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ABSTRACT

In development processes with high code production rates
testing typically triggers fault diagnosis to localize the de-
tected failures. However, current test prioritization algo-
rithms are tuned for failure detection rate rather than di-
agnostic information. Consequently, unnecessary diagnostic
effort might be spent to localize the faults. We present a
dynamic test prioritization algorithm that trades fault de-
tection rate for diagnostic performance, minimizing overall
testing and diagnosis cost. The algorithm exploits pass/fail
information from each test to select the next test, optimizing
the diagnostic information produced per test. Experimen-
tal results from synthetic test suites, and suites taken from
the Software-artifact Infrastructure Repository show possi-
ble diagnostic cost reductions up to 10 and 19 percent, re-
spectively, compared to the best of random selection, FEP,
and ART. The cost reduction is sensitive to the quality of
the test coverage matrices and component health, but tends
to grow with the number of faults.

Categories and Subject Descriptors
D.2.5 [Software Engineering): testing and debugging

Keywords

diagnosis, test prioritization, test coverage, information-
gain.

1. INTRODUCTION

Software testing is a time-consuming but rather important
task for improving software reliability. Two processes can
be distinguished: (1) testing to find failures (e.g., regression
tests), and (2) finding the root causes of the failures (faults,
defects, bugs). Whereas the former is commonly known as
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“testing”, the latter is commonly denoted as (fault) “diag-
nosis” (or debugging). Given the significant cost associated
with tests, test prioritization has emerged as predominant
technique to reduce testing cost. Test prioritization is typi-
cally aimed to find failures as soon as possible [8, 9, 14, 16,
20, 25, 27, 30]. The sooner failures are found, the sooner
diagnosis can commence. In diagnosis, tests are used to de-
duce a list of components (e.g., functions, statements) that
are highly suspect to be at fault (the diagnosis). Again,
these tests can be prioritized, in this case to optimize the
diagnostic yield per test, i.e., to minimize the residual work
the diagnostician (developer) performs off-line, when going
through the diagnosis to verify (and fix) the defects [2, 3,
19, 23).

In software development processes with high code produc-
tion rates, the probability of introducing at least one defect
between subsequent (regression) tests is considerable. Con-
sequently, the probability of having to apply diagnosis after
testing is high. While test prioritization minimizes the delay
between testing and diagnosis, it does not maximize diag-
nostic yield, and therefore does not minimize the overall cost
of the combined process given defective code. The reason is
that test prioritization aims at high code coverage, whereas
diagnosis aims at partially revisiting already covered code
to further exonerate or indict defective components. This
drawback of test prioritization has indeed been addressed in
recent work [12, 17, 31].

In this paper we study a novel, dynamic approach to test
prioritization, dubbed diagnostic prioritization, that aims
to minimize the overall cost of testing and diagnosis. Let
C:(N) denote the aggregate time cost of testing where N is
the number of tests. Let Cyq(IN) denote the time cost asso-
ciated with the diagnostic work performed by the software
developer to debug the actual defects. Typically, C4(N) has
a geometric decreasing shape [3, 10]. The essential moti-
vation behind diagnostic prioritization is the reduction of
C4q(N). The overall time cost C' of the combined testing
and diagnosis process can be modelled by

C(N) = Cu(N) + a - Ca(N) (1)

where o models the possible factor between the cost of the
(regression) tests Cy and the cost of the inspection tests per-
formed by the developer (typically high). Figure 1 illustrates
the difference between a classic test prioritization scenario
(a), and a diagnostic test prioritization scenario (b), where,
for the sake of exposition simplicity, we assume all tests have
the same cost, and o = 1 (no distinction between the cost
of testing and inspection). Per scenario three variables are
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Effort (diagn,test,comb)
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Figure 1: Classic vs. diagnostic test prioritization

plotted: testing cost, diagnosis cost, and overall cost. Unlike
static test prioritization, in diagnostic prioritization the tests
are dynamically selected based on the actual pass/fail results
of previously executed tests (which varies per regression cy-
cle), leading to higher diagnostic performance per test, as
shown by the much steeper Cq(N) curve in scenario (b).

While a dynamic approach has the potential to outper-
form a static approach, a critical factor is the algorithmic
complexity of prioritization as the computational cost has
now to be spent for each test. In this paper we show that
diagnostic prioritization delivers higher diagnostic perfor-
mance at sufficiently low algorithmic complexity to provide
a cost-effective solution in scenarios where testing time is
limited and/or where diagnostic cost («) is high.

Our paper makes the following contributions.

e We present SEQUOIA (SEQUencing fOr dIAgnosis),
a low-complexity sequencing algorithm that selects
the next test given the outcome of the previous test.
Unlike Information Gain (IG) methods known from
Bayesian approaches to test sequencing [23] which have
exponential complexity for multiple faults, we intro-
duce a novel, low-cost heuristic function, which is in-
spired by the concept of similarity coefficients used in
spectrum-based fault localization approaches [3, 19].

e We study the properties of SEQUOIA for synthetic
benchmarks where we can vary independent param-
eters such as (1) number of tests, (2) number of com-
ponents, (3) the quality of the test set, (4) the number
of injected faults, and (5) component health (the prob-
ability a defective component will not produce a test
failure).

e We study the performance of SEQUOIA for the Siemens
set as well as larger programs space, gzip, sed, avail-
able from the Software Infrastructure repository [7],
which we have extended to accommodate multiple
faults. To overcome limitations on statistical signifi-
cance due to the very small sample size of originally
seeded faults, we have extended this study to include
random fault seeding.

In the above experiments we compare the performance of
SEQUOIA to the test prioritization algorithms FEP [25] and
ART [16], random prioritization (lower performance bound),
and the Bayesian IG heuristic (upper performance bound).

Our results show that SEQUOIA delivers a performance
close to the optimum (IG), is superior to FEP and ran-
dom prioritization, and comparable to ART. This perfor-
mance is achieved at sufficient low time and space complex-
ity (O(N - M) in practice) to enable significant testing and
diagnosis cost reduction. Apart from contributing to the
field of test prioritization, SEQUOIA also contributes to the
field of automatic software debugging. Compared to current
automatic debugging approaches which effectively assume a
random prioritization order, our approach provides the same
diagnostic accuracy using fewer tests.

The paper is organized as follows. In the next section we
present some basic concepts and terminology. In Section 3
our diagnosis-based approach to test case prioritization is
presented. In Section 4, the approach is theoretically eval-
uated, while in Section 5 real programs are used to assess
our technique. We compare SEQUOIA with related work in
Section 6. In Section 7, we conclude and discuss future work.

2. PRELIMINARIES

As SEQUOIA is essentially based on applying fault diag-
nosis while prioritizing tests, in the following we introduce
basic concepts and terminology on fault diagnosis and test
prioritization.

2.1 Fault Diagnosis

The objective of fault diagnosis is to pinpoint the precise
location of a number of faults in a program (bugs) by ob-
serving the program’s behavior given a number of tests. The
following inputs are usually involved in automated diagnosis:

e A finite set C = {c1,c2,...,¢j,...,cm} of M compo-
nents (typically source code statements) which are po-
tentially faulty.

e A finite set 7 = {t1,t2,...,ti,...,tn} of N tests with
binary outcomes O = (01,02,...,0i,...,0Nn), Where
0; = 1 if test t; failed, and o; = 0 otherwise.

e A N X M coverage matrix, A = [ai;], where a;; = 1 if
test ¢; involves component ¢;, and 0 otherwise.

The output of fault diagnosis, i.e., a diagnosis, is a compo-
nent ranking, i.e., alist R =< ri,r2,...,rm > of component
indices, ordered by the likelihoods L =< Uy, lry, ..., lry, >
of each component c,, being faulty, (ie., Ir, > lr, ;).
In this paper we consider two approaches for obtaining the
component likelihoods L, i.e., a Bayesian approach, where
the likelihoods are exact fault probabilities, and a statistical
approach, where the [,., are so-called similarity coefficients
(SC).

The diagnosis ranking R is returned to the developer who
typically verifies the faults by going through R in descending
order. The diagnosis cost, Cy, is modeled by

Ca = lej|3c; € du: 1(j) <7(5") (2)

This represents the effort needlessly spent by the developer
inspecting the ¢,,, that were not defective (false positives),
while going through R until all the actual faults (the fault set
d.) are found [3]. We refer to M; = |d.| as the actual num-
ber of faulty components in the system. The above model for
Cy is similar to existing diagnostic performance metrics [19,
24] but excludes the actual faults from the counting to allow
unbiased comparison for different My in the multiple-fault
case [3].

Tm

Tm
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2.1.1 Probabilistic Fault Diagnosis

Bayesian diagnosis is a probabilistic reasoning approach,
originating from the AI domain, aimed at obtaining a set of
diagnostic explanations D = {di,...,dr}. Each explanation
di is a subset of the components which, at fault, explain
the observed failures. The following additional inputs are
involved in Bayesian diagnosis:

e An a priori fault probability (“prior”) p; for each com-
ponent c;, which represents the knowledge available
before any test is executed. Component priors are typ-
ically derived from defect density data. Since our com-
ponents are single statements we shall assume uniform
priors, as the prior distribution is also not very critical
to diagnostic performance [3].

o A set of health values 0 < h; < 1 for each compo-
nent ¢;. Component health is the probability that a
faulty component will not cause a failure when covered
in a test. A health value of h; = 1 means a failure
will never occur (even if the component is defective),
while h; < 1 means that the defective component will
cause a fraction h; of tests to pass (false negative rate
hj). In hardware, component health is referred to as
(fault) intermittency [3, 6]. In software, h is related to
the concept of failure ezposing potential [25] mentioned
later on, and testability [28].

Explanations are ranked according to their expected cor-
rectness expressed as probability Pr(dx). As there can only
be one correct explanation, all the individual probabilities
add up to 1.

After each test case t;, the probability of each diagnostic
explanation dr € D is updated depending on the outcome
o0; of the test, following Bayes’ rule:

Pr(o;|d
Pr(dk|oi,oi_1,...) = %

In this equation, Pr(dg|oi—1,...) represents the prior
probability of explanation dj, before the test is executed.
Pr(o;i|dr) represents the probability of the observed outcome
0; produced by a test t;, if that diagnostic explanation dy
was the correct one. This depends on the health h; of the
faulty components involved (given by A and dy). Pr(o;)
is the probability of the observed outcome, independent of
which diagnostic explanation is the correct one. More details
can be found in [11].

The internal result of Bayesian diagnosis, D, which can
constitute up to 2™ individual explanations dj, has to be
mapped to the diagnosis R. The likelihood of each compo-
nent being faulty [; is the sum of the probabilities of every
explanation where component ¢; is involved, given by

S

d€Dicjedy

-Pr(dk|oi_1,...) (3)

l; = Pr(cjloi, .. Pr(dk|oi, .. .) (4)

Note that, unlike later likelihoods, the above [; constitutes a
proper probability value, which, e.g., also allows estimating
the expected number of faults present in the system by

M
)= )

The above Bayesian diagnosis is the basis for the IG test
prioritization heuristic which we shall use as (optimal) ref-
erence in our evaluation of SEQUOIA. The above calculations

M
E[Mf] = Pr(csloi, ..
j=1
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Program: Character Counter|t) to t3 t4 ts tg t7 ts| B SC
c1|main() { 11111111].00.62
cz| int let, dig, other, c; 1111111 1}.00.62
c3| let = dig = other = 0; 1111111 1}.00.62
c4| while(c = getchar()) { 1111111 1}.00.62
cs if (PA’<=c && ’Z’>=c) 11111110].01.71
ce let += 2; /* FAULT */ 10111010]|1.01.0
c7| elsif (Pa’<=c && ’z’>=c) |1 1 01 1 1 1 0/.00 .57
cs let += 1; 1000101 0].01.60
cg| elsif (°0°<=c && ’9°>=c) |1 1 01 1 1 0 0(.00 .43
c1o dig += 1; 1101000 0].00.33
c11| elsif (isprint(c)) 0000110 0}{.00.17
Cc12 other += 1;} 000O01O0O0O0}f.01.20
ci3| printf("%d %d %d\n", 11111111].00.62

let, dig, others);}

Test case outcomes 10111010

Table 1: Example diagnosis (h; = 0.1, p; = 0.01)

(Eq. 3) have also inspired the low-cost heuristic used in SE-
QUOIA.

2.1.2 Statistical Fault Diagnosis

A well-known statistical approach to fault diagnosis
that originates from the Software Engineering domain is
Spectrum-based Fault Localization [2, 19]. Here, the likeli-
hood l; is quantified in terms of similarity coefficients (SCs).
A SC measures the statistical similarity between component
¢;’s test coverage (aij,...,an;) and the observed test out-
comes, (01,...,0n). Similarity is computed by means of
four counters npq(j) that count the number of times a;; and
0; form the combinations (0,0),...,(1,1), respectively, i.e.,

Npg(j) = {i | @iy =pANoi =q}| p,q €{0,1} (6)

For instance, n10(j) and m11(j) are the number of tests in
which ¢; is executed, and which passed or failed, respec-
tively. The four counters sum up to the number of tests
N. For example, the likelihood [; based on the simple and
well-known Jaccard SC is given by coefficient [2]

o n11 ()
11 (j) + n01(5) + n10(j) @)

A great advantage of SCs is their ultra-low computational
complexity compared to probabilistic approaches. Despite
their lower diagnostic accuracy [3] SCs have, therefore,
gained much interest. Our SEQUOIA heuristic is partially
inspired by SCs.

2.1.3 Example

To illustrate how the above approaches work, consider the
character counter program in Table 1. Initially (for N =0
tests) all ¢; have equal prior probability (p; = 0.01), R is
random and Cq(0) = 6.5. When using SC (“SC” column),
after N = 8 tests the four np, counters of c¢ are ni1 = 5,
noo = 3, nio = no1 = 0 yielding similarity 1. The other
components either have non-zero nig or nio, yielding lower
similarities. As a result R =< 6,... > yielding C4(8) = 0
(i.e., perfect diagnosis, no unnecessary inspections). When
using Bayesian diagnosis (“B” column), if a candidate dy, is
involved (not involved) in a test, and the test passes (fails),
its probability will be decreased (increased). Given a state-
ment health estimation of h; = 0.1, after applying the N =8
tests, the top ranked component is ¢g with probability 0.99.
The other ranked diagnosis candidates have a much lower
probability of being the true fault explanation. For example,
the second ranked diagnosis candidate is ¢5 with probability
0.01.
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2.2 Test Prioritization

Test case prioritization techniques order test cases such
that failures occur as early as possible in the testing pro-
cess, so that confidence in the presence or absence of faults
is reached quicker. Due to the uncertainty on the location of
faults, in practice, the search process is directed by a heuris-
tic function. The following heuristics have been proposed:

Random: this is the most straightforward prioritization
criterion, which orders test cases according to random per-
mutations of the original test suite. Random permutations
are used as baseline in many prioritization experiments [9,
25, 27].

Fault-exposing Potential: FEP is a coverage-based pri-
oritization algorithm that assigns each component a confi-
dence value [25]. As high confidence is assigned to a com-
ponent that has been exercised by a number of (passing)
tests, those components need less coverage in subsequent
tests. The algorithmic complexity (time and space) of FEP
prioritization is O(NN - M) per selected test.

Adaptive Random Testing: ART is a hybrid random-
coverage-based algorithm [16]. ART selects its next test case
in two steps. First, it samples tests randomly until one of
the samples does not add additional coverage. Second, it
selects the test which maximizes a distance function with
the already selected test cases. This distance function can
be either the minimum distance with all executed tests, the
maximum distance, or the average distance. In this paper we
compare with the minimum Jaccard distance heuristic cited
in [16] as the most promising one. The best-case time com-
plexity is O(Nz) per selected test, while the worst-case time
complexity is O(N? - M). With respect to space complexity,
besides the O(N - M) coverage matrix, a O(N?) matrix is
needed to store the distances between tests.

2.2.1 Example (continued)

In the following we continue the example in Section 2.1.3.
The way L converges with N to the final SC and Bayesian
results shown in Table 1 depends on the order in which
tests t1,...,ts are executed. The prioritization order that
achieves fastest reduction of Cyq (based on L as computed
through, e.g., Bayesian diagnosis) is < ts,ts,t2,... >,
producing R =<6,8,11,12,... > with C4(3) = 0.125.
In contrast, the order < ti,t5,t4,... > as computed
by a static prioritization algorithm such as FEP yields
R=<1,2,3,4,... > with C4(3) = 0.33. Hence, the sec-
ond prioritization order results in higher diagnostic cost if
diagnosis would be started after the 3rd test.

3. DIAGNOSTIC PRIORITIZATION

In the following, we first present the classic IG heuristic
based on the Bayesian diagnosis as introduced in Section 2.
Although prohibitively complex, the heuristic is known to
be optimal when all tests have equal cost [26], as in this pa-
per. Just like random prioritization serves as a lower bound,
the IG heuristic serves as an upper bound reference when as-
sessing the diagnostic performance of the other prioritization
heuristics (FEP, ART, SEQUOIA).

3.1 Bayesian Prioritization

From a diagnostic point of view, the best test is the one
that yields the highest diagnostic information gain averaged
over the two possible test outcomes (pass/fail). The infor-

mation gain heuristic [18], IG, is defined as
Hia(D,t:i) = H(D)
— Pr(o; =0) -H(D|o; = 0)
—Pr(o; =1) -H(D|o; = 1) (8)

where H(D) is the information entropy of the diagnostic
candidate set D, defined as

H(D) = — Y Pr(dko, ..

d €D

) -logy(Pr(dplo,...))  (9)

and D|o; = 0 represents the updated diagnosis if test t¢;
passes, and D|o; = 1 if it fails.

The rationale for this heuristic is that H expresses the un-
certainty in D and hence estimates the average residual di-
agnostic cost F[Cy], which is our minimization target (note
that Cy cannot be computed as d. is not (yet) known). Mea-
surements have shown that H is a good estimator of E[Cy].
For a matrix A that accommodates all 2™ possible tests,
and for one, persistent fault (M; = 1, h; = 0), IG-based
prioritization effectively performs a binary search, bisecting
the set of candidate components after each test.

Conceptually, when considering all the possible test out-
come combinations, a test suite prioritized for diagnosis is a
binary tree with O(2") nodes, in contrast with off-line pri-
oritization techniques using a static list of O(N). However,
if only the nodes corresponding to the current test path are
expanded, the O(N) complexity is retained. Still, due to the
exponential complexity of computing D and H, IG’s cost is
prohibitive.

3.2 Sequoia Algorithm

In this section we present our new, low-cost heuristic and
associated SC for diagnostic prioritization.

3.2.1 Area-based Heuristic

Due to the exponential computational complexity of H,
SEQUOIA uses another, low-cost approximation of E[Cy],
which is based on the area difference between L and the
best diagnosis, denoted L. as depicted in Figure 2. L™ is
reached when N — oo, for which H and C; would approach
zero. The heuristic function is given by

M
E(Cd =) i =17 (10)

The shape of L is a step function given by;

1 ly if r < My
T e ifr > My

where the likelyhoods of the My faulty components at the
top of L will all have become I, = [y and the likelihood of
the healthy components will all have become I, = I,. Iy
is the asymptotic likelihood for all faulty components, and
ln, for all healthy components. For instance, for Bayesian
diagnosis, Iy = 1 and [, = 0, and My can be estimated by
Eq. 5. This situation corresponds to Figure 2.

During prioritization, the chosen test at each step will be
the test that minimizes E[Cy], given by

Hseq(L,t;) = E[C4)(L)
— Pr(o; =0) - E[C4](L|o; = 0)
—Pr(o; =1) - E[C4](L|oi = 1) (12)

(11)

TUD-SERG-2010-007
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Area-based heuristic
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Figure 2: Area difference with the best diagnosis.

where L|o; = 0 represents the updated L if the test passes,
and L|o; = 1 if it fails. The value of Pr(o; = 0) is the same
used in Eq. 3.

Our experiments confirm that for Bayesian diagnosis this
area-based heuristic yields a performance comparable to H.
However, Bayesian diagnosis is still prohibitively complex
given D’s exponential space complexity.

3.2.2 Sakura coefficient

Rather than using Bayesian likelihood values for I, we use
low-cost SCs, which have been introduced in Section 2.1.2.
However, the likelihood values of low-cost SCs, such as Jac-
card, are no fault probabilities, and therefore Eq. 5 is invalid.
Consequently, E[M] can only be estimated from the shape
of L, by finding the transition zone between l; and [l,,. The
new value of E[M/] corresponds to the index of L where the
difference with the next component in L is maximum

E[My] ~ argmax (Ir — lr41) (13)
r=1,...,M—-1

Our experiments have shown, however, that for classical
SCs (Jaccard, Tarantula [19], Ochiai [2]) the difference be-
tween [y and [, compared to their variance is too small to
become a reliable heuristic. Furthermore, unlike Bayesian
probabilities, SCs have a very unstable evolution until a
sufficient number of observations has been reached. This
is insufficient, as good accuracy is needed at the very first
steps into the sequencing (low N) as this is the stage where
much diagnostic gain can be achieved.

To solve the problems with current SCs, we define a new
SC, dubbed SAKURA (SimilaArity ranKing Update foR di-
Agnosis), that emulates the update behavior of real proba-
bilities. Starting from a prior value, I; will increase if com-
ponent ¢; is involved in a failed run, and will decrease if it
is involved in a passed run. However, unlike classical SCs
the indiction or exoneration is more aggressive (i.e., requires
less observations).

SAKURA is calculated by an approximation of Bayes’ rule:

Pr(c]'|0i =0) (4) X
—_— . [ fo,=0
v Pr(o;=0) "’ no
1Y = (14)
1-— PI”(Cj|O~; = 0) l@)

D ifo; =1
1-Pr(o;=0) =+ "¢

where Pr(o; = 0) approximates the probability of a test
passing, given by

Pro; =0)~ [[ (1= aim b - (1 = hun)) (15)

m=1
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and Pr(c;lo; = 0) approximates the same probability condi-
tioned to component ¢; being faulty by

1—a¢j~(1—hj)

P 1 z-:Oz
edlo: =0) L—ag - 1j- (1= hy)

-Pr(o; =0) (16)

The introduction of h; in the SAKURA SC allows us to push
down in the ranking a component that is involved in a suf-
ficient number of passed runs, independently of how many
failed runs it was involved in. This yields Iy = 1 and [, = 0,
as well as a clear transition zone, that permits us to per-
form a much better estimation of My. It is very important
to note that Eq. 14 is not the proper Bayes’ rule. In a true
Bayesian update the terms are independent of the test used,
whereas in SEQUOIA their value is also conditioned by the
chosen test. Furthermore, the [,, do not necessarily sum up
to 1.

3.2.3 Time/Space Complexity

Like in the case of Bayesian prioritization, the complete
test sequence is a binary test tree. However, unlike Bayesian
prioritization, at each step, SEQUOIA only needs to store
O(M) l; for each expanded node in the tree. Because at
each step in the test sequence the l; have to be updated
for each possible test and outcome, each test selection has
a total space complexity of O(N - M). In order to calculate
the E[Cq4] heuristic, every newly expanded node has to be
sorted to obtain E[M;] (Eq. 13. Consequently, SEQUOIA
has a theoretical time complexity of O(N - M - log M) per
test. However, due to the much higher cost of the expansion
than the F[M/] calculation, SEQUOIA exhibits O(N-M) time
complexity in practice.

4. THEORETICAL EVALUATION

In this section we analyze the performance of SEQUOIA
on synthetically generated matrices A. The motivation for
using synthetic data next to real-world data is the ability to
study the effect of the various parameters in a controlled set-
ting whereas real programs only represent a few parameter
settings in the multi-dimensional parameter space. Further-
more, as we will show in Section 5, real data sets do not
always provide the sample sizes needed in view of the high
variances involved with diagnostic prioritization algorithms.

As explained in Section 1, prioritization performance is
measured in terms of Cy as for equal testing effort (V) the
cost reduction in Equation 1 is due to Cy.

41 Small Matrices

For small matrices we can still assess the optimality of
SEQUOIA compared to IG, which has exponential complex-
ity. The experiments were performed on randomly gener-
ated matrices (N = 250 tests, M = 10 components, cover-
age density p = 0.6, 750 samples to produce one average),
seeded with random single and multiple faults with (uni-
form) health h = {0.1,0.5,0.9}.

Figure 3 shows the evolution of Cy/M vs. N for the ran-
dom, IG, and SEQUOIA heuristics. For random and IG, Cy4
is computed using Bayesian diagnosis (with p = 0.01, cor-
responding to 10 faults per 1,000 components). The perfor-
mance of SEQUOIA when internally using Bayesian diagnosis
(seq-B) is also plotted to assess the performance degradation
due to using the low-cost SAKURA SC instead of Bayesian
diagnosis in SEQUOIA’s area heuristic.
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Figure 3: Performance of random, IG, and Sequoia small random matrices

All plots exhibit the typical, geometric decay in Cy where
the diagnostic quality of R increases with the amount of
observations. Better heuristics will exhibit greater decay
rates.

For single faults the uniform coverage distribution in A
prohibits the dynamic techniques (IG, SEQUOIA) to outper-
form random. Dynamic techniques select tests that yield
optimal diagnostic information gain, i.e., have failure prob-
ability Pr(o; = 1) = 0.5, reducing diagnostic uncertainty
by as much as 1 bit per (binary) test. To produce gains
over random selection there must be the opportunity to se-
lect from tests that have widely varying failure probabilities.
However, for the My =1 case, A’s uniformity results in ev-
ery test having the same component coverage (on average,
each component is involved in p tests and each test involves
p suspect components). Hence, each test will effectively pro-
vide the same amount of information, which explains why
random ordering is just as good.

For multiple faults the situation is quite different. De-
spite the uniformity of A, the tests have widely differing fail-
ure probabilities for different multiple-fault candidates [11].
Hence, on average, dynamic techniques are able to exploit
much more diagnostic information (shown by the much more
rapid decay of Cq(N)). In terms of area under the curve (i.e.,
average Cy) SEQUOIA outperforms the next best technique
(ART) by 10%.

When fault exposure rates 1 — h become low, the failure
probabilities (given by Pr(o; = 1) = 1—(1—p-(1—h))M* [1])
become too low (0.17 for h = 0.9, M = 3). As no tests with
failure probability close to 0.5 are available, the additional
information gain for dynamic techniques becomes negligible
compared to random selection. Consequently, all techniques
yield similar performance. Conversely, an excessive amount
of faults can have the same effect as it will increase failure
probability to levels where it is also not possible to obtain
any effective information gain.

Note the better performance of the Bayesian implemen-
tation of SEQUOIA’s area heuristic, compared to SAKURA,

which is a low-cost estimation (5 ms vs. 240 ms per selected
test for 250 x 10 size matrices). The performance difference
tends to increase with h. The area heuristic even outper-
forms H (IG). This is due to the area heuristic not being
affected (or being distracted) by the many subsumptions in
D, and due to the heuristic being less sensitive to fault mul-
tiplicity than H. More details are given in [11].

4.2 Larger Matrices

Now that SEQUOIA’s optimality with respect to IG is as-
sessed in terms of My and h, in this section we compare SE-
QUOIA with respect to the classical prioritization heuristics
presented in Section 2 for larger uniform matrices (N = 500
tests, M = 50 components, p = 0.6, 750 runs per aver-
age) where IG’s complexity would explode. The results are
shown in Figure 4, where we restrict ourselves to multiple-
faults (M; = 5) as it has previously been shown that for
random (uniform) test matrices SEQUOIA only yields cost
reduction for multiple faults. In all cases, SEQUOIA consis-
tently provides the best performance, although the differ-
ences become smaller with increasing h. While SEQUOIA se-
lects tests aiming at 50 percent failure probability, the FEP
heuristic is designed to mazimize failure probability (aim-
ing at 100 percent), prohibiting any diagnostic information
gain. As a consequence, FEP shows the worst diagnostic
performance. ART exhibits intermediate performance be-
tween random and SEQUOIA. SInce ART is essentially a ran-
dom technique, an increase in My will affect it to a greater
extent than SEQUOIA, because its heuristic does not com-
pensate for increasing failure probability. However, the fact
that tests are chosen such that they maximize the average
coverage distance with the previous tests, introduces some
variability that helps ART improve over random.

4.3 Running Time

Execution time measurement confirms Section 3.2. In
practice, the running time of SEQUOIA is O(N - M) and
ranges (per selected test) from 4 ms for N, M = 100 to 380
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Figure 4: Performance of random, ART, FEP and Sequoia for medium-sized random matrices

ms for N, M = 1000 matrices. Despite its O(M N) complex-
ity, the running time of FEP is negligible when compared
to ART and SEQUOIA. The average running time of ART is
close to O(N - M) when using uniform matrices and is in the
same range as SEQUOIA (within a factor of 2). The running
times indicate that the overhead of SEQUOIA’s online prior-
itization cannot always be ignored, especially for tests that
have a small execution time. In the above 1000 x 1000 case,
SEQUOIA starts becoming a bottleneck when a test takes less
than 760 ms (since SEQUOIA can be run in parallel, specu-
lating on both possible test outcomes). This implies that
for SEQUOIA the application grain size must be well above
the statement level. The cost of integration tests at Thales,
our industrial partner, is in the range of seconds and even
minutes per test and involves software (and hardware) com-
ponents at the function level. In this case, SEQUOIA’s exe-
cution cost plays no role.

4.4 Failure Detection Perfor mance

With respect to failure detection performance (APFD),
we observe the performance of SEQUOIA to be lower than
FEP and ART, which are designed with failure detection in
mind. This can be explained analytically in terms of how
many test cases are needed until the first failure occurs, Ny,
which, like Cy, can be modeled by a geometric distribution
with failure probability parameter p = Pr(o; = 1) [11]. The
objective of FEP is choosing tests with maximum failure
probability, close to p = 1.0. On the other hand, diagnostic
prioritization heuristics such as IG and SEQUOIA aim at p =
0.5, doubling Nys. In practice, Pr(o; = 1) is also affected
by My and h; [1]. The consequences can be seen in Table 2,
rounded to the last significant decimal. For single faults,
the factor of 2 mentioned above is indeed established. For
multiple faults, however, the difference becomes much less.

M 1 5

h; | 15 9 1 5 9
md | 1.88 2.8 154 | 1.02 1.17 3.80
fep | 1.36 2.4 119 | 1.00 1.08 3.03
art | 1.86 3.2 17 | 1.02 120 3.9
seq | 25 33 18 | 1.00 1.10 4.2

Table 2: Influence of M; and h; on Nyy

45 Parameter Sensitivity

The diagnostic precision of SAKURA depends on how well
the h; values are estimated (similar to the estimation prob-
lem in FEP). The average number of tests needed to exon-
erate a healthy component or to indict a faulty component
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Program |Faults| M N p h
print_tokens 4 539 [4,130]0.39(0.70
print_tokens2 9 489 14,115]0.41]0.65

Description
Lexical Analyzer
Lexical Analyzer

replace 23 507 [5,542]0.41(0.90| Pattern Recognition
schedule 7 397 |2,650(0.68|0.95| Priority Scheduler
schedule2 9 299 |2,710(0.71|0.99| Priority Scheduler
tcas 35 174 |1,608(0.37]0.96| Altitude Separation
tot_info 19 398 [1,052|0.56(0.75|Information Measure
space 28 9,564 | 150 [0.40/0.19] ADL Interpreter

gzip-1.3 7 5,680 | 210 |0.34[0.30| Data compression
sed-4.1.5 5 14,427( 370 |0.35/0.30| Textual manipulator

Table 3: The subject programs

is 1/(1 — h), which starts affecting diagnostic performance
when h is close to 1.

We performed a simple experiment by adding random
noise to h with an error of o = 5,10,25%, and My = 3,
averaged over 750 runs. For h = 0.1 the error of the area
under Cy is low, but significantly different for all techniques,
which means that the difference between techniques is par-
tially due to the test choice. As h does not influence test
choice, random ordering is the least affected with a maxi-
mum error of 3%, on the other hand, SEQUOIA is the most
affected with a maximum error of 19%. On the other hand,
for h = 0.5,0.9 the error is higher (up to 56%), but not sig-
nificantly different between the techniques. This means that
for intermediate and high healths, the error that SEQUOIA or
any other prioritization technique makes (which affects how
fast Cy decreases) is much lower when compared with the
error in the diagnostic (the final Cy value), which is due to
the diagnostic algorithm. More details can be found in [11].

5. EMPIRICAL EVALUATION

In this section we compare the performance of SEQUOIA
to random, FEP and ART, in terms of Cyq as measured by
SAKURA, for the well-known Siemens benchmark set [15] as
well as gzip, sed and space (obtained from SIR [7]).

Table 3 provides more information about the programs
used in the experiments, where M corresponds to the num-
ber of lines of code (components at statement granularity).
For our experiments, we have extended the subject programs
with program versions for which we can activate arbitrary
combinations of multiple faults. For this purpose, we limit
ourselves to a selection of 146 out of the 183 faults, based
on criteria such as faults being attributable to a single line
of code, to enable unambiguous evaluation.

As each program suite includes a correct version, we use
the output of the correct version as oracle. Again, we com-
pare in terms of relative diagnostic cost Cq/M’ but in this
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case we modify M to M’ = M — W to remove white space
and static code (i.e., code not instrumented by tt gcov)
bias (W) from the comparisons. Further, to avoid plots
we aggregated the Cy(N) curves to numbers by computing
the area under the curve (i.e., average diagnostic cost over
N =1,...,250 tests).

5.1 Real Faults

In the first experiments the real faults provided with each
program are used. The number of faults and possible fault
combinations varies per program between 4 and 1,448. We
diagnosed each fault on 5 matrices of 250 tests each, to
smooth artifacts caused by random sampling and to remove
any possible test suite construction bias. A shortcoming of
test sequencing is that it requires knowledge of the value of
h;. In our My = 1 experiments the health value of the faults
could be easily estimated as the test suite is seeded with sin-
gle faults. For My > 1, the maximum h value was used as
input to SEQUOIA to minimize estimation errors as discussed
in Section 4.5. The average h; for each program is shown
in Table 3. Notice the significant difference between the av-
erage h; of the hand-seeded faults of the Siemens programs
and the real faults of gzip, sed and space, which suggests
that the faults in Siemens are not representative of real soft-
ware, in accordance with results from Briand [4]. Based on
an ANOVA analysis of the results, we were unable to reject
the null hypothesis that there is a significant difference be-
tween techniques in many cases (a = 0.05). Table 4 shows
the results for those cases where a significant difference was
found. In the single-fault case, only schedule provided sig-
nificant results, be it with a high sampling error (o = 25%),
which reinforces our suspicion that the amount and location
of faults in the Siemens set are far from statistically ap-
propriate for diagnostic prioritization studies. In the cases
where the results are different, post-hoc multiple comparison
analysis was performed using the Bonferroni Lowest Signif-
icant Difference (LSD) method. The best row contains the
heuristics (best to worst) whose difference with the best one
is lower than LSD.

With the exception of FEP, which was designed to max-
imize test failure probability, the rest of heuristics cannot
be considered statistically different in half of the cases. SE-
QUOIA comes on top only in 1 case and ties with ART in 3
cases. The high performance of FEP for tot_info can be
explained by the fact that most faults are in areas of the
code covered by very few tests [25]. By maximizing the fail-
ure probability, those areas will be covered faster than by
ART or SEQUOIA, which work under the assumption that
faults are uniformly spread through the code. However, as
we will see in the next section, a more uniform distribution
of faults will reverse the situation.

prnt_tok2 | replace schedule sched?2 tot_info |gzip
My| 3 5 3 5 1 315 3 5 3 5 5

rnd| 0.7 [0.93]0.62]0.78[ 0.2 |0.5|0.6| 0.6 | 0.6 {0.56[0.65] 0.8
fep| 0.8 [0.97]|0.67[0.82( 0.3 |0.6|0.8|0.690.76|0.52|0.60| 0.9
art| 0.7 [0.93]0.61{0.78| 0.2 [0.5[{0.5| 0.6 | 0.6 [0.53]|0.63| 0.7
seq| 0.7 10.93]0.60[0.76| 0.1 [0.4[0.5| 0.5 | 0.6 [0.55]|0.64| 0.7
LSD]| 0.1 [0.01]0.01{0.01| 0.1 |0.1]{0.1| 0.0 | 0.0 [0.01[0.01] 0.1
best|s,a,r|a,r,;s| s,a s [s,a,r|s,a|s,a|s,a,r|s,r,al| fa f [s,a,r

Table 4: Average diagnostic cost, real faults

With respect to failure detection capability as measured
by APFD, again, the performance of SEQUOIA is (somewhat)
worse than FEP, with a median score of 0.92 vs. 0.94. How-

ever, is better than RND (0.85) and ART (0.88), as the
occurrence of the first fault depends heavily on the densities
of the matrices, which is lower than p = 0.5 in most cases.

5.2 Simulated Faults

As mentioned earlier, the faults included in the test suites
gave little opportunity to construct experiments with statis-
tical significance, given the fact that dynamic prioritization
techniques inherently exhibit a much larger variance than
static techniques. Therefore, we extended our performance
assessment with experiments using the original coverage ma-
trices of the programs, but seeding them with random faults.
Compared to the synthetic experiments in Section 4 we now
deal with real matrices. To eliminate bias induced by suite
composition, we sampled randomly the original suites to cre-
ate 25 matrices of 250 tests each. For each of them, we sim-
ulated 50 combinations of My faults. This gives a total of
1,250 runs per program, per (Mjy, h;) setting.

Table 5 presents a summary of the results for each pro-
gram where the ANOVA test did show significant differences
between techniques with at least 95% probability. In accor-
dance with our synthetic experiments, SEQUOIA and ART
clearly outperform random, although the improvement is
usually smaller than in the synthetic case. SEQUOIA per-
forms significantly the best in 12 cases, ART in 3 cases,
whereas FEP and random are never the best techniques.

The cases of schedule, schedule2, are the most favorable
for SEQUOIA providing up to a 15% improvement over the
next-best (ART) and up to 19% over random prioritization,
as the high density of their matrices partially compensates
the high h;. In these cases, ART’s effectiveness is impaired
by the fact that the redundancy in the tests reduces the
variability that the distance function can introduce. The
high number of cases (18) where SEQuOIA and ART tie, are
most likely due to the uniformity of p; and h; as discussed
in Section 5.3.

On the other hand, sparse test matrices like the ones of
print_tokens, print_tokens2 and especially gzip, space
(where program functionalities are tested individually or in
small bundles) provide little advantage as a diagnostic algo-
rithm such as SEQUOIA is unable to cleverly combine mul-
tiple components per test [11]. Consequently, the improve-
ment over random prioritization is negligible. This can be
observed in the 8 cases where SEQUOIA, ART and random
prioritization are tied. However, as My increases this effect
tends to disappear, as can be seen in the (h = 0.5, My = 5)
case of print_tokens and print_tokens2. Furthermore, for
My = 10, space shows significant differences between tech-
niques, with an 10% improvement of SEQUOIA and ART over
random prioritization.

5.3 Threatsto Validity

Our results show that the benchmark suites are not very
suitable for our comparisons where large fault samples are
required for statistical significance. Furthermore, faults in
Siemens are often too hard to detect [4] and too hard to
reach [25], which makes it questionable to what extent the
Siemens set is representative. In view of the above, the role
of (semi) synthetic coverage matrices becomes important, as
this also offers more insight into the various (controllable)
parameters. However, we only consider random matrices
A with only two parameters (p,h). Although much insight
was gained, the real programs showed that real A are far
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print_tokens print_tokens2 replace schedule
My 1 3 5 1 3 5 1 3 5 1 3 5
h;]05]09]05]09]05[09[05]09[05[09[05]09]05][]09[05[09[05[09]05[09[05]09]0.5]0.9
rnd [0.08]0.14{0.310.48(0.51|0.69({0.08(0.13]0.280.46[0.48{0.65]0.09(0.14|0.29{0.46(0.49]0.66|0.09{0.180.37]0.58|0.62]0.76
fep|0.13(0.16|0.36|0.49]0.56|0.71{0.10]0.15(0.33]0.480.51|0.66 | 0.08|0.15{0.29(0.47]|0.48|0.67(0.10|0.23[0.39(0.610.61{0.78
art|0.07/0.13{0.29(0.47]0.50(0.68]0.07(0.13]0.27(0.45]0.46 | 0.64 |0.07]0.13|0.27|0.45|0.46 |0.64|0.08{0.17[0.35]|0.55|0.59]0.74
seq|0.07/0.13]0.31(0.47]0.52|0.68]0.06|0.14]0.27[0.45]0.46 | 0.63 |0.07]0.13|0.28|0.44|0.47|0.64|0.07|0.14{0.32]|0.52|0.54|0.72
LSD|0.01{0.01[0.02]0.01[0.02]0.01{0.01{0.01{0.01]/0.01{0.01{0.01{0.01{0.01{0.01{0.01[0.01{0.01{0.01{0.01/0.01]0.01(0.01]0.01
best| s,a |a,s,r|a,s,r|a,;s,r| a | s,a| s,a |ar,s|s,ar|s,ar|as|s,a|sa]|as|as|[sa]|as]|as]|sal]| s s s s s
schedule2 tcas tot_info gzip space
My 1 3 5 1 3 5 1 3 5 1 3 10
h;]05]09]05]09]05]09[05]09]05[09[05]09]05]09]05]09[05[09]05]09[0.5]0.9 0.5
rnd [0.10]0.19{0.39]0.58 (0.640.76{0.09(0.14]0.41]0.55[0.66(0.75|0.12{0.16 |0.38|0.54[0.61|0.74|0.14[0.20/0.40]0.54 0.30
fep|0.16(0.26 | 0.46 |0.620.68|0.780.10]0.15(0.43]0.60|0.68 (0.79]0.17[0.19|0.41|0.55[0.64|0.75{0.10|0.17]0.34|0.51 0.28
art|0.10/0.18|0.37(0.560.63(0.75]0.08|0.1310.39{0.55]|0.64|0.76 {0.11]0.15{0.35|0.52]0.580.72|0.11|0.18(0.36 [ 0.51 0.27
seq|0.08]0.16|0.35[0.54]0.58|0.73]0.08|0.14]0.43|0.56|0.67]0.75|0.10]0.14|0.36 |0.51]0.58|0.72|0.09|0.18(0.36|0.51 0.27
LSD|[0.01[0.01]|0.01]0.01{0.01{0.01{0.01|0.01]0.02{0.01{0.01{0.01]0.01]/0.01{0.01{0.01{0.01{0.01{0.01{0.01[0.01]0.01 0.01
best| s s s s s s s,a a a,r |a,r,s| a |[s,r,al| s s,a | a,s | s,a| as | sa| sf | fa|fsalsfa a,s

Table 5: Average diagnostic cost, simulated faults (« = 0.05)

from uniform, and that this affects achievable diagnostic cost
reduction. Instead of synthesizing random faults, mutation
may offer an alternative way of obtaining a larger sample
of faults that are close to real faults [4], improving external
validity.

In our experiments we assumed identical fault probabili-
ties p; and component healths h; which is not likely for real
faults. This threatens the external validity of the results
with simulated faults, especially given the close tie between
ART and SEQUOIA. However, while SEQUOIA automatically
exploits additional information on pj, h;, ART has no mech-
anism to adapt its test selection. Hence, SEQUOIA’s perfor-
mance should be seen as a lower bound, and the close tie
between SEQUOIA and ART as less realistic.

As already mentioned, SEQUOIA takes as input the fault
probability p; and health parameter h; of each component.
In our controlled experiments this value was available. In
practice, however, both must be estimated. From our sensi-
tivity analysis it is clear that the performance of SEQUOIA
(and, e.g., FEP) is affected by the estimation quality. Hence,
in this sense our results should be seen as upper bounds.

6. RELATED WORK

The influence of test-suite extension, reduction, modifica-
tion, and prioritization on fault detection and diagnosis has
received considerable attention [5, 13, 31]. In particular,
Jiang et al. [17] show how some prioritization techniques
are worse than random orders and that those which are bet-
ter, do not provide a significant improvement. In contrast
to the works cited above, which use coverage-based heuris-
tics to reduce the size of the test suite, SEQUOIA employs an
heuristic to select the best test case to optimize diagnostic
accuracy.

Test case prioritization is a mature and active area of re-
search whose most common goal is to increase failure de-
tection rate, which dates back to [14, 30]. The failure de-
tection effectiveness of different coverage-based prioritiza-
tion techniques was studied by Rothermel et al. [9], who
also proposed the FEP heuristic [25] that has already been
discussed throughout the paper. Other work on prioritiza-
tion includes [8, 20, 25]. Jiang et al. [16] propose a hybrid
random and coverage-based prioritization technique (ART)
which has already been discussed throughout this paper. Sk-
QUOIA fundamentally differs from traditional prioritization
techniques in that its main goal is not to optimize the rate
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of failure detection, but to minimize debugging cost.

Automated fault-localization techniques also aim at mini-
mizing diagnostic cost when failures occur during the testing
phase. Statistical approaches include [2, 19, 21, 22, 24, 29].
A recent, probabilistic approach of acceptable complexity
is [3]. Unlike the above diagnostic approaches, SEQUOIA ad-
dresses the order in which tests are applied. Furthermore,
the novel SAKURA SC used in SEQUOIA differs from SCs like
Tarantula or Ochiai in that it is more tuned to a prioriti-
zation algorithm where optimum diagnostic precision based
on only a few tests is critical.

Sequential diagnosis aims at finding the test sequence that
optimizes diagnostic performance based on the current test
outcomes. Sequential diagnosis is often applied to hardware
systems where tests can produce false negatives (intermit-
tent faults) [23]. Typically, only one fault is assumed present
in the system. If the system can have multiple faults, se-
quential diagnosis complexity becomes exponential. In [26]
an approximation is described for systems with permanent
faults (h = 0), an assumption which does not hold for most
software systems. SEQUOIA differs in that it employs a se-
quential approach for multiple, intermittent faults, at poly-
nomial complexity due to our low-cost heuristic instead of
the Bayesian approach. A preliminary version of our work
is described in [12], that reveals the high potential of (IG-
based) dynamic prioritization. However, to avoid the com-
binatorial explosion of Bayesian diagnosis, in that work we
assumed single faults, which is unrealistic for large systems.

7. CONCLUSIONS & FUTURE WORK

In this paper we presented a dynamic test prioritization
algorithm, SEQUOIA, to minimize the subsequent diagnostic
cost after testing revealed the existence of faults.

Our results show that diagnostic prioritization can signif-
icantly reduce diagnosis cost, compared to the case where
no information is exploited (random), at a minimal expense
in terms of APFD. Unlike the large cost reductions in our
earlier work for the specific, single-fault case (more than
50% [12]), in the more realistic case, where any amount
of faults may be present, and where tests can have false
negatives, the reduction by SEQUOIA appears highly de-
pendent on the coverage matrix A, component health h,
and fault density M;. When A comprises tests that cover
multiple components (e.g., integration tests instead of unit
tests) without excessive component health, SEQUOIA is able
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to exploit test information to reduce diagnostic cost. Our
measurements show that SEQUOIA outperforms random se-
quencing, FEP, and ART, up to 10% to next-best for syn-
thetic suites, and up to 15% to next-best for the Siemens set
(schedule and schedule2) and 20% to random orderings.
Although significant reduction cannot always be achieved,
the cost reduction increases with the amount of faults, an
attractive prospect for large codebases. Although FEP and
ART are designed to optimize failure probability instead of
diagnostic information (which requires 50% failure probabil-
ity per test), ART also yields diagnostic cost reduction, often
outperforming random sequencing and FEP. However, ART
has no mechanism to adapt test choices to more realistic
cases with non-identical fault probabilities and component
healths. ART is unable to exploit this information, unlike
SEQUOIA, making it a less robust method.

Future work includes (1) extending our study to non-
uniform test costs, fault probabilities and healths, (2) study-
ing the use of mutation techniques to better fault sampling
and for estimating h as done in [25], (3) extending the syn-
thetic models to (non-uniform) coverage matrices that better
characterize real test suites.
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A Addendum to the Theory

A.1 Bayesian Diagnostic

After each test case t;, the probability of each diagnostic explanation dy, € D is updated depending on the
outcome o; of the test, following Bayes’ rule:

_ Pr(os|dy)

Pr(dk|0iaoi—17'-') - PI‘(O‘) 'Pr(dk’|0i—1a"') (D

In this equation, Pr(dg|o;—1,...) represents the prior probability of explanation dj, before the test is
executed. Before any test is executed, the probability of each explanation is:

Pr(de) = [[ ;- ] =0y 2

Cjedk Cj/gdk

Pr(o;|dy) represents the probability of the observed outcome o; produced by a test ¢;, if that diagnostic
explanation dj, was the correct one. This depends on the health /; of the faulty components involved (given
by A and dy,) according to

Pr(o; =0ldx) =1 —Pr(o; = 1ld) = [[ hy 3)

cj€drNa;;=1

Pr(o;) is the probability of the observed outcome, independent of which diagnostic explanation is the
correct one.
Pr(o;) = Y Pr(oi|dy) - Pr(diloi_1,...) 4)
dreD

A.2 Matrix density and multiple faults

When a test matrix is uniform, every test case provides the same information gain in the M, = 1 case. It is
easy to see why if we transform A to a matrix where columns correspond to combiantions of components
instead of to individual components.

1 1 1 1 1 17 1 1111111111111 1]
01 000 1 1000 11111001011
1101 1 1 111 111111111111
0001 11 00111011111 1111
111100 11 1111111111110
1 1110 1 111 111111111111
111100 11 1111111111110
011011{—-]11011111111111:1 3)
101 10 1 111 111101111111
1 11000 1111 11111111000
001100 01 100110071T1T1T1T1SF0
11010 1 111 111111101111
1101 1 1 111 111111111111
100 0 1 1 11 1110011011111
|01 100 1| |1 1001111111101 1|

TUD-SERG-2010-007 11
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12

B Detailed Empirical Results

B.1 Plots and Statistical Analysis of Simulated Faults

printokens

h=010, M=1 h=010, M=3 h=010, M=5
T T

print_tokens cl 050
0.0842+-0.0033 0.1137+-0.0043 0.0806+-0.0034 0.0877+-0.0040 F=15.99 p=0.0000
Bonferroni means: ddof= 4996 MSD= 0.009 T= 1.7559 { art rnd seq }

rnd - fep : -0.0294793698135 True
rnd - art : 0.00366397243434 False
rnd - seq : -0.00343006677648 False
fep - art : 0.0331433422478 True
fep - seq : 0.026049303037 True

art - seq : -0.00709403921081 False

print_tokens Ccl1 090
0.1918+-0.0040 0.2010+-0.0043 0.1950+-0.0043 0.2038+-0.0043 F=1.70 p=0.1649

print_tokens c3 050
0.3391+-0.0051 0.3646+-0.0056 0.3340+-0.0052 0.3332+-0.0056 F=7.51 p=0.0001
Bonferroni means: ddof= 4996 MSD= 0.013 T= 1.7559 { seq art rnd }

rnd - fep : -0.0254816730577 True

rnd - art 0.00515393002816 False
rnd - seq 0.00590597429454 False
fep - art 0.0306356030859 True
fep - seg 0.0313876473523 True
art - seqg 0.000752044266377 False

print_tokens c3 090
0.4595+-0.0050 0.4761+-0.0054 0.4491+-0.0051 0.4541+-0.0053 F=5.06 p=0.0017
Bonferroni means: ddof= 4996 MSD= 0.013 T= 1.7559 { art seq rnd }

TUD-SERG-2010-007

SE



SER

rnd
rnd
rnd
fep
fep
art

fep
art
seq
art
seq
seq

print_tokens
0.4558+-0.0051 0.4952+-0.0055 0.4414+-0.0053 0.4547+-0.0058 F=18.44 p=0.0000
Bonferroni

rnd
rnd
rnd
fep
fep
art

means:

fep
art
seq
art
seq
seq

print_tokens
0.5917+-0.0041 0.6140+-0.0046 0.5947+-0.0041 0.6077+-0.0043 F=6.10 p=0.0004
Bonferroni

rnd
rnd
rnd
fep
fep
art

TUD-SERG-2010-007

means:

fep
art
seq
art
seq
seq
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-0.0165225436731 True
0.01040697191 False
0.00545616813017 False
0.026929515583 True
0.0219787118032 True
-0.0049508037798 False

050

ddof= 4996 MSD= 0.013 T= 1.7559 { art seq }

-0.0394198611214 True
0.014442199891 True
0.00112631540247 False
0.0538620610123 True
0.0405461765238 True
-0.0133158844885 False

090

ddof= 4996 MSD= 0.011 T= 1.7559 { rnd art }

-0.0223008575249 True
-0.0030553734446 False
-0.016016436983 True
0.0192454840803 True
0.00628442054185 False
-0.0129610635384 True

13
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printokens2

h=010, M=1 h=010, M=3 h=010, M=5

h=050, Mi=1 h=050, M=3 h=050, Mi=5
08 T T T T o8 T T T T 08 = T T T

0 20 40 60 80 100 0 20 40 60 80 100 [ 50 100 150 200

h=090, M=1 h=090, M=3 h=090, M=5
0.8 T T T T 08 T T T 08 — T T

print_tokens2 C1 050
0.0713+-0.0027 0.1005+-0.0037 0.0687+-0.0027 0.0764+-0.0029 F=22.99 p=0.0000
Bonferroni means: ddof= 4996 MSD= 0.008 T= 1.7559 { art rnd }

rnd - fep : -0.0291689975248 True
rnd - art : 0.00258917079208 False
rnd - seq : -0.00507883663366 False
fep - art : 0.0317581683168 True
fep - seq : 0.0240901608911 True
art - seq : -0.00766800742574 True

print_tokens2 C1 090
0.1851+-0.0040 0.1927+-0.0042 0.1888+-0.0042 0.2006+-0.0040 F=2.62 p=0.0489
Bonferroni means: ddof= 4996 MSD= 0.010 T= 1.7559 { rnd art fep }

rnd - fep : -0.00754412128713 False
rnd - art : -0.0037192759901 False
rnd - seq : -0.0154552289604 True
fep - art : 0.00382484529703 False
fep - seq : -0.00791110767327 False
art - seq : -0.0117359529703 True

print_tokens2 C3 050
0.3239+-0.0049 0.3498+-0.0050 0.3086+-0.0049 0.3172+-0.0050 F=12.88 p=0.0000
Bonferroni means: ddof= 4996 MSD= 0.012 T= 1.7559 { art seq }

rnd - fep : -0.0259496699692 True
rnd - art : 0.0152301258239 True
rnd - seq : 0.00670463077925 False
fep - art : 0.0411797957931 True
fep - seq : 0.0326543007484 True
art - seq : -0.00852549504467 False
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print_tokens2 C3 090
0.4464+-0.0051 0.4627+-0.0051 0.4443+-0.0050 0.4323+-0.0049 F=6.23 p=0.0003
Bonferroni means: ddof= 4996 MSD= 0.012 T= 1.7559 { seq art }

rnd - fep : -0.0162927445977 True

rnd - art 0.0021683043116 False
rnd - seq 0.0141665319219 True
fep - art 0.0184610489093 True
fep - seg 0.0304592765196 True
art - seq 0.0119982276103 False

print_tokens2 C5 050
0.4549+-0.0049 0.4844+-0.0050 0.4376+-0.0049 0.4419+-0.0053 F=17.66 p=0.0000
Bonferroni means: ddof= 4996 MSD= 0.012 T= 1.7559 { art seq }

rnd - fep : -0.0294814365721 True
rnd - art : 0.0173067900023 True
rnd - seq : 0.0130235167874 True
fep - art : 0.0467882265744 True
fep - seq : 0.0425049533595 True
art - seq : -0.00428327321489 False

print_tokens2 C5 090
0.6016+-0.0041 0.6271+-0.0046 0.6070+-0.0044 0.6072+-0.0043 F=6.64 p=0.0002
Bonferroni means: ddof= 4996 MSD= 0.011 T= 1.7559 { rnd art seq }

rnd - fep : -0.0255092931047 True
rnd - art : -0.00534675165425 False
rnd - seq : -0.00559128938356 False
fep - art : 0.0201625414504 True

fep - seq : 0.0199180037211 True

art - seq : -0.000244537729312 False
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16

0.8

replace

h=010, M=3

0.8

SE

0.8

40 60

h=050, Mi=1

h=050, M=3

T T 0.8 T

0.8

h=090, M=1

0.8

replace

0.0818+-0.0028 0.0819+-0.0029 0.0697+-0.0026 0.0708+-0.0027

Bonferroni means: ddof= 4996 MSD= 0.007 T= 1.7559 { art seq }

rnd -
rnd —
rnd -
fep -
fep -
art -

replace

0.1941+-0.0042 0.2003+-0.0043 0.1943+-0.0043 0.1936+-0.0043

replace

0.3368+-0.0050 0.3280+-0.0050 0.3150+-0.0049 0.3182+-0.0049
ddof= 4996 MSD= 0.012 T= 1.7559 { art seq }
0.00883722490657 False

Bonferroni
rnd -
rnd -
rnd -
fep -
fep -
art -

replace

0.4626+-0.0051 0.4625+-0.0050 0.4513+-0.0050 0.4411+-0.0051

Bonferroni means: ddof= 4996 MSD= 0.013 T= 1.7559 { seq art }

rnd -
rnd -
rnd -
fep -

fep
art
seq
art
seq
seq

means:

fep
art
seq
art
seq
seq

fep
art
seq
art

Cl

Cl

C3

C3

050

-8.8303558812e-05 False

0.0120750953495 True
0.0109729086638 True
0.0121633989083 True
0.0110612122226 True

-0.0011021866857 False

090

050

.0217985638747 True
.0186461611762 True
.0129613389681 True

o O O O

.00980893626958 False

-0.00315240269849 False

090

0.000167692705393 False

0.0113125544772 False
0.021556510508 True
0.0111448617718 False

F=5.90 p=0.0005

F=0.55 p=0.6452

F=4.04 p=0.0071

F=4.16 p=0.0059
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fep - seq : 0.0213888178026 True
art - seq : 0.0102439560308 False
replace Cc5 050

0.4633+-0.0048 0.4546+-0.0049 0.4404+-0.0048 0.4460+-0.0050 F=4.20 p=0.0056
Bonferroni means: ddof= 4996 MSD= 0.012 T= 1.7559 { art seq }
rnd - fep : 0.00874164127286 False

rnd - art 0.0229205912252 True

rnd - seq 0.0172943772352 True

fep - art 0.0141789499523 True

fep - seq : 0.00855273596235 False

art - seq : -0.00562621398995 False
replace c5 090

0.6085+-0.0041 0.6141+-0.0044 0.5974+-0.0043 0.5790+-0.0044 F=13.07 p=0.0000
Bonferroni means: ddof= 4996 MSD= 0.011 T= 1.7559 { seq }
rnd - fep : -0.00563267037341 False

rnd - art 0.0111058466143 True
rnd - seqg 0.0294799669342 True
fep - art 0.0167385169877 True
fep - seg 0.0351126373077 True
art - seq 0.0183741203199 True
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18

0.8

schedule

h=010, M=3

SE

0.2
0.1

0.8

40 60

h=050, Mi=1

80 100 0 20

h=050, M=3

50 100 150 200

h=050, M=5

0.8

h=090, M=1

50 100 150 200

h=090, M=5

0.8

0.8

schedule

Bonferroni means:

rnd -
rnd —
rnd -
fep -
fep -
art -

schedule

Bonferroni
rnd -
rnd -
rnd -
fep -
fep -
art -

schedule

Bonferroni
rnd -
rnd -
rnd -
fep -
fep -
art -

fep
art
seq
art
seq
seq

means:

fep
art
seq
art
seq
seq

means:

fep
art
seq
art
seq
seq

Cl

Cl

C3

050
0.1040+-0.0032 0.1336+-0.0039 0.0896+-0.0032 0.0781+-0.0030
ddof= 4996 MSD= 0.008 T= 1.7559 { seq }

-0.0295680693069 True

O O O o o

090
0.2259+-0.0052 0.2830+-0.0050 0.2158+-0.0050 0.2047+-0.0047
ddof= 4996 MSD= 0.012 T=
-0.0570578217822 True

.0101339108911
.0212476732673
.0671917326733
.0783054950495
.0111137623762

o O O O o

050
0.4174+-0.0051 0.4428+-0.0053 0.3947+-0.0052 0.3640+-0.0051
ddof= 4996 MSD= 0.013 T= 1.7559 { seq }
-0.0253728712857 True

.0226839273906 True
.0533929042863 True
.0480567986763 True
.078765775572 True
.0307089768957 True

O O O o o

.0144158910891 True
.0259038613861 True
.043983960396 True
.0554719306931 True
.011487970297 True

True
True
True

False

False

1.7559 { seq art }

50 100 150 200

F=51.93 p=0.0000

F=49.50 p=0.0000

F=41.89 p=0.0000
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schedule Cc3 090
0.5266+-0.0055 0.5324+-0.0055 0.5125+-0.0054 0.4881+-0.0052 F=13.26 p=0.0000
Bonferroni means: ddof= 4996 MSD= 0.013 T= 1.7559 { seq }

rnd - fep : -0.0057872388035 False

rnd - art 0.0140580762825 True

rnd - seq 0.0385116003368 True

fep - art 0.019845315086 True

fep - seg 0.0442988391403 True

art - seq 0.0244535240543 True
schedule C5 050

0.5465+-0.0045 0.5421+-0.0047 0.5225+-0.0046 0.4819+-0.0050 F=39.30 p=0.0000
Bonferroni means: ddof= 4996 MSD= 0.012 T= 1.7559 { seq }
rnd - fep : 0.00444543445556 False

rnd - art 0.0240623200621 True

rnd - seqg 0.0646712752721 True

fep - art 0.0196168856066 True

fep - seq 0.0602258408165 True

art - seq 0.0406089552099 True
schedule C5 090

0.6568+-0.0043 0.6395+-0.0047 0.6421+-0.0044 0.5973+-0.0042 F=33.94 p=0.0000
Bonferroni means: ddof= 4996 MSD= 0.011 T= 1.7559 { seqg }

rnd - fep : 0.0172720115634 True
rnd - art : 0.0146461210656 True
rnd - seq : 0.0594991359775 True
fep - art : -0.00262589049787 False
fep - seq : 0.0422271244141 True
art - seq : 0.044853014912 True
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SE

schedule2

h=010, M=3

0.2 f e
T P

0.8

h=050, Mi=1

h=050, M=3

T o8 T T T T 08 T T T

0.8

h=090, M=1

T 0.8 T T T 0.8 T

schedule2 Cl 050
0.1038+-0.0033 0.1824+-0.0046 0.1016+-0.0034 0.0816+-0.0031
Bonferroni means: ddof= 4996 MSD= 0.009 T= 1.7559 { seqg }

F=147.78 p=0.0000

rnd - fep -0.0785587157029 True

rnd - art 0.00220810087774 False

rnd - seq 0.0222075011063 True

fep - art 0.0807668165806 True

fep - seq 0.100766216809 True

art - seq 0.0199994002286 True
schedule2 Cl 090

0.2262+-0.0053 0.2928+-0.0051 0.2144+-0.0051 0.1988+-0.0048 F=65.84 p=0.0000

Bonferroni means: ddof= 4996 MSD= 0.013 T= 1.7559 { seqg }
rnd - fep -0.0665596161209 True
rnd - art 0.0118182418681 False
rnd - seq 0.0274163217685 True
fep - art 0.078377857989 True
fep - seq 0.0939759378894 True
art - seq 0.0155980799004 True
schedule?2 Cc3 050

0.4251+-0.0052 0.4636+-0.0052 0.4042+-0.0051 0.3669+-0.0055 F=59.19 p=0.0000

20

Bonferroni means: ddof= 4996 MSD= 0.013 T= 1.7559 { seq }
rnd - fep -0.038597460043 True
rnd - art 0.020836503629 True
rnd - seq 0.0581146316824 True
fep - art 0.059433963672 True
fep - seg 0.0967120917254 True
art - seq 0.0372781280533 True
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schedule2 Cc3 090
0.5255+-0.0053 0.5247+-0.0051 0.5107+-0.0053 0.4933+-0.0052 F=8.31 p=0.0000
Bonferroni means: ddof= 4996 MSD= 0.013 T= 1.7559 { seq }

rnd - fep : 0.000831529233015 False

rnd - art 0.0148221217588 True

rnd - seq 0.0321702801367 True

fep - art 0.0139905925258 True

fep - seg 0.0313387509037 True

art - seq 0.0173481583779 True
schedule?2 C5 050

0.5516+-0.0046 0.5647+-0.0044 0.5390+-0.0047 0.4978+-0.0050 F=37.92 p=0.0000
Bonferroni means: ddof= 4996 MSD= 0.012 T= 1.7559 { seq }
rnd - fep : -0.0130707414521 True

rnd - art 0.0125864736574 True

rnd - seqg 0.0537973892987 True

fep - art 0.0256572151095 True

fep - seg 0.0668681307507 True

art - seq 0.0412109156413 True
schedule?2 c5 090

0.6380+-0.0043 0.6159+-0.0044 0.6342+-0.0041 0.5915+-0.0040 F=25.61 p=0.0000
Bonferroni means: ddof= 4996 MSD= 0.010 T= 1.7559 { seqg }

rnd - fep : 0.0221215378539 True
rnd - art : 0.0038109371392 False
rnd - seq : 0.046477689134 True

fep - art : -0.0183106007147 True
fep - seq : 0.0243561512801 True
art - seq : 0.0426667519947 True
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22

SE

0.1

R R

0.1

0.8

20

40 60 80 100 0 20

h=050, Mi=1

h=050, M=3

50 100 150 200

h=050, M=5

0.8

40 60 80 100 0 20

h=090, M=1

50 100 150 200

h=090, M=5

0.8

T T 0.8 T

0.8

tcas

Bonferroni means:

rnd -
rnd —
rnd -
fep -
fep -
art -

tcas

0.1618+-0.0036 0.1548+-0.0035 0.1611+-0.0037 0.1509+-0.0037

tcas

0.3438+-0.0046 0.3632+-0.0053 0.3319+-0.0046 0.3522+-0.0051
ddof= 4996 MSD= 0.012 T= 1.7559 { art rnd }

Bonferroni
rnd -
rnd -
rnd -
fep -
fep -
art -

tcas

0.4103+-0.0047 0.4393+-0.0051 0.4148+-0.0049 0.4105+-0.0048
ddof= 4996 MSD= 0.012 T= 1.7559 { rnd seq art }
-0.029076213936 True

Bonferroni means:

rnd -
rnd -
rnd -
fep -

fep
art
seq
art
seq
seq

means:

fep
art
seq
art
seq
seq

fep
art
seq
art

Cl
0.0552+-0.0020 0.0711+-0.0032 0.0497+-0.0022 0.0555+-0.0027

Cl

C3

C3

050

-0.0159373407251 True
0.00555275832337 False
-0.000248938726574 False

0.0214500990485 True
0.0156884019986 True

-0.00580169704994 False

090

050

-0.0193864212278 True
0.0118493636447 False
-0.00844309286844 False

0.0312357848725 True

0.0109433283593 False
-0.0202924565131 True

090

-0.004524212301 False
-0.000262757674667 False

0.024552001635 True

ddof= 4996 MSD= 0.006 T= 1.7559 { art rnd

F=12.95 p=0.0000
seq }

F=2.05 p=0.1043

F=7.14 p=0.0001

F=8.10 p=0.0000
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fep - seq : 0.0288134562613 True
art - seq : 0.00426145462633 False
tcas C5 050

0.3920+-0.0035 0.4139+-0.0035 0.3811+-0.0037 0.4053+-0.0037 F=16.19 p=0.0000
Bonferroni means: ddof= 4996 MSD= 0.009 T= 1.7559 { art }

rnd - fep : -0.0219272730593 True

rnd art : 0.0108550343882 True

rnd - seq : -0.013312532601 True

fep - art : 0.0327823074474 True

fep seq : 0.00861474045827 False

art - seq : -0.0241675669892 True
tcas c5 090

0.4550+-0.0032 0.4765+-0.0032 0.4571+-0.0033 0.4533+-0.0032 F=11.24 p=0.0000
Bonferroni means: ddof= 4996 MSD= 0.008 T= 1.7559 { seqg rnd art }

rnd fep : -0.021515143165 True
rnd - art : -0.00209329535725 False
rnd - seq : 0.00169036234659 False
fep art 0.0194218478077 True
fep - seq : 0.0232055055116 True
art - seq 0.00378365770384 False
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24

0.8

totinfo

h=010, M=3

SE

0.3
0.2
0.1

0.8

40 60 80 100 0 20

h=050, Mi=1

h=050, M=3

50 100 150 200

h=050, M=5

0.8

T T o8 T

h=090, M=1

50 100 150 200

h=090, M=5

0.8

0.7 [

0.6 [~

0.4 [y
0.3 [~
0.2 [~

0.1 [

0.8

tot_info

0.0963+-0.0034 0.1293+-0.0042 0.0819+-0.0031 0.0829+-0.0035

Bonferroni means: ddof= 4996 MSD= 0.009 T= 1.7559 { art seq }

rnd -
rnd —
rnd -
fep -
fep -
art -

tot_info

0.1896+-0.0043 0.2079+-0.0046 0.1842+-0.0045 0.1842+-0.0044
ddof= 4996 MSD= 0.011 T=

Bonferroni
rnd -
rnd -
rnd -
fep -
fep -
art -

tot_info

0.3956+-0.0051 0.4075+-0.0051 0.3651+-0.0049 0.3674+-0.0050
ddof= 4996 MSD= 0.012 T=

Bonferroni
rnd -
rnd -
rnd -
fep -
fep -
art -

fep
art
seq
art
seq
seq

means:

fep
art
seq
art
seq
seq

means:

fep
art
seq
art
seq
seq

Cl

Cl

C3

050

-0.0329722167363 True

0.0144471648386 True
0.0134382242187 True
0.0474193815749 True
0.046410440955 True

-0.00100894061988 False

090

-0.018315691332 True

.0237541553263 True
.0237649564673 True

= O O o O

050

.00543846399422 False
.00544926513529 False

.08011410696e-05 False

-0.0118671467926 False

0.0305642766954 True
0.0282660269088 True
0.042431423488 True

0.0401331737014 True

-0.00229824978661 False

1.7559 { art seq }

50 100 150 200

F=38.64 p=0.0000

F=6.37 p=0.0003

1.7559 { seq art rnd }

F=17.45 p=0.0000
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tot_info c3 090
0.4980+-0.0052 0.5014+-0.0053 0.4726+-0.0052 0.4759+-0.0052 F=8.03 p=0.0000
Bonferroni means: ddof= 4996 MSD= 0.013 T= 1.7559 { art seq }

rnd - fep : -0.00342742840549 False

rnd - art : 0.0254042517862 True

rnd - seq : 0.0220612798991 True

fep - art : 0.0288316801917 True

fep - seq : 0.0254887083046 True

art - seq : -0.00334297188716 False
tot_info C5 050

0.5237+-0.0041 0.5388+-0.0044 0.4957+-0.0043 0.4949+-0.0046 F=25.14 p=0.0000
Bonferroni means: ddof= 4996 MSD= 0.011 T= 1.7559 { seqg art }
rnd - fep : -0.0151507355046 True

rnd - art 0.0280302490222 True

rnd - seqg 0.0288042477178 True

fep - art 0.0431809845268 True

fep - seq 0.0439549832224 True

art - seq 0.000773998695642 False
tot_info Cc5 090

0.6033+-0.0037 0.6257+-0.0042 0.5818+-0.0039 0.5859+-0.0040 F=25.59 p=0.0000
Bonferroni means: ddof= 4996 MSD= 0.010 T= 1.7559 { art seq }

rnd - fep : -0.0223927491422 True
rnd - art : 0.0214723936782 True
rnd - seq : 0.0174168957601 True
fep - art : 0.0438651428204 True
fep - seq : 0.0398096449022 True
art - seq : -0.00405549791815 False
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D

0.8

100

150

h=050, Mi=1

0.8

50 100 150 200

h=050, M=5

0.8

50 100 150 200

h=090, M=5

0.8

0.8

0.8

gzip

0.1460+-0.0048 0.1044+-0.0048 0.1111+-0.0045 0.0946+-0.0045

Cl

050

50 100 150 200

F=22.89 p=0.0000

Bonferroni means:

26

ddof= 4996 MSD= 0.012 T= 1.7559 { seq fep }

rnd - fep 0.0416154296687 True

rnd - art 0.034880274546 True

rnd - seq 0.0513869241935 True

fep - art -0.00673515512271 False

fep - seq 0.00977149452484 False

art - seq 0.0165066496475 True
gzip Cl 090

0.1941+-0.0036 0.1731+-0.0039 0.1802+-0.0038 0.1854+-0.0040

F=5.37 p=0.0011

Bonferroni means: ddof= 4996 MSD= 0.009 T= 1.7559 { fep art }
rnd - fep 0.0210106368127 True
rnd - art 0.0139661129904 True
rnd - seqg 0.00870643942358 False
fep - art -0.00704452382227 False
fep - seq -0.0123041973891 True
art - seq -0.00525967356683 False
gzip Cc3 050

0.3654+-0.0057 0.3184+-0.0057 0.3327+-0.0056 0.3267+-0.0056

F=13.25 p=0.0000

Bonferroni means: ddof= 4996 MSD= 0.014 T= 1.7559 { fep seq }
rnd - fep 0.0470536659549 True
rnd - art 0.0327698876664 True
rnd - seq 0.0387195289947 True
fep - art -0.0142837782886 True
fep - seg -0.00833413696026 False
art - seq 0.0059496413283 False

TUD-SERG-2010-007



S E Gonzalez, Abreu, Gross, van Gemund — A Diagnostic Approach to Test Prioritization

gzip c3 090
0.4881+-0.0053 0.4669+-0.0054 0.4732+-0.0054 0.4657+-0.0054 F=3.67 p=0.0117
Bonferroni means: ddof= 4996 MSD= 0.013 T= 1.7559 { seq fep art }

rnd - fep : 0.0212364795325 True

rnd - art : 0.0149133673935 True

rnd - seq : 0.0224262069736 True

fep - art : -0.00632311213906 False

fep - seq : 0.00118972744107 False

art - seq : 0.00751283958014 False
gzip c5 050

0.5189+-0.0047 0.4872+-0.0050 0.4922+-0.0049 0.4895+-0.0048 F=9.28 p=0.0000
Bonferroni means: ddof= 4996 MSD= 0.012 T= 1.7559 { fep seq art }

rnd - fep : 0.031756394515 True

rnd - art : 0.026760636209 True

rnd - seq : 0.0294403017159 True

fep - art : -0.00499575830597 False

fep - seq : -0.00231609279906 False

art - seq : 0.00267966550691 False
gzip Cc5 090

0.6268+-0.0040 0.6325+-0.0043 0.6016+-0.0042 0.5905+-0.0043 F=22.88 p=0.0000
Bonferroni means: ddof= 4996 MSD= 0.010 T= 1.7559 { seqg }
rnd - fep : -0.0056854261083 False

rnd - art 0.0252069726043 True
rnd - seq 0.0362726875009 True
fep - art 0.0308923987126 True
fep - seqg 0.0419581136092 True
art - seq 0.0110657148967 True

TUD-SERG-2010-007 27



Gonzalez, Abreu, Gross, van Gemund — A Diagnostic Approach to Test Prioritization

28

SE

h=050, Mi=1

0 50 100

h=090, M=3

50 100 150 200

h=090, M=5

1.7559 { seqg art }

0 50 100 150 200 0 50 100

sed Cl 050
0.1150+-0.0045 0.1063+-0.0047 0.0977+-0.0043 0.0950+-0.0046
Bonferroni means: ddof= 4996 MSD= 0.011 T=

rnd - fep : 0.00873636571668 False

rnd - art 0.0172932480092 True

rnd - seq 0.019992339607 True

fep - art 0.00855688229252 False

fep - seq 0.0112559738903 True

art - seq 0.00269909159781 False
sed Cl 090

0.2143+-0.0048 0.2035+

sed C3 050
0.3223+-0.0055 0.3150+

sed Cc3 090
0.4792+-0.0052 0.4764+

sed C5 050
0.4963+-0.0053 0.4845+
Bonferroni means: ddof
rnd - fep : 0.
rnd - art 0
rnd - seq 0
fep - art 0
fep - seq 0
art - seq -0
sed c5 090

.0255091382272
.0216747476088
.0137542895584
.00991989893996 False

-0.0048 0.1970+-0.0046

-0.0058 0.3053+-0.0057

-0.0053 0.4683+-0.0052

-0.0054 0.4708+-0.0054

= 4996 MSD= 0.013 T= 1.

0117548486688 False
True
True

True

.00383439061847 False

0.2051+-0.0048

0.3167+-0.0058

0.4714+-0.0053

0.4746+-0.0054
7559 { art seq

F=4

.07 p=0.0067

.24 p=0.0810

.55 p=0.1994
.88 p=0.4498

.49 p=0.0037
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0.5965+-0.0042 0.6138+-0.0043 0.5967+-0.0042 0.5915+-0.0043 F=5.22 p=0.0013
Bonferroni means: ddof= 4996 MSD= 0.011 T= 1.7559 { seq rnd art }

rnd - fep : -0.0173165591338 True
rnd - art : -0.00021061108159 False
rnd - seq : 0.00495240361391 False
fep - art : 0.0171059480522 True
fep - seq : 0.0222689627477 True
art - seq 0.0051630146955 False
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0.8

SE

0.8

100 150

h=090, M=1

o2l

0L b

0.2
0.1

space

Cl 050

0.1236+-0.0042 0.1134+-0.0044 0.1159+-0.0036 0.1028+-0.0037

Bonferroni
rnd -
rnd -
rnd -
fep -
fep -
art -

space
0.2665+-0.

space
0.3060+-0.

space
0.5091+-0.

space
0.4360+-0.

space
0.6020+-0.

30

means:

fep

art

seq

art

seq

seq
Cl 090

0053 0.2561+-0.
Cc3 050

0055 0.2911+-0.
Cc3 090

0052 0.5042+-0.
C5 050

0054 0.4300+-0.
C5 090

0043 0.6001+-0.

0.00772266524533 False

0.0208224383826 True

-0.0025270960751 False

0.0105726770622 True
0.0130997731373 True

0056 O.

0057 O.

0054 0.

0056 O.

0045 0.

2592+-0.

2948+-0.

5073+-0.

4301+-0.

6034+-0.

0052 0.

0052 0.

0050 O.

0052 0.

0041 O.

2543+-0.

3056+-0.

5051+-0.

4455+-0.

6072+-0.

ddof= 4996 MSD= 0.010 T= 1.7559 { seq }
0.0102497613204 True

0054

0051

0053

0054

0044

F=4.73 p=0.0027

.01

.18

.84

.49

p=0

.3946

.1103

.9082

.1381

.6907
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