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ABSTRACT
A considerable amount of time in software engineering is spent
in debugging. In practice, mainly debugging tools which allow
for executing a program step-by-step and setting break points are
used. This debugging method is however very time consuming
and cumbersome. There is a need for tools which undertake the
task of narrowing down the most likely fault locations. These
tools must complete this task with as little user interaction as
possible and the results computed must be beneficial so that such
tools appeal to programmers. In order to come up with such tools,
we present three variants of the well-known spectrum-based fault
localization technique that are enhanced by using methods from
Artificial Intelligence. Each of the three combined approaches
outperforms the underlying basic method concerning diagnostic
accuracy. Hence, the presented approaches support the hypoth-
esis that combining techniques from different areas is beneficial.
In addition to the introduction of these techniques, we perform
an empirical evaluation, discuss open challenges of debugging and
outline possible solutions.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.5 [Software]: Testing
and Debugging—Debugging aids, Diagnostics

Keywords
Spectrum-based fault localization, Model-based diagnosis

1. INTRODUCTION
Artificial intelligence (AI) techniques have been successfully used
in many areas of software engineering. For example, the raise of
empirical software engineering in the past decade has been mainly
pushed by the application of machine learning to software repos-
itories in order to gain new knowledge from data. In this paper,
we do not discuss all the influences between AI and software en-
gineering. Instead, we focus on automated debugging, where the
aim is to provide methods and techniques for localizing and possi-
bly correcting faults in programs with minor human intervention.
In particular, we contribute the following: (1) We discuss three
existing approaches that make use of AI for improving spectrum-
based fault localization. (2) We perform an empirical evaluation
of these approaches and compare the results. (3) We discuss open
research challenges in the domain of software debugging and pro-
pose possible solutions.

Why is research in automated debugging important? One impor-
tant factor of software quality is the amount of faults that are con-
tained in a software. There exist many automatic software testing
tools and bug reporting tools. Unfortunately, the programmers

are often not able to correct all the bugs reported by the testers
and users. They often have to prioritize the reported bugs and
only correct the most critical and important bugs. Therefore, we
identify software debugging as one bottleneck.

In practice, there exist numerous debugging tools. The major-
ity of these tools allow for executing a program step-by-step and
setting break points. This kind of debugging is very time consum-
ing, since the programmer has to manually narrow down the most
likely fault locations. Moreover, setting the right break points or
obtaining the right information from a program in order to speed
up the debugging process, is a hard task. Even worse, in many
cases a programmer does not fully understand a program and
can hardly find such optimal decisions. Consequently, there is
a strong need for tools supporting and guiding the programmer
through the fault localization process.

The purpose of this paper is to show that AI techniques can be ef-
fectively used for improving automated debugging. We start with
a brief discussion of three different approaches. Thus giving also
a short overview on past research in this domain. The discussion
of course is rather focused and far from being complete.

The first approach deals with algorithmic debugging. Shapiro [30]
was one of the first authors who provided an algorithmic basis for
program debugging. In his thesis, he outlined a meta interpreter
for prolog that guides the user through the debugging process
while avoiding unnecessary human interactions with the system.
Ten years later, Console and colleagues [7] showed that the use
of the AI technique model-based diagnosis [8] can help to further
reduce the need for questioning a user in order to localize a fault.

The second very interesting area for automated debugging is the
domain of tutoring systems, e.g., for teaching programming. Mur-
ray [25] and Johnson and Soloway [20, 19] are two examples where
planning and search respectively are used for detecting and local-
izing a fault in programs written by students. Debugging pro-
grams written by novices is different to fault localization of pro-
grams written by experts. For the latter, only limited knowledge
of the expected behavior and the structure is available. For pro-
grams written by novices as part of their study, all information
including the intended structure and possible faults is available
and can be used for debugging. Hence, knowledge-based tech-
niques are well suited for the area of tutoring systems.

More recently, Weimar et al. [31], and Debroy and Wong [9] in-
troduced a third debugging approach - genetic debugging. Their
automated debugging approaches rely on genetic programming
and mutations.
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Figure 1: Coverage matrix

These three examples show the successful use of AI techniques in
the domain of automated debugging. However, there are various
others. In this paper, we focus on spectrum-based debugging [21]
and present three extensions coming from AI. Each extension im-
proves the outcome of the original method in terms of the quality
of the obtained results. By quality we understand the ability of a
debugging approach to present the real fault of a program to the
user with the smallest number of user interactions. In particular,
we rank the statements according to a value stating the likelihood
of being faulty. When assuming that a user will start investigat-
ing the highest ranked statements first, the ranking indicates the
required user interactions.

Spectrum-based debugging is able to debug large programs be-
cause of its small computational requirements. Beside this fact,
there is another reason for taking a closer look at the combina-
tion of spectrum-based debugging and AI techniques. We feel
confident that only a combination of different fault localization
techniques can finally lead to a completely automated debugger
that can be used in practice. This firm conviction is motivated
by the observation that there are dozens of debugging approaches
reported in scientific literature but there is only limited impact
in practice. Often the reason lies in the complexity of the ap-
proaches, which finally leads to a bad scalability and thus pre-
vents from being used in an interactive fashion. This conviction
is shared by colleagues. For example, Mayer et al. [1] state that no
single technique is able to deal with all types of faults. In their pa-
per, the authors encourage to combine different fault localization
techniques to build more accurate and robust debugging tools.

In the reminder of the paper, we discuss spectrum-based fault
localization in Section 2. Afterwards, we discuss three existing
techniques that combine AI with program spectra in Section 3.
In Section 4, we apply the combined fault localization approaches
on an example program with predefined faults and compare the
fault localization capabilities of the combined approaches with
those of the basic approaches. We discuss open research problems
in Section 5 and related work in Section 6. Finally, we conclude
the paper in Section 7.

2. SPECTRUM-BASED SOFTWARE DIAGNO-
SIS

This section describes spectrum-based fault localization (SFL).
SFL is a statistical technique that aims at guiding software de-
velopers to find faults quickly by offering a ranking of the most
probable faulty components. This ranking is created through ab-
stractions of program traces (also known as program spectra).

2.1 Program Spectra
A program spectrum [29] is a collection of data that provides a
specific view on the dynamic behavior of software. This data,
collected at run-time, typically consists of a number of counters
or flags for the different components (statements in this paper)
of a program. Many different forms of program spectra exist, see
[15] for an overview. The so-called (statement) hit spectra is the

most common for program debugging [5, 4].

2.2 Diagnosis
The hit spectra of N runs constitute a binary coverage matrix,
whose columns correspond to M different statements of the pro-
gram (see Figure 1). The information in which runs an error
was detected constitutes another column vector, the error vec-
tor. This vector can be thought to represent a hypothetical state-
ment of the program that is responsible for all observed errors.
Spectrum-based fault localization essentially consists in identify-
ing the statement whose column vector resembles the error vector
most.

In the field of data clustering, resemblances between vectors of
binary, nominally scaled data, such as the columns in our matrix
of program spectra, are quantified by means of similarity coeffi-
cients (see, e.g., [18]). Many coefficients have been studied in the
past in the fault localization domain. Ochiai, widely used in the
molecular biology domain, was found to be amongst the most effi-
cient ones for software fault localization [4]. For each component
j, it is defined as follows

Ochiai(j) =
n11(j)√

(n11(j) + n01(j))× (n11(j) + n10(j))

where n11(j) is the number of failed runs in which component j
is involved, n10(j) is the number of passed runs in which compo-
nent j is involved, n01(j) is the number of failed runs in which
component j is not involved, and n00(j) is the number of passed
runs in which component j is not involved. Formally,

n00(j) = |{i | xij = 0 ∧ ei = 0}|
n01(j) = |{i | xij = 0 ∧ ei = 1}|
n10(j) = |{i | xij = 1 ∧ ei = 0}|
n11(j) = |{i | xij = 1 ∧ ei = 1}|

Interested readers can refer to [4] for more information on the
comparison of Ochiai with other techniques and similarity coeffi-
cients.

It is assumed that a high similarity to the error vector indicates a
high probability that the corresponding component of the software
causes the detected error. Under this assumption, the calculated
similarity coefficients rank the parts of the program with respect
to their likelihood of being faulty. This information is valuable to
guide the developer to the root cause of observed failures.

2.3 Advantages/Disadvantages
While none of the benefits below are unique, their combination
makes spectrum-based fault localization an attractive technique
for diagnosing large, resource-constrained software:

• As opposed to many approaches that only analyze one failed
execution, spectrum-based fault localization exploits valu-
able information from both passed and failed test cases.

• As a black-box diagnosis technique, it can be applied with-
out any additional modeling effort. In addition, many of
today’s systems (e.g., concurrent systems) are difficult to
model.



• The technique can easily be integrated with existing testing
procedures, such as overnight playback of recorded usage
scenarios.

• It requires less computation time than other fault localiza-
tion approaches. The time complexity of spectrum-based
fault diagnosis is O(N) for executing N test cases, O(N) to
compute the similarity coefficient per component and thus
for computing the similarity coefficients for all M state-
ments O(M · N), and finally O(M · logM) to rank the
statements in the diagnostic report in order of their like-
lihood to be faulty. Therefore, the overall time complexity
is O(N +M ·N +M · logM).

• The space complexity is basically low with O(M ·N) to store
the coverage matrix. These storage costs can be further
optimized.

Despite the efforts to advance spectrum-based fault localization to
efficiently aid programmers to pinpoint the root cause of observed
failures, it still has a few drawbacks:

• Spectrum-based fault localization only exploits the topology
of the software. Thus, low granularity components (e.g.,
statement level) will yield the best diagnostic performance,
whereas coarser grain granularity may guide the developer
to inspect healthy components.

• Due to its statistical foundation, the diagnostic accuracy is
inherently limited: (1) the accuracy is rather dependent on
the number and quality of the test cases, (2) it cannot reason
over multiple faults, like model-based diagnosis approaches.

• The similarities are not probabilities: this hampers the anal-
ysis of the ranking using probabilistic methods (e.g., en-
tropy).

3. HOW TO COMBINE AI WITH SFL
In this section, we answer the question how combinations of AI
techniques and program spectra can help to improve fault local-
ization. In particular, we discuss three existing approaches that
combine spectrum-based fault localization with AI techniques and
explain their underlying algorithms.

3.1 Refining Spectrum-based Rankings
Although spectrum-based fault localization (SFL) has been shown
to be efficient and effective [4], its diagnostic accuracy is inher-
ently limited, since the semantics of statements is not taken into
account. In particular, greatly due to the statistical nature of
the technique, statements that exhibit identical execution pat-
terns cannot be distinguished amongst themselves. To enhance
its diagnostic quality, in [1] spectrum-based fault localization was
combined with a model-based debugging approach (MBSD) [24]
within a framework coined Deputo. MBSD has its roots in AI
and is based on abstract interpretation. Essentially, MBSD is used
to refine the ranking obtained from the spectrum-based method.
MBSD considers the program’s semantics and can thus filter out
those components that do not explain the observed failures.

Algorithm 1 outlines the combined approach. The algorithm ex-
ecutes in three stages, with the SFL approach used in the setup
stage (lines 1 to 6), feeding into the subsequent model-based filter-
ing stage (lines 7 to 16), followed by an optional best-first search
stage (lines 17 to 24). This combination has significantly lower re-
source requirements than applying MBSD on the whole program

and using SFL only to rank results as proposed in [23]. In the
following paragraphs, we explain the algorithm step by step.

First the setup is performed. For this, the program P is split
into a set of components C and the available test cases T are
executed on P to obtain the participation matrix M. Using M,
we split T into passing tests (TP ) and failing ones (TF ). From
M, a sorted list of components R in order of likelihood to be at
fault is obtained using spectrum-based fault localization (line 4).

Next, the model-based filtering stage is performed. MBSD (line 9)
is used to eliminate the top-ranked candidate explanations that
are not considered as valid explanations for the fault. Instead of
computing all explanations at once, an incremental strategy per-
mits to stop early once a fault has been identified. First, the set of

components Ĉ with the highest similarity coefficient in R are ob-
tained using the Ranking pop(R) function, which also removes

all elements in Ĉ from R. Second, the function MBSD(Ĉ, TF ) re-

turns a set of candidate explanations D ⊆ Ĉ that explain observed
failures in TF . Finally, if the fault is in the returned set, the al-
gorithm stops; otherwise none of the candidates represent a valid
explanation and other candidate explanations must be generated.
The algorithm stops once no more explanations can be found or
if none of the remaining components was executed in any failing
test case. S is the set of components that are implicated by SFL
but not by MBSD.

If no explanation is found in stage 2, a best-first search proce-
dure is employed that traverses the program along dependencies
between components with decreasing fault similarity. No expla-
nation may be found if a fault in the program has a larger cardi-
nality than the MBSD threshold or if the fault affects component
inter-dependencies such that the fault assumptions and model ab-
straction can no longer represent the fault. In line 18, the set of
components with maximum fault similarity that are connected
to the previously explored components is returned. The func-
tion PDG Ranking pop(S, I) returns the set of components in
S with the highest similarity that are directly connected to the
previously inspected set of component I. If the component is con-
firmed to be (part of) a valid explanation, the search stops and
the diagnosis is returned.

Deputo has been shown to outperform not only the individual
approaches themselves, but also other state-of-the-art automated
debugging techniques (e.g., Delta Debugging). In particular, 60 %
diagnostic performance improvement over spectrum-based fault
localization has been reported [1]. The major drawback of the
approach is that, similar to model-based diagnosis approaches, it
does not scale to large software systems because the model-based
approach tries to analyze the whole source code.

3.2 Spectrum-based Reasoning
Model-based diagnosis approaches deduce component failure
through logic reasoning using propositional models of component
behavior [8, 34]. An inherent, strong point of model-based diag-
nosis is that it reasons in terms of multiple faults. In contrast to
the simple component ranking of spectrum-based fault localiza-
tion, the diagnostic report of model-based diagnosis approaches
contains multiple-fault candidates. Thus, such a report provides
more diagnostic information than a one-dimensional ranking. Fur-
thermore, the ranking is determined in terms of (multiple) fault
probabilities, a more solid basis for a candidate ranking than
statistical similarity. While reasoning approaches are inherently
more accurate than statistical approaches, they have two main
disadvantages: (1) They need a model. These models are usu-
ally generated with the help of static analysis. However, static



Algorithm 2 Barinel Algorithm

Input: Activity matrix A, error vector e,

Output: Diagnostic Report D

1: γ ← ε
2: D ← Staccato((A, e)) . Compute MHS
3: for all dk ∈ D do
4: expr← GeneratePr((A, e), dk)
5: i← 0
6: Pr[dk]i ← 0
7: repeat
8: i← i+ 1
9: for all j ∈ dk do

10: gj ← gj + γ · ∇expr(gj)
11: end for
12: Pr[dk]i ← evaluate(expr,∀j∈dkgj)
13: until |Pr[dk]i−1 − Pr[dk]i| ≤ ξ
14: end for
15: return sort(D,Pr)

Algorithm 1 Deputo Algorithm

Input: Program P, set of test cases T

Output: Fault assumptions explaining failed test runs

1: C ← CreateComponents(P)
2: M← GetComponentMatrix(C,P, T )
3: 〈TP , TF 〉 ← Partition(M, T )
4: R← SFL(M) . Apply SFL
5: S ← ∅ . Skipped components
6: I ← ∅ . Inspected components
7: repeat

8: Ĉ ← Ranking pop(R)

9: D ←MBSD(Ĉ, TF ) . Apply MBSD
10: I ← I ∪ C
11: if Dbug ∈ D is confirmed faulty then
12: return Dbug

13: else
14: S ← S ∪ (Ĉ \ D)
15: end if
16: R← R \ Ĉ
17: until R = ∅
18: while S 6= ∅ do
19: Ĉ ← PDG Ranking pop(S, I)

20: I ← I ∪ Ĉ
21: if Cbug ∈ Ĉ is confirmed faulty then
22: return {¬hbug}
23: end if
24: end while
25: return ∅ . No explanation found

analysis is unable to capture dynamic data dependencies / con-
ditional control flow. (2) The generation of diagnosis candidates
comes with exponential costs. This typically prohibits the use
of reasoning approaches for programs larger than a few hundred
lines [24].

An approach called Barinel [5] models program behavior in
terms of program spectra. It employs a Bayesian approach to
deduce multiple-fault candidates and their associated probabili-
ties. Therefore, it yields a probabilistic, information-rich diag-
nostic report. Barinel has been shown to be very effective, as it
outperforms most state-of-the-art techniques for fault localization.

Performance improvements up to 54 % have been observed [5].

Barinel is detailed in Algorithm 2 and comprises three main
phases. In the first phase, a list of candidates D is computed
from an activity matrix A and an error vector e using Staccato,
a ultra-low cost algorithm for computing diagnosis candidates [2].
The required performance is achieved at the cost of completeness,
because solutions are truncated at 100 candidates. Nevertheless,
experiments [2, 3] have shown that no significant solution was ever
missed.

In the second phase, Pr(dk) (probability that a given candi-
date dk is faulty) is computed for each candidate in D. First,
GeneratePr derives for every candidate dk the formula to com-
pute dk’s fault probability given the current set of observations
(A, e). Subsequently, the algorithm estimates the health proba-
bility hj (i.e., probability that a faulty component j still behaves
as expected) such that the total health probability is maximized.
To solve the maximization problem, we apply a simple gradient
ascent procedure [6] bounded within the domain 0 ≤ hj ≤ 1 (the
∇ operator signifies the gradient computation). As the Pr(dk)
expressions that need to be maximized are simple, and the do-
main is bounded to [0, 1], the gradient ascent procedure exhibits
reasonably rapid convergence for all M and C.

In the third and final phase, for each dk the diagnoses are ranked
according to Pr(dk), which is computed by the Evaluate function
based on the usual Bayesian update for each row. Note that this
approach is independent of test case ordering. We refer interested
readers to [5].

3.3 Spectrum Enhanced Dynamic Slicing
Another method that combines Sfl with AI is Spectrum EN-
hanced DYnamic Slicing (Sendys) [16]. It uses the similar-
ity coefficients computed by spectrum-based fault localization
as a-priori fault probabilities in model-based debugging. A
lightweight model-based-debugging technique based on dynamic
slicing, namely the slicing-hitting-set-approach (Shsc) [33], is ap-
plied in Sendys. Shsc computes the dynamic slices of all faulty
variables in all failed test cases, derives the minimal diagnoses
from the slices and computes the fault probabilities of the single
statements based on the size and the amount of the diagnoses
which contain the statement. Since Shsc only considers nega-
tive test cases, it has a major disadvantage: Statements that are
contained in many slices, e.g. constructor statements, are always
ranked high.

By the use of program spectra, this undesirable effect is elimi-
nated. It is assumed that statements covered by many positive
test cases are less likely to be faulty than those covered by nega-
tive test cases only. Similarity coefficients, e.g. Ochiai, condense
the information of program spectra. Statements that are covered
by both positive and negative test cases have a smaller similarity
coefficient than statements covered by negative test cases only.

Sendys is a simple technique to combine Shsc with program spec-
tra. Sendys computes the similarity coefficients from the program
spectra, normalizes them and passes them to the Shsc approach
as a-priori probabilities. Algorithm 3 illustrates this process in
detail. First, the program P is split into its components C. The
coverage matrix M is computed by executing all test cases T on
program P. From M the similarity coefficients R are computed
(line 3) and normalized. The normalized similarity coefficients

are assigned to R̂ (line 4). The function AllDiagnoses(P, T )
computes the slices for all faulty variables in all failing test cases.



Algorithm 3 Sendys Algorithm

Input: Program P, set of test cases T

Output: List of possible fault locations sorted after their fault
likelihood

1: C ← CreateComponents(P)
2: M← GetComponentMatrix(C,P, T )
3: R← SFL(M)

4: R̂ ← Normalize(R)
5: D ← AllDiagnoses(P, T )
6: for all d ∈ D do
7: pd[d]←

∏
s∈d R̂[s]×

∏
s′∈P\d(1− R̂[s′])

8: end for
9: for all s ∈ P do

10: ps[s]←
∑

d∈D∧s∈d pd[d]
11: end for
12: ps← Sort(Normalize(ps))
13: return ps

The resultant slices are combined to diagnoses by means of the
corrected Reiter algorithm [13] and assigned to D (line 5). The
diagnosis fault probabilities pd indicate for all diagnoses d the
probability that d contains a fault. The value of pd[d] arises from

two products: first, the product of the fault probabilities R̂ of the
statements contained in d and second, the product of the counter

probabilities (1−R̂) of the statements that are not contained in d
(line 7). In the next step, the statement fault probabilities are
computed by mapping back the diagnosis fault probabilities pd to
the statements. This is done by building the sum of all diagno-
sis fault probabilities which contain the statement (line 9). The
statement fault probabilities ps are normalized, sorted after their
size and assigned to ps. Finally the normalized statement fault
probabilities ps are returned.

This combination is simple, but very effective. It has been shown
that the fault localization capabilities of Ochiai can be improved
by 25 % and those of the slicing-hitting-set-approach by 50 % [16,
17].

4. EMPIRICAL RESULTS
We perform a small case study in order to show the advantage of
combining spectrum-based fault localization with AI techniques.
For this, we run the basic approaches and the combined ap-
proaches on Tcas. Tcas is an implementation of the traffic col-
lision avoidance system and is taken from the Siemens Set [10].
Since the prototype implementations of the previously presented
approaches are implemented for different programming languages,
we use the original C version of Tcas for evaluating Deputo
and Barinel and a Java implementation for evaluating Sendys.
The C version comprises 138 lines of code (105 Non Commenting
Source Statements, NCSS) and 1608 test cases. The Java version
comprises 77 NCSS and 1545 test cases. Both program variants
have the same faulty program versions. A fault consists of one to
three faulty code lines.

There exist rank- [4, 21] and dependency-based [28, 24, 22] metrics
in order to compare the quality of fault localization approaches.
The former quantify the quality of a result based on the rank-
ing position of the faulty component relative to all components.
They are mainly used with techniques that rank components. In
contrast, dependency-based measures are mainly applied to eval-
uate techniques that either do not rank components (for exam-
ple MBSD) or do not rank all components of a program (such
as SOBER [22]). Dependency-based measures typically operate

on the program dependence graph (PDG). Essentially, starting
with the set of blamed components, dependencies between com-
ponents are traversed in breadth-first order until the fault has
been reached. The quality of a diagnostic report is measured as
the fraction of the PDG that is traversed. Both metrics quantify
the percentage of a program that needs to be inspected in order
to find the fault.

We make use of the Score metric in order to compare the pre-
viously described fault localization approaches. The Score is
defined as

Score =
|I|
M
· 100%

where |I| denotes the number of statements inspected and M de-
notes the number of components in total.

Figure 2 gives an overview of the fault localization capabilities of
the discussed fault localization approaches. It plots the percent-
age of located faults in terms of the percentage of inspected code
(i.e., effort to find the root cause). Since different Tcas versions
(Java and C) were used, the percentage of inspected code has as
basis the number of Non Commenting Source Statements (105 for
the C version, 77 for the Java version). We only compare the Tcas
variants where all approaches could produce results.

From this figure, it can be observed that the combined approaches
largely outperform their basic approaches. In some cases, the ba-
sic techniques outperform the combined approaches. However, on
average, the combined approaches perform better than their basic
approaches. Deputo has the best fault localization capabilities.
The basic approaches SFL (Score: 18.3 %) and Shsc (Score:
25.4 %) perform worst.

When using Deputo on average, only 5.6 % of the source code
must be investigated until the fault location is found. When using
Mbsd, 10.9 % must be investigated. However, Deputo and Mbsd
are only suited for small programs, because they do not scale to
large software systems.
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Figure 2: Comparison of Deputo, Barinel, and Sendys
with their basic approaches in terms of the amount of
code that must be investigated.

Due to their (comparable) time/space complexity, when debug-
ging larger system, Barinel and Sendys are acceptable alter-
natives. Barinel has an average Score of 18.1 %. Barinel is



known to outperform related work when applied to several other
- and larger - programs. For interested readers, refer to [5] for
further details on the empirical evaluation’s results.

Sendys has an average Score of 14.3 %. Shsc is a low level vari-
ant of MBD which is in general known as computational complex.
It comes with low computational costs, but is less precise than
other MBD techniques. The computational overhead of Sendys
compared to the basic approaches is marginal. In this evaluation,
the execution of the test cases absorbs the major part of the total
computation time. We refer interested readers to [16] for more
empirical evaluation results.

5. DISCUSSION
The previously presented techniques are a valuable support for
programmers when debugging. However, the number of state-
ments a programmer needs to inspect can still be prohibitive for
real and large systems. Subsequently there is still room for im-
provements of the fault localization capabilities. In the following,
we discuss the open challenges and propose solutions.

• Computational complexity / scalability problem: Many de-
bugging approaches that potentially allow for improving de-
bugging substantially come with a high computational com-
plexity. Therefore, using such techniques is not feasible for
larger programs. Approaches with a small computational
overhead are less suitable for smaller programs or program
fragments such as methods because their computed results
are less accurate. Hence, a combination of these techniques
is required which first tears down the search space and
then switches to a more complex debugging approach at
the proper point in time during the debugging process.

As mentioned before, Deputo suffers from a scalability
problem, which hampers its applicability to real systems.
The following can however alleviate this rather important
scalability problem. Being more lightweight than model-
based approaches, spectrum-based fault localization can
first be used at a, say, method/function level of granular-
ity. Once the diagnostic ranking is computed, model-based
diagnosis can be used to expand the ranking with the state-
ments in the method body that should be inspected. For
example, this can be done for the top 5 % of the compo-
nents returned by spectrum-based fault localization.

• Testing abort criteria: Besides the important factor of rea-
soning in terms of multiple-faults, the Barinel approach to
spectrum-based reasoning, paves the way for several other
opportunities. For instance, as the calculated ranking is
based on Bayesian probabilities, an entropy-based confi-
dence level can be computed. This confidence level can then
be used to automatically decide whether one should continue
testing (and eventually which tests give a higher information
gain [12]) or if there is enough confidence that the ranking
will indeed help developers to quickly find faults.

Spectrum-based fault localization is rather dependent on
the number and quality of the test cases in the test suite.
One could imagine to automatically generate tests cases
which yield maximal information gain (e.g., information
gain would be used as the fitness function of a genetic al-
gorithm). Such approach would reduce the costs of execut-
ing test cases, while improving the diagnostic quality of the
fault localization technique. In addition, the automatic gen-
eration of test cases may increase the size of the test suite
to the point that it becomes prohibitive to execute all test

cases. Therefore, AI techniques (e.g., constraint satisfaction
problem) can be used to reduce the size of the suite while
still maintaining full coverage, and also prioritize the tests
within the suite [12].

• User interface: Although, a fully automated debugger
should not require user interactions, it is unlikely that such a
tool can exist. There is always the need for asking about ex-
pectations regarding the program behavior. An automated
oracle would require a formal specification of the whole pro-
gram, which rarely will be available for all programs in the
close future. Hence, a user interface to a debugger that min-
imizes user interactions and maximizes the benefit for the
user is required. Research in this direction is desired.

• Missing source code: There exist faults, especially miss-
ing code, which cannot be detected by most of the debug-
ging techniques. Spectrum-based fault localization com-
bined with AI is able to point to areas which most likely
contain the fault. However, it does not advise the pro-
grammer that the fault might be caused by missing code.
A combination of the previously presented techniques with
debugging based on mutations [31], [9] might solve this prob-
lem: First, the search space is narrowed down by means of
Spectrum-based fault localization combined with AI. The
highest ranked fault locations, e.g., the highest 5 % of the
statements, are given to a mutation engine which randomly
deletes, modifies and inserts statements. Each mutant is
checked against the available test cases. If a mutant passes
all test cases it is returned to the programmer as a possi-
ble fix of the fault. A fault localization at the best is an
indispensable preprocessing step for mutation based debug-
ging since the search space of debugging based on mutations
would be otherwise too large in order to find a solution for
large programs in an acceptable amount of time.

There is still a long way to go for providing the enabling theories
and technologies for automated debugging. Combining AI meth-
ods with debugging methods seems to be a very fruitful path in
the right direction.

6. RELATED WORK
Apart from the techniques detailed in this paper, many other
techniques have been proposed in the past. Several systems
employing dynamic analysis techniques for fault localization are
present in the literature, most of them exploit the same reason-
ing as spectrum-based fault localization. Well-known examples
of such approaches are Tarantula [21], Sober [22], CrossTab [32],
and MKBC [36].

Machine learning techniques have been applied to programs [35]
and their executions [26] to infer likely invariants that must hold
at particular locations in a program. Violations can subsequently
be used to detect potential errors. Model-based approaches, such
as model-based software debugging, provide more reliable behav-
ior than [26], since success of the trace analysis highly depends on
the test runs and the type of invariants to be inferred.

Combining program execution and symbolic evaluation has been
proposed to infer possible errors [11]. Similar to MBSD, a sym-
bolic, under-constrained representation of a program execution
and memory structures are built. Instead of using fault proba-
bilities to guide diagnosis, only those candidate explanations that
definitively imply a test failure are flagged. Hence, the tool com-
plements our approaches by highlighting a subset of all provable



faults in a program, while our approaches aim at identifying those
program fragments that may contribute to a fault.

In model-based reasoning, the program model is typically gen-
erated from the source code, as opposed to the traditional ap-
plication of model based diagnosis where the model is obtained
from a formal specification of the (physical) system [27]. In [24] an
overview of different models for model-based software debugging is
given, concluding that the model generated by means of abstract
interpretation (the one used in Deputo) leads to good results
while not suffering from the computational complexity inherent
to more precise analysis techniques [24]. Other approaches that fit
into this category include explain and ∆-slicing [14], which are
based on comparing execution traces of correct and failed runs
using model checkers.

7. CONCLUSION
In this paper, we discussed the beneficial use of AI techniques
in the domain of automated debugging. In particular, we showed
how to improve spectrum-based fault localization. All of the men-
tioned improvements aim in providing a better ranking of fault
candidates in order to further reduce the number of statements to
be examined during debugging. All of the presented approaches
make use of ideas originating from model-based diagnosis. In the
empirical section, we showed that Deputo performs best. How-
ever, since Deputo does not scale to large programs, Barinel
and Sendys are good alternatives. As a consequence, we strongly
recommend the use of AI techniques for automated debugging.
Moreover, we discussed open challenges of automated debugging
and outlined possible solutions.
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