
Localizing Software Faults Simultaneously?

Rui Abreu and Peter Zoeteweij and Arjan J.C. van Gemund
Embedded Software Lab

Faculty Electrical Eng., Mathematics, and Computer Science
Delft University of Technology

The Netherlands
Email: {r.f.abreu, p.zoeteweij, a.j.c.vangemund}@tudelft.nl

Abstract—Current automatic diagnosis techniques are pre-
dominantly of a statistical nature and, despite typical defect
densities, do not explicitly consider multiple faults, as also
demonstrated by the popularity of the single-fault Siemens
set. We present a logic reasoning approach, called Zoltar-
M(ultiple fault), that yields multiple-fault diagnoses, ranked
in order of their probability. Although application of Zoltar-
M to programs with many faults requires further research
into heuristics to reduce computational complexity, theory as
well as experiments on synthetic program models and two
multiple-fault program versions from the Siemens set show
that for multiple-fault programs this approach can outperform
statistical techniques, notably spectrum-based fault localization
(SFL). As a side-effect of this research, we present a new SFL
variant, called Zoltar-S(ingle fault), that is provably optimal for
single-fault programs, outperforming all other variants known
to date.

Keywords-Software fault diagnosis, program spectra, statis-
tical and reasoning approaches.

I. INTRODUCTION

Automatic fault localization techniques aid developers to
pinpoint the root cause of software faults, thereby reducing
the debugging effort. Two approaches can be distinguished,
(1) the spectrum-based fault localization (SFL) approach,
which correlates software component activity with program
failures (a statistical approach) [2], [7], [10], [11], [16], [19],
and (2) the model-based diagnosis or debugging (MBD)
approach, which deduces component failure through logic
reasoning [5], [6], [13], [18].

Because of its low computational complexity, SFL has
gained large popularity. Although inherently not restricted to
single faults, in most cases these statistical techniques are ap-
plied and evaluated in a single-fault context, as demonstrated
by the Siemens benchmark set which is seeded with only 1
fault per program (version). In practice however, the defect
density of even small programs typically amounts to multiple
faults. Although the root cause of a particular program
failure need not constitute multiple faults that are acting
simultaneously, many failures will be caused by different

?This work has been carried out as part of the TRADER project under the
responsibility of the Embedded Systems Institute. This project is partially
supported by the Netherlands Ministry of Economic Affairs under the
BSIK03021 program.

faults. Hence, the problem of multiple-fault localization
(diagnosis) deserves detailed study.

Unlike SFL, MBD traditionally deals with multiple faults.
However, apart from much higher computational complexity,
the logic models that are used in the diagnostic inference are
typically based on static program analysis. Consequently,
they don’t exploit execution behavior, which, in contrast, is
the essence of the SFL approach. Combining the dynamic
approach of SFL with the multiple-fault logic reasoning
approach of MBD, in this paper we present a multiple-fault
reasoning approach that is based on the dynamic, spectrum-
based observations of SFL. Additional reasons to study the
merits of this approach are the following. (1) Diagnoses
are returned in terms of multiple faults, whereas statistical
techniques return a one-dimensional list of single fault loca-
tions only. The information on fault multiplicity is attractive
from parallel debugging point of view [9]. (2) Unlike statis-
tical approaches, multiple-fault diagnoses only include valid
candidates, and are asymptotically optimal with increasing
test information [1]. (3) The ranking of the diagnoses is
based on probability instead of similarity. This implies that
the quality of a diagnosis can be expressed in terms of
information entropy or any other metric that is based on
probability theory [14]. (4) The reasoning approach naturally
accommodates additional (model) information about compo-
nent behavior, increasing diagnostic performance when more
information about component behavior is available.

To illustrate the difference between multiple-fault and
the statistical approach, consider a triple-fault (sub)program
with faulty components c1, c2, and c3. Whereas under ideal
testing circumstances a traditional SFL approach would
produce multiple single-fault diagnoses (in terms of the
component indices) like {{1}, {2}, {3}, {4}, {5}, . . .}
(ordered in terms of statistical similarity), a multiple-fault
approach would simply produce one single multiple-fault
diagnosis {{1, 2, 3}}. Although the statistical similarity of
the first three items in the former diagnosis would be highest,
the latter, single diagnosis unambiguously reveals the actual
triple fault.

Despite the above advantages, a reasoning approach is
more costly than statistical approaches because an exponen-
tial number of multiple-fault candidates need to be processed

instead of just the single-fault candidates. In this paper we
compare our reasoning approach to several statistical ap-
proaches. Our study is based on random synthetic spectra, as
well as on the Siemens benchmark, extended by us to accom-
modate multiple faults. More specifically, this paper makes
the following 5 contributions. (1) We introduce a multiple-
fault diagnosis approach that originates from the model-
based diagnosis area, but which is specifically adapted to the
interaction dynamics of software. The approach is coined
Zoltar-M (Zoltar for the name of our debugging tool set,
M for multiple-fault). (2) We show how our reasoning
approach applies to single-fault programs, yielding a prov-
ably optimal SFL variant, called Zoltar-S (S for single-
fault), as of yet unknown in literature. (3) We introduce
a general, multiple-fault, probabilistic program (spectrum)
model, parametrized in terms of size, testing code coverage,
and testing fault coverage, to theoretically study Zoltar-M,
compared to statistical techniques such as Tarantula and
Zoltar-S. (4) We investigate the ability of all techniques
to deduce program fault multiplicity which is aimed at
providing a good estimate to guide parallel debugging, using
an approach that substantially differs from [9].

To the best of our knowledge, this is the first paper
to specifically address software multiple-fault localization
using a spectrum-based, logic reasoning approach, yield-
ing two new localization techniques Zoltar-S and Zoltar-
M, implemented within our Zoltar SFL framework. Our
experiments confirm that Zoltar-S is superior to all known
similarity coefficients for the Siemens-S benchmark. More
importantly however, our experiments for multiple-fault pro-
grams show that although for synthetic spectra Zoltar-M is
outperformed by Zoltar-S, for our Siemens-M experiments
Zoltar-M outperforms all similarity coefficients known to
date.

II. PRELIMINARIES

In this section we introduce basic definitions as well as
the traditional SFL approach.

A. Basic Definitions
A program that is being diagnosed comprises a set of

M components (statements in the context of this paper),
which is executed using N test cases that either pass of
fail. Program (component) activity is recorded in terms of
program spectra [8]. This data is collected at run-time,
and typically consists of a number of counters or flags for
the different components of a program. In the context of
this paper we use the so-called hit spectra, which indicate
whether a component was involved in a (test) run or not.

Both spectra and pass/fail information is input to tradi-
tional SFL, as well as to our reasoning technique. The com-
bined information is expressed in terms of the N × (M +1)
observation matrix O. An element oij is equal to 1 if
component j was observed to be involved in the execution

of run i, and 0 otherwise. The element oi,m+1 is equal
to 1 if run i failed, and 0 if run i passed. The rightmost
column of O is also denoted as e (the error vector). From
O we can derive the probability r that a component is
actually executed in a run (testing code coverage), and the
probability g that a faulty component is actually exhibiting
good behavior (testing fault coverage, also known as the
“goodness” parameter g from MBD [3]).

Programs can have multiple faults, the number being
denoted C (fault cardinality). A diagnosis candidate is
expressed as the set of indices of those components whose
combined faulty behavior is logically consistent with the
observations O and therefore must be considered as a
collective candidate. A diagnosis is the ordered set of
diagnostic candidates D = {d1, . . . , dk}, all of which are an
explanation consistent with observed program behavior (O),
ordered in probability of being the program’s actual multiple
fault condition. An example multiple-fault diagnosis is the
diagnosis {d1} = {{1, 2, 3}} given in the Introduction.
For brevity, we will often refer to diagnostic candidates as
diagnoses as well, as it is clear from the context whether
we refer to a single diagnosis candidate or to the entire
diagnosis.

B. Traditional SFL
In SFL one measures the similarity between the er-

ror vector e and the activity profile vector O∗j for each
component j. This similarity is quantified by a similarity
coefficient, expressed in terms of four counters apq(j) that
count the number of positions in which O∗j and e contain
respective values p and q, i.e, for p, q ∈ {0, 1}, we define
apq(j) = |{i | oij = p ∧ ei = q}|. Two examples of well-
known coefficients are

sT =

a11(j)
a11(j)+a01(j)

a11(j)
a11(j)+a01(j) + a10(j)

a10(j)+a00(j)

as used by the Tarantula tool [10], and the Ochiai coeffi-
cient

sO =
a11(j)

√

(a11(j) + a01(j)) ∗ (a11(j) + a10(j))
(1)

known from molecular biology, introduced in SFL in [2].
As an example, suppose we have a program with M = 7

components, of which c1, c2, and c3 are faulty, with O as
given in Table I. The table also includes the apq counts as
well as the resulting similarity based on the Tarantula and
Ochiai coefficients. Assuming that a developer would follow
the ranking produced by the techniques, Tarantula requires
him/her to inspect more components in order to find a faulty
one. The first faulty component ranked by Tarantula is at
the 3rd place of the list, whereas with Ochiai it is already at
the 2nd place. The results shows the sensitivity of Tarantula
to components that are not involved in passed runs (a00),
considering them likely to be the faulty one and not taking

c1 c2 c3 c4 c5 c6 c7 e

1 0 1 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 1 0 0
1 1 0 0 1 0 0 0
1 0 1 0 0 0 0 0
1 0 0 0 1 0 0 0
1 0 1 0 0 1 0 0
1 1 0 0 1 1 0 1
1 1 0 1 0 1 1 1
1 0 1 0 0 0 0 1
1 1 0 1 1 1 1 1
1 1 0 0 0 1 0 1
1 0 1 0 0 1 1 1

sT 0.58 0.82 0.37 1 0.37 0.74 1
sO 0.74 0.73 0.33 0.58 0.33 0.77 0.71

Table I
OBSERVATION MATRIX EXAMPLE O

into account their involvement in failed runs (e.g., c4 and
c7). Ochiai, however, exonerates components based on their
involvement in passed runs (a10), and absence in failed runs
(a01, for detailed comparison, see [2]).

As can be seen, both Tarantula and Ochiai fail to consider
c3 as one of the most suspicious components. Besides, c2

and c3 can be considered as multiple fault because all failed
runs can be explained either by c2 or c3 (but the two by
themselves are not a valid explanation for all failures). In
the next section we present our technique that exploits this
info and contains multiple-fault explanations in its ranking.

III. MULTIPLE-FAULT LOCALIZATION

In this section we present our multiple-fault localization
approach Zoltar-M, which is based on logic reasoning as per-
formed in model-based diagnosis, combined with (Bayesian)
probability theory to compute the ranking of the candi-
dates. The major difference with the statistical approach
in Section II-B is (1) that only a subset of components
is considered (the so-called hitting set) in contrast to all
components, (2) all computed candidates logically explain
the observed failures, and (3) that the ranking is based on
probability, rather than statistical similarity.
A. Hitting Set Computation

In model-based diagnosis one derives a model of the
program, which, together with the observations of input-
output behavior determine the set of constraints from which
diagnostic solutions are logically deduced that are consistent
with this behavior. Unlike the MBD approaches such as
presented in [12], [13], in our Zoltar-M approach we refrain
from modeling the program in detail, but use O as the only,
dynamic source of information, from which we derive the
model and the input-output observations.

Each component cj is modeled by the logic proposition

hj ⇒ in.okj ⇒ out.okj (2)

where hj models the health state of cj (true = healthy,
false = defect). This so-called weak model specifies that
a component produces correct output values (out.ok true)
if (1) healthy (h is true), and (2) when provided with
correct input (in.ok true). Note that this model still allows
a component to produce correct data (the probability of
which is measured by g) even though h = false. Also
note that a component can accept erroneous input data and
still produce correct output. Finally, this approach allows the
inclusion of additional component information as the number
of propositions per component is not limited to the above,
default model of nominal behavior.

Due to dynamic (data-dependent) control flow each run
may involve different components. Consequently, rather than
modeling the program by a static composition of component
propositions (Eq. 2), we consider a dynamic model that is
defined per program run (i.e., Oi∗). In [1] it is shown that
each failed run yields a conjunction of logical constraints
(i.e., a sub-model) in terms of the components involved, that
is known in MBD as a conflict [4]. For instance, a failed
run involving c1 and c2 generates the conflict ¬h1 ∨ ¬h2,
indicating that c1 and c2 cannot both be healthy.

The multiple-fault approach is based on compiling each
failed run (row Oi∗) to a conflict, after which the diagnosis
for O is derived by computing the hitting set [15] from all
conflicts [1] (the hitting set algorithm essentially transforms
logic products-of-sums into sums-of-products). For instance,
the example observation matrix O in Table I generates the
following 6 conflicts

(¬h1 ∨ ¬h2 ∨ ¬h5 ∨ ¬h6) ∧

(¬h1 ∨ ¬h2 ∨ ¬h4 ∨ ¬h6 ∨ ¬h7) ∧

(¬h1 ∨ ¬h3) ∧

(¬h1 ∨ ¬h2 ∨ ¬h4 ∨ ¬h5 ∨ ¬h6 ∨ ¬h7) ∧

(¬h1 ∨ ¬h2 ∨ ¬h6) ∧

(¬h1 ∨ ¬h3 ∨ ¬h6 ∨ ¬h7)

The (minimal) hitting set comprises one single-fault candi-
date {1}, and two double-fault candidates {2, 3} and {3, 6}.
Note that the triple-fault candidate {1, 2, 3}, which equals
the actual fault state, is subsumed by both {1} and {2, 3}
and therefore does not appear in D (which is the minimal
hitting set). The reason why, e.g., {1} subsumes {1, j}, j =
2, 3, . . . , M is that the weak component model (2) allows
any faulty component j to exhibit correct behavior. Hence
{1, j} is also a valid explanation. The hitting set can be
directly observed from O by (multi-)column “chains” of ’1’s
from top to bottom formed by all failing rows of O. Note
that this procedure only considers failed runs. Passed runs
are considered later on when computing the probability of
each diagnostic candidate.

B. Probability Computation
For each multiple-fault candidate the probability of being

the actual diagnosis depends on the extent to which that
candidate explains all observations (pass or fail per run). Let
Pr({j}) denote the a priori probability that a component cj

is at fault. Although this value is typically dependent on code
complexity, design, etc., we will simply assume Pr({j}) = p
(we arbitrarily set p = 0.01 in the context of this paper).
Assuming components fail independently, and in absence of
any observation, the prior probability a particular diagnosis
dk is correct is given by Pr(dk) = p|dk| · (1 − p)M−|dk|.
Similar to the incremental compilation of conflicts per run
we compute the posterior probability for each candidate
based on the pass/fail observation obs for each sequential
run using Bayes’ update rule according to

Pr(dk|obs) =
Pr(obs|dk)

Pr(obs) · Pr(dk)

The denominator Pr(obs) is a normalizing term that is
identical for all dk and thus needs not to be computed
directly. Pr(obs|dk) is defined as

Pr(obs|dk) =

0 if dk and obs are inconsistent
1 if dk logically follows from obs
ε if neither holds

In the context of model-based diagnosis, many policies exist
for ε (see [3]). In this paper we define ε as follows

ε =

{

g(dk)t if run passed
1 − g(dk)t if run failed

where t is the number of faulty components involved in the
run (the rationale being that the more faulty components are
involved, the more likely it is that the run will fail [1]), and
where g is estimated by

g(dk) =
a10(dk)

a10(dk) + a11(dk)

where a1q(dk) =
∑

i=1..N

[(
∨

j∈dk

oij = 1) ∧ ei = q] is a

generalization of the definition in Section II-B to support
multiple fault explanations, q ∈ {0, 1}, and [·] denotes
Iverson’s operator([true] = 1], [false] = 0]).

To illustrate the differences between the probabilistic
approach as presented in this section and the statistical SFL
approach (as explained in Section II-B), again consider the
example O in Table I. The diagnosis D for the different
approaches are listed in Table II. As can be seen, the
top ranked candidate for both Tarantula and Ochiai is not
one of the three faulty locations, whereas for Zoltar-M
one of the faults, namely c1 would be immediately found.
Furthermore, in contrast to Zoltar-M which contains multiple
faults explanations such as {2, 3}, Tarantula and Ochiai only
rank single-fault explanations. To conclude, note that Zoltar-
M only lists candidates that actually explain all observed
failures.

Technique D = {d1(s|pr), . . . , dk(s|pr)}
Tarantula {{4}(1), {7}(1), {2}(0.82), {6}(0.74),

{1}(0.58), {3}(0.37), {5}(0.37)}
Ochiai {{6}(0.77), {1}(0.74), {2}(0.73), {7}(0.71),

{4}(0.58), {3}(0.33), {5}(0.33)}
Zoltar-M {{1}(0.98), {2, 3}(0.99e−2), {3, 6}(0.52e−2)}

Table II
DIAGNOSES FOR EXAMPLE O

While the inherent multiple-fault approach used in Zoltar-
M is asymptotically optimal, the complexity of the un-
derlying hitting set algorithm and subsequently having to
manage a possibly exponential number of multiple-fault
candidates (e.g., update their probability) is prohibitive for
large C (and N, M). Nevertheless, preliminary experiments
with a statistically directed search technique (i.e., using
statistical similarity to guide the search) indicates that the
complexity of our current hitting set computation can be
reduced by several orders of magnitude. In addition, hitting
set completeness can be traded-off to further reduce time
complexity (see [6] for a greedy stochastic search addressing
this issue).

C. Single-fault Case
In this section we show how our above reasoning approach

can be used to derive an optimal similarity coefficient for
single-fault programs.

In the single-fault case (such as the Siemens-S bench-
mark) we know that all failures relate to only one fault,
which, by definition, is included in the minimal hitting set.
Hence, any coefficient approach should consider the minimal
hitting set only (i.e., only those cj which consistently occur
in failing runs). Since for these components by definition
a01 = 0, one only needs to consider a11 and a10. This,
in turn, implies that the ranking is only determined by the
exonerating term a10. In summary, once we only consider
the components included in the hitting set, any of the co-
efficients that includes a10 in the denominator will produce
the same, optimal ranking. Experiments using this “hitting
set filter” combined with a simple similarity coefficient such
as Tarantula indeed confirm that this approach leads to the
best performance [17].

Note that the above filter is only optimal for programs
that have only 1 fault as applying this filter to any multiple-
fault program would be overly restrictive. It would fail to
detect faults that are not always involved in failed runs. For
example, the diagnosis for the O in Table I when using the
filtering approach would yield D = {{1}}, entirely ignoring
two of the three faults. Hence, instead of considering a
single-fault hitting set filter, we modify this approach in
order to also allow application to multiple-fault programs.
Taking the Ochiai coefficient as (best) starting point (for
κ = 1, Eq. 3 follows from Eq. 1 by squaring, and factoring

Program Faulty Versions M N Description
print_tokens 7 539 4,130 Lexical Analyzer
print_tokens2 10 489 4,115 Lexical Analyzer

replace 32 507 5,542 Pattern Recognition
schedule 9 397 2,650 Priority Scheduler
schedule2 10 299 2,710 Priority Scheduler

tcas 41 174 1,608 Altitude Separation
tot_info 23 398 1,052 Information Measure

Table III
THE SIEMENS BENCHMARK SET

out a11(j), none of which changes the ranking) and apply-
ing the above filtering approach, we derive the following
similarity coefficient [1], coined Zoltar-S, according to

sZ-S =
a11(j)

a11(j) + a10(j) + a01(j) + κ · a01(j)·a10(j)
a11(j)

(3)

where κ > 0 is a constant factor that exonerates a
component cj that was either seldom executed in failed runs
or often in passed runs. We empirically verified that the
higher the κ the more identical the diagnosis becomes with
the one obtained by the hitting set filter [17]. In the context
of this paper we limit κ to 10, 000 to avoid round-off errors.

To evaluate the diagnostic capabilities of Zoltar-S in
comparison with other techniques, the Siemens-S set is used.
This well-known benchmark is composed of 7 programs
(see Table III; for detailed info, visit http://sir.unl.edu). In
total Siemens-S provides 132 faulty programs. However, as
no failures are observed in two of these programs, namely
version 9 of schedule2 and version 32 of replace,
they are discarded. Besides, we also discard versions 4
and 6 of print_tokens because the faults are not in
the program itself but in a header file. In summary, we
discarded 4 versions out of 132 provided by the suite, using
128 versions in our experiments. To collect the program
spectra, the gcov1 profiling tool was used. For compatibility
with previous work in (single-) fault localization, we use
the effort/score metric [2], [16] which is the percentage of
statements that need to be inspected to find the fault - in
other words, the rank position of the faulty statement divided
by the total number of statements. Note that some techniques
such as in [11], [16] do not rank all statements in the code,
and their rankings are therefore based on the PDG of the
program.

Figure 1 plots the percentage of located faults in terms of
debugging effort [2]. Apart from the coefficients studied for
SFL, the following techniques are also plotted: Intersection
and Union [16], Delta Debugging (DD) [19], Nearest Neigh-
bor (NN) [16], and Sober [11], which are among the best
SFL techniques (detailed discussion in Section VI). As Sober
is publicly available, we run it in our own environment. The

1http://gcc.gnu.org/onlinedocs/gcc/Gcov.html

values for the other techniques are, however, directly cited
from their respective papers.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

Pe
rc

en
ta

ge
 o

f l
oc

at
ed

 fa
ul

ts

Effort

Zoltar-S
Filter

Ochiai
Tarantula

Sober
NN
DD

Intersection
Union

Figure 1. Effectiveness Comparison (C = 1)

From Figure 1, we conclude that Zoltar-S and the filter
version are consistently the best performing techniques (note
that in the single-fault context Zoltar-M simply reduces to
Zoltar-S), finding 60% of the faults by examining less than
10% of the source code. For the same effort, using Ochiai
would lead a developer to find 52% of the faulty versions
and with Tarantula only 46% would be found. The Zoltar-S
approach is followed by Ochiai, which outperforms Sober
and Tarantula, which as concluded in [11], yield similar
performance. Finally, the other techniques plotted are clearly
outperformed by the spectrum-based techniques.

IV. THEORETICAL EVALUATION

In order to gain understanding of the effects of the various
parameters on the diagnostic performance of the different
approaches, we use a simple, probabilistic model of program
behavior that is directly based on C, N, M, r, and g. Without
loss of generality we model the first C of the M components
to be at fault. For each run each component has probability r
to be involved in that run. If a selected component is faulty,
the probability of exhibiting nominal (“good”) behavior
equals g. When either of the C components fails, the run will
fail. We study the performance of Zoltar-M in comparison
to Tarantula, Ochiai, and Zoltar-S for observation matrices
that are randomly generated according to the above model.

A. Performance Metrics
Before evaluating the results, we first present our perfor-

mance metric. As one of the motivations of our multiple-
fault approach is the exposure of fault multiplicity (parallel
debugging) we refrain from reusing established metrics such
as the diagnostic quality [2] or score [16] but evaluate the
amount of wasted debugging effort W as a function of
the number of parallel debuggers [9], denoted by P which

P 1 2 3 4 5 6 . . .
Tarantula W/I 14/0 29/0 29/1 43/1 43/2 43/3 . . .
Zoltar-M W/I 0/1 0/2 0/3 14/3 – – . . .

Table IV
WASTED EFFORT FOR DIFFERENT DEVELOPERS P

more clearly indicates practical debugging parallelism. The
wasted debugging effort is computed as follows. From the
diagnosis (obtained with either a statistical or reasoning
approach) the first P candidates are examined (debugged)
in parallel [9]. Actual faults are assumed to be properly
debugged, after which the program is retested. Based on the
retest a new diagnosis is obtained (excluding the repaired
components, but including the still uncovered faults that may
have considerably moved up in the ranking). This P -parallel
process continues until in the last iteration the program
retests ok (i.e., all faults have been found). W measures the
percentage of non-faulty components that were debugged in
the above process. For P = 1 the above procedure reduces
to a standard sequential debugging process. For example,
consider the diagnostic reports yield by Tarantula and Zoltar-
M (as in Table II) for the example O in Table I. Table IV
shows the performance profile for these two techniques (I
stands for the number of bugs found in the first debugging
iteration). As can be seen, Tarantula would need more
developers in order to get a bug-free program in one iteration
(6 developers against 3 for Zoltar-M). Furthermore, for
this example, the wasted effort is consistently higher for
Tarantula: with Zoltar-M, 3 developers would eliminate all
bugs from the program at the cost of 0% wasted effort,
whereas with Tarantula 6 developers would be needed at
a cost of 43%. Note that there is no point in putting more
than 4 developers to work as the Zoltar-M diagnosis contains
only 4 different components.

Another reason not to adopt the aforementioned score
metric [16] is that in our synthetic model we do not have
program dependence graph information. Furthermore, the
choice to exclude the actual faults from the debugging effort
(i.e., instead of counting them as effort) is to make our
performance metric independent of the number of faults C.

B. Experimental Results
In our first experiment we focus on the effect of C, N ,

M , r, and g on W . Consequently, we choose P = 1. We
have varied M between 10 and 30 and after verifying that
this does not change our conclusions [1], we choose M =
20 for the plots in the paper. Similarly, we also varied r
between r = 0.4 and r = 0.6, and as there are no significant
differences we only include the plots for r = 0.6, which is
roughly the same as the values measured for the Siemens
set.

Figure 2 plot W versus N for C = 5. We have also
applied the technique for matrices with C = 1, C = 2

0%

20%

40%

60%

80%

100%

 0 10 20 30 40 50 60 70 80 90 100

W
 (%

)

N

Zoltar-M
Ochiai

Tarantula
Zoltar-S

(a) g = 0.1

0%

20%

40%

60%

80%

100%

 0 10 20 30 40 50 60 70 80 90 100

W
 (%

)

N

Zoltar-M
Ochiai

Tarantula
Zoltar-S

(b) g = 0.9

Figure 2. Wasted effort W for C = 5

and C = 8 and the conclusions are essentially the same.
Each measurement represents an average over 1,000 sample
matrices. The plots show that for small N all techniques
start with equal W (for N = 1 it follows that W =
(M − C) · r/M [1]), while for sufficiently large N all
techniques produce an optimal diagnosis. The plots clearly
show that all techniques yield an optimal diagnosis for
sufficiently large N . This happens earlier for small C and g.
In the single-fault case there is hardly any difference in the
various techniques. For small g almost each run that involves
the faulty component yields a failure, already producing
near-perfect diagnoses for only small N . For large g (which
is more realistic, the Siemens set exhibits g values ranging
from 79% (tot_info) to 99% (tcas)), the fraction of
failing runs dramatically decreases (cf. f in Section III-A).
Consequently, a much higher number of runs is required to
obtain a good diagnosis. For C = 5, we see the same trend,
albeit that convergence to good diagnosis is much slower,
especially for high g. This is due to the (combinatorial) fact
that the number of “competitor” candidates of cardinality
B ≤ C (see Section 3.1) greatly increases with C (and
M [1]). The main conclusions is that all techniques are
very similar for the synthetic matrices and no technique
clearly outperforms the other. For C = 5 we conclude
that for small g Zoltar-S outperforms all other techniques,
Zoltar-M is the second-best technique, and Tarantula is the
worst performing technique. Besides, for small g and N ,
the Tarantula technique has very poor performance because
some of the non-faulty components are only touched in
failed runs, hence sharing the first position of the ranking
and degrading the diagnosis. This is also the reason why the
wasted effort first increases and only then starts to decrease
(more passed runs are needed for non-faulty components to
be exonerated). The fact that Zoltar-S outperforms Zoltar-
M comes from the fact that for the synthetic matrices there
are not that many non-faulty components involved in all
failed runs, and therefore Zoltar-S manages to rank the faulty
components on top. For more realistic cases (g = 0.9) all
techniques perform equally (poor), and much higher N is
required to produce high diagnostic quality.

In Figures 3 and 4 we measure W for all approaches as
function of P to study inherent debugging parallelism. For
these plots we set N = 500 to ensure that each technique has

0%

20%

40%

60%

80%

100%

 1 2 3 4 5 6 7 8 9 10

W
 (%

)

P

Zoltar-M
Ochiai

Tarantula
Zoltar-S

(a) g = 0.1

0%

20%

40%

60%

80%

100%

 1 2 3 4 5 6 7 8 9 10

W
 (%

)

P

Zoltar-M
Ochiai

Tarantula
Zoltar-S

(b) g = 0.9

Figure 3. W vs. P for C = 1

0%

20%

40%

60%

80%

100%

 1 2 3 4 5 6 7 8 9 10

W
 (%

)

P

Zoltar-M
Ochiai

Tarantula
Zoltar-S

(a) g = 0.1

0%

20%

40%

60%

80%

100%

 1 2 3 4 5 6 7 8 9 10

W
 (%

)

P

Zoltar-M
Ochiai

Tarantula
Zoltar-S

(b) g = 0.9

Figure 4. W vs. P for C = 5

reached acceptable diagnostic quality. For g = 0.1, W starts
a linear increase after P = C (the “knee”), which indicates
that all C faults are indeed at or near the top of the ranking
(the bump at P = 4 is due to integer division effects).
Except for Ochiai, both Zoltar-S and Tarantula yield similar
performance as Zoltar-M. For C = 1 and g = 0.1, Zoltar-M
has zero wasted effort throughout. This occurs because for
N = 500 the diagnosis only contains the faulty statement
(perfect diagnosis), revealing that there is no point in having
more than 1 developer debugging the program.

While the above results show to what extent debugging
can be efficiently parallelized, in practice information on C
is, of course, not available. In the following, we evaluate
the added value of multiple-fault diagnosis in estimating
the number of debuggers P that can be efficiently de-
ployed in parallel. The plots in Figure 5 show the distri-
bution of the probability (Zoltar-M) or similarity (Zoltar-S,
Ochiai, Tarantula) versus the ranking position. For multiple-
fault diagnoses each member index is counted as separate
position. For cases where the diagnoses are near-perfect
(g = 0.1) the Zoltar-M distribution clearly exhibits the
added information on the program’s fault cardinality C
(corresponding to the “knee” in the previous plots), whereas
the statistical techniques fail to produce any information on
C whatsoever (although the Zoltar-S ranking distribution has
more dynamics). For high g this relative advantage becomes
less as diagnostic quality degrades. Note, that this can be
remedied by further increasing N .

V. EMPIRICAL EVALUATION

Whereas the synthetic observation matrices used in the
previous section are populated using a uniform distribution,
this is not the case with observation matrices for the behavior

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 2 4 6 8 10 12 14 16 18 20

Pr
 /

Co
ef

f

Ranking #

Zoltar-M
Ochiai

Tarantula
Zoltar-S

(a) g = 0.1 and C = 1

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 2 4 6 8 10 12 14 16 18 20

Pr
 /

Co
ef

f

Ranking #

Zoltar-M
Ochiai

Tarantula
Zoltar-S

(b) g = 0.9 and C = 1

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 2 4 6 8 10 12 14 16 18 20

Pr
 /

Co
ef

f

Ranking #

Zoltar-M
Ochiai

Tarantula
Zoltar-S

(c) g = 0.1 and C = 2

 0.01

 0.1

 1

 2 4 6 8 10 12 14 16 18 20

Pr
 /

Co
ef

f

Ranking #

Zoltar-M
Ochiai

Tarantula
Zoltar-S

(d) g = 0.9 and C = 2

 0.001

 0.01

 0.1

 1

 2 4 6 8 10 12 14 16 18 20

Pr
 /

Co
ef

f

Ranking #

Zoltar-M
Ochiai

Tarantula
Zoltar-S

(e) g = 0.1 and C = 5

 0.1

 1

 2 4 6 8 10 12 14 16 18 20

Pr
 /

Co
ef

f

Ranking #

Zoltar-M
Ochiai

Tarantula
Zoltar-S

(f) g = 0.9 and C = 5

Figure 5. Probability/Similarity distribution

of actual programs (different spectral distribution). There-
fore, in this section we will evaluate the same diagnosis
techniques on the Siemens-S set, which was already intro-
duced in Section III-C, and on our multiple-fault extension
Siemens-M.

A. Experimental Setup
The Siemens-M set extends the Siemens-S set with pro-

gram versions that combine several faults from the latter
set. The faults can be selectively activated via conditional
compilation. In our current experiments, we only use the
smallest, and one of largest programs in the Siemens set,
tcas and replace, respectively. The selections of faults
that are available in the Siemens-M set are limited by (1)
their nature (e.g., a fault in non-executable code, which is
not handled by our techniques would effectively reduce a
C-fault diagnosis to a (C − 1)-fault diagnosis), (2) their lo-
cations (several faults in Siemens-S have the same statement
location), and (3) the number of lines of code involved (we
only consider faults that can be attributed to a single line). As
a result, Siemens-M supports combinations of eleven faults
from Siemens-S for both tcas and replace.

As mentioned in Section III-C, the gcov tool is used to
obtain code coverage information for each of the test cases
supplied with the programs in the Siemens set. The Zoltar
tool set contains utilities for transforming gcov output into
the line-hit spectra that constitute the first M columns in

the observation matrix of Section II-A. The error vector in
the last column is constructed by comparing the output of a
faulty version of a program with that of the correct version
of the program, on a given test case.

For the resulting set of program spectra, Zoltar supports
various diagnosis techniques, including Zoltar-M, and the
Tarantula, Ochiai, and Zoltar-S coefficients. In the case of
Zoltar-M, the presence of duplicate columns, following from
the block structure of a program, is exploited in the hitting-
set calculation by grouping all identical columns, while
maintaining the set of components (lines of code) that they
correspond to. This way, larger numbers of components
can be handled than in the case of synthetic observation
matrices. For M we use the number of lines in the correct
versions of tcas and replace (M = 174 and M = 507,
respectively).

B. Experimental Results

In Figure 6 we show W versus P for both programs
when seeded with C = 1, C = 2, and C = 3 faults,
respectively. Zoltar-M’s expensive hitting set computation
was aborted after all diagnosis candidates with cardinality
C ′ had been generated, with C ′ = max(C, 3). For tcas
we also repeated the experiment for C = 5 and C = 10, but
the graphs are similar to those for C = 2 and C = 3, with
the performance of Zoltar-S approaching that of the other
methods as C increases. For replace, a small number of
4-fault versions were analyzed, but because of the hitting set
computation complexity, obtaining results for a significant
number of program versions with more than three faults was
currently impracticable2.

The plotted W values are averaged over several different
program versions: in case of the plots for C = 1, these are all
faulty versions in the Siemens-S set that can be attributed
to a single line of executable code (30 for tcas, and 25
for replace). In the case of the C = 2 and C = 3
plots, these are 40 – 100 randomly selected combinations of
faults. The plateau reached by Zoltar-M for tcas at high P
values is caused by the limited size (ambiguity) of Zoltar-
M’s diagnosis, removing the need to have them inspected
by additional developers.

C. Evaluation

Figure 6(a) and 6(d) confirm the observation of Section IV
that for single faults, Zoltar-S is optimal. Although at
the end of Section III-C we noted that in a single-fault
context, Zoltar-M reduces to Zoltar-S, here Zoltar-M runs in
multiple-fault mode, and the presence of cardinality C ′ = 3
diagnoses in the hitting set, as explained above, is the cause
for the small differences between these two techniques.

2Our latest algorithmic improvement mentioned at the end of Section 3.2
is not yet available for automated experimentation.

Contrary to what we observed in Section IV-B, where
Zoltar-S is among the best performing methods for multiple-
faults, in Figures 6(b), 6(c), 6(e), and 6(f), Zoltar-S per-
forms worst. This is caused by many non-faulty components
that are active in all failed runs. Having a01(j) = 0 in
Eq. (3), such components fail to be exonerated via the term
κ · a01(j)·a10(j)

a11(j) , and will therefore rank high, leading to a
lower quality diagnosis. While in the synthetic observation
matrices it is unlikely that a component is active in all failed
runs, this is quite common in software (e.g., statements that
are always executed).

As shown in Figures 6(b), 6(c), 6(e), and 6(f), for C = 2
and C = 3, Zoltar-M generally outperforms the statistical
techniques, but for tcas, its performance is quite close to
that of the SFL approaches using the Ochiai and Tarantula
coefficients. This can be attributed to the following two
related effects. First, the tcas faults that are available for
making multiple-fault versions have a higher goodness factor
(g = 0.95) than those available for replace (g = 0.86),
making the diagnosis problems for the multiple-fault tcas
versions inherently more difficult. The rationale is that for
faults whose observation matrix inherently does not permit
a good diagnosis (e.g., because the activity of a non-faulty
component accidentally coincides with the occurrence of
failures), all appropriate techniques will yield an equally bad
diagnosis on average. Referring back to the discussion at the
end of Section IV-B, the high values for g also explain why
on average, no technique achieves optimal diagnostic quality
on the Siemens-S and Siemens-M faults, and the consequent
absence of a “knee” in the P − W graph of Zoltar-M.

The second effect that contributes to the difference in the
plots for tcas and replace is that the variations in control
flow in the former program are extremely limited, while
essentially, this is what the diagnosis methods are based
on. As an illustration, for the correct version of tcas, the
observation matrix that follows from the 1,608 test cases that
accompany the program contains many duplicate rows and
columns: the number of unique rows (spectra) and columns
(component behavior profiles) are 8 and 14, respectively.
In comparison, the 5,542 test cases of replace lead to
2,023 different spectra, and 91 different behavior profiles,
providing much more information to base the diagnosis on.

The latter observation confirms our expectation that the
effectiveness of automated diagnosis techniques generally
improves with program size. As an illustration, near-zero
wasted effort is implied by the experiments with SFL on a
0.5 MLOC industrial software product, reported in [20]. In
summary, tcas is too simple, and Figures 6(e) and 6(f) can
be expected to be the more representative of multiple-fault
debugging in a realistic development environment. From
this we conclude that Zoltar-M can be expected to yield
a significant improvement of debugging efficiency over the
statistical methods in the multiple-fault case.

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 10 20 30 40 50 60 70

W
 (%

)

P

Zoltar-M
Ochiai

Tarantula
Zoltar-S

(a) tcas, C = 1

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 10 20 30 40 50 60 70

W
 (%

)

P

Zoltar-M
Ochiai

Tarantula
Zoltar-S

(b) tcas, C = 2

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 10 20 30 40 50 60 70

W
 (%

)

P

Zoltar-M
Ochiai

Tarantula
Zoltar-S

(c) tcas, C = 3

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 0 10 20 30 40 50 60 70

W
 (%

)

P

Zoltar-M
Ochiai

Tarantula
Zoltar-S

(d) replace, C = 1

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 0 10 20 30 40 50 60 70
W

 (%
)

P

Zoltar-M
Ochiai

Tarantula
Zoltar-S

(e) replace, C = 2

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 0 10 20 30 40 50 60 70

W
 (%

)

P

Zoltar-M
Ochiai

Tarantula
Zoltar-S

(f) replace, C = 3

Figure 6. Wasted effort for 1 - 64 developers on the Siemens-M benchmark

VI. RELATED WORK

In logic (model-based) reasoning approaches to automatic
software debugging, the program model is typically gen-
erated using static analysis. In the work of Mayer and
Stumptner [13] an overview of the techniques to automat-
ically generate program models is given. They conclude
that the models generated by means of abstract interpreta-
tion [12] are the most accurate for debugging. Model-based
approaches also include the work of Wotawa, Stumptner,
and Mayer [18]. Although model-based diagnosis inherently
considers multiple-faults, thus far the above software debug-
ging approaches only consider single faults. Apart from this,
our approach differs in the fact that we use program spectra
as dynamic information on component activity, which allows
us to exploit execution behavior, unlike static approaches.
Furthermore, our approach does not rely on the approxima-
tions required by static techniques (i.e., incompleteness).

Statistical approaches are very attractive from complexity-
point of view. Well-known examples are the Tarantula
tool [10], the Nearest Neighbor technique [16], the Sober
tool [11], and the Ochiai coefficient [2]. Although differ-
ing in the way they derive the statistical fault ranking,
all techniques are based on measuring program spectra.
Examples of other techniques that do not require extra
knowledge of the program under analysis are the Delta
Debugging technique [19] and the dynamic program slicing
technique [7].

Essentially all of the above work has mainly been studied
in the context of single faults, except for recent work by
Jones, Bowring, and Harrold [9], which is motivated by the
obvious advantages of parallel debugging with respect to
development time reduction. They use clustering techniques
to identify traces (rows in O) which refer to the same fault,

after which Tarantula is applied to each cluster of rows.
While our work has the same motivation, our approach is
based on logic reasoning instead of clustering. Although
both introduce an increase of computational complexity,
compared to the aforementioned statistical approaches, our
hitting set analysis approach is asymptotically optimal, while
in the clustering approach there is a possibility that multiple
developers will still be effectively fixing the same bug. As
their parallel debugging approach has only been evaluated
in a restricted empirical context, our results, e.g., for the
Siemens programs, cannot yet be compared.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a multiple-fault localiza-
tion technique, Zoltar-M, which is based on the dynamic,
spectrum-based measurement approach from statistical fault
localization methods, combined with a logic (and proba-
bilistic) reasoning approach from model-based diagnosis,
inspired by previous work in both separate disciplines [2],
[6]. We have compared the performance of Zoltar-M with
Tarantula and Ochiai, which are amongst the best known
statistical SFL approaches, as well as a new statistical SFL
technique, coined Zoltar-S, derived by us as a by-product of
our reasoning approach, and shown to be optimal for single-
fault programs (C = 1).

Our synthetic experiments show that both the reasoning
and statistical approaches have the same general properties
with respect to the influence of the parameters we intro-
duced, viz, number of components M , number of test cases
M , testing code coverage r, testing fault coverage g, and
fault cardinality C. For low g both approaches yield near-
perfect quality for relatively small N , while for high g
(typical for many components in practice) a much larger

N is required for good diagnosis. In most cases it is Zoltar-
S that outperforms Zoltar-M, which for C > 1 is due to the
fact that all components are involved in different runs with
the same probability, making it easy for Zoltar-S to pinpoint
the faulty ones. Despite these small differences, Zoltar-M’s
ranking probability distribution clearly provides information
on the program’s potential debugging parallelism while
statistical techniques fail to provide any information.

Our results on two multiple-fault programs of our newly
created Siemens-M benchmark suggest that for programs
with small spectral distribution variability (and high g value)
both approaches do not significantly differ. For the larger
program much more test information is available (N), the g
parameter is somewhat lower, and the spectral distribution
is highly non-uniform. In this case (for C > 1) Zoltar-M
clearly outperforms all statistical approaches. The disparity
with the synthetic results is due to the particular spectral
distribution properties of real programs (such as components
being executed in all failed runs). Aimed at providing a
first-order understanding of the impact of some of the
main parameters on diagnostic performance, our simple,
probabilistic program model is still far from being able to
accurately account for real program behavior.

Although both the reasoning and statistical approach are
based on the same (spectral) information, our reasoning
approach generally produces improved diagnostic informa-
tion, in terms of debugging effort and/or (most notably)
potential debugging parallelism. Nevertheless our results
also indicate that even in the multiple-fault case statistical
approaches are by no means outclassed by our reasoning
approach, a result that was not initially anticipated. Given
the higher complexity of the reasoning approach there may
be situations where application of a statistical technique such
as Ochiai or Zoltar-S may be preferred over Zoltar-M. In
this respect we believe this result may be relevant in the
context of the multiple-fault / parallel debugging work by
Jones, Bowring, and Harrold [9]. Provided their clustering
approach produces spectral partitions that apply to a single
fault our results would suggest the use of Zoltar-S, rather
than Tarantula.

Despite the higher complexity of Zoltar-M than the statis-
tical approaches, compared to other model-based reasoning
approaches, Zoltar-M can handle larger programs (currently
up to roughly 500 lines with up to 10 faults) while prelimi-
nary experiments have already indicated orders of magnitude
of speedup potential. Future work will therefore clearly
include algorithmic improvement of our current minimal hit-
ting set algorithm in the statistically-directed search direction
mentioned earlier. These improvements pave the way for
much more elaborate experimentation

REFERENCES

[1] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund. An
observation-based model for fault localization. In Proc.

WODA’08.

[2] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund. On the
accuracy of spectrum-based fault localization. In Proc. TAIC
PART ’07.

[3] J. de Kleer. Diagnosing intermittent faults. In Proc. DX’07.

[4] J. de Kleer, A. K. Mackworth, and R. Reiter. Characterizing
diagnoses and systems. Artificial Intelligence, 56:197–222,
1992.

[5] J. de Kleer and B. C. Williams. Diagnosing multiple faults.
Artif. Intell., 32(1):97–130, 1987.

[6] A. Feldman, G. Provan, and A. J. C. van Gemund. Computing
minimal diagnoses by greedy stochastic search. In Proc.
AAAI’08.

[7] N. Gupta, H. He, X. Zhang, and R. Gupta. Locating faulty
code using failure-inducing chops. In Proc. ASE’05.

[8] M. J. Harrold, G. Rothermel, R. Wu, and L. Yi. An empirical
investigation of program spectra. In Proc. PASTE’98.

[9] J. A. Jones, J. F. Bowring, and M. J. Harrold. Debugging in
parallel. In Proc. ISSTA’07.

[10] J. A. Jones, M. J. Harrold, and J. Stasko. Visualization of
test information to assist fault localization. In Proc. ICSE’02,
pages 467–477, Orlando, Florida, USA, May 2002.

[11] C. Liu, X. Yan, L. Fei, J. Han, and S. Midkiff. Sober:
statistical model-based bug localization. In Proc. ESEC/FSE-
13.

[12] W. Mayer and M. Stumptner. Abstract interpretation of
programs for model-based debugging. In Proc. IJCAI’07.

[13] W. Mayer and M. Stumptner. Models and tradeoffs in model-
based debugging. In Proc. ASE’08.

[14] J. Pietersma and A. J. C. van Gemund. Temporal versus
spatial observability tradeoffs in model-based diagnosis. In
Proc. SMC’06.

[15] R. Reiter. A theory of diagnosis from first principles. Artif.
Intell., 32(1):57–95, April 1987.

[16] M. Renieris and S. P. Reiss. Fault localization with nearest
neighbor queries. In Proc. ASE’03.

[17] R. Vayani. Improving automatic software fault localization,
July 2007. Master’s thesis, Delft University of Technology.

[18] F. Wotawa, M. Stumptner, and W. Mayer. Model-based
debugging or how to diagnose programs automatically. In
Proc. IAE/AIE’02.

[19] A. Zeller. Isolating cause-effect chains from computer pro-
grams. In Proc. FSE’02.

[20] P. Zoeteweij, R. Abreu, R. Golsteijn, and A. J. C. van
Gemund. Diagnosis of embedded software using program
spectra. In Proc. ECBS’07.

