
DottedVersionVectors: EfficientCausalityTracking
forDistributedKey-ValueStores

Nuno Preguiça, Carlos Baquero, Paulo Sérgio Almeida, Victor Fonte, Ricardo Tomé Gonçalves
nmp@di.fct.unl.pt, {cbm,psa,vff,tome}@di.uminho.pt

Background
The design of Amazon’s Dynamo system [6] was
an important influence to a new generation of
databases, such as Cassandra and Riak, focusing on
partition tolerance, write availability and eventual
consistency. These systems follow a design where
the data store is always writable: replicas of the
same data item are allowed to temporarily diverge
and to be repaired later on. A simple repair ap-
proach, followed in Cassandra, is to use physical
timestamps to arbitrate which concurrent updates
should prevail. As a consequence some updates will
be lost since a last writer wins (LWW) policy is en-
forced over concurrent updates. Thus, an approach
avoiding lost updates must be able to maintain di-
vergency until it can be reconciled.

Motivation
Accurate tracking of concurrent data updates can be
achieved by a careful use of well established causal-
ity tracking mechanisms [2, 3, 4, 5]. In particular,
for data storage systems, version vectors [3] enable
the system to compare any pair of replica versions
and detect if they are equivalent, concurrent or if
one makes the other obsolete. However, current
cloud storage systems, e.g. Dynamo and Riak, make
several compromises regarding causality tracking,
leading to lost updates and/or introduction of false
concurrency. The reasoning behind these compro-
mises is to achieve higher scalability by imposing a
limit on the number of entries in the version vectors.

Dotted Version Vectors
Dotted Version Vectors is a new solution that com-
bines a new execution model for operations with a
new, and simple, causality tracking solution that al-
lows both scalable and fully accurate tracking. The
key idea of our approach is to maintain the identi-
fier of the most recent event separate from its causal
past. Besides allowing the size of information to be
bounded by the degree of replication (instead of the
number of clients), this approach allows to verify
causality in constant time (instead of O(n) for ver-
sion vectors).
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Current Approaches
A classic version vector compresses causal histories by representing, for each component, all events up to a
given sequence number. With on entry per server, this is not enough to represent the concurrent versions
generated when several clients (using a standard get/put API) perform a get of some key from one server
and then all perform a put, using the same causal past.
In the examples below, two clients concurrently modifying the same key on a replica node. On the left, we
are using Causal Histories, and on the right Version vector with one id-per-server.
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The basic idea of dotted version vectors is to add the possibility of representing an individual event (a “dot")
with an isolated sequence number outside the contiguous range. This allows describing events as concurrent
(due to having incomparable dots) even if they were generated from the same causal past (and have identical
version vectors in the causal past).
Below we present the same example as above, but using Version vector with one id-per-client on the left
and Dotted Version Vectors on the right.
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Scalability and Performance
We extended and performed a set of benchmarks in Riak 0.*, and we found that the clock size is always much
smaller using DVV, even with the (default) pruning that occurs with VV. We also confirm that pruning is
occurring, because concurrency was higher using VV in all the tests. The difference in concurrency, results
from false conflicts created by pruning. Even if the default pruning threshold was lowered in VV case, to
reduce the clock size, this would also lead to an increase of false concurrency, thus a higher number of values
per key.

Get Put Update Clock Values
Workload Type Mean 95th Mean 95th Mean 95th Size per Key

(ms) (ms) (ms) (ms) (ms) (ms) (bytes) (average)

60% GET VV 7.65 15.9 5.71 10.1 14.4 24.0 790 1.34
10% PUT DVV 3.16 5.25 4.31 6.27 7.76 10.9 127 1.31
30% UPD DV V

V V 0.41 0.33 0.76 0.62 0.54 0.46 0.16 0.98
30% GET VV 10.4 21.6 7.48 13.8 18.8 31.9 859 1.20
10% PUT DVV 3.45 5.83 4.56 6.59 8.39 11.8 123 1.16
60% UPD DV V

V V 0.33 0.27 0.61 0.48 0.45 0.37 0.14 0.97
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The figure on the left illustrates the theoretical
effect of the number of writing clients in the num-
ber of clock entries, and thus the overall clock
size. DVV stabilizes in size when the number of
entries reaches the replication factor (here set to
3), while VV with id-per- client grow indefinitely.
Thus, in practice, systems usually resort to prun-
ing to control its growth, and lose the ability to
accurately track causality.

A full description of this mechanism, and benchmarks of its integration with Riak can be found in a technical
report [1].


