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Abstract. When failures occur during software testing, automated soft-
ware fault localization helps to diagnose their root causes and identify
the defective components of a program to support debugging. Diagnosis
is carried out by selecting test cases in such way that their pass or fail
information will narrow down the set of fault candidates, and, eventually,
pinpoint the root cause. An essential ingredient of effective and efficient
fault localization is the knowledge about the intermittency of occurring
failures, i.e., the rate at which defective components of a program will
exhibit failures. In current fault localization processes, intermittency is
either ignored completely, or merely estimated a posteriori as part of
the diagnosis. In this paper, we study the reduction in testing and di-
agnosis effort when intermittency is known a priori. We deduce inter-
mittency from testability, following the propagation-infection-execution
(PIE) approach. Experiments with synthetic and real programs suggest
significant improvement in the combined testing and diagnosis process.
When compared to the next best technique, testability-based intermit-
tency information reduces the average number of tests required to reach
the same diagnosis quality by 55%, and provides an effort reduction for
fault localization of 30% for the same testing effort.

1 Introduction

Testing is the most commonly used method for detecting the presence of faults
in software. However, once the presence of a fault has been detected (by means
of a failing test), its precise location has to be determined. Fault localization
denotes the process of finding the root-cause of failures through diagnosis to
support debugging. Diagnostic accuracy is a critical success factor in the cycle of
testing, diagnosing, acting/recovering, and repairing. However, typically multiple
diagnoses are possible, and further tests are executed to narrow down the set of
possibilities, ideally until a perfectly accurate diagnosis is reached.

⋆ This work has been carried out as part of the Poseidon project under the responsi-
bility of the Embedded Systems Institute (ESI). This project is partially supported
by the Dutch Ministry of Economic Affairs under the BSIK03021 program.
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In many practical situations, faults manifest themselves intermittently, i.e.,
not all tests of a component will produce a failure. Ignoring intermittency as done
in statistical diagnosis approaches [1, 2], results in degraded diagnostic perfor-
mance [3]. An alternative approach is to approximate the intermittency rates
during the diagnosis process [4, 5]. However, the absence of prior knowledge of
component intermittency rates leads to a loss of diagnostic accuracy. The diag-
nosis algorithm must approximate the intermittency rates while it computes the
diagnosis, and that, again, depends on the intermittency rates. The net result
is that a large number of tests is required to obtain an accurate estimate of
intermittency, thereby reducing the rate at which the diagnosis converges, and
thus, increasing both testing effort and diagnostic effort.

In software fault localization, intermittency information can be derived from
testability, and determined a priori, using testability quantification techniques.
An example is the work on estimating the propagation-infection-execution (PIE)
probability by Voas and Miller [6], or the simpler so-called failure exposing po-
tential by Rothermel [7]. By providing testability-based intermittency informa-
tion, the intermittency estimation problem can be detached from the diagnosis,
leading to significant performance gains in the fault localization process.

In this paper we evaluate to which extent testability information can lead
to performance gains in the fault localization process. We study and assess the
testability of the components in a system, and use that information as input
to a Bayesian diagnosis algorithm. In particular, the paper makes the following
contributions.

1. We compare the performance of Bayesian diagnosis with prior intermittency
information with diagnosis methods that do not exploit this prior informa-
tion.

2. We perform the comparison for synthetic test data where component inter-
mittency can be controlled, as well as other parameters such as component
involvement frequencies, problem size, etc.

3. We also perform the comparison for empirical test data obtained from the
Siemens test suite, and the SIR program space. Statement and function
intermittency data is obtained by using the intermittency data produced by
mutation analysis [6, 7].

Our results show that the gains achieved by introducing prior knowledge
about fault intermittency are significant. For real programs containing real faults,
we observed 55% average reduction on the number of test cases to reach the
same diagnosis quality, and 30% diagnostic performance improvement for the
same testing effort.

The paper is organized as follows. Section 2 presents the the problems posed
by intermittency, and its influence in the software domain. Section 3 introduces
the main concepts of diagnosis and the main diagnostic techniques. A theoretical
and empirical validation is performed in Sections 4 and 5 respectively. Section 6
describes related work in the area of fault diagnosis. Section 7 concludes the
paper and presents our future research directions.
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2 The Need for Intermittency Information

In probabilistic diagnosis, information on the system (nominal or faulty behav-
ior) is encoded in terms of probabilistic component models, and exploited to
reason about the health states of the components given a sequence of system
observations. Recent research [3] has shown that in order for a probabilistic ap-
proach to work in practice, these models need to be able to express intermittency,
i.e., the fact that for the same input (working condition) a faulty component’s
output can alternate between correct (nominal behavior) and incorrect (faulty
behavior). Obvious examples in hardware are a communication channel that oc-
casionally flips a data bit, or a copier where sometimes sheets may be blank, or
where a worn roller sometimes slips and causes a paper jam [8].

However, intermittency information is hardly ever known a priori, which
leads to a significant loss of diagnostic performance. For example, in sequential
fault diagnosis [9] and test prioritization [7] the tests are ordered such that a
minimal number of test cases will lead to an adequate diagnosis. This requires a
heuristic function to estimate the failure probability and gain in diagnosis infor-
mation per test case executed. Without prior intermittency information, current
heuristics cannot deliver sufficient precision to achieve competitive convergence
rates towards a diagnosis, when compared to arbitrary test ordering [10, 11].
Quick convergence towards a diagnosis is utterly essential when tests are ex-
tremely expensive to perform. Despite the strong need for such diagnosis tech-
niques, no technique has emerged that exploits prior knowledge on intermittency
data, delivering competitive convergence.

Fault Intermittency in Software. Software is in most cases inherently deter-
ministic at the input level. Excluding situations like race conditions or truly
non-deterministic behavior, the same input will always produce the same out-
put. However, during diagnosis, information about the inputs is abstracted away,
and tests are modeled on higher levels of abstraction related to software compo-
nents, e.g., statements, functions, modules, classes. If a component is tested with
multiple inputs, from the diagnosis point of view, only the facts “the component
is tested” and “the component passes or fails” are considered. Not all the inputs
will produce a failure, because of the different paths taken in a test, so that this
abstraction introduces an apparent intermittent behavior for software diagnosis.

As a simple example, consider the integer division statement y = x / 10

where 10 is a fault that should have been 15. Consider two input values x = 15,
and x = 20, which should both produce y = 1 as output. In the first case,
the component produces a correct output (15/10 = 1), whereas in the second
case the component fails (20/10 = 2). In an abstract modeling approach at
statement level, both inputs are abstracted to “the component is tested”. The
division component exhibits intermittent failure behavior, i.e., when it is tested,
the output alternates between “correct” and “not correct”.

In the previous example, the number of inputs where the output is “correct”
is restricted to a subset of the [0, 30] integer interval. If inputs can be drawn
randomly from the 28 possibilities for a byte, there are approximately 90% “not
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correct” outputs, or, abstracted to the statement level, the statement fails with
an intermittency of 0.1 (i.e., one out of 10 tests does not fail). Next, consider
the boolean statement y = x < 10, which is faulty and should be y = x <= 10.
There is only one input, 10, that will produce a failure. This fault’s intermittency
is therefore 1− 1/256 = 0.996.

Testability. Fault intermittency in software diagnosis is intimately connected
with the concept of testability. Of the multiple definitions of testability, the one
proposed by Voas and Miller [12] is the closest to the concept of intermittency:
the degree to which software reveals faults during testing. This relates to the
number of tests to be executed on a faulty component before it exposes the fault
as a failure. Domain Testability [13], Domain to Range Ratio (DRR) [14–16],
and semantic fault size [17] have been proposed as static methods to testability
quantification. These methods are related to the concepts underlying the two
previous examples: the probability that an input will produce a correct output
if a function is faulty, depending on the relative sizes of the domain and the
range of the function. However, the current state of the art does not allow for
a straightforward usage as probabilities. Furthermore, it does not take into ac-
count the fact that a faulty component producing an error does not necessarily
propagate the error to the output of the component.

Testability can also be modeled by the so-called propagation, infection, ex-
ecution approach (PIE) [6]. PIE measures the probability that a statement is
executed, the probability that it will produce an erroneous state, and the prob-
ability that the erroneous state will propagate to the output. The PIE approach
involves an expensive mutation analysis, however, its implementation is simple
and can be automated. In this paper, we use a variation of the PIE approach
to obtain an estimation of the testability of a component, which is presented in
Section 5.

3 Fault Diagnosis

The objective of fault diagnosis is to pinpoint the precise location of the faults
in a program (bugs) by observing the program’s behavior given a number of
tests. For the purpose of this paper, which focuses on the usage of testability
information, we will assume at most one fault is present in the system under test
in order to avoid unnecessary complexity.

The following inputs are usually involved in automated diagnosis:

– A finite set C = {c1, c2, . . . , cj, . . . , cM} of M components (e.g., source code
statements, function points, classes, etc.) which are potentially faulty.

– A finite set T = {t1, t2, . . . , ti, . . . , tN} of N tests with binary outcomes O =
(o1, o2, . . . , oi, . . . , oN ), where oi = 1 if test ti failed, and oi = 0 otherwise.

– A N × M coverage matrix, A = [aij ], where aij = 1 if test ti involves
component cj, and 0 otherwise.
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The output of fault localization, is a diagnosis, i.e., a list or a component
ranking R =< r1, r2, . . . , rM > of component indices, ordered by the likelihoods
L =< lr1 , lr2 , . . . , lrM > of each component crm being faulty, (i.e., lrm ≥ lrm+1).
In this paper we consider two approaches for obtaining the component likelihoods
L, (1) a Bayesian approach, where the likelihoods are exact fault probabilities,
and (2) a statistical approach, where the lrm are so-called similarity coefficients.
The diagnosis ranking R is returned to the tester who typically verifies the faults
by going through R in descending order. The diagnosis cost, Cd, is modeled by

Cd =
|cj : lj > l∗|+ |cj : lj ≥ l∗| − 1

2
(1)

where l∗ is the likelihood of the actual fault, c∗. This corresponds to the position
of c∗ in R, and represents the effort needlessly spent by the tester or the developer
inspecting the cj that were not defective (false positives), while going through
R top-down until c∗ is found [5]. Because multiple explanations can be assigned
the same probability, the value of Cd is averaged between the explanations that
share the same likelihood, amongst which the real fault c∗ is located. The value
of Cd can be normalized by dividing it by the number of healthy components,
Cd = Cd/(M − 1), to be able to compare systems of different sizes in relative
terms.

3.1 Statistical Fault Diagnosis

Statistical fault diagnosis takes the approach of ignoring intermittency, although
the likelihood value obtained is still influenced by the intermittency of the fault,
as shown in [5]. A well-known statistical approach to fault diagnosis that origi-
nates from the Software Engineering domain is Spectrum-based Fault Localiza-
tion [1, 2]. Here, the likelihood lj is quantified in terms of similarity coefficients.
A similarity coefficient measures the statistical similarity between component
cj ’s test coverage (a1j , . . . , aNj) and the observed test outcomes, (o1, . . . , oN ).
Similarity is computed by means of four counters npq(j) that count the number
of times aij and oi form the combinations (0, 0), . . . , (1, 1), respectively, i.e.,

npq(j) = |{i | aij = p ∧ oi = q}| p, q ∈ {0, 1} (2)

For instance, n10(j) and n11(j) are the number of tests in which cj is exe-
cuted, and which passed or failed, respectively. The four counters sum up to the
number of tests N . For example, the likelihood lj can be calculated according
to the Tarantula [2], and Ochiai [1] similarity coefficients, given by

Tarantula: lj =

n11(j)

n11(j) + n01(j)

n11(j)

n11(j) + n01(j)
+

n10(j)

n10(j) + n00(j)

(3)

Ochiai: lj =
n11(j)√

(n11(j) + n01(j)) · (n11(j) + n10(j))
(4)
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Despite their lower diagnostic accuracy [5], similarity coefficients have gained
much interest. A great advantage of similarity coefficients is their ultra-low com-
putational complexity compared to probabilistic approaches and their indepen-
dence from prior knowledge of any kind. Therefore, we will include them in our
evaluation.

3.2 Probabilistic Fault Diagnosis

As an alternative to similarity coefficients, a form of probabilistic fault localiza-
tion can be used. Bayesian diagnosis is a probabilistic reasoning approach aimed
at obtaining a set of diagnoses D = {d1, . . . , dj} explaining a condition. Each
diagnosis dj corresponds to a component cj being the faulty one. Diagnoses are
ranked according to their assumed accuracy, expressed in terms of a probability
Pr(dj). Initially, the probability of each diagnosis is Pr(dj) = pj . This represents
the a priori fault probability (“prior”) for a component cj , i.e., the knowledge
available before any test is executed, e.g., fault density. After each test case ti,
the probability of each diagnosis dj ∈ D is updated depending on the outcome
oi of the test, following Bayes’ rule:

lj = Pr(dj |oi, oi−1, . . .) =
Pr(oi|dj)
Pr(oi)

· Pr(dj |oi−1, . . .) (5)

In this equation, Pr(dj |oi−1, . . .) represents the prior probability of diagnosis
dj before the test is executed. Pr(oi) is the probability of the observed outcome,
independent of which diagnosis is the correct one. This normalizing factor is
given by

Pr(oi) =
∑

dj∈D

Pr(oi|dj) · Pr(dj |oi−1, . . .) (6)

Pr(oi|dj) represents the probability of the observed outcome oi produced by
a test ti, if that diagnosis dj was the correct one. For single faults, it is defined
as

Pr(oi|dj) =





1 if aij = 0 and oi = 0
0 if aij = 0 and oi = 1
hj if aij = 1 and oi = 0
1− hj if aij = 1 and oi = 1

(7)

The value hj is the intermittency of the fault candidate, i.e., the probability
that the component cj will not produce a failure when tested, if it is faulty. h
stands for health and has a value between 0 (permanently failing) and 1 (never
failing). This value can be provided to the Bayesian algorithm, or estimated
from already executed tests. If a priori intermittency data is not available, an
important problem in using this model is the estimation of hj . In [5] it was
proven that the optimal strategy to estimate hj assuming a single fault is:

hj =
n10(j)

n10(j) + n11(j)
(8)

Gonzalez, Abreu, Gross, van Gemund – Improving the Software Fault Localization Process through Testability Information SERG

6 TUD-SERG-2010-011



Program: Character Counter t1 t2 t3 t4 t5 t6 t7 t8 Prior
c0 0 0 0 0 0 0 0 0
c1 main() { 1 1 1 1 1 1 1 1 0.08
c2 int let, dig, other, c; 1 1 1 1 1 1 1 1 0.08
c3 let = dig = other = 0; 1 1 1 1 1 1 1 1 0.08
c4 while(c = getchar()) { 1 1 1 1 1 1 1 1 0.08
c5 if (’A’<=c && ’Z’>=c) 1 1 1 1 1 1 1 0 0.08
c6 let += 2; /* FAULT */ 1 0 1 1 0 0 1 0 0.08
c7 elif (’a’<=c && ’z’>=c) 1 1 0 1 1 1 1 0 0.08
c8 let += 1; 1 0 0 0 1 0 1 0 0.08
c9 elif (’0’<=c && ’9’>=c) 1 1 0 1 1 1 0 0 0.08
c10 dig += 1; 1 1 0 1 0 0 0 0 0.08
c11 elif (isprint(c)) 0 0 0 0 1 1 0 0 0.08
c12 other += 1;} 0 0 0 0 1 0 0 0 0.08
c13 printf("%d %d %d\n", let, dig, others);} 1 1 1 1 1 1 1 1 0.08

Test case outcomes 1 0 1 1 0 0 1 0

Table 1. Faulty program and Fault Diagnosis inputs.

where n10 and n11 are defined as in Equation 2.
A stable estimation requires a large number of tests, or it may be imprecise.

This reduces the rate at which the diagnosis improves, requiring execution of
a large number of tests to obtain a high quality diagnosis. In the remainder of
this paper, we will show the gains of using testability estimations with different
degrees of accuracy.

3.3 Example Diagnosis

We illustrate how similarity coefficients and Bayesian fault localization (with
prior intermittency information) use the test information to produce a diagnosis.
Table 1 shows an example faulty program [18], eight tests, and their statement
coverage (the matrix A is transposed for the sake of readability).

Similarity Coefficients. After executing the first three tests, the counters for c6
are n11(6) = 2, n10(6) = 0, n01(6) = 0, n00(6) = 1. Its likelihood being the
faulty one according to Ochiai is l6 = 1.0. The remaining components have
lower likelihoods, as they all have n10(j) > 0 or n01(j) > 0. For example, for
c5, l5 = 0.82. Components c11 and c12 are never covered, and therefore their
likelihoods are 0.

Bayesian Diagnosis. After applying test t1, we observe a failure. The probabil-

ities of all the covered statements cj (including c6) are updated by
(1−h1,j)·pj

Pr(o1)
=

1·0.08
0.85 = 0.09. The statements which were not covered are updated by

0·pj

Pr(o1)
=

0·0.08
0.85 = 0. Their zero value follows from the fact that, if they were not involved
in the test, and the test failed, it is impossible that these statements are faulty.
After applying test t2, no failure occurs. The probabilities of the covered state-

ments which are not already 0 are then updated by
h2,j ·Pr(dj|o1)

Pr(o2)
= 0·0.09

0.18 = 0

and the untouched statements (c6, c8) by
1·Pr(dj|o1)

Pr(o2)
= 1·0.09

0.18 = 0.5. Finally t3 is

applied, which fails. The only covered component with non-zero probability is

c6, and it is updated by 1·Pr(d6|o2,o1)
Pr(o3)

= 1·0.5
0.5 = 1 The remaining tests have no

influence on the diagnosis.
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4 Theoretical Evaluation

In this section, we analyze the performance gain of Bayesian diagnosis with
prior hj knowledge (we will refer to it as H-Bayes) on synthetically generated
coverage matrices where the pass/fail outcome of each test is computed using
the component intermittency model according to Equation 7. The motivation
for using synthetic data next to real-world data is the ability to study the effect
of the various parameters in a controlled setting, whereas real programs only
represent a few parameter settings in the multi-dimensional parameter space. As
explained in Section 3, performance of the fault localization process is measured
in terms of the progress and final value of the normalized Cd function. We will
consider two reference values for comparison: the number of tests required to
reach Cd = 0.1 (T0.1), and the final quality of the diagnosis Cd(N).

We compare H-Bayes with the classical fault diagnosis techniques presented
in Section 3 (Tarantula and Ochiai), and with Single-fault Bayesian diagnosis
(intermittency estimated a posteriori with Equation 8), for random uniform
matrices (N = 500 tests, M = 50 components, coverage density ρ = 0.6, 1000
runs per average). We will refer to it as SF-Bayes.

4.1 Perfect Testability Estimations

First, we analyze the performance of H-Bayes in an environment where the
input parameters of intermittency ĥj for the diagnosis correspond to the actual
intermittency values, hj , of the faults in the system. The results obtained in this
subsection are, therefore, regarded as upper bounds of diagnostic performance
for H-Bayes. The plot in Figure 1 shows the progress of Cd for each technique,
when the hj values of the simulated faults are drawn from a uniform distribution
U(0, 1). It can be seen how H-Bayes provides the best performance over all
techniques, by exploiting an accurate intermittency value from the start. With

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  10  20  30  40  50

C
d

Tests

h-bayes
sf-bayes

ochiai
tarantula

Fig. 1. Performance comparison for synthetic matrices.

test effort reduction as our goal, H-Bayes reaches T0.1 after 8 tests, whereas

Gonzalez, Abreu, Gross, van Gemund – Improving the Software Fault Localization Process through Testability Information SERG

8 TUD-SERG-2010-011



the next best technique, SF-Bayes, only reaches this diagnostic quality after
16 tests, which represents a 50% test effort reduction. In this experiment, all
techniques are able reach Cd = 0 given enough tests. However, H-Bayes reaches
a perfect diagnosis after approximately 230 tests, whereas SF-Bayes and the
other techniques require the maximum of 500 tests used in the experiment.

4.2 Insufficient Testability Estimations

In a second experiment, we analyze the diagnostic performance penalty of H-
Bayes when the estimated intermittency values, ĥj, are sub-optimal, and deviate
from the actual values. The actual intermittency value hj is unknown and must
be obtained through a priori intermittency estimation, e.g., by means of testa-
bility studies, producing sub-optimal results. The plot in Figure 2 shows the
effect of noise on the diagnostic performance of H-Bayes for the same synthetic
matrices used above. As a reference, the the results of the next best technique
(SF-Bayes) are also plotted. The ĥj values provided to H-Bayes were altered
with random noise from the actual hj , causing deviations of 5%, 10% and up to
25% from the real intermittency values (σ in Figure 2).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  10  20  30  40  50

C
d

Tests

hj ∈ [0,1]

σ=0.00
σ=0.05
σ=0.10
σ=0.25

sf-bayes

Fig. 2. Effects of erroneous ĥj estimations.

It can be seen how, on systems with uniformly distributed hj , the average

effect of erroneous ĥj is negligible, even when intermittency estimations have
σ = 0.25 error. The progress and final diagnostic quality of H-Bayes are still
better than those of SF-Bayes.

It is important to note that the average number of tests required to trigger
the first failure is related to the expected value of a geometric distribution X ∼
Geo(p = 1−hj). Following this, the expected average number of tests which cover
the fault, until observing the first failure, is E[X ] = 1/(1− hj). If a suspicious
component cj is covered more than 1/(1 − hj) times without observing any
failure, its probability of being faulty will become close to 0.
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As the error in the expected number of tests grows geometrically with 1−hj,
diagnostic performance can be severely affected if hj is close to 1 and its estima-

tion, ĥj, is not accurate. For example, a component with estimated ĥj = 0.90
will be exonerated approximately after 10 passed tests. If the actual intermit-
tency value is hj = 0.95, one would need 20 tests until observing the first failure.
This error is even greater for a component with extremely low testability.

5 Empirical Evaluation

This section presents the performance results of H-Bayes when applied to the
programs of the well-known Siemens benchmark set [19] and the SIR program
space.

The Siemens set comprises seven programs, providing one correct version, and
a set of faulty versions for each program. Every faulty version contains exactly
one fault. For each program, a test suite is provided to achieve full statement
and branch coverage. The test suite of the program space was sampled to 1,000
out of the original 13,000 test cases to speed up testability calculations. As each
program studied comes with a correct version, we use this as test oracle. Table 2
summarizes the programs used for empirical evaluation.

Program Name # Faults # Mutants # LOC # Tests (N) Program Type

print tokens 4 491 539 4,130 Lexical Analyzer
print tokens2 9 294 489 4,115 Lexical Analyzer

replace 23 757 507 5,542 Pattern Recognition
schedule 7 281 397 2,650 Priority Scheduler
schedule2 9 212 299 2,710 Priority Scheduler

tcas 35 208 174 1,608 Altitude Separation
tot info 19 396 398 1,052 Information Measure
space 28 3265 9,564 1,000 ADL Interpreter

Table 2. Summary of the programs used for empirical evaluation.

5.1 Estimation of Diagnosis Parameters

Following existing literature on fault diagnosis, we assume uniform a priori fault
probability pj [5]. The values of pj have little influence on the performance of the
diagnosis, as they are “adapted” by the subsequent Bayesian update process.

W.r.t. the estimation of the intermittency value hj at statement and function
point level, the following variation of the PIE testability analysis [6] was used.
First, for each component (statement or function) for which we wish to calculate

ĥj , a set of mutants Mj was created. This was done by applying a small set
of mutation operators [20] to the arithmetic, logic and indexing operations con-
tained in the statement or function. The mutations were done at the level of the
bytecode representation used by the Zoltar [21] fault diagnosis tool. Second, the
program’s full test suite was run, recording test coverage and failure information
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for each of the mutants. Finally, the intermittency of each component cj was
obtained by averaging the intermittency of each mutation in Mj , calculated as
the ratio of the number of tests which covered the fault but did not produce a
failure, to the number of tests which covered the fault, given by

ĥj =
1

|Mj|
·

∑

m∈Mj

n10(j)

n10(j) + n11(j)
(9)

This way of estimating hj is similar to the one used in SF-Bayes a posteriori.
However, here, we aim at estimating the average intermittency of any fault that
might occur in a given component, instead of the intermittency of the actual
fault being diagnosed.

It is important to note that program mutation can produce equivalent mu-
tants, i.e., altered programs but tested as being correct. These should be removed
from the average in Equation 9. In our study, though, we kept those mutants,
because the fact that a mutant did not produce any failure in the tests could
also mean that there is no test case to render the mutant faulty. Therefore, the
values obtained by our intermittency estimation should be seen as pessimistic.
This approach was also used in [7].

5.2 Discussion of the Results

This sub-section summarizes the observations on the performance of H-Bayes
for diagnosing faults which inserted through the program mutations described
above. For the Siemens set, every program statement represents a (potentially
faulty) component, for the space program it is every function point. 10 random
test suites of 500 tests (enough to provide an accurate diagnosis) were created
for each program, and executed for each of the mutants.

The plot in Figure 3 shows the progress of the diagnosis cost Cd for all pro-
grams. Because we are interested in the initial gain in Cd, only the first one
hundred tests applied are displayed. In addition, Table 3 shows, per program,
the average number of tests needed to reach (if possible) a Cd = 0.1 (T0.1),
and the Cd after all the 500 tests have been applied. The empirical evaluation
confirms the theoretical evaluation. From the outcome it is apparent how the
introduction of a priori intermittency information greatly improves the perfor-
mance in the diagnosis, and how it reduces the number of tests substantially,
which are required to reach confidence in the diagnosis.

Including a priori intermittency information leads to 75% (replace) and
73% (schedule) cost reduction for SF-Bayes diagnosis and statement component
granularity, and 40% cost reduction for the much larger space program with
function point component granularity.

In the reduction of the test effort in order to reach a preset diagnostic ac-
curacy or confidence, two factors play an important role. First, all diagnosis
techniques except H-Bayes are heavily dependent on at least one failing test in
order for them to begin with meaningful diagnosis. Otherwise all likelihoods are
0. H-Bayes can perform diagnosis only based on passed tests.
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Fig. 3. Performance comparison for mutated programs.
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H-Bayes SF-Bayes Ochiai Tarantula

program T0.1 Cd(N) T0.1 Cd(N) T0.1 Cd(N) T0.1 Cd(N)

print tokens 13 0.05 36 0.08 53 0.09 - 0.29
print tokens2 61 0.10 - 0.12 - 0.14 - 0.31
replace 13 0.03 52 0.08 76 0.09 - 0.14
schedule 10 0.02 38 0.08 - 0.12 - 0.27
schedule2 17 0.06 - 0.29 - 0.36 - 0.50
tcas 71 0.10 - 0.18 - 0.19 - 0.22
tot info 34 0.08 44 0.09 - 0.11 - 0.23
space∗ 53 0.08 89 0.09 104 0.10 - 0.13

∗granularity is at the function level.

Table 3. Detailed results for real programs with mutation faults.

Secondly, exoneration based on passed tests is very conservative for all meth-
ods except H-Bayes. If a component has been involved in a large number of test
runs that failed, but the component is not faulty, it will take many passed runs to
decrease its likelihood of being faulty (lj). However, when using prior health in-
formation represented through a priori intermittency, it will take only 1/(1−hj)
tests to exonerate the component.

Improvements on diagnosis quality, i.e., reduction of wasted effort for unnec-
essarily analyzing potentially faulty components, range from 80% for schedule2
and 75% for schedule, to 11% for tot info and space, for the 500 observations
(tests) carried out. The reason for the dramatic improvement of the quality of
the diagnosis, especially in the case of schedule2, is the fact that H-Bayes is
less affected by ambiguities in the diagnosis, meaning there are different diag-
noses with equal likelihoods. If statements, and, therefore, components are part
of a sequential block, they will always be used in sequence, and their columns
in A (execution patterns) will be identical. Similarity coefficients and SF-Bayes
will, therefore, estimate identical likelihood values for all statements with iden-
tical execution patterns, making the diagnosis ambiguous, leading to an increase
in diagnosis effort. However, the testability values estimated for those are not
necessarily identical. Therefore, even if their execution patterns are identical,
H-Bayes will rank first the components whose hj is closer to the intermittency
of failures, effectively alleviating ambiguity.

5.3 Threats to Validity

It must be noted that the validity of the results presented is threatened by the
fact that the same set of mutants were used to estimate hj and to perform the

diagnosis. This could produce too optimistic results, as the estimated ĥj corre-
sponds exactly to the average of the actual hj of the mutants being diagnosed.
This sub-section presents an experiment with real faults found during the de-
velopment of the space program in order to assess this threat. We used space

because of the function point component granularity, resulting in a fixed com-
ponent topology when statements are amended. That way, we can use the same
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existing a priori testability or intermittency estimate. Adding or removing com-
ponents would render data gathered from previous diagnoses useless, because of
a changed system topology.
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Fig. 4. Diagnosis performance for space.

H-Bayes SF-Bayes Ochiai Tarantula

program T0.1 Cd(N) T0.1 Cd(N) T0.1 Cd(N) T0.1 Cd(N)

space 81 0.09 182 0.14 219 0.14 421 0.16

Table 4. Detailed results for the real faults of space.

The plot in Figure 4, and the values in Table 4 show the results of this exper-
iment. By using H-Bayes, residual diagnostic effort is reduced by 30% compared
to SF-Bayes, and test effort is reduced by 55%.

Given the dramatic improvements achievable by incorporating testability and
thus intermittency information as parameter to the diagnosis process, a final
note regarding the cost of obtaining such information is obligatory. The cost of
a testability study is not prohibitive in terms of algorithmic complexity, as it
scales with O(k ·M · N), where k is the average number of mutants generated
per component, and M,N are the number of mutable components and tests,
respectively. However, it is nevertheless, expensive in terms of execution time.
For example, the testability study for space involved executing 1000 tests for
more than 3200 mutants, which took more than 2 days on a 2.33GHz Xeon Linux
server. The calculations can be sped up using multiple CPUs to run multiple
mutants simultaneously.

6 Related Work

Automated fault localization techniques minimize diagnostic cost and support
debugging when failures occur during software testing. Statistical approaches
include [1, 2, 22–25]. A recent, probabilistic approach of acceptable complexity
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is [5]. Although, different in the way they derive the ranking of the diagnosis, all
techniques are based on measuring the coverage information and failure pattern
of a program (also termed its spectrum), while ignoring or deriving the inter-
mittency of the faults. The novelty of our approach consists in factoring the
intermittency estimation problem out of the diagnostic problem, so that inter-
mittency can be exploited from the beginning. Fault intermittency in software is
related to testability, in that testability represents the degree to which software
reveals faults during testing [12]. Testability quantification has been approached
at the class level [26], function level [13] and statement level [6, 14–17]. However,
of the current state of the art, only [6] allows for a straightforward usage as
probabilities in our experiments.

7 Conclusions and Future Work

Fault intermittency modeling is an essential problem of fault localization. Previ-
ous work in diagnosis has considered intermittency modeling a part of diagnosis
process. In this paper we have studied the improvement of the software fault lo-
calization process in the case that intermittency represented through testability
information is available a priori. Our results indicate that testability information
can reduce the number of tests required for an acceptable diagnosis significantly,
both in theoretical cases as well as in realistic cases. H-Bayes reduces the average
number of tests required to reach the same confidence in the diagnosis as the
next best technique by 55%, and the average effort for coming to the diagnosis
by 30% for real programs with real faults. An additional observation from our
experiments is that H-Bayes is relatively robust w.r.t. inaccurate intermittency
estimates.

The improvement in the fault localization process was traded against an
expensive testability analysis, although, it should be noted that, in practice,
the cost of such analysis is amortized over many debug-repair cycles. Future
work will investigate the usage of alternative testability estimation techniques,
e.g. bridging the gap between static techniques (DRR) and the probabilistic
approach needed for H-Bayes. As the estimation error of intermittency may
affect the quality of the diagnosis, methods to adapt or correct hj as soon as
additional information becomes available are also relevant for further research.
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