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Abstract

Recent study has shown that accurate knowledge of the false negative rate (FNR) of tests can significantly improve the
diagnostic accuracy of spectrum-based fault localization. To understand the principles behind FNR modeling in this paper
we study three error propagation probability (EPP) modeling approaches applied to a number of logic circuits from the
74XXX/ISCAS-85 benchmark suite. Monte Carlo simulations for random injected faults show that a deterministic approach
that models gate behavior provides high accuracy (O(1%)), while probabilistic approaches that abstract from gate modeling
generate higher prediction errors (O(10%)), which increase with the number of injected faults.

1. Introduction

In software debugging spectrum-based fault localization (SFL) has gained widespread interest (e.g., [1, 8]). Given this
development, application of SFL to hardware becomes of interest. While the performance of SFL will fundamentally be less
than a traditional, model-based diagnosis (MBD) approach to hardware diagnosis, the fact that SFL does not require specific,
behavioral component models may often outweigh the additional cost (and inaccuracy) of a modeling approach.

Recently, a Bayesian approach to SFL has been introduced [2,3] that outperforms low-cost, statistical SFL approaches at
moderate increase of computational cost. An important requirement of Bayesian approaches to SFL, however, is knowledge
on the probability that a faulted component will actually generate a system-level failure. The probability that a test that covers
a faulted component does not capture the defect is also knownas false negative rate (FNR), or coincidental correctness (in
the software engineering domain). In [6] it is shown that theperformance of Bayesian approaches is quite sensitive to the
accuracy of this probability estimation.

Let gj denote the probability that componentcj , j = 1, . . . ,M , when faulted, will not generate a system-level failure
(’g’ for ’good’). An important reason forg being (much) larger than zero is the fact that (1) a faulted component need not
generate an error at its output(s), and (2) even if it does, that error may fail to propagate through the entire system. For
example, consider the simple logic circuit comprising an INV gate (c1) connected to an AND gate (c2) according to Figure 1.
Suppose the INV gate is faulted. For inputx = (X, 0) (X = don’t care) an error at the output ofc1 will be masked by the fact
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Figure 1. Example logic circuit



thatc2 will always producey = 0. However, for inputx = (X, 1) an inverter error will always propagate toy. Assuming a
uniform input value probability distribution, the probability of failure aty is 0.5, and consequently,g1 = 1 − 0.5 = 0.5.

Similar to mutation analysis in software, one can inject faults in hardware and observe the FNR of the test suite to derive
gj . Indeed, Monte Carlo simulation has been frequently used. However, similar to the software case, low-complexity static
approaches are preferable, provided their accuracy is tolerable.

In this paper we study an analytic approach to error propagation probability (EPP) computation for logic circuits, aimed
to provide an understanding of the basic rules underlying the FNR of computational systems. Given a model that predicts the
error probability at a circuit output given the error state of its inputs, the problem of modelinggj can be framed as an EPP
problem pertaining to the subcircuit that connects the outputs of the faulted components to the circuit’s primary output under
consideration. The probability that the output of a faultedcomponent is, in fact, erroneous is a separate, component-specific
problem that relates to its fault mode, and intermittency (if any), and will not be considered in this paper (In terms of the PIE
approach in software [11] we focus on the propagation part.)

EPP in logic circuits has been studied in the context of reliability studies, primarily motivated by an increasing soft error
rate due to the ever decreasing gate sizes [4]. While there exists an approach to compute the EPP through circuits of arbitrary
topology given the fault model of each gate involved, this approach is not entirely compositional, i.e., one cannotnumerically
compute the EPP at the next stage in the circuit given the EPP computed at the previous stage. Rather, one must compile a
symbolicexpression for the entire circuit path from primary input tooutput in order to suppress higher-order terms (variables
with exponents) occurring in the compilation due to expression composition [10], followed by numeric evaluation given
the inputs and faulted components. Clearly however, for very large circuits (and path combinations) the exponential space
complexity of such a symbolic scheme is prohibitive.

In this paper we present a compositional, probabilistic approach to EPP computation. To avoid the above suppression
problem (and the associated exponential space complexity of the symbolic scheme) we employ probabilistic gate models
instead of the exact gate expressions used in the earlier approach. While our method produces exact estimates of themean
valueof the EPP, the EPP value found for a particular circuit output may differ from the correct value. However, a certain
error is acceptable provided the correct posterior probability ranking in the diagnosis algorithm is not too seriouslyaffected.

The paper is organized as follows. In Section 2 we introduce the EPP problem, and describe why deterministic modeling
suffers from exponential complexity problems when an exactsolution is required. In Section 3 we present our probabilistic
model. In Section 4 we show how the FNR can be computed under a single-fault assumption (so thegj) using the deterministic
model. In Section 5 we discuss the accuracy of the deterministic and probabilistic model for multiple faults by comparing
their predictions to Monte Carlo simulations using a subsetof the 74XXX/ISCAS benchmark circuits. Section 6 summarizes
the paper.

2 Deterministic EPP

In this section we summarize the general results for a numberof binary gates, and describe the problems associated with
composition when deriving the EPP for circuit ouputs.

2.1 Gate-level EPP

Consider a binary AND gate with inputsx1, x2, and outputy. If the AND gate is nominal (i.e., not faulted) it holds
y = x1x2. In the following we will derive the EPP for the AND, i.e., theprobability that an error at either or both inputs
propagates to the output. Letei andvi denote the error probability and value truth probability (vfor value) of inputxi,
respectively. We distinguish four input cases:

• If (x1, x2) = (0, 0) (with probability(1 − v1)(1 − v2)), an error in both inputs (with probabilitye1e2) will propagate
to y.

• If (x1, x2) = (0, 1) (with probability(1 − v1)v2), an error inx1 (with probabilitye1) will propagate toy.

• If (x1, x2) = (1, 0) (with probabilityv1(1 − v2)), an error inx2 (with probabilitye2) will propagate toy.

• If (x1, x2) = (1, 1) (with probabilityv1v2)), an error in any input (with probabilitye1 + e2 − e1e2) will propagate to
y.
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Figure 2. Simple circuit

Summing up the probabilities the error probability ofy is given by

ey = (1 − v1)(1 − v2)e1e2 + (1 − v1)v2e1 + v1(1 − v2)e2 + v1v2(e1 + e2 − e1e2)

= e1(1 − e2)v2 + e2(1 − e1)v1 + e1e2(1 − v1 − v2 + 2v1v2)

In the same way the EPP expressions are derived for binary gates OR, XOR, NXOR. In summary,

• AND gate

e1(1 − e2)v2 + e2(1 − e1)v1 + e1e2(1 − v1 − v2 + 2v1v2) (1)

• OR gate

e1(1 − v2) + e2(1 − v1) − e1e2(1 − 2v1v2) (2)

• X[N]OR gate

e1 + e2 − e1e2 (3)

Note that not all gates require knowledge of the input value probabilitiesvi, which implies that for certain circuits an exact
EPP can be computed numerically without having to resort to symbolic techniques.

2.2 Circuit-level EPP

Consider the ternary AND circuit shown in Figure 2 for which we deriveez using the above EPP models. It follows

ey = e1(1 − e2)v2 + e2(1 − e1)v1 + e1e2(1 − v1 − v2 + 2v1v2)

vy = v1v2

ez = ey(1 − e3)v3 + e3(1 − ey)vy + eye3(1 − vy − v3 + 2vyv3)

= (e1(1 − e2)v2 + e2(1 − e1)v1 + e1e2(1 − v1 − v2 + 2v1v2))

(1 − e3)v3 + e3(1 − (e1(1 − e2)v2 + e2(1 − e1)v1 + e1e2(1 − v1 − v2 + 2v1v2)))v1v2 +

(e1(1 − e2)v2 + e2(1 − e1)v1 + e1e2(1 − v1 − v2 + 2v1v2))e3(1 − v1v2 − v3 + 4v1v2v3)

It can be seen that inez higher-order terms forv1, v2 occur when multiplyingey andvy (e.g.,v2

1
). In [10] it is shown that

expression correctness is preserved if the exponents are suppressed (i.e., terms such asvk
1

must be reduced tov1). While
suppression in the above,symbolicscheme provides analytic correctness, it becomes clear that a numeric, compositional
scheme whereey andvy are first computed and then substituted into the expression for ez, will produce incorrect results
when thevi < 1. Consequently, the need of suppression in the composition of individual gate expressions prohibits a simple,
numerical approach to compositional EPP.
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3 Probabilistic EPP

In this section we describe our probabilistic approach to EPP computation. As discussed in the previous section, including
the signal value probabilitiesvi into the EPP models prohibits a numerical approach to compositional EPP circuit analysis.
Consequently, we propose an approach where we abstract fromthe specific gate models such that the individualvi are no
longer required. Consider a binary AND gate. Instead of taking into account the individualvi we merely take into account
that the AND gate function producesy = 1 in 1 out of 4 input cases. Leta denote the value truth probability of a gate’s
output (i.e., the number of ’1’s in its truth table). Then foran AND gate it followsa = 1/4. Note that in this approach we do
not distinguish between any gates that havea = 1/4 (i.e., 4 binary gates, of which AND is only one example).

In the following we derive the EPP for binary gates based on the single knowledge thata = 1/4. Suppose correct input
values forxi would lead toy = 1 (probabilitya = 1/4). Any error at either input (with probabilitye1 + e2 − e1e2) will
lead to a different entry fory in the 4-entry truth table. Suppose an error-free input would producey = 1 (probability
a). For ana = 1/4 type truth table, the probability that a change in the truth table from thisy = 1 entry will produce
y = 0 equalsPr(0|1) = 1, as all alternatives in the truth table havey = 0 (the possible truth table outputs fora = 1/4
are{0, 0, 0, 1}, {0, 0, 1, 0}, {0, 1, 0, 0}, and{1, 0, 0, 0}). Consequently, the probability of this1 → 0 event occurring is
1/4·(e1+e2−e1e2)·1. Similarly, it follows that the probability of an0 → 1 event is given byey = 3/4·(e1+e2−e1e2)·1/3.
Summing the probabilities it follows that for anda = 1/4 type of gate we have

ey =
e1 + e2 − e1e2

2
(4)

Note that the above probabilistic model equals the deterministic AND EPP model (1) for random inputs (i.e.,vi = 0.5).
However, this is coincidental, and does not hold for anya. Consequently, our probabilistic approach is not just an instantiation
of the deterministic model for random signal values (vi = 0.5). In fact, the above, abstract approach does not assume anything
about signal value probabilities.

The above approach is easily generalized to anya value. Again, suppose an error-free input would producey = 1
(probability a). Since there are(1 − a)22 0’s in a truth table that are distributed over22 − 1 entries next to the original
y = 1 entry, it follows that the probability of a change in the truth table from they = 1 entry will producey = 0 equals
Pr(0|1) = (1 − a)22/(22 − 1). Consequently, the probability of an1 → 0 event (i.e., an output error) is given byey =
a · (e1 + e2 − e1e2) · (1 − a)22/(22 − 1). Similarly, it follows that the probability of a0 → 1 event is given byey =
(1 − a) · (e1 + e2 − e1e2) · a22/(22 − 1). Summing the probabilities it follows

ey =
8

3
(e1 + e2 − e1e2)a(1 − a) (5)

Again, note that for mosta values the above probabilistic model does not equal the earlier, deterministic models. Instead, the
model represents the average over all possible deterministic gate models with a particulara, as has been verified using MC
simulation. Thus the probabilistic model provides an exactestimation of themeanEPP over all gate models with particulara
but will only provide an approximation for particular gates. For instance, fora = 1/2 Eq. (5) yieldse = 2(e1 + e2 − e1e2)/3
while the XOR produceseXOR = e1 + e2 − 2e1e2. For e1 = e2 = 1, we havee = 2/3 andeXOR = 0, respectively, which
implies a significant estimation error. Consequently, the probabilistic model should be used with care.

While the probabilistic model circumvents the suppression problem there may be modeling situations where knowledge of
a is not available, since in an SFL context no modeling information is required, or available. In that case we need to abstract
even further, and simply assume that the outcome of a booleanfunction is randomly distributed between 0 and 1. Though
one might assume Eq. 5 would apply witha = 1/2 this is not the case, as in the situation where we do not assumeanything
about the gate’s truth table we cannot computePr(0|1) or Pr(1|0) as the number of 0’s and 1’s are not known. Rather, it
holdsPr(0|1) = Pr(0) = (1 − a) = 1/2 (and, similarly,Pr(1|0) = a = 1/2). Consequently, the probability of an1 → 0
event (i.e., an output error) is given byey = ·(e1 + e2 − e1e2) · 1/2 · 1/2. Similarly, it follows that the probability of a0 → 1
event is given byey = ·(e1 + e2 − e1e2) · 1/2 · 1/2. Summing the probabilities it follows

ey =
1

2
(e1 + e2 − e1e2) (6)

Note that this result equals the probabilistic gate model for a = 1/4, rather thana = 1/2.
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Figure 3. Example logic circuit

4 Coincidental Correctness

As mentioned in the Introduction the fact that the EPP of errors generated by faulted components is (much) less than
unity implies that tests that involve faulted components may not capture the defects (i.e., the test may still pass). As this
coincidental correctness is an important input to Bayesiandiagnosis techniques in this section we derive this parameter gj

wherej is the index of the (single-)faulted gate in a logic circuit.
In the following we assume that a gate can be either stuck-at-zero (SA0) or stuck-at-one (SA1) with equal probability.

Independent of the actual truth table of the gate this implies that the EPP of the faulted gate’s output is given by e=1/2. Leta
be the fraction of ’1’s in the truth table. In the SA0 case thisimplies that in a fractiona of the cases SA0 leads to an error,
while in the SA1 case the error probability is(1− a). Summing the probabilities we havee = 1/2 · a + 1/2 · (1− a) = 1/2,
regardless ofa.

To determine if the gate error will propagate to a primary output we apply the EPP models derived in the earlier sections.
In principle, we apply the probabilistic model to avoid suppression problems when we cannot rule out the possibility of AND
or OR gates in the circuit. However, computing theg factor formultiple-fault candidates is typically not performed in view
of the exponential number of possible multiple-fault combinations that have to be taken into account. Rather, one computes
thesingle-faultg (only M components), and estimatesg for multiple-fault candidates based on an OR-model (the probability
a test that involvesMf faulted components will still pass is when each component would yield a pass, i.e., the product of the
individualgj

1).
The use of the above OR model (or any other model that estimatesg for multiple-fault candidates in terms of the individual

gj) implies that we only need to compute the EPP for a circuit with only onefaulted gate. This has profound consequences
for the EPP calculation as shown by the following. Consider the circuit shown in Figure 3. As there is only one faulty gate,
all inputs haveei = 0. Consequently, all deterministic gate models (Eq. (1) - (3)) reduce to

• AND gate

e1v2 (7)

• OR gate

e1(1 − v2) (8)

• X[N]OR gate

e1 (9)

where we have chosene1 as the gate input that is within the error propagation path from faulted gate to primary output (i.e.,
e2 = 0). It can be easily seen that composition of the above, reduced EPP models doesnot suffer from the suppression
problem (unless there are reconvergent subcircuits). Consequently, for single faultg modeling we need not necessarily resort
to the probabilistic EPP models with the associated variance problems.

As the definition ofgj is static the actual signal valuesvi are not known. Consequently, in the above EPP models we will
assumev2 = 1/2. This implies that for AND and OR gates the EPP is attenuated by a factor 2 while X[N]OR gates pass on
the EPP. In the example circuit in Figure 3 it follows thate = 1/8, and, consequently,g1 = 7/8.

1Although generally accepted practice, the OR model is known to be an approximation, and is currently subject to research bythe authors.
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Note that the deterministic model applies only if the circuit does not include reconvergent subcircuits, since this (re)introduces
the suppression problem. Nevertheless, the deterministicmodel can be applied at minimal loss of accuracy as long as recon-
vergence is small, as is the case in the 74XXX/ISCAS85 circuits, as is shown in the next section.

5 Experimental Results

In the above we have presented three EPP models, (1) the deterministic model, that, when implemented in terms of
numeric composition, suffers from suppression when considering multiple-faults and/or circuit reconvergence (Section 2),
(2) the probabilistic model that has knowledge of the fraction of 1’s in a gate’s truthtable (Eq. 5), and (3) the probabilistic
model that has no gate model, whatsoever (Eq. 6).

In this section we present accuracy data for all three modelsfor a number of circuits from the 74XXX/ISCAS85 benchmark
suite [5, 7]2. The benchmark circuits are described in Table 1.

Circuit Description |gates| |inputs| |outputs|

74182 4-bit carry-lookahead generator 19 9 5
74L85 4-bit magnitude comparator 33 11 3
74181 4-bit ALU 65 14 8
74283 4-bit adder 36 9 5
c17 simple test circuit 6 5 2
c432 27-chan interrupt controller 160 36 7
c499 32-bit SEC circuit 202 41 32
c880 8-bit ALU 383 60 26
c1355 32-bit SEC circuit 546 41 32
c1908 16-bit SEC/DED circuit 880 33 25
c2670 12-bit ALU and controller 1193 233 140
c3540 8-bit ALU 1669 50 22
c5315 9-bit ALU 2307 178 123
c6288 16x16-bit multiplier 2416 32 32
c7552 32-bit adder/comparator 3512 207 108

Table 1. 74XXX/ISCAS85 benchmark circuits

The predictions of the deterministic model and the probabilistic models Eq. 5 and Eq. 6, are compared to the results of
Monte-Carlo simulation (random inputs and fault injections), yielding relative prediction errorsǫ1, ǫ2, andǫ3, respectively,
according to

ǫi = |
ei − eMC

eMC
|

Each circuit output is considered as a separate circuit (cone) within the complete circuit.
Table 2 shows the mean (E), variance (V), lower bound (L), and upper bound (U) of the relative errorsǫ1 throughǫ3,

respectively, for single-fault injections (rounded to 3 decimals). We show the accuracy results per output for the smaller
74XXX circuits, while for the ISCAS circuits we summarize the error statistics for all outputs combined. As expected, the
deterministic model performs very well. The average prediction error, due to reconvergence, is quite small. Outliers within
10%, with the exception of c880. The probabilistic models perform less accurately, with an average error well less than 10%,
with outliers up to 45%.

Table 3 and 4 show similar data for double and triple faults, respectively. Contrary to expectation, the average error inthe
deterministic model due to ignoring suppression (next to reconvergence) is still in the order of percents, although theupper
bound increases considerably (up to 28%). However, the error increases with fault cardinality as the need for suppression
increases. The average error of the probabilistic models ismuch higher (in the order of ten percents) with outliers up to45%,
and also increases with cardinality. For all cardinalitiesthe difference between both probabilistic models is relatively small.
The significance of the latter result is that knowledge of thepdf of the truth table does not significantly affect prediction
performance.

2Data on more circuits will be available in the final version.
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Circuit Output E[ǫ1] S[ǫ1] L[ǫ1] U[ǫ1] E[ǫ2] S[ǫ2] L[ǫ2] U[ǫ2] E[ǫ3] S[ǫ3] L[ǫ3] U[ǫ3]

74182 00 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001
74182 01 0.009 0.017 0.000 0.049 0.098 0.193 0.000 0.598 0.098 0.193 0.000 0.598
74182 02 0.010 0.018 0.000 0.049 0.098 0.194 0.000 0.598 0.098 0.194 0.000 0.598
74182 03 0.007 0.015 0.000 0.052 0.059 0.140 0.000 0.474 0.059 0.140 0.000 0.474
74182 04 0.003 0.016 0.000 0.070 0.020 0.060 0.000 0.198 0.020 0.060 0.000 0.198
74L85 00 0.004 0.005 0.000 0.014 0.004 0.004 0.000 0.008 0.004 0.004 0.000 0.009
74L85 01 0.016 0.020 0.000 0.076 0.108 0.138 0.000 0.547 0.108 0.138 0.000 0.547
74L85 02 0.016 0.020 0.000 0.077 0.108 0.138 0.000 0.558 0.108 0.138 0.000 0.558
74181 00 0.008 0.014 0.000 0.044 0.044 0.094 0.000 0.259 0.044 0.094 0.000 0.259
74181 01 0.016 0.027 0.000 0.100 0.052 0.103 0.000 0.438 0.052 0.103 0.000 0.438
74181 02 0.020 0.029 0.000 0.123 0.059 0.094 0.000 0.380 0.059 0.094 0.000 0.380
74181 03 0.018 0.024 0.000 0.087 0.104 0.184 0.000 0.608 0.120 0.216 0.000 0.750
74181 04 0.012 0.019 0.000 0.070 0.090 0.172 0.000 0.590 0.107 0.208 0.000 0.746
74181 05 0.005 0.011 0.000 0.055 0.074 0.157 0.000 0.582 0.092 0.197 0.000 0.754
74181 06 0.001 0.005 0.000 0.040 0.055 0.146 0.000 0.588 0.070 0.186 0.000 0.760
74181 07 0.030 0.023 0.000 0.060 0.049 0.034 0.000 0.138 0.054 0.038 0.000 0.150
74283 00 0.016 0.023 0.000 0.071 0.065 0.119 0.000 0.408 0.065 0.119 0.000 0.408
74283 01 0.010 0.018 0.000 0.062 0.100 0.143 0.000 0.392 0.118 0.172 0.000 0.504
74283 02 0.005 0.013 0.000 0.055 0.086 0.134 0.000 0.337 0.105 0.168 0.000 0.498
74283 03 0.001 0.006 0.000 0.042 0.071 0.129 0.000 0.341 0.091 0.167 0.000 0.509
74283 04 0.000 0.001 0.000 0.006 0.056 0.125 0.000 0.337 0.075 0.170 0.000 0.505

c17 all 0.005 0.012 0.000 0.046 0.062 0.071 0.000 0.203 0.062 0.071 0.000 0.203
c499 all 0.002 0.003 0.000 0.011 0.007 0.030 0.000 0.340 0.006 0.038 0.000 0.506
c880 all 0.002 0.026 0.000 0.580 0.009 0.053 0.000 0.907 0.009 0.053 0.000 0.907

Table 2. EPP model accuracy (single faults)

Circuit Output E[ǫ1] S[ǫ1] L[ǫ1] U[ǫ1] E[ǫ2] S[ǫ2] L[ǫ2] U[ǫ2] E[ǫ3] S[ǫ3] L[ǫ3] U[ǫ3]

74182 00 0.000 0.000 0.000 0.004 0.000 0.000 0.000 0.004 0.000 0.000 0.000 0.004
74182 01 0.018 0.021 0.000 0.051 0.187 0.223 0.000 0.601 0.187 0.223 0.000 0.601
74182 02 0.027 0.058 0.000 0.258 0.168 0.262 0.000 0.854 0.168 0.262 0.000 0.854
74182 03 0.030 0.063 0.000 0.286 0.182 0.226 0.000 0.688 0.182 0.226 0.000 0.668
74182 04 0.005 0.016 0.000 0.072 0.032 0.072 0.000 0.207 0.032 0.072 0.000 0.207
74L85 00 0.010 0.011 0.000 0.040 0.006 0.003 0.000 0.012 0.006 0.003 0.000 0.012
74L85 01 0.020 0.055 0.000 0.318 0.143 0.167 0.000 0.621 0.143 0.167 0.000 0.621
74L85 02 0.018 0.020 0.000 0.073 0.150 0.155 0.000 0.585 0.150 0.155 0.000 0.585
74181 00 0.017 0.023 0.000 0.113 0.100 0.130 0.000 0.420 0.100 0.130 0.000 0.420
74181 01 0.033 0.037 0.000 0.123 0.105 0.146 0.000 0.678 0.105 0.146 0.000 0.678
74181 02 0.030 0.030 0.000 0.117 0.114 0.124 0.000 0.560 0.114 0.124 0.000 0.560
74181 03 0.033 0.039 0.000 0.179 0.184 0.218 0.000 0.682 0.217 0.260 0.000 0.793
74181 04 0.024 0.037 0.000 0.191 0.179 0.220 0.000 0.609 0.218 0.274 0.000 0.750
74181 05 0.012 0.024 0.000 0.166 0.111 0.177 0.000 0.587 0.134 0.215 0.000 0.751
74181 06 0.001 0.005 0.000 0.040 0.108 0.195 0.000 0.582 0.143 0.253 0.000 0.754
74181 07 0.039 0.019 0.000 0.070 0.077 0.036 0.000 0.140 0.086 0.040 0.000 0.156
74283 00 0.036 0.029 0.000 0.100 0.178 0.183 0.000 0.534 0.178 0.183 0.000 0.534
74283 01 0.010 0.016 0.000 0.055 0.194 0.168 0.000 0.496 0.241 0.212 0.000 0.514
74283 02 0.007 0.015 0.000 0.056 0.126 0.144 0.000 0.362 0.157 0.185 0.000 0.500
74283 03 0.001 0.007 0.000 0.042 0.095 0.135 0.000 0.337 0.128 0.184 0.000 0.505
74283 04 0.000 0.001 0.000 0.004 0.093 0.149 0.000 0.338 0.128 0.207 0.000 0.506

c17 all 0.026 0.080 0.000 0.293 0.080 0.086 0.000 0.200 0.080 0.086 0.000 0.200
c499 all 0.005 0.005 0.000 0.024 0.015 0.043 0.000 0.343 0.013 0.056 0.000 0.511
c880 all 0.006 0.038 0.000 0.582 0.018 0.077 0.000 0.910 0.018 0.077 0.000 0.910

Table 3. EPP model accuracy (double faults)
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Circuit Output E[ǫ1] V[ǫ1] L[ǫ1] U[ǫ1] E[ǫ2] V[ǫ2] L[ǫ2] U[ǫ2] E[ǫ3] V[ǫ3] L[ǫ3] U[ǫ3]

74182 00 0.000 0.001 0.000 0.004 0.000 0.001 0.000 0.004 0.000 0.001 0.000 0.004
74182 01 0.024 0.051 0.000 0.225 0.162 0.253 0.000 0.825 0.162 0.253 0.000 0.825
74182 02 0.062 0.087 0.000 0.260 0.340 0.300 0.000 0.859 0.340 0.300 0.000 0.859
74182 03 0.014 0.022 0.000 0.081 0.128 0.192 0.000 0.480 0.128 0.192 0.000 0.480
74182 04 0.004 0.016 0.000 0.072 0.032 0.073 0.000 0.202 0.032 0.073 0.000 0.202
74L85 00 0.018 0.017 0.000 0.073 0.006 0.005 0.000 0.022 0.006 0.005 0.000 0.022
74L85 01 0.068 0.087 0.000 0.318 0.225 0.190 0.000 0.621 0.225 0.190 0.000 0.621
74L85 02 0.044 0.059 0.000 0.310 0.234 0.212 0.000 0.626 0.234 0.212 0.000 0.626
74181 00 0.021 0.024 0.000 0.114 0.130 0.132 0.000 0.414 0.130 0.132 0.000 0.414
74181 01 0.035 0.046 0.000 0.263 0.122 0.160 0.000 0.792 0.122 0.160 0.000 0.792
74181 02 0.044 0.040 0.000 0.229 0.152 0.146 0.000 0.652 0.152 0.146 0.000 0.652
74181 03 0.048 0.065 0.000 0.311 0.272 0.296 0.000 1.256 0.320 0.335 0.000 1.293
74181 04 0.046 0.068 0.000 0.385 0.250 0.246 0.000 1.154 0.290 0.279 0.000 1.231
74181 05 0.010 0.022 0.000 0.117 0.200 0.212 0.000 0.580 0.265 0.278 0.000 0.756
74181 06 0.003 0.016 0.000 0.129 0.132 0.198 0.000 0.612 0.183 0.262 0.000 0.756
74181 07 0.036 0.019 0.000 0.064 0.090 0.136 0.000 0.136 0.203 0.038 0.000 0.152
74283 00 0.047 0.072 0.000 0.354 0.170 0.188 0.000 0.642 0.170 0.188 0.000 0.642
74283 01 0.031 0.044 0.000 0.187 0.192 0.175 0.000 0.647 0.234 0.216 0.000 0.674
74283 02 0.013 0.027 0.000 0.147 0.157 0.153 0.000 0.412 0.205 0.207 0.000 0.517
74283 03 0.003 0.002 0.000 0.043 0.163 0.153 0.000 0.371 0.217 0.206 0.000 0.500
74283 04 0.001 0.006 0.000 0.006 0.148 0.165 0.000 0.338 0.200 0.225 0.000 0.505

c17 all 0.087 0.147 0.000 0.413 0.142 0.087 0.000 0.225 0.142 0.087 0.000 0.225
c499 all 0.006 0.006 0.000 0.024 0.020 0.048 0.000 0.342 0.016 0.060 0.000 0.510
c880 all 0.007 0.041 0.000 0.577 0.025 0.088 0.000 0.903 0.025 0.088 0.000 0.903

Table 4. EPP model accuracy (triple faults)

6 Conclusion

Motivated by the importance of FNR data in spectrum-based fault localization in this paper we have presented three EPP
prediction models for logic circuits, viz. (1) a deterministic model that takes into account circuit topology, input values, and
gate models, (2) a probabilistic model based on circuit topology and gate truth table pdf information, and, at the highest level
of abstraction (3) a probabilistic model based on circuit topology only. Monte Carlo simulations show that the deterministic
model performs best (average prediction error in the order of percents), while both probabilistic models perform somewhat
worse (average error in the order of ten percent), while the difference between both models is small. As expected, the error
increases with fault cardinality.
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