in Line 4 of SyncHistory
procedure in Algorithm 27. This way, those dots will not be added to
i’s node history and subsequent anti-entropy rounds will ask again for
those dots if they do not arrive through normal commit propagation,
eventually replicating the updated objects from committed quarantine
writes.

gc for quarantine writes Entries are removed from QW when
their transaction ID is committed. However, messages can be lost or
network partitions can occur. To avoid having lingering writes in a
quarantine state when they were already committed in other replica
nodes, the StripCausality process can check if any recently updated object
(in the NSK) has a dot from a quarantine write in either its history or
in one of the current versions. If either one is true, then the quarantine
write was committed by another replica node and that entry is no longer
necessary.

Algorithm 28 defines the updated StripCausality process, which col-
lects the dots from the non-stripped keys and filters quarantine writes
that are in that set.

142 transactional causal multi-value consistency

Algorithm 28: Metadata GC operations with Quarantine Writes GC
support at Node i.

1 process StripCausality():
2 loop forever
3 D = ∅
4 for k ∈ NSKi do
5 (V ,C,H) := fetch(k)
6 D := D∪ dom(V)∪H
7 objGC(k)
8 for (t,W) ∈ QWi do
9 QWi[t] := { (k, (d, v,H)) ∈W | d 6∈ D }

10 sleep(δs)

There is still a chance that some entries in the QW will not be garbage
collected in the described algorithm, because entries with dots that were
never committed and were never replaced by the newer dots (created
in retries of the prepare phase by the client), won’t receive objects corre-
sponding to those old dots. In a similar approach to the TOC garbage
collection used in read transactions, the node can ultimately apply a
TTL policy to entries that are much older than what a write transaction
can run without aborting due to a timeout.

7.4 discussion

We extended our previous Causal Multi-Value Memory model to pro-
vide read-only and write-only transactions.

Since read-only transactions run at the same time as other client op-
erations in other nodes, data can be changing during the execution of
the transaction. To avoid unbounded rounds of data fetches due to
new dependencies being introduced, the data store needs to keep older
versions of a key temporarily available. This enables the transaction
to return slightly older data that is causally consistent with other data
being returned in the transaction. The garbage collection of older data
is time-based and automatic, which means that it does not introduce a
significant overhead on nodes.

7.4 discussion 143

Write-only transactions involve a two step protocol in their execution.
Each individual write in the transaction needs a unique id (dot) and
therefore the first phase is responsible for creating and grouping all
of the new dots. The second phase commits each individual write by
adding all new dots as its dependencies. This way, every object cre-
ated in the transaction has a dependency of every other write in the
transaction. This is useful for cases where the client wants to write
to multiple keys that mutually depend on each other, and need atomic
visibility of updates to them, something not achievable having only read-
transactions.

7.4.1 Fault-Tolerance

7.4.1.1 Read-only Transactions

In a read transaction, at least one replica node of every key should be
available to fetch an object. If a second round is necessary, there must
be at least one replica node that has the unique version being requested.
Also, the total read transaction time should be smaller than the δr time
used in the TOC garbage collection, to ensure that any older version is
still available at replica nodes. If it exceeds this time, the transaction
should be restarted.

7.4.1.2 Write-only Transactions

Regarding write-only transactions, the transaction ID generated by the
coordinator enables the client to retry the transaction commit phase
multiple times, avoiding the generation of concurrent versions for the
same write in the transaction. Given that the prepare procedure checks
if there is already a dot generated for the transaction ID/key pair, a
concurrent version can only appear if: (a) the client restarts the same
transaction without reusing the transaction ID returned before by the
coordinator, or (b) the client reuses the same transaction ID, but the
coordinator repeats the prepare invocation to a different replica node
that has not seen the transaction ID/key in the QW.

144 transactional causal multi-value consistency

Even in the last case, no matter what the order the prepared messages
for different prepare attempts arrive to replica nodes, the QW converges
to a deterministic entry for that transaction ID, since the prepared proce-
dure always chooses the same winner in case of conflict, using the total
order on the node ids in the different dots.

To increase the write transaction fault tolerance: (a) the nodes execut-
ing the prepare procedure could require a larger number of acknowledge-
ments from the prepared operations sent to other replica nodes, before
responding to the coordinator; (b) the coordinator could wait for at least
one successful commit acknowledgement from a replica node of each key
in the transaction.

8
C O N C L U S I O N

We explored in this thesis the topic of causality in distributed key-value
stores. To respect causality, these systems must provide a multi-value
API to clients. Clients write single values to keys, but a read operation
can return more that one value associated with a key, if those values
were written concurrently according to causality.

Traditional logical clocks like Versions Vectors can be used to pro-
vide multi-value APIs in distributed data stores, but fail to capture
per-write causal information necessary to correctly resolve concurrent
writes. This lead to false concurrency being introduced to the system,
in what was coined as “sibling explosion” 1 by some practitioners. We
proposed Dotted Version Vectors that correctly captures per-write causal-
ity, avoiding this issue in multi-value data stores, without extra size or
computational complexity.

Dotted Version Vectors correctly capture causally, but they still have
to be stored forever in the data store to respect causality. This can be
problematic if nodes are constantly being replaced, introducing newer
identifiers that pollute metadata. We took the lessons learned in Dotted
Version Vectors and presented Node-wide Dot-based Clocks, a novel frame-
work that resumes information common to all keys in a node to a single
logical clock per node. This allowed most metadata to be garbage col-
lected, with the side-effect of allowing metadata-free distributed deletes
in the data store. Another benefit of this framework is a lightweight anti-
entropy protocol that replaces the Merkle Trees as the main mechanism
for repairing out-of-sync data between replica nodes.

1 Sibling is a term that was given to causally concurrent versions of the same key.

145

146 conclusion

Our implementation of Node-wide Dot-based Clocks in DottedDB
was evaluated against a similar data store prototype, with the current
state of the art mechanisms. The results show a clear improvement of
the anti-entropy protocol and an overall reduced metadata for causality
tracking.

Most distributed data stores still only offer weak consistency guar-
antees in order to achieve high-availability and performance. Eventual
consistency is the weakest form of consistent available in most of these
systems. However, causal consistency can be implemented in a highly-
available system and offers many advantages from a clients perspective
like sessions guarantees. Even-though causal consistent is said to be
the strongest consistency model that still supports high-availability, it
does not support a multi-value API. Most causally consistent systems
either arbitrate a winner when a conflict occurs (e.g. choosing the write
with the latest timestamp) or use special data-types like CRDTs that au-
tomatically merge conflicting writes. The former option leads to data
loss and the latter imposes the use of specific data-types with their own
trade-offs and overhead.

We defined a new consistency model named Causal Multi-Value Con-
sistency that respects causality across all keys and still supports a multi-
value API. We explored different variants and compared them to causal
consistency. We also provided a reference implementation of this novel
consistency model in a distributed key-value store, building on top of
our Node-wide Dot-based Clocks framework. In addition, given that
sometimes multi-key operations are needed to correctly express the
client intent, we extended our new consistency model to include read-
only and write-only transactions. A reference implementation was also
provided.

8.1 future work

As future work, we believe there are several paths worth of further re-
search. One of them is implementing a distributed key-value store that
supports Causal Multi-Value Consistency. We proposed and defined

8.1 future work 147

the main algorithms for such implementation, but a real implementa-
tion could be evaluated against similar causal systems, showing more
clearly the trade-offs of our solution.

Another path of research is to explore general read/write transac-
tions in the context of the Transactional Causal Multi-Value Memory
model. We only defined Read-only and Write-only transactions, but gen-
eral transactions should at least be partially supported. For example,
if every read operation in a general transaction can be executed before
write operations, the entire transaction could be achieved by composing
a read-only with a write-only transaction.

A
M AT H E M AT I C A L N O TAT I O N

a.1 sets

We use mostly standard notation for sets and maps, including set com-
prehension of the form { f(x) | x ∈ S } or { x ∈ S | Pred(x) }. We also use
P(s) for the power set of some set s.

a.1.1 Maximal Elements in a Partially Ordered Set

An element of a partially ordered set is maximal under a given order, if
it is not smaller than any other element, according to that order:

max(S,<) .
= { e ∈ S |6 ∃e ′ ∈ S. e < e ′ }

a.1.2 Pre-defined Sets

We use N for natural numbers, and also I, K and V for some set of node
identifiers, keys and values, respectively.

a.2 maps

A map is a set of (k, v) pairs, where each k is associated with a single
v. Given a map m, m[k] returns the value associated with key k, while
m[k] := v updates the value associated with k with v.

149

150 mathematical notation

a.2.1 Bottom Values

For convenience we also usem[k] when k 6∈ dom(m) and B has a bottom,
to denote ⊥B. For example, for some map m : I ↪→ N, then m[k] denotes
0 for any unmapped key k.

a.2.2 Domain and Range

The domain and range of a map m is denoted by dom(m) and ran(m),
respectively. They can be defined as follows:

dom(m) = {k | (k, v) ∈ m }

ran(m) = { v | (k, v) ∈ m }

a.2.3 Domain Subtraction

We use �− for domain subtraction, where A�−B is the map obtained by
removing from B all pairs with a key that is included in the domain of
A. It can be defined as follows:

A�−B = { (k, v) ∈ B | k 6∈ dom(A) }

a.2.4 Map Subtraction

We denote as A − B the subtraction between two maps, and can be
defined as follows:

A−B = { (k,V \B[k]) | (k,V) ∈ A ∧ V \B[k] 6= ∅ }

a.2.5 Domain Restriction

We use M
∣∣
K

to denote the domain restriction of map M to the set K. It
is defined as:

A.3 pairs 151

M
∣∣
K
= { (k, v) ∈M | k ∈ K }

a.2.6 Merging Maps

We denote the merge of two maps A and B as A t B, where their com-
mon keys have their values merged.

AtB = { (k,A[k]∪B[k]) | k ∈ dom(A)∩ dom(B) }

∪ { (k, v) ∈ A | k 6∈ dom(B) }

∪ { (k, v) ∈ B | k 6∈ dom(A) }

a.2.7 Partial Map

We use A ↪→ B for a partial function from A to B. Given such a map m,
then dom(m) ⊆ A and ran(m) ⊆ B.

a.3 pairs

We use fst(p) and snd(p) to denote the first and second component of a
pair p, respectively.

B I B L I O G R A P H Y

[1] Mustaque Ahamad, Gil Neiger, James E Burns, Prince Kohli, and
Phillip W Hutto. “Causal memory: Definitions, implementation,
and programming.” In: Distributed Computing 9.1 (1995), pp. 37–
49.

[2] José Bacelar Almeida, Paulo Sérgio Almeida, and Carlos Baquero.
“Bounded Version Vectors.” In: DISC. Ed. by Rachid Guerraoui.
Vol. 3274. Lecture Notes in Computer Science. Springer, 2004,
pp. 102–116. isbn: 3-540-23306-7.

[3] Paulo Sérgio Almeida, Carlos Baquero, and Victor Fonte. “Inter-
val Tree Clocks.” In: Proceedings of the 12th International Confer-
ence on Principles of Distributed Systems. OPODIS ’08. Luxor, Egypt:
Springer-Verlag, 2008, pp. 259–274. isbn: 978-3-540-92220-9.

[4] Paulo Sérgio Almeida, Carlos Baquero, Ricardo Gonçalves, Nuno
Preguiça, and Victor Fonte. “Scalable and accurate causality track-
ing for eventually consistent stores.” In: Distributed Applications
and Interoperable Systems. Springer. 2014, pp. 67–81.

[5] Sérgio Almeida, João Leitão, and Luís Rodrigues. “ChainReaction:
a causal+ consistent datastore based on chain replication.” In: Pro-
ceedings of the 8th ACM European Conference on Computer Systems.
ACM. 2013, pp. 85–98.

[6] Hagit Attiya, Faith Ellen, and Adam Morrison. “Limitations of
Highly-Available Eventually-Consistent Data Stores.” In: Proceed-
ings of the 2015 ACM Symposium on Principles of Distributed Com-
puting, PODC 2015, Donostia-San Sebastián, Spain, July 21 - 23, 2015.
2015, pp. 385–394. doi: 10.1145/2767386.2767419. url: http:
//doi.acm.org/10.1145/2767386.2767419.

[7] Peter Bailis and Kyle Kingsbury. “The network is reliable.” In:
Queue 12.7 (2014), p. 20.

153

https://doi.org/10.1145/2767386.2767419
http://doi.acm.org/10.1145/2767386.2767419
http://doi.acm.org/10.1145/2767386.2767419

154 Bibliography

[8] Peter Bailis, Ali Ghodsi, Joseph M Hellerstein, and Ion Stoica.
“Bolt-on causal consistency.” In: Proceedings of the 2013 ACM SIG-
MOD International Conference on Management of Data. ACM. 2013,
pp. 761–772.

[9] Nalini Belaramani, Mike Dahlin, Lei Gao, Amol Nayate, Arun
Venkataramani, Praveen Yalagandula, and Jiandan Zheng. “PRACTI
replication.” In: Proceedings of the 3rd conference on Networked Sys-
tems Design & Implementation - Volume 3. NSDI’06. San Jose, CA:
USENIX Association, 2006, pp. 5–5.

[10] Kenneth P. Birman and Thomas A. Joseph. “Reliable communica-
tion in the presence of failures.” In: ACM Trans. Comput. Syst. 5.1
(Jan. 1987), pp. 47–76. issn: 0734-2071. doi: 10.1145/7351.7478.

[11] Burton H Bloom. “Space/time trade-offs in hash coding with al-
lowable errors.” In: Communications of the ACM 13.7 (1970), pp. 422–
426.

[12] Eric A. Brewer. “Towards robust distributed systems (abstract).”
In: Proceedings of the nineteenth annual ACM symposium on Princi-
ples of distributed computing. PODC ’00. Portland, Oregon, United
States: ACM, 2000, pp. 7–. isbn: 1-58113-183-6. doi: http://doi.
acm.org/10.1145/343477.343502. url: http://doi.acm.org/10.
1145/343477.343502.

[13] Bernadette Charron-Bost. “Concerning the size of logical clocks
in distributed systems.” In: Information Processing Letters 39 (1991),
pp. 11–16.

[14] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakr-
ishnan, and Russell Sears. “Benchmarking cloud serving systems
with YCSB.” In: Proceedings of the 1st ACM symposium on Cloud
computing. ACM. 2010, pp. 143–154.

[15] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavard-
han Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan
Sivasubramanian, Peter Vosshall, and Werner Vogels. “Dynamo:
amazon’s highly available key-value store.” In: SIGOPS Oper. Syst.
Rev. 41 (6 2007), pp. 205–220. issn: 0163-5980. doi: http://doi.

https://doi.org/10.1145/7351.7478
https://doi.org/http://doi.acm.org/10.1145/343477.343502
https://doi.org/http://doi.acm.org/10.1145/343477.343502
http://doi.acm.org/10.1145/343477.343502
http://doi.acm.org/10.1145/343477.343502
https://doi.org/http://doi.acm.org/10.1145/1323293.1294281
https://doi.org/http://doi.acm.org/10.1145/1323293.1294281

Bibliography 155

acm.org/10.1145/1323293.1294281. url: http://doi.acm.org/
10.1145/1323293.1294281.

[16] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson,
Scott Shenker, Howard Sturgis, Dan Swinehart, and Doug Terry.
“Epidemic algorithms for replicated database maintenance.” In:
Proceedings of the sixth annual ACM Symposium on Principles of dis-
tributed computing. ACM. 1987, pp. 1–12.

[17] Jiaqing Du, Sameh Elnikety, Amitabha Roy, and Willy Zwaenepoel.
“Orbe: Scalable causal consistency using dependency matrices and
physical clocks.” In: Proceedings of the 4th annual Symposium on
Cloud Computing. ACM. 2013, p. 11.

[18] Jiaqing Du, Călin Iorgulescu, Amitabha Roy, and Willy Zwaenepoel.
“Gentlerain: Cheap and scalable causal consistency with physical
clocks.” In: Proceedings of the ACM Symposium on Cloud Computing.
ACM. 2014, pp. 1–13.

[19] Colin Fidge. “Timestamps in Message-Passing Systems that pre-
serve the Partial Ordering.” In: 11th Australian Computer Science
Conference. 1989, pp. 55–66.

[20] Seth Gilbert and Nancy Lynch. “Brewer’s conjecture and the feasi-
bility of consistent, available, partition-tolerant web services.” In:
SIGACT News 33 (2 2002), pp. 51–59. issn: 0163-5700. doi: http:
//doi.acm.org/10.1145/564585.564601. url: http://doi.acm.
org/10.1145/564585.564601.

[21] Richard A. Golding. “A Weak-Consistency Architecture for Dis-
tributed Information Services.” In: Computing Systems 5 (1992),
pp. 5–4.

[22] Ricardo Gonçalves, Paulo Sérgio Almeida, Carlos Baquero, and
Victor Fonte. “Concise Server-Wide Causality Management for
Eventually Consistent Data Stores.” In: Distributed Applications and
Interoperable Systems. Springer. 2015, p. 66.

[23] James N Gray. “Notes on data base operating systems.” In: Oper-
ating Systems. Springer, 1978, pp. 393–481.

https://doi.org/http://doi.acm.org/10.1145/1323293.1294281
https://doi.org/http://doi.acm.org/10.1145/1323293.1294281
http://doi.acm.org/10.1145/1323293.1294281
http://doi.acm.org/10.1145/1323293.1294281
https://doi.org/http://doi.acm.org/10.1145/564585.564601
https://doi.org/http://doi.acm.org/10.1145/564585.564601
http://doi.acm.org/10.1145/564585.564601
http://doi.acm.org/10.1145/564585.564601

156 Bibliography

[24] Maurice P Herlihy and Jeannette M Wing. “Linearizability: A cor-
rectness condition for concurrent objects.” In: ACM Transactions on
Programming Languages and Systems (TOPLAS) 12.3 (1990), pp. 463–
492.

[25] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin
Reed. “ZooKeeper: Wait-free Coordination for Internet-scale Sys-
tems.” In: Proceedings of the 2010 USENIX Conference on USENIX
Annual Technical Conference. USENIXATC’10. Boston, MA: USENIX
Association, 2010, pp. 11–11. url: http://dl.acm.org/citation.
cfm?id=1855840.1855851.

[26] Paul R. Johnson and Robert H. Thomas. The maintenance of dupli-
cate databases. Internet Request for Comments RFC 677. Informa-
tion Sciences Institute, 1976.

[27] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew
Levine, and Daniel Lewin. “Consistent hashing and random trees.”
In: Proceedings of the twenty-ninth annual ACM symposium on Theory
of computing. ACM. 1997, pp. 654–663.

[28] J. J. Kistler and M. Satyanarayanan. “Disconnected Operation in
the Coda File System.” In: Thirteenth ACM Symposium on Operat-
ing Systems Principles. Vol. 25. Asilomar Conference Center, Pacific
Grove, US, 1991, pp. 213–225.

[29] Rusty Klophaus. “Riak Core: building distributed applications
without shared state.” In: ACM SIGPLAN Commercial Users of Func-
tional Programming. CUFP ’10. Baltimore, Maryland: ACM, 2010,
14:1–14:1. isbn: 978-1-4503-0516-7. doi: 10.1145/1900160.1900176.
url: http://doi.acm.org/10.1145/1900160.1900176.

[30] Nico Kruber, Maik Lange, and Florian Schintke. “Approximate
Hash-Based Set Reconciliation for Distributed Replica Repair.” In:
Reliable Distributed Systems (SRDS), 2015 IEEE 34th Symposium on.
IEEE. 2015, pp. 166–175.

[31] Rivka Ladin, Barbara Liskov, Liuba Shrira, and Sanjay Ghemawat.
“Providing High Availability Using Lazy Replication.” In: ACM

http://dl.acm.org/citation.cfm?id=1855840.1855851
http://dl.acm.org/citation.cfm?id=1855840.1855851
https://doi.org/10.1145/1900160.1900176
http://doi.acm.org/10.1145/1900160.1900176

Bibliography 157

Trans. Comput. Syst. 10.4 (Nov. 1992), pp. 360–391. issn: 0734-2071.
doi: 10.1145/138873.138877.

[32] Avinash Lakshman and Prashant Malik. “Cassandra: a structured
storage system on a P2P network.” In: SPAA. Ed. by Friedhelm
Meyer auf der Heide and Michael A. Bender. ACM, 2009, p. 47.
isbn: 978-1-60558-606-9. url: http://doi.acm.org/10.1145/
1583991.1584009.

[33] Avinash Lakshman and Prashant Malik. “Cassandra: a decentral-
ized structured storage system.” In: ACM SIGOPS Operating Sys-
tems Review 44.2 (2010), pp. 35–40.

[34] Leslie Lamport. “Time, clocks, and the ordering of events in a
distributed system.” In: Communications of the ACM 21.7 (1978),
pp. 558–565.

[35] Richard J Lipton and Jonathan S Sandberg. PRAM: A scalable shared
memory. Princeton University, Department of Computer Science,
1988.

[36] Wyatt Lloyd, Michael J Freedman, Michael Kaminsky, and David
G Andersen. “Don’t settle for eventual: scalable causal consistency
for wide-area storage with COPS.” In: Proceedings of the 23rd ACM
Symposium on Operating Systems Principles. 2011, pp. 401–416.

[37] Wyatt Lloyd, Michael J Freedman, Michael Kaminsky, and David
G Andersen. “Stronger semantics for low-latency geo-replicated
storage.” In: Presented as part of the 10th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 13). 2013, pp. 313–
328.

[38] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi, M. Dahlin, and
M. Walfish. “Depot: Cloud Storage with Minimal Trust.” In: OSDI
2010. Oct. 2010.

[39] Prince Mahajan, Lorenzo Alvisi, Mike Dahlin, et al. “Consistency,
availability, and convergence.” In: University of Texas at Austin Tech
Report 11 (2011).

https://doi.org/10.1145/138873.138877
http://doi.acm.org/10.1145/1583991.1584009
http://doi.acm.org/10.1145/1583991.1584009

158 Bibliography

[40] Dahlia Malkhi, Lev Novik, and Chris Purcell. “P2P replica syn-
chronization with vector sets.” In: ACM SIGOPS Operating Systems
Review 41.2 (2007), pp. 68–74.

[41] Dahlia Malkhi and Douglas B. Terry. “Concise Version Vectors
in WinFS.” In: DISC. Ed. by Pierre Fraigniaud. Vol. 3724. Lecture
Notes in Computer Science. Springer, 2005, pp. 339–353. isbn: 3-
540-29163-6.

[42] Friedemann Mattern. “Virtual Time and Global Clocks in Dis-
tributed Systems.” In: Workshop on Parallel and Distributed Algo-
rithms. 1989, pp. 215–226.

[43] Ralph C. Merkle. “A Certified Digital Signature.” In: Proceedings
on Advances in Cryptology. CRYPTO ’89. Santa Barbara, California,
USA: Springer-Verlag New York, Inc., 1989, pp. 218–238. isbn: 0-
387-97317-6.

[44] George V. Neville-Neil. “Time is an Illusion Lunchtime Doubly
So.” In: Commun. ACM 59.1 (Dec. 2015), pp. 50–55. issn: 0001-
0782. doi: 10.1145/2814336. url: http://doi.acm.org/10.1145/
2814336.

[45] Scott Owens, Susmit Sarkar, and Peter Sewell. “A better x86 mem-
ory model: x86-TSO.” In: International Conference on Theorem Prov-
ing in Higher Order Logics. Springer. 2009, pp. 391–407.

[46] D. Stott Parker, Gerald Popek, Gerard Rudisin, Allen Stoughton,
Bruce Walker, Evelyn Walton, Johanna Chow, David Edwards,
Stephen Kiser, and Charles Kline. “Detection of Mutual Incon-
sistency in Distributed Systems.” In: Transactions on Software Engi-
neering 9.3 (1983), pp. 240–246.

[47] Karin Petersen, Mike J. Spreitzer, Douglas B. Terry, Marvin M.
Theimer, and Alan J. Demers. “Flexible Update Propagation for
Weakly Consistent Replication.” In: Sixteen ACM Symposium on
Operating Systems Principles. Saint Malo, France, Oct. 1997.

https://doi.org/10.1145/2814336
http://doi.acm.org/10.1145/2814336
http://doi.acm.org/10.1145/2814336

Bibliography 159

[48] Ravi Prakash and Mukesh Singhal. “Dependency sequences and
hierarchical clocks: Efficient alternatives to vector clocks for mo-
bile computing systems.” In: Wireless Networks (1997). also pre-
sented in Mobicom96, pp. 349–360.

[49] Nuno Preguiça, Carlos Baquero, Paulo Sérgio Almeida, Victor
Fonte, and Ricardo Gonçalves. “Brief announcement: Efficient Causal-
ity Tracking in Distributed Storage Systems with Dotted Version
Vectors.” In: Proceedings of the 2012 ACM symposium on PODC.
Madeira, Portugal: ACM, 2012, pp. 335–336. isbn: 978-1-4503-1450-
3. doi: 10.1145/2332432.2332497.

[50] Venugopalan Ramasubramanian, Thomas L Rodeheffer, Douglas
B Terry, Meg Walraed-Sullivan, Ted Wobber, Catherine C Mar-
shall, and Amin Vahdat. “Cimbiosys: A platform for content-based
partial replication.” In: Proceedings of the 6th USENIX symposium on
Networked systems design and implementation. 2009, pp. 261–276.

[51] David Ratner, Peter L. Reiher, and Gerald J. Popek. “Roam: A
Scalable Replication System for Mobility.” In: MONET 9.5 (2004),
pp. 537–544.

[52] Michel Raynal and Mukesh Singhal. “Logical Time: Capturing
Causality in Distributed Systems.” In: IEEE Computer 30 (Feb. 1996),
pp. 49–56.

[53] R. Schwarz and F. Mattern. “Detecting causal relationships in dis-
tributed computations: In search of the Holy Grail.” In: Distributed
Computing 3.7 (1994), pp. 149–174.

[54] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Za-
wirski. “Conflict-free replicated data types.” In: Stabilization, Safety,
and Security in DS. Springer, 2011, pp. 386–400.

[55] Yair Sovran, Russell Power, Marcos K Aguilera, and Jinyang Li.
“Transactional storage for geo-replicated systems.” In: Proceedings
of the Twenty-Third ACM Symposium on Operating Systems Principles.
ACM. 2011, pp. 385–400.

https://doi.org/10.1145/2332432.2332497

160 Bibliography

[56] Douglas B Terry, Alan J Demers, Karin Petersen, Mike J Spreitzer,
Marvin M Theimer, and Brent B Welch. “Session guarantees for
weakly consistent replicated data.” In: Parallel and Distributed In-
formation Systems, 1994., Proceedings of the Third International Con-
ference on. IEEE. 1994, pp. 140–149.

[57] Douglas B Terry, Marvin M Theimer, Karin Petersen, Alan J De-
mers, Mike J Spreitzer, and Carl H Hauser. “Managing update
conflicts in Bayou, a weakly connected replicated storage system.”
In: ACM SIGOPS Operating Systems Review. Vol. 29. 5. ACM. 1995,
pp. 172–182.

[58] F. J. Torres-Rojas and M. Ahamad. “Plausible clocks: constant size
logical clocks for distributed systems.” In: Distributed Computing
12.4 (1999), pp. 179–196.

[59] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Op-
penheimer, Eric Tune, and John Wilkes. “Large-scale Cluster Man-
agement at Google with Borg.” In: Proceedings of the Tenth European
Conference on Computer Systems. EuroSys ’15. Bordeaux, France:
ACM, 2015, 18:1–18:17. isbn: 978-1-4503-3238-5. doi: 10 . 1145 /

2741948.2741964. url: http://doi.acm.org/10.1145/2741948.
2741964.

[60] Werner Vogels. “Eventually consistent.” In: Communications of the
ACM 52.1 (2009), pp. 40–44.

[61] Weihan Wang and Cristiana Amza. “On Optimal Concurrency
Control for Optimistic Replication.” In: Proc. ICDCS. 2009, pp. 317–
326.

[62] Marek Zawirski, Nuno Preguiça, Sérgio Duarte, Annette Bieniusa,
Valter Balegas, and Marc Shapiro. “Write fast, read in the past:
Causal consistency for client-side applications.” In: Proceedings of
the 16th Annual Middleware Conference. ACM. 2015, pp. 75–87.

https://doi.org/10.1145/2741948.2741964
https://doi.org/10.1145/2741948.2741964
http://doi.acm.org/10.1145/2741948.2741964
http://doi.acm.org/10.1145/2741948.2741964

	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 Problem Statement and Objectives
	1.2 Contributions and Results
	1.3 Outline

	2 Background
	2.1 Consistency
	2.1.1 Linearizability
	2.1.2 PRAM
	2.1.3 Causal Consistency
	2.1.4 Eventual Consistency

	2.2 Data Synchronization
	2.2.1 Bloom Filters
	2.2.2 Merkle Trees
	2.2.3 Read Repair

	2.3 Logical Clocks for Causality Tracking
	2.3.1 Single-Object Logical Clocks
	2.3.2 Multi-Object Logical Clocks

	2.4 Weakly-Consistent Data Stores
	2.4.1 Architecture
	2.4.2 Causally Consistency Data Stores

	2.5 Discussion

	3 Dotted Version Vectors
	3.1 System Model and Data Store API
	3.2 Current Approaches
	3.2.1 Last Writer Wins
	3.2.2 Causal Histories
	3.2.3 Version Vectors
	3.2.4 Version Vectors with Id-per-Client
	3.2.5 Version Vectors with Id-per-Server

	3.3 Dotted Version Vectors
	3.3.1 Definition
	3.3.2 Partial Order

	3.4 Dotted Version Vector Sets
	3.4.1 From a Set of Clocks to a Clock for Sets
	3.4.2 Definition

	3.5 Using DVV and DVVS in Distributed Key-Value Stores
	3.5.1 Serving a Get
	3.5.2 Serving a Put
	3.5.3 Maintaining Local Conciseness
	3.5.4 Dotted Version Vectors
	3.5.5 Dotted Version Vector Sets

	3.6 Complexity and Evaluation
	3.6.1 Evaluation

	3.7 Discussion

	4 Node-wide Intra-object Causality Management
	4.1 System Overview
	4.1.1 System Model
	4.1.2 Partial Replication
	4.1.3 Client API

	4.2 Node-wide Dot-based Clocks Framework
	4.2.1 The Node Clock
	4.2.2 Per-Object Clock
	4.2.3 Node State
	4.2.4 Serving Client Requests
	4.2.5 Auxiliary Operations
	4.2.6 Background Tasks

	4.3 Fault Tolerance
	4.3.1 Transitive Anti-Entropy Repair
	4.3.2 Node Failures

	4.4 Experimental Evaluation
	4.4.1 DottedDB
	4.4.2 MerkleDB
	4.4.3 Configuration
	4.4.4 Object Logical Clock
	4.4.5 Anti-Entropy
	4.4.6 Replication via Anti-Entropy
	4.4.7 Client Request Latency

	4.5 Node-wide Dot-based Clocks Without Fill
	4.5.1 Algorithms
	4.5.2 NDC versus NDC-NF

	4.6 Discussion

	5 Causal Multi-Value Consistency
	5.1 Causal Multi-Value Memory
	5.1.1 Ordering
	5.1.2 Causal Multi-Value Histories
	5.1.3 Causal Multi-Value with per-Location Versioning Histories

	5.2 Feasibility of CMVM for Key-Value Stores
	5.2.1 Enforcing Read-Last-Write Property
	5.2.2 Garbage Collecting Metadata
	5.2.3 CMVM-GV vs CMVM-LV after GC
	5.2.4 Consistency Models Comparison
	5.2.5 Discussion

	6 A Distributed Causal Multi-Value Data Store
	6.1 Basic Reference Design
	6.1.1 System Model
	6.1.2 Causality Metadata
	6.1.3 Client-Server API
	6.1.4 Client Library
	6.1.5 Client Library Algorithms
	6.1.6 Server Node State
	6.1.7 Server Algorithms

	6.2 Optimized Design with Garbage Collection
	6.2.1 Metadata Pruning
	6.2.2 Client Library with GC
	6.2.3 Server Algorithms with GC

	6.3 Alternative Designs
	6.3.1 Derived Object Histories
	6.3.2 Key-less Dependencies

	6.4 Fault-Tolerance
	6.5 Discussion

	7 Transactional Causal Multi-Value Consistency
	7.1 Motivation
	7.1.1 Read-only Transactions
	7.1.2 Write-only Transactions

	7.2 Transactional Causal Multi-Value Memory
	7.2.1 Ordering
	7.2.2 Transactional Causal Multi-Value Histories
	7.2.3 Transactional Causal Multi-Value with per-Location Versioning Histories
	7.2.4 Transactional CMV versus Non-Transactional CMV Memories

	7.3 Distributed Transactional Causal Multi-Value Data Store
	7.3.1 Client Library
	7.3.2 Server Algorithms

	7.4 Discussion
	7.4.1 Fault-Tolerance

	8 Conclusion
	8.1 Future Work

	A Mathematical Notation
	A.1 Sets
	A.1.1 Maximal Elements in a Partially Ordered Set
	A.1.2 Pre-defined Sets

	A.2 Maps
	A.2.1 Bottom Values
	A.2.2 Domain and Range
	A.2.3 Domain Subtraction
	A.2.4 Map Subtraction
	A.2.5 Domain Restriction
	A.2.6 Merging Maps
	A.2.7 Partial Map

	A.3 Pairs

	Bibliography

