
Constraint-based Debugging of Spreadsheets⋆

Rui Abreu1, André Riboira1, and Franz Wotawa2

1 Dept. of Informatics Engineering, University of Porto, Portugal
rui@computer.org, andre.riboira@fe.up.pt

2 Institute for Software Technology, Graz University of Technology, Austria
wotawa@ist.tugraz.at

Abstract. Despite being staggeringly error prone, spreadsheets can be
viewed as a highly flexible end-users programming environment. As a
consequence, spreadsheets are widely adopted for decision making by
end-users, and may have a serious economical impact for the business.
Hence, approaches for aiding the process of pinpointing the faulty cells
in a spreadsheet are of great value. In this paper we present a constrain-
based approach for debugging spreadsheets. We coin the approach Con-

Bug. Essentially, the approach takes as input a (faulty) spreadsheet and
a test case that reveals the fault (a test case specifies values for the input
cells as well as the expected values for the output cells) and computes a set
of diagnosis candidates for the debugging problem we are trying to solve.
To compute the set of diagnosis candidates we convert the spreadsheet
and test case to a constraint satisfaction problem (CSP), modeled using
the state-of-the-art constraint solver MINION. We use a case study, in
particular using a spreadsheet taken from the well-known EUSES Spread-
sheet Corpus, to better explain the different phases of the approach as
well as to measure the efficiency of ConBug. We conclude that ConBug

can be of added value for the end user in order to pinpoint faulty cells.

1 Introduction

Spreadsheet tools, such as Microsoft Excel3, iWork’s Numbers4, and OpenOf-
fice’s Calc5, can be viewed as programming environments for non-professional
programmers [1]. These so-called “end-user” programmers vastly outnumber pro-
fessional ones: the US Bureau of Labor and Statistics estimates that more than
55 million people will be using spreadsheets and databases at work on a daily
basis by 2012 [1]. Despite this trend, as a programming language, spreadsheets
lack support for abstraction, testing, encapsulation, or structured programming.
As a consequence, spreadsheets are error-prone. As a matter of fact, numerous
studies have shown that existing spreadsheets contain redundancy and errors at

⋆ This work was supported by the Foundation for Science and Technology (FCT), of
the Portuguese Ministry of Science, Technology, and Higher Education (MCTES),
under Project PTDC/EIA-CCO/108613/2008.

3 http://office.microsoft.com/en-gb/excel/
4 http://www.apple.com/iwork/numbers/
5 http://www.openoffice.org/product/calc.html

an alarmingly high rate [2, 3]. As an example disastrous financial consequences
due to spreadsheet calculating errors, the Board of the West Baraboo Village,
USA, found out on December 9, 2011 that they will be paying $400,0000 more
on the estimated total cost for the 10-year borrowing than originally projected6.

In the software engineering domain, constraints have been used for various
purposes like verification [4], debugging [5, 6], program understanding [7] as well
as testing [8, 9]. Some of the proposed techniques use constraints to state specifica-
tion knowledge like pre- and post-conditions. Others use constraints for modeling
purposes or extract the constraints directly from the source code. In this paper,
we use constraints obtained from the spreadsheets directly.

In this paper, we propose a constraint-based approach for debugging spread-
sheets, dubbed ConBug. The approach takes as input a spreadsheet and the
set of user expectations, and produces as output a set of diagnosis candidates.
User expectations express the cells that, according the user, reveal failures on
the spreadsheet. Diagnosis candidates are explanations for the misbehavior in
user expectations (an example of a diagnosis candidate is cell B1 and cell C4 are
faulty, i.e., explain the faulty observed value in, e.g., cell A100). We describe how
the approach works and its efficiency using three in-vitro spreadsheets plus a real
spreadsheet taken from the large EUSES Spreadsheet Corpus7.

2 Basic definitions

In order to be self contained, we briefly introduce the basic definitions that are
relevant for this paper. The paper deals with fault diagnosis based on models of
spreadsheets, i.e., an approach to (semi-) automatically pinpoint faulty cells in
the spreadsheet is proposed. In this paper we assume a spreadsheet programming
language L with syntax and semantics similar to, e.g., Microsoft Excel. Moreover,
we assume correctness of standard functions φ provided by the spreadsheet (e.g.,
sum, average). In Figure 1, an example of a spreadsheet program is given as run-
ning example. The spreadsheet implements a 3-inverter circuit (see Figure 1(a))
with a defective cell, namely B5 (see Figure 1(b)).

In order to state the debugging problem, we assume a spreadsheet Π ∈ L
containing (at least) a cell that does not behave as expected. In the context of
this paper such a spreadsheetΠ is faulty when there exist input values (cells) from
which the spreadsheet computes output values (cells) differing from the expected
values. The input and correct output values are provided to the spreadsheet by
means of a test case. For defining test cases we introduce variable8 environments
(or environments for short). An environment is a set of pairs (x, v) where x is a
variable and v its value. In an environment there is only one pair for a variable.
We are now able to define test cases formally as follows.

6 http://www.wiscnews.com/baraboonewsrepublic/news/local/article 7672b6c6-22d5-
11e1-8398-001871e3ce6c.html

7 http://esquared.unl.edu/wikka.php?wakka=EUSESSpreadsheetCorpus
8 In this paper we use the term variable and cell interchangeably.

(a) 3-inverter circuit

(b) A defective spreadsheet of the 3-inverter circuit

Fig. 1. Running Example: A faulty spreadhseet

Definition 1 (Input/Output cell). An input cell is a cell that does have an
influence on other cells of the spreadsheet. Conversely, an output cell is a cell
that does not influence any other cell in the spreadhseet.

Definition 2 (Test case). A test case for a spreadsheet Π ∈ L is a tuple (I, O)
where I is the input variable environment specifying the values of all input cells
used in Π, and O the output variable environment (not necessarily specifying
values for all output variables).

For example a (failing) test case for the spreadsheet program from Figure 1
is IΠ : {B2 = TRUE} and OΠ : {B4 = TRUE;B5 = TRUE}. This particular
test case is the one depicted in the spreadsheet of Figure 1.

Definition 3 (Failing test case). A test case is failing if there is at least one
output cell that differs from the expected value.

For the program from Figure 1 the test case (IΠ , OΠ) is a failing test case. For
input IΠ the program returns {B4 = TRUE;B5 = FALSE} which contradicts
the expected output OΠ : {B4 = TRUE;B5 = TRUE}. Formally, we define
passing and failing as follows:

¬(Π passes test case(I, O)) ⇔ Π fails test case (I, O)

Again, note that not all values have to be specified. However, it is necessary that
all specified values for the output cells are returned as expected. A cell for which
no value is specified in O can have an arbitrary value.

Definition 4 (Test suite). A test suite TS for a spreadsheet Π ∈ L is a set of
test cases of Π.

A spreadsheet is said to be correct with respect to TS if and only if the
program passes all test cases. Otherwise, we say that the program is incorrect or
faulty.

If deemed incorrect, the faulty cells have to be found in order to fix the
spreadsheet. The action of pinpointing the faulty locations is called debugging.

Definition 5 (Debugging problem). Let Π ∈ L be a program and TS its test
suite. If T ∈ TS is a failing test case of Π, then (Π,T) is a debugging problem.

A solution to the debugging problem is the identification and correction of a
part of the spreadsheet (set of cells) responsible for the detected misbehavior. We
call such a program part an explanation. There are many approaches that are
capable of returning explanations including [10, 11,?,12–14] and [5, 15] among
others. In this paper, we follow the debugging approach based on constraints,
i.e., [5, 15]. In particular, the approach makes use of the program’s constraint
representation to compute possible fault candidates. So, debugging is reduced to
solving the corresponding constraint satisfaction problem (CSP).

Definition 6 (Constraint Satisfaction Problem (CSP)). A constraint sat-
isfaction problem is a tuple (V,D,CO) where V is a set of variables defined over
a set of domains D connected to each other by a set of arithmetic and boolean
relations, called constraints CO. A solution for a CSP represents a valid instan-
tiation of the variables V with values from D such that none of the constraints
from CO is violated.

Note that the variables used in a CSP are not necessarily cells used in a
spreadsheet. We discuss the representation of programs as a CSP in the next sec-
tion. Afterwards we introduce an algorithm for computing diagnosis candidates
given a CSP debugging problems. This algorithm only states cells as potential
explanations for a failing test cases ; no information regarding how to correct the
program is given.

3 CSP representation of spreadsheets

Before converting a spreadsheet Π ∈ L into its corresponding constraint repre-
sentation, some intermediate transformation steps have to be performed. These
transformations are necessary for removing any imperative constructs, i.e., mak-
ing it a declarative one, as required by the constraint programming paradigm.
Our algorithm for converting a program and encoding its debugging problem into
a CSP comprises two main phases:

1. SSA conversion, and

2. constraint conversion.

SSA conversion ΠSSA = SSA(Π) The static single assignment (SSA) form is
an intermediate representation of a program with the property that no two left-
side variable share the same name. This property of the SSA form allows for an
easy conversion into a CSP. It is beyond our scope to detail the program-to-SSA
conversion. However, to be self-contained we explain the necessary rules needed
for converting spreadsheets into a SSA-like representation. For more details re-
garding the SSA-conversion of software programs see for example [6].

– We convert assignments by adding an index to a variable each time the vari-
able is defined, i.e., occurs at the left side of an assignment. If a variable
is re-defined, we increase its unique index by one such that the SSA-form
property holds. The index of a referenced variable, i.e., a variable occurring
at the right side of an assignment, equals to the index of the last definition
of the variable.

– We split the conversion of conditional structures into three steps:
(1) the entry condition is saved in an auxiliary variable,
(2) each assignment statement is converted following the above rule, and
(3) for each conditional statement and variable defined in the sub-block of

the statement, we introduce an evaluation function

Φ(vthen, velse, cond)
def

=

{

vthen if cond = true

velse otherwise

which returns the statement conditional-exit value, e.g., vafter =
Φ(vthen, velse, cond).

For example, the corresponding simplified form of a cell containing the frag-
ment

A1 = IF(condexpr, {E1expr}, {E2expr})

is given as follows:

cond i = condexpr;

A1 j = E1expr;

A1 k = E2expr;

A1 l = Φ(A1 j, A1 k, cond i);

Constraint conversion CON = CC(ΠSSA) This last step of the conversion
process transforms the statements to the corresponding constraints, including also
the encoding of the debugging problem. For this purpose we introduce a special
boolean variable AB(S) for a cell S, that states the incorrectness of a cell S. The
constraint model of a cell comprises corresponding constraints or-connected with
AB(S). Let S ∈ ΠSSA and let CS be the constraint encoding statement S in
the constraint programing language. Note that φ functions cannot be incorrect.
Hence, no AB variable is defined for statements using φ. We model S in CON
as follows:

CON ∪

{

AB(S)∨CS if S does not contain φ
CS otherwise

Algorithm 1 Algorithm ComputeExpresion

Inputs: An expression Eexpr and an empty set M for storing the MINION constraints
Output: A set of representing the expression stored in M , and a variable or constant

where the result of the conversion is finally stored

1 if Eexpr is a variable or constant then
2 return Eexpr
3 else

4 Eexpr is of the form E1expr ψ E2expr
5 Let aux1 = ComputeExpression (E1expr)
6 Let aux2 = ComputeExpression (E2expr)
7 Generate a new MINON variable result and create MINON constraints accord-

ingly to the given operator ψ, which define the relationship between aux1, aux2,
and result, and add them to M

8 return result

9 end if

Hence the CSP representation of a program Π is given by the tuple

(VΠSSA
, DSSA, CON)

where VΠSSA
represents all variables of the SSA representation ΠSSA of program

Π , defined over the domains DSSA = {Integer, boolean}.
Once the SSA form of a spreadsheet is computed, what is then missing in

the conversion process to the constraint satisfaction problem of the debugging
problem. In our implementation we model the CSP to represent the debugging
problem in the language of the MINION constraint solver [16]. MINION is an
out of the box, open source constraint solver. Its syntax requires a little effort in
modeling the constraints than other constraint solvers, e.g., it does not support
different operators on the same constraint. Because of this drawback sometimes
complex constraints have to be split into two or three more simpler constraints.
However, because of this characteristic, MINION, unlike other constraint solver
toolkits, does not have to perform an intermediate transformation of the input
constraint system. MINION offers support for almost all arithmetics, relational,
and logic operators such as minus, plus, multiplication, division, less, and equal
over integers. Furthermore, it also requires that all expressions used in a MINION
program to be limited to one operator.

Because of the syntactical limitations of MINON we have to convert an as-
signment statement with an expression Eexpr on the right-side comprising more
than one operator into a sequence of MINON statements. The idea behind the
conversion is straightforward. A constant or variable is represented by itself. For
an expression of the form E1expr ψ E2expr we convert E1expr and E2expr separately,
and assign a new intermediate variable for each converted sub-expression. The
ComputeExpression algorithm (see Algorithm 1) implements the conversion.

As an example, the expression a 0 + b 0 - c 0 is converted to the following
MINION constraints using ComputeExpression where aux1 and aux2 repre-
sent new variables introduced during conversion.

sumleq([a_0,b_0],aux1)

sumgeq([a_0,b_0],aux1)

weightedsumleq([1,-1],[aux1,c_0], aux2)

weightedsumgeq([1,-1],[aux1,c_0], aux2)

In this example the MINION constraints sumleq and sumgeq are used to
represent the plus operator, and weightedsumleq and weightedsumgeq together
with the given list of signs are for representing the minus operator. We sum-
marize the conversion of the SSA representation of the spreadsheet to MINION
constraints in Table 1.

Statement MINION Constraint

A1 = exp;
auxVar = ComputeExpression(exp),

eq(A1, auxVar)

A2 = (A1 > 0); reify(ineq(0,A1,-1),A2)

A3 = A2 & (A1 > 0);
reify(ineq(0,A1,-1),cond aux)

reify(watchsumgeq([A2,cond aux], 2),A3)

A4 = Φ(A5, A7, A2);
watched-or(eq(A2,0), eq(A4,A5))
watched-or(eq(A2,1), eq(A4,A7))

Table 1. MINION constraints conversion

For convenience we assume a function convert that implements the con-
version of spreadsheets into MINION constraints as discussed in this section.
Hence, convert takes the spreadsheet as input and returns a set of MINION
constraints as output. We use this function in the next section, where we discuss
an algorithm for debugging spreadsheets using contraints.

4 Debugging

Debugging of a spreadhseet requires the existence of a failing test case. This
means that in addition to the set of constraints CON , we must add an extra set
of constraint encoding a failing test case (I, O). For all (x, v) ∈ I the constraint
x 0 = v is added to the constraint system. For all (y, w) ∈ O the constraint
y ι = w is added where ι is the greatest index of cell y in the SSA form. Let
CONTC denote the constraints resulted from converting the given test case.
Then, the CSP corresponding to the debugging problem of a program Π is now
represented by the tuple

(VΠSSA
, DSSA, CON ∪CONTC)

Again, for convenience, we assume a function convert test that implements
the conversion of the failig test case into MINION constraints as outlined. Hence,
convert test takes the the failing test case as input and returns a set of MIN-
ION constraints as output.

Algorithm 2 Algorithm ConBug

Inputs: A spreadsheet Π and a failing test case T
Output: Diagnostic Report D

1 D← ∅
2 CONΠ ← convert(Π)
3 CONT ← convert test(T)
4 i← 1
5 while i ≤ Cells(Π) do
6 D ←Minion(CONΠ , CONT , i)
7 if D 6= ∅ then
8 return D

9 else

10 i← i+ 1
11 end if

12 end while

13 return D

Let CONΠ be the constraint representation of a spreadsheet Π and CONT

the constraint representation of a failing test case T . The debugging problem for-
mulated as a CSP comprises CONΠ together with CONT . Note that in CONΠ

assumptions about correctness or incorrectness of cells are given, which are repre-
sented by a variable AB assigned to each statement. The algorithm for computing
bug candidates calls the MINION CSP solver using the constraints and asks for
a return value of AB as a solution. The size (cardinality) of the solution corre-
sponds to the size of the bug, i.e., the number of statements that must be changed
together in order to explain the misbehavior. We assume that single cell bugs are
more likely than bugs comprising more cells. Hence, we ask the constraint solver
for smaller solutions first. If no solution of a particular size is found, the algo-
rithm increases the size of the solutions to be searched for and iterates calling the
constraint solver. This is done until either a solution is found or the maximum
size of a bug, which is equivalent to the number of statements in Π , is reached.

In summary, the automatic fault localization approach proposed in the paper
comprises 3 main phases. The first phase comprises the conversion of a spread-
sheet Π ∈ L into the corresponding set of MINION constraints (line 2 in Al-
gorithm 2). The second phase is the conversion of the failing test case into the
corresponding set of MINION constraints (line 3 in Algorithm 2). Finally, the
third phase comprises the computation of diagnosis candidates, i.e., cells of the
spreadsheet that might cause the revealed misbehavior, from the constraint rep-
resentation of a spreadsheet Π ∈ L (lines 4 to 12 in Algorithm 2). Eventually,
the algorithm returns the empty set if no diagnosis candidates are found (i.e., no
solution is found for the CSP problem).

5 Case Study

This section details how the approach works using four different faulty spread-
sheets. The first case is a spreadsheet that represents the inversor problem in-
troduced before. The second case is a spreadsheet that represents an adaptation
from the example used in [17], which describes an automatic approach for soft-
ware debugging. The third case is a sample spreadsheet that mimics a common
user made spreadsheet, with a faulty formula to calculate the cardiac output of a
human. Finally, the fourth case is a spreadsheet from EUSES Spreadsheet Corpus
modified to have a faulty cell.

The first spreadsheet is converted into the following MINION model (the
spreadsheet itself is presented in Section 2):

MINION 3

VARIABLES

BOOL b2

BOOL w

BOOL b4

BOOL b5

BOOL ab[3]

SEARCH

VARORDER [ab]

PRINT ALL

CONSTRAINTS

watched-or({element(ab, 0, 1), diseq(w, b2)})

watched-or({element(ab, 1, 1), diseq(b4, w)})

watched-or({element(ab, 2, 1), eq(b5, w)})

#TEST CASE

eq(b2,1)

eq(b4,1)

eq(b5,1)

#SD

watchsumgeq(ab, 1)

watchsumleq(ab, 3)

EOF

Executing the MINION solver with such model yields one diagnosis candidate
(cell B5 is faulty). Thus, ConBug points out that there is just one solution for
the model, solution that represents the faulty cell for this specific spreadsheet
and test case.

The second case study is the adaptation to a spreadsheet of the example used
in [17] (see Figure 2). The spreadsheet is modeled using the following constrains:

CONSTRAINTS

watched-or({element(ab,0,1), product(2,b1,b4)})

watched-or({element(ab,1,1), product(2,b2,b5)})

watched-or({element(ab,2,1), sumgeq([b4,b5],b7)})

watched-or({element(ab,2,1), sumleq([b4,b5],b7)})

watched-or({element(ab,3,1), product(b4,b4,b8)})

#TEST CASE

Fig. 2. Example Spreadsheet with a traditional software port

eq(b1,1)

eq(b2,2)

eq(b7,8)

eq(b8,4)

And the solver identifies one solution for the model, i.e., identifies the potential
faulty cell (B7, third variable of the array): As in [17] (which used a similar
problem as a software program), our approach properly identifies the faulty cell.

The third case study is a spreadsheet that tries to mimic traditional end-user
made spreadsheets. This spreadsheet calculates the Cardiac Output based on the
input of three values and two formulas (see Figure 3).

Fig. 3. Example Spreadsheet that calculates the Cardiac Output

Cell B9 is faulty: it multiplies cells B4 and B6, and should be multiplying
cells B4 and B5. The value in cell B10, one of the output cells, is not as expected.
The following model was built to represent this problem:

CONSTRAINTS

watched-or({element(ab,0,1), difference(b4,b6,b9)})

watched-or({element(ab,1,1), product(b9,b6,b10)})

#TEST CASE

eq(b4,120)

eq(b5,50)

eq(b6,72)

eq(b9, 70)

eq(b10,5040)

The model submitted to MINION properly identifying the faulty cell (B9,
first variable of the array).

Finally, we have used a spreadsheet from the EUSES Repository to test Con-

Bug concept in a real end-user made spreadsheet (see Figure 4).

Fig. 4. Example Spreadsheet from EUSES Repository

The spreadsheet was edited to contain a fault on the formula of the cell D20.
This leads to an unexpected output on cell D23. Because the constraint list of
this spreadsheet model is too long, it is not presented here. After executing the
model in MINION, one obtains a diagnosis candidate which identifies correctly
the faulty cell (D20, third variable of the array).

On the reported case studies the results were rather precise: our approach
managed to properly find the root cause of the observed failure. We now present
the performance regarding the run-time of our tests:

– Inversors Problem: 6 constraints in 0.15 seconds
– Example from [17]: 9 constraints in 0.16 seconds
– Cardiac Output Spreadsheet: 7 constraints in 0.17 seconds
– Spreadsheet from EUSES: 32 constraints in 0.17 seconds

These results show that ConBug can be used to debug faulty (real) spreadsheets.
The results were obtained using a Sony Vaio VGN-FW51ZF laptop, using Ubuntu
Linux 10.10 (64 bit version) and MINION 0.12.

6 Related Work

The work presented in this paper is based on model-based diagnosis [18], namely
its application to (semi-)automatic debugging (e.g., [19]). In contrast to previous

work, the work presented of this paper, however, does not use logic-based models
of programs but, instead, a constraint representation and a general constraint
solver. A similar approach to the one of this paper has been presented recently
in [20] to aid debuggers in pinpointing software failures.

The WHYLINE system, implemented in the Alice environment, allows users
to ask questions about expected program behavior [21]. The system uses static
and dynamic analyses of the program to help the user locate the cause of the
error. Empirical evaluations reported in the paper have shown that users debug
errors up to 8 times as fast with WHYLINE than without.

GoalDebug [22] is a spreadsheet debugger for end users. Whenever the com-
puted output of a cell is incorrect, the user can supply an expected value for
a cell, which is employed by the system to generate a list of change sugges-
tions for formulas that, when applied, would result in the user-specified output.
In [22] a thorough evaluation of the tool is stated. GoalDebug employs a similar
constraint-based approach as the one presented in this paper. Moreover, it also
suggests a list of changes to fix the speradsheet (which is not currently supported
by ConBug).

Spreadsheet testing is closely related to debugging. In the WYSIWYT sys-
tem users can indicate incorrect output values by placing a faulty token in the
cell. Similarly, they can indicate that the value in a cell is correct by placing a
correct token [23]. When a user indicates one or more program failures during
this testing process, fault localization techniques [24] direct the user’s attention
to the possible faulty cells. Similar to our approach, WYSIWYT provides no
help with regard to how to change erroneous formulas. In contrast to ConBug,
WYSIWYT also collects user input about correct cell values and employs this
information in the fault localization analysis.

There are several spreadsheet analysis tools that try to reason about the units
of cells to find inconsistencies in formulas, e.g., [25, 26]. The tools differ in the
rules they employ and also in the degree to which they require users to provide
additional input. Most of these approaches require the user the annotate the
spreadsheet cells with additional information, except the UCheck system [27],
which by exploiting techniques for automated header inference [25], can perform
unit analysis fully automatically. However, none of these approaches provide any
further help to the user to correct the errors once they are detected. Other ap-
proaches aimed at minimizing the occurrence of errors in spreadsheet include
code inspection [28] and adoption of better spreadsheet design practices [29].
However, none of these approaches focus on debugging of spreadsheets.

7 Conclusions and Future Work

In this paper, ConBug, a a constraint-based approach for debugging (automat-
ically) spreadsheets was proposed. The approach takes as input a spreadsheet
and the set of user expectations (specifying the input and output cells and their
expected values), and produces as output a set of diagnosis candidates. Diagnosis
candidates are explanations for the misbehavior in user expectations (an example
of a diagnosis candidate is cell B1 and cell C4 are faulty, i.e., explain the faulty

observed value in, e.g., cell A100). We have used three small spreadsheets plus
a somewhat more realistic spreadsheet taken from the large EUSES Spreadsheet
Corpus to show that the approach is light-weight and efficient.

This line of research raises a number of research questions that require further
investigation. First and foremost, our intention is to release the approach in a
plug-in for spreadsheet applications. As such, and keeping in mind that the target
audience are end-users, we plan the devise a natural, intuitive way to visually
display the diagnostic information. Second, we plan to combine this work with
mutation of spreadsheets [30] to be able to give advice to users on how to fix
the buggy spreadsheet. Third, we plan to study the applicability and efficiency
of other, more light-weight techniques to debug spreadsheets. In particular, we
will study the complexity-efficiency trade-off using spectrum-based reasoning for
fault localization [19], which is amongst the best approaches for software fault
localization. Fourth, currently our approach only deals with integer cells, we plan
to extend our approach to be able to handle, e.g., strings and floats. Finally, we
also plan (that is actually on-going work) to evaluate the current approach using
a larger set of spreadsheets.

References

1. Ko, A.J., Abraham, R., Beckwith, L., Blackwell, A., Burnett, M., Erwig, M., Scaf-
fidi, C., Lawrance, J., Lieberman, H., Myers, B., Rosson, M.B., Rothermel, G.,
Shaw, M., Wiedenbeck, S.: The state of the art in end-user software engineering.
ACM Computing Surveys (2011)

2. Chadwick, D., Knight, B., Rajalingham, K.: Quality control in spreadsheets: A
visual approach using color codings to reduce errors in formulae. Software Quality
Journal 9(2) (2001) 133–143

3. Tukiainen, M.: Uncovering effects of programming paradigms: Errors in two spread-
sheet systems. In: Proc. PPIG’00. (2000) 247–266

4. Collavizza, H., Rueher, M.: Exploring different constraint-based modelings for pro-
gram verification. In: Proc. CP’07, Berlin, Heidelberg, Springer-Verlag (2007) 49–63

5. Ceballos, R., Gasca, R.M., Borrego, D.: Constraint satisfaction techniques for diag-
nosing errors in design by contract software. ACM SIGSOFT Software Engineering
Notes 31(2) (2006)

6. Wotawa, F., Nica, M.: On the compilation of programs into their equivalent con-
straint representation. Informatica Journal 32 (2008) 359–371

7. Woods, S., Yang, Q.: Program understanding as constraint satisfaction: Represen-
tation and reasoning techniques. Automated Software Eng. 5 (April 1998) 147–181

8. Gotlieb, A., Botella, B., Rueher, M.: Automatic test data generation using con-
straint solving techniques. In: ISSTA’98. (1998) 53–62

9. Gotlieb, A., Botella, B., Rueher, M.: A clp framework for computing structural test
data. In: Proc. CL’00, London, UK, Springer-Verlag (2000) 399–413

10. Peischl, B., Wotawa, F.: Automated source-level error localization in hardware
designs. IEEE Des. Test 23 (January 2006) 8–19

11. Abreu, R., Mayer, W., Stumptner, M., van Gemund, A.J.C.: Refining spectrum-
based fault localization rankings. In Wainwright, R.L., Haddad, H., eds.: Proc.
SAC’09, Honolulu, Hawaii, USA, ACM Press (8 – 12 March 2009) 409–414

12. Abreu, R., Zoeteweij, P., van Gemund, A.J.C.: On the accuracy of spectrum-based
fault localization. In McMinn, P., ed.: Proc. TAIC PART’07, Windsor, United
Kingdom, IEEE Computer Society (September 2007) 89–98

13. Weimer, W., Nguyen, T., Le Goues, C., Forrest, S.: Automatically finding patches
using genetic programming. In: Proc. ICSE’09, Washington, DC, USA, IEEE Com-
puter Society (2009) 364–374

14. Mayer, W.: Static and Hybrid Analysis in Model-based Debugging. PhD thesis,
School of Computer and Information Science, University of South Australia (2007)

15. Nica, M., Weber, J., Wotawa, F.: How to debug sequential code by means of
constraint representation. In Grastien, A., Stumptner, M., eds.: Proc. DX’08, Blue
Mountains, NSW, Australia (September 2008) 7–14

16. Gent, I.P., Jefferson, C., Miguel, I.: Minion: A fast, scalable, constraint solver. In:
Proc. ECAI’06, Amsterdam, The Netherlands, The Netherlands, IOS Press (2006)
98–102

17. Nica, M., Nica, S., Wotawa, F.: Does testing help to reduce the number of poten-
tially faulty statements in debugging? In: Proc. TAIC PART’10. (2010) 88–103

18. Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32(1)
(April 1987) 57–95

19. Abreu, R., Zoeteweij, P., van Gemund, A.J.C.: Spectrum-based multiple fault lo-
calization. In Taentzer, G., Heimdahl, M., eds.: Proc. ASE’09, Auckland, New
Zealand, IEEE Computer Society (16 – 20 November 2009)

20. Wotawa, F., Weber, J., Nica, M., Ceballos, R.: On the complexity of program
debugging using constraints for modeling the program’s syntax and semantics. In:
Proc. CAEPIA’09. (2009) 22–31

21. Ko, A.J., Myers, B.A.: Designing the whyline: a debugging interface for asking
questions about program behavior. In: Proc. CHI’04, New York, NY, USA, ACM
(2004) 151–158

22. Abraham, R., Erwig, M.: Goaldebug: A spreadsheet debugger for end users. In:
Proc. ICSE’07. (2007) 251–260

23. Rothermel, K.J., Cook, C.R., Burnett, M.M., Schonfeld, J., Green, T.R.G., Rother-
mel, G.: Wysiwyt testing in the spreadsheet paradigm: an empirical evaluation. In:
Proc. ICSE’00, New York, NY, USA, ACM (2000) 230–239

24. Ruthruff, J., Creswick, E., Burnett, M., Cook, C., Prabhakararao, S., Fisher, II,
M., Main, M.: End-user software visualizations for fault localization. In: Proc.
SoftVis’03, New York, NY, USA, ACM (2003) 123–132

25. Abraham, R., Erwig, M.: Header and unit inference for spreadsheets through spatial
analyses. In: Proc. VLHCC’04, Washington, DC, USA, IEEE Computer Society
(2004) 165–172

26. Ahmad, Y., Antoniu, T., Goldwater, S., Krishnamurthi, S.: A type system for
statically detecting spreadsheet errors. Volume 0., Los Alamitos, CA, USA, IEEE
Computer Society (2003) 174

27. Abraham, R., Erwig, M.: Ucheck: A spreadsheet type checker for end users. J. Vis.
Lang. Comput. 18 (February 2007) 71–95

28. Panko, R.R.: Applying code inspection to spreadsheet testing. J. Manage. Inf. Syst.
16 (September 1999) 159–176

29. Cunha, J., Erwig, M., Saraiva, J.: Automatically inferring classsheet models from
spreadsheets. In: Proc. VL/HCC’10. (2010) 93–100

30. Abraham, R., Erwig, M.: Mutation operators for spreadsheets. IEEE TSE 35(1)
(2009) 94–108

