
Refining Spectrum-based Fault Localization Rankings∗

Rui Abreu† Wolfgang Mayer‡ Markus Stumptner‡ Arjan J.C. van Gemund†

†Embedded Software Lab
Delft University of Technology

The Netherlands
{r.f.abreu, a.j.c.vangemund}@tudelft.nl

‡Advanced Computing Research Centre
University of South Australia

Australia
{mayer, mst}@cs.unisa.edu.au

ABSTRACT
Spectrum-based fault localization is a statistical technique that aims
at helping software developers to find faults quickly by analyzing
abstractions of program traces to create a ranking of most probable
faulty components (e.g., program statements). Although spectrum-
based fault localization has been shown to be effective, its diag-
nostic accuracy is inherently limited, since the semantics of com-
ponents are not considered. In particular, components that exhibit
identical execution patterns cannot be distinguished. To enhance
its diagnostic quality, in this paper, we combine spectrum-based
fault localization with a model-based debugging approach based
on abstract interpretation within a framework coined DEPUTO. The
model-based approach is used to refine the ranking obtained from
the spectrum-based method by filtering out those components that
do not explain the observed failures when the program’s semantics
is considered. We show that this combined approach outperforms
the individual approaches and other state-of-the-art automated de-
bugging techniques.

Categories and Subject Descriptors
D.2.5 [Software engineering]: testing and debugging—debugging
aids, diagnostics

General Terms
Reliability, Experimentation, Measurement.

Keywords
Program spectra, abstract interpretation, fault localization.

1. INTRODUCTION
Considerable costs are attached to locating and eliminating prob-

lems in software systems during development as well as after de-
ployment [15]. Hence, numerous approaches have been proposed

∗This work has been carried out as part of the TRADER project
under the responsibility of the Embedded Systems Institute. This
project is partially supported by the Netherlands Ministry of Eco-
nomic Affairs under the BSIK03021 program.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’09 March 8-12, 2009, Honolulu, Hawaii, U.S.A.
Copyright 2009 ACM 978-1-60558-166-8/09/03 ...$5.00.

to automate parts of the testing and debugging process to help de-
tect more defects earlier in the development cycle and to guide soft-
ware engineers towards possible faults.

(Semi-)Automated fault localization techniques can be classified
as statistics- or model-based approaches. By analyzing abstractions
of program traces (also called program spectra), spectrum-based
fault localization (SFL) and other statistics-based approaches yield
a list of suspect program components sorted by their likelihood to
be at fault. As components involved in at least one failed com-
putation will be part of this ranking, the produced output can be
very large and many components may need to be inspected in some
cases. Although efficient in locating faulty components, SFL is
unable to distinguish between components that exhibit the same
execution pattern or that appear in all computations. Since this
technique is efficient in practice, this and other dynamic analysis
techniques are attractive for large modern software systems [19].

Statistical techniques are rather dependent on the availability of
a suitable test suite. Better results can often be achieved if a model
of the correct program behavior is available. Model-based soft-
ware debugging (MBSD) techniques have been advocated as pow-
erful debugging aid that isolate faults in complex programs [11].
By comparing the state and behavior of a program to what is an-
ticipated by its programmer, model-based reasoning techniques
separate those parts of a program that may contain a fault from
those that cannot be responsible for observed symptoms. Although
competitive with other state of the art automated debugging ap-
proaches [11], MBSD is computationally much more demanding
than SFL and may still produce a large output that lacks ranking
information.

In a previous work [10], SFL has been integrated within MBSD
to prioritize the diagnostic report given by the latter in order to
guide the search. The authors conclude that the combination of the
two approaches reduces the effort to track down faulty components.
However, the computational complexity of this approach is deter-
mined by MBSD. As a result of its high computational complexity,
the approach proves prohibitive for large programs.

In this paper, we present a new framework, coined DEPUTO1,
that integrates SFL with MBSD to focus the search by filtering
ranked results. Our approach first uses SFL to compute the ranked
list of likely faulty components, and, subsequently, applies MBSD
to refine the ranking by removing components that do not explain
observed failures. Our algorithm inherits the low computational
complexity from SFL and the significantly improved diagnostic ac-
curacy from MBSD. While the underlying principle is similar to a
previous work [10], we achieved an 2.5 times (on average) speed-
up while maintaining the accuracy of the previous approach.

The paper is organized as follows. The principles of spectrum-

1Latin for pruning.

based fault localization are outlined in Section 2, followed by a
discussion of model-based debugging in Section 3. The combined
framework is discussed in Section 4. Empirical validation of our
approach and our findings are given in Section 5. Section 6 dis-
cusses relevant related works, followed by the conclusion.

2. SFL
Spectrum-based fault localization (SFL) is a dynamic program

analysis techniques that has shown that comparing the program be-
havior over multiple test runs can indicate which program compo-
nents may be likely to contribute to an observed program failure.

In the following, we assume that a program P comprises a set
of components C (statements in the context of this paper) and is
executed using a set of test cases T that either pass or fail, with
M = |C| and N = |T |, respectively. Program (component) activ-
ity is recorded in terms of program spectra [2, 8]. These data are
collected at run-time and typically consist of a number of counters
or flags for the different components of a program. We use the so-
called hit spectra that indicate whether a component was involved
in a (test) run or not.

Both spectra and pass/fail information is input to SFL. The com-
bined information is expressed in terms of the N×(M +1) partic-
ipation matrix O. An element oij is equal to 1 if component j took
part in the execution of test run i, and 0 otherwise. The rightmost
column of O, the error vector e, represents the test outcome. The
element ei = oi,m+1 is equal to 1 if run i failed, and 0 if run i
passed. For j ≤ M and i ≤ N , the row Oi∗ indicates whether
a component was executed in run i, whereas the column O∗j indi-
cates in which runs component j was involved.

In SFL one measures the similarity between the error vector e
and the activity profile vector O∗j for each component j. This
similarity is quantified by a similarity coefficient, expressed in
terms of four counters apq(j) that count the number of positions
in which O∗j and e contain correspondent values p and q; that is,
for p, q ∈ {0, 1}, we define apq(j) = |{i | oij = p ∧ ei = q}|.
In this paper, the Ochiai similarity coefficient, known from molec-
ular biology, is used. Previous investigations have identified it as
the best coefficient to be used for SFL [2], consistently outperform-
ing several other coefficients, such as the one used in the Tarantula
tool [8]. It is defined as

sj =
a11(j)p

(a11(j) + a01(j)) ∗ (a11(j) + a10(j))

The similarity coefficient sj associated with each component Cj ∈
C indicates the correlation between the executions of Cj and the
observed incorrect program behavior. Applying the hypothesis that
closely correlated components are more likely to be relevant to an
observed misbehavior, sj can be reinterpreted as “fault probability”
and components can be listed in order of likelihood to be at fault.

To illustrate how SFL works, consider the program in Figure 1,
which contains a defect in line 9 – instead of assigning 0 to variable
i, it assigns 1. An observation for this program consists of program
inputs, i.e., values for variables tbl, n and k, together with the an-
ticipated result value returned by the algorithm. For example, the
assignments tbl ← [90, 21, 15, 0, 0, 0, 8, 23, 0, 0, 0, 0, 50, 60, 59],
n← 16, k ← 90 and the assertion result = 0 could be an “obser-
vation” specifying the inputs and the desired result of a particular
program execution. Since the result (−1) obtained by running the
program on the given inputs contradicts the anticipated result (0),
it shows that the program is incorrect.

Executing the program in Figure 1 using the test case described
above results in the first row vector in the participation matrix in

function FINDINDEX(tbl, n, k)
. Find the index of key k in the hash table

tbl[0, . . . , n− 1], or −1 if not found.
Assumes that tbl contains a free slot.

1 i← HASH(k) . Hash key
2 while tbl[i] 6= 0 do . Empty slot?
3 if tbl[i] = k then
4 return i . Found match
5 end if
6 if i < n− 1 then . At end?
7 i← i + 1 . Try next
8 else
9 i← 1 . Wrap around (Fault)

10 end if
11 end while
12 return −1 . Not found

end function

Figure 1: Algorithm to search in a hash table

C1 C2 C3 C4 C6 C7 C9 C12 e2666664
1 1 1 0 1 1 1 1
1 1 0 0 0 0 0 1
1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 0
1 1 1 0 1 1 1 1
1 1 1 0 1 1 1 0

˛̨̨̨
˛̨̨̨
˛̨̨

1
0
0
0
0
1

3777775
0.58 0.58 0.63 0.00 0.71 0.71 0.71 0.58

Figure 2: Participation Matrix

Figure 2. The vector contains a single 0 entry, indicating that all
components but C4 are executed. Since the returned value does not
match the anticipated result, the entry in the error vector is set to 1.
Assume that further tests are executed to yield the other (5) rows in
the participation matrix.

For each component Cj the Ochiai similarity sj is given below
the matrix. For C3, the similarity coefficient s3 is 0.63: as can be
seen from the third column in the matrix, there are two failing test
runs when C3 is executed (a11(3) = 2), no failing run when C3

does not participate (a01(3) = 0), and three successful executions
when C3 is involved (a10(3) = 3). C6, C7 and C9 are consid-
ered to be most closely correlated with failing tests and should be
examined first. Conversely, C4 is not considered relevant at all.

Since SFL abstracts a program’s behavior into a model that is
not suitable for reasoning about the semantics of individual com-
ponents, results may be affected from the following phenomena:

• If a fault lies in a component that participates in all runs
(for example, an initialization component), the component
is likely not to be ranked high;

• SFL cannot distinguish between components that exhibit
identical execution patterns (such as components C6, C7,
and C9);

• Nested components executed after the fault is hit are likely
to outrank the faulty component. For example, branches of a
conditional statement are likely to outrank those components
preceding it.

• Many components may be included in the ranking. In our
example, seven out of eight components are included in the
report.

3. MBSD
Model-based diagnosis has been proven successful in aiding de-

velopers in locating the root cause of failures in physical systems
by using a model of the systems’ intended behavior [13]. For soft-
ware programs, however, creating such a model can be as difficult
and error-prone as building the actual implementation [12]. Model-
based debugging [11] aims to close the gap between powerful for-
mal analysis techniques and execution-based strategies in a way
that does not require the end-user to possess knowledge of the un-
derlying reasoning mechanisms. Here, an adaptation of the classic
“reasoning from first principles” [13] (that is, information directly
available from program execution and source code) paradigm bor-
rowed from diagnosis of physical systems is particularly appealing,
since much of the complexity of the formal underpinnings of pro-
gram analysis can be hidden behind an interface that resembles the
end-user’s traditional view of software development. In contrast to
statistics-based approaches, MBSD is less dependent on large test
suites as it exploits a model of normal behavior.

Different from classical model-based diagnosis, where a correct
model is furnished and compared to symptoms exhibited by an ac-
tual faulty physical artifact, debugging software reverses the roles
of model and observations. Instead of relying on the user to for-
mally specify the desired program behavior, the (faulty) program
is taken as its own model and is compared to examples represent-
ing correct and incorrect executions. Hence, the model in MBSD
reflects the faults present in the program, while the observations
indicate program inputs and correct and incorrect aspects of a pro-
gram’s execution. Observations can either be introduced interac-
tively or can be sourced from existing test suites.

In the following, we briefly outline the model construction. More
detailed discussion can be found in [11]. Similarly to SFL, a pro-
gram is partitioned into components, each representing a particu-
lar fragment in the program’s source code. The behavior of each
component is automatically derived from the effects of individual
expressions the component comprises. Connections between com-
ponents are based on control- and data-dependencies between the
program fragments represented by each component.

Assume a model at statement granularity is to be created from the
program in Figure 1. For each statement s, a separate component
is created that is comprised of the expressions and sub-expressions
in s. The inputs and outputs of the components correspond to the
used and modified variables, respectively. Connections between the
components are created to reflect data dependencies between state-
ments in the program (as determined by a simple data flow anal-
ysis). Additional variables and components may be introduced to
correctly capture data flow at points where control flow paths may
split or merge. The component C7 corresponding to statement 7 in
Figure 1 is represented as a component with input i2 and output i7.
Here, i7 represents the result value of statement 7, and i2 denotes
the previous value of variable i that is implicitly defined at the loop
head in line 2.

Similar to classical model-based diagnosis, the model also pro-
vides different operating modes for each component, where the
“correct” (healthy) mode hj of component Cj corresponds to the
case where Cj is not to blame for a program’s misbehavior. In this
case, Cj is defined to function as specified in the program. Con-
versely, when component j is assumed “not healthy” (¬hj), Cj

may deviate from the program’s behavior. For example, the behav-
ior of C7 can be expressed as the logical sentence

h7 ⇒ i7 = i2 + 1. (1)

In the case where C7 is considered faulty (¬h7 is true), the effect
on i7 is left unspecified.

The main difference between the original program and its model
is that the model represents the program in a form that is suit-
able for automated consistency checking and prediction of values
in program states in the presence of fault assumptions. This in-
cludes program simulation on partially defined program states, us-
ing abstract interpretation [5], and backward propagation of values
or constraints, which would not occur in a regular (forward) pro-
gram execution.

Since the resulting model includes the same faults as the pro-
gram, means to compensate for incorrect structure and behavior
of components must be introduced. While heuristics to diagnose
structural deficiencies in physical systems can be based on invari-
ants and spatial proximity [4], in software, the model must be
adapted and restructured once a defect in its structure has become
a likely explanation. Here, detection and model adaptation must
be guided by using abstract assertions that capture simple “struc-
tural invariants” [11]. Also, since different fault assumptions may
alter the control and data flow in a program, models may be created
lazily rather than in the initial setup stage.

A trade-off between computational complexity and accuracy can
be achieved by selecting different abstractions and models [11],
both in terms of model granularity and representation of program
states and executed transitions. In Eq. 1 the representation of pro-
gram state has been left unspecified. Using an interval abstraction
to approximate a set of values, sentence (1) becomes a constraint
over interval-valued variables i2 and i7 [11]. Another possible ab-
straction is to encode the operation as logical sentences over the
variables’ bit representations [11]. In this paper, we use the in-
terval abstraction, since it provides good accuracy but avoids the
computational complexity of the bit-wise representation.

Similar to consistency-based diagnosis of physical systems [13],
from discrepancies between the behavior predicted by the model
and the behavior anticipated by the user, sets of fault assumptions
are isolated that render the model consistent with the observations.
Formally, the MBSD framework is based on extensions to Reiter’s
consistency-based framework, where a diagnosis is a set of faulty
components that together explain all observed failures. Diagnoses
are obtained by mapping the implicated components into the pro-
gram’s source code [11].

When this approach is used with the program and the test case
from Section 2, a contradiction is detected when the assertion
checking the expected result fails. The (cardinality-) minimal
fault assumptions that are consistent with our test specification are:
{¬h1}, {¬h7}, {¬h9}, and {¬h12}. Hence, the statements in
lines 1, 7, 9 and 12 are considered the possible root causes of the
symptoms. Any other statement alone cannot explain the incorrect
result, since the result remains incorrect even if a statement is al-
tered.

Conversely to SFL, the model-based technique captures the se-
mantics of programming constructs, but does not assign ranking
information to candidate explanations. Hence, in this respect the
techniques complement each other.

4. DEPUTO
In this section we describe how we combine the spectrum-based

and the model-based approaches described earlier, in order to cap-
ture the best characteristics of both techniques.

Algorithm 1 outlines our combined approach. The algorithm ex-
ecutes in three stages, with the similarity-based approach used in
the setup stage (steps 1 to 6), feeding into the subsequent model-
based filtering stage (steps 7 to 16), followed by an optional best-
first search stage (lines 17 to 24). This combination has signif-
icantly lower resource requirements than applying MBSD on the

Algorithm 1 DEPUTO Algorithm
Inputs: Program P , set of test cases T

Output: Fault assumptions explaining failed test runs

1 C ← CREATECOMPONENTS(P)
2 M← GETCOMPONENTMATRIX(C,P, T)
3 〈TP , TF 〉 ← PARTITION(M, T)
4 R← SFL(M) . Apply SFL
5 S ← ∅ . Skipped components
6 I ← ∅ . Inspected components
7 repeat
8 bC ← RANKING POP(R)

9 D ← MBSD(bC, TF) . Apply MBSD
10 I ← I ∪ C
11 if Dbug ∈ D is confirmed faulty then
12 return Dbug

13 else
14 S ← S ∪ (bC \ D)
15 end if
16 R← R \ bC
17 untilR = ∅
18 while S 6= ∅ do
19 bC ← PDG RANKING POP(S, I)

20 I ← I ∪ bC
21 if Cbug ∈ bC is confirmed faulty then
22 return {¬hbug}
23 end if
24 end while
25 return ∅ . No explanation found

whole program and using SFL only to rank results as proposed
in [10]. We start by partitioning the program P into a set of com-
ponents C and execute P on the available test cases T to obtain
the participation matrixM. UsingM, we partition T into passing
tests (TP) and failing ones (TF). FromM, a sorted list of compo-
nentsR in order of likelihood to be at fault is obtained as described
in Section 2 (line 4).

In the subsequent loop, MBSD (line 9) is used to eliminate the
top-ranked candidate explanations that are not considered valid
explanations by the model-based approach. Instead of applying
MBSD once to compute all explanations and present the ranked
candidates to the user, an incremental strategy permits to stop early
once a fault has been identified. First, the set of components bC
with the highest similarity coefficient in R are obtained using the
RANKING POP(R) function.Second, function MBSD(bC, TF) re-
turns a set of candidate explanations D ⊆ bC that explain observed
failures TF . Finally, if the fault is in the returned set, the algorithm
stops; otherwise none of the candidates represent valid explana-
tions and other must be generated. The algorithm stops once no
more explanations could be found or if none of the remaining com-
ponents was executed for a failing test. S is the set of components
that are implicated by SFL but not by MBSD.

If no explanation is found after all components implicated by
MBSD have been explored, we employ a best-first search proce-
dure that traverses the program along dependencies between com-
ponents with decreasing fault similarity. No explanation may be
found if the fault affects component inter-dependencies such that
the fault assumptions and model abstraction can no longer repre-
sent the fault. In line 18, the set of components with maximum fault
similarity that are connected to the previously explored components

is returned. Function PDG RANKING POP(S, I) returns the set of
components in S with highest similarity that are directly connected
to the previously inspected set of component I. If the component
is confirmed to be (part of) a valid explanation, the search stops and
the diagnosis is returned. Note that the explanation may only cover
part of the true fault. Line 24 in Algorithm 1 can only be reached
if the faulty program fragment is not covered by any component,
or if the user oracle that decides whether an explanation is indeed a
satisfying explanation is imperfect and may miss a fault.

Applying Algorithm 1 using the test suite from the example in
Section 2, {¬h7} and {¬h9} are obtained as candidate explana-
tions. Both candidates are associated with the highest similarity
coefficient 0.71.

Notably, this result improves upon both individual fault localiza-
tion procedures. Different from pure SFL, {¬h6} is no longer con-
sidered an explanation. Conversely, candidates {¬h1} and {¬h12}
obtained using pure MBSD are low-ranking in SFL and hence omit-
ted at this stage. ({¬h12} is already eliminated by pure MBSD
when using the second failing test case in the example.)

Without further information, neither approach can discriminate
between the two remaining candidate explanations. Since it is as-
sumed that the user acts as oracle that can reliably recognize true
faults, the algorithm stops in the first iteration (in line 12), once the
statement in Figure 1 corresponding to {¬h9} has been confirmed
to be incorrect.

5. EMPIRICAL EVALUATION
To gain a better understanding of the combined approach, in this

section, we empirically evaluate its efficiency. First, we introduce
the program under analysis and the evaluation metric.

5.1 Experimental Setup
Program under analysis In our study we use the TCAS program as
taken from the Siemens Test Suite2, which is a test bench commonly
used in the debugging community. TCAS simulates the resolution-
advisory component of a collision avoidance system similar to
those found in commercial aircraft. It consists of 138 lines of C
code and takes twelve parameters as input; the numeric result value
encodes one out of three possible resolution advisories. The pro-
gram comes with 1608 test cases and 41 different variants with
known faults. For each variant, an average of forty test cases reveal
a fault. In our experiments, all available test cases were used.

Evaluation Metric In the fault diagnosis research community
rank- [2, 8, 16] and dependency-based [9, 14] metrics have often
been used. The former quantify the quality of a result based on
the ranking position of the faulty component relative to all com-
ponents, and is mainly used with techniques that rank components
in a program. In contrast, dependency-based measures typically
operate on the program dependence graph (PDG) and are mainly
applied to evaluate techniques that either do not rank components
(for example MBSD) or do not rank all components of a program
(such as SOBER [9]). Essentially, starting with the set of blamed
components, dependencies between components are traversed in
breadth-first order until the fault has been reached. The quality of
a diagnostic report is measured as the fraction of the PDG that is
traversed. Both metrics quantify the percentage of a program that
needs to be inspected in order to find the fault. We refer to them as
SCORE.

To assess the accuracy of DEPUTO, we use both metrics. First, if
a fault is found in the refining phase (lines 7 to 16 in algorithm 1),
2http://sir.unl.edu/

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

0
10

20
30

40
50

60
Deputo MBSD only SFL only

Figure 3: Components implicated by SFL and MBSD

the SCORE is given by

SCORE =
|I|
M
· 100%,

where |I| denotes the number of inspected components. However,
if no fault is found in this phase then we use the PDG-based metric
by traversing the ranking starting with the previous inspected set of
components I (lines 17 to 23).

5.2 Experimental Results
Results for the individual approaches have already been pub-

lished elsewhere. MBSD using an interval abstraction requires 11
statements to be inspected on average [11]. The median SCORE is
13% (14% on average) for TCAS. Note that when MBSD fails to
implicate the faulty component, more statements than just those in
the diagnostic report must be inspected. The results obtained with
SFL are discussed in [2]. Following the generated ranking would
lead to the fault after inspecting 20 statements on average, resulting
in a median (and average) SCORE of 14%.

DEPUTO combines SFL with MBSD to refine the ranking of im-
plicated components. To understand how well MBSD filters state-
ments from the ranking, we first study the number of implicated
components. Figure 3 contrasts the components implicated by ei-
ther approach with those blamed by both. It can be seen that MBSD
significantly reduces the number of components when compared
with SFL. Furthermore, neither approach subsumes the other. Re-
stricting the debugging process to those statements that are impli-
cated by both approaches, the average number of statements re-
duces from 36 (20 if considering only until the fault is hit) to 8.
Hence, the total number of relevant statements reduces consider-
ably. Note, however, that Figure 3 does not imply that SFL’s con-
tribution is negligible; although it implicates more components, it
also builds a ranking that may quickly lead to the fault.

Since the diagnostic report obtained from DEPUTO is a ranked
list of likely faulty components, its size alone is not a good in-
dicator for its quality. Instead, we employ the SCORE metric as
defined in the previous section to evaluate our results. Figure 4 vi-
sualizes the percentage of located bugs for different fractions of in-
spected code. Our approach outperforms the individual approaches
as well as the simple statistics-based fault localization technique
proposed in [14], where different combinations of union and in-
tersection of “similar” passing and failing test runs are computed.
This can be attributed to the improved ranking mechanisms built
into our algorithm that is more robust with respect to overlapping
passing and failing executions. Our combined approach also im-

0%

20%

40%

60%

80%

100%

[0
, 1

0)

[1
0,

 2
0)

[2
0,

 3
0)

[3
0,

 4
0)

[4
0,

 5
0)

[5
0,

 6
0)

[6
0,

 7
0)

[7
0,

 8
0)

[8
0,

 9
0)

[9
0,

 1
00

]

P
er

ce
nt

ag
e

of
 L

oc
at

ed
 B

ug
s

Percentage of Inspected Code (Score)

NN
Crosstab

Sober
MBSD

SFL
Deputo

Figure 4: Debugging efficiency

explain ∆-slicing DEPUTO

v1 49 9 7
v11 64 7 7
v31 24 7 7
v40 25 – 16
v41 32 12 6

Table 1: Individual SCORES

proves on SOBER [9] and CROSSTAB [16], which are statistical
approaches based on hypothesis testing that have been shown to
dominate other recent bug detectors. For instance, if up to 10%
of the program would have been inspected, DEPUTO would locate
71% of the faults, whereas SOBER and CROSSTAB would yield
only 51% and 53%, respectively.

∆-slicing and explain [7] are two techniques for fault localiza-
tion that exploit differences between passing and failing abstract
program executions traces found by a model checker. Table 1 com-
pares our results to the published individual results for all five ver-
sions of TCAS reported in [7]. We conclude that DEPUTO is far su-
perior to explain (which requires to explore 24–64% of a program)
and performs competitive with respect to Delta slicing (within 5%),
yet at reduced complexity. However, to understand whether our ap-
proach is indeed much better than the ones presented in [7] more
experimentation is needed.

Our combined framework also reduces the time required by
MBSD from 185s [11] to 73.2s on average, representing an av-
erage speed-up of 2.5 times. The time required by the SFL part of
our algorithm is negligible.

6. RELATED WORK
The most similar work to the one presented in this paper is de-

scribed in [10] where a statistic-based approach is used to rank the
set of candidates given by MBSD. While the average computational
complexity in [10] is essentially the same as when the model-based
approach is used alone, DEPUTO requires significantly less time.

In model-based reasoning, the program model is typically gen-
erated from the source code, as opposed to the traditional applica-
tion of model based diagnosis where the model is obtained from
a formal specification of the (physical) system [13]. In [11] an
overview of different models for MBSD is given, concluding that
the model generated by means of abstract interpretation leads to
good results while not suffering from the computational complexity
inherent to more precise analysis techniques [11]. Recently, model-
based techniques have also been proposed to isolate specific faults

stemming from incorrect implementation of high-level conceptual
models [18], where mutations are applied to state machine mod-
els to detect conceptual errors, such as incorrect control flow and
missing or additional features found in the implementation. Other
approaches that fit into this category include explain [7] and ∆-
slicing [7], which are based on comparing execution traces of cor-
rect and failed runs using model checkers.

Combining program execution and symbolic evaluation has been
proposed to infer possible errors [6]. Similar to MBSD, a symbolic,
under-constrained representation of a program execution and mem-
ory structures are built. Instead of using fault probabilities to guide
diagnosis, only those candidate explanations that definitively imply
a test failure are flagged.

Apart from the model-based approaches, many techniques based
on statistical analysis of dynamic program behavior exist. Taran-
tula [8] obtains program spectra from test executions and graphi-
cally visualizes a fault-proneness indicator based on participation
of individual statements in passing and failing runs. SOBER [9] is
a statistical debugging tool which analyzes traces of predicate eval-
uations and produces a ranking by contrasting the evaluation bias
of each predicate in failing cases against those in passing cases.
CROSSTAB [16] exploits the joint distribution of two variables de-
rived from coverage information of different program executions
to compute a ranked list of possible faults. In [3] a dynamic mod-
eling approach to fault localization based on logic reasoning over
program traces is presented. In [17], discrepancies between exe-
cution time spectra obtained from correct and failing tests are used
to locate possible faults. In contrast to the algorithm proposed in
this paper, the aforementioned techniques do not exploit informa-
tion about the anticipated behavior of a program and hence rely on
external tools to assess the outcome of individual executions, such
as automatic error detection based on program invariants [1].

7. CONCLUSIONS & FUTURE WORK
We have shown that the accuracy of spectrum-based fault local-

ization increases significantly when combined with approaches that
make use of a model to yield valid explanations for observed fail-
ures. Our unique combination of semantics-based analysis as un-
dertaken in model-based software debugging and dynamic aspects
obtained from program execution spectra has proved to greatly fo-
cus debugging efforts to relevant parts of a program. Overall, a re-
duction of suspect program fragments to less than 8% of the com-
plete program has been achieved on our test suite, outperforming
both individual techniques and most other state of the art tech-
niques. Furthermore, an average speed-up of 2.5 compared to the
model-based approach has been observed. We have further shown
that our approach is among the state of the art automated debugging
tools.

Several issues for further research remain. On the dynamic anal-
ysis side, introducing machine learning techniques to infer likely
invariants that can then be used to reduce the number of implicated
components by the spectrum-based fault localization approach are
possible avenues worth further exploration. On the MBSD side,
connecting the lower-level models that reflect most details of a pro-
gram to high-level conceptual models to detect a more diverse set of
faults seems promising to broaden the scope of applicability. Due
to limitations of our implementation of the model-based approach,
we were not yet able to apply the combined framework to a com-
prehensive test suite. (Our system currently has only limited sup-
port for interfaces to external systems, such as libraries, I/O, and
multi-threading.) We plan to apply it to more realistic programs to
gain further insights and to identify possible further improvements
of our debugging algorithms.

8. REFERENCES
[1] R. Abreu, A. González, P. Zoeteweij, and A. J. C. van

Gemund. Automatic software fault localization using generic
program invariants. In Proc. SAC’08 - SE Track. ACM Press,
2008.

[2] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund. On the
accuracy of spectrum-based fault localization. In TAIC
PART’07. IEEE CS, 2007.

[3] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund. An
observation-based model for fault localization. In Proc.
WODA’08. ACM Press, 2008.

[4] C. Böttcher. No faults in structure? How to diagnose hidden
interaction. In Proc. IJCAI, 1995.

[5] P. Cousot and R. Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construction
or approximation of fixpoints. In Proc. POPL’77. ACM
Press, 1977.

[6] D. R. Engler and D. Dunbar. Under-constrained execution:
making automatic code destruction easy and scalable. In
Proc. ISSTA’07. ACM Press, 2007.

[7] A. Groce, S. Chaki, D. Kroening, and O. Strichman. Error
explanation with distance metrics. STTT, 8(3):229–247,
2006.

[8] J. A. Jones and M. J. Harrold. Empirical evaluation of the
tarantula automatic fault-localization technique. In ASE’05.
ACM Press, 2005.

[9] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff. SOBER:
statistical model-based bug localization. In FSE’05. ACM
Press, 2005.

[10] W. Mayer, R. Abreu, M. Stumptner, and A. J. C. van
Gemund. Prioritizing model-based debugging diagnostic
reports. In Proc. DX’08, 2008.

[11] W. Mayer and M. Stumptner. Evaluating models for
model-based debugging. In ASE’08. ACM Press, 2008.

[12] M. Musuvathi and D. R. Engler. Some lessons from using
static analysis and software model checking for bug finding.
ENTCS, 89(3), 2003.

[13] R. Reiter. A theory of diagnosis from first principles.
Artificial Intelligence, 32(1):57–95, 1987.

[14] M. Renieris and S. P. Reiss. Fault localization with nearest
neighbor queries. In ASE’03. ACM Press, 2003.

[15] RTI. Planning report 02-3: The economic impacts of
inadequate infrastructure for software testing. Planning
Report 02-3, NIST, 2002.

[16] E. Wong, T. Wei, Y. Qi, and L. Zhao. A crosstab-based
statistical method for effective fault localization. In Proc.
ICST’08. IEEE CS, 2008.

[17] C. Yilmaz, A. Paradkar, and C. Williams. Time will tell:
Fault localization using time spectra. In Proc. ICSE ’08.
ACM Press, 2008.

[18] C. Yilmaz and C. Williams. An automated model-based
debugging approach. In ASE’07. ACM Press, 2007.

[19] P. Zoeteweij, R. Abreu, R. Golsteijn, and A. J. C. van
Gemund. Diagnosis of embedded software using program
spectra. In Proc. ECBS’07. IEEE CS, 2007.

