
Leveraging a Constraint Solver for Minimizing Test Suites

José Campos
Department of Informatics Engineering

Faculty of Engineering of University of Porto
Porto, Portugal

jose.carlos.campos@fe.up.pt

Rui Abreu
Department of Informatics Engineering

Faculty of Engineering of University of Porto
Porto, Portugal

rui@computer.org

Abstract—Software (regression) testing is performed to de-
tect errors as early as possible and guarantee that changes did
not affect the system negatively. As test suites tend to grow
over time, (re-)executing the entire suite becomes prohibitive.
We propose an approach, RZOLTAR, addressing this issue:
it encodes the relation between a test case and its testing
requirements (code statements in this paper) in a so-called
coverage matrix; maps this matrix into a set of constraints;
and computes a collection of optimal minimal sets (maintaining
the same coverage as the original suite) by leveraging a fast
constraint solver. We show that RZOLTAR efficiently (0.95
seconds on average) finds a collection of test suites that
significantly reduce the size (64.88% on average) maintaining
the same fault detection (as initial test suite), while the well-
known greedy approach needs 11.23 seconds on average to find
just one solution.

Keywords-Regression testing, test suite reduction, constraint
solver, fault detection, empirical evaluation.

I. INTRODUCTION

In recent years, the software testing research community
has given considerable attention to the subject of regression
testing. Some approaches [1], [2], [3], [4], [5], [6], [7], just
like the one proposed in this paper, targeted cost reduction
of regression testing by selecting only a few test cases from
the original test suite. Approaches for test suite minimization
trade-off completeness (in terms of some criteria, such as
code coverage) for time efficiency (e.g., [1], [2], [4]).

Each test case can be conceptually viewed as an artifact
that will test a set of requirements (e.g., the test case
executes/verifies components foo and bar). Mapping a test
suite into a collection of sets reduces the problem of test
suite minimization to the minimal hitting set problem [8].
Despite being an NP-hard problem [8], [9], recent advances
in the AI community have proposed constraint solvers that
are fast and scale to millions of variables (consequently, to
large software programs) [10].

Our approach to minimize test suites, dubbed RZOLTAR,
leverages the efficient and scalable off-the-shelf MINION
constraint solver [10]. Our approach differs from related
work because: (i) It does not trade-off completeness for time
efficiency (e.g., greedy heuristic approach [1], [4]); (ii) it
produces a collection of minimal1 sets (and not only just one
like the greedy or the integer programming approach [5]).

1Minimal in terms of the number of test cases needed to achieve the
same code coverage.

As our approach yields more than one minimal set, the
developer can then prioritize them using, e.g., cardinality
or time to execute the test cases.

The adoption of regression testing techniques, such as
minimization, remain limited, as there are only a few
tools providing state-of-the-art techniques. To facilitate wide
adoption of our technique, we implemented RZOLTAR
within the GZOLTAR toolset [11]. GZOLTAR is an Eclipse2

plug-in for automatic debugging, offering graphical visual-
izations of diagnostic reports produced by Spectrum-based
fault localization (SFL) [12]. The main reason for this choice
is to allow developers to adopt the tool without much effort
as it is already integrated into the Eclipse IDE and takes as
input JUnit3 test cases.

We have evaluated the performance of our approach using
several open source, real, and large software programs. Our
empirical evaluation indicates that RZOLTAR can indeed
significantly reduce the original test suite. We observed
average reductions of 64.88% in terms of number of test
cases and 45.59% of time reduction, while still maintaining
full code coverage as the initial test suite.

Comparing with the well-known greedy approach (as
described in [4]) which is still amongst the best performing
heuristics, RZOLTAR reduces the size of the original suite
more than greedy, and provides more than one minimal set
for almost all open-source projects used in the evaluation
in less time (11.9 times on average). RZOLTAR can also
guarantee the same fault detection as the initial test suite
(which means a Reduction in Fault-Detection Capability
(RF)4 value of 0.0%) for all subjects, whereas the greedy
approach has a significant reduction of RF (88.16% on
average). This paper makes the following contributions:
• We propose a technique for test suite minimization

based on constraint solving programming, which ef-
ficiently reduces the size of the test suite, maintaining
full coverage and fault detection rate;

• The proposed technique has been implemented within
the GZOLTAR toolset [11], more specifically in a
cutting-edge Eclipse view dubbed RZOLTAR, this way
providing an ecosystem for testing and debugging soft-
ware programs;

2The Eclipse Foundation website, http://www.eclipse.org/, 2013.
3JUnit’s official website, http://www.junit.org/, 2013.
4Formally defined in Section IV.

• We empirically evaluate the test minimization capabil-
ities and fault detection of RZOLTAR using large, real
world software programs;

• We compare the performance and results of our ap-
proach with greedy, known as being an effective time
algorithm [4].

To the best of our knowledge, our approach to test suite
minimization has not been described before.

II. PRELIMINARIES

In this section we introduce the relevant concepts for this
paper and a motivational example, which is used throughout
this paper.

Definition 1 (Program) A program Π is a collection of M
components, C = {c1, . . . , cj , . . . , cM}, implementing a
specific set of specifications and requirements.

Consider the source code Π of a software program (see
Fig. 1 for our running example, where we consider three
components: line 1 is component c1, line 2 is component
c2, and line 3 is component c3). During the development
phase of the software development life-cycle it is commonly
to have a set of testing requirements for Π. Note that it is
irrelevant for our approach what requirements are, but in the
context of this paper we assume source code statements.

Definition 2 (Test Case) A test case t is a (i, o) tuple,
where i is a collection of input settings or variables for
determining whether a software system behaves as expected
or not, and o is the expected output. If Π(i) = o the test
case passes, otherwise fails.

Definition 3 (Test Suite) A test suite T = {t1, . . . , ti, . . . ,
tN} is a set of N test cases that are intended to test whether
the program follows the requirements.

As an example consider the following test suite T = {t1,
t2, t3, t4}. Test case t1 checks whether add(1,2) and
sub(2,1) follow the specification or not, test case t2
checks add(1,0) and mul(1,0), test case t3 checks
sub(1,0), and test case t4 checks mul(0,1).

During the development phase of software, a common
practicing to build and maintain a regression test suite [13],
[14]. Such test suite is used to perform regression testing of
the software after a change is made (e.g., after fixing a bug
or adding a new feature). Regression test suites are therefore
an important artifact of the software development process to
assess the quality of the software. Moreover, as developers
often add new test cases to the suite as the development
progresses, it must be maintained in order to keep testing
efficiency optimized.

In many situations (e.g., testing that requires user input)
the size of the test suite may be simply too large, making it
impractical to execute all the test cases in the suite. Besides,
the ever increasing time-to-market pressure requires the
testing phase to be optimized as much as possible. Therefore,
to make regression testing amenable to large programs, the
suite should be minimized, i.e., it should contain only the

public class Calculator {
1. public int add(int x, int y) { return x + y; }
2. public int sub(int x, int y) { return x - y; }
3. public int mul(int x, int y) { return x * y; }

}

Figure 1: Example Program.

necessary test cases to test the requirements and discard
redundant ones. As an example, one can easily conclude
that there is no need to execute all test cases in the previous
test suite T as using, either t1 and t4 or t2 and t3 already
checks all components.

To minimize the number of tests but still achieve the same
code coverage as the original suite, we consider that the
testing requirements for each test case can be encoded as a
set. For example, {c1, c2} are the testing requirements for
t1. Taking as input a collection of sets, one per test case, the
problem boils down to find the minimal set of tests cases
that achieve the same coverage as the original test suite. In
other words, the problem is to find the minimal hitting set
of the collection of covered requirements set. A minimal
hitting set can be defined as follows
Definition 4 (Minimal Hitting Set) Let S be a collection
of N non-empty sets S = {s1, . . . , sN}. Each set si ∈ S
is a finite set of components (source code statements in our
case), where each of the M components is represented by
cj . A minimal set coverage of S is a non-empty set T ′ such
that

∀si ∈ S, (si∩T ′ 6= ∅) ∧ (@T ′′ ⊂ T ′ : si∩T ′′ = ∅) (1)

i.e., each member of S has at least one component of T ′ as
a member, and no suitable subset of T ′, T ′′, is a hitting set.

Identifying the minimal hitting set (also know as dual set
cover problem [8]) of a collection of sets is an important
problem in many domains (e.g., such as Air Crew Schedul-
ing [15]). During the construction of the minimal hitting set,
each test should be analyzed to determine which components
it covers. All ti in T ′, must cover at least one component.
Being an NP-hard problem (i.e., exponential on the number
of components) [8], exhaustive algorithms (e.g., [16], [17],
[18]) are prohibitive for real-world, often large programs.
Furthermore, heuristic approaches (e.g., approach [1], [4])
trade-off completeness for time efficiency.

In the next section, we propose our approach to efficiently
minimize test suites which guarantee to cover exactly the
same requirements as the original suite. Moreover, our
approach, unlike most related work approaches, generate
multiple minimal sets for the minimization problem. As
multiple minimal sets are generated, the developer can
prioritize them using two criteria: (i) cardinality of the
minimized test suite or (ii) test suite’s execution time.

III. RZOLTAR

In this section we describe our approach, coined
RZOLTAR, a constraint-based technique for test suite mini-
mization. RZOLTAR takes as input the testing requirements

for each test case and yields a collection of minimized test
suites that guarantee both the same coverage and the same
fault detection as the initial test suite. The approach works
in three major phases:

1) It executes the system under analysis with the current
test suite in order to obtain the so-called coverage
matrix (see Section III-A);

2) The coverage matrix is subsequently converted into a
set of constraints, which are amenable to be solved by
a constraint solver (detailed in Section III-B);

3) The constraints are solved with the slightly mod-
ified, off-the-shelf constraint solver MINION, and
prioritized using a certain criterion (detailed in Sec-
tion III-C).

A. Test Case Coverage
As mentioned before, although our approach is not limited

to any testing requirement, in this paper we use code
coverage. In the following we detail how code coverage is
stored for subsequent usage5.

By tracking which components each test case activate
(covers) and the pass/fail result of that test, a N×M binary
matrix A and an error vector e (with the information if the
test execution has passed or not) is created. We refer to this
matrix as coverage matrix. An element aij is equal to 1
if and only if component cj is covered when the test ti is
executed

ω(ti, cj) = (aij == 1 ? true : false) (2)

Note that, while a test may be designed to cover a specific
component, other components may still be covered. Thus,
the result of interception between test and component,
returned by the ω(ti, cj) function in Eq. (2), can be explored
to reduce the number of tests to generate a test suite that
leads to the same coverage as the initial test suite. Next, we
elaborate on how to exploit the information in the coverage
matrix to minimize and prioritize the current test suite.

B. Modeling Coverage Matrix as Constraints
As mentioned before, our approach minimizes the current

test suite using a constraint solver. In order for the coverage
matrix to be amenable to off-the-shelf, fast, and scalable
constraint solvers, RZOLTAR converts the coverage matrix
(which contains all information available as no other mod-
eling is required) into a set of constraints.

The key idea behind our approach is to encode the testing
requirement of each test case into a set of constraints (see
Algorithm 1), each of which has to be satisfied for the prob-
lem to be solved. For ease of comprehension, we illustrate
this phase through an example. Consider the example in
Fig. 2, which is obtained by running four test cases which
cover the three components of the program in Fig. 1. The
three components in Fig. 2 represents the three statements
of the example program: c1 correspond to statement with

5Note that code coverage is obtained when running the program with the
original test suite, typically in the previous testing iteration.

Algorithm 1 Map Coverage Matrix into Constraints
1: Input: Matrix A, an error vector e, number of compo-

nents M , number of test cases N
2: Output: Conjunctions of disjunctions Ω
3: Ω← ∅ . empty conjunction
4: for all i ∈ {1 . . . M} do
5: Ω′ ← ∅ . empty disjunction
6: for all j ∈ {1 . . . N} do
7: if ω(i, j) then
8: Ω′ ← Ω′ ∨ j
9: end if

10: end for
11: Ω← Ω ∧ (Ω′)
12: end for
13: for all k ∈ {1 . . . N} do
14: if e(k) then
15: Ω← Ω ∧ (k)
16: end if
17: end for
18: return Ω

t1
t2
t3
t4

c1 c2 c3
1 1 0
1 0 1
0 1 0
0 0 1


e
0
0
0
1


Figure 2: Coverage matrix example with four tests (lines)
and three components (columns).

number 1, c2 to statement 2, and c3 to statement 3. The
four test cases execute at least one component: t1 exercises
components c1 and c2, t2 covers components c1 and c3, t3
exercises component c2, and t4 exercises component c3. The
error vector shows that only test t4 fails, all other tests pass.

In order to ensure that component c1 is covered, test t1
or t2 needs to be executed. Formally, (t1 ∨ t2). To cover
component c2, test t1 or test t3 are essential, so the mapping
is (t1 ∨ t3). To cover component c3, tests t2 and t4 suffices
(t2 ∨ t4). To maintain the same fault detection, test t4 (the
only one that fails) is also taken into account, so that our
approach guarantee the same fault detection (t4). Thus, the
final encoding for this problem is a conjunction of previous
constraints

Ω = ((t1 ∨ t2) ∧ (t1 ∨ t3) ∧ (t2 ∨ t4) ∧ (t4))

Next section describes how to solve the constraints using
a constraint solver.

C. Solving the Constraints

A constraint system comprises a tuple (V,D,Ω) where
V is a set of finite variables, D is a function mapping a
domain to each variable, and Ω is a finite set of constraints
(a conjunction of disjunction) where each constraint has

t1
t4

c1 c2 c3[
1 1 0
0 0 1

] e[
0
1

]
(a) Set {t1, t4}.

t1
t3
t4

c1 c2 c3 1 1 0
0 1 0
0 0 1


e 0
0
1


(b) Set {t1, t3, t4}.

Figure 3: Coverage matrix example.

a scope (variables from V) and relations restricting the
variable values.

Given a constraint system, a Constraint Satisfaction Prob-
lem (CSP) finds assignments of values to variables V from
their domains D that satisfy constraint Ω. As mentioned
before, searching for a solution for Ω is NP-hard in the finite
case. However, efficient algorithms for solving the CSPs
have been proposed in the past, e.g., [10], [19].

MINION [10] is a general-purpose constraint solver,
with an expressive input language based on the common
constraint modeling device of matrix models. Experimental
results show that MINION is orders of magnitude faster
than state-of-the-art constraint toolkits on large and difficult
problems [10]. For small problems or instances, where
minimal sets are discovered with a simple search, gains are
just marginal.

Essentially, the RZOLTAR approach maps the constraint
set Ω computed in the previous phase to the MINION
language. For the example, the constraint solver returns five
possible sets: {t1, t4}, {t2, t3, t4}, {t1, t3, t4}, {t1, t2, t4},
{t1, t2, t3, t4}.
The first set, {t1, t4}, minimizes the original test suite in
50%, covering exactly the same code and still maintaining
the same fault detection. This test suite is of minimal
size because (see Fig. 3a): (i) Not executing t1 would
lead to incomplete coverage, as components c1 and c2 are
not covered by the other test; (ii) For the same reason,
not executing test t4 would lead to component c3 being
uncovered and would compromise the fault detection rate.
Following the same reasoning, one can easily see that set
2 is also minimal and maintains the same fault detection.
Consider set 3 as an example of a non-minimal set: t3 can
be discarded without compromising the code coverage (see
Fig. 3b). Sets 4 and 5 (note that this is, in fact, the original
test suite) are both valid solutions, but not minimal in term
of size.

The fact that the solver computes non-minimal solutions
(which are of no interest to us, because we want to pro-
vide more than one minimized test suite) is an important
limitation that needs to be addressed. The constraint solver
yields all possible solutions, and not only those of minimal
cardinality. To filter out those solutions that are not minimal
in terms of cardinality, we modified MINION to use a TRIE
data structure.

A TRIE [20] is an ordered tree data structure used to
store a set (set of test cases identifiers in this paper) where
the keys are commonly strings. The main idea is that strings

with a common prefix share nodes and edges in the tree. The
main advantages of the TRIE data structure are: (i) ease with
handling sequences of several lengths; (ii) add and/or delete
can be easily achieved; (iii) speed of storage and access [21].
A thorough description of the TRIE data structure can be
found in [22].

After filtering out the collection of sets yielded by the
constraint solver, we would only get {t1, t4} and {t2, t3,
t4} as the minimal - in size cardinality - test suites, while
still covering all components and maintaining the same fault
detection rate as the initial test suite. Once the minimal sets
are found and given user input/preferences, the collection
is order either using the cardinality or the time needed to
execute the minimal set found.

D. Complexity
The worst-time complexity of our approach is O(|T | +

N + 2M + |R|) (execute all test cases; map coverage matrix
into constraints; solve constraints; filtering with the TRIE).
It is reasonable to assume that |T | and |R| are of the
same order of magnitude as N . Thus, time complexity is
O(N + 2M). Since N ≤ 2M , the worst-time complexity of
our approach is O(2M), although many problems – such
as the ones we try to solve – are in practice solved in
polynomial time, O(M2) [10].

With respect to space complexity, for each invocation
of our approach, the complexity is O(M · N) to keep the
coverage matrix, O(|C|) to run the constraint solver (where
|C| is the number of constraints), O(T 2) for the TRIE to
filter out solutions, and O(|R|) to retain all solutions to the
problem (where R is the set of solutions). Therefore, the
worst-case space complexity is O(M ·N + |C|+T 2 + |R|).
In practice, however, this complexity did not prove to hinder
the applicability of our approach.

IV. EVALUATION

In this section, we evaluate the test suite minimization
capabilities of the proposed approach using real software
programs and comparing with the state-of-art greedy ap-
proach [4]. In particular, we empirically studied the cardinal-
ity and execution time reduction of the test suites yielded by
our approach and the greedy approach, as well as the time
needed to produce the results.

To evaluate the ratio of the size of the minimized test
suite from the original one and the ratio of fault detection
capability of a minimized test suite, we adopted two mea-
sures [23].

To quantify the test suite reduction we use Reduction in
Test-Suite Size (RS) [23] metric:

RS =
|T | − |Tminimized|

|T | × 100 (3)

where |T | is the number of tests in original test suite and
|Tminimized| is the number of tests in the reduced test suite.

To quantify the impact of test suite reduction on the fault
detection rate, we use the RF [23] metric:

RF =
|F | − |Fminimized|

|F | × 100 (4)

Table I: Subject programs detailed.

Subject Version Classes Test Cases LOCs Coverage

JMeter 2.6 970 556 84266 34.8%
org.jacoco.report 0.5.7 59 235 2600 97.3%
XML-Security 1.5.0 353 462 24542 64.7%

where |F | is the number of faults in original test suite and
|Fminimized| is the number of faults in the minimized test
suite.

A. Empirical Evaluation
To assess the performance of our approach, we carried

out an empirical evaluation using three open source, large
software subjects. This study was meant to answer the
following research questions.

RQ1: Can RZOLTAR efficiently minimize the original
test suite, maintaining the same code coverage and
the same fault detection?

RQ2: What is the execution time reduction of
RZOLTAR’s minimized test suite when compared
to the original suite (and the suite computed using
the greedy approach)?

We proceed to present the software subjects used in the study
and the experimental setup. At the end we report and discuss
the results obtained in the experiments.

1) Experimental Subjects: Three subjects, written in Java,
were considered in our empirical study. JMeter6 is a Java
desktop application designed to load test functional behav-
ior and measure performance. JaCoCo7 project’s module
org.jacoco.report provides utilities for report generation used
by JaCoCo itself. XML-Security8 is a component library
implementing XML signature and encryption standards.
Both JMeter and XML-Security are sub-projects of the open
source Apache project9.

For each program, we report (see Table I) the version
used in our experiments, number of classes, number of JUnit
test cases, number of Lines of Code (LOC) (non-comment
lines), and percentage of code coverage of the original test
suite. Code coverage information was obtained using the
open source Eclipse plug-in Metrics10.

2) Experimental Setup: For all programs, we convert all
JUnit test cases in simple unit tests. These programs provide
test cases which have at least two or three unit tests. So, to
check the real purpose of every unit test, we mapped every
unit test into a single test case (e.g. if a test case has 3
unit test (u1, u2, and u3), we create test case c1 with u1,
c2 with u2, and c3 with u3). This transformation is valid
and legitimate, because it does not change source code, or
increase/decrease percentage of coverage or even the number
of tests. It is necessary just because of a technological

6JMeter, http://jmeter.apache.org, 2013.
7JaCoCo, http://www.eclemma.org/jacoco, 2013.
8XML-Security, http://santuario.apache.org, 2013.
9Apache, http://www.apache.org, 2013.
10Metrics, http://metrics.sourceforge.net, 2013.

Table II: Average (t̄) and standard deviation (σ) of time (in
seconds) to execute RZOLTAR and greedy approach. The
number of minimal test suites provided by each approach is
represented by #.

RZOLTAR greedy

Subject t̄ σ # t̄ σ #

JMeter 1.104 0.009 2 16.218 0.099 1
org.jacoco.report 0.206 0.007 1 0.674 0.004 1
XML-Security 1.525 0.010 2 16.799 0.033 1

limitation in RZOLTAR: it does not handle the individual
tests in a JUnit suite, but considers instead each suite as one
test.

For each subject, we repeated the process thirty times to
measure the time that RZOLTAR and the greedy approach
take to compute the collection of minimal test suites (Eq. 1).
We also report the average and the standard deviation σ
(detailed in the next section).

The experiments were run on a 2.27Ghz Intel Core i3-
350M with 4GB of RAM running Debian Linux Wheezy.

RQ1: Can RZOLTAR efficiently minimize the original
test suite, maintaining the same code coverage and the
same fault detection?

3) Results and Discussion: The results in Table II show
that RZOLTAR can compute two minimal sets of test cases
for almost all programs (except for org.jacoco.report) in
less than 1.5 seconds, while the greedy approach can only
compute - as expected - one set. For instance, for JMeter,
with 84266 constraints (number of LOCs) and 556 variables
(number of tests cases), the RZOLTAR approach generated
two minimal sets in just 1 second, unlike greedy which only
return one set in 16 seconds. As can be seen in Table II, for
every subjects greedy performed worst than RZOLTAR, 11.9
times on average.

Table III shows the cardinality of the original test suite,
the cardinality of one of the minimized test suites yielded by
RZOLTAR and greedy, and the reduction in fault detection
capability of each approach. We conclude that RZOLTAR
can compute two minimal test suites for 2 of the 3 programs
considered (except for org.jacoco.report), while greedy can
only determine one minimal suite for each subject. The
cardinality reduction for the subject programs ranged from
51.98% in case of JMeter, to a significant result of 73.19%
in org.jacoco.report. On average, the reduction provide by
RZOLTAR is better than the greedy approach. Table III
also shows that, greedy has a significant degradation on RF
(76.32% on JMeter and 100% on XML-Security). On the
other hand, RZOLTAR always maintains the same percentage
of fault detection as the original test suite.

http://jmeter.apache.org
http://www.eclemma.org/jacoco
http://santuario.apache.org
http://www.apache.org
http://metrics.sourceforge.net

Table III: Size of initial test suites |T | of all subject programs, number of tests that P (Pass) or F (Fail), reduction in test-suite
size (RS) and reduction in fault-detection capability (RF). Higher RS values denote high reduction, higher RF values denote
less fault detection rate.

Original RZOLTAR greedy

Subject |T | P F |Tm| P F RS RF |Tm| P F RS RF

JMeter 556 518 38 267 229 38 51.98% 0.0% 255 246 9 54.14% 76.32%
org.jacoco.report 235 235 0 63 63 0 73.19% - 66 66 0 71.91% -
XML-Security 462 461 1 141 140 1 69.48% 0.0% 167 167 0 63.85% 100.0%

Table IV: Average time (t̄) in seconds needed to execute the
original test suite, the reduced proposed by RZOLTAR and
greedy approach, and the % of time reduction afford by each
approach.

Original RZOLTAR greedy

Subject t̄ t̄ % t̄ %

JMeter 28.844 24.356 15.56% 23.878 17.22%
org.jacoco.report 3.423 1.206 64.77% 1.627 52.47%
XML-Security 30.056 13.094 56.43% 18.089 39.82%

RQ2: What is the execution time reduction of
RZOLTAR’s minimized test suite when compared to the
original suite (and the the greedy approach)?

The time needed to execute the computed, minimal test
suite with RZOLTAR and greedy was also measured, and
compared it to the original suite.
As expected, when reducing the size of the original test suite,
one reduces the time needed to achieve the same coverage.
Table IV shows the time needed to execute the original suite
and the reduced one (minimal set) proposed by RZOLTAR
and greedy. Similar to the results reported for the cardinality,
the time reduction for minimal sets calculated by RZOLTAR
is on average better then the greedy approach. For instance,
for XML-Security subject RZOLTAR reduces the execution
time in 69.48% and greedy 63.85%.

B. Threats to Validity

Despite the programs used in the empirical results are
real, large and open source software, the main threat to the
external validity is the fact only three subjects were used.
It is plausible to conclude that the results for a different
set of programs, with different characteristics, may generate
different results.

To mitigate this threat, we have not only thoroughly tested
the toolset but also manually checked a large set of results.

V. RELATED WORK

Trying to find the minimal test suite (Eq. 1) that covers
the same set of requirements as the original one is a NP-
hard problem, but can be solved in a polynomial time using
the minimal hitting set problem [8]. NP-hardeness of the

test suite minimization problem encourages the usage of
heuristics. Precedent work on test case minimization has
advanced the state-of-the-art of heuristic approaches to the
minimal hitting set problem [1], [2], [3], [4], [5], [6], [7].

Chavatal [1] proposes the usage of a greedy heuristic
(i.e., an approximation) to efficiently solve the minimization
problem. This greedy approach selects test cases until all
requirements have been covered, but without guaranteeing
that only the test cases needed are added to the suite. First,
it selects the test case that covers the large number of
requirements. If there are more than one test that covers the
same number of requirements, one is randomly selected. The
approach keeps doing this selection until all requirements in
the original suite have been covered. One limitation of such
heuristic-based approach is that the selection of a test case
may potentially be redundant by the test cases that will be
selected later in the process.

Offutt, Pan, and Voas (OPV for short) [2] proposed an
approach that is a variation of the greedy heuristic approach
just outlined. Their approach differs from the original greedy
because they use multiple heuristics to elect the test cases.
Regardless, and similar to [1], this approach still yields an
approximation, with no guarantees of computing the optimal
solution.

Another greedy heuristic has been developed by Harrold,
Gupta, and Soffa (HGS for short) [3]. Their heuristic is
based on discarding obsolete and redundant test cases from
the original test suite. This heuristic approach computes a
minimized test suite which has the same size or is smaller
than the ones computed by Chavatal [1], but entails a worst
time execution. Like OPV, the solution computed by this
approach are more efficient than Chavatal [1]. No assurance
given in terms of fault detection rate given by the yielded test
suite. Chen et al. [6] developed an HGS-based approach that
takes into account the interaction between test requirements
in order minimize the test suite and to improve the fault
detection rate.

Tallam and Gupta [4] developed an approach, coined
Delayed-Greedy, that tackles the weaknesses of the greedy
approach. Delayed-Greedy works in three steps: (i) it dis-
cards test cases that cover some requirements covered by
other test cases; (ii) it discards test requirements which are
not part of the minimized requirements set; and (iii) it uses
the classical greedy approach to create a minimized test suite
with the remainder test cases. An empirical evaluation [4]

has shown that this approach computes minimized test suites
of the same size or smaller than the classical greedy and the
HGS approaches.

More recently Hao, Zhang, Wu, Mei and Rothermel [5]
introduced a new technique that first checks individual
statements and stores statistics about the possibility of each
statement losing capability in fault-detection; second models
the minimization as an Integer Linear Programming (ILP)
problem.

Lin, Tang, Chen and Kapfhammer [7] proposes an al-
gorithm that takes into account the ratio of coverage to
time of test cases as the minimization criteria. On their
experiments, only using the rather small Siemens benchmark
suite, they concluded that this approach does not scale to
large programs and test suites.

To our knowledge, our approach is the first to leverage
a constraint solver to generate multiple optimal test suites,
each with the same coverage as the original suite.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, a new approach, dubbed RZOLTAR, for
test suite minimization was proposed. It takes as input the
requirements covered by the test cases in the suite (code
coverage in the context of this paper) and, using a constraint
solver programming approach, minimizes the suite, while
still guaranteeing that the testing requirements are met. The
collection of generated suites can then be ranked by the user
(e.g., by cardinality or time needed to execute). To facilitate
the adoption of our approach, we have integrated it within
the GZOLTAR Eclipse plug-in [11].

Application to three real-world, open source, and large
programs indicates that RZOLTAR can significantly reduce
the original test suite, while still maintaining the full code
coverage and the fault detection rate. We observed averaged
reductions of 64.88% in terms of test suite size and 45.59%
of execution time reduction (when compared to the orig-
inal one). RZOLTAR was also compared with the greedy
approach, and on average yielded better results in term of
reduction of all test suites and time reduction.

Our approach is also better in terms of fault detection.
RZOLTAR has a RF of 0.0% for every subject, which means
that it guarantees the same fault detection as the initial test
suite. On the other hand, greedy approach has a significant
reduction on RF, e.g, 76.32% for JMeter.

Future work includes the following. We plan to investigate
techniques to prioritize the execution of the test cases in the
reduced test suite to enhance the rate at which diagnostic
quality improves.

ACKNOWLEDGMENT

This work is funded by the ERDF through the Programme
COMPETE and by the Portuguese Government through FCT
- Foundation for Science and Technology within project
FCOMP-01-0124-FEDER-020484.

REFERENCES

[1] V. Chvatal. A Greedy Heuristic for the Set-Covering Problem.
Mathematics of Operations Research, 4(3):233–235, 1979.

[2] J. Offutt, J. Pan, and J. Voas. Procedures for reducing the size
of coverage-based test sets. In Proc. of the 12th ICTCS’95.

[3] M. Jean Harrold, Rajiv Gupta, and Mary Lou Soffa. A
methodology for controlling the size of a test suite. ACM
Trans. Softw. Eng. Methodol., 2(3):270–285, July 1993.

[4] Sriraman Tallam and Neelam Gupta. A concept analysis in-
spired greedy algorithm for test suite minimization. SIGSOFT
Softw. Eng. Notes, 31(1):35–42, September 2005.

[5] Dan Hao, Lu Zhang, Xingxia Wu, Hong Mei, and Gregg
Rothermel. On-demand test suite reduction. In Proc. of the
ICSE ’12, pages 738–748, 2012.

[6] Xiang Chen, Lijiu Zhang, Qing Gu, Haigang Zhao, Ziyuan
Wang, Xiaobing Sun, and Daoxu Chen. A test suite reduction
approach based on pairwise interaction of requirements. In
Proc. of the SAC ’11, pages 1390–1397, 2011.

[7] Chu-Ti Lin, Kai-Wei Tang, Cheng-Ding Chen, and Gre-
gory M. Kapfhammer. Reducing the Cost of Regression
Testing by Identifying Irreplaceable Test Cases. In Proc. of
the 6th ICGEC ’12.

[8] R. Garey and D.S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. Series of Books in
the Mathematical Sciences. W. H. Freeman, 1979.

[9] Staal Vinterbo and Aleksander Øhrn. Minimal approximate
hitting sets and rule templates. International Journal of
Approximate Reasoning, 25(2):123 – 143, 2000.

[10] Ian P. Gent, Chris Jefferson, and Ian Miguel. MINION: A
Fast, Scalable, Constraint Solver. In Proc. of the 17th ECAI’
06, pages 98–102, 2006.

[11] José Campos, André Riboira, Alexandre Perez, and Rui
Abreu. GZoltar: An Eclipse Plug-in for Testing and Debug-
ging. In Proc. of the 27th ASE ’12, pages 378–381, 2012.

[12] Rui Abreu, Peter Zoeteweij, Rob Golsteijn, and Arjan J. C.
van Gemund. A practical evaluation of spectrum-based fault
localization. J. Syst. Softw., 82(11):1780–1792, 2009.

[13] S. Yoo and M. Harman. Regression testing minimization,
selection and prioritization: a survey. Softw. Test. Verif.
Reliab., 22(2):67–120, March 2012.

[14] A.G. Malishevsky, G. Rothermel, and S. Elbaum. Modeling
the cost-benefits tradeoffs for regression testing techniques.
In Proc. of the ICSM ’02, pages 204 – 213, 2002.

[15] H.P. Williams. Model building in mathematical programming.
Wiley-Interscience publication. Wiley, 1985.

[16] R Reiter. A theory of diagnosis from first principles. Artif.
Intell., 32(1):57–95, April 1987.

[17] R. Greiner, B. A. Smith, and R. W. Wilkerson. A correction
to the algorithm in Reiter’s theory of diagnosis. Artif. Intell.,
41(1):79–88, November 1989.

[18] Franz Wotawa. A variant of Reiter’s hitting-set algorithm.
Inf. Process. Lett., 79(1):45–51, May 2001.

[19] Dharini Balasubramaniam, Christopher Jefferson, Lars Kot-
thoff, Ian Miguel, and Peter Nightingale. An automated
approach to generating efficient constraint solvers. In Proc.
of the ICSE ’12, pages 661–671, 2012.

[20] Edward Fredkin. Trie memory. Commun. ACM, 3(9):490–
499, September 1960.

[21] Ian P. Gent, Chris Jefferson, Ian Miguel, and Peter Nightin-
gale. Data structures for generalised arc consistency for
extensional constraints. In Proc. of the 22nd AAAI’07.

[22] K.D. Forbus and J. De Kleer. Building Problem Solvers.
Number v. 1 in Artificial Intelligence. Mit Press, 1993.

[23] Lingming Zhang, Darko Marinov, Lu Zhang, and Sarfraz
Khurshid. An Empirical Study of JUnit Test-Suite Reduction.
In Proc. of the 22nd ISSRE ’11, pages 170–179, 2011.

	Introduction
	Preliminaries
	RZoltar
	Test Case Coverage
	Modeling Coverage Matrix as Constraints
	Solving the Constraints
	Complexity

	Evaluation
	Empirical Evaluation
	Experimental Subjects
	Experimental Setup
	Results and Discussion

	Threats to Validity

	Related Work
	Conclusions and Future Work
	References

