
Efficient Modelling and Analysis of User
Interfaces in High-Assurance Systems

Saulo Rodrigues e Silva?

HASLab/INESC TEC & Universidade do Minho
Campus de Gualtar, Braga, Portugal

saulo.r.silva@inesctec.pt

Abstract. This paper presents a research strand on the convergence
between models of device interaction logic and models of user goals and
activities. The main objective is to improve the quality of modelling and
analysis of high-assurance interactive system’s interfaces by exploring
the integration of the two types of models.

Keywords: Interactive Human-Machine Systems; Task Analysis; For-
mal Verification.

1 Introduction and motivation

Cyber-Physical Systems (CPS) integrate computational and physical capabili-
ties, and have, in many cases, high-assurance needs. Interactive CPS such as
cockpits and medical devices provide user interfaces that allow users to monitor
and control the system. To ensure safe and effective operation of these interac-
tive CPS, it is important to ensure the absence of latent design anomalies in
their user interfaces.

Three main types of approaches exist for formal modelling and analysis of
human-machine interaction, each tackling the verification of user interface design
from a different and complementary perspective:

– Analysis of usability and safety properties of user interface design. This ap-
proach aims to verify that the behaviour of the user interface is compliant
with properties capturing best practice in human-machine interface design.
An example property is visibility of operational modes, which aims to en-
sure that the user interface presents sufficient information about the current
operational mode of the device. Campos and Harrison [1] is an example of
such approach. A typical challenge with these approaches is the scalability
of the analysis, as all possible system behaviours and all possible user in-
teractions with the system need to be considered. Another challenge is also
the plausibility or relevance of the user behaviours produced by the anal-
ysis, as the obtained counter examples can contain random or unrealistic
human-machine interactions.

? Copyright held by the author.



2 Saulo Rodrigues e Silva

– Analysis of user interface design against task models. Task models capture
sequences of actions the user needs to carry out to interact with the system
when achieving a goal. These sequences of actions are typically described
using a hierarchical decomposition of goals into subgoals and atomic user
actions and system events. This approach aims to check that the user in-
terface correctly supports tasks representing operations described, e.g., in
training material, and best/actual practice. Examples approaches include
Palanque’s work [2], Bolton’s work [3], Paternò’s work [4] and Campos’s
work [5]. A challenge related to these approaches is how to analyse sys-
tematically non-normative behaviours followed by users, e.g., in abnormal
system conditions, or to take into account strategies adopted by the user to
optimise task operations [3].

– Analysis of user interface design against human behaviour. This approach
involves explicit definition of user models capturing cognitive assumptions
about the decision-making process followed by the users when operating an
interactive system. Example approaches include Rushby’s work on automa-
tion surprise [6], Rimvydas’s et. al. work on generic user models [7] and
Degani’s work on mental models [8]. A challenge with these approaches is
how to validate the cognitive assumptions incorporated in the user model.

Efficient methods for developing models and carrying out analysis of user
interface design are key to make these methods acceptable to industry. While
there is on going work on defining modelling patterns and analysis templates
(e.g., see Harrison et. al. [9], and Bowen and Reeves’ work [10]), little work has
been done on exploring how to improve efficiency of the approaches by combining
them.

This research aims to address this challenge. We are initially focusing on
exploring how to combine two types of analysis: verification against usability and
safety properties, and verification against task models. The expected outcome
is a set of design patterns presenting efficient solutions to combine these two
approaches.

2 Approaches combining task analysis and device analysis

We now highlight some of the most recent approaches combining task analysis
with user interface design analysis.

Campos [5] describes the system model and the task model as interactors.
An interactor is an object with state and operations. As users can perceive the
interactor’s state and access its operations, it provides a way to write interactive
system’s behavioural properties. The behaviour of the interator is expressed in
Modal Action Logic (MAL). The properties to be proved are expressed in CTL.
Analysis is performed with the IVY tool, which enables the automatic translation
of interactors models into nuSMV [11] models and properties.

Paternò [4] makes a distinction between three types of task models, each
having a different role in the analysis of a user interface design. One type of task



Efficient Modelling and Analysis of User Interfaces in High-Assurance Systems 3

model defines the task model of the existing system. This model describes how
tasks should be carried out in the current system, according to the actual imple-
mentation of the system. Another task model is the task model of an envisioned
system, which is used at the early stages of system development, to shape the
functionalities of the human-machine interface of the system under development.
Finally, the user task model captures hypotheses about how the user thinks a
task should be accomplished with the system.

Palanque et. al. [12] use the HAMSTERS notation to describe task models,
and Interactive Cooperative Objects (ICO) [13], a Petri Nets based language, to
describe the system model. They establish a correspondence between actions in
the task model and events described in the system model. Using this correspon-
dence they can co-execute task models and system models. They analyse the
system model against specific sequences of actions presented in the task model.
This process is supported by the CIRCUS toolset.

Campos et. al. [14] extend Palanque’s approach by automatically generat-
ing scenarios that can be used to test system models against task models. This
extension is used for automated exploration of test scenarios representing nor-
mative behaviour, as well as for exploration of possible use errors and deviations
from normative behaviour.

Bolton et. al. [15] combine task models and system models based on the
idea of automatically translating task models into Temporal Logic Specifica-
tions (TLS). Task models are represented using the Extended Operator Function
Model (EOFM) notation. The EOFM notation is a task model representation
based on the XML language. The system model is described as a state machine
in SAL [16]. Compliance between system model and task model is analysed in
SAL, by checking that the system model satisfies the TLS properties. A chal-
lenge with this approach is the scalability of the analysis for realistic systems.
Solutions to address this concern are being explored in [17].

3 Tools for analysis of user interface design and tasks

In the first months of this research, we have investigated different tools for mod-
elling systems and user tasks. We are currently focusing our attention on PVSio-
web [18] and HAMSTERS [19], each providing a different formal modelling ap-
proach and formal analysis technique.

We consider the PVSio-web toolkit for modelling the interactive behaviour
of the system due to its theorem proving capabilities. Although the analysis is
not automatic and proving properties may require human intervention, theorem
proving does not suffer state space explosion issues faced by model-checking
approaches, nor issues with incompleteness of the analysis faced by simulation-
based approaches.

We consider HAMSTERS due to the possibility of translating task models
into state machines [14]. This capability of the tool allows us to express task
models in a language compatible with that used for modelling the system be-
haviour.



4 Saulo Rodrigues e Silva

3.1 Modelling the system behaviour in PVSio-web

PVSio-web [18] is a prototyping and analysis toolkit based on the PVS [20]
verification system. The functionalities of PVSio-web are similar to those of
commercial tool suites, such as MathWorks Simulink1, SCADE2 and IBM’s Ra-
tional Statemate3. The tool offers a graphical environment to define the visual
appearance of the prototype user interface, as well as the interactive behaviour
of the prototype. The visual aspect is based on a picture of the device. The
behaviour is a PVS executable model. The PVS model can be developed using a
graphical notation, Emucharts, which is a dialect of Statecharts. The Emucharts
notation supports states, representing the different modes of the system, state
variables, representing the structure of the system state, and transitions, rep-
resenting events that change the system state. The semantics of Emucharts is
formally defined in the PVS higher-order logic language.

3.2 Modelling tasks with HAMSTERS

HAMSTERS is both a tool and a notation that allows creating, editing and
simulating task models. It has a graphical and hierarchical notation to represent
human activities, based on Concur Task Trees (CTT) [4]. HAMSTERS supports
simulation based analysis of task models, as well as quantitative analysis of
cognitive workload based on the type of human machine interactions required in
the task. HAMSTERS is included in the CIRCUS toolset, which also includes
PetShop (for modelling the system behaviour) and SWAN (for co-execution of
task models and system models). Recently, Martinie et. al. [19] extended the
tool capabilities with extensions to the task model notation suitable to describe
activities involving multiple users.

4 Conclusion

The work presented here summarises the current state of my research on inte-
grating system modelling and analysis with task modelling and analysis. The
work is at the early stages. Two formal tools are currently being used that sup-
port well known notations that can be translated into state machines. This makes
it easier to investigate the definition of efficient modelling patterns combining
tasks models and systems models. Future work includes moving to a realistic case
study, in the medical or avionics domain. This case study will provide us with
a test-bench suitable to inform and validate the development of the modelling
patterns.

Acknowledgement. This project is partially supported by Project “NORTE-
01-0145-FEDER-000016”, financed by the North Portugal Regional Operational

1 http://uk.mathworks.com/products/simulink/
2 http://www.esterel-technologies.com/
3 http://www-03.ibm.com/software/products/en/ratistat



Efficient Modelling and Analysis of User Interfaces in High-Assurance Systems 5

Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agree-
ment, and through the European Regional Development Fund (ERDF). It is also
supported by Conselho Nacional de Desenvolvimento Cient́ıfico e Tecnológico
(CNPq) PhD scholarship.

References

1. J. C. Campos and M. D. Harrison, “Systematic analysis of control panel interfaces
using formal tools,” in Interactive systems. Design, specification, and verification,
pp. 72–85, Springer, 2008.

2. P. Palanque, R. Bastide, and V. Sengès, “Validating interactive system design
through the verification of formal task and system models,” in Engineering for
Human-Computer Interaction, pp. 189–212, Springer, 1996.

3. M. L. Bolton, R. I. Siminiceanu, and E. J. Bass, “A systematic approach to model
checking human–automation interaction using task analytic models,” IEEE Trans-
actions on Systems, Man, and Cybernetics-Part A: Systems and Humans, vol. 41,
no. 5, pp. 961–976, 2011.

4. F. Paternò, “ConcurTaskTrees: an engineered notation for task models,” The hand-
book of task analysis for human-computer interaction, pp. 483–503, 2004.

5. J. C. Campos, “Using task knowledge to guide interactor specifications analysis,”
in International Workshop on Design, Specification, and Verification of Interactive
Systems, pp. 171–186, Springer, 2003.

6. J. Rushby, “Using model checking to help discover mode confusions and other
automation surprises,” Reliability Engineering & System Safety, vol. 75, no. 2,
pp. 167–177, 2002.

7. P. Curzon, R. Rukšėnas, and A. Blandford, “An approach to formal verification
of human–computer interaction,” Formal Aspects of Computing, vol. 19, no. 4,
pp. 513–550, 2007.

8. A. Degani, Taming HAL: Designing interfaces beyond 2001. Springer, 2004.

9. M. D. Harrison, J. C. Campos, R. Rukšėnas, and P. Curzon, “Modelling Informa-
tion Resources and Their Salience in Medical Device Design,” in Proceedings of
the 8th ACM SIGCHI Symposium on Engineering Interactive Computing Systems,
EICS ’16, (New York, NY, USA), pp. 194–203, ACM, 2016.

10. J. Bowen and S. Reeves, “Design Patterns for Models of Interactive Systems,”
in Software Engineering Conference (ASWEC), 24th Australasian, pp. 223–232,
IEEE, 2015.

11. A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Se-
bastiani, and A. Tacchella, “Nusmv 2: An opensource tool for symbolic model
checking,” in International Conference on Computer Aided Verification, pp. 359–
364, Springer, 2002.

12. E. Barboni, J.-F. Ladry, D. Navarre, P. Palanque, and M. Winckler, “Beyond Mod-
elling: An Integrated Environment Supporting Co-execution of Tasks and Systems
Models,” in Proceedings of the 2Nd ACM SIGCHI Symposium on Engineering In-
teractive Computing Systems, EICS ’10, (New York, NY, USA), pp. 165–174, ACM,
2010.

13. P. Palanque, M. Winckler, and C. Martinie, “A formal model-based approach for
designing interruptions-tolerant advanced user interfaces,” in Model-Driven Devel-
opment of Advanced User Interfaces, pp. 143–169, Springer, 2011.



6 Saulo Rodrigues e Silva

14. J. C. Campos, C. Fayollas, C. Martinie, D. Navarre, P. Palanque, and M. Pinto,
“Systematic Automation of Scenario-based Testing of User Interfaces,” in Proceed-
ings of the 8th ACM SIGCHI Symposium on Engineering Interactive Computing
Systems, EICS ’16, (New York, NY, USA), pp. 138–148, ACM, 2016.

15. M. L. Bolton, “Automatic validation and failure diagnosis of human-device inter-
faces using task analytic models and model checking,” Computational and Mathe-
matical Organization Theory, vol. 19, no. 3, pp. 288–312, 2013.

16. L. De Moura, S. Owre, and N. Shankar, “The SAL language manual (Tech. Rep.
No. CSL-01-01),” Menlo Park: Computer Science Laboratory, SRI International,
2003.

17. M. L. Bolton, X. Zheng, K. Molinaro, A. Houser, and M. Li, “Improving the
scalability of formal human–automation interaction verification analyses that use
task-analytic models,” Innovations in Systems and Software Engineering, pp. 1–17,
2016.

18. P. Masci, P. Oladimeji, Y. Zhang, P. Jones, P. Curzon, and H. Thimbleby, “PVSio-
web 2.0: Joining PVS to HCI,” in International Conference on Computer Aided
Verification, pp. 470–478, Springer, 2015.

19. C. Martinie, P. Palanque, E. Barboni, M. Winckler, M. Ragosta, A. Pasquini, and
P. Lanzi, “Formal tasks and systems models as a tool for specifying and assessing
automation designs,” in Proceedings of the 1st International Conference on Appli-
cation and Theory of Automation in Command and Control Systems, pp. 50–59,
IRIT Press, 2011.

20. S. Owre, J. M. Rushby, and N. Shankar, “PVS: A prototype verification system,”
in International Conference on Automated Deduction, pp. 748–752, Springer, 1992.


