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ABSTRACT
Automated diagnosis of errors and/or failures detected dur-
ing software testing can greatly improve the efficiency of the
debugging process, and thus help to make applications more
reliable. In this paper, we propose an approach, dubbed
MZoltar, offering dynamic analysis (namely, spectrum-
based fault localization) of mobile apps that produces a
diagnostic report to help identifying potential defects quickly.
The approach also offers a graphical representation of the
diagnostic report, making it easier to understand. Our exper-
imental results show that the approach requires low runtime
overhead (5.75% on average), while the tester needs to in-
spect 5 components (statements in this paper) on average to
find the fault.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Reliability, Experimentation

Keywords
Mobile software, fault detection, automated debugging.

1. INTRODUCTION
Software reliability can generally be improved through

extensive testing and debugging, however this often conflicts
with market conditions. Often, software cannot be tested
exhaustively, and of the bugs that are found, only those with
the highest impact on the user-perceived reliability can be
solved before the release. In this typical scenario, testing
reveals more bugs than can be solved, and debugging is a
bottleneck for improving reliability. Automated debugging
techniques can help reducing this bottleneck [2, 15, 21, 25, 26,
29,30].
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Despite recent advances in fault localization techniques,
the development of applications for mobile devices - such as
Android apps - still pose interesting challenges [10].

• The large amount of available devices and their large
range of specifications (e.g., cpu speed, screen resolu-
tion), make it difficult to check the consistency and
ensure portability between different devices and plat-
forms;

• Testing apps for each target platform requires the devel-
opment of several versions. Furthermore, the available
testing frameworks have serious limitations for testing
mobile specific features;

• Developers claim that better analysis tools and tech-
niques to help debugging apps are seriously needed.
In fact, according to the World Quality Report [9],
2/3 of surveyed developers mentioned that they do not
have the proper tools to test and debug mobile apps,
despite the available tools such as provided by An-
droid Software Development Kit (SDK) and Android
Development Tools (ADT) plugin.

Locating a fault is an important step in actually fixing it.
Spectrum-based fault localization (SFL) is a technique, which
is amongst the best performing techniques, that helps identi-
fying the root cause of observed failures, relying on program
execution data and test pass/fail information. GZoltar1 [8],
which focuses on Java programs, and Tarantula [19], which
focuses on C programs are examples of tools offering the SFL
technique. Since it is lightweight, SFL has been successfully
applied in the context of embedded software [31]. However,
despite these tools and the increasingly active research in the
area of fault localization, to the best of our knowledge, not
much has been reported in the area of mobile software. We
argue that SFL has the potential to be applicable to perform
fault localization in mobile apps.

Furthermore, following the same strategy as GZoltar, our
approach provides a visual representation of the diagnostic
report to aid the developers in the process of locating the
defects in the code. These visualizations are a translation of
the report into an intuitive representation that can ease and
speed up the fault localization process [11,20,24].

Our empirical study, using 4 open-source Android appli-
cations with single and multiple injected faults, supports
the argument that spectrum-based fault localization is well
suited for mobile apps. The underlying infrastructure to

1GZoltar homepage http://gzoltar.com, 2013.
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collect the required information entails low runtime overhead
(5.75% on average, with standard deviation σ=2.49), while
the tester needs to inspect 5 components on average to find
the fault.

The main contributions of this paper are:

• We discuss the challenges faced by developers when
doing fault localization, highlighting the real-world
relevance of the problem;

• We propose a fully automated approach for localizing
defects in Android applications. Our approach is based
on a well-known spectrum-based fault localization tech-
nique and produces a visual report to aid in locating
the defects;

• We provide a toolset, MZoltar, embedded into the
Eclipse Integrated Development Environment (IDE)
providing the proposed fault localization technique;

• We carried out an empirical study to demonstrate the
efficiency of MZoltar.

2. CONCEPTS AND DEFINITIONS
In this section, concepts and definitions relevant to this

paper are introduced. Throughout this paper, the following
terminology is used [6]: a failure is an event that occurs
when the delivered service deviates from correct service, an
error is a system state that may cause a failure, while fault
(defect/bug) is the cause of an error in the system. In this
paper, this terminology is applied to software programs,
where faults are bugs in the program code. Failures and
errors are symptoms caused by faults in the program. The
purpose of fault localization is to pinpoint the root cause of
observed symptoms.

A software program Π (a mobile app in the context of this
paper) is formed by a sequence M of one or more statements.
A test suite T = {t1, . . . , tN} is a collection of test cases
that are intended to test whether the program follows the
specified set of requirements. The cardinality of T is the
number of test cases in the set |T | = N . Finally, a test case
t is a (i, o) tuple, where i is a collection of input settings or
variables for determining whether a software system works
as expected or not, and o is the expected output. If Π(i) = o
the test case passes, otherwise fails.

2.1 Android
Android is an open source Linux-based operating system

targeted for mobile or embedded devices. Typically, Android
applications are developed in Java. However, native-code
languages such as C and C++ may also be used. Note that
Android reuses the Java language syntax and semantics, but
it does not provide the full class libraries and APIs bun-
dled with Java SE. Java development is mainly supported
by a comprehensive set of development tools Android SDK,
while native code is supported by the Android Native De-
velopment Kit (NDK). Android applications have a specific
lifecycle that differs from the Java regular applications’ lifecy-
cle. Instead of a main function, Android applications’ main
components are: Activities; Services; Content providers;
Broadcast receivers. Furthermore, Android applications are
not only comprised of source files, but also include resource
files (mainly related to the specification of layouts and trans-
lations) and a manifest file (as mentioned before, responsible

for providing the necessary information about the application
to the Android system).

2.2 Fault Localization
Spectrum-based fault localization (SFL) [2,3] is a statistics-

based lightweight fault localization technique and it is con-
sidered to be amongst the most effective ones [2], [21], [29].
This technique uses a dynamic analysis approach, as it relies
on program execution information (program spectrum) from
previous runs (passed and failed) to correlate the software
components with the observed failures and determine the
suspiciousness of each component being faulty. Passed runs
are program executions that completed correctly, while failed
runs are executions in which an error was detected. A Pro-
gram spectrum is a collection of data that indicates which
components of the software were hit during a run [3].

The input of the SFL is constituted by the hit spectra and
an error-vector [3]. The hit spectra of N runs constitutes
a binary N ×M matrix A. M represents the components
of the program. The error-vector, e, is a N -length vector
and each position represents the outcome of a run (passed
or failed).

After obtaining these two inputs, the resemblance between
the error-vector and each column of the hit spectra matrix
is calculated by means of a similarity coefficient. Although
there are many similarity coefficients, the Ochiai coefficient
(see Equation 1), also used in the molecular biology domain,
is considered one of the best performing similarity coefficients
for SFL [3]

sO(j) =
n11(j)√

(n11(j) + n01(j)) · (n11(j) + n10(j))
(1)

where npq(j) is the number of runs in which a component
(j) was hit (p = 1) or not hit (p = 0) during an execution,
and where that execution failed (q = 1) or was successful (q
= 0). npq(j) is formally defined as

npq(j) = |{i | aij = p ∧ ei = q}| (2)

3. MOTIVATIONAL EXAMPLE
To illustrate the problem addressed in this paper, consider

the simple Android application in Figure 1a (based on the
example used in [12]). To improve the legibility, the coverage
matrix and the error detection vector were transposed.

This running example uses a function count() that receives
a string as an argument and prints the number of times
each type of char (letter, number or other) occurs in that
string. A bug has been injected in line 5 (Figure 1a), where
the let counter should be incremented by just one when
the string includes a capital letter, but instead it is being
incremented by two. The figure also shows the code coverage
information of the 8 executed tests. For each row, a  
appears in the columns that correspond to the tests where
that line was touched. The error vector, e is presented at the
bottom of the table, showing the passed/failed information
of the executed tests. Resorting to this information, the
Ochiai coefficient, sO, is used to calculate the suspiciousness
of a given line containing a fault. In this case, SFL has
successfully performed the fault localization as the ranking
created encourages the developer to inspect the faulty line
first.

In Figure 1b the graphical user interface of the application
implemented for the Android operating system is presented.



Subject: CharCount
T

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 sO

class CharCount {. . .

static void count(String s) {

1: int let, dig, other;           0.63

2: for(int i = 0; i < s.length(); i++) {           0.63

3: char c = s.charAt(i);          0.67

4: if (’A’<=c && ’Z’>=c)          0.67

5: let += 2; /* FAULT */     1.00

6: else if (’a’<=c && ’z’>=c)          0.67

7: let += 1;      0.22

8: else if (’0’<=c && ’9’>=c)         0.53

9: dig += 1;        0.57

10: else if (isprint(c))   0.00

11: other += 1; }   0.00

12: System.out.println(let + " " + dig + " " + other); }           0.63

. . . }

Test case outcome (pass=X, fail=7) 7 X 7 7 X X 7 X X X

(a) Example of SFL technique with Ochiai coefficient (adapted from [12]). (b) Android example application with bug
in result.

Figure 1: Example.

The application receives a string through a text box and
shows the result of the counting algorithm. Also, the result
is affected by the bug injected in the previous example. There
are 4 letters in the string, but the letter counter indicates the
value 5, as the capital letter ‘A’ increments 2 units in the letter
counter while it should increment just one. The application
was also tested using the Android testing framework 2 to
assess its functioning.

To retrieve the program spectra that contains the execution
information, there is the need to instrument the application.
However, as Android devices often possess limited computa-
tional resources, the execution times are greatly sensible to
instrumentation overhead. Moreover, the embedded nature of
Android devices hinders the retrieval of runtime information,
used as input to SFL.

Thus, the application of the SFL technique to Android
devices presents the following challenge: Given it is a resource-
constrained environment, is SFL, and collecting the coverage
information, well suited to perform automatic fault localiza-
tion in mobile apps software?

4. MZOLTAR
There are a few toolsets offering spectrum-based fault local-

ization, such as GZoltar3 [8], Tarantula [19], or EzUnit [7].
GZoltar and Tarantula show the diagnostic reports visually
in an attempt to facilitate the quest for the defects. EzUnit
provides a textual ranking of the lines that are most likely
to be faulty and assigns a background color to each line
matching its failure probability.

In this section, we detail the novel aspects of MZoltar,
which make it suitable to the mobile apps testing and de-
bugging phase. Since MZoltar is based on GZoltar, they
both provide the same set of visualizations. Figure 2, as an
example, shows one of the three GZoltar’s visualizations4,
the Sunburst visualization. Sunburst shows the information
as an hierarchical structure, taking advantage of the fact
software is inherently hierarchical, in particular the Java-
based object-oriented software used in the development of

2Android Testing Fundamentals http://developer.android.com/
tools/testing/testing_android.html, 2013.

3GZoltar homepage http://gzoltar.com, 2013.
4Other visualization can be seen at http://www.gzoltar.com

Figure 2: Sunburst visualization (and how to interpret it).

Android applications. Both in GZoltar and MZoltar, the
visualizations also allow users to navigate through the code
and interact with the source code, trying to ease the task of
finding bugs.

4.1 Workflow
As mentioned in Section 3, Android devices present a series

of challenges in what it concerns the application of SFL. To
surpass those challenges, MZoltar relies on the Android

testing framework and JaCoCo5 to run the applications’
tests and acquire coverage information. As MZoltar is a
plugin for the Eclipse IDE, it also relies on the abstractions
provided by the ADT plugin to perform some of the tasks.
MZoltar’s flow is:

1. Instrument bytecode;

2. Generate application’s apk and flush into the device;

3. Run tests;

4. Collect code coverage;

5. Run diagnostic report.

5JaCoCo homepage http://www.eclemma.org/jacoco/, 2013.

http://developer.android.com/tools/testing/testing_android.html
http://developer.android.com/tools/testing/testing_android.html
http://gzoltar.com
http://www.gzoltar.com
http://www.eclemma.org/jacoco/


Table 1: Experimental Subjects.

Subject Version Lines of Code (LOC) Test Cases Test Cases LOC Coverage Resources LOC

CharCount 1.0 148 10 133 92.2% 115

ConnectBot 1.7.1 32911 14 484 0.7% 7673

Google Authenticator 2.21 3659 170 2825 76.6% 5275

StarDroid 1.6.5 13783 187 3029 29.7% 2694

To instrument the application, phase (1), there were two
options available: instrument the Dalvik Bytecode directly
in the apk file or instrument the original Java Bytecode
generated by Eclipse (afterwards compiled into the Dalvik
Bytecode when the apk is built). As Dalvik Virtual Ma-
chine (VM) is register based and the available frameworks
(such as ASMDex6) do not provide a way to automatically re-
allocate the registers after instrumenting the code, we opted
for the Java Bytecode instrumentation. In particular, we
used a recently developed feature of JaCoCo, the Offline in-
strumentation7. Android test framework has an EMMA8

code coverage analysis feature that can be replaced by Ja-

CoCo offline instrumentation to retrieve the code coverage
information of a test execution.

After the Bytecode was instrumented, ADT API was used
to build the apk file, phase (2), as well as to run the tests in
phase (3). In this last step the code coverage information is
generated in the device. In phase (4), the IDevice interface
provided by ADT is used to pull the coverage data file from
the device to be further processed, offline, by MZoltar.
Using the JaCoCo API, the coverage file is mapped into the
input expected by SFL and the diagnostic report is computed
(phase 5).

4.2 Eclipse integration
MZoltar is offered as a plugin for the well-known Eclipse

IDE. Features such as the visualizations, code navigation,
and the editor markers are reused from GZoltar. The
existence of an official ADT plugin to Eclipse was taken
into account, as it aided in the implementation of the An-
droid related features (see Subsection 4.1). There follows a
description of MZoltar’s main features.

Visualizations, such as Sunburst (see Figure 2), provide
useful information to the user, as they translate the diagnos-
tic reports into an intuitive graphical representation. The
similarity coefficient value of each component is used to cre-
ate a color gradient, that goes from red, for the components
that are more likely to be faulty, and ends with green to the
less likely ones. The structured visual representation also
makes it easier to understand the program structure, hence
reducing the effort of locating a given component in the code.
The available visualizations and their features are thoroughly
described in [13].

Besides the intuitive representation, there are also some
interactions that ease the debugging process. To get to a
component’s location in the code, the user only needs to
click on that component in the visualization. Then the
editor opens the file and highlights the previously clicked
component. It is also possible to change the visualization, by

6ASMDex homepage http://asm.ow2.org/asmdex-index.html,
2013.

7JaCoCo Offline instrumentation homepage http://www.eclemma.
org/jacoco/trunk/doc/offline.html, 2013.

8EMMA homepage http://emma.sourceforge.net/, 2013.

performing a root change or zooming, so the user can focus
on a desired set of components.

In MZoltar the embedded nature of Android devices im-
plies a different way of running the tests, collecting coverage
information and processing it, therefore, ADT was crucial
in its implementation and is the main difference between
MZoltar and GZoltar. ADT is an Eclipse IDE plugin
that provides the possibility of building Android apps with
Eclipse. Some of its features, such as pulling files from the
device, building apk files, managing apps on the device or
running tests, were used in the implementation of MZoltar.

Before being able to execute the diagnostic algorithm, the
user has to (i) select the project that is going to be tested, (ii)
select the Test Runner to use, and (iii) select whether or not
the application should be uninstalled from the device after
it is tested. Furthermore, we decided to use the ADT device
chooser dialog to make the experience of using MZoltar as
similar as possible with the usual experience of developing
an Android application with the Eclipse IDE.

5. EVALUATION
In this section, we describe the empirical evaluation we

carried out to assess MZoltar’s performance, in particular
to verify its applicability to the context of mobile apps. We
start by describing the experimental setup, followed by a
discussion on the observed results. The empirical evaluation
aims at answering the following research questions:

RQ1 Is the MZoltar’s instrumentation overhead negligi-
ble?

RQ2 Does MZoltar yield accurate diagnostic reports under
Android device’s constrained environment?

5.1 Experimental Setup
Four mobile apps, of different sizes and complexities,

were considered to empirically evaluate MZoltar. Table 1
presents further information about the subjects. CharCount
is the subject used as a motivational example in Section 3.
ConnectBot9 is an Android Secure Shell (SSH) client. Google
Authenticator10 is a two-step authentication application.
StarDroid11 is sky map open source project. To foster
reproducibility and comparability, we report the version
number of the subjects used in the evaluation. Lines of
Code (LOC) count information was obtained using Code An-

alyzer12. Code coverage information was obtained using

9ConnectBot homepage http://code.google.com/p/connectbot,
2013.

10Google Authenticator homepage http://code.google.com/p/
google-authenticator, 2013.

11StarDroid homepage http://code.google.com/p/stardroid,
2013.

12Code Analyzer homepage http://www.codeanalyzer.teel.ws,
2013.

http://asm.ow2.org/asmdex-index.html
http://www.eclemma.org/jacoco/trunk/doc/offline.html
http://www.eclemma.org/jacoco/trunk/doc/offline.html
http://emma.sourceforge.net/
http://code.google.com/p/connectbot
http://code.google.com/p/google-authenticator
http://code.google.com/p/google-authenticator
http://code.google.com/p/stardroid
http://www.codeanalyzer.teel.ws


JaCoCo13, enabling the coverage flag of the Android tests
framework. Then, we used the EclEmma14 Eclipse plugin to
analyse the generated coverage files.

As the subjects are bug-free (with regard to the tests
suite), eight common mistakes [14] were injected in each
subject. To facilitate the activation of the faults, thus au-
tomating the testing process, we built a fault injection frame-
work15. This framework allows to enable/disable the faults
automatically and use a custom InstrumentationTestRun-
ner16, named MZoltarTestRunner, that parses an argument
(injectedFaults) which indicates which faults should be
active per run. Then, each application was executed 30 times
for each of the following scenarios {(f, g) | f ∈ {1, 2, 3, 5}∧g ∈
{1, 2, 3, 5, 10}}, where f is the number of injected faults and
g is the number of tests considered in a transaction 17.

These scenarios make it possible to assess the performance
of MZoltar in different situations, being also important to
evaluate the tradeoff effectiveness vs time. Running each test
separately may entail a considerable time overhead (since,
per test execution, Android terminates and starts a new VM).
Our goal is to evaluate the consequences of executing several
tests simultaneously, assessing the potential time reduction
vs. the potential information and effectiveness losses.

The experiments target device was an emulator running
Android 2.2 (API Level 8) with a 4” (480x800 hdpi) screen,
an ARM processor, 343MB of RAM and 32MB of VM Heap.
The emulator was used on a 3.16GHz Intel® Core� 2 Duo
PC with 2GB of RAM, running Debian 7.0 (wheezy).

5.2 Evaluation Metric
To measure the success of a diagnosis technique we use

the diagnostic quality Cd, which estimates the number of
components the tester needs to inspect to find the fault [27].
Note that Cd cannot be computed prior to computing the
ranking: one does not know the actual position of true-fault
candidates in the ranking beforehand. Because multiple
explanations can be assigned with the same similarity value,
the value of Cd for the real fault d∗ is the average of the
ranks that have the same similarity value:

θ = |{j|sO(m) > sO(d∗)}|, 1 ≤ j ≤M

φ = |{j|sO(m) ≥ sO(d∗)}|, 1 ≤ j ≤M

Cd = θ + φ − 1
2

(3)

In the multiple fault cases we use the one-at-a-time mode,
discussed in [27]: one fault is identified and fixed, and then
the fault localization process is repeated (including a re-run
of the test suite and a re-computation of the input for the
fault localization technique). We report Cd for the first fault
found, as one can estimate the impact of reducing the number
of faults on Cd in the experiments of lower number of injected
faults.

13JaCoCo homepage http://www.eclemma.org/jacoco, 2013.
14EclEmma homepage http://www.eclemma.org/, 2013.
15Again, to foster reproducibility and comparability, the injec-

tion framework can be obtained at http://www.gzoltar.com/
mzoltar/demobile13

16Android Instrumentation Test Runner homepage
http://developer.android.com/reference/android/test/
InstrumentationTestRunner.html, 2013.

17We considered a transaction, i.e., a row in the matrix, the set
of test cases clustered in each virtual machine execution. Will
be explained in more detailed in Subsection 5.3

Table 2: Execution times.

Subject Original Instrumented Overhead

CharCount 1.82s 1.86s 2%

ConnectBot 1.25s 1.35s 8%

Google Authenticator 80.49s 87.26s 8%

StarDroid 14.70s 15.46s 5%

We further use a metric ρ̄, the density of the coverage
matrix [12], that has been used in the past to build confidence
on the Cd obtained, and understand whether one can still
improve the diagnostic report by adding more tests. The
density of a coverage matrix is the average percentage of
components covered by test cases. It is defined as follows

ρ̄ =

N∑
i=1

M∑
j=1

aij

N · M
where N and M denote the number of test cases and the
number of components, respectively. aij represents the cover-
age of the component m when the test ti is executed. Values
of ρ̄ close to 0 means that test suite touch a small parts of
the program, whereas values close to 1 means that test suite
tend to cover most components of the program. In [12] it
has been shown that ρ̄ = 0.5 is the best for fault localization,
provided that there is a diversity in the test cases of the
suite.

5.3 Experimental Results

RQ1: Is the MZoltar’s instrumentation overhead neg-
ligible?

Table 2 shows the execution times for the test subjects.
The average execution times of the mobile apps’ instrumented
versions are, as expected, slightly higher then the original
versions. The collected results show that the used instru-
mentation entails an average time overhead of 5.75% (with
standard deviation σ=2.49).

We cannot claim that we have not altered the timing be-
haviour of the system, but the applications, although slightly
slower, are still functioning properly. Therefore, we conclude
that the instrumentation overhead is not prohibitive.

RQ2: Does MZoltar yield accurate diagnostic reports
under Android device’s constrained environment?

Figure 3 plots the diagnostic accuracy Cd for the following
number of injected faults: 1, 2, 3, and 5. The injected faults
are 8 faults that are considered to be common [14]. For
the single fault scenario, the reported results are on average
for the 8 faults, whereas for the multiple fault scenarios we
have randomly repeated the experiments 30 times (randomly
injecting the faults).

As mentioned before, SFL takes as input the coverage of
a transaction. In Android a transaction is composed by all
the tests that are executed when the VM is initiated until
its tear down. The reason for this notion of transaction
(and not one per test case) is that to obtain the individual
code coverage information for each test, only one test can be

http://www.eclemma.org/jacoco
http://www.eclemma.org/
http://www.gzoltar.com/mzoltar/demobile13
http://www.gzoltar.com/mzoltar/demobile13
http://developer.android.com/reference/android/test/InstrumentationTestRunner.html
http://developer.android.com/reference/android/test/InstrumentationTestRunner.html
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Figure 3: Diagnostic accuracy Cd.
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Figure 4: Impact of Grouping Test Cases on Cd.

executed per run (technological limitation). Hence, creating
a new VM per test case may impose a considerably high
overhead, as a delay is observed between each test execution
since the system reboots the VM where the tests are run.
This delay was measured to be approximately one second
per transaction.

To address this potential bottleneck, we considered to ex-
ecute multiple test cases per virtual machine. On the one
hand, there is a potential reduction in the runtime overhead,
but, on the other hand, the noise implied by considered
multiple tests as one execution may entail information loss.
Consequently, worsening the diagnostic quality Cd. Group-
ing test cases, i.e., increasing the number of test cases per
transaction, decreases the number rows in spectra matrix, N ,
increasing its density, which is an explanation for the degra-
dation of the diagnostic quality. Figures 5a and 4 plots the
impact of grouping test cases in ρ and Cd. For ρ ≥ 0.5, there
is a significant worsening of the diagnostic quality (cf. [12]).

Figure 4 plots Cd when grouping, randomly, several tests
per execution (namely, 1,2,3,5, and 10), and the execution
overhead is plotted in Figure 5b. For CharCount and Con-
nectBot, the Cd increases with the number of tests executed
per transaction, while for GoogleAuth and StarDroid Cd
remains practically constant. These differences are explained
by the number of tests each application provide. This way,
the percentage reduction of the number of lines (caused by
clustering of several tests in each run) of the spectra ma-
trix is higher in the subjects with less tests implemented,
thus worsening Cd. Regarding the execution overhead, an
exponential reduction was observed with the increase of the
number of tests. This overhead reduction is explained by the
fact that there is no need to restart the VM.

As an example, when executing 10 test cases per trans-
action, we observed that grouping test cases reduced the
execution overhead in 79% on average (σ=8.36), at the cost
of a loss in the diagnostic quality of 74% (σ=12.14). This is
mainly due to the density growth that comes along with the
increase of the number of tests in a group.
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Figure 5: Outcomes when grouping multiple tests per trans-
action.

6. RELATED WORK
ADT and Android SDK provide (mostly manual) debug-

ging capabilities18 specific to Android, the target operating
system of this paper. Dalvik Debug Monitor Server (DDMS)
provides port-forwarding services, screen capture on the de-
vice, thread and heap information on the device, logcat,
process, and radio state information, incoming call and
SMS spoofing, location data spoofing, among other features.
Plus, the Dalvik VM supports the Java Debug Wire Pro-
tocol (JDWP) protocol which enables the user to use any
debugger that supports this protocol to debug the apps run-
ning on the device. There are also some other tools like the
Hierarchy Viewer, used to optimize the application’s user
interface, the Traceview which is a graphical viewer used to
log tracing information about the running application and
the Dev Tools application that can be installed on Android
devices and provide a way to enable debugging targeted
feature in the device.

Proposed recently, GROPG [22] is an on-phone debugger
that enables the debugging of the application in real time on
top of the running application itself. It provides traditional

18Android debugging homepage http://developer.android.com/
tools/debugging/index.html, 2013.
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debugging actions like breakpoints, step into, step over, step
out, in-scope variable analysis and thread analysis.

Automatic fault localization techniques exist, but have
mainly been investigated in the context of general purpose
programs. Amongst the best fault localization techniques is
SFL [2, 3, 21, 29], which is the underlying technique of the
MZoltar toolset. Although many techniques have been
investigated, not many off-the-shelf tools exist offering them.

GZoltar [8] is a graphical debugging tool for the Eclipse
IDE, on which MZoltar was based. Both toolsets are very
similar, only differing in the support for Android devices.
Tarantula [19] is a standalone graphical debugging tool. It
presents a visualization that overviews all the source code,
representing each line with a color that indicates its failure
probability. Tarantula only targets C projects. Vida [15] is
an Eclipse plug-in based on Tarantula that suggests places
where the developer should place breakpoints to analyse the
system. EzUnit4 [7] is another Eclipse plugin with graphical
debugging purposes. Like MZoltar it is based on JUnit tests
and on the use of statistical analysis to calculate the failure
probability. Each line has a background color matching its
failure probability (from red for high probability, to green
for low probability).

Attempts to automate the process of testing and debugging
mobile apps include the following. Bo Jiang et al. described
a statistical fault localization technique for mobile embedded
systems [18], where not only the code is targeted, but also
suspicious context providers. Incorporating a fault localiza-
tion logic into the app makes it able to choose the most
reliable context provider, when a crash occurs. The new
context provider is chosen from a list of the same group of
providers, ordered based on their suspiciousness score.

A system to automatically and systematically generate
input events to exercise smartphone apps and its underlying
algorithm, based on a concolic testing approach, is described
in [5]. Moreover, GUI testing in mobile devices is an active
research subject [4, 16,17,28].

Pascual et al. used a generic algorithm to automatically
generate optimal application configurations, based on feature
model, at runtime [23]. This optimizes the configuration of
the system at runtime according to the available resources.
The approach does not entail excessive overhead, and helps
the app coping with the resource constrained environment
and optimizing its performance.

Embedded systems, category in which we can fit mobile de-
vices, were already targeted to measure SFL’s performance in
such resource-constrained environments [31]. This study has
confirmed that fault diagnosis through analysis of program
spectra performs well under harsh conditions and opened
corridors to new applications, such as run-time recovery.

Despite the myriad of techniques and approaches, there
are still shortcomings when applying these techniques in
the context of mobile, resource-constrained apps. Available
automated fault localization toolsets do not offer easy in-
tegration into the mobile apps world. As a consequence,
manual approaches are still prevalent in the mobile apps de-
bugging and testing phases, and the debugging tools available
for mobile apps only offer manual debugging features [10].
Hence, MZoltar addresses that issue by providing an auto-
mated fault localization approach, offering the SFL dynamic
analysis.

7. CONCLUSIONS AND FUTURE WORK
We propose MZoltar, an approach to aid in localizing de-

fects in Android-based mobile apps relying on the Spectrum-
based fault localization (SFL) technique. Moreover, the
diagnostic report is shown to the user using a graphical
visualization, which makes it easier to understand the report.

In an empirical study using 3 real, open-source Android
applications and an example application (with single and
multiple injected faults), confirms that spectrum-based fault
localization is well suited for the mobile apps development
context. The infrastructure to collect the information needed
is lightweight (overhead of 5.75%± 2.49% on average), while
the diagnostic accuracy is similar to the one observed on
general-purpose applications [1].

Future work includes the following. First, this preliminary
work does not take a very important feature into account,
responsible for many run-time failures: the manifest file. As
the manifest file is not executed, the dynamic analysis pro-
posed in this paper is not able to include it in the reasoning
process. Consequently, we plan to integrate the dynamic
fault localization analysis with static analysis using Lint.
Lint is a toolset integrated within the Android SDK to stat-
ically analyze potential problems in the application. This
integration will have an impact in the visualizations them-
selves. Second, to be able to ascertain the usefulness of
our approach, we plan to carry out a user study. Third,
we intend to provide MZoltar in the recently announced
Android Studio IDE. Finally, we plan to port MZoltar
to other mobile technologies, notably to iOS and Windows
Phone.
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