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Abstract

Recent study has shown that accurate knowledge of the fatstive rate (FNR) of tests can significantly improve the
diagnostic accuracy of spectrum-based fault localizatido understand the principles behind FNR modeling in thisgra
we study three error propagation probability (EPP) modgliapproaches applied to a number of logic circuits from the
TAXXX/ISCAS-85 benchmark suite. Monte Carlo simulationsshdom injected faults show that a deterministic apptoac
that models gate behavior provides high accura@y1%)), while probabilistic approaches that abstract from gatedaling
generate higher prediction errorgX(10%)), which increase with the number of injected faults.

1. Introduction

In software debugging spectrum-based fault localizati®iRL() has gained widespread interest (e.g., [1, 8]). Givén th
development, application of SFL to hardware becomes oféste While the performance of SFL will fundamentally be less
than a traditional, model-based diagnosis (MBD) approadtatdware diagnosis, the fact that SFL does not requirdfgpec
behavioral component models may often outweigh the aduditicost (and inaccuracy) of a modeling approach.

Recently, a Bayesian approach to SFL has been introduc&iif2at outperforms low-cost, statistical SFL approaches a
moderate increase of computational cost. An importantirement of Bayesian approaches to SFL, however, is knowledg
on the probability that a faulted component will actuallygeate a system-level failure. The probability that a test tovers
a faulted component does not capture the defect is also kaswWalse negative rate (FNR), or coincidental correctriess (
the software engineering domain). In [6] it is shown that pleeformance of Bayesian approaches is quite sensitiveeto th
accuracy of this probability estimation.

Let g; denote the probability that componentj = 1,..., M, when faulted, will not generate a system-level failure
('g’ for 'good’). An important reason fog being (much) larger than zero is the fact that (1) a faultedmanent need not
generate an error at its output(s), and (2) even if it doest, élror may fail to propagate through the entire system. For
example, consider the simple logic circuit comprising al idate ¢;) connected to an AND gatey) according to Figure 1.
Suppose the INV gate is faulted. For input (X, 0) (X = don'’t care) an error at the output ef will be masked by the fact
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Figure 1. Example logic circuit



thatcs will always producey; = 0. However, for input: = (X, 1) an inverter error will always propagate 4o Assuming a
uniform input value probability distribution, the probhtyi of failure aty is 0.5, and consequently; =1 — 0.5 = 0.5.

Similar to mutation analysis in software, one can injecttiain hardware and observe the FNR of the test suite to derive
g;. Indeed, Monte Carlo simulation has been frequently usexveiter, similar to the software case, low-complexity stati
approaches are preferable, provided their accuracy isatak

In this paper we study an analytic approach to error propayatobability (EPP) computation for logic circuits, aithe
to provide an understanding of the basic rules underlyiedkR of computational systems. Given a model that prediets t
error probability at a circuit output given the error statét® inputs, the problem of modeling; can be framed as an EPP
problem pertaining to the subcircuit that connects theutstpf the faulted components to the circuit’s primary otiyder
consideration. The probability that the output of a faultechponent is, in fact, erroneous is a separate, compopentfis
problem that relates to its fault mode, and intermittentgriy), and will not be considered in this paper (In terms effHE
approach in software [11] we focus on the propagation part.)

EPP in logic circuits has been studied in the context of bdlty studies, primarily motivated by an increasing saftos
rate due to the ever decreasing gate sizes [4]. While theséseai approach to compute the EPP through circuits of anpitr
topology given the fault model of each gate involved, thigrapch is not entirely compositional, i.e., one camrmanerically
compute the EPP at the next stage in the circuit given the BRfPated at the previous stage. Rather, one must compile a
symbolicexpression for the entire circuit path from primary inpubtdput in order to suppress higher-order terms (variables
with exponents) occurring in the compilation due to expgmesgomposition [10], followed by numeric evaluation given
the inputs and faulted components. Clearly however, foy lemge circuits (and path combinations) the exponentiatep
complexity of such a symbolic scheme is prohibitive.

In this paper we present a compositional, probabilisticrapgh to EPP computation. To avoid the above suppression
problem (and the associated exponential space compleikityeosymbolic scheme) we employ probabilistic gate models
instead of the exact gate expressions used in the earlieoagip While our method produces exact estimates ofrtéan
valueof the EPP, the EPP value found for a particular circuit outpay differ from the correct value. However, a certain
error is acceptable provided the correct posterior prdibabanking in the diagnosis algorithm is not too seriouaffected.

The paper is organized as follows. In Section 2 we introdhee&PP problem, and describe why deterministic modeling
suffers from exponential complexity problems when an egatition is required. In Section 3 we present our probdtilis
model. In Section 4 we show how the FNR can be computed undieglegault assumption (so thg) using the deterministic
model. In Section 5 we discuss the accuracy of the detertitirsind probabilistic model for multiple faults by compagin
their predictions to Monte Carlo simulations using a sub$éte 74XXX/ISCAS benchmark circuits. Section 6 summagize
the paper.

2 Deterministic EPP

In this section we summarize the general results for a numiiginary gates, and describe the problems associated with
composition when deriving the EPP for circuit ouputs.

2.1 Gate-level EPP

Consider a binary AND gate with inputs,, zo, and outputy. If the AND gate is nominal (i.e., not faulted) it holds
y = x122. In the following we will derive the EPP for the AND, i.e., tipeobability that an error at either or both inputs
propagates to the output. Let andwv; denote the error probability and value truth probabilityf¢v value) of inputz;,
respectively. We distinguish four input cases:

o If (z1,22) = (0,0) (with probability (1 — v1)(1 — v2)), an error in both inputs (with probabiliy e2) will propagate
toy.

o If (z1,22) = (0,1) (with probability (1 — v1 )vs), an error inz; (with probabilitye;) will propagate tay.
o If (z1,22) = (1,0) (with probabilityv; (1 — v3)), an error inzo (with probabilityes) will propagate tay.

o If (x1,29) = (1,1) (with probabilityv,v5)), an error in any input (with probability; + e — eje2) will propagate to
Y.
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Figure 2. Simple circuit

Summing up the probabilities the error probability,of given by

ey = (1—wv1)(1—v2)erea+ (1 —v1)veer +v1(1 —va)ea + viva(er + €2 — erez)

= 61(1 — 62)’02 + 62(1 — 61)’()1 + 6162(1 — V1 — Vg + 2’01112)

In the same way the EPP expressions are derived for binagg iR, XOR, NXOR. In summary,

e AND gate

e1(l —eg)vg + ea(l —eq)vy + erea(l — vy — ve + 201v3) Q)
e OR gate

e1(l —w9) +ea(l —wvy1) —erea(l — 2v1v3) 2

e X[N]JOR gate

e1+ea —eres 3)

Note that not all gates require knowledge of the input valdbabilitiesv;, which implies that for certain circuits an exact
EPP can be computed numerically without having to resontab®lic techniques.

2.2 Circuit-level EPP

Consider the ternary AND circuit shown in Figure 2 for whick derivee, using the above EPP models. It follows

€y = 61(1 — 62)”02 + 62(1 — 61)’[)1 + 6162(1 — V1 — Vg + 2’1)1'[)2)

Uy V1V
ey(1 —e3)vs +e3(1 —ey)vy + eyes(1 — vy — vg + 2v,v3)
= (e1(l —ex)va +ea(l —eq)vr + erea(l — v — v9 + 201032))

(1 —e3)vs +e3(l—(e1(1 —e2)va+ex(l —eq)vr +erea(l — vy — ve + 2v102)) ) V102 +

(61(1 — 62)’02 + 62(1 — 61)’()1 + 6162(1 — V1 — Vg + 21}1112))63(1 — V1V — V3 + 41}11/21)3)

€z

It can be seen that ia, higher-order terms for;, v2 occur when multiplyinge, andv, (e.g.,v%). In [10] it is shown that
expression correctness is preserved if the exponents ppeessed (i.e., terms such @ must be reduced to;). While
suppression in the aboveymbolicscheme provides analytic correctness, it becomes cletathameric compositional
scheme where, andv, are first computed and then substituted into the expressioe.f will produce incorrect results
when thev; < 1. Consequently, the need of suppression in the compositimlividual gate expressions prohibits a simple,
numerical approach to compositional EPP.



3 Probabilistic EPP

In this section we describe our probabilistic approach tB E@mputation. As discussed in the previous section, imetud
the signal value probabilities; into the EPP models prohibits a numerical approach to coitipaal EPP circuit analysis.
Consequently, we propose an approach where we abstractlfispecific gate models such that the individuyahre no
longer required. Consider a binary AND gate. Instead ofriglinto account the individual; we merely take into account
that the AND gate function produces= 1 in 1 out of 4 input cases. Let denote the value truth probability of a gate’s
output (i.e., the number of '1's in its truth table). Then &r AND gate it followse = 1/4. Note that in this approach we do
not distinguish between any gates that have 1/4 (i.e., 4 binary gates, of which AND is only one example).

In the following we derive the EPP for binary gates based ersthgle knowledge that = 1/4. Suppose correct input
values forz; would lead toy = 1 (probabilitya = 1/4). Any error at either input (with probability; + e2 — ejes) will
lead to a different entry fop in the 4-entry truth table. Suppose an error-free input @qarbducey = 1 (probability
a). For ana = 1/4 type truth table, the probability that a change in the trathle from thisy = 1 entry will produce
y = 0 equalsPr(0|1) = 1, as all alternatives in the truth table haye= 0 (the possible truth table outputs for= 1/4
are {0,0,0,1},{0,0,1,0},{0,1,0,0}, and{1,0,0,0}). Consequently, the probability of this — 0 event occurring is
1/4-(e1+e2—eie2)-1. Similarly, it follows that the probability of ab — 1 eventis given by, = 3/4-(e1+e2—eie2)-1/3.
Summing the probabilities it follows that for aad= 1/4 type of gate we have

ey = er+ 622 €162 )
Note that the above probabilistic model equals the detésticnAND EPP model (1) for random inputs (i.e; = 0.5).
However, this is coincidental, and does not hold for an€onsequently, our probabilistic approach is not just ateimtiation
of the deterministic model for random signal values= 0.5). In fact, the above, abstract approach does not assunta=ayt
about signal value probabilities.

The above approach is easily generalized to @arvalue. Again, suppose an error-free input would prodyce 1
(probability a). Since there arél — a)22 0's in a truth table that are distributed ov& — 1 entries next to the original
y = 1 entry, it follows that the probability of a change in the brdable from they = 1 entry will producey = 0 equals
Pr(0[1) = (1 — a)2%/(2% — 1). Consequently, the probability of an— 0 event (i.e., an output error) is given by =
a-(e1 + e —ere) - (1 —a)2?/(2%2 —1). Similarly, it follows that the probability of & — 1 event is given by, =
(1—a)-(e1 +ea — ereq) - a2%/(2% — 1). Summing the probabilities it follows

ey = 2(61 + ey —erer)a(l —a) (5)

Again, note that for most values the above probabilistic model does not equal theegateterministic models. Instead, the
model represents the average over all possible determigeste models with a particular, as has been verified using MC
simulation. Thus the probabilistic model provides an exatimation of theneanEPP over all gate models with particutar
but will only provide an approximation for particular gat€®r instance, for = 1/2 Eq. (5) yieldse = 2(e; +e2 — e1e2)/3
while the XOR producesxor = €1 + €2 — 2e1e2. Fore; = e; = 1, we havee = 2/3 andexor = 0, respectively, which
implies a significant estimation error. Consequently, tebpbilistic model should be used with care.

While the probabilistic model circumvents the suppressiablgm there may be modeling situations where knowledge of
a is not available, since in an SFL context no modeling infdfarais required, or available. In that case we need to attstra
even further, and simply assume that the outcome of a bodlgention is randomly distributed between 0 and 1. Though
one might assume Eqg. 5 would apply with= 1/2 this is not the case, as in the situation where we do not asangthing
about the gate’s truth table we cannot compRitéd|1) or Pr(1]0) as the number of O's and 1’'s are not known. Rather, it
holdsPr(0|1) = Pr(0) = (1 — a) = 1/2 (and, similarly,Pr(1|0) = a = 1/2). Consequently, the probability of dn— 0
event (i.e., an output error) is given by = -(e; + ez —ei1e2) - 1/2-1/2. Similarly, it follows that the probability of & — 1
eventis given by, = -(e; + ez — eje2) - 1/2 - 1/2. Summing the probabilities it follows

1
ey = 5(61 + es —eqe2) (6)

Note that this result equals the probabilistic gate modekfe: 1/4, rather tharm = 1/2.
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Figure 3. Example logic circuit

4 Coincidental Correctness

As mentioned in the Introduction the fact that the EPP ofrergenerated by faulted components is (much) less than
unity implies that tests that involve faulted componenty mat capture the defects (i.e., the test may still pass). s t
coincidental correctness is an important input to Bayediagnosis techniques in this section we derive this paramnget
wherej is the index of the (single-)faulted gate in a logic circuit.

In the following we assume that a gate can be either studeia-(SAOQ) or stuck-at-one (SAl) with equal probability.
Independent of the actual truth table of the gate this insghat the EPP of the faulted gate’s output is given by e=1é2a L
be the fraction of '1’s in the truth table. In the SAO case thiplies that in a fractior of the cases SAO leads to an error,
while in the SA1 case the error probability(is— a). Summing the probabilities we have=1/2-a+1/2- (1 —a) = 1/2,
regardless of:.

To determine if the gate error will propagate to a primarypaotitve apply the EPP models derived in the earlier sections.
In principle, we apply the probabilistic model to avoid stggsion problems when we cannot rule out the possibilityldDA
or OR gates in the circuit. However, computing th&actor for multiple-fault candidates is typically not performed in view
of the exponential number of possible multiple-fault congbions that have to be taken into account. Rather, one dasipu
thesingle-faultg (only M components), and estimatg$or multiple-fault candidates based on an OR-model (thé&alodity
atest that involved/; faulted components will still pass is when each componenmildvpield a pass, i.e., the product of the
individual g; 1).

The use of the above OR model (or any other model that estsyébe multiple-fault candidates in terms of the individual
g;) implies that we only need to compute the EPP for a circuihwitly onefaulted gate. This has profound consequences
for the EPP calculation as shown by the following. Consitlerdircuit shown in Figure 3. As there is only one faulty gate,
all inputs haves; = 0. Consequently, all deterministic gate models (Eq. (1) } (&)uce to

e AND gate

€1V2 (7)
e OR gate

81(1 —-UQ) (8)

e X[N]OR gate

€1 (9)

where we have chosen as the gate input that is within the error propagation patinffaulted gate to primary output (i.e.,
es = 0). It can be easily seen that composition of the above, retl&t® models doesot suffer from the suppression
problem (unless there are reconvergent subcircuits). €&prently, for single fauly modeling we need not necessarily resort
to the probabilistic EPP models with the associated vaeigmoblems.

As the definition ofy; is static the actual signal valuesare not known. Consequently, in the above EPP models we will
assume, = 1/2. This implies that for AND and OR gates the EPP is attenuayealfactor 2 while X[N]JOR gates pass on
the EPP. In the example circuit in Figure 3 it follows that 1/8, and, consequently; = 7/8.

1Although generally accepted practice, the OR model is kn@Aretan approximation, and is currently subject to researthdguthors.



Note that the deterministic model applies only if the citcldges not include reconvergent subcircuits, since thjgreduces
the suppression problem. Nevertheless, the determimmgtael can be applied at minimal loss of accuracy as long asrec
vergence is small, as is the case in the 74XXX/ISCAS85 discak is shown in the next section.

5 Experimental Results

In the above we have presented three EPP models, (1) themileitic model, that, when implemented in terms of
numeric composition, suffers from suppression when camsig multiple-faults and/or circuit reconvergence (8gtP),
(2) the probabilistic model that has knowledge of the fiatif 1's in a gate’s truthtable (Eg. 5), and (3) the probatdi
model that has no gate model, whatsoever (Eg. 6).

In this section we present accuracy data for all three mddetsnumber of circuits from the 74XXX/ISCAS85 benchmark
suite [5, 7]%. The benchmark circuits are described in Table 1.

| Circuit [| Description | |gate$ | Jinputy [ [outputs |
74182 || 4-bit carry-lookahead generator 19 9 5
74L85 || 4-bit magnitude comparator 33 11 3
74181 || 4-bit ALU 65 14 8
74283 || 4-bit adder 36 9 5
cl7 simple test circuit 6 5 2
c432 27-chan interrupt controller 160 36 7
c499 32-bit SEC circuit 202 41 32
c880 8-bit ALU 383 60 26
¢1355 || 32-bit SEC circuit 546 41 32
c1908 || 16-bit SEC/DED circuit 880 33 25
€c2670 || 12-bit ALU and controller 1193 233 140
¢3540 || 8-bit ALU 1669 50 22
c5315 || 9-bit ALU 2307 178 123
6288 || 16x16-bit multiplier 2416 32 32
c7552 || 32-bit adder/comparator 3512 207 108

Table 1. 74XXX/ISCAS85 benchmark circuits

The predictions of the deterministic model and the prolsthilmodels Eqg. 5 and Eq. 6, are compared to the results of
Monte-Carlo simulation (random inputs and fault injectdryielding relative prediction erroks, e2, andes, respectively,
according to

€; — éMC
= | emc |

Each circuit output is considered as a separate circuii(caithin the complete circuit.

Table 2 shows the meaik), variance ¥), lower bound ), and upper boundl) of the relative errorg; throughes,
respectively, for single-fault injections (rounded to Iideals). We show the accuracy results per output for the lsmal
74XXX circuits, while for the ISCAS circuits we summarizeetirror statistics for all outputs combined. As expecteed, th
deterministic model performs very well. The average ptaticerror, due to reconvergence, is quite small. Outlieithiw
10%, with the exception of c880. The probabilistic modeldqgren less accurately, with an average error well less t@#0,1
with outliers up to 45%.

Table 3 and 4 show similar data for double and triple fauéispectively. Contrary to expectation, the average erriran
deterministic model due to ignoring suppression (next tmmgergence) is still in the order of percents, althoughuiiyger
bound increases considerably (up to 28%). However, the grcoeases with fault cardinality as the need for suppogssi
increases. The average error of the probabilistic modefish higher (in the order of ten percents) with outliers up3e6,
and also increases with cardinality. For all cardinalitles difference between both probabilistic models is reddyi small.
The significance of the latter result is that knowledge of gldé of the truth table does not significantly affect predinti
performance.

2Data on more circuits will be available in the final version.



Circuit ‘ OUtpUt H E[€1] ‘ 5[61] ‘ L[61] ‘ U[eﬂ H E[62] ‘ 5[62} ‘ L[EQ} ‘ U[EQ] H E[€3} ‘ 5[63] ‘ L[€3] ‘ U[Eg] ‘

74182 | 00 0.000 | 0.000| 0.000| 0.001 || 0.000| 0.000| 0.000| 0.001 || 0.000| 0.000| 0.000| 0.001
74182 | 01 0.009 | 0.017 | 0.000| 0.049 || 0.098 | 0.193| 0.000| 0.598 || 0.098 | 0.193| 0.000 | 0.598
74182 | 02 0.010| 0.018 | 0.000 | 0.049 || 0.098 | 0.194 | 0.000| 0.598 || 0.098 | 0.194 | 0.000 | 0.598
74182 | 03 0.007 | 0.015| 0.000| 0.052 || 0.059| 0.140| 0.000| 0.474 || 0.059| 0.140| 0.000| 0.474
74182 | 04 0.003 | 0.016 | 0.000| 0.070|| 0.020| 0.060| 0.000| 0.198 | 0.020| 0.060| 0.000 | 0.198
74L85 | 00 0.004 | 0.005| 0.000| 0.014 || 0.004 | 0.004 | 0.000| 0.008 || 0.004 | 0.004 | 0.000| 0.009
74185 | 01 0.016 | 0.020 | 0.000 | 0.076|| 0.108 | 0.138| 0.000| 0.547 || 0.108 | 0.138| 0.000 | 0.547
74185 | 02 0.016 | 0.020 | 0.000 | 0.077 || 0.108 | 0.138 | 0.000| 0.558 || 0.108 | 0.138 | 0.000 | 0.558
74181 | 00 0.008 | 0.014 | 0.000 | 0.044 || 0.044 | 0.094 | 0.000| 0.259 || 0.044 | 0.094 | 0.000 | 0.259
74181 | 01 0.016 | 0.027 | 0.000| 0.100|| 0.052 | 0.103| 0.000| 0.438 | 0.052| 0.103| 0.000| 0.438
74181 | 02 0.020 | 0.029 | 0.000 | 0.123|| 0.059| 0.094 | 0.000| 0.380 || 0.059| 0.094 | 0.000| 0.380
74181 | 03 0.018 | 0.024 | 0.000 | 0.087 || 0.104 | 0.184 | 0.000| 0.608 || 0.120| 0.216 | 0.000 | 0.750
74181 | 04 0.012 | 0.019| 0.000| 0.070|| 0.090| 0.172| 0.000| 0.590| 0.107 | 0.208 | 0.000 | 0.746
74181 | 05 0.005| 0.011| 0.000| 0.055|| 0.074 | 0.157| 0.000| 0.582 || 0.092| 0.197 | 0.000| 0.754
74181 | 06 0.001 | 0.005| 0.000| 0.040 || 0.055| 0.146 | 0.000| 0.588 || 0.070| 0.186| 0.000 | 0.760
74181 | 07 0.030 | 0.023 | 0.000| 0.060 || 0.049 | 0.034| 0.000| 0.138 | 0.054 | 0.038| 0.000| 0.150
74283 | 00 0.016 | 0.023 | 0.000| 0.071 || 0.065| 0.119| 0.000| 0.408 || 0.065| 0.119| 0.000 | 0.408
74283 | 01 0.010| 0.018 | 0.000| 0.062 || 0.100| 0.143| 0.000| 0.392| 0.118| 0.172| 0.000| 0.504
74283 | 02 0.005| 0.013| 0.000| 0.055|| 0.086| 0.134 | 0.000| 0.337 || 0.105| 0.168 | 0.000 | 0.498
74283 | 03 0.001 | 0.006 | 0.000| 0.042 | 0.071| 0.129| 0.000| 0.341 || 0.091| 0.167| 0.000 | 0.509
74283 | 04 0.000 | 0.001| 0.000| 0.006 || 0.056| 0.125| 0.000| 0.337|| 0.075| 0.170| 0.000 | 0.505
cl7 all 0.005| 0.012 | 0.000 | 0.046 | 0.062 | 0.071| 0.000| 0.203 || 0.062 | 0.071| 0.000 | 0.203
c499 all 0.002 | 0.003 | 0.000| 0.011 || 0.007 | 0.030| 0.000| 0.340 || 0.006| 0.038| 0.000 | 0.506
c880 all 0.002 | 0.026 | 0.000| 0.580|| 0.009| 0.053| 0.000| 0.907 || 0.009| 0.053| 0.000| 0.907
Table 2. EPP model accuracy (single faults)

l Circuit ‘ OUtpUt H E[€1] ‘ 5[61] ‘ L[61] ‘ U[eﬂ H E[62] ‘ 5[62} ‘ L[EQ} ‘ U[EQ] H E[€3} ‘ 5[63] ‘ L[63] ‘ U[Eg] ‘
74182 | 00 0.000 | 0.000 | 0.000| 0.004 || 0.000| 0.000| 0.000| 0.004 || 0.000| 0.000| 0.000| 0.004
74182 | 01 0.018 | 0.021 | 0.000| 0.051 || 0.187 | 0.223 | 0.000| 0.601 || 0.187 | 0.223| 0.000 | 0.601
74182 | 02 0.027 | 0.058 | 0.000| 0.258 || 0.168 | 0.262 | 0.000| 0.854 || 0.168| 0.262 | 0.000 | 0.854
74182 | 03 0.030 | 0.063 | 0.000| 0.286 || 0.182| 0.226 | 0.000| 0.688 | 0.182| 0.226 | 0.000 | 0.668
74182 | 04 0.005| 0.016 | 0.000| 0.072 || 0.032| 0.072| 0.000| 0.207 || 0.032| 0.072| 0.000 | 0.207
74L85 | 00 0.010| 0.011| 0.000 | 0.040|| 0.006 | 0.003| 0.000| 0.012 || 0.006 | 0.003| 0.000| 0.012
74185 | 01 0.020 | 0.055| 0.000| 0.318|| 0.143| 0.167 | 0.000| 0.621 || 0.143| 0.167| 0.000 | 0.621
74L85 | 02 0.018 | 0.020 | 0.000 | 0.073|| 0.150| 0.155| 0.000| 0.585 || 0.150| 0.155| 0.000 | 0.585
74181 | 00 0.017 | 0.023 | 0.000| 0.113|| 0.100| 0.130| 0.000| 0.420 || 0.100| 0.130| 0.000 | 0.420
74181 | 01 0.033 | 0.037| 0.000| 0.123|| 0.105| 0.146 | 0.000| 0.678 || 0.105| 0.146 | 0.000 | 0.678
74181 | 02 0.030 | 0.030| 0.000| 0.117 || 0.114| 0.124 | 0.000| 0.560|| 0.114 | 0.124 | 0.000 | 0.560
74181 | 03 0.033 | 0.039| 0.000| 0.179|| 0.184 | 0.218| 0.000| 0.682 || 0.217 | 0.260| 0.000 | 0.793
74181 | 04 0.024 | 0.037| 0.000| 0.191 || 0.179| 0.220| 0.000| 0.609 || 0.218 | 0.274 | 0.000 | 0.750
74181 | 05 0.012 | 0.024 | 0.000| 0.166 || 0.111| 0.177| 0.000| 0.587 || 0.134 | 0.215| 0.000| 0.751
74181 | 06 0.001 | 0.005| 0.000| 0.040|| 0.108 | 0.195| 0.000| 0.582 || 0.143| 0.253| 0.000 | 0.754
74181 | 07 0.039 | 0.019| 0.000| 0.070|| 0.077 | 0.036| 0.000| 0.140| 0.086| 0.040| 0.000| 0.156
74283 | 00 0.036 | 0.029 | 0.000| 0.100|| 0.178 | 0.183| 0.000| 0.534 || 0.178| 0.183| 0.000 | 0.534
74283 | 01 0.010| 0.016| 0.000| 0.055|| 0.194 | 0.168| 0.000| 0.496 || 0.241| 0.212| 0.000| 0.514
74283 | 02 0.007 | 0.015| 0.000| 0.056 || 0.126 | 0.144 | 0.000| 0.362 || 0.157| 0.185| 0.000 | 0.500
74283 | 03 0.001 | 0.007 | 0.000| 0.042 || 0.095| 0.135| 0.000| 0.337 || 0.128 | 0.184 | 0.000 | 0.505
74283 | 04 0.000 | 0.001| 0.000| 0.004 || 0.093| 0.149| 0.000| 0.338|| 0.128 | 0.207 | 0.000 | 0.506
cl7 all 0.026 | 0.080 | 0.000 | 0.293 || 0.080| 0.086 | 0.000| 0.200 || 0.080| 0.086| 0.000 | 0.200
c499 all 0.005| 0.005| 0.000| 0.024 || 0.015| 0.043| 0.000| 0.343 || 0.013| 0.056| 0.000 | 0.511
c880 all 0.006 | 0.038 | 0.000| 0.582 || 0.018 | 0.077| 0.000| 0.910| 0.018 | 0.077 | 0.000| 0.910

Table 3. EPP model accuracy (double faults)



Circuit ‘ OUtpUt H E[€1] ‘ V[€1] ‘ L[eﬂ ‘ U[eﬂ H E[62] ‘ V[éz} ‘ L[Ez} ‘ U[EQ] “ E[eg} ‘ V[Eg] ‘ L[Eg] ‘ U[Eg] ‘

74182 | 00 0.000 | 0.001 | 0.000| 0.004 || 0.000| 0.001 | 0.000| 0.004 | 0.000| 0.001 | 0.000| 0.004
74182 | 01 0.024 | 0.051 | 0.000| 0.225|| 0.162 | 0.253 | 0.000 | 0.825| 0.162| 0.253 | 0.000 | 0.825
74182 | 02 0.062 | 0.087 | 0.000 | 0.260 || 0.340 | 0.300| 0.000 | 0.859 || 0.340| 0.300 | 0.000 | 0.859
74182 | 03 0.014 | 0.022 | 0.000| 0.081 | 0.128 | 0.192 | 0.000 | 0.480| 0.128 | 0.192 | 0.000 | 0.480
74182 | 04 0.004 | 0.016 | 0.000| 0.072 || 0.032| 0.073 | 0.000 | 0.202 | 0.032| 0.073 | 0.000 | 0.202
74L85 | 00 0.018 | 0.017 | 0.000 | 0.073 || 0.006 | 0.005| 0.000 | 0.022 | 0.006 | 0.005 | 0.000 | 0.022
74185 | 01 0.068 | 0.087 | 0.000| 0.318|| 0.225| 0.190 | 0.000 | 0.621 | 0.225| 0.190 | 0.000 | 0.621
74185 | 02 0.044 | 0.059 | 0.000 | 0.310|| 0.234| 0.212| 0.000 | 0.626 || 0.234 | 0.212 | 0.000 | 0.626
74181 | 00 0.021| 0.024 | 0.000| 0.114| 0.130| 0.132| 0.000| 0.414 | 0.130| 0.132| 0.000| 0.414
74181 | 01 0.035| 0.046 | 0.000 | 0.263 || 0.122 | 0.160| 0.000 | 0.792 || 0.122 | 0.160 | 0.000 | 0.792
74181 | 02 0.044 | 0.040 | 0.000| 0.229 || 0.152 | 0.146 | 0.000 | 0.652 | 0.152| 0.146 | 0.000 | 0.652
74181 | 03 0.048 | 0.065 | 0.000| 0.311 || 0.272| 0.296 | 0.000 | 1.256 || 0.320 | 0.335| 0.000 | 1.293
74181 | 04 0.046 | 0.068 | 0.000 | 0.385|| 0.250 | 0.246| 0.000 | 1.154 || 0.290| 0.279 | 0.000 | 1.231
74181 | 05 0.010| 0.022 | 0.000| 0.117 || 0.200| 0.212 | 0.000 | 0.580| 0.265| 0.278 | 0.000 | 0.756
74181 | 06 0.003 | 0.016 | 0.000| 0.129 | 0.132| 0.198 | 0.000 | 0.612| 0.183| 0.262 | 0.000 | 0.756
74181 | 07 0.036 | 0.019| 0.000 | 0.064 || 0.090| 0.136| 0.000 | 0.136 || 0.203 | 0.038 | 0.000 | 0.152
74283 | 00 0.047 | 0.072 | 0.000| 0.354 || 0.170| 0.188 | 0.000 | 0.642| 0.170| 0.188 | 0.000 | 0.642
74283 | 01 0.031| 0.044| 0.000 | 0.187 || 0.192| 0.175| 0.000 | 0.647 || 0.234| 0.216 | 0.000 | 0.674
74283 | 02 0.013| 0.027 | 0.000 | 0.147 || 0.157 | 0.153 | 0.000 | 0.412| 0.205| 0.207 | 0.000 | 0.517
74283 | 03 0.003 | 0.002 | 0.000| 0.043 || 0.163| 0.153| 0.000 | 0.371| 0.217| 0.206 | 0.000 | 0.500
74283 | 04 0.001 | 0.006 | 0.000 | 0.006 || 0.148 | 0.165| 0.000 | 0.338 || 0.200 | 0.225 | 0.000 | 0.505
cl7 all 0.087 | 0.147 | 0.000 | 0.413|| 0.142| 0.087 | 0.000 | 0.225| 0.142| 0.087 | 0.000 | 0.225
c499 all 0.006 | 0.006 | 0.000 | 0.024 || 0.020 | 0.048 | 0.000 | 0.342 || 0.016 | 0.060 | 0.000 | 0.510
€880 all 0.007 | 0.041| 0.000 | 0.577 || 0.025| 0.088| 0.000 | 0.903 || 0.025| 0.088 | 0.000 | 0.903

Table 4. EPP model accuracy (triple faults)

6 Conclusion

Motivated by the importance of FNR data in spectrum-baselt fiacalization in this paper we have presented three EPP
prediction models for logic circuits, viz. (1) a determiiganodel that takes into account circuit topology, inpulues, and
gate models, (2) a probabilistic model based on circuitlmpoand gate truth table pdf information, and, at the highes|
of abstraction (3) a probabilistic model based on circyibtogy only. Monte Carlo simulations show that the deterstin
model performs best (average prediction error in the oréiperents), while both probabilistic models perform sothatv
worse (average error in the order of ten percent), while tfierdnce between both models is small. As expected, thor err
increases with fault cardinality.
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