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Abstract
Automated diagnosis of errors detected during software
testing can improve the efficiency of the debugging pro-
cess, and can thus help to make software more reliable.
In this paper we discuss the application of a specific au-
tomated debugging technique, namely software fault local-
ization through the analysis of program spectra. An im-
portant aspect of this technique is the similarity coefficient
used to rank potential fault locations. We evaluate the ef-
fectiveness of spectrum-based fault localization in a set of
benchmark programs. In this context, our experiments in-
dicate that a particular coefficient consistently outperforms
the coefficients currently used by other tools. Furthermore,
we also applied this technique to an industrial TV software
product. We discuss why it is particularly well suited for
this application domain, and through experiments on an in-
dustrial test case we demonstrate that it can lead to highly
accurate diagnoses of realistic errors.

Keywords: Software reliability, automated debugging, soft-
ware fault diagnosis, fault localization, program spectra.

1 Introduction
Software reliability can generally be improved through ex-
tensive testing and debugging, but this is often in conflict
with market conditions: software cannot be tested exhaus-
tively, and of the bugs that are found, only those with
the highest impact on the user-perceived reliability can be
solved before the release. In this typical scenario, testing
reveals more bugs than can be solved, and debugging is the
bottleneck for improving reliability. Automated debugging
techniques can help to reduce this bottleneck. These tech-
niques give a diagnosis for errors that are detected during
the execution of a program, which can help programmers to
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locate their root causes, and thus to reduce the effort spent
on manual debugging.

Diagnosis techniques, which include automated debug-
ging, can be classified as white box or black box, depend-
ing on the amount of knowledge that is required about the
system under study. An example of a white box technique
is model-based diagnosis (see, e.g., [7, 8]), where a diagno-
sis is obtained by logical inference from a formal model
of the system, combined with a set of run-time observa-
tions. While white box approaches to software diagnosis
exist (see, e.g., [14, 17, 19, 20]), software modeling is ex-
tremely complex. Hence, most software diagnosis tech-
niques are black box (see, e.g., [4, 6, 12, 13]). The subject
of this paper is a specific automated debugging technique,
namely software fault localization through the analysis of
program spectra. Because this technique requires practi-
cally no information about the system being diagnosed, it
can be classified as a black box diagnosis technique.

Program spectra can be seen as projections of traces of
software activity. Typically, this projection is much more
compact than a trace, which makes it an attractive technique
in resource-constrained environments, such as embedded
systems. The technique studied in this paper is based on an-
alyzing the differences between program spectra obtained
for correct behavior of the software, and program spectra
obtained for faulty behavior of the software. An essen-
tial part of this analysis is the computation of a measure of
similarity between different vectors in the program spectra
data (each vector represents whether a given part in the pro-
gram was executed in different transactions) and a vector
that contains information about the detected errors. Differ-
ent application reports of the technique are now emerging
in the literature, but all use different similarity measures.

In this paper we first investigate the influence of the sim-
ilarity measure on the quality of the diagnosis. To this end
we apply the fault localization technique on a benchmark
set of software faults known as the Siemens Suite. We ob-
tain multiple diagnoses for every fault in the suite, each of
them for a different similarity measure. These similarity



measures are taken from existing diagnosis tools in the areas
of recovery and automated debugging, and from the molec-
ular biology domain. A diagnosis for a particular measure
of similarity consists of a list of possible locations for the
fault ranked in order of similarity. Our evaluation is based
on the position of the (known) location of the fault in this
ranking. In particular, the contributions of this experiment
are the following.

• We recognize that several existing tools are implemen-
tations of the same technique: fault diagnosis through
the comparison of program spectra, which allows us to
compare the techniques.

• We identify a measure of similarity between the pro-
gram spectra that yields an average performance im-
provement of 5% under the specific conditions of our
experiments, in terms of the amount of code that must
be inspected. Improvements up to 30% are measured.

Besides the evaluation of the effectiveness of fault local-
ization through program spectra, we also study the applica-
bility of the technique to embedded software, and specifi-
cally to embedded software in high-volume consumer elec-
tronics products. To support the relevance of the tool in this
context, we report the outcome of two experiments, where
we diagnosed two different errors occurring in the control
software of a particular product line of television sets from
Philips. In both experiments, the technique is able to locate
the (known) faults that cause these errors quite well, and in
one case, this implies an accuracy of a single statement in
approximately 450K lines of code.

The remainder of this paper is organized as follows. In
Section 2 we introduce some basic concepts and terminol-
ogy, and explain the diagnosis technique in more detail. In
Section 3 we evaluate the diagnostic quality of a different
number of similarity coefficients in pinpointing the faulty
location using program spectra, and in Section 4 we discuss
its applicability to embedded software in consumer elec-
tronics products. Related work is presented in Section 5.
We present our conclusion in Section 6.

2 Preliminaries

In this section we introduce program spectra, and describe
how they are used for diagnosing software faults. First we
introduce the necessary terminology.

2.1 Failures, Errors, and Faults

As defined in [3], we use the following terminology.

• A failure is an event that occurs when delivered service
deviates from correct service.

void RationalSort(int n, int *num, int *den)
{ /* block 1 */

int i,j,temp;

for ( i=n-1; i>=0; i-- ) {
/* block 2 */
for ( j=0; j<i; j++ ) {

/* block 3 */
if (RationalGT(num[j], den[j],

num[j+1], den[j+1])) {
/* block 4 */
temp = num[j];
num[j] = num[j+1];
num[j+1] = temp; } } }

}

Figure 1. A faulty C function for sorting rational
numbers

• An error is the part of the total state of the system that
may cause a failure.

• A fault is the cause of an error in the system.

To illustrate these concepts, consider the C function in
Figure 1. It is meant to sort, using the bubble sort algo-
rithm, a sequence of n rational numbers whose numerators
and denominators are passed via parameters num and den,
respectively. There is a fault (bug) in the swapping code of
block 4: only the numerators of the rational numbers are
swapped. The denominators are left in their original order.

A failure occurs when applying RationalSort yields
anything other than a sorted version of its input. An er-
ror occurs after the code inside the conditional statement is
executed, while den[j] 6= den[j+1]. Such errors can
be latent: if we apply RationalSort to the sequence
〈 4
1 , 2

2 , 0
1 〉, an error occurs after the first two numerators are

swapped. However, this error is “canceled” by later swap-
ping actions, and the sequence ends up being sorted cor-
rectly. Note that faults do not automatically lead to errors
either: no error will occur if the input is already sorted, or
if all denominators are equal.

The purpose of diagnosis is to locate the faults that are
the root cause of detected errors. As such, error detection is
a prerequisite for diagnosis. As a rudimentary form of er-
ror detection, failure detection can be used, but in software
more powerful mechanisms are available, such as pointer
checking, array bounds checking, deadlock detection, etc.

In a software context, faults are often called bugs, and
diagnosis is part of debugging. Computer-aided techniques
as the one we consider here are known as automated debug-
ging.



2.2 Program Spectra
A program spectrum [16] is a collection of data that pro-
vides a specific view on the dynamic behavior of software.
This data is collected at run-time, and typically consist of a
number of counters or flags for the different parts of a pro-
gram. For example, a block count spectrum tells how often
each block of code is executed during a run of a program. In
this paper, a block of code is a C language statement, where
we do not distinguish between the individual statements of a
compound statement, but where we do distinguish between
the cases of a switch statement1.

To illustrate the concept of a program spectrum, suppose
that the function RationalSort of Figure 1 is used to
sort the sequence 〈 2

1 , 3
1 , 4

1 , 1
1 〉, which it happens to do cor-

rectly. This would result in the following block count spec-
trum, where block 5 refers to the body of the RationalGT
function, which has not been shown in Figure 1.

block 1 2 3 4 5
count 1 4 6 3 6

Block 1, the body of the function RationalSort, is exe-
cuted once. Blocks 2 and 3, the bodies of the two loops, are
executed four and six times, respectively. To sort our exam-
ple array, three exchanges must be made, and block 4, the
body of the conditional statement, is executed three times.
Block 5, the RationalGT function body, is executed six
times: once for every iteration of the inner loop.

If we are only interested in whether a block is executed
or not, we can use binary flags instead of counters. In this
case, the block count spectra revert to block hit spectra. Be-
side block count/hit spectra, many other forms of program
spectra exist. See [9] for an overview. In this paper we
will work with block hit spectra, and hit spectra for logi-
cal threads used in the software of our test case (see Sec-
tion 4.2).

2.3 Fault Diagnosis
For fault diagnosis we need program spectra both for runs
of the software in which an error has been detected (called
failed runs), and for runs in which no error has been de-
tected (called passed runs). Analyzing these spectra may
identify those parts of a program that are active primarily in
failed runs. These parts are also likely to contain the faults
that cause the detected errors. We will demonstrate this ap-
proach using the RationalSort example.

Suppose we apply RationalSort to the two se-
quences S1 = 〈 1

4 , 1
3 , 1

2 , 1
1 〉 and S2 = 〈 3

1 , 2
2 , 4

3 , 1
4 〉. S1 is

already sorted, and leads to a passed run, but for S2 the cal-
culated result is 〈 1

1 , 2
2 , 4

3 , 3
4 〉 instead of 〈 1

4 , 2
2 , 4

3 , 3
1 〉, which

is a clear indication that an error has occurred. The block
1This is a slightly different notion than a basic block, which is a block

of code that has no branch.
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Figure 2. The ingredients of fault diagnosis

hit spectra for these two runs are as follows (’X’ denotes a
hit).

block
input 1 2 3 4 5 error
S1 X X X X
S2 X X X X X X

The difference between the two block hit spectra (correctly)
identifies block 4 as the most likely location of the fault:
while all other blocks are executed in both runs, block 4
only occurs in the run where the error is detected.

Of course, this example is contrived in many ways: the
number of blocks is small, no undetected errors have oc-
curred, no routine in the program has multiple call sites, etc.
However, it serves to illustrate the basic principle: the spec-
tra of M runs constitute a binary matrix, whose columns
correspond to N different parts of the program (see Fig-
ure 2). In some of the runs an error is detected. This infor-
mation constitutes another column vector, the error vector.
This vector can be though of as to represent a hypothetical
part of the program that is responsible for all observed er-
rors. Fault diagnosis essentially consists in identifying the
part whose column vector resembles the error vector most.

In the field of data clustering, resemblances between vec-
tors of binary, nominally scaled data, such as the columns
in our matrix of program spectra, are quantified by means
of similarity coefficients (see, e.g., [11]). As an example,
the Jaccard similarity coefficient, which we used in our ex-
periments, expresses the similarity sj of column j and the
error vector as the number of positions in which these vec-
tors share an entry 1, divided by this same number plus the
number of positions in which the vectors have different en-
tries:

sj =
a11(j)

a11(j) + a01(j) + a10(j)
(1)

where apq(j) = |{i | xij = p ∧ ei = q}|, and p, q ∈ {0, 1}.
Under the assumption that a high similarity to the error

vector indicates a high probability that the corresponding
parts of the software cause the detected errors, the calcu-
lated similarity coefficients rank the parts of the program
with respect to their likelihood of containing the faults.



3 Benchmark Experiments
In this section we evaluate the effectiveness of the technique
previously presented using a benchmark set of programs.

3.1 Benchmark Set
Evaluating different similarity coefficient techniques re-
quires us to thoroughly test them. For this purpose we used
a set of test programs known as the Siemens suite [10]. The
Siemens suite is composed of seven programs. Every single
program has a correct version and a set of faulty versions
of the same program. Each faulty version contains exactly
one fault. However, the fault may span through multiple
statements and/or functions. Each program also has a set of
inputs. Those inputs were created with the intention to test
the full coverage of the programs. Table 1 provides more
information about the programs in the package (for more
detailed information refer to [10]). Although the Siemens
suite was not assembled with the purpose of testing fault di-
agnosis techniques, it is typically used by the research com-
munity as the set of programs to test their techniques.

In our experiments we were not able to use all the pro-
grams provided by the Siemens suite. Because we conduct
our experiments using block hit spectra, we can not use
programs which contain data-dependent faults, i.e., faults
that do not influence control flow. Versions 4 and 6 of
print tokens, version 38 of tcas, and version 10 of tot info
contain errors that are considered to be data dependent and
were therefore discarded. Version 9 of schedule2 and ver-
sion 32 of replace were not considered in our experiments
because no test case fails and therefore the existence of a
fault was never revealed. Furthermore, as we are compar-
ing ranking techniques, we decided to limit our experiment
to single site faults. Hence, versions 12, and 21 of replace,
versions 10, 11, 15, and 40 of tcas, version 7 of schedule,
and version 1 of print tokens were also discarded because
the fault is extended to more than one site. In total, we
discarded 14 versions out of 132 versions provided by the
suite, using 118 versions in our experiments.

3.2 Data Acquisition
Collecting Spectra For obtaining block hit spectra we in-
strumented the source code of every single program in the
Siemens suite. A function call was automatically inserted
in the beginning of every block of code to log its execution.
To automatically instrument the programs, we use the Front
parser generator [2] (See [1] for details of the instrumenta-
tion process). Moreover, the programs were compiled on a
Linux based environment with gcc-3.2.

Error Detection As for each program the Siemens suite
includes a correct version, we use the output of the correct
version of each program as error detection reference. We

characterize a run as ‘failed’ if its output differs from the
corresponding output of the correct version, and as ‘passed’
otherwise. As we explained in Section 2.1, failure detection
is a rudimentary form of error detection where a faulty pro-
gram may well go undetected. Suppose block j is the faulty
block and recall apq as defined in Section 2.3, we define
error detection accuracy for a given faulty block as

qe =
a11(j)

a11(j) + a10(j)

With our strategy to detect failing and passing runs, we
cannot expect good error detection accuracy. On average
per program, in the Siemens set the error accuracy ranges
from 1.2% (schedule2) to 21.1% (tot info). This implies
that measured diagnostic quality will be limited due to this
low error detection accuracy.

3.3 Evaluation Metric
For the purpose of this discussion, we define quality of
the diagnosis as the position that the faulty block has in
the ranking. The notion behind this measure is how many
blocks we still need to inspect until we identify the faulty
block. If there are two blocks that rank with the same coef-
ficient, we use the worst ranking position for both of them.

More precisely, let d ∈ {1, . . . , N} be the index of
the block that we know to contain the fault. For all j ∈
{1, . . . , N}, let sj denote the similarity coefficient calcu-
lated for block j. Then the diagnostic quality is given by

qd = |{j|sj ≥ sd}| (2)

3.4 Similarity Coefficients
The benchmark set of programs is a controlled environment
where it is possible to test the efficiency of the technique de-
scribed before. An important parameter of this technique is
the similarity coefficient used to diagnose the faulty location
and therefore we investigate the influence of the similar-
ity coefficient on the quality of the diagnosis by applying a
number of similarity coefficients known from the literature
on the same data, and comparing the resulting diagnoses.
Apart from the Jaccard coefficient presented in Section 2.3,
we also evaluate the following similarity coefficients:

• Tarantula:

sj =
a11(j)

a11(j)+a01(j)

a11(j)
a11(j)+a01(j)

+ a10(j)
a10(j)+a00(j)

(3)

This coefficient is used in the Tarantula system [13,
12].

• AMPLE:

sj =| a11(j)
a01(j) + a11(j)

− a10(j)
a00(j) + a10(j)

| (4)



Program Faulty Versions Blocks Test Cases Description
print tokens 7 110 4056 lexical analyzer

print tokens2 10 105 4071 lexical analyzer
replace 32 124 5542 pattern recognition

schedule 9 53 2650 priority scheduler
schedule2 10 60 2680 priority scheduler

tcas 41 20 1578 altitude separation
tot info 23 44 1054 information measure

Table 1. Description of the Siemens Suite

This coefficient is used by the AMPLE tool. In [6] it is
assumed that there is exactly one failing run, in which
case the denominator a01(j) + a11(j) equals 1.

• Ochiai:

sj =
a11(j)√

(a11(j) + a01(j)) ∗ (a11(j) + a10(j))
(5)

This coefficient is used in [5] for computing genetic
similarity in molecular biology.

In addition to the coefficient of Eq. (3), the Tarantula sys-
tem uses a second coefficient, which amounts to the max-
imum of the two fractions in the denominator of Eq. (3).
This second coefficient is interpreted as a brightness value
by its visualization system, but the experiments in [12] in-
dicate that the above coefficient can be studied in isolation.
For this reason, we have not taken the brightness coefficient
into account.

The AMPLE coefficient is used here outside its context.
It amounts to the relative difference between the number of
occurrences of a block in passed and failed runs, and hence
also takes absence of a block in failing runs into account.
This probably has little use without accumulating the cal-
culated values to a coarser-grained unit of diagnosis (cf.,
accumulating call sequence weights to class weights, see
Section 5), and therefore one should not project our results
for this coefficient to the AMPLE tool.

Several other similarity coefficients are used in data clus-
tering (see [5] for a study in the context of molecular bi-
ology). Although all the coefficients presented in [5] were
used in our experiments, in this paper we have only included
the Ochiai coefficient, which gave the best results.

3.5 Experimental Results
This section presents results obtained by applying the co-
efficients of similarity described in Section 3.4 to the data
collected by the execution of the benchmark programs. The
intention of this experiment is to find which of the coeffi-
cients of similarity leads to the better diagnosis according
to the metric (2).

In Table 2 we show the average ranking position of the
actual fault for the different similarity functions introduced

Jaccard Tarantula AMPLE Ochiai
print tokens 7.3 10.5 2.0 1.0
print tokens2 17.5 20.0 16.4 13.9

replace 11.6 12.2 12.7 7.6
schedule 2.9 3.0 11.3 1.6

schedule2 31.1 31.3 34.7 25.1
tcas 8.8 8.8 9.8 7.9

tot info 9.6 11.0 13.2 7.1

Table 2. Average fault ranking position

above, per program. For each program we run all the ver-
sions (faults) on all test cases, and rank the blocks according
to Equations (1), (3), and (5). Per equation we determine
the position qd of the faulty block in the ranking, and aver-
age this number over all versions of the program. We do not
average over the seven programs because they have largely
varying numbers of blocks.

One significant observation from this table is that the
Ochiai coefficient (Eq. (5)) consistently outperforms the
other techniques in terms of diagnostic quality. The Jaccard
coefficient and the coefficient used by Tarantula sometimes
happen to have the same quality of diagnosis. However, in
all except one of the situations where they differ we observe
that Jaccard is better than Tarantula’s coefficient. AMPLE’s
coefficient produces the worst quality of diagnosis except
for two programs where the quality was better than Jaccard
and the coefficient used by Tarantula. In one of these pro-
grams, the AMPLE coefficient yields similar quality com-
pared to the Ochiai coefficient. As noted in Section 5, we
are using the AMPLE coefficient outside its original con-
text, and hence, this does not imply that the AMPLE system
performs worse than the Tarantula system.

Figure 3 displays the same information as Table 2, ex-
pressed as the percentage of blocks a programmer has to
inspect until he/she finds the bug, assuming that the pro-
grammer would inspect the code according to the ranking
created by the diagnosis technique. This percentage is de-
fined by the average rank of the fault divided by the total
number of blocks. From this figure it is immediately clear
that, under the specific conditions of our experiments, the
Ochiai coefficient is superior. Using this coefficient of sim-
ilarity, in the worst case of this experiment, the software de-



Figure 3. Percentage of blocks to be inspected

veloper is still ‘obliged’ to inspect 40% of the code to find
the fault. In the best case, only 1% needs to be inspected.
The Ochiai coefficient presents improvements ranging from
2.6% to 10% on average per program over the Jaccard co-
efficient (second-best technique). Per faulty version, im-
provements up to 30% were measured. Overall, this co-
efficient decreases the percentage of blocks of code to be
inspected by 5%.

Figure 3 also shows that all of the coefficients work
poorly for some programs, for instance schedule2 and tcas.
The possible causes for poor rankings are, mainly, when the
faulty block is always exercised in passed and failed runs
(for instance, the main function), deleted code, and depen-
dent blocks (i.e., blocks that are always executed when the
faulty block is also executed).

4 Applicability to Embedded Soft-
ware

In this section we evaluate the feasibility of spectrum-based
fault diagnosis to embedded (TV) software.

4.1 Relevance to Embedded Software

The effectiveness of the diagnosis technique previously in-
troduced in Section 2 has been demonstrated in Section 3
and also in several articles (see, e.g., [4], [13]). In this sec-
tion we present the benefits and discuss the issues specifi-
cally related to debugging embedded software in consumer
electronics products. Especially because of constraints im-
posed by the market, the condition under which this soft-
ware is developed are somewhat different from those for
other software products:

• To reduce unit costs, and often to ensure portability
of the devices, the software runs on non-commodity
hardware, and computing resources are limited.

• As a consequence, many facilities that developers of
non-embedded software have come to rely on are ab-
sent, or are available only in rudimentary forms. Ex-
amples are profiling tools that give insight in the dy-
namic behavior of systems.

• At the same time, the systems are highly concurrent,
and operate at a low level of abstraction from the hard-
ware. Therefore, their design and implementation are
complicated by factors that can largely be abstracted
away from in other software systems, such as dead-
lock prevention, and timing constraints involved in,
e.g., writing to the graphics display only in those frac-
tions of a second that the screen is not being refreshed.

• On top of challenges that the entire software indus-
try has to deal with, such as geographically distributed
development organizations, the strong competition be-
tween manufacturers of consumer electronics makes it
absolutely vital that release deadlines are met.

• Although important safety mechanisms, such as short-
circuit detection, are sometimes implemented in soft-
ware, for a large part of the functionality there are no
personal risks involved in transient failures.

Consequently, it is not uncommon that consumer elec-
tronics products are shipped with several known software
faults outstanding. To a certain extent, this also holds for
other software products, but the combination of the com-
plexity of the systems, the tight constraints imposed by the
market, and the relatively low impact of the majority of pos-
sible system failures creates a unique situation. Instead of
aiming for correctness, the goal is to create a product that is
of value to customers, despite its imperfections, and to bring
the reliability to a commercially acceptable level (also com-
pared to the competition) before a product must be released.

The technique of Section 2 can help to reach this goal
faster, and may thus reduce the time-to-market, and lead to
more reliable products. Specific benefits are the following.

• As a black-box diagnosis technique, it can be applied
without any additional modeling effort. This effort
would be hard to justify under the market conditions
described above. Moreover, concurrent systems are
difficult to model.

• The technique improves insight in the run-time behav-
ior. For embedded software in consumer electronics,
this is often lacking, because of the concurrency, but
also because of the decentralized development.

• We expect that the technique can easily be integrated
with existing testing procedures, such as overnight
playback of recorded usage scenarios. In addition to



the information that errors have occurred in some sce-
narios, this gives a first indication of the parts of the
software that are likely to be involved in these errors.
In the large, geographically distributed development
organizations that we are dealing with, it may also help
to identify which teams of developers to contact.

• Last but not least, the technique is light-weight, which
is relevant because of the non-commodity hardware
and limited computing resources. All that is needed is
some memory for storing program spectra, or for cal-
culating the similarity coefficients on the fly (which re-
duces the space complexity from O(M×N) to O(N),
see Section 4.6). Profiling tools such as gcov are con-
venient for obtaining program spectra, but they are typ-
ically not available in a development environment for
embedded software. However, the same data can be
obtained through source code instrumentation.

While none of these benefits are unique, their combination
makes program spectrum analysis an attractive technique
for diagnosing embedded software in consumer electronics.

4.2 Platform
The subject of our experiments is the control software in a
particular product line of analog television sets. All audio
and video processing is implemented in hardware, but the
software is responsible for tasks such as decoding remote
control input, displaying the on-screen menu, and coordi-
nating the hardware (e.g., optimizing parameters for audio
and video processing based on an analysis of the signals).
Most teletextfunctionality is also implemented in software.

The software itself consists of approximately 450K lines
of C code, which is configured from a much larger (several
MLOC) code base of Koala software components [18].

The control processor is a MIPS running a small multi-
tasking operating system. Essentially, the run-time environ-
ment consists of several threads with increasing priorities,
and for synchronization purposes, the work on these threads
is organized in 315 logical threads inside the various com-
ponents. Threads are preempted when work arrives for a
higher-priority thread.

The total available memory in consumer sets is two
megabyte, but in the special developer version that we used
for our experiments, another two megabyte was available.
In addition, the developer sets have a serial connection, and
a debugger interface for manual debugging on a PC.

4.3 Faults
We diagnosed two faults, one existing, and one that was
seeded to reproduce an error from a different product line.

Load Problem. A known problem with the specific version
of the control software that we had access to, is that after

Figure 4. CPU load measured per second

teletext viewing, the CPU load when watching television
(TV mode) is approximately 10% higher than before tele-
text viewing. This is illustrated in Figure 4, which shows the
CPU load for the following scenario: one minute TV mode,
30 s teletext viewing, and one minute of TV mode. The
CPU load clearly increases around the 60th sample, when
the teletext viewing starts, but never returns to its initial
level after sample 90, when we switch back to TV mode.

Teletext Lock-up Problem. Another product line of televi-
sion sets provides a function for searching in teletext pages.
An existing fault in this functionality entails that searching
in a page without visible content locks up the teletext sys-
tem. A likely cause for the lock-up is an inconsistency in
the values of two state variables in different components,
for which only specific combinations are allowed. We hard-
coded a remote control key-sequence that injects this error
on our test platform.

4.4 Technical Details

We wrote a small Koala component for recording and stor-
ing program spectra, and for transmitting them off the tele-
vision set via the serial connection. The transmission is
done on a low-priority thread while the CPU is otherwise
idle, in order to minimize the impact on the timing behav-
ior. Pending their transmission via the serial connection,
our component caches program spectra in the extra mem-
ory available in our developer version of the hardware.

For diagnosing the load problem we obtained hit spectra
for the logical threads mentioned in Section 4.2, resulting
in spectra of 315 binary flags. We approached the lock-
up problem at a much finer granularity, and obtained block
hit spectra for practically all blocks of code in the control
software, resulting in spectra of over 60,000 flags.



The hit spectra for the logical threads are obtained by
manually instrumenting a centralized scheduling mecha-
nism. For the block hit spectra we automatically instru-
mented the entire source code as described in Section 3.2.

In Section 2.3 we use program spectra for different runs
of the software, but for embedded software in consumer
electronics, and indeed for most interactive systems, the
concept of a run is not very useful. Therefore we record
the spectra per transaction, instead of per run, and we use
two different notions of a transaction for the two different
faults that we diagnosed:

• for the load problem, we use a periodic notion of a
transaction, and record the spectra per second.

• for the lock-up problem, we define a transaction as the
computation in between two key-presses on the remote
control.

4.5 Diagnosis
For the load problem we used the scenario of Figure 4.
We marked the last 60 spectra, for the second period of
TV mode as ‘failed,’ and those of earlier transactions as
‘passed.’ In the ranking that follows from the analysis of
Section 2.3, the logical thread that had been identified by
the developers as the actual cause of the load problem was
in the second position out of 315. In the first position was a
logical thread related to teletext, whose activation is part of
the problem, so in this case we can conclude that although
the diagnosis is not perfect, the implied suggestion for in-
vestigating the problem is quite useful.

For the lock-up problem, we used a proper error detec-
tion mechanism. On each key-press, when caching the cur-
rent spectrum, a separate routine verifies the values of the
two state variables, and marks the current spectrum as failed
if they assume an invalid combination. Although this is a
special-purpose mechanism, including and regularly check-
ing high-level assert-like statements about correct behavior
is a valid means to increase the error-awareness of systems.

Using a very simple scenario of 23 key-presses that es-
sentially (1) verifies that the TV and teletext subsystems
function correctly, (2) triggers the error injection, and (3)
checks that the teletext subsystem is no longer responding,
we immediately got a good diagnosis of the detected error:
the first two positions in the total ranking of over 60,000
blocks pointed directly to our error injection code. Adding
another three key-presses to exonerate an uncovered branch
in this code made the diagnosis perfect: the exact statement
that introduced the state inconsistency was located out of
approximately 450K lines of source code.

4.6 Discussion
Especially the results for the lock-up problem have con-
vinced us that program spectra, and their application to fault

diagnosis are a viable technique and useful tool in the area
of embedded software in consumer electronics. However,
there several issues with our current implementation.

First, we cannot claim that we have not altered the timing
behavior of the system. Because of its rigorous design, the
TV is still functioning properly, but everything runs much
slower with the block-level instrumentation (e.g., changing
channels now takes seconds). One reason is that currently,
we collect block count spectra at byte resolution, and con-
vert to block hit spectra off-line. Updating the counters in
a multi-threaded environment requires a critical section for
every executed block, which is hugely expensive. Fortu-
nately, this information is not needed, and we believe we
can implement a binary flag update without a critical sec-
tion.

Second, we cache the spectra of passed transactions, and
transmit them off the system during CPU idle time. Be-
cause of the low throughput of the serial connection, this
may become a bottleneck for large spectra and larger sce-
narios. In our case we could store 25 spectra of 65,536
counters, which was already slowing down the scenarios
with more than that number of transactions, but even with a
more memory-efficient implementation, this inevitably be-
comes a problem with, for example, overnight testing.

For many purposes, however, we will not have to store
the actual spectra. In particular for fault diagnosis, ulti-
mately we are only interested in the calculated similarity
coefficients, and all similarity coefficients that we are aware
of are expressed in terms of the four counters a00, a01, a10,
and a11 introduced in Section 2.3. If an error detection
mechanism is available, like in our experiments with the
lock-up problem, then these four counters can be calculated
on the fly, and the memory requirements become linear in
the number columns in the matrix of Figure 2.

5 Related Work
The diagnosis approach described in Sections 2.2 and 2.3
has appeared in various guises in literature. Three systems
are of particular interest, because the similarity coefficient
that is used in the diagnosis is clearly described. They are
Pinpoint, Tarantula, and AMPLE.

Pinpoint [4] is a framework for root cause analysis on
the J2EE platform. It is developed in the context of the Re-
covery Oriented Computing project [15], and is targeted at
large, dynamic Internet services, such as web-mail services
and search engines. It combines the technique of the pre-
vious section with a specific form of error detection, based
on information coming from the J2EE framework, such as
caught exceptions, and errors visible to users, such as HTTP
errors. This makes the approach self-contained in the sense
that no external characterization of traces is needed.

The Tarantula system [12, 13] has been developed for



the C language, and applies the technique of the previous
section to statement hit spectra. Compared to block hit
spectra, the higher resolution of statement hit spectra may
give a more detailed diagnosis in presence of statements
that alter the flow of control inside a block, namely break,
continue, return, and goto. Tarantula comes with a
graphical user interface, that interprets the calculated value
for the similarity coefficient as a color index, used to visual-
ize the suspiciousness of program statements. Tarantula re-
lies on external error detection for the classification of runs
as passed or failed: whereas Pinpoint uses information from
the J2EE framework for this classification, this information
is input data for Tarantula. In other words, Tarantula imple-
ments only the diagnosis, and has to be complemented by
adding a method of error detection.

AMPLE (Analyzing Method Patterns to Locate Errors)
[6] is a system for identifying faulty classes in object-
oriented software. It collects hit spectra of method call
sequences, which are subsequences of a given length that
occur in a full trace of incoming or outgoing method calls,
received or issued by individual objects of a class. Each call
sequence is assigned a weight, which captures the extent to
which its occurrence or absence correlates with the detec-
tion of an error, i.e., it is a combined measure of similarity
and inverted similarity. These weights are averaged over all
call sequences of a class, leading to a class weight. Classes
with a high weight are most likely to contain the fault that
causes the detected error. Although the calculation of the
sequence weights in AMPLE can be explained as an ap-
plication of the technique of Section 2.3, the diagnosis is
at class level, and the calculated coefficients are used only
to collect evidence about classes, not to identify suspicious
method call sequences.

Concluding, we can observe that three existing tools for
diagnosis and automated debugging rely on an analysis of
program spectra. Program spectra themselves were intro-
duced in [16], where hit spectra of intra-procedural paths
are analyzed to diagnose year 2000 problems. The distinc-
tion between count spectra and hit spectra is introduced in
[9], where several kinds of program spectra are evaluated in
the context of regression testing. As we already mentioned
in the introduction, in the context of computer programs,
fault localization based on the analysis of program spectra is
an automated debugging technique. An example of a differ-
ent (black box) technique in that category is Delta Debug-
ging [21], which compares the program states of a failing
and a passing run, and actively searches for failure-inducing
circumstances in the differences between these states.

6 Conclusion
From our experiments with fault localization by means of
analyzing program spectra we can draw the following con-

clusions

• Even at a low accuracy of error detection, the tech-
nique provides useful information about the location
of a fault, and can therefore improve the efficiency of
the debugging process.

• The Ochiai coefficient consistently outperforms the
other coefficients that we studied.

• The technique seems to lend itself well for application
in the resource-constrained environments that are typ-
ical for the development of embedded software.

In our future work we plan to investigate the influence of
several factors that may affect the quality of the diagnosis,
such as the fraction of the runs in which an error occurs, the
accuracy with which these errors are detected, and the units
of measurement for which the program spectra are obtained.
We also plan to look at multiple faults, and at specific kinds
of software faults that play an important role in practice,
such as memory faults.

While improving the efficiency of the debugging process
will improve the reliability of embedded software, we be-
lieve that the techniques studied here have a wider appli-
cability, such as to enable the recovery of autonomous sys-
tems based on detailed information on what component or
thread has become at fault [15]. Especially in a process-
based environment, diagnosis may serve as the basis for
an automated recovery strategy: it may well be possible
to improve the reliability of a system by rebooting those
processes whose activities correlate with “suspect,” or po-
tentially erroneous transactions. In this case, error detec-
tion could be based on generic indications that something is
wrong, such as the handling of null pointers, and the viola-
tion of timing constraints.
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