%0 Book Section %B Evaluation of Novel Approaches to Software Engineering %D 2010 %T Using fault screeners for software error detection %A Rui Abreu %A González, Alberto %A Zoeteweij, Peter %A Gemund, Arjan JC %I Springer %P 60–74 %X

Fault screeners are simple software (or hardware) constructs that detect variable value errors based on unary invariant checking. In this paper we evaluate and compare the performance of three low-cost screeners (Bloom filter, bitmask, and range screener) that can be automatically integrated within a program, and trained during the testing phase. While the Bloom filter has the capacity of retaining virtually all variable values associated with proper program execution, this property comes with a much higher false positive rate per unit of training effort, compared to the more simple range and bitmask screeners, that compresses all value information in terms of a single lower and upper bound or a bitmask, respectively. We present a novel analytic model that predicts the false positive and false negative rate for ideal (i.e., screeners that store each individual value during training) and simple (e.g., range and bitmask) screeners. We show that the model agrees with our empirical findings. Furthermore, we describe an application of all screeners, where the screener’s error detection output is used as input to a fault localization process that provides automatic feedback on the location of residual program defects during deployment in the field.