
The GZoltar Project: A Graphical Debugger
Interface

André Riboira and Rui Abreu

Faculty of Engineering, University of Porto
Rua Dr. Roberto Frias, s/n 4200-465 Porto, Portugal

andre.riboira@fe.up.pt, rui@computer.org

http://www.gzoltar.com/

Abstract. Software debugging is one of the most time-consuming and
expensive tasks in software development. There are several tools that
contribute to this process to become faster and more efficient, but are
not integrated with each other, nor provide an intuitive interface. These
tools can be integrated to create an IDE plug-in, which gathers the most
important debugging information into one place. GZoltar is a new project
to create that missing plug-in. The main goal of GZoltar project is to
reduce debugging process time and costs.

Keywords: Debug, Spectrum-Based Fault Localization, Code Depen-
dency Graphs, Project Hierarchy Trees.

1 Introduction

In software development, debugging (localization and correction of software
faults) is one of the most expensive tasks [1, 2]. Although existing automatic
debugging tools are quite powerful, some developers tend to use basic manual
debug functionalities that their Integrated Development Environment (IDE)’s
offer. There are plenty of tools to help developers to find the faults of their
software. Unfortunately, those tools tend to not be integrated with each other,
and the developer does not have a place to get all the information he wants
at the same time. Moreover, debugging tools traditionally provide an unattrac-
tive output and sometimes also rather confusing, especially with regard to large
software projects. Code coverage tools, such as Zoltar [3], allows developers to
know which lines of code were executed in a given test. Usually, those tools use
source code lines highlight in different colors to show if a line was executed or
not. Code dependencies graphs [4] allows the creation of a graph of the entire
project, in which the nodes of the graph represent the different modules of the
project and the links represent the dependencies between these modules. This
information allows an overview of the project and makes it possible to analyze
fault propagations between modules. With tree-mappings is possible to have a
clear understanding of the different components of the project, and the way they
are related hierarchically. This is useful because we can easily navigate through
the different levels of detail on our software projects, and have a clearer picture



2 The GZoltar Project: A Graphical Debugger Interface

of sub-modules of a given module. Furthermore, there are tools available that
automatically calculate the failure probability of each software module. Lately
there has been a clear interest in developing tools for automatic debugging.
These tools are mainly based on Model-based software debugging (MBSD) or
Spectrum-based fault localization (SFL) [5]. These tools are all very useful, but
may work much better if they collaborate with each other. Integrating some of
these functionalities would give to the developer a very powerful tool for all de-
bugging processes. But although the results of these tools would be very useful,
they should also be presented in a way that the developer can quickly assimilate
all the information, and navigate through it intuitively. The integration of these
features will have a better result if it is done in an IDE.

2 Zoltar: A Toolset for Automatic Fault Localization

On automatic debug field, SFL techniques are shown to have better performance
than those of MBSD [5]. Zoltar is a tool that implements SFL [5] and can
predict, with a high success rate, the localization of software faults. Zoltar hosts a
range of spectrum-based fault localization techniques featuring Barinel [5]. The
toolset provides the infrastructure to automatically instrument the source code
of software programs to produce runtime data, which is subsequently analyzed
to return a ranked list of diagnosis candidates [1]. Despite the usefulness of this
tool, its output can be difficult to analyze because it is mainly textual. As output
we obtain a listing of code blocks with the failure probability of each of these
blocks. In a long project this list can become quite confusing and the navigation
can be particularly difficult.

3 GZoltar: A Graphical Debugger Interface

This paper proposes a new project, that uses Zoltar’s output, as well as a gen-
erated code dependency graph and a project hierarchy tree as input. The main
goal of this project is to build a useful graph where the developer could not
only better understand the organization of his project, but also the module de-
pendencies and failure probability of each module. This rich information could
then be used to ease the debugging process, therefore reducing the overall de-
bugging time. The startup view of this GZoltar tool would be a tree with the
software hierarchy, so that the developer could have a general view of all the
project. User would be able to navigate through that tree, like zooming in and
out in the different levels of detail. That navigation would give the developer a
sense of depth, that would help him to more clearly understand the location of
each module in the whole system. Please see Figure 1 for a prototype. All this
modules would be colored differently to represent their failure probability. At
all times, the developer would be able choose to see the dependency graph of a
given module. This would help the developer to analyze the possibility of having
errors propagated by the modules due to its dependency.



The GZoltar Project: A Graphical Debugger Interface 3

Fig. 1. Sense of depth in GZoltar Hier-
archical View

Fig. 2. GZoltar Code Dependency
Graph View in IDE integration

Sometimes the origin of a fault is not in the most affected module itself, but is
inherited of another module that it depends on. GZoltar tool could be integrated
on a popular IDE like Eclipse [6] for developer comfort, that could reduce the
learning curve of the tool and increase its use. A GZoltar plug-in would bring
a useful tool to all Java coders. Such a tool could allow the programmer to
quickly identify a faulty module in a global overview, and expand that module
to see which sub-modules are problematic. Even if the failure is not implicit to
that given module, he is able to analyze the module dependencies to try to find
out where is the failure origin. Please see Figure 2 for a prototype. Surely the
time and costs devoted to debugging would be reduced considerably with the
use of this tool. We can use available open source tools, like EclEmma [7] to
get the project code coverage to be used as Zoltar input, recode Zoltar in Java,
to provide a better integration in Eclipse, and use a tool like PDE Incubator
Dependency Visualization to provide the code dependency graph, and a tool
like Tree Views for Zest [8] to provide the project treemap. An OpenGL view
was also taken into consideration, to provide a powerful navigation though all
the project modules. This view can provide a 3D map of the application, where
all the nodes features like its size, color, transparency and position would have
a special meaning, like the number of code lines of a given module, its failure
probability, the number of times it was executed or its detail level. GZoltar will
be released as an open source tool, so anyone can contribute to it in the future.
This also gives greater versatility to any organization that wants to implement
GZoltar. The purpose of this tool is to provide a powerful and integrated view
of a software project, with a good navigation system and the indication of the
fault probability of each module, allowing the programmer to quickly find and
correct software faults. Being a free open source tool that is able to free the
programmer from consuming steps of finding software faults, we believe that it
will certainly help to reduce the overall cost of debugging process.



4 The GZoltar Project: A Graphical Debugger Interface

4 Conclusions

Software debugging is the most time-consuming and expensive phase of the soft-
ware development cycle [1, 2]. There are several tools that contribute to the
debugging process to become faster and more efficient, but unfortunately these
tools are not integrated with each other, nor provide an intuitive interface for
their use is the mass. These tools can be integrated to create a single tool, which
allows the developer to obtain all the needed information in one place, preferably
inside his IDE. From the output of Zoltar as base, and adding a code depen-
dency graph and a hierarchy tree of the project, we can build a very useful tool,
allowing a pleasant way to pass to the developer not only the structure of his
project but also the dependencies of each module and their failure probability.
Navigation through all of this information should also have a special attention.
In long projects, visualization is particularly important because it should allow
the developer to, at the same time, have an overview of the whole project, but
also be able to achieve high levels of detail to identify exactly where the location
of the faults of his project. This tool could be created as an Eclipse plug-in [10]
to increase the developer convenience. A plug-in like this could greatly improve
the debugging process, reducing time and cost of it.

References

1. Tom Janssen, Rui Abreu, Arjan J.C. van Gemund: Zoltar: A toolset for automatic
fault localization. In: International Conference on Automated Software Engineering,
New Zealand (2009).

2. James A. Jones, Mary Jean Harrold, John Stasko: Visualization of Test Information
to Assist Fault Localization. In: International Conference on Software Engineering,
USA (2002).

3. James Eagan, Mary Jean Harrold, James A. Jones, John Stasko: Technical Note:
Visually Encoding Program Test Information to Find Faults in Software. In: IEEE
Symposium on Information Visualization, USA (2001).

4. Françoise Balmas. Displaying dependence graphs: a hierarchical approach. In: Work-
shop on Analysis, Slicing and Transformation, Germany (2001).

5. Rui Abreu: Spectrum-based Fault Localization in Embedded Software. PhD Thesis,
Delft University of Technology, Netherlands (2009)

6. Eclipse.org, http://www.eclipse.org/
7. EclEmma - Java Code Coverage for Eclipse, http://www.eclemma.org/
8. Metrics, http://metrics.sourceforge.net/
9. PDE Incubator Dependency Visualization, http://www.eclipse.org/pde/

incubator/dependency-visualization/

10. Tree Views for Zest, http://wiki.eclipse.org/Tree_Views_for_Zest


