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Abstract. Automated fault diagnosis is emerging as an important fac-
tor in achieving an acceptable and competitive cost/dependability ratio
for embedded systems. In this paper, we introduce model-based diagnosis
and spectrum-based fault localization, two state-of-the-art approaches
to fault diagnosis that jointly cover the combination of hardware and
control software typically found in embedded systems. In this paper we
present an introduction to the field, discuss our recent research results,
and report on the application on industrial test cases.
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1 Introduction

The complexity of the systems that we use on a day-to-day basis is constantly
growing. This trend is particularly strong in the area of embedded systems, where
new functionality can quickly be realized in software. In combination with an
ever decreasing time-to-market, and a practically constant rate of faults per line
of code, this implies that system reliability is decreasing.

Automated, or computer-aided diagnosis techniques are emerging as an im-
portant means to counter this trend. They serve to localize the faults that are the
root causes of system failures. As such, they help to shorten the test-diagnose-
repair cycle in the software development process, allowing more faults to be
removed. In addition, automated diagnosis techniques can be used in mainte-
nance, and can serve as the basis for (automated) recovery. In this role they are
a vital ingredient of dependable autonomic systems.

In this paper we introduce two approaches to automated diagnosis: model-
based diagnosis (MBD), and spectrum-based fault localization (SFL). The for-
mer technique, which originated in the artificial intelligence domain, infers a
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diagnosis from a compositional, behavioral model combined with real-world ob-
servations, and has successfully been applied to digital circuits and complex
mechanical systems. The latter technique, SFL, overcomes the dependability of
MBD on suitable behavioral models, and applies naturally to software, for which
these models are generally not available. Together, MBD and SFL cover the com-
bination of hardware devices and control software that is typically found in the
area of embedded systems.

The remainder of this paper is organized as follows: In Sect. 2 we take a
high-level view on the diagnosis problem, which allows us to compare and relate
MBD and SFL. In Sect. 3 and 4 we introduce the actual techniques, and discuss
our current research and successful applications of MBD and SFL on industrial
test cases. We conclude in Sect. 5.

2 The Diagnosis Problem

Central to a discussion on diagnosis are the notions of failure and fault. A fail-

ure is a discrepancy between expected and observed behavior, and a fault is a
property of the system that causes such a discrepancy. The notion of an error is
sometimes used to indicate a system state that potentially leads to a failure [4],
but for our purposes the distinction between failure and error is largely artificial,
and depends only on what can be observed and what has been specified.

The purpose of diagnosis is to identify the system components that are the
root cause of observed failures. We consider that a system consists of n com-
ponents, and that it applies some system function y = f(x, h), where x and
y represent observations of system input and output, respectively, and where
h = (h1, . . . , hn) indicates the health state of each of the n components (see
Fig. 1). The basic health states of a component are healthy and faulty, but as we
shall see in Sect. 3, this can further be refined. Diagnosis can be understood as
solving the inverse problem h = f−1(x, y), i.e., find the combinations of compo-
nent health states that explain the observed output for a given input. Note that
the internals of the system are not observable, which distinguishes the diagnosis
problem from a component testing problem.

y=f( x , h )
f1 f2 f3

ff4 5

x

Fig. 1. Conceptual view of a system

Because the exact system function f is generally not known, diagnosis always
involves the use of a system model. Depending on the amount of information that
this model M provides about the system components, it can be used for diagnosis
as follows.



– If M is composed from models M1, . . . , Mn for each of the system compo-
nents, and thus specifies their interaction and nominal behavior, it can be
used for diagnosis by searching for combinations of health states h such that
M(x, h) = y.

– If, in addition to the nominal system behavior M(x) = y′, the model only
specifies how the components interact to determine the various elements yi of
y, without describing their actual behavior, it can still be used for diagnosis
by identifying the extent to which components are exclusively involved in
the observations yi for which yi 6= y′

i.

The former approach to diagnosis is known as model-based diagnosis, which is
the subject of Sect. 3. The latter approach is known as spectrum-based fault
localization, which is the subject of Sect. 4.

3 Model-based Diagnosis

Model-based diagnosis was first proposed by Reiter [16] and De Kleer [6] and im-
plemented in the General Diagnostic Engine. The best known practical examples
can be found in the space domain [19] and in automotive applications [18]. Ex-
amples in the space domain are the Deep Space 1 [14] and Earth Observing 1 [15]
missions, both part of NASA’s New Millennium Program. Related but separate
fields are that of Fault Tolerant control and diagnosis with Bayesian networks.
In this section we describe the principles of MBD, the modeling technique, the
underlying inference algorithms, and industrial applications.

3.1 Principles of Model-based Diagnosis

We demonstrate the principles of model-based diagnosis using the circuit of
Fig. 2(a) as an example. This system consists of three logical inverters, which
we model as components, each with an input u and an output v. The healthy,
nominal behavior of an inverter is that the output is equal to the inverted input,
i.e., h ⇒ (v ⇔ ¬u).

(a) (b)
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h1 ⇒ (z ⇔ ¬x)

h2 ⇒ (y1 ⇔ ¬z)

h3 ⇒ (y2 ⇔ ¬z)

Fig. 2. Three-inverters example: (a) circuit and (b) model

We can compose a model of the circuit of Fig. 2(a) from three models of
inverter components, by relating their inputs and outputs according to the con-
nections of the circuit. This model is shown in Fig. 2(b). Note that this only



models healthy behavior. Faulty behavior is left implicit, which makes this a
weak model.

If we were able to probe the inputs and outputs of all components of a system,
the diagnosis problem would be trivial: we could simply search for the compo-
nents whose behavior does not correspond to its component model. Typically,
however, a significant part of the system is hidden from observation (the inside
of the dashed box in Fig. 1), and we have to reason about possible explanations
for the observed, faulty behavior instead. In the case of our example circuit, we
assume that only x, y1, and y2 can be observed.

Suppose we observe (x, y1, y2) = (1, 0, 1). The observation y1 = 0 indicates a
system failure. The combinations of component health states that explain this
observation in the context of our model are listed in the first column of Table 1.
Because of the model weakness and limited observability, multiple explanations
exist. This means that after this observation we still have some residual uncer-
tainty about the actual system health state.

weak strong z = 1 multiple

(1, 0, 1) (1, 0, 1)
(0, 0, 1) (0, 0, 1) (0, 0, 1)
(1, 0, 0) (1, 0, 0)
(0, 1, 0) (0, 1, 0) (0, 1, 0)
(0, 0, 0) (0, 0, 0) (0, 0, 0)

Table 1. Diagnoses (h1, h2, h3) for the example circuit, with (x, y1, y2) = (1, 0, 1)

There are a number of ways to reduce this uncertainty and improve the qual-
ity of a diagnosis. One possibility is to add constraints to the model that further
specify the faulty behavior. For example, if we want to explore the possible ex-
planations for the specific fault that an inverter has its output permanently set
to 0 (called stuck-at-zero), we can add the constraint ¬h ⇒ ¬v to the component
model.

For the resulting model, which is called strong because it makes the faulty
behavior explicit, the diagnosis is listed in the second column of Table 1. The
additional constraints reduce the number of solutions, which improves the qual-
ity of the diagnosis. Note that we have to be careful with this strong modeling
approach as our model can no longer explain any behavior resulting from unan-
ticipated faults, and may prove to be inconsistent with some observations.

Another approach is to improve quality by increasing the observability. Con-
sider adding z = 1 to the observation. The resulting diagnosis is shown in the
third column of Table 1. Note that for this simple example, all variables are now
observable, which makes the diagnosis problem trivial. In general, this will not
be the case. Even so, while all explanations indicate that i1 and i3 are broken,
there is still uncertainty about the health state of i2.

Besides increasing the number of observable variables we can also choose to
use multiple observations, which capture the behavior of the system for different



inputs. The results of combining the initial observation with a second observation
(x, y1, y2) = (0, 0, 1) is shown in the last column of Table 1.

3.2 Diagnostic Performance

The model of Fig. 2(b) constitutes a propositional formula, and standard tech-
niques for propositional satisfiability solving can be used to automatically find
those explanations (h1, h2, h3) that are consistent with the system description
and observations. We have implemented MBD with the modeling language Ly-

dia (Language for sYstem DIAgnosis, [13]) and accompanying tools. Lydia is
designed to facilitate a conversion to a propositional formula in polynomial time.

However, the underlying satisfiability problem is NP-complete, and requires
efficient, and specialized methods for searching the solution space. One such
method is to use a probability heuristic that can be applied in an A* search
algorithm. A further important improvement on such an algorithm is the use of
conflict sets to skip over inconsistent solutions. For Lydia we have implemented
Conflict-directed A* (CDAS) as proposed by [19].

Another promising approach, which has also been implemented, is to exploit
model hierarchy [9]. A hierarchical system description is composed of smaller
partial system descriptions that are organized in a hierarchical structure with
one system description on the highest level. By exploiting the hierarchical infor-
mation and selectively compiling parts of the model it is possible to increase the
diagnostic performance and to trade cheaper preprocessing time for faster run-
time reasoning. Our hierarchical algorithm, being sound and complete, allows
large models to be diagnosed, where compile-time investment directly translates
to run-time speedup. Experiments with a diagnosis benchmark based on ISCAS-
85 circuitry models have shown speed-up factors between 2 to 5.6 compared to
the CDAS algorithm.

Last, but not least, the use of non-deterministic, i.e., stochastic algorithms
to traverse the search space provides an important speed-up for multiple fault
diagnoses. We have implemented a greedy stochastic algorithm called Safari

(StochAstic Fault diagnosis AlgoRIthm, [8]). For weak fault models, it can com-
pute 80-90% of all cardinality-minimal diagnoses, several orders of magnitude
faster than state-of-the-art deterministic algorithms, such as CDAS, allowing
systems with several hundreds of components to be diagnosed in seconds. This
algorithmic research will be applied to the fault diagnosis of Océ copiers within
the STW/PROGRESS project Finesse (see [13]).

Lydia supports variables both in the Boolean and finite integer (FI) domains.
The use of FI domains is costly in terms of diagnosis time. We have shown that an
algorithm working directly in the FI domain is a preferred option over Boolean
encodings, as it offers speed-ups of up to two orders of magnitude [7].

3.3 Industrial Applicability

As part of the Tangram project five subsystems of ASML [3] wafer scanners
have been modeled in Lydia for diagnosis. Table 2 lists the following character-



istics of these cases: engineering discipline, whether it involved dynamic system
functionality, the model size, the time spent on the modeling, and the (estimated)
improvement in diagnosis time.

system engineering dynamic model modeling diagnosis time
disciplines size [loc] time [days] order of magnitude

original MBD
LASER E, M, S, O X 806 20 days(*) ms (*)
EPIN E, M 37 7 days ms
POB E, M, O 500 12 hours (*) s (*)
ILS E 82 8 minutes ms
WS E, M, S, H X 2151 15 days s

Table 2. Overview of modeling cases. E = electric, M = mechanic, S = software, O = optical, and
H=hydraulic. Estimates are indicated with (*).

The EPIN case is a good example of how even a relative simple system
consisting of three sensors, an actuator, and some safety monitoring logic, can
be problematic for a diagnosis based on human reasoning. In one particular case
it took two days to finally correctly identify the fault sensor because of an initial
mistake in the diagnostic reasoning. The EPIN and WS cases have both been
extended by exploring automatic model derivation from Netlists and VHDL code
respectively. This automatic modeling step reduces modeling effort and decreases
model maintenance as part of the model can be kept automatically up-to-date
to design.

In half of the cases the diagnosis time had to be estimated based on earlier
cases and simulation experiments. Based on these estimates and actual diagnosis
times we find that the investment in modeling time yields significant speed-ups
in diagnosis time.

4 Spectrum-based Fault Localization

While MBD is well-suited for circuits and hardware devices, software is rarely
modeled in sufficient detail during development, and derivation of suitable be-
havioral models from source code is troublesome at best. However, as we already
indicated in Sect. 2, diagnosis can be performed in absence of such models by
analyzing the involvement of components of a system in the faulty behavior.

Consider the example failure (x, y1, y2) = (1, 0, 1) of the previous section.
Without knowing the functionality of the components, from Fig. 2(a) we can
still deduce that i1 is involved in both output observations. Inverter i3 is only
involved in the correct output observation y2, but i2 is the only component that
is exclusively involved in the faulty output observation y1. This makes i2 the
most likely cause of the observed failure, while i3 is least likely to be involved.

This technique, which is known as spectrum-based fault localization, ap-
plies quite naturally to software, which can be seen as an executable model
that indicates, through profiling instrumentation, the involvement of its various
components in correct and faulty behavior. Examples of existing systems for



diagnosis and debugging that implement SFL are Pinpoint [5], which focuses on
large, dynamic on-line transaction processing systems, and Tarantula [12] which
focuses on C software. In this section we introduce the principles of SFL, and de-
scribe our recent research on its diagnostic performance. In addition, we discuss
a successful application to industrial (embedded) software.

4.1 SFL Principles

The name SFL refers to the use of so-called program spectra [17] for measuring
the activity of software components. Here we will be using block hit spectra, which
are arrays of binary flags with an entry per block of source code (see Fig. 3),
indicating the activity or inactivity of that block.

For the application of SFL to software, we require the program spectra of
several runs of a program, some of which have demonstrated an error or fail-
ure (called failed runs). The other runs are called passed runs. The block hit
spectra of several runs constitute a binary matrix, whose columns correspond
to the different components (blocks in this case) of the program. Fig. 3 shows
an example for six runs and four components. The passed / failed information
constitutes another column vector, which is called the error vector, and encodes
the comparison of y and y′ in Sect. 2. Fault localization essentially consists in
identifying the component whose column vector resembles the error vector most.

To quantify this resemblance we use a similarity coefficient, as known from
data clustering (see, e.g., [11]). As an example, the Jaccard similarity coefficient
(see also [11]) expresses the similarity of two binary vectors x and y as as the
number of positions in which they share an entry 1, divided by this same number
plus the number of positions in which they differ: s = a11

a11+a01+a10

, where apq =
|{i | xi = p ∧ yi = q}|, and p, q ∈ {0, 1}.

To illustrate the approach, consider the function of Fig. 3. It is meant to
sort, using the bubble sort algorithm, a sequence of rational numbers, but it has
a bug in the swapping code of block 4: only the numerators are swapped. The
table in Fig. 3 shows the block hit spectra for six input sequences. The fault in
the swapping code only manifests itself for the fifth input, 〈 3

1 , 2
2 , 4

3 , 1
4 〉, for which

the output is 〈 1
1 , 2

2 , 4
3 , 3

4 〉 instead of 〈 1
4 , 2

2 , 4
3 , 3

1 〉. Consequently, we mark the fifth
run as failed by an entry 1 in the error vector. The Jaccard similarities s1, . . . , s4

of the error vector to the four column vectors in the spectrum data are listed in
the bottom row of the table. Block 4 has the highest similarity, which (correctly)
identifies the swapping code as the most likely location of the fault.

4.2 Diagnostic Performance

The calculated similarity coefficients rank the components of a system with
respect to the likelihood that they cause the detected failures. If the actual
location of a fault is known, we can then assess the quality of the SFL diagnosis
based on its position in the ranking. This way, we have investigated the influence
of several parameters on the diagnostic quality, using a benchmark set of software
faults known as the Siemens set [10]. This set consists of seven C programs that



void Rat iona lSort ( int n , int ∗num,
int ∗den ){

/∗ b lock 1 ∗/
int i , j , temp ;
for ( i=n−1; i >=0; i−− ) {

/∗ b lock 2 ∗/
for ( j =0; j<i ; j++ ) {

/∗ b lock 3 ∗/
i f ( RationalGT(num[ j ] , den [ j ] ,

num[ j +1] , den [ j +1]) ) {
/∗ b lock 4 ∗/
temp = num[ j ] ;
num[ j ] = num[ j +1] ;
num[ j +1] = temp ;

}}}}

block
input 1 2 3 4 error

〈 〉 1 0 0 0 0
〈 1

4
〉 1 1 0 0 0

〈 2

1
, 1

1
〉 1 1 1 1 0

〈 4

1
, 2

2
, 0

1
〉 1 1 1 1 0

〈 3

1
, 2

2
, 4

3
, 1

4
〉 1 1 1 1 1

〈 1

4
, 1

3
, 1

2
, 1

1
〉 1 1 1 0 0
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Fig. 3. A faulty C function for sorting rational numbers and its program spectra

range in size from 20 to 124 blocks of code. For every program, a number of
faulty versions is available, each with a known bug. In addition, every program
has a set of test cases that ensures full code coverage.

One of our research results concerns the so-called Ochiai similarity coeffi-
cient. This coefficient is known from biology, and to our knowledge, it has not
previously been applied to SFL. Using the 120 single-site faults of the Siemens
set, we observed that the Ochiai coefficient outperforms several other coefficients,
including the ones used by the Pinpoint (the Jaccard coefficient) and Tarantula
tools mentioned above. This is illustrated in Fig. 4, which shows the quality of
the diagnosis for these three coefficients and different rates at which fault acti-
vations lead to failures. Here, the quality of the diagnostic is expressed as the
percentage of code that need not be examined if the SFL ranking is followed
when searching for the fault, averaged over all faults in our benchmark set. It
also shows that SFL can already provide a useful diagnosis at low failure rates.

Further experiments have shown that including more failed runs is always
safe because the accuracy of the diagnosis either improves or remains the same.
We observed little or no improvement for more than six failed runs. However,
while stabilizing around twenty runs, the effect of including more passed runs is
unpredictable, and may actually lead to worse diagnoses. To what extent these
results depend on program characteristics is subject to further investigations.
See [1, 2] for details on these experiments.

4.3 Industrial Application

To some extent, the Siemens set faults are artificial, and to evaluate its practical
applicability we implemented SFL for the control software of a product line of
analog television sets from Philips (now NXP), and diagnosed two faults, one
existing, and one seeded to replicate a problem in another product line.

A known problem with the specific version of the control software that we
had access to, is that after teletext viewing, the CPU load when watching tele-
vision (TV mode) is approximately 10% higher than before teletext viewing. To
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diagnose this problem, we obtained hit spectra for the functions tied to the ±300
logical threads in the control software. We generated a new spectrum every sec-
ond, and used a scenario of 60 s. TV mode, 30 s. teletext viewing, and 60 s. TV
mode, where we marked the spectra for the last 60 s. as failed. In the resulting
ranking, the function that was known to activate the fault came second.

The other fault entails that a text search in a teletext page without visible
context locks up the teletext functionality. A likely cause for this lock-up, by
which we reproduced it in our experimental platform, is an inconsistency in the
values of two state variables in different subsystems. To diagnose this problem,
we collected hit spectra for all blocks of code in the control software (over 60,000).
Each time a key was pressed on the remote control we started recording a new
spectrum. For error detection we used an assert-like check on the two state
variables, that would flag a failure if they assumed an invalid combination. This
way, we were quickly able to find a straightforward scenario of 26 key presses,
including a magic sequence to activate the fault, that yields a perfect diagnosis.

These experiments have confirmed our belief that because of its low time and
space complexity, SFL is well suited for the embedded software domain, which
is characterized by scarce memory and CPU resources, and high concurrency.
See [20] for a more in-depth discussion.

5 Conclusion

Model-based diagnosis and spectrum-based fault localization are two practica-
ble approaches to automated diagnosis that have successfully been applied to
systems with embedded software. The experiments reported in Sect. 3.3 have
led ASML to adopting MBD as a means to increase the efficiency of the man-
ual diagnosis process. As a result of the promising outcome of the experiment
reported in Sect. 4.3, further SFL experiments are now conducted at NXP to
evaluate the technique on actual problem reports filed during the development
of a more recent product.

In addition to a further investigation of factors that influence the diagnostic
accuracy of MBD and SFL, we believe that there are many opportunities for
combining the two diagnosis techniques, and in our future work we plan to
investigate how these can be exploited.
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